JP7395647B2 - 遠隔制御ロボットシステム - Google Patents

遠隔制御ロボットシステム Download PDF

Info

Publication number
JP7395647B2
JP7395647B2 JP2022076626A JP2022076626A JP7395647B2 JP 7395647 B2 JP7395647 B2 JP 7395647B2 JP 2022076626 A JP2022076626 A JP 2022076626A JP 2022076626 A JP2022076626 A JP 2022076626A JP 7395647 B2 JP7395647 B2 JP 7395647B2
Authority
JP
Japan
Prior art keywords
arm
master control
user
control arm
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022076626A
Other languages
English (en)
Other versions
JP2022107625A (ja
Inventor
フレイザー・エム・スミス
マーク・エックス・オリヴィエ
Original Assignee
サルコス・エルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サルコス・エルシー filed Critical サルコス・エルシー
Publication of JP2022107625A publication Critical patent/JP2022107625A/ja
Application granted granted Critical
Publication of JP7395647B2 publication Critical patent/JP7395647B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/005Manipulators mounted on wheels or on carriages mounted on endless tracks or belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J3/00Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements
    • B25J3/04Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements involving servo mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/002Manipulators for defensive or military tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/02Hand grip control means
    • B25J13/025Hand grip control means comprising haptic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1689Teleoperation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/065Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks non-masted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/12Platforms; Forks; Other load supporting or gripping members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/12Platforms; Forks; Other load supporting or gripping members
    • B66F9/14Platforms; Forks; Other load supporting or gripping members laterally movable, e.g. swingable, for slewing or transverse movements
    • B66F9/142Movements of forks either individually or relative to each other
    • B66F9/144Movements of forks relative to each other - independent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/12Platforms; Forks; Other load supporting or gripping members
    • B66F9/18Load gripping or retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H7/00Armoured or armed vehicles
    • F41H7/005Unmanned ground vehicles, i.e. robotic, remote controlled or autonomous, mobile platforms carrying equipment for performing a military or police role, e.g. weapon systems or reconnaissance sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40195Tele-operation, computer assisted manual operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40298Manipulator on vehicle, wheels, mobile

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Manipulator (AREA)

Description

優先権データ
本出願は、その全内容が参照により本明細書に組み込まれている、2011年12月20日に出願した米国出願第13/332,165号の利益を主張するものである。また、本出願は、その全内容が参照により本明細書に組み込まれている、2011年4月29日に出願した米国仮出願第61/481,110号の利益も主張するものである。本出願は、それぞれ、その全内容が参照により本明細書に組み込まれている、2011年4月29日に出願した米国仮出願第61/481,103号、2011年4月29日に出願した米国仮出願第61/481,089号、2011年4月29日に出願した米国仮出願第61/481,099号、2011年4月29日に出願した米国仮出願第61/481,095号、および2011年4月29日に出願した米国仮出願第61/481,091号の利益を主張するものである。
物体および物品を持ち上げて、一方の場所から別の場所に運搬する段階は、安全でない、効率的でない、および/または費用効果が高くないという点でかなり問題になることが多い。これらの問題は、持ち上げまたは運搬補助システムが利用できないため物体または物品の持ち上げおよび/または運搬のすべてが手作業でなされる必要のある、または物体の持ち上げおよび/または運搬の一部が少なくともある程度の補助の下でなされるが、補助は機能の点で制限を受けている利用可能な持ち上げまたは運搬補助システムを用いて行われ、したがってある種の仕事についてはその使用が実用的でないか、または無効なものとなる、産業および環境(例えば、造船所、倉庫、軍隊配備地など)において悪化する可能性がある。
一方の場所から別の場所に物体を持ち上げおよび/運搬することが必要になった場合に、そうすることが難しい、またはそうすることができないことは、一般に、「リフトギャップ(lift gap)」と称され、その分野は「ギャップロジスティクス(gap logistics)」と称される。現在、公共、個人、および軍隊におけるセッティングに相当な問題および難題を引き起こす最大400lbまでのペイロードに関連するいわゆる「リフトギャップ」がいくつかある。多くの場合に、ロジスティクス要員は、可能な方法で、ときには不格好で効果のない、および/または非効率的な補助システムの助けを借りて、またときには補助なしで手作業により、重い、またはかさばったペイロードを持ち上げ、運搬するか、または他の何らかの方法でマニピュレートする必要が生じることが多い。
例示的な一例は、ロジスティクス(例えば、軍隊、または他の種類のロジスティクスのセッティング)にあり、これはさまざまな物体の移送、メンテナンス、および支持を行う分野を含みうる。つまり、ロジスティクスは、材料および機器の調達、保管、分配、運搬、メンテナンス、撤去、および準備の態様を含むものとしてよい。セッティングがなんであれ、ロジスティクスサポート要員は、数百ポンド以上にも達しうる重量を有する機器を持ち上げて運搬するという難題に直面することが多く、したがって大きなロジスティクス面の問題が生じる。これらをあちこち動かすために、用意されている機能制限のある補助システムの助けを借りたとしても、ロジスティクス要員の側に多大な労力を費やす必要が生じうる。多数の物体を、特に毎日、これらの物体が比較的重い物体よりも軽い場合であっても、持ち上げて運搬する必要がある場合に、さらなる難題または問題が存在する。実際、ロジスティクス要員が、それぞれ、1日に数千ポンドを、ときには難しい地形を越えて持ち上げて運搬するのは普通でない。さらに、この仕事の大半は手作業で行われ、残念なことに、そのためさまざまな整形外科的怪我および他の怪我が生じ、さらには離職率も上昇する。
同時係属米国非仮特許出願第13/332,152号明細書 同時係属米国非仮特許出願第13/332,138号明細書 同時係属米国非仮特許出願第13/332,146号明細書 同時係属米国非仮特許出願第13/332,129号明細書 同時係属米国非仮特許出願第13/332,160号明細書
したがって、ユーザーが直観的に操作でき、一方の場所から別の場所に重い、および/または多数の物体を持ち上げて操縦することに関連する作業の全部ではないにしろ大半を実行するシステムの必要性が存在する。
本発明は、付属の図面を参照すると、以下の説明および付属の請求項からより完全に明らかになるであろう。これらの図面は単に本発明の例示的な実施形態を示しているだけであり、したがって、これらの図面は本発明の範囲を制限するとみなすべきでないことを理解されたい。本明細書の図で一般的に説明され例示されているような本発明のコンポーネントは、さまざまな異なる構成による配置および設計が可能であることも容易に理解されるであろう。それでも、本発明は、付属の図面を使用することでさらに具体的に、また詳細に記述され、説明される。
本開示の一例による遠隔操作ロボットシステムの斜視図である。 本開示の一例によるマスター制御アームの斜視図である。 図2Aのマスター制御アームの別の斜視図である。 本開示の別の例によるマスター制御アームの斜視図である。 図2Aおよび図2Bのマスター制御アームの基部、第1の支持部材、および第2の支持部材の斜視図である。 図3Aの基部、第1の支持部材、および第2の支持部材の別の斜視図である。 図2Aおよび図2Bのマスター制御アームの第2の支持部材、第3の支持部材、および第4の支持部材の斜視図である。 図4Aの第2の支持部材、第3の支持部材、および第4の支持部材の別の斜視図である。 図2Aおよび図2Bのマスター制御アームの手首ユニットの斜視図である。 図5Aの手首ユニットの別の斜視図である。 図5Aおよび図5Bの手首ユニットのアクチュエータ、位置センサー、および荷重センサー配置構成の斜視図である。 図5Cのアクチュエータ、位置センサー、および荷重センサー配置構成の別の斜視図である。 本開示の一例によるスレーブアームの斜視図である。 図6Aのスレーブアームの別の斜視図である。 図6Aおよび図6Bのスレーブアームの基部、第1の支持部材、および第2の支持部材の斜視図である。 図7Aの基部、第1の支持部材、および第2の支持部材の別の斜視図である。 本開示の一例による、アクチュエータをサーボ弁から絶縁するためのクランプ弁の油圧図である。 図6Aおよび図6Bのスレーブアームの第2の支持部材、第3の支持部材、および第4の支持部材の斜視図である。 図8Aの第2の支持部材、第3の支持部材、および第4の支持部材の別の斜視図である。 図6Aおよび図6Bのスレーブアームの第4の支持部材、第5の支持部材、第6の支持部材、および第7の支持部材の斜視図である。 図9Aの第4の支持部材、第5の支持部材、第6の支持部材、および第7の支持部材の別の斜視図である。 図9Aの第5の支持部材、第6の支持部材、および第7の支持部材の斜視図である。 図9Aの第4の支持部材と第5の支持部材とのジョイントに関連するアクチュエータおよびリンケージの断面図である。 本開示の一例による遠隔操作ロボットシステムの制御システムの信号の流れの概略図である。 図10Aの制御信号の流れの一態様の概略図である。 図10Aの制御信号の流れの別の態様の概略図である。 図10Aの制御信号の流れのなおも別の態様の概略図である。 本開示の一例による動力源システムの概略図である。 本開示の一例による移動プラットフォームの斜視図である。 本開示の一例によりマスター制御アームおよびスレーブアームが結合されている図12の移動プラットフォームの斜視図である。 本開示の別の例による移動プラットフォームの斜視図である。 本開示の一例による図14の移動プラットフォームの全方向車輪操縦制御を示す図である。 本開示の別の例による図14の移動プラットフォームの全方向車輪操縦制御を示す図である。 本開示のさらに別の例による図14の移動プラットフォームの全方向車輪操縦制御を示す図である。 本開示のなおも別の例による図14の移動プラットフォームの全方向車輪操縦制御を示す図である。 本開示の一例により、遠隔操作ロボットシステムが障害物を乗り越えることを可能にするモビリティシステム(mobility system)の側面図である。 図15Eのモビリティシステムの後面図である。 本開示の追加の例による、移動プラットフォームの側面図である。 本開示の一例による、一次プラットフォームおよび二次プラットフォームを有する遠隔操作ロボットシステムの斜視図である。 図17Aの遠隔操作ロボットシステムの側面図である。 図17Aの遠隔操作ロボットシステムの一部の側断面図である。 本開示の一例による、スレーブアームに関して離れた場所に配置されている、トラック上に配置されたマスター制御アームを示す図である。 本開示の一例による、ショルダーストラップがプラットフォームとのドッキングを外された状態の脱着可能なマスター制御アームを示す図である。 本開示の一例による、ショルダーストラップがプラットフォームにドッキングされた状態の脱着可能なマスター制御アームを示す図である。 本開示の一例による、脱着可能なマスター制御アームを備えるプラットフォームの側面図である。 本開示の一例による、脱着可能なマスター制御アームを備えるプラットフォームの後面図である。 本開示の一例による、ウエストベルトがプラットフォームとのドッキングを外された状態の脱着可能なマスター制御アームを示す図である。 本開示の一例による、3つのスレーブアームおよび2つのマスター制御アームを有する遠隔操作ロボットシステムを示す図である。 本開示の一例による、スレーブアームに結合可能であって、脱着可能な、および交換可能なエンドエフェクターを示す図である。 本開示の一例による、エンドエフェクター制御ユニットを示す図である。 本開示の一例による、直線自由度のエンドエフェクターを示す図である。 本開示の一例による、スキャニングデバイスがロボットアーム上に載っているプラットフォームを示す例示的な図である。 本開示の一例による、ロボットアームが物品を保持している状態のプラットフォームを示す例示的な上面図である。 本開示の一例による、ロボットアームインベントリシステムの例示的なブロック図である。 本開示の一例による、ロボットアームを使用して物品の棚卸しをするための方法を示す流れ図である。 本開示の一例による、持ち上げデバイスが下げられた位置にあるプラットフォームを示す例示的な線図である。 本開示の一例による、プラットフォームによって使用できるように一段高くなった位置にある持ち上げデバイスを示す例示的な線図である。 本開示の一例による、下げられた位置にある持ち上げデバイスを示す例示的な部分的切欠側面図である。 本開示の一例による、一段高くなった位置にある持ち上げデバイスの例示的な部分的切欠側面図である。 本開示の一例による、持ち上げデバイスのキー付きキャリッジを示す例示的な斜視図である。 本開示の一例による、マストが垂直位置にあり、下げられたキャリッジを備える折り畳み持ち上げデバイスを示す例示的な側面図である。 本開示の一例による、マストが垂直位置にあり、一段高くなったキャリッジを備える折り畳み持ち上げデバイスを示す例示的な側面図である。 本開示の一例による、マストが折り畳まれた位置にあり、キャリッジアームが伸長されている折り畳み持ち上げデバイスを示す例示的な側面図である。 本開示の一例による、マストが折り畳まれた位置にあり、キャリッジアームが折り畳まれている折り畳み持ち上げデバイスを示す例示的な側面図である。 本開示の一例による、マストが折り畳まれた位置にある折り畳み持ち上げデバイス上のロボットアームを示す例示的な側面図である。 本開示の一例による、マストが垂直位置にある折り畳み持ち上げデバイス上のロボットアームを示す例示的な側面図である。
本発明は、2011年12月20日に出願した同時係属米国非仮特許出願第13/332,152号、名称「System and Method for Controlling a Tele-Operated Robotic Agile Lift System」(整理番号2865-20110418.2.NP)、2011年12月20日に出願した同時係属米国非仮特許出願第13/332,138号、名称「Platform Perturbation Compensation」(整理番号2865-20110418.3.NP)、2011年12月20日に出願した同時係属米国非仮特許出願第13/332,146号、名称「Robotic Agile Lift System with Extremity Control」(整理番号2865-20110418.4.NP)、2011年12月20日に出願した同時係属米国非仮特許出願第13/332,129号、名称「Multi-degree of Freedom Torso Support for Teleoperated Robotic Agile」(整理番号2865-20110418.5.NP)、2011年12月20日に出願した同時係属米国非仮特許出願第13/332,160号、名称「Variable Strength Magnetic End Effector for Lift Systems」(整理番号2865-20110418.6.NP)に関係し、それらの全内容がそれぞれ参照により本明細書に組み込まれている。
本明細書において用いられているように単数形の「a」および「the」は、文脈上明らかに他の意味に解すべき場合を除き、複数の指示対象を含む。したがって、例えば、「a robotic arm(ロボットアーム)」への参照は、そのようなロボットアームの1つまたは複数を含み、「自由度」(DOF)への参照は、そのようなDOF(自由度)の1つまたは複数への参照を含む。
本明細書で使用されているような言い回し「実質的に」は、動作、特徴、特性、状態、構造、項目、または結果の完全な、またはほぼ完全な程度もしくは範囲を指す。例えば、「実質的に」封入されている物体は、その物体が完全に封入されているか、またはほぼ完全に封入されているかのいずれかであることを意味するであろう。絶対的完全性からの正確な許容される逸脱度は、いくつかの場合において、特定の文脈に依存しうる。しかし、一般的に言えば、完全な状態への近さは、絶対的な、全くの完全さが得られたかのように同じ全体的結果を有することに関係する。「実質的に」の使用は、動作、特徴、特性、状態、構造、項目、または結果の完全な、またはほぼ完全な欠如を指すために否定的な意味で使用される場合に等しく適用可能である。言い換えると、構成要素または要素が「実質的にない」構成は、それでも、実際には、測定にかかる効果がない限り、そのような項目を含みうる。
本明細書で使用されているような言い回し「約」は、与えられた値が端点より「少し上」または「少し下」であってよいと定めることによって数値範囲の端点に対して柔軟性を与えるために使用される。
本明細書で使用されているように、複数の物品、構造要素、組成要素、および/または材料は、便宜上共通のリストで示すことができる。しかし、これらのリストは、リストのそれぞれの構成要素が別の固有の構成要素として個別に識別されるかのように解釈されるべきである。したがって、そのようなリストのいかなる個別の構成要素も、反対のことが示されていなければ共通グループにおける表現にのみ基づき同じリストの他の構成要素と事実上等価であると解釈されるべきである。
数値データは、範囲形式で本明細書に表現または提示されうる。別に指示のない限り、そのような範囲形式は、便宜上、および簡素化するためにのみ使用され、したがって、その範囲の限界として明示的に引用されている数値のみを含むだけでなく、それぞれの数値および部分範囲が明示的に引用されているかのようにその範囲内に包含された個別の数値または部分範囲すべても含むよう柔軟に解釈されるべきであることは理解されるであろう。図示されているように、「約1から約5」という数値範囲は、約1から約5の明示的に引用されている値を含むだけでなく、指示されている範囲内の個別の値および部分範囲も含むものとして解釈されるべきである。したがって、この数値範囲内には、2、3、および4などの個別の値、および1~3、2~4、および3~5などの部分範囲、さらには1、2、3、4、および5が個別に含まれる。
次に、いくつかの例を参照し、本明細書ではそれらの例を説明するために特定の言葉が使用される。本明細書で説明されている例では、ユーザーが直観的に操作でき、重い物体、または異なる重量を有する多数の物体を持ち上げて操縦することに関連する作業の全部ではないにしろ大半を実行することができる遠隔操作ロボットシステムを規定している。特定の例において、遠隔操作ロボットシステムは、マスター制御アームとマスター制御アームによって制御可能なスレーブアームとを備えることができる。
一例において、遠隔操作ロボットシステムは、人間の腕の肩、肘、および手首のうちの1つの自由度に対応する自由度を形成するようにジョイントの周りに一緒に結合されている少なくとも2つの支持部材を有するマスター制御アームと、マスター制御アームの自由度に対応する自由度を形成するようにジョイントの周りに一緒に結合されている少なくとも2つの支持部材を有するスレーブアームと、地面の周りで、また動作環境内で操縦可能な移動プラットフォームとを備えることができ、移動プラットフォームはマスター制御アームおよび移動プラットフォームのうちの少なくとも1つの選択的操作を円滑にする動作領域内でのユーザーのオンボードサポートを行うように構成され、マスター制御アームおよびスレーブアームは、移動遠隔操作機能を実現するため移動プラットフォームの周りに共に支持される。
別の例では、遠隔操作ロボットシステム内で動作可能なプラットフォームは、基部と、マスター制御アームおよびスレーブアームのうちの少なくとも一方の支持を円滑にするための支持システムと、少なくとも1つのマスター制御アームおよびスレーブアームへの動力供給を円滑に行う動力源システムと、少なくとも1つのマスター制御アームおよびスレーブアームの動作を円滑にする制御システムとを備えることができる。
別の例では、遠隔操作ロボットシステム内のスレーブアームの動きを制御するためのマスター制御アームは、人間の腕の肩、肘、および手首のうちの1つの自由度に対応する自由度を与えるようにジョイントの周りに一緒に結合されている少なくとも2つの支持部材と、その自由度で少なくとも2つの支持部材の位置の値を測定するジョイントに関連する位置センサーと、その自由度で第1の荷重の値を測定するジョイントに関連する第1の荷重センサーであって、スレーブアームの対応するジョイントが位置の値および第1の荷重の値のうちの少なくとも一方に基づきマニピュレートされる、第1の荷重センサーと、ユーザーによって加えられる荷重から第2の荷重の値を測定する自由度に関連する第2の荷重センサーと、少なくとも一部は第2の荷重の値に基づき少なくとも2つの支持部材に荷重を加えるために少なくとも2つの支持部材に結合されているアクチュエータとを備えることができる。
別の例では、複数の自由度を有する、スレーブアームの動きを制御するために遠隔操作ロボットシステム内で操作可能なマスター制御アームは、少なくとも1自由度を有する複数のジョイントの周りに一緒に結合されている複数の支持部材と、それぞれの自由度でマスター制御アームの位置の変化を検出するジョイントのそれぞれに関連する位置センサーと、少なくとも1自由度で荷重を測定し、少なくとも1自由度に対して荷重データを供給するジョイントのそれぞれに関連する荷重センサーと、ユーザーによってユーザーインターフェースデバイスに加えられた荷重を測定し、少なくとも1自由度に関連する荷重センサーからの荷重データに加わる少なくとも1自由度について荷重データを供給するジョイントからオフセットされた少なくとも1つの荷重センサーを有するユーザーインターフェースデバイスと、ユーザーインターフェースデバイスの荷重センサーからの荷重データを利用してユーザーによってマスター制御アームに加えられた荷重に応答してマスター制御アームの作動された動きを円滑にし、マスター制御アームを動かすために必要な力を低減するトルク補助機能とを備えることができる。
別の例では、遠隔操作ロボットシステムは、プラットフォームと、スレーブアームと、フレーム部材、およびフレーム部材の周りで支持されている少なくとも1つのマスター制御アームを備え、プラットフォームに関してスレーブアームの選択的なオンボードオフボードユーザー制御を円滑にするためにプラットフォームに取り外し可能に結合されているマスター制御システムとを備えることができる。
別の例では、遠隔操作ロボットシステムは、3つのスレーブアームと、3つのスレーブアームのうちの少なくとも1つを制御するように構成された第1のマスター制御アームと、3つのスレーブアームのうちの少なくとも1つを制御するように構成された第2のマスター制御アームと、少なくとも3つのスレーブアームのうちのどれが第1のマスター制御アームおよび第2のマスター制御アームによって制御されるかのユーザー決定を円滑にする制御モジュールとを備えることができる。
別の例では、遠隔操作ロボットシステムは、支持面に関して可動である一次プラットフォームと、一次プラットフォームに結合され、一次プラットフォームに関して可動であり、マスター制御アームによって制御可能なロボットスレーブアームを支持するように動作する二次プラットフォームとを備える移動プラットフォームを備えることができる。
別の例では、持ち上げデバイスは、プラットフォームと、第1の端部上に歯を備え、第2の端部の周りでプラットフォームに結合されている固定アームと、第1の端部と第2の端部とを有し、第1の端部は枢着部の周りで固定アームの第1の端部に回転可能に結合されているブラケットと、枢着部の周りでブラケットを回転するようにプラットフォームおよびブラケットに結合されているアクチュエータと、ブラケットの第2の端部に結合されているリフト歯車と、固定アームの第1の端部上の歯にリフト歯車を結合する中心歯車と、リフト歯車に結合された、リフト歯車が回転したときに水平位置を維持するキー付きリフトキャリッジとを備えることができる。
別の例では、折り畳み持ち上げデバイスは、プラットフォームと、プラットフォームに回転可能に接続され、プラットフォーム上に垂直位置から折り畳み位置に回転することができるマストと、マストに摺動可能に接続され、マストにそって摺動することができるキャリッジと、プラットフォームおよびマストに、垂直位置と折り畳まれた位置との間でマストを回転するように結合されているアクチュエータとを備えることができる。
別の例では、遠隔操作ロボットシステムは、人間の腕の肩、肘、および手首のうちの1つの自由度に対応する自由度を形成するようにジョイントの周りに一緒に結合されている少なくとも2つの支持部材を有するマスター制御アームと、その自由度で少なくとも2つの支持部材の位置の値を測定するジョイントに関連する位置センサーと、その自由度で第1の荷重の値を測定するジョイントに関連する第1の荷重センサーであって、スレーブアームの対応するジョイントが位置の値および第1の荷重の値のうちの少なくとも一方に基づきマニピュレートされる、第1の荷重センサーと、ユーザーによって加えられる荷重から第2の荷重の値を測定する自由度に関連する第2の荷重センサーと、少なくとも一部は第2の荷重の値に基づき少なくとも2つの支持部材に荷重を加えるために少なくとも2つの支持部材に結合されているアクチュエータとを備えるマスター制御アームと、マスター制御アームの自由度に対応する自由度を形成するようにジョイントの周りに一緒に結合されている少なくとも2つの支持部材を有するマスター制御アームによって制御可能なスレーブアームとを備えることができる。
別の例では、遠隔操作ロボットシステムは、少なくとも1自由度を有する複数のジョイントの周りに一緒に結合されている複数の支持部材と、それぞれの自由度でマスター制御アームの位置の変化を検出するジョイントのそれぞれに関連する位置センサーと、少なくとも1自由度で荷重を測定し、少なくとも1自由度に対して荷重データを供給するジョイントのそれぞれに関連する荷重センサーと、ユーザーによってユーザーインターフェースデバイスに加えられる荷重を測定し、少なくとも1自由度に関連する荷重センサーからの荷重データに加わる少なくとも1自由度について荷重データを供給するジョイントからオフセットされた少なくとも1つの荷重センサーを有するユーザーインターフェースデバイスと、ユーザーインターフェースデバイスの荷重センサーからの荷重データを利用してユーザーによってマスター制御アームに加えられた荷重に応答してマスター制御アームの作動された動きを円滑にし、マスター制御アームを動かすために必要な力を低減するトルク補助機能とを有するマスター制御アームと、マスター制御アームの少なくとも1自由度に対応する少なくとも1自由度を形成するように複数のジョイントの周りに一緒に結合されている複数の支持部材を有するマスター制御アームによって制御可能なスレーブアームとを備えることができる。
別の例では、遠隔操作ロボットシステムは、人間の腕の肩、肘、および手首のうちの1つの自由度に対応する自由度を形成するようにジョイントの周りに一緒に結合されている少なくとも2つの支持部材を有するマスター制御アームと、マスター制御アームの自由度に対応する自由度を形成するようにジョイントの周りに一緒に結合されている少なくとも2つの支持部材を有するスレーブアームと、地面の周りで、また動作環境内で操縦可能な移動プラットフォームであって、ユーザーのオンボードサポートを行うように適合され、マスター制御アームおよびスレーブアームは、移動遠隔操作機能を実現するため移動プラットフォームの周りに共に支持され、マスター/スレーブ関係フィルタリング機能は移動プラットフォームを通して伝搬する運動フィードバックを低減するためにマスター制御アームおよびスレーブアームのうちの少なくとも一方の誘発された動きの結果生じる周波数を除去する、移動プラットフォームとを備えることができる。
別の例では、遠隔操作ロボットシステムは、それぞれが人間の腕の肩、肘、および手首のうちの1つの自由度に対応する自由度を形成するようにジョイントの周りに一緒に結合されている少なくとも2つの支持部材を有する複数のマスター制御アームと、複数のマスター制御アームの自由度に対応する自由度を形成するようにジョイントの周りに一緒に結合されている少なくとも2つの支持部材を有するスレーブアームと、複数のマスター制御アームのうちの任意の1つによるスレーブアームの交互の選択的な制御および操作を円滑にする制御モジュールとを備えることができる。
別の例では、遠隔操作ロボットシステムは、人間の腕の肩、肘、および手首のうちの1つの自由度に対応する自由度を形成するようにジョイントの周りに一緒に結合されている少なくとも2つの支持部材を有するマスター制御アームと、それぞれが複数のマスター制御アームの自由度に対応する自由度を形成するようにジョイントの周りに一緒に結合されている少なくとも2つの支持部材を有する複数のスレーブアームと、マスター制御アームによる複数のスレーブアームのうちの任意の1つの交互の選択的な個別の制御および操作を円滑にする制御モジュールとを備えることができる。
別の例では、スレーブアームの動きを制御するために遠隔操作ロボットシステム内で操作可能なマスター制御アームは、人間の腕の手首の自由度に対応する自由度を有するジョイントの周りに一緒に結合されている第1の支持部材および第2の支持部材であって、第1の支持部材および第2の支持部材のうちの少なくとも一方は、ユーザーの手首の対応する自由度と実質的に整合するジョイントの自由度を位置決めするように構成される第1の支持部材および第2の支持部材と、ジョイントの自由度でマスター制御アームの位置の変化を検出するジョイントに関連する位置センサーと、ジョイントの自由度で荷重を測定するジョイントに関連する荷重センサーと、外部荷重に応答してジョイントの自由度で作動荷重を円滑にするため第1の支持部材と第2の支持部材とに結合されているアクチュエータとを備えることができる。
別の例では、マスター制御アームの動きに応答するように遠隔操作ロボットシステム内で操作可能なスレーブアームは、マスター制御アームの自由度に対応する自由度を有するジョイントの周りに一緒に結合されている第1の支持部材および第2の支持部材であって、第1の支持部材の外側縁は、第2の支持部材の外側縁と重なって、第1の支持部材および第2の支持部材がスレーブアームの自由度に関連する軸の周りで互いに関して揺動するように第1の支持部材および第2の支持部材の相対的回転を円滑にする、第1の支持部材および第2の支持部材と、第1の支持部材に回転可能に結合され、平面内で運動するように構成された第1のリンケージと、第1のリンケージおよび第2の支持部材に回転可能に結合されている第2のリンケージであって、平面内での第1のリンケージの運動はスレーブアームの自由度に関連する軸の周りの第1の支持部材および第2の支持部材の平面外の相対的回転運動を引き起こす、第2のリンケージとを備えることができる。
別の例では、マスター制御アームの動きに応答するように遠隔操作ロボットシステム内で操作可能なスレーブアームは、マスター制御アームの自由度に対応する自由度を有するジョイントの周りに一緒に結合されている第1の支持部材および第2の支持部材と、スレーブアームの自由度の周りで荷重を加えるため第1の支持部材と第2の支持部材とに結合されているアクチュエータであって、アクチュエータを動作させる流体圧力を受けるように構成されたアクチュエータと、アクチュエータへの流体圧力を制御するためアクチュエータに流体的に結合されているサーボ弁と、アクチュエータをロックし、関連する自由度の動きを防ぐためにアクチュエータをサーボ弁から流体的に絶縁するクランプ弁とを備えることができる。
別の例では、マスター制御アームの動きに応答するように遠隔操作ロボットシステム内で操作可能なスレーブアームは、マスター制御アームの自由度に対応する自由度を有するジョイントの周りに一緒に結合されている第1の支持部材および第2の支持部材と、スレーブアームの自由度の周りで荷重を加えるため第1の支持部材と第2の支持部材とに結合されているアクチュエータであって、アクチュエータを動作させる流体圧力を受けるための第1の側部および第2の側部を有するアクチュエータと、アクチュエータへの流体圧力を制御するためアクチュエータの第1の側部およびアクチュエータの第2の側部に流体的に結合されているサーボ弁と、アクチュエータをロックし、関連する自由度の動きを防ぐためにアクチュエータをサーボ弁から流体的に絶縁するクランプ弁であって、クランプ弁はそれぞれアクチュエータの第1の側部とサーボ弁との間に流体的に結合される第1の逆止弁および第2の逆止弁であって、閉じたときに、第1の逆止弁はアクチュエータからサーボ弁への流れを制限し、第2の逆止弁はサーボ弁からアクチュエータへの流れを制限する第1の逆止弁および第2の逆止弁と、それぞれアクチュエータの第2の側部とサーボ弁との間に流体的に結合される第3の逆止弁および第4の逆止弁であって、閉じたときに、第3の逆止弁はアクチュエータからサーボ弁への流れを制限し、第4の逆止弁はサーボ弁からアクチュエータへの流れを制限する第3の逆止弁および第4の逆止弁と、第1の逆止弁、第2の逆止弁、第3の逆止弁、および第4の逆止弁に流体的に結合され、パイロット圧で逆止弁を開き、サーボ弁でアクチュエータへの流体圧力を制御することを可能にするパイロット弁であって、パイロット圧を取り除くと逆止弁が閉じて、流体がサーボ弁からアクチュエータに、アクチュエータからサーボ弁に流れるのを防ぐことを可能にする、パイロット弁とを備えるクランプ弁と、を備えることができる。
別の例では、マスター制御アームの動きに応答するように、またペイロードを安定させるように遠隔操作ロボットシステム内で操作可能なスレーブアームシステムは、複数のジョイントの周りで一緒に結合されている複数の支持部材、および少なくとも1自由度においてペイロードにより加えられる荷重を測定し、ペイロードに対する荷重データを供給する複数の支持部材のうちの1つに関連する荷重センサーを有するスレーブアームと、ペイロードによって荷重センサーに加えられる荷重に応答してスレーブアームの作動による動きを円滑にするためペイロードに対する荷重データを利用し、スレーブアームがペイロードに加えられる荷重に応答しペイロードを安定させることを引き起こすペイロード安定化機能とを備えることができる。
別の例では、ロボットアームインベントリシステムは、プラットフォームと、プラットフォームに結合されているロボットアームと、ロボットアームの端部に結合されているエンドエフェクターと、ロボットアームによってマニピュレートされる物体に貼り付けられた物体タグをスキャンするようにロボットアームに結合されているスキャニングデバイスとを備えることができる。
別の例では、持ち上げデバイスは、プラットフォームと、第1の端部上に歯を備え、固定アームの第2の端部上でプラットフォームに結合されている固定アームと、固定アームの第1の端部に回転可能に結合されているブラケットの第1の端部上の枢着部と、枢着部の周りでブラケットを回転するようにプラットフォームおよびブラケットに結合されているアクチュエータと、ブラケットの第2の端部に結合されているリフト歯車と、固定アームの第1の端部上の歯にリフト歯車を結合する中心歯車と、リフト歯車に結合された、リフト歯車が回転したときに水平位置を維持するキー付きリフトキャリッジとを備えることができる。
別の例では、持ち上げデバイスは、プラットフォームと、第1の端部上に歯を備え、右固定アームの第2の端部上でプラットフォームに結合されている右固定アームと、第1の端部上に歯を備え、左固定アームの第2の端部上でプラットフォームに結合されている左固定アームと、右固定アームの第1の端部に回転可能に結合されている右ブラケットの第1の端部上の右枢着部と、左固定アームの第1の端部に回転可能に結合されている左ブラケットの第1の端部上の左枢着部と、枢着部の周りで少なくとも右または左ブラケットを回転するようにプラットフォームおよび少なくとも右または左ブラケットに結合されているアクチュエータと、右ブラケットの第2の端部に結合されている右リフト歯車と、左ブラケットの第2の端部に結合されている左リフト歯車と、右固定アームの第1の端部上の歯に右リフト歯車を結合する右中心歯車と、左固定アームの第1の端部上の歯に左リフト歯車を結合する左中心歯車と、左右リフト歯車に結合されている左右ブラケットの間のキー付きリフトキャリッジであって、リフト歯車が回転したときに固定アームに関して一定角度位置を維持するキー付きリフトキャリッジとを備えることができる。
別の例では、折り畳み持ち上げデバイスは、プラットフォームと、プラットフォームに回転可能に接続され、プラットフォーム上に垂直位置から折り畳み位置に回転することができるマストと、マストに摺動可能に接続され、マストにそって摺動することができるキャリッジと、プラットフォームおよびマストに、垂直位置と折り畳まれた位置との間でマストを回転するように結合されているアクチュエータとを備えることができる。
上では一般的な例が述べられているが、本開示において、遠隔操作ロボットシステム、または関係するデバイスもしくは方法のさまざまな例示的な実施形態を説明するときに、これらの説明のそれぞれは、その例の文脈において明示的に説明されているいないに関係なく、該当する場合に、他の説明にも適用可能であるとみなされうることに留意されたい。例えば、遠隔操作ロボットシステムそれ自体について説明する際に、デバイスおよび/または方法の例も、そのような説明に含まれ、またその逆も言える。
さらに、本開示および例示から、さまざまな修正形態および組み合わせが導出され、そのようなものとして、以下の開示および説明図は制限するものとしてみなされるべきでない。
図1には、本発明の例示的な一実施形態による遠隔操作ロボットシステム100(例えば、リフトシステム)が示されている。システム100は、マスター制御アーム200A、200B、スレーブアーム300A、300B、およびプラットフォーム400を備えることができる。運転時に、ユーザーは、マスター制御アームをマニピュレートしてスレーブアームの動きを制御する。例示されているように、遠隔操作ロボットシステムは、2つのマスター制御アームと2つのスレーブアームとを備えることができる。本発明の遠隔操作ロボットシステムは、マスター制御アームおよびスレーブアームの数または組み合わせに関して制限されず、意図された使用または他の実用上の考慮事項によってのみ制限を受けうることは理解されるであろう。特定の一態様において、本明細書で開示されている様式の遠隔操作ロボットシステムは、単一のマスター制御アームおよび単一のスレーブアームを備えることができる。同様に、別の態様では、本明細書で開示されている様式の遠隔制御ロボットシステムは、複数のマスター制御アームおよび複数のスレーブアームを備えることができ、これらは、数が同じであっても異なっていてもよい(例えば、2つのマスター制御アームと2つのマスター制御アームによって制御される3つのスレーブアーム)。
マスター制御アーム200Aおよびマスター制御アーム200Bは、構造および動作が類似しているか、またはDOFの数などの他の属性を共有することができる。図に示されているように、1つの違いは、マスター制御アーム200Aはユーザーの右側に構成され、マスター制御アーム200Bはユーザーの左側に構成されるという点である。スレーブアーム300Aおよびスレーブアーム300Bについても同じことが言える。しかし、2つまたはそれ以上のマスター制御アーム(またはスレーブアーム)は、類似の構成をとる必要はなく、DOFまたは他の属性の数に関して異なっていてもよいことは理解されるであろう。
いくつかの例示的な実施形態において、マスター制御アームおよびスレーブアームは、プラットフォーム400上に、もしくはプラットフォーム400の周りに装着されるか、または他の何らかの形で支持されうる。プラットフォーム400は、例えば、図に示されているような移動プラットフォーム、または永久的な場所に固定されたプラットフォームを備えることができる。一態様では、移動プラットフォームは、スレーブアームの支持体をなすものとしてよい。別の態様では、プラットフォームは、ロボットシステムのスレーブアーム、さらにはマスター制御アームおよび遠隔操作者、つまりユーザーに対して同時、または共通の支持を行うことができ、これにより、移動遠隔操作機能を備える移動ロボットシステム全体の一部とすることができ、移動ロボットシステムもユーザーをサポートし、移動遠隔操作ロボットアーキテクチャ内のオンボード制御機能を円滑にする。移動プラットフォームは、操作領域(ユーザーを受け入れ、ユーザーが操作機能を実行することを可能にする移動プラットフォームの周りの領域)内でユーザーのオンボードサポートを行うように適合され、操作領域はマスター制御アームと移動プラットフォームの両方の選択的操作を円滑にすることができる。移動遠隔操作機能は、スレーブアームが動作中である動的で可動な操作ゾーン、さらにはマスター制御アームが動作する移動操作ゾーンをさらに円滑にする。
スレーブアームがマスター制御アームと組み合わせて移動プラットフォームの周りで支持されていようとなかろうと、またはマスター制御アームが離れた場所に配置されていようとなかろうと、移動プラットフォームとして構成されていれば、プラットフォームは、遠隔操作ロボットシステムの少なくとも一部があちこちに動いて、使用のためスレーブアームを異なる位置に配置することを可能にしうる。マスター制御アームおよびスレーブアームが同じ移動プラットフォームの周りで支持されている実施形態において、有利には、ユーザーは、プラットフォーム上に位置決めされ(つまり、移動プラットフォームは操作領域を備え、ユーザーは移動プラットフォームの周りで支持され、操作領域から遠隔操作ロボットデバイスを操作することができる)、これにより、ユーザーは操作ゾーンの近くにいることになり、ユーザーは、スレーブアームおよびスレーブアームが動作する作業空間を直接見聞きすることができる。視覚的および/または聴覚的情報を使用することで、ユーザーは、マスター制御アームをマニピュレートしてスレーブアームの動きを制御することがより容易に行うことができる。
以下で説明されているように、別の態様では、ユーザーおよびマスター制御アームは、スレーブアームに関して離れた場所に配置されうる。この場合、スレーブアームを支持するロボットシステムは、空間から離れた場所にいるユーザーに情報(例えば、視覚的および/または聴覚的情報)を伝達するためにさまざまなセンサー(例えば、カメラ、マイクロホン、または他の感知装置)を備えることができる。受信した情報がスレーブアームの作業空間から再現されると、ユーザーは、作業空間内でマスター制御アームをマニピュレートしてスレーブアームの動きを制御することができる。
マスター制御アームは、スレーブアームの動きを制御するためにユーザーによってマニピュレートされるように構成することができ、ユーザーによる動きがあると、その結果、スレーブアームによる対応する動きが生じる。例えば、ユーザーは、マスター制御アーム200Aの遠位端に配置されているハンドル202を掴んで、マスター制御アームをマニピュレートすることができる。一般に、マスター制御アームは、ユーザーの腕に対応するジョイントおよびリンケージを備えるものとしてよく、これにより、ユーザーの腕の動きは、マスター制御アームがユーザーの動きと似た動きをすることを引き起こす。スレーブアームは、マスター制御アームに対応する、したがってユーザーの腕にも対応する、ジョイントおよびリンケージを備えることができる。次いで、マスター制御アームの動きは、スレーブアームがマスター制御アームの動きと似た動きをすることを引き起こし、したがって、ユーザーはスレーブアームの動きを制御することができる。
図2Aおよび図2Bを参照すると、マスター制御アーム200Aが例示されている。簡単のため、マスター制御アーム200Aは、マスター制御アーム200B、スレーブアーム300A、300B、およびプラットフォーム400などの、ロボットシステムの他のコンポーネントから独立して図示されている。一実施形態において、マスター制御アーム200Aは、本開示によって教示されているようなプラットフォームに装着されるか、据え付けられるか、または他の何らかの形で関連付けられ、これにより、そのプラットフォームはマスター制御アームを支持する。別の実施形態では、マスター制御アームは、プラットフォームに関連するスレーブアームが一定の距離のところからマスター制御アームによって制御されうるようにプラットフォームから分離していてもよい。
本明細書で使用されているような「運動学的に等価な」または「運動学的等価」という言い回しは、剛体の2つ以上の独立したシステムの間の、それぞれのシステムの剛体が回転自由度(DOF)を与えるように回転ジョイントによって連結されている、関係を指す。運動学的に等価なシステムは、システム間で長さが比例する類似の対応するリンケージによって接合される、類似の対応する回転DOFを有する。「等価な」または「等価」は、システム間の運動学的な同一性を意味しないことに留意されたい。実際、「運動学的に等価な」または「運動学的等価」は、以下でさらに、また本開示全体を通して例示されているように、真の運動学的な同一性からのある程度の変動を含みうる。
一態様では、マスター制御アーム200Aは、肩から手首までのユーザーの腕と運動学的に等価であるものとすることができる。人間の腕は、肩から手首まで7自由度を備える。特に、人間の肩は、3つのDOF、つまり外転/内転、屈曲/伸展、および上腕骨回転を備える。人間の肘は、1つのDOFを備える。人間の手首は、3つのDOF、つまり、手首回転、外転/内転、および屈曲/伸展を備えるように一般化されうる。上腕は、肩から伸展し、肘によって前腕に接続されている。手首は、前腕の対向端にある。したがって、肩から手首までの人間の腕は、第2のリンケージによって3つのDOFを有する第3のジョイントに接続されている、第1のリンケージによって1つのDOFを有する第2のジョイントに接続されている3回転DOFを有する第1のジョイントを備える運動学的システムとして一般化されうる。
マスター制御アーム200Aは、肩から手首までの人間の腕のDOFおよびリンケージに対応するDOFおよびリンケージを備える運動学的システムとして構成されうる。例えば、第1の支持部材211は、ジョイント231のところで基部210に結合され、軸221の周りで回転することを可能にする。軸221の周りのDOFは、人間の肩の外転/内転に対応する回転DOFを表す。図2に示されているように、軸221は、水平面に対して約45度をなす。軸221は、水平面に対して約0度から約90度までの範囲内で位置決めされうる。軸221に対して角度が45度であれば、基部210をユーザーの背後に位置決めすることができ、これは、マスター制御アームの使用中にユーザーの無制約の動きを可能にするようにマスター制御アームに対して支持装置を配置するために有利な場合がある。軸221は、ユーザーの肩からオフセットされ(例えば、数フィートまで)、なおもユーザーの腕に運動学的に等価であるシステムの一部をなしうる。一態様では、軸221の周りのDOFは、ユーザーの腕との運動学的等価を定めるうえで感度の最も低いDOFである。言い換えると、ここでの変動は、マスター制御アームとユーザーの腕との間の他の対応するDOFの間の変動に比べてより許容されうるということである。
第1の支持部材211は、基部210から伸展してユーザーの肩の付近にジョイント232を位置決めすることができる。ジョイント232は、第2の支持部材212に結合されるか、または接続して軸222を形成する。軸222の周りのDOFは、人間の肩の屈曲/伸展に対応する回転DOFを表す。いくつかの態様では、ジョイント232は、ユーザーの肩の側部に位置決めされうる。他の態様では、ジョイント232は、ユーザーの肩の上または下に位置決めされうる。なおも他の態様では、ジョイント232は、ユーザーの肩の前または後に位置決めされうる。ジョイント232は、ユーザーの肩からオフセットされ(例えば、数フィートまで)、なおもユーザーの腕に運動学的に等価であるシステムの一部をなしうる。一態様では、軸222の周りのDOFは、ユーザーの腕との運動学的等価を定めるうえで2番目に感度の低いDOFである。
第2の支持部材212は、ジョイント232から伸展し、ジョイント233によって第3の支持部材231に結合されるか、または接続し、軸223を形成する。軸223の周りのDOFは、人間の肩の上腕回転に対応する回転DOFを表す。ジョイント233は、ユーザーの肩からオフセットされ(例えば、数フィートまで)、なおもユーザーの腕に運動学的に等価であるシステムの一部をなしうる。一態様では、軸223の周りのDOFは、ユーザーの腕との運動学的等価を定めるうえで3番目に感度の低いDOFである。
そのため、運動学的に等価なシステムでは、マスター制御アーム200Aの3つの独立したジョイントが、人間の肩の単一の関節に対応しうる。一般に、人間の肩に対応するマスター制御アームのDOFは、マスター制御アームとユーザーの腕との間で運動学的等価を定めるうえで最も感度の低いDOFである。言い換えると、人間の肩に対応するマスター制御アームのDOFの配置および配向は、対応するユーザーの腕からの最大の変動またはオフセット距離を許容し、それでも、ユーザーの腕との運動学的等価をもたらすと考えることができる。そのような場合には、さまざまな支持部材は、各ジョイントのそのようなオフセット距離を与えるようにさまざまな長さのものを備える。特定の一態様において、人間の肩に対応するマスター制御アームのDOFは、マスター制御アームと人間の肩との間で運動学的等価を定めるため感度を高める際に外転/内転、屈曲/伸展、および上腕回転として順序付けることができる。
第2の支持部材212および第3の支持部材213は組み合わさって、人間の上腕に対応する軸222と軸224との間のリンケージを形成する。第3の支持部材213は、ジョイント234によって第4の支持部材214に結合され、これは軸224を形成する。軸224の周りのDOFは、人間の肘に対応する回転DOFを表す。一般に、第2の支持部材212と第3の支持部材213とによって形成されるリンケージは、ユーザーの肘の側部など、ユーザーの肘の付近にジョイント234を位置決めすることができる。ジョイント234は、ユーザーの肘から数フィートまであり、それでもユーザーの腕に運動学的に等価であるシステムの一部をなしうる。一態様では、軸224の周りのDOFは、ユーザーの肩に対応するDOFに比べて変動の許容性が低く、ユーザーの腕との運動学的等価を定めるうえで感度がより高いDOFである。
第4の支持部材214は、ジョイント235のところで第5の支持部材215に結合され、これは軸225を形成する。軸225の周りのDOFは、人間の手首の回転に対応する回転DOFを表す。第5の支持部材215は、ジョイント236のところで第6の支持部材216に結合され、これは軸226を形成する。軸226の周りのDOFは、人間の手首の外転/内転に対応する回転DOFを表す。第6の支持部材216は、ジョイント237のところで第7の支持部材217に結合され、これは軸227を形成する。軸227の周りのDOFは、人間の手首の屈曲/伸展に対応する回転DOFを表す。したがって、マスター制御アームの3つの独立したジョイントは、人間の手首に対応するものとしてよい。ユーザーの手首のDOFに対応するマスター制御アームのDOFは、肩から手首までのユーザーの腕との運動学的等価を定める際に最も感度が高く、最も許容性が低いものとしてよいことは理解されるであろう。したがって、一態様では、運動学的に等価なシステムの間の許容可能な変動度は、複数のシステムのうちの1つの長さにそって異なっていてもよく、したがって異なる運動学的構成が得られる。例えば、別の例示的な実施形態では、マスター制御アームは、図1および図2A~図2Bに例示されているものよりも長いか、または短い1つまたは複数の支持部材(例えば、人間の肩に対応するDOFを備える部材)を備えるように構成することができ、したがって、必要な、または望まれうるようなさまざまな異なる場所もしくは位置における各ジョイントの配置が円滑になされる。
一態様では、軸227の周りのDOFは、運動学的等価の変動に対する感度が最も高く、軸226の周りのDOFは、2番目に感度が高く、軸225の周りのDOFは、3番目に感度が高い。したがって、軸225、226、227は、ユーザーの手首のDOFの配置に密接に呼応する。一態様では、軸225、226、227は、ユーザーの手首の約6インチの範囲内に配置されうる。さらに特定の一態様において、軸225、226、227は、ユーザーの手首の約2インチの範囲内に配置されうる。なおいっそう特定の一態様において、軸225、226、227は、ユーザーの手首の約1インチの範囲内に配置されうる。
いくつかの態様において、マスター制御アームは、7未満のDOFを備えることができ、それでも、人間の腕の対応するDOFの範囲では人間の腕と運動学的に等価であると考えられる。いくつかの他の態様では、マスター制御アームは、7を超えるDOFを備えることができ、それでも、人間の腕の対応するDOFの範囲では人間の腕と運動学的に等価であると考えられる。この場合、人間の腕に対応しない過剰なDOFは、人間の腕に運動学的に等価でない場合がある。
マスター制御アームおよびスレーブアームは、複数の動作モードを有することができる。動作モードの1つは、位置制御である。位置制御では、マスター制御アームのさまざまなDOFの位置は、スレーブアームのさまざまなDOFの位置を制御するために使用される。マスター制御アームとスレーブアームとの間の位置関係は、比例関係であってよい。一態様では、マスター制御アームとスレーブアームとの間の比例位置関係は、マスター制御アームがある量だけ動いた結果スレーブアームが同じ量だけ動く1対1の関係とすることができる。これは、有用な汎用制御のセッティングである場合もある。別の態様では、マスター制御アームとスレーブアームとの間の比例位置関係は、1対1と異なる何かを含みうる。例えば、マスター制御アームの動きが大きいと、スレーブアームの動きは比較的小さくなるという関係が存在しうる。これは、ユーザーがスレーブアームに対する正確な動きまたはより細かな制御を望んでいるときに有用である場合がある。なおも別の態様では、マスター制御アームとスレーブアームとの間の比例位置関係は、マスター制御アームの動きが小さいと、スレーブアームの動きが比較的大きくなる関係を含みうる。これは、ユーザーがユーザー側の過剰な、または不要な動きを行わずにスレーブアームを素早く動かす大きな動きを望んでいるときに有用である場合がある。
一態様では、比例関係は一貫性があるか、またはこれらの関係は、マスター制御アームおよびスレーブアームの対応するDOF間で変化しうる。別の態様では、比例関係は、修正されうる。例えば、システムは、ユーザーが、ロボットシステムの動作中にマスター制御アームとスレーブアームのDOFの間の比例位置関係を変える自由を得られるように構成されうる。一態様では、ユーザーは、ユーザーがマスター制御アームを操作している間にアクセス可能な手動制御装置を使用して比例関係を変化させることができる。特定の一態様において、手動制御装置は、ユーザーが所望の比例関係をダイヤル入力するか、または選択することを可能にするダイヤルまたはボタン(例えば、ハンドル202上の、またはハンドル202の近くにあるマスター制御アーム上に装着されたダイヤルまたはボタン)を備えることができる。他の例において、手動制御装置は、ユーザーの近く、またはシステム上の別の場所に装着されたタッチスクリーンを介するものであるか、またはシステムとワイヤレスで通信するユーザーのスマートフォンまたは他のPDAデバイス上のアプリケーションを介するものとすることができる。手動制御装置は、マスターとスレーブとの間の入力/出力関係をマニピュレートするためにさまざまな制御システムと通信するように構成されうる。
別の態様では、ユーザーは、作業空間の位置境界を制御して、例えば、作業空間を課された限界を超えてスレーブアームが伸展するのを禁止する運動制限範囲などにより、スレーブアームの実際の完全な到達範囲より小さいものに制限することができる。そのような制限は、さまざまな制御システムで操作可能なユーザーインターフェースを使用してユーザーによって開始されうる。ユーザーインターフェースは、マスター制御アーム上に、または制御卓などの別のユーザーアクセス可能な場所に配置されうる。
別の動作モードとして、スレーブアームからマスター制御アームへの力反射が挙げられる。力反射では、ユーザーは、スレーブアームを操作するために追加のセンサー入力を利用できる。位置制御とは異なり、スレーブアームがスレーブアームの経路内に障害物があるかどうかに関係なくマスター制御アームからの位置コマンドを実行するように動作する場合に、力反射により、比例する力のフィードバックがマスター制御アームを介してユーザーに送られ、これによりスレーブアームが受けている荷重が指示される。例えば、スレーブアームが、マスター制御アームからの位置コマンドを実行しているときに障害物に遭遇した場合、スレーブアーム上の荷重センサーは、通信でマスター制御アームに伝達される荷重情報を提供することができ、マスター制御アームで操作可能なアクチュエータは、荷重情報に基づき比例する荷重をユーザーに印加することができ、比例する荷重は特定の操作環境およびユーザーに印加されることが望ましいと思われるものによって変わるか、または異なっていてもよい。この力のフィードバックにより、ユーザーは、操作環境内でスレーブアームをより直観的に制御することができるが、それはユーザーが毎日の生活で自分の身体を操作する経験にかなりよく似ているからである。
一態様では、システムは、スレーブアームによって拾われる物体の重量に比例する力または荷重をユーザーに印加するように構成されうる。例えば、物体の重量が500ポンドである場合、ユーザーが受ける比例する力反射荷重は10ポンドとすることが可能である。別の態様では、スレーブアームが物体に遭遇したときにユーザーに力または荷重を印加する力反射機能を実装することができ、ユーザーは、マスター制御アームを介して物体の抵抗を感じ、有害な効果を回避するか、または最小にする処置を講じることができる。したがって、力反射は、ロボットシステムの安全に関する特徴とすることができる。
いくつかの態様において、力反射の実装は、スレーブアームに衝撃事象が生じたときにユーザーに対してマスター制御アームが生み出す荷重増大を含みうる。言い換えると、荷重センサーによって感知される衝撃は、荷重の一時的スパイクが力反射に対する通常の比例するセッティングに不釣り合いであるときにマスター制御アームを介してユーザーに反射されうる。例えば、スレーブアームが壁に衝突すると、スレーブアームの荷重センサーが衝撃を感知する。衝撃が発生したことをユーザーに警告するために、マスター制御アームは、衝撃をユーザーに効果的に表しうる短時間の現在の比例する力反射のセッティングに関して不釣り合いなくらいに大きい荷重をユーザーに対して発生することができる。例えば、衝撃でユーザーに対して発生する力は、不釣り合いなくらい大きくなる可能性があり、そのため、ユーザーは、マスターアームをそれ以上動かすことができなくなり、実際、ユーザーの力または既存の運動量に関係なくマスター制御アームの強制停止を生じる。
いくつかの態様において、遠隔操作ロボットシステムは、マスター制御アームがスレーブアームに対して有する制御力を増強する特徴を備えることができる。例えば、マスター制御アームは、マスター制御アームを動かすために必要な力およびモーメントを弱めるためのトルク補助機能または特徴を備えることができる。トルク補助により、システムは、低いトルクゲインおよび不正確な質量特性を許容する。マスター制御アームのところにあるトルク補助制御装置は、操作者がジョイントの摩擦、ベアリングの摩擦、アクチュエータの摩擦、および静止摩擦、さらには、マスター制御アームの、またある程度は、スレーブアームの、粘性減衰および動的慣性効果などのシステム内の摩擦力に打ち勝つのを助けることができる。トルク補助は、スレーブアームをユーザー側で制御できるのを妨げうるスレーブアームからの力反射のせいで生じるマスター制御アーム内の荷重にユーザーが打ち勝つのを補助することもできる。ユーザーは、この特徴なしでもそのような荷重に打ち勝つことができるが、繰り返しそうするとユーザーを疲労させる可能性がある。したがって、力反射には多くの肯定的な側面もあるけれども(例えば、センサーのフィードバックが増強される)、遠隔操作ロボットシステムは、ユーザー側でマスター制御アームを操作してスレーブアームを制御する能力を増強するためにマスター制御アーム内の力反射の望ましくない効果(例えば、ユーザーに対する抵抗の増大、特にマスター制御アームの動きを開始したときに顕著である)を最小にするトルク補助機能の特徴を備えることができる。
一態様では、荷重センサーは、ユーザーとのインタラクティブなやり取りまたはインターフェース接続を円滑にするために戦略的なインターフェース位置でマスター制御アームに結合されうる。本明細書で使用されているような「荷重」は、力および/またはモーメントを含むものとしてよい。したがって、荷重センサーは、力および/またはモーメントを感知することができる。荷重センサーは、複数のDOFにおいて荷重を感知し、荷重の値の出力を円滑にするように構成されうる。荷重センサーは、マスター制御アームに作用する直線荷重および/または回転荷重を検出することができる。例えば、6つのDOF荷重センサーなどの多軸荷重センサーは、センサーのx軸、y軸、およびz軸にそった3つの力成分、さらには軸の周りに作用する3つのモーメント成分を測定することができる。したがって、荷重センサーは、ユーザーがマスター制御アームと力による接触をしているかどうかを検出することができる。そうならば、システムは、マスター制御アームを所望の方向に付勢して、マスター制御アームをマニピュレートし、力による接触から荷重を少なくとも減らすように構成されうる。力の値またはモーメントの値などの、荷重センサーデータを使用することで、マスター制御アームは、加荷重と同じ方向などの方向に、ユーザーによってマスター制御アームに印加される荷重に応答して動くことができる。
例えば、マスター制御アームが静止状態にある場合、ユーザーの前腕は、マスター制御アームと力による接触をしていないことがある。特定の一態様において、ユーザーからマスター制御アームへの加荷重は、ユーザーの前腕に近接してマスター制御アームに結合されているユーザーインターフェースデバイス上に配置されている荷重センサーによって検出されうる。別の特定の態様では、これは、本明細書で説明されているように、マスター制御アームの1以上のDOFに関連する荷重センサーによって検出されうる。マスター制御アームを所望の方向でユーザーの前腕の近くに動かすために、ユーザーは、前腕を下げるか、または前腕を横に押すことなどによって、ユーザーインターフェースデバイスおよびマスター制御アームに荷重を印加することができる。ユーザーの動きによって引き起こされるユーザーインターフェースデバイスおよびマスター制御アーム上のこの荷重は、マスター制御アームがトルクを、マスター制御アームを(例えば、ユーザーによる加荷重の方向に)動かすことを引き起こすように構成されうる、アクチュエータに印加することを引き起こす。マスター制御アームによるこのような応答は、ユーザーの前腕の動きが完了し、ユーザーがマスター制御アームに荷重を印加するのを止める(つまり、ユーザーインターフェースデバイス上の荷重センサーの位置でマスター制御アームと力による接触をしなくなる)まで、何回も順に繰り返されうる。この特徴は、上で指示されているように、力反射機能と結合もしくは実装されうるか、またはスタンドアロンのシステムとして実装されうる。何にせよ、マスター制御アームは、ユーザーからの加荷重を感知することができ、ユーザーがユーザーの望む動きの方向への動きを妨げるであろうマスター制御アームのトルクまたは力に打ち勝つのを補助するトルク補助を開始することができる。一態様では、トルク補助の程度は、調節可能ゲインなどにより、調節可能であるものとしてよい。
したがって、トルク補助、またはトルク補助機能は、ユーザーによるマスター制御アームの操作を増強するためにマスター制御アーム内に組み込まれうる。言い換えると、力反射を使用することで、スレーブアームはマスター制御アーム上にある量の制御を施すことができる。この増強された操作モードは、マスター制御アーム内の抵抗および/またはマスター制御アームへのスレーブアームからの力反射のせいでマイナスの効果がユーザーに及ぶのを制限することができ、したがって、マスター制御アームとスレーブアームとの間の適切な機能的関係が維持される。例えば、スレーブアームからマスター制御アーム内に力反射があるため、マスター制御アームは、ユーザーによる動きに抵抗するように構成されうる。マスター制御アームにおける1以上のDOFに関連するマスター制御アーム上の荷重センサーを使用してユーザーによって印加される荷重を検出し、トルクをマスター制御アームに印加してマスター制御アームの動きを引き起こすことで、ユーザーがマスター制御アームにおいてユーザーが感じる抵抗に打ち勝つのを補助することができる。トルク補助機能は、そうする必要はないが、典型的には、ユーザーによる加荷重の方向へのマスター制御アームの動きを引き起こすように構成される。一態様では、与えられるトルク補助の量は、操作中にマスター制御アームの「感触」を増強するようにチューニングすることができる。いくつかの場合において、トルク補助の量は、相対的に小さい可能性があり、マスター制御アーム内の反射力に打ち勝つには不十分であることがある。
トルク補助機能の範囲内で、ユーザーによって印加される荷重を感知し、マスター制御アームの周りで支持され、マスター制御アームにおける1以上のDOFに関連する荷重センサーは、荷重センサーが荷重データを感知して、さまざまな1以上のDOFで使用されうる荷重の値を供給し、マスター制御アームがユーザーによって印加される荷重に応答して動くことを引き起こすことを意味する。例示的な一実施形態において、ユーザーから加荷重を受ける荷重センサーは、ユーザーインターフェースデバイスに関連付けられ、ジョイントのところの他の荷重センサーの位置からオフセットされた位置に配置されうる。別の例示的な実施形態では、トルク補助機能は、ユーザーインターフェースデバイス内の独立した荷重センサーを必要とせずに代わりにジョイントのところのすでに存在しているロードセルを利用するように構成されうる。
トルク補助機能を使用することで、マスター制御アーム(例えば、ジョイントのところに結合された少なくとも2つの支持部材)は、この荷重の値に、少なくとも一部は基づき動かされる。トルク補助機能は、ユーザーの疲労を低減し、ユーザーによるマスター制御アームの操作のしやすさを改善することができる。一態様では、トルク補助は、ユーザーがマスター制御アーム内の力反射抵抗荷重に打ち勝つのを少なくとも補助するうえで十分なものとすることができる。別の態様では、ゲインは、トルク補助がマスター制御アーム内の力反射抵抗荷重を超えることができるように設定されうる。
一態様では、マスター制御アームおよび/またはスレーブアーム(さらにはペイロード)は、重力補償されうる。重力を補償することで、スレーブアームによって持ち上げられるペイロードの重量などの、スレーブアームで生じる荷重をユーザーが感じる能力を増強することができ、これにより、ユーザーは自然な形でそのような荷重に反応することができる。スレーブアームからマスター制御アームへの力反射を与える能力は、スレーブアームの重力補償を使用することで著しく増強されうる。4フィートから10フィートなどの長さの、比較的長いスレーブアームは、数百ポンドの重量を有している場合がある。複雑な、運動学的に等価なマスター制御アームも、重力により、著しい重量を加えうる。重力補償は、それぞれのDOF軸に補償トルクを与えて、スレーブアームおよび/またはマスター制御アームに対する重力の効果を補償することができる。
重力補償は、それぞれの支持部材に対する重力の効果を測定するステップと、重力の効果を補償するようにそれぞれのDOFにおいてトルクを調整するステップとを伴う。一例において、マスター制御アームおよび/またはスレーブアームの1つまたは複数の支持部材は、支持部材の重心に関して引力の方向(つまり、重力ベクトル)を決定するために使用される独立した測定デバイスを備えることができる。あるいは、多軸システムにおける1回の測定は、アームが配置される基部などの、アームに対する固定された基準系に関して実行されうる。次いで、それぞれの支持部材について基準系の変換が計算され、支持部材の位置、重心、および質量に基づき引力を補償するためにそれぞれのDOFにおいて必要なトルクのレベルについて決定がなされうる。
例えば、支持部材のそれぞれのジョイントにおける重力によって引き起こされるトルクの決定は、反復ニュートン-オイラー動的定式化を使用して行われうる。それぞれの支持部材の速度および加速度は、反復計算されて、第1のセグメント(肩軸に対応する第1の支持部材など)から最後のセグメント(手首軸に対応する第7の支持部材など)までのそれぞれの連結部に適用されうる。反復ニュートン-オイラー動的定式化は、重力補償機能を実装する一例として提示されているが、重力補償をロボットシステムに組み込むために多数の異なる方法が使用されうる。測定された重力ベクトルによって引き起こされるトルクの量がそれぞれのジョイントで計算された後、トルクは、重力の力を効果的に補償するために反対の向きのトルクを印加することによって補償されうる。反対の向きのトルクは、それぞれのジョイントに接続された電気モーターを使用して、またはすでに説明されているように、アクチュエータに接続された油圧弁もしくは空気弁を使用して、印加されうる。
マスター制御アームの重量を持ち上げてスレーブアームを制御することは、ユーザーをすぐに疲労させうる。マスター制御アームを重力補償すれば、ユーザーは疲労することなく長時間にわたってマスター制御アームを使用することができる。一態様では、長時間にわたってスレーブアームをユーザーが制御できるようにするため、マスター制御アームは、ユーザーの腕の重量を支持するように構成されうる。これにより、ユーザーは、自分の腕を伸展し動かすために必要な筋肉の使用を最小限度に抑えつつスレーブアームをマニピュレートすることができる。そのため、ユーザーの腕も、マスター制御アームに加えて重力補償されうる。
マスター制御アームを重力補償することで、スレーブアームから送られたマスター制御アームのところの力のフィードバックの感度を高めることができる。例えば、スレーブアームは、40対1の荷重ゲインを有するように設定されうる。ユーザーが100ポンドの物体を拾い上げるようにスレーブアームに指令すると、力のフィードバックがマスター制御アームのそれぞれのジョイントにおける下方の圧力を増大し、約2.5ポンド(つまり、ユーザーが感じ取る重量)を拾い上げる動作をシミュレートする。しかし、マスター制御アームそれ自体は、かなりの重量(例えば、25ポンド)を有しうる。そのようなものとして、マスター制御アームの重量の比較的小さな変化をユーザーが検出することは困難な場合がある。しかし、重力補償があれば、マスター制御アームの固有重量の全部または一部が重力補償されうるので、2.5ポンドの変化は、ユーザーにとって容易に検出可能である。したがって、マスター制御アームの重力補償を行うことで、ユーザーは、スレーブアームからの力のフィードバックをより正確に検出することができる。マスター制御アームにおいて重力補償と力のフィードバックの両方を実現するために、同じ、または同じ種類の電気モーターおよび/またはアクチュエータが使用されうる。
いくつかの態様において、スレーブアームによって持ち上げられるペイロードは、スレーブアームに加えて重力補償されうる。例えば、望ましい場合には、ユーザーは、ペイロードの重量を「ゼロ」(またはある程度この値まで)設定することができ、これは効果的に、スレーブアームおよびペイロードの重さをユーザーが感じ取れる重さにする。言い換えると、ユーザーは、マスター制御アームを介してユーザーに反射されるペイロードの比例する荷重を感じることはない。そのようなものとして、システムは、スレーブアームの重力補償のレベルをユーザー側でマニピュレートすることを円滑にするマスター制御アーム上の、またはマスター制御アームの周りのユーザーインターフェースデバイスもしくはシステムをさらに備えることができる。
図2Aおよび図2Bをさらに参照すると、マスター制御アーム200Aは、マスター制御アームのDOFに関連する、位置センサーを備えることができる。一態様では、それぞれのDOFについて1つの位置センサーがある。位置センサーは、例えば、ジョイント231、232、233、234、235、236、および237のそれぞれに配置されうる。これらのジョイントにおけるマスター制御アームのDOFは回転なので、位置センサーは、角度位置を測定するように構成されうる。一態様では、位置センサーは、それぞれのDOFでマスター制御アームの位置の変化を検出し、位置の値の出力を円滑にすることができる。この位置の変化は、スレーブアームの対応するDOFの位置の比例する変化を引き起こすために使用されうる。
位置センサーは、それぞれのジョイントの絶対位置を随時決定することを可能にする絶対位置センサーとすることができる。あるいは、位置センサーは、相対位置センサーとすることもできる。位置センサーとして、限定はしないが、エンコーダ、回転式ポテンショメーター、および他の種類の回転式位置センサーを含む、それぞれのジョイント回転を測定するのに適した位置センサーであればどのような種類であってもよい。使用できる位置センサーの一例は、Gurley Precision Instrument社によって製造されているエンコーダディスク、Manufacturer Model No. P/N AX09178である。エンコーダディスクは、マスター制御アーム内のそれぞれのジョイント231~ジョイント237に結合されうる。エンコーダディスクを読み取りそれぞれのジョイントでの絶対位置読み取りを行うために、Gurley Precision Instrument社が製造するエンコーダリーダー、Model No. P/N 7700A01024R12U0130Nが使用されうる。
それに加えて、マスター制御アームは、マスター制御アームのDOFに関連する、アクチュエータを備えることができる。アクチュエータは、スレーブアームからマスター制御アームへの力反射を使用可能にするために使用されうる。アクチュエータは、ユーザーがトルク補助などによりマスター制御アームを動かすときにスレーブによってマスターに反射される荷重の少なくとも一部に打ち勝つことによってマスター制御アームの操作を増強するために使用されうる。それに加えて、アクチュエータは、マスター制御アームの重力補償を使用可能にするために使用されうる。
一態様では、マスター制御アームのそれぞれのDOFについて1つのアクチュエータがある。アクチュエータは、線形アクチュエータ、回転式アクチュエータなどがありうる。アクチュエータは、電気、油圧、空気圧などによって操作することができる。図2Aおよび図2Bに示されているマスター制御アーム200A内のアクチュエータは、例えば、油圧線形アクチュエータである。これらのアクチュエータは、Parker社で製造している、P/N PVP1630B2RMPなどの油圧ポンプを使用することで操作されうる。
それぞれのアクチュエータは、電気モーターを使用して制御されうる。あるいは、油圧サーボ弁または空気圧サーボ弁を開閉して、選択された量の油圧または空気圧の流体で所望のレベルの力をアクチュエータに加え、対応するジョイントにトルクを印加するようにできる。一例において、サーボ弁は、それぞれのアクチュエータに関連付けられ、これにより、ポートを開いて所望の力がアクチュエータによって選択された方向に印加されるようにすることができる。力を反対方向に印加するため別のポートが開かれうる。使用できるサーボ弁の1つの種類は、Vickers社によって部品番号SM4-10(5)19-200/20-10S39を付けて製造されている。使用できる別の種類のサーボ弁は、Moog社によって製造されている、モデル30-400Aである。追加の種類のサーボ弁も、弁の種類、弁における圧力などを含む設計考慮事項に基づき使用されうる。
マスター制御アーム200Aは、油圧または空気圧でアクチュエータに結合されているサーボ弁を備えることができる。例えば、接続ライン470は、制御弁ポート472およびアクチュエータポート474に結合され、制御弁とアクチュエータとを流体的に結合することができる。このような結合は、マスター制御アームおよびスレーブアーム全体を通してサーボ弁およびアクチュエータを流体的に結合するため実装されうる他のそのような接続を例示している。
マスター制御アームは、マスター制御アームのDOFに関連する、荷重センサーも備えることができる。荷重センサーは、スレーブからマスター制御アームへの力反射を使用可能にするために使用されうる、マスター制御アーム内の荷重を測定するために使用されうる。荷重センサーは、トルク補助などによって、制御アームの操作の増強を可能にするためにユーザーによってマスター制御アームに印加される荷重を測定するためにも使用されうる。それに加えて、荷重センサーは、マスター制御アームの重力補償を使用可能にするために使用されうる。荷重センサーは、限定はしないが、歪みゲージ、薄膜センサー、圧電センサー、抵抗荷重センサー、および同様のものを含む任意の種類の好適な荷重センサーを備えることができる。例えば、使用されうる荷重センサーとして、Sensotec社が生産するロードセル、P/N AL311 CRまたはP/N AL31 DR-1 A-2U-6E-15C、Futek社が生産するロードセル、P/N LCM375-FSSH00675、またはP/N LCM325-FSH00672が挙げられる。
一実施形態において、マスター制御アームのそれぞれのDOFについて1つの荷重センサーがある。マスター制御アーム上のそれぞれのDOFは、DOFでユーザーの動きをどのように追跡すべきかを記述する少なくとも1つの一意的な入力を含むことができる。マスター制御アームの複数のDOFが、多DOF荷重センサーにより考慮されうる。例えば、6つのDOFで荷重を測定することができる多DOF荷重センサーは、ユーザーの手首DOFに対応する、軸225、226、227およびユーザーの肩DOFに対応する、軸221、222、223に関連付けられることも可能である。単一のDOF荷重センサーは、ユーザーの肘DOFに対応する、軸224に関連付けられうる。そのため、合計7つのDOFのロードセルは、7つのDOFを有するマスター制御アームの運動を追跡するのに十分である。荷重センサーの位置と基部210との間のDOFにおける荷重を計算するために多DOF荷重センサーからのデータが使用されうる。荷重センサーは、例えば、マスター制御アームのそれぞれの支持部材のところに配置されるものとしてよい。一態様では、荷重センサーは、以下でさらに詳しく説明されているように、アクチュエータに関連付けられうる。
それに加えて、荷重センサーは、マスター制御アーム上の他の場所に配置することもできる。例えば、マスター制御アーム200Aは、ユーザーとのインターフェースとなり、マスター制御アームをユーザーが操作することを可能にするハンドル202の形態のユーザーインターフェースデバイスを備えることができる。ハンドルは、第7の支持部材217などの支持部材に結合されうる。この実施形態では、ユーザーは、システムに物理的に固定されたり、ストラップで結び付けられたりすることはなく、むしろ、ハンドルを単に掴むだけで操作位置に入ることができ、マスター制御アームの動きおよびマニピュレーションは、さまざまな向きの力をハンドルに印加することによって行われる(1つまたは複数の荷重センサーに関連付けられているように)。そのような操作条件があるため、ユーザーはより自然な、制約のない運動を受け、より自然な、制約のない運動を行えるだけでなく、より機敏な運動も行える。
ハンドル202は、荷重センサー268にも結合されうる。荷重センサー268は、少なくとも1つのDOFで荷重を測定するように構成することができ、一態様では、これは多DOF荷重センサーである。そのため、荷重センサー268は、ユーザーによってハンドル202に印加される荷重を測定するように構成されうる。ハンドル202で得られた荷重データは、トルク補助などにより、マスター制御アーム200Aをユーザーがマニピュレートし、操作するのを補助するために使用されうる。ハンドル202のところの荷重センサー268は、マスター制御アームのDOFにおいて別の荷重センサーによって得られる荷重データに加わるマスター制御アームのDOFに対する荷重データを供給することができる。荷重センサー268からの荷重データは、本明細書で説明されているように、マスター制御アームをユーザーがマニピュレートし、操縦する能力を増強するために使用されうる。
本開示では、荷重センサーおよび位置センサーなどの、図中の特定のセンサーへの参照は、図の中のセンサーの位置、および/またはセンサーそれ自体を指すものとしてよいことは理解されるであろう。例えば、荷重センサー268は、図2Aおよび図2Bに明示されている位置のハウジング内に配設されうる。同様に、位置センサーは、ハウジング内に配設されうるか、または他の何らかの方法で図中に明示されている位置のさまざまなDOFに関連付けられうる。
図2Bおよび図2Cに例示されているように、マスター制御アームは、マスター制御アームとインターフェースし、制御する別の場所をユーザーに与えるためユーザーインターフェースデバイスを備えるか、または支持することができる。例えば、ユーザーインターフェースデバイスは、ブラケットなどの、腕支持体の形態をとりうる。図2Bは、ブラケットの形態の腕支持体の例示的な一実施形態、つまり、支持体206を示している。図2Cは、ブラケットの形態の腕支持体の例示的な別の実施形態、つまり、腕支持体207を示している。図示されているように、図2Bの腕支持体206は、ユーザーの腕をブラケットの表面または一部分に載せられるように構成されうる。図2Cの腕支持体207は、ユーザーの腕の一部を受け入れるための溝を画成するフックまたは曲げ部を備えるように構成されうる。この実施形態では、ユーザーの腕の垂直の動きは、比較的制約を受けないが、ユーザーによる横方向の動きは、腕支持体207と形成される接触を通じてマスター制御アームへの荷重の印加を円滑にすることができる。このような腕支持体構成で、以下で説明されているように、ブラケットが荷重センサーに結合されているときにトルク補助を利用してマスター制御アームをユーザーが制御する能力を増強することができる。さらに別の実施形態では、図示されていないけれども、当業者であれば理解するように、腕支持体は、ストラップまたはつり革などを使用して、吊り下げた形でユーザーの腕を支持するように構成されうる。一般に、腕支持体は、支持部材214などの、マスター制御アームの好適な部分に結合されうる。図2Bおよび図2Cに示されている実施形態において、腕支持体206および腕支持体207は、それぞれ、ユーザーの前腕を支持するように構成された場所のマスター制御アーム200Aの周りで支持される。
腕支持体は、荷重センサーにも結合されうる。図2Bおよび図2Cに示されている実施形態において、腕支持体206および腕支持体207は、それぞれ、荷重センサー269に結合され、荷重センサー269で操作可能である。実際、荷重センサー269は、少なくとも1つのDOFで荷重を測定するように構成することができ、一態様では、これは多DOF荷重センサーである。そのため、荷重センサー269は、ユーザーによって腕支持体に印加される荷重を測定するように構成されうる。腕支持体で得られた荷重データは、トルク補助などにより、マスター制御アームをユーザーがマニピュレートし、操作するのを補助するために使用されうる。ユーザーインターフェースデバイスは、ユーザーによって、ユーザーインターフェースデバイスおよびマスター制御アームに印加される荷重を測定するジョイントからオフセットされた少なくとも1つの荷重センサーを備えることができる。荷重センサーは、その自由度に関連する荷重センサーからの荷重データに加わる少なくとも1自由度に対する荷重データを供給する。トルク補助機能は、ユーザーインターフェースデバイスの荷重センサーからのそのような荷重データを利用してユーザーによってマスター制御アームに加えられた荷重に応答してマスター制御アームの作動された動きを円滑にし、マスター制御アームを動かすために必要な力を低減する。腕支持体のところの荷重センサー269は、マスター制御アームのDOFにおいて別の荷重センサーによって得られる荷重データに加わるマスター制御アームのDOFに対する荷重データを供給することができる。荷重センサー269からの荷重データは、マスター制御アームをユーザーがマニピュレートし、操縦する能力を増強するためにハンドル202のところにある荷重センサー268からの荷重データとは別に使用されるか、または組み合わせて使用されうる。一態様では、腕支持体および/または荷重センサー269は、ユーザーの上腕に近接するように構成された場所など、マスター制御アーム上の好適な位置に配設されうる。
マスター制御アームに印加される力をマスター制御アームの法線方向に印加される力に本質的に制限する、図2Cのブラケット207などの、ブラケットタイプの腕支持体構成は、ユーザーからマスター制御アームに向かう制御入力の量が過剰に増える可能性を最小限度に抑えることができる。言い換えると、マスター制御アームがすべての自由度でユーザーに結合されている手首位置および肘位置におけるマスター制御アームへのユーザー入力は、結果として、手首荷重センサー268および肘荷重センサー269からのコマンドのコンフリクトを引き起こし、そのためマスター制御アームは過剰に制約されることになりうる。したがって、マスター制御アームの法線方向の荷重を受けると、コマンドのコンフリクトを引き起こす可能性を最小限度に抑えながらマスター制御アームの操作を増強することができる。ユーザーの肘のところ、またはユーザーの肘の近くの好適なユーザーインターフェースデバイスは、ブラケットタイプの腕支持体の形態をとる必要はないことは理解されるであろう。実際、他のユーザーインターフェースデバイス構成は、本発明の範囲内で考えられ、本明細書では企図されている。しかし、ほとんどの場合において、マスター制御アームに印加される力をマスター制御アームの法線方向に印加される力に制限することは望ましいが、これは、いかなる形でも制限要因とみなすべきでない。
荷重センサー268、269を使用してマスター制御アームをユーザーが動かすのを補助することで、マスター制御アームのより滑らかで効率的な制御を促進するか、またはそのように行う。例えば、トルク補助は、荷重センサー268、269から収集されたデータに基づき実現されうるが、これは力のフィードバックがマスター制御アームに届いたときにマスター制御アームをユーザーが動かすのを補助するために使用されうる。トルク補助は、マスター制御アームの加減速を行っているときに慣性力に打ち勝とうとするユーザーを助けることもできる。慣性力が時間の経過とともに生じるユーザーの疲労の一因となりうると考えられるので、荷重センサー268、269を使用して可能になったトルク補助機能を実装することで、アームの動きに抵抗を生じさせる慣性力、フィードバック力、摩擦力、および他の荷重があるにもかかわらずマスター制御アームをユーザーが動かし、マニピュレートするのを補助する望む方向にユーザーがわずかな量の力を加えることが可能になる。本明細書で示されているように、トルク補助の量は、スレーブアームからの力のフィードバックがそのままユーザーによって感じ取られるように制限されうる。
マスター制御アーム200Aは、それぞれのDOFに関連する一般DOF制御装置(GDC)271も備えることができる。一例において、個別のGDC271、272、273、274、275、276、および277はマスター制御アーム200A内の軸のそれぞれで操作可能であるものとしてよい。GDCは、それぞれのジョイントのところに配置されている、荷重センサーおよび位置センサーなどの、センサーと通信することができる。GDCは、それぞれのジョイントのところでアクチュエータおよび/またはサーボ弁とも通信することができる。それぞれのGDCは、マスター制御アーム200A上の選択されたジョイントのところで位置およびトルクを監視し、調節するために使用される。スレーブアーム300A上の関連する、または対応するジョイントの位置およびトルクに関する情報も、GDCで受信されうる。スレーブアーム内のそれぞれのジョイントのところのトルク測定に関する情報は、マスター制御アーム内の関連する、または対応するジョイントについてGDCに伝達されうる。他の種類のセンサーからの追加入力も同様に受信されうる。次いで、GDCは、コマンドをアクチュエータまたはサーボ弁に出力して、マスター制御アーム上の関連するジョイントのところのトルクを調節し、スレーブアームとその環境との相互作用、および/またはスレーブアームによって持ち上げられる荷重との相互作用に関して力のフィードバックを与えることができる。それぞれの軸のところのGDCは、関連するジョイントに対するアクチュエータ251またはサーボ弁と相互作用し、ジョイントのところのトルクを調節し、および/またはDOFを所定の量だけ動かすことができる。
一例において、マスターアーム上のそれぞれのDOFに対するGDCは、所望のセンサーおよび弁と通信し、スレーブアーム上の関連するまたは対応する軸の周りのスレーブアームの動きを制御するために使用される計算を実行するように構成された1つまたは複数のマイクロプロセッサを収めたコンピュータカードであってよい。例えば、GDCは、ARMプロセッサ、Intelプロセッサ、または同様のプロセッサなどの汎用中央演算処理装置(CPU)を備えることができる。あるいは、フィールドプログラマブルゲートアレイ(FPGA)、特定用途向け集積回路(ASIC)、または他の種類のプロセッサを使用することができる。GDCは、有線またはワイヤレス技術もしくは手段を使用してセンサーと通信することができる。ここでは有線およびワイヤレスによる通信手段のさまざまな例について説明している。
本開示では、図中の特定のGDCおよびサーボ弁への参照は、もっぱら、図中のGDCおよびサーボ弁の配置を参照しており、必ずしもGDCおよびサーボ弁それ自体を参照しているわけではないことは理解されるであろう。例えば、GDC276は、図2Aおよび図2Bに明示されている位置でハウジング内に配設されうる。同様に、サーボ弁281も、図2Aおよび図2Bに明示されている位置でハウジング内に配設されうる。
マスター制御アーム200Aは、以下でさらに説明されている、マスター制御アームの重力補償を使用可能にするために使用されうる、重力ベクトルを決定する重力センサー204を備えることもできる。重力センサーは、マスター制御アームに関連付けられ、したがって、重力センサーおよびマスター制御アームの基部は、互いに関して固定される。例えば、重力センサーは、マスター制御アームの基部210上に、またはマスター制御アームの基部の支持体上に配置されうる。いくつかの態様において、重力センサーは、リンケージまたは支持部材の重心など、マスター制御アームのそれぞれのリンケージまたは支持部材上に配置されうる。重力センサーとして、限定はしないが、傾斜センサー、加速度計、ジャイロスコープ、慣性計測装置、またはこれらの組み合わせのうちの少なくとも1つを含む任意の種類の好適な重力センサーが挙げられる。例えば、Microstrain, Inc.社が製造する重力センサー、P/N 3DM-GX1-SKが使用されうる。
図3Aおよび図3Bを参照し、図2Aおよび図2Bをさらに参照すると、例示されているのは、マスター制御アーム200Aの基部210、ジョイント231のところで基部210に結合されている第1の支持部材211、およびジョイント232のところで第1の支持部材211に結合されている第2の支持部材212の一部の詳細図である。マスター制御アーム200Aのいくつかの特徴は、図3Aおよび図3Bにおいて省かれているが、マスター制御アームのいくつかの態様を示すために省かないと見えないからである。位置センサー241は、ジョイント231に関連付けられており、基部210と第1の支持部材211との間の位置の相対的変化を感知する。アクチュエータ251は、ジョイント231によって形成される軸221に関連するDOFの周りに作用するトルクを与えることができる。アクチュエータ251に関連付けられている荷重センサー261は、ジョイント231によって形成される軸221に関連するDOFの周りに作用する荷重を測定することができる。
アクチュエータ251は、一方の端部で基部210に結合され、反対側の端部でトルク部材451に結合されている。トルク部材451は、トルク部材451の回転が第1の支持部材211の回転を引き起こすように第1の支持部材211に結合される。トルク部材451は、軸221の周りで回転し、軸221から遠ざかり、レバーアームおよびアクチュエータ251との結合インターフェースを構成する。これにより、アクチュエータ251の動きは、トルク部材451の動きを引き起こし、これは軸221の周りの基部210に関する第1の支持部材211の動きを引き起こす。
アクチュエータ251は、サーボ弁281に流体的に結合され、これは線形アクチュエータのピストンの両側に作用する作動油圧力を制御する。これにより、サーボ弁制御の制御はピストンを前後に動かし、軸221の周りの第1の支持部材の双方向回転を引き起こすことができる。サーボ弁281は、GDC271に電気的に結合され、サーボ弁への制御信号を介してアクチュエータ251の作動を制御する。上で述べたように、GDC271は、アクチュエータ251を操作するために、位置センサー241および荷重センサー261などの、センサーから位置データおよび/または荷重データを受信することができる。位置センサー241は、ジョイント231の一方の端部に配置され、これにより、基部210と第1の支持部材211との間の相対的回転を測定する。荷重センサー261は、トルク部材に作用する荷重を測定するためにトルク部材451に結合されている。
図3Aおよび図3Bは、位置センサー242が第1の支持部材211と第2の支持部材212との間の位置の相対的変化を感知するためにジョイント232に関連付けられていることをさらに例示している。アクチュエータ252は、ジョイント232によって形成される軸222に関連するDOFの周りに作用するトルクを与えることができる。アクチュエータ252に関連付けられている荷重センサー262は、ジョイント232によって形成される軸222に関連するDOFの周りに作用するトルクを測定することができる。
アクチュエータ252は、一方の端部で第1の支持部材211に結合され、反対側の端部で第1のリンケージ452に結合されている。第1のリンケージ452は、枢軸420で第1の支持部材211に結合され、枢軸422で第2のリンケージ462に結合されている。第2のリンケージ462は、枢軸424で第2の支持部材212に結合されている。第1の支持部材211に関する第1のリンケージ452および第2のリンケージ462の回転は、軸222の周りの第2の支持部材212の回転を引き起こす。これにより、アクチュエータ252の動きは、第1のリンケージ452および第2のリンケージ462の動きを引き起こし、これは軸222の周りの第2の支持部材212の動きを引き起こす。図3Aおよび図3Bに示されている位置では、枢軸424は、アクチュエータ252からジョイント232の反対側に配置されている。アクチュエータ252が引っ込むと、第1のリンケージ452が枢軸420の周りに回転し、枢軸422を軸222から引き離し、その際に、第2のリンケージ462が枢軸424を引くと第2の支持部材212の時計回りの運動が引き起こされる。したがって、この構成は、第1の支持部材211に関して第2の支持部材212の回転を十分な範囲にわたって発生し、人間の屈曲/伸展の肩の動きを複製することができる。
アクチュエータ252は、サーボ弁282に流体的に結合され、これは、GDC272に電気的に結合され、アクチュエータ252を操作するために、位置センサー242および荷重センサー262などの、センサーから位置データおよび/または荷重データを受信することができる。位置センサー242は、ジョイント232の一方の端部に配置され、これにより、第1の支持部材211と第2の支持部材212との間の相対的回転を測定する。荷重センサー262は、第2のリンケージ462に作用する荷重を測定するために第2のリンケージ462に結合されている。
一態様では、隣接する結合された支持部材に関する基部または支持部材の動きに物理的に干渉するようにある範囲の運動リミッターが組み込まれうる。例えば、リミッター476は、物理的リミッターまたはストッパーの一例であり、第1の支持部材211に結合される。リミッター476は、第2の支持部材が第1の支持部材211に関して回転するときに第2の支持部材212の一部と接触するように配置され構成されうる。物理的リミッターまたはストッパーは、マスター制御アームを損傷するか、またはユーザーを危険にさらす可能性のある過剰な運動を防ぐことができる。別の態様では、遠隔操作ロボットシステムは、プログラムされた制限などの、追加の範囲の運動制御を実行することができ、また物理的リミッターとの衝突を防ぐために物理的制限に近づくのに合わせてマスター制御アームを減速することができる。このようなリミッターは、マスター制御アームおよび/またはスレーブアーム全体にわたって使用することができる。
図4Aおよび図4Bを参照し、図2Aおよび図2Bをさらに参照すると、例示されているのは、マスター制御アーム200Aの部分、つまり、第2の支持部材212、ジョイント233のところで第2の支持部材212に結合されている第3の支持部材213、およびジョイント234のところで第3の支持部材213に結合されている第4の支持部材214の一部の詳細図である。マスター制御アームのいくつかの特徴は、図4Aおよび図4Bにおいて省かれているが、マスター制御アームのいくつかの態様を示すために省かないと見えないからである。位置センサー243は、ジョイント233に関連付けられており、第2の支持部材212と第3の支持部材213との間の位置の相対的変化を感知する。アクチュエータ253は、ジョイント233によって形成される軸223に関連するDOFの周りに作用するトルクを与えることができる。アクチュエータ253に関連付けられている荷重センサー263は、ジョイント233によって形成される軸223に関連するDOFの周りに作用する荷重を測定することができる。
アクチュエータ253は、一方の端部で第3の支持部材213に結合され、反対側の端部でトルク部材453に結合されている。トルク部材453は、トルク部材の回転が第2の支持部材の回転を引き起こすように第2の支持部材212に結合される。トルク部材453は、軸223の周りで回転し、軸から遠ざかり、レバーアームおよびアクチュエータ253との結合インターフェースを構成する。これにより、アクチュエータの動きは、トルク部材453の動きを引き起こし、これは軸223の周りの第2の支持部材212に関する第3の支持部材213の動きを引き起こす。アクチュエータ253は、サーボ弁283に流体的に結合され、これは、GDC273に電気的に結合され、アクチュエータ253を操作するために、位置センサー243および荷重センサー263などの、センサーから位置データおよび/または荷重データを受信することができる。位置センサー243は、ジョイント233の一方の端部に配置され、これにより、第2の支持部材212と第3の支持部材213との間の相対的回転を測定する。荷重センサー263は、トルク部材に作用する荷重を測定するためにトルク部材453に結合されている。
図4Aおよび図4Bは、位置センサー244が第3の支持部材213と第4の支持部材214との間の位置の相対的変化を感知するためにジョイント234に関連付けられていることをさらに例示している。アクチュエータ254は、ジョイント234によって形成される軸224に関連するDOFの周りに作用するトルクを与えることができる。アクチュエータ254に関連付けられている荷重センサー264は、ジョイント234によって形成される軸224に関連するDOFの周りに作用する荷重を測定することができる。
アクチュエータ254は、一方の端部で第3の支持部材213に結合され、反対側の端部で第1のリンケージ454に結合されている。第1のリンケージ454は、枢軸426で第3の支持部材213に結合され、枢軸428で第2のリンケージ464に結合されている。第2のリンケージ464は、枢軸430で第2の支持部材212に結合されている。第3の支持部材213に関する第1のリンケージ454および第2のリンケージ464の回転は、軸224の周りの第4の支持部材214の回転を引き起こす。これにより、アクチュエータ254の動きは、第1のリンケージ454および第2のリンケージ464の動きを引き起こし、これは軸224の周りの第4の支持部材214の動きを引き起こす。第1のリンケージ454および第2のリンケージ464の構成は、図3Aおよび図3Bに示されている第1のリンケージ452および第2のリンケージ462の構成に類似している。したがって、この構成は、第3の支持部材213に関して第4の支持部材214の回転を十分な範囲にわたって発生し、人間の肘の動きを複製することができる。
アクチュエータ254は、サーボ弁284に流体的に結合され、これは、GDC274に電気的に結合され、アクチュエータ254を操作するために、位置センサー244および荷重センサー264などの、センサーから位置データおよび/または荷重データを受信することができる。図中、GDC273およびGDC274は、第3の支持部材213上の同じ位置にある。それに加えて、サーボ弁283およびサーボ弁284は、第3の支持部材213上の同じ位置にある。
位置センサー244は、ジョイント234の一方の端部に配置され、これにより、第3の支持部材213と第4の支持部材214との間の相対的回転を測定する。荷重センサー264は、第2のリンケージに作用する荷重を測定するために第2のリンケージ464に結合されている。
図5Aおよび図5Bを参照し、続いて図2Aおよび図2Bを参照すると、マスター制御アーム200Aは、軸225、軸226、および軸227の周りのマスター制御アームの対応するDOFと十分に揃うようにユーザーの手首DOFを位置決めする構造を備えることができ、したがって、運動学的等価が結果として生じうる。手首位置決め構造、または手首ユニット201は、ユーザーがハンドルを掴んでマスター制御アームをマニピュレートしているときに、ユーザーの手首がユーザーの手首のDOFに対応するマスター制御アームのDOFに関して適切に位置決めされるようにハンドル202を支持する構成をとる。
手首位置決め構造は、伸展部材218を備えることができる。伸展部材218は、第4の支持部材214と一体であるか、または取り付けられうる。一態様では、伸展部材218は、ハンドル202を超えて伸展してユーザーの手の前にジョイント235を位置決めするように構成されうる。伸展部材218は、第4の支持部材214に関する軸225に対するオフセットも備えることができる。伸展部材218は、ユーザーの手首の対応するDOFと十分に揃うように軸225を位置決めするように構成されうる。第5の支持部材215は、ユーザーの手首の側部にあるようにジョイント236をオフセットすることができ、ジョイント236をハンドル202を越えるところに位置決めするように構成され、これによりユーザーの手首は軸226と十分に揃う。第6の支持部材216は、手首の別の側部にあるようにジョイント237をオフセットすることができる。ハンドル202はジョイント237の前方にオフセットされ、これにより、ユーザーがハンドルを掴んだときに、ユーザーの手首は軸227と十分に揃う。第7の支持部材217は、軸226、227を越える位置、または前にハンドル202を位置決めするように構成されうる。一態様では、軸225、226、227は、互いに直交するものとしてよく、ユーザーの手首のDOFと十分に揃うように構成されうる。
いくつかの態様において、伸展部材218は、第4の支持部材214、第2の支持部材212、および/または第3の支持部材213に関する軸225に対するオフセットも備えることができる。このオフセットは、ユーザーの腕のための空間を設け、第4の支持部材214、第2の支持部材212、および/または第3の支持部材213をユーザーの腕の側部に位置決めすることができる。例えば、伸展部材218は、ユーザーがハンドル202を掴んでいるときにユーザーの対応する手首DOFと十分に揃うように軸225を位置決めし、マスター制御アームの隣にあるユーザーの腕のために十分な空間を設けることができる。
他の態様では、第4の支持部材214、伸展部材218、第5の支持部材215、第6の支持部材216、および第7の支持部材217は、ロボットシステム100をユーザーが制御することを可能にするボタン、スイッチ、レバー、または他の制御構造物もしくはユーザーインターフェースデバイスを収容する十分な空間をハンドルの周りに設けるように構成されうる。
手首ユニット201の構造は、システム操作者の実際の手首DOFと実質的に揃う人間の手首の3つのDOFに対応する3本の直交軸を有するマスター制御部を備えることができる。それに加えて、手首ユニット201の構造は、手首ユニットのそれぞれのDOFに対する位置センサー、荷重センサー、および/またはアクチュエータを収容することができる。したがって、手首ユニット201は、スレーブアームの位置制御、スレーブアームの荷重制御、スレーブアームからの力反射フィードバック、手首ユニットの重力補償、手首ユニットのトルク補助、およびこれらの組み合わせに適しているものとしてよい。
図5Cおよび図5Dを参照すると、手首ユニットの位置センサー245、アクチュエータ255、および荷重センサー265の配置構成が図示されている。この配置構成は、ジョイント235、236、237に関連する位置センサー、アクチュエータ、および荷重センサーとつなげて使用されうる。例えば、アクチュエータ255は、アクチュエータの一方の端部のところでトルク部材455に結合され、アクチュエータの反対側の端部のところで伸展部材218などのリンケージまたは支持部材に結合可能である。トルク部材455は、トルク部材の回転がリンケージまたは支持部材の回転を引き起こすように第5の支持部材215などのマスター制御アームのリンケージまたは支持部材にインターフェース432を介して結合可能である。トルク部材455は、軸225などの軸の周りで回転可能であり、軸から遠ざかり、レバーアームおよびアクチュエータ255との結合インターフェースを構成する。これにより、アクチュエータ255の動きは、トルク部材455の動きを引き起こし、これは軸の周りのトルク部材に結合された支持部材の動きを引き起こす。この動きは、位置センサー245によって測定されうる。荷重センサー265は、アクチュエータ内の荷重を測定するためにアクチュエータ255に関連付けられている。
図5Aおよび5Bを引き続き参照すると、位置センサー245は、ジョイント235に関連付けられており、第5の支持部材215と伸展部材218との間の位置の相対的変化を感知することがわかる。アクチュエータ255は、ジョイント235によって形成される軸225に関連するDOFの周りに作用するトルクを与えることができる。荷重センサー265は、ジョイント235によって形成される軸225に関連するDOFの周りに作用する荷重を測定することができる。アクチュエータ255は、サーボ弁285に流体的に結合され、これは、GDC275に電気的に結合され、アクチュエータ255を操作するために、位置センサー245および荷重センサー265などの、センサーから位置データおよび/または荷重データを受信することができる。
さらに、位置センサー246は、ジョイント236に関連付けられており、第6の支持部材216と第5の支持部材215との間の位置の相対的変化を感知する。アクチュエータ256は、ジョイント236によって形成される軸226に関連するDOFの周りに作用するトルクを与えることができる。荷重センサー266は、ジョイント236によって形成される軸226に関連するDOFの周りに作用する荷重を測定することができる。アクチュエータ256は、サーボ弁286に流体的に結合され、これは、GDC276に電気的に結合され、アクチュエータ256を操作するために、位置センサー246および荷重センサー266などの、センサーから位置データおよび/または荷重データを受信することができる。
それに加えて、位置センサー247は、ジョイント237に関連付けられており、第7の支持部材217と第6の支持部材216との間の位置の相対的変化を感知することがわかる。アクチュエータ257は、ジョイント237によって形成される軸227に関連するDOFの周りに作用するトルクを与えることができる。荷重センサー267は、ジョイント237によって形成される軸227に関連するDOFの周りに作用する荷重を測定することができる。アクチュエータ257は、サーボ弁287に流体的に結合され、これは、GDC277に電気的に結合され、アクチュエータ257を操作するために、位置センサー247および荷重センサー267などの、センサーから位置データおよび/または荷重データを受信することができる。
図6Aおよび図6Bを参照すると、ロボットスレーブアーム300Aが例示されている。簡単のため、スレーブアーム300Aは、マスター制御アーム200A、200B、スレーブアーム300B、およびプラットフォーム400などの、ロボットシステムの他のコンポーネントから独立して図示されている。スレーブアーム300Aは、プラットフォームまたは他の構造物が支持構造物またはシステムを介してスレーブアームを支持するように固定または移動プラットフォームもしくは他の構造物に装着されるか、設置されるか、または他の何らかの形で関連付けられうる。典型的には、スレーブアームは、スレーブアームを遠隔操作ロボットの作業空間または操作環境内の物体と相互作用させられるようにプラットフォームによって支持される。スレーブアームは、スレーブアームが動作する「操作ゾーン」を少なくとも部分的に画成する。
上で述べているように、マスター制御アームは、肩から手首までのユーザーの腕と運動学的に等価であるものとすることができる。同様に、スレーブアームは、マスター制御アームと運動学的に等価であるものとしてよい。したがって、マスター制御アームおよびスレーブアームは、肩から手首までのユーザーの腕と運動学的に等価であるものとすることができる。
スレーブアーム300Aは、マスター制御アーム200Aおよび肩から手首までの人間の腕のDOFおよびリンケージに対応するDOFおよびリンケージを備える運動学的システムとして構成されうる。一実施形態において、制限要因とは考えられないけれども、スレーブのリンケージの長さは、マスター制御アームの対応するリンケージ長に比例しうる。
一般に、マスター制御アームは、人間のユーザーとインターフェースするように構成され、したがって、構造の特徴および特性のいくつかは、この目的の結果であるものとしてよい。いくつかの場合において、これらの構造の特徴および特性の残りは、運動学的等価を維持または増強するために、スレーブアームに持ち越されて組み込まれうる。例えば、図6Aに示されているように、第1の支持部材311が基部310に結合された状態で、軸321は水平面に関して約45度の角度をなすようにされうる。この構成は、スレーブアームを機能させるうえで必要というわけではないが、マスター制御アームと類似しており、マスター制御アームとスレーブアームとの間の運動学的等価に寄与する。他の場合には、人間とのインターフェースを円滑にするマスター制御アームのいくつかの構造の特徴および特性は、スレーブアームに組み込まれない場合がある。例えば、スレーブアームは、ユーザーの手首DOFに対応するマスター制御アームの構造を組み込むことなく、機能的スレーブアームとして、またそれと同時にマスター制御アームと運動学的等価であるものとして、効果的に動作しうる。したがって、いくつかの場合において、スレーブアームの構造および装置は、マスター制御アームの対応する構造に比べてより簡素化されるか、または人間の腕をより精密に複製することをさせられうる。
いくつかの態様において、スレーブアームは、7未満のDOFを備えることができ、それでも、人間の腕またはマスター制御アームの対応するDOFの範囲では人間の腕またはマスター制御アームと運動学的に等価であると考えられる。いくつかの他の態様では、スレーブアームは、7を超えるDOFを備えることができ、それでも、人間の腕またはマスター制御アームの対応するDOFの範囲では人間の腕またはマスター制御アームと運動学的に等価であると考えられる。この場合、人間の腕またはマスター制御アームに対応しない過剰なDOFは、人間の腕またはマスター制御アームに運動学的に等価でない場合がある。
図6Aおよび図6Bに例示されているように、第1の支持部材311は、ジョイント331のところで基部310に結合され、軸321の周りで回転することを可能にする。軸321の周りのDOFは、マスター制御アームの軸221の周りのDOFおよび人間の肩の外転/内転に対応する回転DOFを表す。上述のように、第1の支持部材311は、基部310から伸展してマスター制御アームの対応する特徴に比例するようにジョイント332を位置決めすることができる。ジョイント332は、第2の支持部材312に結合されて軸322を形成する。軸322の周りのDOFは、マスター制御アームの軸222の周りのDOFおよび人間の肩の屈曲/伸展に対応する回転DOFを表す。
第2の支持部材312は、ジョイント332から伸展し、第3の支持部材313に結合されてジョイント333を形成し、これは軸323を形成する。軸323の周りのDOFは、マスター制御アームの軸223の周りのDOFおよび人間の肩の上腕回転に対応する回転DOFを表す。したがって、スレーブは、運動学的に等価なシステム内で人間の肩の単一の関節に対応する、マスター制御アームの3つの別々のジョイントに対応する3つの別々のジョイントを備えることができる。
第2の支持部材312および第3の支持部材313は組み合わさって、マスター制御アームの第2の支持部材212および第3の支持部材213によって形成されるリンケージならびに肩と肘との間の人間の上腕に対応するジョイント332とジョイント334との間に配設されたリンケージを形成する。第3の支持部材313は、ジョイント334によって第4の支持部材314に結合され、これは軸324を形成する。軸324の周りのDOFは、マスター制御アームの軸224の周りのDOFおよび人間の肘に対応する回転DOFを表す。
第4の支持部材314は、ジョイント335のところで第5の支持部材315に結合され、これは軸325を形成する。軸325の周りのDOFは、マスター制御アームの軸225の周りのDOFおよび人間の手首回転に対応する回転DOFを表す。第5の支持部材315は、ジョイント336のところで第6の支持部材316に結合され、これは軸326を形成する。軸326の周りのDOFは、マスター制御アームの軸226の周りのDOFおよび人間の手首の外転/内転に対応する回転DOFを表す。第6の支持部材316は、ジョイント337のところで第7の支持部材317に結合され、これは軸327を形成する。軸327の周りのDOFは、マスター制御アームの軸227の周りのDOFおよび人間の手首の屈曲/伸展に対応する回転DOFを表す。
一態様では、スレーブアームのDOF構造は、人間の手首のDOFによく似ている。例えば、軸325の周りのDOFは、DOF構造がスレーブアームの「前腕」に配置されているという点で人間の手首に似ている。同様に、スレーブアームの軸326、327の周りのDOFは、DOF構造がスレーブアームの「手首」に配置されているという点で人間の手首に似ている。したがって、スレーブアームの軸325、326、327を形成する構造は、マスター制御アームの対応する構造よりも人間の手首によく似ている。さまざまな類似点および相違点があるが、これら3つのシステムにわたって運動学的等価が存在しうる。
スレーブアームは、スレーブアームのDOFに関連する、アクチュエータも備えることができる。アクチュエータは、さらに以下で説明されている、マスター制御アームの位置の変化に基づきスレーブアームの与えられたDOF軸の周りの回転を引き起こすために使用されうる。アクチュエータは、スレーブアームの重力補償を使用可能にするためにも使用されうる。一態様では、スレーブアームのそれぞれのDOFについて1つのアクチュエータがある。アクチュエータは、線形アクチュエータ、回転式アクチュエータなどがありうる。アクチュエータは、電気、油圧、空気圧などによって操作することができる。図6Aおよび図6Bに示されているスレーブアーム内のアクチュエータは、例えば、油圧線形アクチュエータである。
スレーブアームは、スレーブアームのDOFに関連する、位置センサーも備えることができる。一態様では、それぞれのDOFについて1つの位置センサーがある。位置センサーは、例えば、ジョイント331、332、333、334、335、336、および337のそれぞれに配置されうる。これらのジョイントにおけるスレーブアームのDOFは回転なので、位置センサーは、角度位置を測定するように構成されうる。
一態様では、位置センサーは、アクチュエータがDOF軸の周りに回転を引き起こすときなどに、それぞれのDOFでスレーブアームの位置の変化を検出することができる。スレーブアームDOF軸の周りのスレーブの位置が対応するDOF軸のところでマスター制御アームの位置に比例する位置に到達したときに、アクチュエータはスレーブアームの動きを引き起こすことを止める。この方法で、マスター制御アームの位置は、スレーブアームによって比例するように合わせることができる。マスター制御アームと同様に、スレーブアームの位置センサーは、任意の種類の好適な位置センサーを含みうる。
スレーブアームは、スレーブアームのDOFに関連する、荷重センサーも備えることができる。荷重センサーは、スレーブアーム内の荷重を測定するために使用することができ、その荷重は、マスター制御アームのアクチュエータによって比例するように再現されうる。言い換えると、スレーブアーム内の荷重は、対応する荷重をマスター制御アーム内に加えることを引き起こしうる。この方法で、スレーブアームで「感じられる」荷重は、マスター制御アームに伝達され、これにより、同じ程度または何らかの比例する量でユーザーが感じることができる。したがって、この力反射の態様は、トルクコマンドを介してマスター制御アームを少なくともいくぶん制御するスレーブアームを含む。荷重センサーは、スレーブアームの重力補償を使用可能にするためにも使用されうる。それに加えて、荷重センサーは、ユーザーによってスレーブアームに印加される荷重を測定するために使用されうる。
一態様では、スレーブアームのそれぞれのDOFについて1つの荷重センサーがある。別の態様では、スレーブアームの複数のDOFが、多DOF荷重センサーにより考慮されうる。例えば、6つのDOFで荷重を測定することができる多DOF荷重センサーは、ユーザーの手首DOFに対応する、軸325、326、327およびユーザーの肩DOFに対応する、軸321、322、323に関連付けられることも可能である。単一のDOF荷重センサーは、ユーザーの肘DOFに対応する、軸324に関連付けられうる。荷重センサーの位置と基部310との間のDOFにおける荷重を計算するために多DOF荷重センサーからのデータが使用されうる。
荷重センサーは、例えば、スレーブアームのそれぞれの支持部材のところに配置されるものとしてよい。一態様では、荷重センサーは、以下でさらに詳しく説明されているように、アクチュエータに関連付けられうる。マスター制御アームと同様に、スレーブアームの荷重センサーは、任意の種類の好適な荷重センサーを含みうる。
それに加えて、荷重センサーは、スレーブアーム上の他の場所に配置することもできる。例えば、荷重センサー368は、第7の支持部材317上に配置することができる。荷重センサー368は、エンドエフェクター390を通じて第7の支持部材317に作用する荷重を測定するように構成されうる。荷重センサー368は、少なくとも1つのDOFで荷重を測定するように構成することができ、一態様では、これは多DOF荷重センサーである。
エンドエフェクター390は、スレーブアームの先端に配置され、以下で説明されているように、さまざまな用途に役立てるように構成されうる。例えば、エンドエフェクターは、スレーブアームによるマニピュレーションのためペイロードを持ち上げて固定するように構成されうる。そのため、荷重センサー368は、ペイロードおよびエンドエフェクターによって第7の支持部材317にかけられる荷重を測定することができる。エンドエフェクターのところで収集される荷重データは、エンドエフェクターおよびペイロードを支持し、操縦するスレーブアームの能力を向上させるために使用されうる。
スレーブアーム300Aは、それぞれのDOFに関連するGDC371も備えることができる。一例において、個別のGDC371、372、373、374、375、376、および377はスレーブアーム300A内の軸のそれぞれの周りで操作可能であるものとしてよい。スレーブアームのGDCは、マスター制御アームのGDCに類似しており、マスター制御アームのGDCと同じ目的に使用されうる。
スレーブアーム300Aは、サーボ弁381、382、383、384、385、386、387も備えることができる。サーボ弁は、油圧アクチュエータなどの、スレーブアームのアクチュエータに流体的に結合され、GDCからアクチュエータを操作するコマンドを受信することができる。スレーブアームのサーボ弁は、マスター制御アームのサーボ弁に類似するものとしてよい。
スレーブアーム300Aは、以下でさらに説明されている、スレーブアームの重力補償を使用可能にするために使用されうる、重力ベクトルを決定する重力センサー304を備えることもできる。重力センサーは、スレーブアームに関連付けられ、したがって、重力センサーおよびスレーブアームの基部は、互いに関して固定される。例えば、重力センサーは、スレーブアームの基部310上に、またはスレーブアームの基部の支持体上に配置されうる。スレーブアームの重力センサーは、マスター制御アーム用の重力センサーに類似しており、マスター制御アーム用の重力センサーと同じ機能を実行することができる。いくつかの態様において、マスター制御アームおよびスレーブアームが、図1のように、共通プラットフォームに固定されている場合に単一の重力センサーのみが使用されうる。いくつかの他の態様では、マスター制御アームおよびスレーブアームは、それぞれ、図18のように、マスター制御アームおよびスレーブアームが別々のプラットフォーム中にある場合に重力センサーを有することができる。なおも他の態様では、重力センサーは、リンケージまたは支持部材の重心など、スレーブアームのそれぞれのリンケージまたは支持部材上に配置されうる。
図7Aおよび図7Bを参照し、図6Aおよび図6Bをさらに参照すると、例示されているのは、支持部材またはシステムを介してプラットフォームに結合されている基部310、ジョイント331のところで基部310に結合されている第1の支持部材311、およびジョイント332のところで第1の支持部材311に結合されている第2の支持部材312の一部の詳細図である。スレーブアームのいくつかの特徴は、図7Aおよび図7Bにおいて省かれているが、スレーブアームのいくつかの態様を示すために省かないと見えないからである。位置センサー341は、ジョイント331に関連付けられており、基部310と第1の支持部材311との間の位置の相対的変化を感知する。アクチュエータ351は、ジョイント331によって形成される軸321に関連するDOFの周りに作用するトルクを与えることができる。アクチュエータ351に関連付けられている荷重センサー361は、ジョイント331によって形成される軸321に関連するDOFの周りに作用する荷重を測定することができる。
アクチュエータ351は、一方の端部で基部310に結合され、反対側の端部でトルク部材551に結合されている。トルク部材551は、トルク部材の回転が第1の支持部材の回転を引き起こすように第1の支持部材311に結合される。トルク部材551は、軸321の周りで回転し、軸から遠ざかり、レバーアームおよびアクチュエータ351との結合インターフェースを構成する。これにより、アクチュエータの動きは、トルク部材351の動きを引き起こし、これは軸321の周りの基部310に関する第1の支持部材311の動きを引き起こす。
アクチュエータ351は、サーボ弁381に流体的に結合され、これは線形アクチュエータのピストンの両側に作用する作動油圧力を制御する。これにより、サーボ弁の制御はピストンを前後に動かし、軸321の周りの第1の支持部材の双方向回転を引き起こすことができる。サーボ弁381は、GDC371に電気的に結合され、サーボ弁への制御信号を介してアクチュエータ351の作動を制御する。上で述べたように、GDCは、アクチュエータを操作するために、位置センサー341および荷重センサー361などの、センサーから位置データおよび/または荷重データを受信することができる。位置センサー341は、ジョイント331の一方の端部に配置され、これにより、基部310と第1の支持部材311との間の相対的回転を測定する。荷重センサー361は、アクチュエータ内の荷重を測定するためにアクチュエータ351に結合されている。
図7Aおよび図7Bは、位置センサー342が第1の支持部材311と第2の支持部材312との間の位置の相対的変化を感知するためにジョイント332に関連付けられていることをさらに例示している。アクチュエータ352は、ジョイント332によって形成される軸322に関連するDOFの周りに作用するトルクを与えることができる。アクチュエータ352に関連付けられている荷重センサー362は、ジョイント332によって形成される軸322に関連するDOFの周りに作用する荷重を測定することができる。
クランプ弁481は、アクチュエータ351に関連付けられているサーボ弁381からアクチュエータ351を流体的に絶縁するために使用されうる。言い換えると、クランプ弁481は、安全および他の理由から関連するDOFの動きを防ぐためアクチュエータ351をロックする機能を果たしうる。したがって、一態様では、クランプ弁は、油圧系統または電気系統の故障の場合に安全対策として使用されうる。別の態様では、クランプ弁は、ペイロードを支持しながらスレーブアームを適所にロックするために使用されうる。例えば、スレーブアームは、物体を持ち上げて所望の位置にマニピュレートすることができる。物体がスレーブアームによって適所に位置決めされた後、意図された作業を行うように、クランプ弁はスレーブアームをその位置にいつまでもロックすることができる。所望の作業が完了した後、クランプ弁は、スレーブアームがサーボ弁制御の下で作動されると再び動くことができるようにすることができる。クランプ弁は、プリセット条件が満たされたときにスレーブアームをロックする安全機能などで自動制御されるか、またはユーザーがスレーブアームをロックして溶接または他の何かの作業を実行したい場合にスイッチまたは他の手段などによってユーザー制御されうる。クランプ弁は、任意のスレーブアームDOFで、またスレーブアームDOFの組み合わせで利用されうる。もちろん、クランプ弁は、当業者であれば理解するようにマスター制御アーム上で使用することもできる。
図7Cに概略が示されているように、サーボ弁381は、アクチュエータ351の「A」側および「B」側に流体的に接続されうる。クランプ弁481は、「A」接続部と「B」接続部とを開閉するように動作することができる。クランプ弁481は、3つのポートおよび2つの離散位置を有する一方通行弁482を備えることができる。図示されているように、一方通行弁は、通常閉じている位置にあり、閉位置へのバネの戻りでソレノイド制御される。一方通行弁482は、逆止弁483、484、485、486に対するパイロット弁として動作する。逆止弁は、開くのにパイロット圧力を必要とする。逆止弁483、485は、「A」接続部に結合され、逆止弁484、486は、「B」接続部に結合される。通常閉じている位置にある圧力逃し弁487も備えることができる。
動作時に、「A」接続部を通るサーボ弁381からの圧力は、パイロット圧力をかけて逆止弁485を開くために一方通行弁482のソレノイドが作動されていない限り逆止弁485によって阻害される。逆止弁485が開くと、圧力がアクチュエータ351の「A」側に送られ、これにより、アクチュエータを動かすことができる。同様に、逆止弁486は、パイロット圧力をかけて逆止弁486を開くために一方通行弁482が作動されていない限りサーボ弁381の「B」接続部を塞ぐ。一方通行弁482は、サーボ弁381がアクチュエータ351を制御するために逆止弁485、486のパイロット圧力を加えるように作動されなければならない。同様に、逆止弁483、484は、パイロット圧力をかけて逆止弁483、484を開くために一方通行弁482のソレノイドが作動されていない限り、それぞれ、「A」接続部および「B」接続部を通してアクチュエータ351からサーボ弁381への流れを阻止する。逆止弁483、484が閉じられると、アクチュエータ351は適所にロックされる。一方通行弁482は、すべての逆止弁が同時に開くか、または閉じるように逆止弁483、484、485、486に接続される。したがって、一方通行弁のソレノイドが作動されて、これにより、逆止弁を開くようにパイロット圧力をかけた場合、「A」接続部および「B」接続部は開き、サーボ弁381は、アクチュエータ351の動きを制御することができる。その一方で、ソレノイドが作動されず、逆止弁が閉じられたとき、「A」接続部および「B」接続部は塞がれ、サーボ弁381は、アクチュエータ351の動きを制御することができず、アクチュエータは適所にロックされる。したがって、クランプ弁481は、アクチュエータ351をサーボ弁381から流体的に絶縁することができる。この例のクランプ弁は、本明細書で説明されているスレーブアームまたはマスター制御アームのサーボ弁およびアクチュエータと結合されうることは理解されるであろう。それに加えて、圧力逃し弁487は、アクチュエータ、クランプ弁コンポーネント、および/またはそれらの間の接続ラインの破損を防ぐために所定の圧力で開くように設定することができる。
アクチュエータ352は、一方の端部で第1の支持部材311に結合され、アクチュエータの反対側の端部で第1のリンケージ552に結合されている。第1のリンケージ552は、枢軸520で第1の支持部材311に結合され、枢軸522で第2のリンケージ562に結合されている。第2のリンケージ562は、枢軸524で第2の支持部材312に結合されている。第1の支持部材311に関する第1のリンケージ552および第2のリンケージ562の回転は、軸322の周りの第2の支持部材312の回転を引き起こす。これにより、アクチュエータ352の動きは、第1のリンケージ552および第2のリンケージ562の動きを引き起こし、これは軸322の周りの第2の支持部材312の動きを引き起こす。第1の支持部材311、第1のリンケージ552、第2のリンケージ562、および第2の支持部材312によって形成されるリンケージ構成は、4バーリンケージを形成する。この構成は、第1の支持部材311に関して軸222の周りで第2の支持部材312の一定範囲の回転を増大するために利用されうる。
アクチュエータ352は、サーボ弁382に流体的に結合され、これは、GDC372に電気的に結合され、アクチュエータ352を操作するために、位置センサー342および荷重センサー362などの、センサーから位置データおよび/または荷重データを受信することができる。位置センサー342は、ジョイント332に配置され、これにより、第1の支持部材311と第2の支持部材312との間の相対的回転を測定する。荷重センサー362は、アクチュエータ内の荷重を測定するためにアクチュエータ352に結合されている。
図8Aおよび図8Bを参照し、図6Aおよび図6Bをさらに参照すると、例示されているのは、第2の支持部材312、ジョイント333のところで第2の支持部材312に結合されている第3の支持部材313、およびジョイント334のところで第3の支持部材313に結合されている第4の支持部材314の一部の詳細図である。スレーブアームのいくつかの特徴は、図8Aおよび図8Bにおいて省かれているが、スレーブアームのいくつかの態様を示すために省かないと見えないからである。位置センサー343は、ジョイント333に関連付けられており、第2の支持部材312と第3の支持部材313との間の位置の相対的変化を感知する。アクチュエータ353は、ジョイント333によって形成される軸323に関連するDOFの周りに作用するトルクを与えることができる。アクチュエータ353に関連付けられている荷重センサー363は、ジョイント333によって形成される軸323に関連するDOFの周りに作用する荷重を測定することができる。
図示されている実施形態において、第2の支持部材312および第3の支持部材313は、それぞれ互いに重なり合う外側縁392および外側縁393を備える。外側縁392、393は、ジョイント333の近くに配置される。外側縁392および外側縁393の周りで支持部材312および支持部材313を結合することで、それぞれ、これらの支持部材の相対的な回転がしやすくなり、支持部材は軸323の周りで互いに関して「揺動」する。アクチュエータ353は、一方の端部で第2の支持部材312に結合され、アクチュエータの反対側の端部で第1のリンケージ553に結合されている。第1のリンケージ553は、枢軸526で第2の支持部材312に回転可能に結合されている。一態様では、第1のリンケージは、単一の自由度の枢軸結合の周りで回転することなどによって、平面内で運動するように構成されうる。単一の自由度の枢軸結合は、軸323に実質的に垂直であるものとしてよい。第1のリンケージ553は、枢軸528で第2のリンケージ563に回転可能にさらに結合されている。第2のリンケージ563は、枢軸530で第3の支持部材313に結合されている。平面内の第1のリンケージ553による運動は、軸323の周りの第2の支持部材312および第3の支持部材313の平面外の相対的回転運動を引き起こしうる。一態様では、リンケージ、アクチュエータ、および/または支持部材の間の枢軸または結合部は、ピン形の接続部または球形の接続部を備えることができる。ピン形の接続部では、単一の自由度の回転が可能である。球形の接続部では、複数の自由度の回転運動を可能にすることができる。例えば、アクチュエータ353は、球形の接続部を介して第2の支持部材312および第1のリンケージ553に結合されている。さらに、第2のリンケージ563は、球形の接続部を介して枢軸530のところで第1のリンケージ553および支持部材313に結合されている。第2のリンケージ563の球形の接続部は、第2の支持部材312および第3の支持部材313が軸323の周りに互いに回転するときに第2のリンケージが3自由度で同時に回転することを可能にする。支持部材が互いに関して回転するときのジョイントにおける捻れの自由度により、ジョイントおよび第2の支持部材における応力を最小にすることができ、このため、ジョイント333における動きの操作を高めることができる。
第2の支持部材312に関する第1のリンケージ553の回転は、第2のリンケージ563が枢軸530を介して第3の支持部材313に作用することを引き起こし、これは第2の支持部材312および第3の支持部材313のジョイント333の周りの相対的回転を引き起こす。これにより、アクチュエータ353の動きは、第1のリンケージ553および第2のリンケージ563の動きを引き起こし、これは軸323の周りの第3の支持部材313の動きを引き起こす。外側縁392、393をジョイント333の近くに重ねることによって、第2の支持部材312、第1のリンケージ553、第2のリンケージ563、および第3の支持部材313によって形成されるリンケージ構成は、1つの平面内の線形運動を平面外の回転運動に変換することができる。この構成により、支持構造物を一連のプレートから製作することができ、そのため、端と端を接した構成で互いに関して回転する構造要素を有するシステム上でシステムのコストを低減し、システムの重量を減らすことができる。
アクチュエータ353は、サーボ弁383に流体的に結合され、これは、GDC373に電気的に結合され、アクチュエータ353を操作するために、位置センサー343および荷重センサー363などの、センサーから位置データおよび/または荷重データを受信することができる。位置センサー343は、ジョイント333の一方の端部に配置され、これにより、第2の支持部材312と第3の支持部材313との間の相対的回転を測定する。荷重センサー363は、アクチュエータ内の荷重を測定するためにアクチュエータ353に結合されている。
図8Aおよび図8Bは、位置センサー344が第3の支持部材313と第4の支持部材314との間の位置の相対的変化を感知するためにジョイント334に関連付けられていることをさらに例示している。アクチュエータ354は、ジョイント334によって形成される軸324に関連するDOFの周りに作用するトルクを与えることができる。アクチュエータ354に関連付けられている荷重センサー364は、ジョイント334によって形成される軸324に関連するDOFの周りに作用する荷重を測定することができる。
アクチュエータ354は、一方の端部で第3の支持部材313に結合され、反対側の端部で第1のリンケージ554に結合されている。第1のリンケージ554は、枢軸532で第3の支持部材313に結合され、枢軸534で第2のリンケージ564に結合されている。第2のリンケージ564は、枢軸536で第4の支持部材314に結合されている。第3の支持部材313に関する第1のリンケージ554の回転および第2のリンケージ564の動きは、ジョイント334の周りの第4の支持部材314の回転を引き起こす。これにより、アクチュエータ354の動きは、第1のリンケージ554および第2のリンケージ564の動きを引き起こし、これは軸324の周りの第4の支持部材314の動きを引き起こす。
第3の支持部材313、第1のリンケージ554、第2のリンケージ564、および第4の支持部材314によって形成されるリンケージ構成は、4バーリンケージを形成する。この構成は、第3の支持部材313に関して軸224の周りで第4の支持部材314の一定範囲の回転を増大するために利用されうる。
アクチュエータ354は、サーボ弁384に流体的に結合され、これは、GDC374に電気的に結合され、アクチュエータ354を操作するために、位置センサー344および荷重センサー364などの、センサーから位置データおよび/または荷重データを受信することができる。位置センサー344は、ジョイント334に配置され、これにより、第3の支持部材313と第4の支持部材314との間の相対的回転を測定する。荷重センサー364は、第2のリンケージに作用する荷重を測定するために第2のリンケージ564に結合されている。
図9A、図9B、および図9Cを参照し、図6Aおよび図6Bをさらに参照すると、例示されているのは、ジョイント335のところで第4の支持部材314に結合されている第5の支持部材315、ジョイント336のところで第5の支持部材315に結合されている第6の支持部材316、およびジョイント337のところで第6の支持部材316に結合されている第7の支持部材317の詳細図である。スレーブアームのいくつかの特徴は、図9A、図9B、および図9Cにおいて省かれているが、スレーブアームのいくつかの態様を示すために省かないと見えないからである。
位置センサー345は、ジョイント335に関連付けられており、第4の支持部材314と第5の支持部材315との間の位置の相対的変化を感知する。アクチュエータ355は、ジョイント335によって形成される軸325に関連するDOFの周りに作用するトルクを与えることができる。荷重センサー365は、軸325に関連するDOFの周りに作用する荷重を測定することができる。荷重センサー365は、アクチュエータ354に関連付けられている。
図9Dを参照すると、アクチュエータ355は、一方の端部で第4の支持部材314に結合され、アクチュエータの反対側の端部で第1のトルク部材555に結合されている。第1のトルク部材555は、枢軸536で第4の支持部材314に結合されている。第1のトルク部材555は、枢軸536の周りに回転し、枢軸から遠ざかり、レバーアームおよびアクチュエータ355との結合インターフェースを構成する。したがって、アクチュエータ355の動きは、第1のトルク部材555の動きを引き起こす。第1のトルク部材555は、第1のリンケージ565に堅く結合され、これは枢軸536でも回転する。したがって、第1のトルク部材555の動きは、第1のリンケージ565の動きを引き起こす。第1のリンケージ565は、枢軸538で第2のリンケージ566に結合されている。第2のリンケージ566は、枢軸540で第2のトルク部材556に結合されている。第2のトルク部材556は、第5の支持部材315に結合され、これは軸325の周りで回転する。第2のトルク部材556は、軸325から遠ざかり、レバーアームを構成し、第2のリンケージ566と結合する。したがって、第2のリンケージ566の動きは、軸325の周りの第2のトルク部材556の動きを引き起こし、これは軸325の周りの第5の支持部材315の動きを引き起こす。一態様では、第1のリンケージ565は、軸325に関して枢軸536から反対の位置で第2のリンケージ566と結合するように構成され、これは軸325の周りで第1のリンケージおよび第2のリンケージを「包む」ことができる。この場合、アクチュエータ355は、一方の方向に動かされたときに第1のリンケージおよび第2のリンケージの「包みを解き」、反対方向に動かされたときに「包む」ことができる。このように「包む」ことと「包みを解く」ことを行えることで、線形アクチュエータの与えられた行程で利用可能な運動の角度範囲を増大することができる。
アクチュエータ355は、サーボ弁385に流体的に結合され、これは、GDC375に電気的に結合され、アクチュエータ355を操作するために、位置センサー345および荷重センサー365などの、センサーから位置データおよび/または荷重データを受信することができる。位置センサー345は、ジョイント335の一方の端部に配置され、これにより、第4の支持部材314と第5の支持部材315との間の相対的回転を測定する。荷重センサー365は、第2のリンケージ566に結合され、軸325に関連するDOFの周りに作用する荷重を測定することができる。
図9A、図9B、および図9Cを引き続き参照すると、位置センサー346は、ジョイント336に関連付けられており、第5の支持部材315と第6の支持部材316との間の位置の相対的変化を感知することがわかる。アクチュエータ356は、ジョイント336によって形成される軸326に関連するDOFの周りに作用するトルクを与えることができる。アクチュエータ356に関連付けられている荷重センサー366は、軸326に関連するDOFの周りに作用する荷重を測定することができる。
アクチュエータ356は、一方の端部で第5の支持部材315に結合され、アクチュエータの反対側の端部で第1のリンケージ557に結合されている。第1のリンケージ557は、枢軸542で第5の支持部材315に結合されている。第1のリンケージ557は、枢軸544で第2のリンケージ558に結合されている。第2のリンケージ558は、枢軸546でトルク部材559に結合されている。トルク部材559は、第6の支持部材316に結合され、これは軸326の周りで回転する。トルク部材559は、軸326から遠ざかり、レバーアームを構成し、第2のリンケージ558と結合する。したがって、第1のリンケージの回転は、第2のリンケージ558の動きを引き起こし、これは軸326の周りのトルク部材559に作用して軸326の周りの第6の支持部材316の動きを引き起こす。一態様では、第1のリンケージ557は、軸326に関して枢軸536から反対の位置で第2のリンケージ558と結合するように構成され、これは上で説明されているように軸325の周りで第1のリンケージおよび第2のリンケージを「包む」ことおよび「包みを解く」ことを可能にすることができる。
アクチュエータ356は、サーボ弁386に流体的に結合され、これは、GDC376に電気的に結合され、アクチュエータ356を操作するために、位置センサー346および荷重センサー366などの、センサーから位置データおよび/または荷重データを受信することができる。位置センサー346は、ジョイント336の一方の端部に配置され、これにより、第5の支持部材315と第6の支持部材316との間の相対的回転を測定する。荷重センサー366は、アクチュエータ356に結合されており、アクチュエータ内の荷重を測定することができる。
図9A、図9B、および図9Cは、位置センサー347が第6の支持部材316と第7の支持部材317との間の位置の相対的変化を感知するためにジョイント337に関連付けられていることをさらに例示している。アクチュエータ357は、ジョイント337によって形成される軸327に関連するDOFの周りに作用するトルクを与えることができる。アクチュエータ357に関連付けられている荷重センサー367は、軸327に関連するDOFの周りに作用する荷重を測定することができる。
アクチュエータ357は、一方の端部で第7の支持部材317に結合され、反対側の端部でトルク部材560に結合されている。トルク部材560は、軸327から遠ざかり、レバーアーム、および第6の支持部材316に対する結合部を構成する。第7の支持部材317とトルク部材560との間の結合は、軸327から外れている。したがって、アクチュエータの動きは、トルク部材560にトルクを印加し、これは軸327の周りの第6の支持部材316に関する第7の支持部材317の動きを引き起こす。
アクチュエータ357は、サーボ弁387に流体的に結合され、これは、GDC377に電気的に結合され、アクチュエータ357を操作するために、位置センサー347および荷重センサー367などの、センサーから位置データおよび/または荷重データを受信することができる。位置センサー347は、ジョイント337の一方の端部に配置され、これにより、第6の支持部材316と第7の支持部材317との間の相対的回転を測定する。荷重センサー367は、アクチュエータ357に結合されており、アクチュエータ内の荷重を測定することができる。図中、GDC376およびGDC377は、第5の支持部材315上の同じ位置にある。それに加えて、サーボ弁285、サーボ弁286、および、サーボ弁287は、第5の支持部材215上の同じ位置にある。
遠隔制御ロボットシステムの制御システムの信号の流れの説明は、すでに説明されている図に例示されているロボットシステムの例に関して以下に示されている。図10A~図10D、特に図10Aを参照すると、それぞれのマスター制御アームのアクチュエータ251~マスター制御アームのアクチュエータ257およびスレーブアームアクチュエータ351~スレーブアームアクチュエータ357は、それぞれのDOFが制御されるために、マスター制御アームGDC271~マスター制御アームGDC277およびスレーブアームGDC371~スレーブアームGDC377によってそれぞれ制御されうることがわかる。上で説明されているように、スレーブアーム300Aおよび運動学的に等価なマスター制御アーム200Aの両方に対するそれぞれのDOFは、アクチュエータを有することができる。したがって、7つのDOFを有するロボットアームは、マスター制御アーム上に少なくとも7個のアクチュエータとスレーブアーム上に7個のアクチュエータとを有することができる。アクチュエータのサーボ弁は、順方向および逆方向にアクチュエータを動作させることができる。それぞれのアクチュエータは、それぞれがDOFを備えることができるマスター制御アームのジョイント231~マスター制御アームのジョイント237およびスレーブアームのジョイント331~スレーブアームのジョイント337に作用する位置と力(またはトルク)の両方を決定することができる対応する位置センサーおよび荷重センサーを有することができる。
GDCは、それぞれのジョイント231~ジョイント237およびジョイント331~ジョイント337に関連付けられている位置センサー241~位置センサー247および位置センサー341~位置センサー347ならびに荷重センサー261~荷重センサー267および荷重センサー361~荷重センサー367からの入力をそれぞれ使用して、指定された力で指定された位置までアクチュエータを作動させる、または言い換えると、指定されたトルクをDOFにおいて印加するため信号に変換されうる力を計算することができる。例えば、正の信号は、アクチュエータを順方向に動かし、負の信号は、アクチュエータを逆方向に動かすか、またはそれと逆に動作することができる。信号の大きさは、アクチュエータが発生する力の強さを示すことができる。中央制御装置610は、DOFに対するマスター制御アームのGDCとスレーブアームのGDCとの間の信号を調整することができる。中央制御装置は、マスター制御アームとスレーブアームとの間を通る信号のフィルタリングおよび増幅も実行することができる。中央制御装置における調整、フィルタリング、および増幅は、図10Aのコマンドフィルター611からコマンドフィルター617として表されている。力反射信号は、スレーブアームのGDCからコマンドフィルターを通りマスター制御アームのGDCに戻されうる。
それぞれのGDCは、マスター制御アーム200A上のジョイントさらにはスレーブアーム300A上の対応するジョイントの位置およびトルクを制御するために使用される制御方式を備えるように構成される。GDCは、多数の異なる閉ループ制御方式を採用している。それぞれの方式は、敏捷性を有する高速で正確な遠隔操作ロボットリフトシステムを実現するように所望のレベルの精度、速度、および安定性を備えるように設計される。マスター制御アーム200Aのそれぞれの支持部材211~支持部材217およびスレーブアーム300Aのそれぞれの支持部材311~支持部材317に対する制御方式は、コマンドフィルター611~コマンドフィルター617とともに、それぞれのセグメントが各アーム200A、300Aにおける別の支持部材に共振する自然な倍音を発生させることができる周波数で動作することを制限するか、または排除するように設計される。出力信号およびフィードバック信号のフィルタリングは、支持部材に共振を引き起こしうる高周波信号または他の種類の不安定な動作を取り除くために実行される。
図10A~図10D、特に図10Bを参照すると、それぞれのコマンドフィルター611~コマンドフィルター617はさらに細分され、これによりマスター制御アームDOFおよびスレーブアームDOFの両方の位置およびトルクの両方に対して相互利得およびフィルタリングを実現することができる。制御信号の流れは、随伴するセンサー、GDC、およびコマンド回路とともに、ジョイント231に結合されている単一のマスター制御アクチュエータ251およびジョイント331に結合されている整合するスレーブアームアクチュエータ351について例示されている。他のジョイント用の他のアクチュエータも、同様に機能しうる。
再びこの例を参照すると、ユーザーは、マスター制御アームを所望の方向に動かすことができることがわかる。マスター制御アーム200Aのジョイント231上の位置センサー241は、DOFに関連する位置の変化を感知することができる。位置センサー信号が、位置センサー241からマスター制御アームGDC271内のマスター位置制御装置641に送信され、通信前の相互利得およびフィルタリング入力に対するマスター位置コマンド621がスレーブアームGDCに送信されうる。位置センサーは位置の変化を測定するが、荷重センサー261はジョイント231に加えられる力またはトルクを感知する。荷重センサー信号が、マスター制御アームGDC内のマスタートルク制御装置661に送信され、通信前の相互利得およびフィルタリングに対するマスタートルクコマンド631がスレーブアームGDCに送信されうる。マスター制御アームGDC内のマスター弁制御装置651は、マスター位置制御装置およびマスタートルク制御装置からの入力を組み合わせて、アクチュエータ251を作動させる信号を発生する。マスター位置制御装置は、位置センサーからの信号およびスレーブアームのGDCのスレーブ位置コマンド721からの信号を使用することができる。同様に、マスタートルク制御装置は、荷重センサーからの信号およびスレーブアームのGDCのスレーブトルクコマンド731からの信号を使用することができる。
マスター位置コマンド621は、マスター制御アーム200Aにおけるユーザーの動きの所望のレベルの拡大、またはスケーリングを行うことができる。例えば、それぞれの程度で、ユーザーは、マスター制御アーム内のジョイント231~ジョイント237を動かし、マスター位置コマンド621は、所望の比でスレーブアーム内の対応する動きを行うように設定されうる。典型的な比は、1:1とすることができ、これにより、スレーブアームは、マスター制御アームと同じ速度で動くことができる。しかし、ユーザーがスレーブアームに2から3倍遠くまで動くように指令を与えながらマスターアームで比較的小さな動きを行えるようにするため、2:1、3:1、またはそれ以上の高さ比が選択されうる。これは、ユーザーの動きの量を制限してユーザーの疲労を減らすことによって動きを繰り返し実行したときにユーザーに役立ちうる。逆に、比は、ユーザーが繊細な作業を実行しているときには、1:2、1:3、またはそれ以下に設定するとよい。この比を小さくし、ユーザーがスレーブアームの対応する動きよりさらに遠くへ動くことが必要になるようにすることによって、ユーザーが繊細な作業をモーターで精密に制御することができる。実際の比は、システムおよびシステム操作者のニーズおよび用途に基づきマスター位置コマンド621を調整することによって設定されうる。
マスター位置コマンド621は、作業空間のスレーブアームに対する位置境界を定めることで、例えば、作業空間をスレーブアームの実際の目一杯延ばした長さより小さいものに制限することができる。例えば、システムが天井の低い領域内で動作している場合、システムは、天井との接触を避けるためスレーブアームが低い天井の高さより高いところに届かないようにユーザーによって構成されうる。スレーブアームが課せられている限界を超えて伸展するのを禁じる高さ制限または他の範囲の運動制限がある。このような境界またはこのような範囲の運動制限は、システムおよびシステム操作者のニーズおよび用途に基づきマスター位置コマンド621を調整することによって設定されうる。
別の態様では、マスター位置コマンド621は、マスター制御アーム200Aにおけるユーザーの動きの所望のレベルのオフセットをもたらすように選択されうる。例えば、マスター制御アーム内のジョイント231~ジョイント237の位置は、マスター制御アームからオフセットされた位置にスレーブアームを位置決めするように所定の値によりオフセットされうる。これは、そうしないと困る位置、または快適でない位置にユーザーを置くことを必要とする位置にスレーブアームが置かれているときに、より快適な位置でユーザーが操作することを可能にすることができる。例えば、ユーザーは、長時間にわたってスレーブアームを上げたままにしている必要がある作業を実行している場合がある。オフセットレベルの実装がなければ、上昇位置でもユーザーはマスター制御アームを位置決めする必要が生じる。しかし、位置オフセットを利用することによって、ユーザーは、マスター制御アームに関してスレーブアームの位置をオフセットし、それにより、ユーザーの腕が下げた位置にある状態で、スレーブアームが上昇位置で動作可能なまま、マスター制御アームをユーザーが操作することを可能にすることができる。これは、疲労を減らし、操作者の誤りの可能性を少なくしながら快適さと生産性を向上させることができる。位置オフセットは、可変であり、マスター制御アームを操作している間にユーザーによって(例えば、ロボットデバイスの制御システムにより操作可能なユーザーインターフェースデバイスを介して)制御されうる。
図10A~図10D、特に図10Cを参照すると、マスター位置コマンド621は、増幅されフィルタリングされた信号をスレーブアームGDC371に供給し、スレーブアーム300A内のジョイント331をマスター制御アーム200A内のジョイント321に対応する位置に動く。スレーブ位置制御装置741は、スレーブアーム位置センサー341によって感知される現在位置およびマスター位置コマンド621によってなされるマスター制御アームの新しい位置を使用して弁制御装置751の入力を発生する。スレーブトルク制御装置761は、スレーブアーム荷重センサー361によって感知される現在のトルクおよびマスタートルクコマンド631によって与えられるマスター制御アーム上のトルクを使用して別の弁制御装置の入力を発生する。スレーブアームアクチュエータは、弁制御装置によって制御される。位置センサーは、スレーブ位置コマンド721を介してスレーブ位置制御装置にフィードバックを、マスター制御アームに反射位置フィードバックを送る。荷重センサーは、スレーブトルクコマンド731を介してスレーブトルク制御装置にフィードバックを、マスター制御アームに力反射トルクフィードバックを送る。この方法で、マスター制御アームにおけるジョイント231の位置およびトルクは、ジョイント331を作動させるのに適切な信号を弁制御装置751に供給することによってスレーブアームにおけるジョイント331上に実質的に複製される。
マスター位置制御装置641およびマスタートルク制御装置661は、それぞれ、遅れ進み補償装置を使用してマスター弁制御装置651への出力を決定することができる。遅れ進み補償装置は、制御システムのフィードバックにおける望ましくない周波数応答を改善するように選択される。マスター位置制御装置641は、位置センサー241からの位置フィードバックを使用する。マスタートルク制御装置661は、アクチュエータ251上の荷重センサー261からのトルクフィードバックを使用する。
遅れ進み補償装置の位相遅れセクションは、ゲインマージンの一部を実現しつつ低い周波数ゲインを維持するように設計されうる。次いで、補償装置の位相進みセクションは、より高速な応答を達成するためにシステム帯域幅を高めながら、位相マージンの残りを実現することができる。
いくつかの場合において、妥協が必要になることがある。指定された位相マージンまたは補償装置ゲインのいずれかが低減されうる場合、補償装置の高周波ゲインも低減されうる。これらの指定値を低減できない場合、位相進み補償のセクションとカスケード接続されている位相遅れ補償のセクションを使用する必要が生じることがある。
位置ゲインは、高ゲインを実装することによってスレーブアームがマスター制御アームの位置を忠実に辿るように設定されうる。マスター制御アームは、高位置ゲインを有しないように構成することができ、これはユーザーの労力を最小限度に抑えるのに役立ちうる。作業にいくぶん綱渡り的なところがある。マスター制御アームのゲインが低すぎる場合、操作者は、スレーブアームが何を受けているかについての固有感覚を失うことがある。例えば、スレーブアームのゲインは、許容可能な安定性限界まで上昇しうるが、その一方で、マスター制御アームのゲインは、ユーザーの疲労を最小限度に抑えつつ、マスター制御アームを通じてスレーブアームが何を受けているかを感知する必要性を最適化するように設定されうる。
低いトルクゲインでは、特にスレーブアームが剛体と接触したとき、および2つのスレーブアームが「両手」リフトにより結合されたときに、改善された安定性マージンが得られる。
それぞれのスレーブアームDOFに対する位置ゲインおよびトルクゲインのチューニングは、特定のDOFが受ける剛性、質量、および慣性に依存する。ロボットアームDOFの位置は、ジョイントが動くと変化し、したがって、特定のDOFが受ける慣性は、ロボットアームの動き全体を通して著しく変化しうる。スレーブアームは、ペイロードを拾うように構成されうるため、ペイロードの余分な質量も、DOFが受ける慣性を著しく変化させうる。したがって、与えられたDOFは、すべてジョイントの角度およびペイロードに関して安定するように静的ゲインでチューニングされうる。しかし、この結果、状況によっては動作が緩慢になり、また他の状況では振動することもある。さまざまなジョイント角度における慣性の変化およびさまざまなペイロードによる慣性の変化を考慮することによって、動作範囲全体にわたって性能を最適化するようにゲインを動的に変化させることができる。そのため、性能を動的に最適化するためにゲインスケジュールが実装されうる。ゲインスケジュールは、テーブルで参照されている離散の所定の値を含み、および/または値は公式から計算することができる。慣性の変化は、測定された重量、推定された値、または他の計算結果から決定されうる。
いくつかの例示的な実施形態において、本発明の遠隔操作ロボットデバイスは、移動プラットフォームによって持ち込まれるような、ロボットシステム、および特にマスター制御アーム内の望ましくない動き(例えば、意図せず誘発された動き)に関係する問題に対処する、マスター/スレーブ関係フィルタリング機能、または関係フィルタリング機能をさらに備えることができる。例えば、マスター/スレーブ関係フィルタリング機能は、操作者の所望の入力と異なる形でマスターが動かされ、次いで、スレーブが望ましくない形で動かされる問題に対処する。
ユーザー、マスター制御アーム、およびスレーブアームが同じ移動プラットフォームの周りで普通に支持される特定の状況において、マスター/スレーブ関係フィルタリング機能は、運動フィードバックを低減するためにマスター制御アームおよびスレーブアームの望ましくない動き(例えば、ユーザー以外の何かによって誘発されるか、または引き起こされるもの)から結果として生じる周波数を識別し、フィルターで除去するのに役立つ。マスター/スレーブ関係フィルタリング機能は、システム内に形成される望ましくないフィードバックループを扱う。チェックせずに残されると、システム内の振動は続き、振幅が増大する可能性がある。望ましくないフィードバックループが生じる周波数を検出することによって、フィードバックループは、本質的に切れて、ロボットシステムの全体的性能に対するその影響は低減されるか、または排除されうる。
望ましくない方法でスレーブアームを動かすマスター制御アーム内の望ましくない動き(つまり、ユーザーからの所望の入力から結果として生じる動きと異なる動き)の問題が発生しうるさまざま方法がある。一例において、ユーザーがマスター制御アームを動かし、マスター制御アームは、マスター構造モードで振動する。別の例では、ユーザーはマスター制御アームを動かし、ユーザーはユーザーの立っているプラットフォームの操作者支持構造モードで振動する。別の例では、スレーブアームは運動または振動し、これは移動プラットフォーム内に共振を引き起こし、次いで、その結果、ユーザープラットフォームおよび/またはマスタースタンド内に、したがってマスター制御アーム内に振動を生じる。さらに別の例では、スレーブアームは、移動プラットフォーム内に共振を引き起こし、次いで、その結果、ユーザープラットフォームおよび/またはマスタースタンド内に振動を生じる環境と相互作用する。
いくつかの例示的な実施形態において、移動プラットフォーム、スレーブアーム、および環境の構造モード振動は、所望のロボット動作範囲内に発生しうる。
運動フィードバックを低減し、望ましくないフィードバックループの効果を低減または排除するために、移動プラットフォームを通じて伝達されるように相互コマンドをフィルタリングしてマスター支持モードとスレーブ支持および環境モードとの間の結合の結果生じる振動を最小にすることができる。関係フィルタリング機能は、識別された構造モード周波数における振動を、それらの周波数におけるコマンドのゲインを低減し、遅れを小さくし、安定性マージンを高くするこれらの周波数における位相進みを導入することによってこれらの振動を除去するシステムの能力の全体的遅延を最小にすることによって減衰させる。トルク補助機能を実装する実施形態内で同様の方法により、トルク補助コマンドをフィルタリングして、操作者モードとマスターモードとの間の結合の結果生じる振動を最小にすることができる。
マスター/スレーブ関係フィルタリング機能を適用すると、ターゲットにしている構造モードより低い周波数で遅延が発生し、その結果、安定性を維持し、より高い位置精度を達成するために性能範囲の一部で一時的性能低下が生じることがある。
図10A~図10D、特に図10Dを参照すると、重力補償が使用される場合、マスター制御アームに対する重力補償装置681およびスレーブアームに対する重力補償装置781が使用されうる。マスター制御アームに対する重力補償装置681は、マスター制御アーム位置センサー241および重力センサーからの入力を使用して、重力ベクトルを計算して、それぞれの支持部材の位置を決定することができる。支持部材の位置は、部材の重心を決定するために使用されうる。支持部材の質量、重心、および支持部材の位置は、測定された重力ベクトルの方向に重力の効果によって引き起こされるマスター制御アーム内の支持部材のジョイントに対するトルクを計算し、ジョイント231に関連付けられているアクチュエータ251に反対方向のトルク値を与えてジョイントのところの重力の効果を相殺するためにマスタートルク制御装置661によって利用されうるマスタートルクコマンド631に送る信号を重力補償装置681で発生するために使用することができる。同様に、残りのジョイント232~ジョイント237のそれぞれに対する重力の効果も、決定され、相殺されうる。
スレーブアームに対する重力補償装置781は、スレーブアーム位置センサー341および重力センサーからの入力を使用して、重力ベクトルを計算し、支持部材311の位置を決定することができる。支持部材の位置は、部材の重心を決定するために使用されうる。支持部材の質量、重心、および支持部材の位置は、測定された重力ベクトルの方向の重力の効果によって引き起こされるスレーブアーム内の支持部材のジョイント331に対するトルクを計算するために使用されうる。重力補償装置781は、ジョイントにおける重力の効果を相殺するためにジョイント331に関連付けられているアクチュエータ351に反対のトルク値を付与するためにスレーブトルク制御装置761によって利用されうるスレーブトルクコマンド731に送信する信号を出力することができる。同様に、残りのジョイント332~ジョイント337のそれぞれに対する重力の効果も、スレーブアームに対する重力の効果を補償するために決定され、相殺されうる。
一態様では、エンドエフェクター390に結合されているペイロードなどの、スレーブアームによって支持されているペイロードは、マスター制御アームを操作しながらペイロードの重量をユーザーが感じ取らないように重力補償されうる。ペイロードの重力補償では、エンドエフェクターおよびスレーブアームに結合されている荷重センサー368を利用して、補償すべきペイロードの重量を決定することができる。
マスタートルク補助制御装置691は、追加の入力をマスタートルク制御装置661に供給することができる。マスター制御アーム200A上の少なくとも1つのユーザーロードセルインターフェース268は、ユーザーの腕に接触することができる。ロードセルは、ユーザーの腕の動きに関係するロードセルカード693に信号を出力するように構成されうる。ロードセルカード693は、信号をマスタートルク補助制御装置691に送信することができる。追加のトルクが、マスター制御アーム内のジョイント231~ジョイント237のアクチュエータ251~アクチュエータ257に伝達され、これにより、マスター制御アームを動かし、ユーザーがマスター制御アーム200Aを動かすのを補助することができる。
エンドエフェクター390に結合されているペイロードは、スレーブアームの端部でエンドエフェクターに関連付けられている、荷重センサー368を利用することによって安定化することができる。荷重センサー368は、ペイロードによって生み出され、荷重センサー368に作用する力およびモーメントを測定することができる。スレーブ荷重制御装置791を使用することで、ペイロード安定化が、揺動するペイロード、「両手」リフトで一対の磁気エンドエフェクターに結合されている剛体ペイロード、および壊れやすいペイロードまたは動作環境を含むいくつかの異なるペイロードのシナリオに適用されうる。
揺動するペイロードの場合、揺動を素早く低減して不安定なペイロードの負の効果を最小にすることが望ましい。荷重センサー368からの測定情報に基づき、スレーブアームDOFにトルクが印加され、これにより、重力に対して垂直であるペイロードによって加えられる力成分を最小にする。これは、ペイロードの重心がエンドエフェクターの下に来るようにエンドエフェクターを動かす効果を有する。ペイロードの揺動は、スレーブアームの対抗する動きによって素早く取りあげられ、排除される。
「両手」リフトの一対のエンドエフェクター(例えば、磁気的)に結合されている剛体ペイロードの場合、磁気的エンドエフェクターの一方または両方が剛体ペイロードから捻って遠ざかるように操作者が制御するスレーブアームが互いに対抗することが可能である。この捻りは、ペイロードへの磁気的保持力を低下させ、潜在的に結果としてペイロードを落下させる可能性がある。ペイロードの安定化では、荷重センサー368が、ペイロードに関してエンドエフェクターを捻るおそれのある力およびモーメントを検出する。検出した後、スレーブアームは動かされて、ペイロードから磁気的エンドエフェクターを捻るおそれのある力およびモーメントを緩和するか、または最小にする。一態様では、スレーブアームの端部の荷重は、所定の値に制限することができ、またスレーブアームは、加荷重を所定の値以下に維持するように動くことができる。
壊れやすいペイロードまたは動作環境の場合、荷重センサー368によって検出されるように、エンドエフェクターがペイロードまたは他の物体に印加することができる力の量を制限することが望ましいことがある。ペイロードの安定化により、スレーブアームは、力およびモーメントを所定の値以下に維持するため所定の値を超えたときに力およびモーメントを低減するか、または排除することができる。
同様に、スレーブ荷重制御装置791は、追加の入力をスレーブトルク制御装置761に供給することができる。スレーブアーム300Aは、少なくとも1つのスレーブロードセルインターフェース368を備えることができる。例えば、スレーブアーム300A上のスレーブロードセルインターフェース368は、ユーザーと接触するように構成され設計されているコンポーネント、およびそのようなコンポーネントに関連付けられるか、または他の何らかの形で一緒に動作可能なロードセルを備えることができる。例えば、ユーザーは、関連付けられているロードセルを有するスレーブアーム上のハンドルを握り、選択された方向に荷重を印加することができる。スレーブロードセルインターフェース368は、加荷重および加荷重の方向を検出し、信号をスレーブロードセルカード793に送信することができる。ロードセルカード793は、信号をスレーブ荷重制御装置791に送信することができる。スレーブアーム内のジョイント331~ジョイント337に対するアクチュエータ351~アクチュエータ357に追加のトルクを伝達し、ユーザーが加荷重の方向にスレーブアーム300Aを動くのを補助することができる。別の態様では、スレーブロードセルインターフェース368は、エンドエフェクターおよびスレーブアームに結合されるか、または他の何らかの形で一緒に動作可能なロードセルを備え、これにより、エンドエフェクターおよびエンドエフェクターによって支持されるペイロードによってスレーブアームに加えられる荷重を測定することができる。この場合、ペイロードの安定化、ペイロードの重力補償、またはロードセルインターフェース368からの荷重を利用する他のシステム特徴を適用するために、スレーブ荷重制御装置791が使用されうる。
遠隔操作ロボットデバイスは、操作者がスレーブアームと物体との接触点を正確に感知することを可能にするためにスレーブアームが物体と接触するときにマスター制御アームを通じて増強された力フィードバックを操作者に送るように構成された「タップ応答」機能をさらに備えることができる。タップ応答は、スレーブの荷重の微分の振幅、例えば、荷重センサーによって感知されるようなトルクの変化率とともに変化し、したがって、「タップ」でタッチをシミュレートしてスレーブアームでの衝撃事象の大きさに対する感覚を操作者に与えることができる。スレーブの荷重の微分の応答は、人が感知するには時間が短すぎ、および/またはシステムが操作者に対して正確に再現できる能力を超えることがある。したがって、スレーブの荷重の微分を、ゲイン付きの、極を2つ、零点を2つ有するフィルターなどのフィルターに通し、スレーブの荷重の微分を、人が感じることができ、システムが再現することができるより遅い応答に変換することができる。フィルター出力は、マスター制御アームDOFにトルクコマンドとして適用することができ、そこでユーザーによって感知される。この特徴は、スレーブアームが遭遇する抵抗のマスター制御アームにおける「感触」の精度を向上させることができ、スレーブアームが物体と接触したことを操作者がよりよく認識するのを助けることができる。一態様では、タップ応答は、マスター制御アームの自由度のどれかに適用することができる。特定の一態様において、タップ応答は、マスター制御アームの手首自由度にのみ適用することができる。
遠隔操作ロボットシステムは、マスター制御アーム、スレーブアーム、およびこれらのアームを操作するために使用されるサブシステムに動力を供給するための動力源を備えることができる。例えば、図11の概略動力源システム図に例示されているように、遠隔操作ロボットシステム700は、動力ユニット702および動力ユニット用の燃料供給部701を備えることができる。一態様では、燃料供給部701は、化石燃料を収容し、動力ユニット702は、内燃機関であってよい。この場合、動力ユニット702は、中央制御装置707、マスター制御アームおよびスレーブアームのGDC708、ならびにマスター制御アームおよびスレーブアームのサーボ弁709用に、電気バス706を介して、動力を供給することができる、発電機705の動力源であるものとしてよい。
動力ユニット702は、右マスター制御アーム704A、左マスター制御アーム704B、右スレーブアーム704C、および左スレーブアーム704Dのアクチュエータ用の油圧ポンプ703の動力源であってよい。一態様では、油圧ポンプは、発電機705から受ける電力を動力とすることができる。いくつかの態様において、動力ユニット702は、移動プラットフォーム用のモビリティ機能などの、本開示の遠隔操作ロボットシステムに備えることができるサブシステム、照明、カメラ、マイクロホンなどの電気系統に動力を供給することもできる。動力ユニットは、マスター制御アームおよびスレーブアームとともに移動プラットフォームの周りで普通に支持されうる。
適宜、電池などのエネルギー貯蔵デバイスは、電気バス706および/または油圧ポンプ703に送電するように構成されうる。エネルギー貯蔵デバイスは、一次動力源として、またはバックアップ動力源としても使用されうる。
一実施形態において、遠隔操作ロボットシステムは、静止または固定プラットフォームなどの固定位置に配置されうる。プラットフォームは、スレーブアームおよびマスター制御アームなどの、遠隔操作ロボットシステムのさまざまなコンポーネントを支持することができる。特定の一態様において、プラットフォームは、単独の、または組み合わせた、動力源、ポンプ、発電機、燃料供給部、および中央制御装置を支持することができる。
別の態様では、プラットフォームは、移動プラットフォームとすることができ、特定の一態様において、移動プラットフォームは、マスター制御アームおよびスレーブアームに加えて、基部または他の基本構造の周りで、動力源、ポンプ、発電機、燃料供給部、および中央制御装置を支持することができる。したがって、本開示による遠隔操作ロボットシステムは、ユーザーがシステムを操作することも支持し、モバイル遠隔操作と称されうるものも備えることができる可動自給型システムとすることができる。
図12および図13には、本開示の例示的な一実施形態による移動プラットフォーム810が例示されている。図示されているように、移動プラットフォーム810は、マスター制御アーム、スレーブアーム、およびこれらの操作に必要な他のすべてのコンポーネント(例えば、動力源、ポンプ、制御装置、制御システム、ユーザーインターフェースデバイスなど)の共通支持を行う。プラットフォーム810は、ロボットデバイスのさまざまなコンポーネント、移動プラットフォームの移動運動および操縦を行い、円滑に動作させるためのさまざまな駆動システム、さらにはユーザーの支持体を受け入れ、支持するように設計された領域を有する基部を備え、ユーザーは、マスター制御アーム、スレーブアーム、エンドエフェクター、プラットフォームのモビリティ機能などの遠隔操作ロボットシステム800のさまざまなコンポーネントのうちの1つまたは複数を制御することができる。図12に示されているように、プラットフォーム810は、制御パネル812、および適宜、座席814を備えることができる。実際、移動プラットフォーム810は、ユーザーによって操作され、一方の場所から他方の場所へ必要に応じて動くことができる完全または自給型システムを構成するのに必要な要素、コンポーネント、システム、および/またはサブシステムのすべてを備えるか、または支持するように構成されうる。
一例において、座席814は、折り畳み式座席構成をとることができ、これにより、ユーザーは、遠隔操作ロボットシステム800を立ったまま操作するか座って操作するかを選択することができる。非限定的な一例において、座席814は、直立位置に伸展し、一緒に引っ込んで立った姿勢をとるための空間を設けることができる1つまたは複数の折り畳み式支持部材を備える。適宜、座席は、適所に固定されるか、または座席は旋回し、および/または高さ調整が可能であり、ユーザーはさまざまな着座姿勢をとることができる。
図12および図13に示されているように、プラットフォームは、スレーブアーム803の一部など、入れ子位置または配置構成にあるスレーブアームの一部を受け入れるように構成されたスレーブアーム受入溝816を備えることができる。少なくとも1つの態様において、スレーブアーム受入溝816は、スレーブアームが動作状態にないときにスレーブアーム803の少なくとも一部を受け入れるのを補助することができる。使用中でない場合、スレーブアーム803は、詰め込み構成でプラットフォーム810の方へ内向きに折り畳まれ、これにより、遠隔操作ロボットシステム800をコンパクトな、すぐに輸送できるシステムに構成することができる。スレーブアーム受入溝816は、それに加えて、プラットフォームの車輪または軌道がスレーブアーム803と接触するのを防止する機能を有することができる。ゴム、高密度フォーム、またはプラスチックなどの緩衝材817を備えて、比較的柔らかい接触面を形成し、スレーブアームが損傷をもたらす接触をしないように保護することができる。緩衝材817は、受入溝816とともに組み込むか、または受入溝816とは別にすることもできる。要するに、本発明の遠隔操作ロボットデバイスは、動作モード、およびスレーブアーム、および適宜、マスター制御アームをそれら自体の周りのさまざまな構造部材を折り畳むか、またはつぶすことによって保管用位置にすることができる保管モードを備えることができる。詰め込み位置では、スレーブアームは、アーム受入溝816内に少なくとも部分的に折り畳まれて、遠隔操作ロボットデバイスをコンパクトな構成にすることができる。
図13に示されているように、プラットフォーム810は、1つまたは複数のスレーブアーム803の重量およびスレーブアームが運べる荷重を支持するように構成された1つまたは複数のスレーブアーム支持システム818、820を備える。支持システム818および支持システム820は、スレーブアームの基部(例えば、図7Aおよび図7Bの基部310を参照)をそれぞれ結合してプラットフォーム810の周りでスレーブアームを支持するプラットフォームの周りで支持されている支持部材を備えるものとして示されている。支持システム818の一対の第1の支持部材は、スレーブアーム803の取付点822に実質的に隣接するプラットフォーム810の長さにそって互いに平行に延在しうる。支持システム820の第2の支持部材は、その一対の第1の支持部材の間に交差する(例えば、一対の第1の支持部材に実質的に直交する)ように延在しうる。少なくとも1つの態様において、第2の支持部材は、スレーブアーム取付点822およびプラットフォーム810を支持する機能を有する。第1の支持部材および第2の支持部材は、鋼鉄、炭素繊維、チタン、鋼鉄および/またはチタン合金、などの重い積載物を支持することができる任意の種類の材料を含みうることが企図される。
図13ですでに説明され図示されているように、プラットフォーム810は、1つまたは複数のスレーブアーム取付点822を備える。1つまたは複数のスレーブアーム取付点822は、プラットフォーム810の長さの反対側のプラットフォーム810上に配設され、壁824に結合されるか、または壁824のところで他の何らかの形で配置されうる。スレーブアーム803は、限定はしないが、鋼鉄、ニッケル、などの材料の工業グレードの締め具などの、重い張力および荷重に耐え、支持することができる結合デバイスまたはシステムを使用して、または溶接によって、壁824に結合されることが企図される。
また図13に示されているように、プラットフォーム810は、1つまたは複数のマスター制御アーム支持システム826も備える。1つまたは複数のマスター制御アーム支持システム826は、プラットフォームの基部から出て、マスター制御アーム802を結合し支持し、さらにはユーザーによる操作に適した位置にそれらを位置決めするように構成されている複数の支持部材を備える。図示されている実施形態において、マスター制御アーム支持部材は、マスター制御アームをプラットフォームの上、ユーザー操作領域に隣接する位置に置き、ユーザーが所望の位置からマスター制御アームを操作することができるように構成される。支持システム826は、マスター制御アーム802の取付点として使用され、またマスター制御アーム802の重量を支持する機能もさらに有する。マスター制御アーム支持システム826は、鋼鉄、チタン、ニッケル、および/またはそのようなものの合金、炭素繊維などの重い積載物を支持することができる任意の種類の材料を含みうることが企図される。
図13は、マスター制御アーム802の例示的な構成および取り付けを示している。図示され、すでに説明されているように、マスター制御アーム802は、プラットフォーム810の端部に取り付けられ、プラットフォーム810上の動作領域に位置するユーザーによる操作を可能にするため適切に位置決めされるように構成される。図示されている例示的な実施形態では、マスター制御アーム支持システム826は、プラットフォーム810に結合され、プラットフォーム810から上方、外向きに離れる方向に延在する。マスター制御アーム支持システム826の支持部材は、取付点830のところでマスター制御アーム802を支持し、次いで、マスター制御アームは、プラットフォーム810の上に部分的に逆弧を描き、次いで、プラットフォーム810の方へ下向きに伸展する。マスター制御支持システム826、マスター制御アーム802、およびマスター制御取付点830は、プラットフォームの動作領域に隣接し、プラットフォームの動作領域に対応するユーザー操作キャビティ828を形成し、画成する。マスター制御アーム802は、限定はしないが、鋼鉄などの好適な材料の工業グレードのボルト、リベットなどの、この位置で荷重に耐え、支持することができる結合締め具またはデバイスを使用してマスター制御アーム支持システム826(およびプラットフォーム810への支持システム826)に結合されることが企図される。
図13に例示されているように、1つまたは複数のマスター制御アーム支持システム826およびマスター制御アーム802は、スレーブアーム803からある距離のところでプラットフォームの端部に結合され、これにより、ユーザーをスレーブアーム803の通り道から外すか、または動作ゾーンの外部に置き、これにより、ユーザーに対する安全性を高める。それに加えて、マスター制御アーム(したがってユーザー)のこのような位置決めは、スレーブアームおよびスレーブアームによって持ち上げられる荷重の釣り合いをとるのを補助する働きをしてよい。
図12、図13、および図14に示されているように、プラットフォーム810は、本明細書に示されているように、移動プラットフォームとすることができる。そのようなものとして、プラットフォームは、限定はしないが、車輪、軌道、レール、または移動プラットフォームおよびロボットシステムの一方の場所から別の場所への移動運動を円滑にする他のモビリティ機能などの、対応する駆動要素を含むさまざまな種類の駆動システムを備えることができる。モビリティ機能は、ロボットシステムが静止しているか、または輸送中であるときに支持面との安定した接触面を形成することもできる。したがって、使用されるモビリティ機能の種類は、動作環境の支持面に基づき選択されうる。
図12に例示されているように、プラットフォーム810のモビリティ機能は、ハンドコントロールおよび/または1つまたは複数のフットペダル831を有する制御パネル812などの、プラットフォーム制御要素を備える制御モジュールまたはシステムを介してプラットフォーム810から制御されうる。一例において、フットペダル831は、限定はしないが、プラットフォーム810の前進運動、後退運動、横運動、操縦などの、プラットフォームの任意の数の、またはすべてのモビリティ制御機能を制御することができる。少なくとも1つの態様において、フットペダル831からプラットフォーム810の機動性を制御できることは、プラットフォームの810を異なる位置に動くためにユーザーが自分の腕をマスター制御アーム802から外す必要がなくなるため有利である。そのようなものとして、ユーザーは、同時にプラットフォーム810を所望の位置に動かし、および/または操縦しながらスレーブアーム803で物体を拾い上げ、物体をマニピュレートすることができる。例示的な一実施形態において、図12および図13に例示されているように、プラットフォーム810は、支持面が土壌、砂、岩石などの、土を含む動作環境内で使用するのに適している移動軌道システム832を備える。
別の例示的な実施形態では、図14および図15Aから図15Dに示されているように、プラットフォーム910は、少なくとも部分的にプラットフォームの機動性を有効にし、移動プラットフォームの運動移動および操縦を円滑にする車輪932の形態の駆動要素を備える駆動システムを具備することができる。例えば、車輪は、アスファルト、コンクリート、木材、鋼鉄などの、堅いが、比較的滑らかな表面を備える支持面を持つ動作環境内で使用されることもある。
図15Aから図15Dは、より制限の強い車輪および操縦システム(例えば、一組の操舵輪および一組の非操舵輪)上で、遠隔操作ロボットデバイスの動作の高い敏捷性を促すプラットフォーム910、特に移動プラットフォームの機動性の全方向システム950を例示する、プラットフォーム910の底面を示す平面図である。全方向システム950は、複数の方向、角度、転回などの動きが可能なプラットフォーム910を備えることができる。言い換えると、全方向システム950は、作業空間環境内でプラットフォームをマニピュレートし動かすため多DOFをユーザーが利用できるようにする。例示的な一実施形態において、全方向システム950、特にそれぞれの車輪932は、有向配向または他の車輪932のそれぞれの有向配向と無関係な回転が可能なように構成されうる。言い換えると、車輪のそれぞれは、互いに無関係にプラットフォームに関して回転するように構成することができ、それぞれは独立した回転または操縦を行える。同じ、または追加の実施形態において、車輪932は、一様な有向角度または転回点まで一斉に回転するように構成されうる。一態様では、全方向システム950は、ユーザーが手動で調整することができる。別の態様では、全方向システム950は、自動制御され、以下でさらに詳しく説明されているように、1つまたは複数のユーザー選択可能なモードを有することができる。
図15Aおよび図15Bに示されている一例において、全方向システム950は、車輪932を、車輪932のすべてが同じ有向角度952を有する位置まで回転させることができる。図15Bに示されている非限定的例では、車輪932のそれぞれは、同じ角度952、図15Aに示されている前角に関して約45度で方向付けられる。同様に、図15Cに示されているように、それぞれの車輪932は、同じ角度952、図15Aに示されている前角952に関して約90度で方向付けられる。車輪932を、すべての車輪932が同じ有向角度を有する位置まで回転可能であれば、すべての車輪は一様な方向954に、したがって移動プラットフォーム内で動かすことができる。有利には、すべての車輪の一様な有向運動は、ユーザーの視野角/方向956を、プラットフォーム910が運動中であっても一定に保つことができる。例えば、図15Bでは、車輪932が一般的に前進方向または後退方向954に運動した後、ユーザーの視野角956は一定のままである。同様に、図15Cにおいて、車輪932の一様な約90度の有向角度952は、ユーザーの視野角956を、移動プラットフォーム910の横方向運動960をそのまま行っている間に一定に保つことができる。
別の例では、図15Dに示されているように、全方向システム950は、車輪932を、すべての車輪932が互いに約90度の対向する角度を有する位置まで回転させることができる。したがって、図15Dに概念的に例示されているように、プラットフォーム910が運動しているときに、プラットフォームは同じ位置にとどまり、その一方でユーザーの視野角964は、プラットフォーム910が方向962への個別の車輪の動きまたは駆動により回転すると0度から最大360度まで回転しうる。一態様では、プラットフォーム910の回転を可能にすることで、ユーザーは、コンパクトな作業空間内で一方の場所から別の場所へプラットフォーム910を素早く効率的に回転させることができる。クレーンおよび同様のものなどの典型的な固定された回転可能プラットフォームの動作とは異なり、本明細書で説明されているような図示されているプラットフォーム910は、ユーザーが素早く、容易に、また機敏に、必要に応じて、作業空間内の別の場所にプラットフォームを動かすことを可能にしうる。
図15Eおよび図15Fを参照すると、例示されているのは、異なる構成および機能を有する移動プラットフォームである。この例示的な実施形態では、移動プラットフォームは、遠隔操作ロボットシステム970に障害物972を乗り越えさせ、および/または狭い通路974を通り抜けさせることを可能にすることができるモビリティシステム980を備えることができる。船などの、ある種の動作環境は、ロボットシステム970が通り抜ける必要があると思われるドアまたは通路を備えていることがある。いくつかのドアまたは通路は、単純に「転がして」ドアまたは通路を通り抜けるのを妨げる隆起部分972を有している場合がある。それに加えて、いくつかのドアまたは通路は、モビリティシステムの幅より狭い場合があり、例えば、通常動作位置にある車輪は地面に接触し、ロボットシステムがドアまたは通路を通り抜けるのを妨げるおそれがある。
このような障害物を克服するために、モビリティシステム980は、ロボットシステム970の移動方向と実質的に一致する方向に配設された複数の車輪を備えることができる。例えば、車輪981A~車輪984Aは、ロボットシステムの前部から後部へロボットシステム970の底部に配設されうる。モビリティシステム980は、少なくとも1つのセンサー986、987を有するセンサーバー985も備えることができる。センサーは、当業者であれば理解するようにさまざまな種類のものがある。センサーは、車輪の付近にある障害物を感知するように構成されうる。それに応答して、車輪は、上方および/または内向きに動いて障害物を回避するように構成されうる。例えば、ロボットシステム970が方向978に動き、障害物972、974が置かれている通路を通るときに、センサー986は、高くなっている障害物972および狭い通路974を感知することができる。この情報に応答して、車輪982Aは、タイミングよく上昇し、および/または引っ込められ、これにより、ロボットシステムが前進するときに車輪が障害物を越えて動く隙間が得られる。一態様では、センサーは、それぞれの車輪に関連付けられうる。別の態様では、センサーは、先輪に関連付けられ、すべての後続の従輪は、車両の位置および速度に基づき上昇させられ/引っ込められうる。図15Eに示されているように、前輪981Aは、この形ですでに障害物を通過していて、通常動作位置まで下げられ/戻されており、車輪982Aは、障害物を克服する過程にある。車輪983Aは、順番で次の車輪であり、障害物を乗り越えるために上昇する/引っ込められる。
図15Fは、ロボットシステム970の後面図であり、車輪が障害物972、974を乗り越えるための隙間を設けるために上昇する/引っ込められる車輪984Bの動きを例示している。例えば、車輪984Bは、通常動作の伸展位置975にあるものとしてよい。センサー987が障害物を感知すると、車輪984Bは方向976に動いて引っ込められた位置977に来る。障害物を通り過ぎた後、車輪984Bは、伸展位置975に戻ることができる。車輪を上昇させる/引っ込める機構は、作動された後に枢動する車輪に結合された電動リンケージアームを備えるように図示されている。代替的一実施形態では、リンケージアームは、枢動ではなく直線的に引っ込むように構成することも可能である。任意の組み合わせの任意の数の車輪が、伸展位置にある車輪がロボットシステムの安定性を維持するのに十分である限り、与えられた任意の時間に引っ込められた位置にありうることは理解されるであろう。それに加えて、複数のセンサーが使用されている場合、2つまたはそれ以上のセンサーからのデータを使用して、与えられた車輪が伸展位置にあるか、または引っ込められた位置にあるかを判定し、および/または複数の車輪の位置を調整することができる。
さらに別の例では、図16に示されているように、本明細書で説明されているような遠隔操作ロボットシステム1000は、本明細書で説明されているように、1つまたは複数のスレーブアーム1030に通信可能に連結された1つまたは複数のマスター制御アーム1020を有するトレーラープラットフォーム1010を備えることができる。少なくとも1つの態様において、トレーラープラットフォームの遠隔操作ロボットシステム1000は、システム1000が大きいおよび/または重い積載物を運ぶものなどの、牽引車の背後で引っ張られうるので、有利である。目的地に到着した後、トレーラープラットフォーム1010の周りで支持されているロボットシステムを使用して大きなおよび/または重い積載物を素早く容易に降ろすことができる。トレーラープラットフォーム1010は、スタビライザー1040を備え、これにより、車両から脱着されたときにトレーラープラットフォームを安定して支持することができる。スタビライザーは、下げられると地面と接触し、トレーラープラットフォームを水平にするため必要ならば異なる長さに伸展させることができる。スタビライザー1040は、地面まで伸展するように伸縮することができ、機械または人間の力で伸ばすことができ、歯車または油圧装置を利用することができる。
図17A~図17Bを参照すると、別の例示的な遠隔操作ロボットシステム1100が示されており、これは、マスター制御アーム1135および一次プラットフォーム1105に結合されているスレーブアーム1140を備える。図17Aは、システムの斜視図を示し、図17Bは、システムの側面図を示している。この例では、一次プラットフォームとしては、トラックなどの、車両型の移動プラットフォームが挙げられる。この例の態様に従って、他の種類の車両または移動プラットフォームも使用されうる。この例におけるシステムは、二次プラットフォーム1110も備える。二次プラットフォームは、一次プラットフォームに関して可動であり、一次プラットフォームは、地面などの、一次プラットフォームを支持する表面に関して可動である。
一次プラットフォーム1105は、レールまたはレールシステム1115を備えることができ、これにそって二次プラットフォーム1110は動くことができる。図に示されている例は、トラックの荷台内に、またはその側部にそって装着されているレールを備えている。レールは、真っ直ぐなレールを含みうるか、または湾曲し、好適な長さにそって延在するか、または一次プラットフォームにそって任意の所望の方向に延在しうる。あるいは、複数のレール1116、1117が使用されうる。複数のレールは、レール支持部材1118によって相互接続され、これにより、複数のレールの間の強度および支持を高めることができる。このレールは、適度に強い材料から作ることができる。レールを形成する材料のいくつかの例として、鋼鉄、鉄、金属合金、および同様のものが挙げられる。
二次プラットフォーム1110は、レール1115にそって摺動可能または他の何らかの形で可動である基部1120を備えることができる。基部は、レールにそって基部の動きを可能にするための走行車輪、歯車、または他の好適なデバイスを備えることができる。基部は、動力源1122をさらに備えることができる。動力源は、レールにそって基部の動きを引き起こすため駆動系に動力を供給することができる。動力源は、マスター制御アーム1135、スレーブアーム1140、およびユーザーが利用できる他の制御装置に動力を供給することもできる。動力源は、電池、内燃機関、などであってよい。一態様では、動力源は、一次プラットフォーム1105と共有される共有動力源であってよい。
基部1120は、ユーザーのための座席1125およびアーム支持部材1160を支持することができる。座席およびアーム支持部材は、一緒に結合され、および/または共通支持部材によって支持されうる。支点1112は、座席およびアーム支持部材を回転可能に支持することができる。支点は、並んで回転するための枢着部を形成することができる。座席に着座しているユーザーは、制御レバー1130または好適な任意の制御機構を使用して、基部上の座席およびアーム支持部材を枢動させることができる。ユーザーは、制御レバーをさらに使用して、レールにそって二次プラットフォームを所望の位置まで動くことができる。例えば、制御レバーは、押す、引く、捻るなどによってマニピュレートすることができ、これにより、支点上の回転およびレールにそった動きを別々に独立制御することができる。一態様では、支点上の回転およびレールにそった動きは、スレーブアーム1140に対して少なくとも2つのDOFの運動をもたらすことができる。スレーブアームは、所望の数のDOFを含みうる。例えば、スレーブアームは、スレーブアームそれ自体に7つのDOFを含むことができ、支点およびレールコンポーネントは、追加の機動性またはDOFをスレーブアームに付与することができる。別の例として、スレーブアームは、スレーブアームそれ自体に5つのDOFを含むことができ、支点の回転およびレールの動きにより追加の2つのDOFが付与されうる。
アーム支持部材1160は、マスター制御アーム1135およびスレーブアーム1140を支持することができる。一態様では、マスター制御アームは、代替的に、座席1125によって支持されうる。一態様では、マスター制御アームおよび/またはスレーブアームは、上で説明されているように、人間の腕と運動学的に等価であるものとすることができる。別の態様では、マスター制御アームおよび/またはスレーブアームは、支点1112およびレール1115がマスター制御アームまたはスレーブアームの移動と無関係の少なくとも2自由度を使用可能にするので、7より少ないDOFを含みうる。マスター制御アーム1135は、ジョイント、センサー、アクチュエータ、および同様のものを備えることができ、これにより、ジョイント、アクチュエータ、エンドエフェクター1150などを含むスレーブアーム1140をマニピュレートして、荷重1155を持ち上げるなどのさまざまな作業を行うことができる。一態様では、マスター制御アームは、対応する人間の関節と異なる方向に、または反対方向に曲がる少なくとも1つのジョイント1136を備えることができる。図に示されているように、マスター制御アームのエルボージョイント1136およびスレーブアームのエルボージョイント1137は、ユーザーには運動学的に不便である場合がある、類似のまたは対応する位置で動く/曲がることができる。しかし、一次プラットフォーム1105の上に二次プラットフォーム1110が配置されるため、物体もしくは荷重を動かすことは、運動学的な等価が実現される場合にユーザーには困難であるか、または快適でないことがある。したがって、マスター制御アームのエルボージョイントは、ユーザーの肘関節1138と実質的に反対の方向に動かすことが許され、下方に回転するスレーブアームの都合のよい、快適な動作が可能になる。
一例において、スレーブアーム1140は、1145で一般的に示されているように、伸縮するアームなどの、直線DOFを備えることができる。スレーブアームの伸縮は、マスター制御アーム1135上の制御装置を使用して、または制御レバー1130を使用して実行されうる。
次に図17Cを参照すると、一例によるシステム1100の一部の詳細側断面図が示されている。基部1120は、レール1116、1117によって摺動可能に支持されているように示されている。レール支持部材1118がレールとレールとの間に延在している。基部は、走行車輪1166、1167、1168、1169を使用してレールにそって摺動可能である。走行車輪1166、1167は、リンケージ1170によって一緒に結合され、走行車輪1168および走行車輪1169は、リンケージ1171によって一緒に結合されうる。リンケージは、基部1120に取り付けることができる。上側走行車輪1166、1168および下側走行車輪1167、1169を備えることで、基部をレールにそって転がし、基部がレールから脱落する、または他の何らかの形でずれるのを防ぐことができる。駆動軸1180によって走行車輪のうちの1つまたは複数をモーター1175に結合することができる。駆動軸を異なる方向に回転させることで、基部をレールにそって駆動軸の回転方向に左右に動かすことができる。制御ライン1185は、制御レバーをモーターに電気的に接続し、これにより、ユーザーはモーターを制御することが可能になる。
一態様では、一次プラットフォーム1110は、固定された位置に配設されうる。別の態様では、二次プラットフォームの基部は、一次プラットフォームに関して可動であるのとは反対に、トラックなどの、一次プラットフォーム上に固定して配設されうる。
一般に、マスター制御アームおよびスレーブアームは、互いに関して任意の位置にあってよい。例えば、再び図1を参照すると、マスター制御アームは、スレーブアームと近接近関係にあるものとして図示されている。この場合、マスター制御アームは、スレーブアームの操作ゾーンの外にある位置のスレーブアームの背後に装着される。一態様では、マスター制御アームは、スレーブアームの操作ゾーン内に配置されうる。しかし、ユーザーがスレーブアームの操作ゾーンの外に置かれている場合、ユーザーは、スレーブアームとの望ましくない接触から保護される。特定の一態様において、マスター制御アームは、プラットフォームから脱着され、ユーザーは、マスター制御アームをスレーブアームの運動範囲内、またはその操作ゾーン内でスレーブアームの前に位置決めすることができる。別の特定の態様において、ユーザーは、マスター制御アームをスレーブアームの前の方へ、ただしスレーブアームの運動範囲外、またはその操作ゾーン外に位置決めすることができる。ユーザーは、このような位置がスレーブアームの背後などの別の場所に配置されるのに比べて、スレーブアームの動作を観察するためにより見晴らしの利く地点をもたらすことを見いだすことができる。
いくつかの態様において、マスター制御アームは、スレーブアームに関して離れた場所に配置されうる。例えば、放射線災害地域などの危険な動作環境では、マスター制御アームは、操作者とともに、スレーブアームから遠い距離のところの安全な場所に配置されうる。スレーブアームは、移動プラットフォームを介して、危険な領域内で遠隔操作されうる。
プラットフォームおよび/またはスレーブアームは、ユーザーが遠隔環境においてプラットフォームおよび/またはスレーブアームを操作するのを補助することができる情報を提供する機器または特徴を備えることができる。例えば、移動プラットフォームおよび/またはスレーブアームは、ユーザーが移動プラットフォームおよび/またはスレーブアームの周りの障害物を検出し、そのような障害物および操作環境に関する情報を収集するのを補助することができる感知機器を備えることができる。そのような機器としては、レーザー距離計、レーダー、測位センサー、ソナーアレイ、カメラ、ライト、マイクロホン、およびこれらの組み合わせが挙げられる。もちろん、これらは、いかなる形でも制限することを意図されておらず、他の種類のセンサーおよび機器も、当技術分野で知られているように利用できる。このような器具を使用することで、ユーザーは、ユーザーが物理的に存在するか、またはスレーブアームに近接近することなく移動プラットフォームおよび/またはスレーブアームを効果的に操作することを可能にする遠隔作業空間に関する情報を得ることができる。
一態様では、遠隔環境における操作を目的としてユーザーに画像情報を伝達するため異なる見晴らしの利く地点から画像をキャプチャするように2つまたはそれ以上のカメラが方向付けられうる。例えば、フロントカメラとリアカメラがあれば、ユーザーがリア(またはフロント)カメラビューを切り替えるときに、移動プラットフォーム駆動コマンドが自動的に再マッピングされ、そのビューに対する適切な情報がしかるべく表示されうる。したがって、ユーザーは、移動プラットフォームを後退しなくても狭い制限領域内に押し込むことができる。ユーザーは、単純に、異なるカメラビューを選択して、通常どおり追い出すことができる。これは、移動プラットフォームを後退または物理的に方向転換させなければならないのに比べて狭い空間から移動プラットフォームを外へ誘導するより安全で効率的な手段となりうる。
ユーザーが移動プラットフォームおよび/またはスレーブアームを制御する能力を増強するために、2つのカメラを利用してユーザーに立体映像を見せることができる。これら2つのカメラは、ユーザーの肩の間隔に関してユーザーの目の間隔に比例して相隔てて並ぶようにすることができ、ユーザーの肩の間隔は2つのスレーブアームの間隔に対応する。別の態様では、移動プラットフォームおよび/またはスレーブアームの付近のガス組成物を検知し分析するためにガスまたは臭気検知器も使用することができる。
好適な手段によって遠隔移動プラットフォームとユーザーの位置との間でデータまたは情報が伝達されうる。例えば、無線、衛星、光伝送、インターネット、携帯電話ネットワーク、地上回線、ケーブルなどの有線もしくはワイヤレス通信フォーマットまたはネットワークが使用されうる。
遠隔移動プラットフォームおよび/またはスレーブアームから受信された情報は、任意の好適な手段を介してユーザーに伝達されうる。例えば、視覚情報は、ユーザー着用可能なゴーグル、テレビ、コンピュータ画面、モニター、携帯電話、スマートフォン、携帯情報端末(PDA)などの画像表示でユーザーに提示されうる。聴覚情報は、スピーカー、ヘッドホンなどによりユーザーに提示されうる。それに加えて、ユーザーは、移動プラットフォームおよび/またはスレーブアームから触覚情報を受け取ることができる。例えば、ユーザーは、スレーブアームからマスター制御アームへの力反射を受け取ることができる。本明細書で説明されているように、マスター制御アームは、スレーブアームに作用する荷重に比例する荷重をユーザーに対して発生させることができる。この触覚センサー情報だけでも、遠隔位置にあるスレーブアームをユーザーが操作する能力を大幅に増強しうる。力反射がビデオおよび/または音声などの他のセンサー入力と組み合わさった場合、ユーザーは、空間内を動き回るために3つの最も重要な感覚を活用することができる。遠隔操作のシナリオでは、マスター制御アームは、本明細書で説明されているように、位置センサー、荷重センサー、アクチュエータ、および完全に機能し、ユーザーに力反射を送る他の要素または補助コンポーネントを備えることができる。したがって、ユーザーの場所に、十分な動力、データ伝送機能などを装備し、移動プラットフォーム、スレーブアーム、および/またはエンドエフェクターを遠隔操作するために必要なマスター制御アームおよびデータ提示ツールを支持することができる。
ユーザーは、移動プラットフォーム、スレーブアーム、および/またはエンドエフェクターを好適な手段により制御することができる。例えば、ユーザーは、ダイヤル、レバー、スイッチ、キーボード、マウス、ジョイスティック、ビデオゲームコントローラなどの手動制御装置、足踏み制御装置、または移動プラットフォーム、スレーブアーム、および/またはエンドエフェクターの機能を操作し、制御するためにユーザーの四肢によってマニピュレートできる他の任意のデバイスを使用することができる。移動プラットフォームおよび/またはスレーブアームの遠隔制御もしくは操作は、ユーザーの近く、または見える位置の別の場所に装着されたタッチスクリーンを介するものであるか、またはシステムとワイヤレスで通信するユーザーのスマートフォンまたは他のPDAデバイス上のアプリケーションを介するものとすることができる。別の例では、遠隔操作移動プラットフォーム、スレーブアーム、および/またはエンドエフェクターは、ユーザーの音声コマンドに応答することができる。ユーザーは、照明の制御、カメラ、マイクロホン、センサーなどの位置を含む、音声コマンドを使用して遠隔地でさまざまな移動プラットフォーム機能またはデータ収集機器を制御することができる。ユーザーは、エンドエフェクターのパワーオン/オフ、他の制御可能機能などのさまざまなエンドエフェクター機能を、音声コマンドを使用して制御することもできる。
本発明の別の態様において、複数のマスター制御アームは、それぞれ、複数の各スレーブアームを遠隔制御することができる。例えば、図18に示されているように、複数のマスター制御アーム1220は、トラック1200上に配置され、それぞれのマスター制御アーム1220は遠隔スレーブアーム1230を制御するように構成されうる。トラックは、マスター制御アームを装備することができ、および/またはマスター制御アームは携帯型とすることができ、マスター制御アームをトラック上に一時的に配置することができる。この例では、複数のユーザーが、複数のマスター制御アームを使用して、複数のスレーブアームを遠隔制御することができる。それに加えて、トラックは、スレーブアームをユーザーが制御するのを補助するためにディスプレイおよび/またはスピーカーを装備することもできる。一態様では、ディスプレイおよび/またはスピーカーは、可動であり、マスター制御アームとともに輸送可能であるものとしてよい。例えば、ヘッドギアまたはショルダーハーネスで、ユーザー用のディスプレイおよび/またはスピーカーを支持することができる。特定の一態様において、ディスプレイおよび/またはスピーカーは、マスター制御アームに取り付け可能であるか、またはマスター制御アームに取り付けられていてもよい。例えば、マスター制御アームは、ハーネスまたは他のユーザー着用可能装置を備えることができ、ディスプレイおよび/またはスピーカーは、このハーネスまたは着用可能装置に結合されうる。
互いに近接近して配置されていようと、離れて配置されていようと、マスター制御アームおよびスレーブアームは、有線またはワイヤレスデータ転送システムを介して伝達される信号によってリンクされうる。ワイヤレス伝送は、無線、衛星、携帯電話ネットワーク、または他の種類のワイヤレス通信を介して行える。
一態様では、マスター制御アームは、マスター制御アームおよびマスター制御アームを支持するように構成されているフレーム部材を備えるマスター制御システムの一部とすることができる。マスター制御システムは、図19A~図19Eに示されているように、ユーザーがプラットフォームおよび/またはスレーブアームに関してマスター制御アームを再配置できるように、またプラットフォームに関するスレーブアームの選択的なオンボード、オフボードのユーザー制御を円滑にするようにプラットフォームに取り外し可能に取り付け可能であるものとしてよい。
マスター制御アーム200Aおよびマスター制御アーム200Bは、アーム結合パッド1320Aおよびアーム結合パッド1320Bのところでマスター制御アームフレーム部材1318およびマスター制御アームフレーム部材1310に結合されうる。例えば、マスター制御アームは、アーム結合パッドのところでフレーム部材にボルト締めすることができる。アーム結合パッドは、マスター制御アームを支持するための補強部材とすることができる。フレーム部材は、図1のプラットフォーム400などの、プラットフォームに固定され、取り外し可能に取り付けられ、フレーム結合点1312Aおよびフレーム結合点1312Bはプラットフォーム上の結合装着部の嵌め合い結合点1332Aおよび嵌め合い結合点1332Bと係合しうる。例えば、フレーム結合点は、メス結合器またはソケットとすることができ、結合装着部の結合点は、嵌め合いオス結合器またはソケットとすることができる。結合装着部は、結合支柱1330Aおよび結合支柱1330Bを備えることもできる。結合装着部の結合点は、結合支柱1330Aおよび結合支柱1330Bに配設または接続されうる。結合器は、フレームがプラットフォームに結合されるときにフレームの物理的拘束部を形成しうる。結合器は、動力接続部、データ接続部、流体接続部(例えば、油圧結合部)、ガス接続部(例えば、空気圧結合部)、またはこれらの接続部の組み合わせを備えることができる。フレーム結合点およびプラットフォーム結合点の取り外し可能な取り付け可能要素は、フック、スナップ、戻り止め、クリップ、挿入部、スロット、またはマスター制御アームをプラットフォームにつなぐ他の好適な脱着可能結合部を備えることができる。脱着可能結合部は、プラットフォームに結合されたときにマスター制御アームの使用中に結合配置構成を確実に支持し、維持するように構成されうる。
図19A~図19Bの脱着可能マスター制御アームフレーム1300および脱着可能マスター制御アームフレーム1302によって例示されている特定の一態様において、フレーム部材は、ショルダーストラップ1314Aおよびショルダーストラップ1314Bおよび/またはウエストベルト(またはストラップ)1316などの、ハーネスまたは他のユーザー着用可能な装置を含みうる。そこで、ユーザーは、マスター制御アームを「身につけ」、「着用し」、プラットフォームからマスター制御アームを脱着することができる。マスター制御アームの着用可能な性質は、プラットフォームから離れるときにマスター制御アームをユーザーが使用する能力を増強しうる。
図19Aを参照すると、例示的な脱着可能マスター制御アームフレーム1300は、プラットフォームへのマスター制御アームの柔軟なテザー1340を示している。テザーは、ガス、流体、動力、および/またはデータを送るためのホース、コード、および/またはバスとすることができる。
図19Bの例示的な脱着可能マスター制御アームフレーム1302によって例示されている別の態様において、マスター制御アームフレームは、蓄電デバイス1343を有するモジュール1342、ストレージコンパートメント(図示せず)、および/またはワイヤレス通信モジュール1345を備えることができる。電池パックなどの蓄電デバイスは、フレームがプラットフォームから脱着されるときに動力をマスター制御アームに供給することができる。蓄電デバイスは、フレームがプラットフォームに結合されるときに自動的に充電しうる。ワイヤレス通信モジュールでは、フレームがプラットフォームから脱着されるときにマスター制御アームとスレーブアームおよび/またはプラットフォームとの間のワイヤレス通信を可能にすることができる。フレームは、マスター制御アームの携帯性を高めるハンドル(図示せず)を備えることができる。フレームは、プラットフォーム結合点がプラットフォームから分離されている状態で個別の固定具またはラック(図示せず)上に装着されうる。フレームがプラットフォームに結合されていないときに、個別の固定具により、フレームを支持し、適宜電池を再充電することができる。手動制御装置(図示せず)も、フレームに物理的結合されるか、またはワイヤレス方式でリンクされうる。手動制御装置は、プラットフォームおよびプラットフォームに取り付けられている機器を操作するための制御装置を備えることができる。例えば、手動制御装置を使用することで、ユーザーは、遠隔操作ロボットシステムに関連付けられている移動プラットフォームを遠隔制御し、ユーザーが移動プラットフォームに載っていないときに移動プラットフォームを所望の位置へ運転動くことができる。
別の例示的な実施形態では、マスター制御アームフレームは、釣り合いおもり1344を備えて、ユーザーの肩または腰の制御アームの重量の釣り合いをとることができる。平衡荷重は、ユーザーの疲労を軽減し、ユーザーによる長時間の使用を可能にすることができる。別の実施形態では、フレームのアーム結合パッド1320Aおよびアーム結合パッド1320Bは、ユーザーのマスター制御アームの重量配分をより釣り合いのとれたものにするためにユーザーの背後に位置決めすることができ、これにより、釣り合いおもりを減らすか、または排除することができる。
図19C~図19Dは、プラットフォーム400に結合されている、脱着可能マスター制御アームフレーム1300に結合されているマスター制御アーム200Aおよびマスター制御アーム200Bを示している。一態様では、フレームおよびマスター制御アームは、ユーザーが携えられる軽量の材料から製作されうる。マスター制御アームの荷重を支持することができる軽量の材料としては、アルミニウム、チタン、プラスチック、炭素繊維、またはこれらの組み合わせ、および他の強い軽量の材料などの材料が挙げられる。鋼鉄も、フレームおよび/またはマスター制御アームで使用することができる。フレームは、ユーザーの背中に快適に適合するように製作され、ショルダーストラップおよびウエストベルトで支持されうる。
図19Eの例示的な脱着可能マスター制御アームフレーム1304によって例示されている別の態様において、マスター制御アームフレームを使用すると、マスター制御アームを腰レベルの周りまたは肩の下のフレームに結合することが可能になる。水平部材1318に結合されている垂直部材1350を短くするか、またはなくして、マスター制御アームとの所望の結合位置を確保することができる。例えば、水平部材は、ウエストベルトに直接結合することができる。一態様では、ウエストベルトまたは水平部材は、ユーザーの脱着可能なフレームの回転安定性を実現するためにユーザーの脚に固定されうる。別の態様では、脱着可能マスター制御アームフレーム1304は、ユーザーが着用したときに安定性を確保するためにショルダーストラップ1314A、1314Bを備えることができる。
いくつかの態様において、単一のマスター制御アームで複数のスレーブアームを制御することができる。例えば、単一のマスター制御アームは、複数のスレーブアームに操作可能に結合され、能動的制御を与えられたスレーブアームに切り替えることになどによって、スレーブアームを順に制御することができる。別の例では、単一のマスター制御アームで複数のスレーブアームを同時に制御することができ、スレーブアームのそれぞれは、マスター制御アームのコマンドを実行する。
いくつかの他の態様では、単一のスレーブアームは、複数のマスター制御アームによって制御されうる。言い換えると、複数のマスター制御アームは、単一のスレーブアームにコマンドを伝達することができる。与えられた任意の時点において、マスター制御アームのうちの1つは、スレーブアームに操作可能に結合され能動的に制御することができる。例えば、複数のマスター制御アームおよび複数のスレーブアームは、遠隔操作ロボットデバイス群の一部とすることができる。ユーザーは、利用可能なスレーブアームとのペアリングを形成できる、マスター制御アームを選択することができる。このペアリングは、マスター制御アームおよびスレーブアームと通信するワイヤレスネットワーク経由の通信によって実行され、これにより、現在のペアリングを更新し、管理することができる。別の態様では、マスター制御アームは、互いに近接近したときなどに、複数のスレーブアームのうちの1つと直接、同期し、ペアリングすることができる。
本開示によれば、遠隔操作ロボットシステムは、マスター制御アームとスレーブアームとを任意の組み合わせで備えることができる。一態様では、遠隔操作ロボットシステムは、単一のマスター制御アームおよび単一のスレーブアームを備えることができる。別の態様では、遠隔操作ロボットシステムは、複数のマスター制御アームおよび複数のスレーブアームを備えることができる。マスター制御アームとスレーブアームの数が等しくない場合、ロボットシステムは、ユーザーインターフェース要素、処理要素、信号受信およびコマンド送信要素、フィルタリング要素などのロボットシステム内のさまざまなマスター制御アームおよびスレーブアームの交互の、および選択的な制御および操作を円滑にする制御モジュールをさらに備えることができる。制御モジュールは、どのマスター制御アームがどのスレーブアームを制御するかのユーザーによる判定を円滑にするように構成されうる。
特定の一例において、図19Fに示されているように、遠隔操作ロボットシステム1360は、3つのスレーブアーム1362、1364、1366および2つのマスター制御アーム1372、1374を備えることができる。これら3つのスレーブアームは、同じプラットフォーム1361上にあってよい。2つのマスター制御アームのそれぞれは、溶接のため鋼鉄の梁を適所へ持ち上げるなどの作業を実行するために、スレーブアームのうちの1つ、2つ、または3つすべてを制御するように能動的に構成されうる。ユーザーは、制御モジュールまたはシステムを使用して、マスター制御アームのうちの1つの制御を切り替えて、スレーブアームのうちの1つおよび異なるスレーブアームを選択的に制御することができる。例えば、2つのマスター制御アームと3つのスレーブアームを備えるシステムでは、第1のマスター制御アームは、3つのスレーブアームのうちの1つを選択的に制御するように構成され、第2のマスター制御アームも3つのスレーブアームのうちの1つを選択的に制御するように構成されうる。このような種類のシステムは、1つまたは複数のスレーブアームが、1つまたは複数の他のスレーブアームが意図された機能を実行している間に安定したままでいられる用途において有益な場合がある。例えば、ユーザーは、2つのマスター制御アームを利用して、与えられた任意の時点において3つのスレーブアームのうちの2つを制御し、それらが物体を特定の場所の適所に保持するようにすることができる。適所に置かれた後、ユーザーは、制御モジュールを利用して、マスター制御アームのうちの1つの制御を第3のスレーブアームに切り替えることができ、マスター制御アームは、第3のスレーブアームをマニピュレートして物体に関する二次的機能を実行する(例えば、適所で物体を溶接する)。
別の特定の例では、遠隔操作ロボットシステムは、3つのスレーブアームと3つのマスター制御アームとを備えることができる。前の例と同様に、これら3つのスレーブアームは、同じプラットフォーム上にあってよい。しかし、この例では、それぞれのスレーブアームは、3つのマスター制御アームのうちの1つによって制御可能である。したがって、これらのマスター制御アームのうちの2つは、溶接のため鋼鉄の梁を適所へ持ち上げるなどのために、2つのスレーブアームを能動的に制御することができる。次いで、ユーザーは、第3のマスター制御アームを操作して第3のスレーブアームを制御し、鋼鉄の梁を、第1の2つのスレーブアームが梁を適所に保持している間に、適所に溶接することができる。
図20および図21に例示されているように、遠隔操作ロボットシステムは、スレーブアーム1403の端部に結合され、作業空間内の物体とのインターフェースを形成しうる1つまたは複数のエンドエフェクター1410、1420、1430を備えることができる。結合されると、エンドエフェクターは、マスター制御アームと通信することができ、マスター制御アームによって制御可能である。より具体的な例では、結合されエンドエフェクターは、マスター制御アームに結合されているエンドエフェクター制御ユニット1450と通信することができる。適宜、エンドエフェクター制御ユニットは、ユーザーへアクセス可能なコンソールまたは制御パネルなどで、マスター制御アームから分離している。
図21に示されているように、エンドエフェクター制御ユニット1450は、マスター制御把持部1440上に配設され、これにより、すでにマスター制御把持部1440を掴んでいるユーザーの手でエンドエフェクター制御ユニット1450にアクセスし、必要に応じてエンドエフェクターを調整することをより迅速に行える。一態様では、エンドエフェクター制御ユニット1450は、必要に応じてエンドエフェクターを調整し、管理する機能を有するものとしてよいボタン1452およびボタン1454などの制御スイッチを備える。例えば、磁気エンドエフェクターの磁力の強さ、エンドエフェクター溶接トーチの火炎、エンドエフェクター鋸のrpm、またはスレーブアームに結合されているエンドエフェクターの他のそのような制御装置を制御するために1つまたは複数の調整ボタンが使用されうる。エンドエフェクター制御ユニット1450は、遠隔操作ロボットシステムに結合されているエンドエフェクターツールの種類に応じてユーザーがパワーのオンまたはオフを切り替え、および/または設定を調整することを可能にする1つまたは複数のセンサー、回路、およびスイッチを備えることができる。
図20に示されているように、エンドエフェクターは、限定はしないが、調整可能な締め具、1つまたは複数の指状伸展部を有する爪、可変および非可変電磁石などのさまざまなツールおよび他の有用なデバイスを組み込むことができる。エンドエフェクターは、さらに、バーコードスキャナー、赤外線スキャナー、座標測定ツールなどの検査デバイスまたはツール、さらには溶接トーチおよび用具、鋸、ハンマー、などの他の種類のツールを備えることができる。エンドエフェクターは、放射線、化学物質などの、有害なものに対する検出器および分析装置を備えることができ、これにより、有害な物質の検出および分析が可能であることが企図されている。特定の一態様において、エンドエフェクターは、人間の手で持つ道具を掴むように構成されうる。この場合、エンドエフェクター制御ユニットは、ユーザーが手で持つ道具を掴むためにエンドエフェクターを制御するだけでなく、手で持つ道具を操作する能力をユーザーに付与することも可能にすることができる。このような制御は、「手状」もしくは「指状」の多DOFマスター制御装置で、または単純に、手で持つ道具を操作するためにエンドエフェクターをマニピュレートすることができるボタン、ダイヤル、レバー、もしくは同様のものを使って実行できる。
別の例では、これも図20に示されているように、エンドエフェクター1410、1420、1430は、スレーブアーム1403に(例えば、急速リリースシステムを通じて)取り外し可能に結合され、これにより、一方のエンドエフェクターとスレーブアームとの結合を外し、他方のエンドエフェクターと交換することができる。エンドエフェクターは、さまざまな方法でスレーブアームに取り外し可能に結合することができることが企図される。図示されている例では、エンドエフェクター1410、1420、1430は、スレーブアーム1403の受け入れ端部1408に結合するように構成され、サイズを決められた取り付け端部1406を備える。逆に、スレーブアーム1403の受け入れ端部1408は、取り付け端部を受け入れるようにサイズが決められる。スレーブアーム1403に結合された後、取り付け端部1406をスレーブアーム1403の受け入れ端部1408に確実に固定するために保持部材が使用されうる。脱着可能結合部は、スレーブアームおよびエンドエフェクターの使用中にエンドエフェクターを確実に支持し、維持するように構成されうる。スレーブアームとエンドエフェクターとの間の結合部は、嵌め合い結合器またはソケットを備えることができる。結合部は、スレーブアームに結合されたときにエンドエフェクターの物理的拘束を行うことができ、これにより、結合部はエンドエフェクター上にかかる荷重に耐えることができる。それに加えて、結合部は、動力接続部、データ接続部、流体接続部(例えば、油圧結合部)、ガス接続部(例えば、空気圧結合部)、またはこれらの接続部の組み合わせを備えることができる。結合部として、フック、スナップ、戻り止め、クリップ、挿入部、スロット、またはエンドエフェクターをスレーブアームにつなぐ他の好適な脱着可能結合部が挙げられる。
図22に示されているように、エンドエフェクター1460は、エンドエフェクター1460の端部に配設され、スレーブアーム1403から最も遠いところにある伸展可能な長さ1464に結合された、デバイスまたはツールを伸展させるための1つまたは複数の伸展可能な長さ1462、1464を備えることができる。1つまたは複数の伸展可能な長さ1462、1464は、伸展された位置1466に示されているように、到達範囲を伸ばす直線DOFをエンドエフェクター1460に付与するように構成される。図示されているように、1つまたは複数の伸展可能な長さは、エンドエフェクター1460の内側に引っ込むように結合されサイズが決められた第1の伸展可能な長さ1462、および第1の伸展可能な長さ1462に結合され、第1の伸展可能な長さ1462に引っ込むようにサイズが決められた第2の伸展可能な長さ1464を有するように伸縮形成で構成される。1つまたは複数の伸展可能な長さ1462、1464は、ユーザーが1つまたは複数の伸展可能な長さを外向きに伸展し、エンドエフェクター1460の到達範囲を増やすことができるようにマスター制御アーム1403および/またはマスター制御把持部1450と連通しうる。1つまたは複数の伸展可能な長さ1462、1464は、油圧システム、電気システム、または空気圧システムなどを通じて、さまざまな方法により駆動できることが企図される。
プラットフォーム1510に結合されているロボットスレーブアーム1520は、図23に例示されているように、在庫システムで使用することができる。プラットフォームは可動であり、移動運動を円滑にするための軌道1512または車輪(図示せず)を備えることができる。エンドエフェクター1530は、ロボットスレーブアームの端部に結合されうる。エンドエフェクターは、物品を持ち上げるか、または捕捉するための機構を備えているものとしてよい。物品は、例えば、鋼板、枠箱、または軍需品などの、一般的在庫品を指すものとすることができる。エンドエフェクターは、強磁性物品を持ち上げるための電磁石1540または把持機構(図示せず)を備えることができる。エンドエフェクターは、エンドエフェクター、ロボットアーム、またはプラットフォームに結合されている走査デバイス1550Aまたは走査デバイス1550Bを備えることができる。走査デバイスは、バーコードリーダー、マトリックスコードスキャナー、無線識別(RFID)スキャナー、識別タグを読み取るか、もしくは感知するためのデバイス、またはこれらの走査デバイスの組み合わせを備えることができる。走査デバイスは、エンドエフェクター、ロボットスレーブアーム、またはプラットフォームの面に付けられているものとしてよい。走査デバイスは、エンドエフェクター、ロボットスレーブアーム、またはプラットフォームと一体化されていてもよい。
図23は、エンドエフェクターの前面の前部走査デバイス1550Bおよびエンドエフェクターの後面の後部走査デバイス1550Aを例示している。前部走査デバイスは、エンドエフェクターの前に走査範囲1552Bを有することができる。後部走査デバイスは、エンドエフェクターの背後に走査範囲1552Aを有することができる。別の例では、エンドエフェクターは、単一の走査デバイスのみを使用することができる。他の例(図示せず)では、走査デバイスは、走査デバイスに近い走査半径を有するロボットスレーブアームまたはプラットフォームに結合されうる。一態様では、走査デバイスは、電磁石1540または把持機構に直接結合されうる。
物品または物体は、物体タグを取り付けるか、または貼り付けることができる。走査デバイス1550Aおよび走査デバイス1550Bは、物体がエンドエフェクター1530によって捕捉されたときに物体の物体タグを走査することができる。走査デバイスは、付近にあるさまざまな物品の物体タグを絶えず走査することができる。走査デバイスは、物体がエンドエフェクターによって捕捉される前、捕捉されている間、または捕捉された後に物体タグを走査することができる。物体タグは、バーコード、マトリックスコード、またはRFIDタグであってよい。走査デバイスは、物体がエンドエフェクターによって捕捉されるか、または解放されたときに物体タグを記録または登録することができる。走査デバイスは、物体タグが読み取られるときに物体参照を登録することができる。走査デバイスは、ロボットアームによってマニピュレートされる物体に関連付けられている物体タグであるものとしてよい、物体を捕捉または解放する前に読み取った最後の物体タグを記録または送信することができる。
プラットフォームは、物体および物体タグに関連付けられている物体記録を記録するためのプラットフォームに結合されているログ記録デバイスを備えることができる。走査デバイスは、物体参照をログ記録デバイスに送信することができる。一例において、ログ記録デバイスは、物体記録を格納するためプラットフォームに結合されているデータストレージを備えることができる。別の例では、プラットフォームは、走査デバイスから中央リポジトリにワイヤレス通信を介して物体参照を送信するためのプラットフォームトランシーバ1570を備えることができる。
中央リポジトリは、コンピュータ制御ストレージデバイス内に置かれるか、またはネットワーク内で動作する複数のコンピュータシステムから操作可能である。中央リポジトリは、データベースを備えることができる。コンピュータ制御ストレージデバイスは、コンピュータ可読命令、データ構造体、プログラムモジュール、または他のデータなどの情報を格納するための技術で実装される揮発性および不揮発性(一時的および非一時的)、取り外し可能および取り外し不可能な媒体を含むコンピュータ可読記憶媒体を備えることができる。コンピュータ可読記憶媒体としては、限定はしないが、RAM、ROM、EEPROM、フラッシュメモリまたはその他のメモリ技術、CD-ROM、デジタル多目的ディスク(DVD)または他の光学式記憶装置、磁気カセット、磁気テープ、磁気ディスク記憶装置または他の磁気記憶デバイス、または所望の情報を格納するために使用することができる他のコンピュータ記憶媒体が挙げられる。
さらに別の例では、プラットフォームトランシーバ1570は、走査デバイスからユーザーインターフェースに有線またはワイヤレス通信を介して物体参照を送信することができる。ユーザーインターフェースは、プラットフォームおよびロボットアームを制御するためにも使用することができる。
一例では、位置決めデバイス1560は、ロボットスレーブアームまたはプラットフォームに結合されうる。位置決めデバイスは、全地球衛星測位(GPS)デバイスまたは受信機を備えることができる。位置決めデバイスは、エンドエフェクターが物体を捕捉し、物体を輸送し、または物体を解放するときにロボットスレーブアームの位置を決定するために使用することができる。物体位置は、物体が捕捉されるか、輸送されるか、または解放されるときに物体に関連付けられうる。物体位置は、地球位置座標、細分された区分もしくは空間、またはセクターで与えることができる。物体位置は、物体参照と関連付けられ、中央リポジトリ内の物体記録とともに格納されうる。
図24は、少なくとも1つのロボットスレーブアームを支持し、物体1620を輸送するプラットフォーム1510を例示している。物体タグ1622は、物体に取り付けられるか、または物体と一体化されうる。図24に示されているように、プラットフォームは複数の物品1630A~物品1630Qを伴う在庫領域内にある。物体タグ1632Aは、それぞれの物品に貼り付けることができる。プラットフォーム1510は、プラットフォームに乗っているユーザーによって(例えば、本明細書で教示されているように)、またはプラットフォームの近くを歩いているユーザー(図示せず)によって制御されうる。別の例では、ユーザーは、ユーザーインターフェース1690を使用してプラットフォームおよびロボットスレーブアームを制御することができる。ユーザーインターフェースは、ワイヤレス通信を介してプラットフォームと通信することができる。ロボットスレーブアーム上の走査デバイスは、プラットフォームが開始位置から終了位置まで物体を輸送するときにはいつでも物体の物体タグを走査することができる。物体の在庫を調べるために、ロボットスレーブアームが使用されうる。また在庫を監査するために、ロボットスレーブアームが使用されうる。
在庫プロセスにおいて、ロボットスレーブアームは、開始位置で物体を捕捉することができる。エンドエフェクターまたはロボットスレーブアームに電磁石が結合されている場合、物体は、電磁石が帯磁したときに捕捉されうる。物体は、電磁石が消磁されたときに解放されうる。把持機構が使用される場合、物体は、把持機構が物体を掴んだときに捕捉されうる。走査デバイスは、物体が捕捉されるときに物体を走査することができる。プラットフォームは、物体を端部位置に動かすことができる。エンドエフェクターは、物体を端部位置で解放することができる。ログ記録デバイスは、端部位置により物体を表す物体参照をログ記録することができる。ログ記録デバイスは、エンドエフェクターが物体の所有権を有している場合に物体の配置を自動的に追跡することができる。ログ記録デバイスは、物体参照をログ記録デバイスから中央リポジトリ1640に送信することができる。
プラットフォーム1510は、プラットフォームトランシーバを介して、物体参照および物体配置を含みうる、データを中央リポジトリ1640にワイヤレス方式で送信することができる。中央リポジトリは、図25に例示されているように、データベース1642を備えることができる。中央リポジトリは、ネットワークまたはインターネットに接続することができる。一態様では、中央リポジトリは、クラウドから操作することもできる。データベースは、複数の物体記録を備えることができる。物体参照は、物体がエンドエフェクターによって解放されたときに物体記録1644内に記録されるか、または送信されうる。エンドエフェクターが物体を解放したときのロボットスレーブアームの登録された位置は、物体配置または端部配置を定めることができる。端部配置は、データベース内のオブジェクトについて格納されている前の配置を置き換えることができる。中央リポジトリは、プラットフォームトランシーバ1570および/またはユーザーインターフェース1690に結合されているユーザーインターフェーストランシーバ1692と通信することができる、中央リポジトリトランシーバ1672を備えることができる。プラットフォームトランシーバは、物体参照および物体配置を中央リポジトリに送信することができる。
プラットフォームは、走査物体参照および物体配置をログに記録するためのデータストレージログ記録デバイス1574を備えることができる。データストレージログ記録デバイスは、複数の物体に対する走査された物体参照および物体配置を定期的に送信することができる。データストレージログ記録デバイスは、プラットフォーム上に備えられ、プラットフォームから定期的に物理的に取り出され、リポジトリのポートまたはインターフェースまたはワイヤレス接続を介して中央リポジトリにエクスポートされるメモリとすることができる。
別の例では、カメラ1580は、プラットフォーム1510またはロボットアーム1520に結合されうる。カメラは、ユーザーインターフェースを使用してユーザーがプラットフォームを遠隔操作する場合にプラットフォームを誘導するために使用されうる。カメラは、物体および/または周囲を見るために使用されうる。カメラは、スチールカメラまたは動画ビデオカメラであってよい。カメラは、物体像を取り込むことができる。物体像はデジタル処理され、これにより物体の寸法が決定されうる。物体の寸法は、高さ、幅、長さ、または直径とすることができる。物体像は、プラットフォームに結合されているプロセッサによって、または中央リポジトリによって使用されるプロセッサで処理されうる。物体像は、物体記録に、または物体参照とともに、格納されうる。物体像は、中央リポジトリから取り出され、ユーザーに表示することができる。
一例において、計量器1582は、ロボットアーム1520に結合されるか、またはロボットスレーブアーム内に組み込まれうる。計量器は、物体の重量を量るために使用されうる。物体の重量は、物体参照とともに送信され、物体記録1644に格納されうる。
データベース内の物体記録1644は、物体特性1646を含みうる。物体特性は、物体の配置、物体の重量、物体のサイズ、または物体に関連する他の情報を含みうる。物体特性は、位置決めデバイス1560、カメラ1580、走査デバイス1550、および/または計量器1582などの、プラットフォーム1510に結合されている情報収集デバイスによって決定されうる。物品特性は、すでに捕捉または入力されている物体タグまたは物体参照に関連する情報であるものとしてよい。
別の例では、物体は、在庫システムおよびプラットフォームをロボットデバイスをともに使用して配置され、捕捉されうる。ユーザーインターフェースを介して物体参照または物体記述を提供することができる。物体記述では、データベース内で検索できる物体の特性または品質を記載することができる。ユーザーインターフェースは、プラットフォームに結合され、プラットフォームに直接有線で接続されるか、またはユーザーインターフェースは、中央リポジトリおよびプラットフォームとワイヤレス通信を介して通信することができる。ユーザーインターフェースは、物体参照を中央リポジトリに送信することができる。中央リポジトリには、物体参照を問い合わせることができる。中央リポジトリ内のデータベースは、物体配置を含む物体記録または物体配置を取り出すか、または返すことができ、物体記録は、物体参照に関連付けられている。物体配置は、中央リポジトリからユーザーインターフェースまたはプラットフォームに送信されうる。ユーザーは、ユーザーインターフェースを介してプラットフォームを物体配置に動かすことができる。プラットフォームは、ロボットアームがプラットフォームに結合されている配置で物体を捕捉することができる。別の例では、プラットフォームは、他の物体とともに領域内を自動的にナビゲートし、問い合わされた物品の配置に到達することができる。プラットフォームは、近接センサーを使用して、他の物品に遭遇するのを回避することができる。
プラットフォームまたはユーザーインターフェース1690は、マッピングデバイス1694を使用して、問い合わされた物体および他の物体を指定された領域内にマッピングすることができる。マッピングデバイスは、ユーザーインターフェースに結合されるか、またはユーザーインターフェース内に一体化されうる。マッピングデバイスは、プロセッサおよびディスプレイを備えるユーザーコンピュータシステム上で動作するマッピングアプリケーションであってよい。プラットフォームは、マッピングデバイスによって生成されるマップを使用して他の物体を回避することができる。別の例では、マップは、ユーザーに表示することができる。マッピングデバイスは、プラットフォームまたはロボットスレーブアームの現在位置および問い合わされた物体の配置を特定することができる。マッピングデバイスは、プラットフォームが問い合わされた物体に接近するか、または遠ざかるときに配置を更新することができる。マッピングデバイスは、プラットフォームと問い合わされた物体との間の距離またはユーザーの入力に基づきさまざまな詳細レベルを有することができる。マッピングデバイスは、プラットフォームの位置から問い合わされた物体の位置までのルートを定めることができる。このルートでは、中央リポジトリ内に格納されている他の物体のサイズおよび位置を使用して、マップを生成し、問い合わされた物体への他の物体の周りの効率的なルートを定めることができる。
別の例では、物体参照または物体特性は、ユーザーが見られるようにマッピングデバイス上のマップに表示することができる。ユーザーは、マップから、取り出すか、または捕捉する物体参照を選択することができる。選択された物体は、ディスプレイ上で強調表示されうる。ユーザーは、マップを使用してプラットフォームを物体配置に駆動することができる。
別の例では、プラットフォームは、物体を持ち上げるか、捕捉することなく、物体を走査することができる。物体が、持ち上げられるか、または動かされることなく走査されると、物体が走査されたときのロボットアームの配置により、物体の配置を定めることができ、これが中央リポジトリ内で格納されうる。動かされない物体を走査することで、プラットフォームが通る物体の物体タグを走査デバイスが読み取る限り、プラットフォームが領域を通過するときに、まだ在庫調査されていない領域の在庫調査を行うことができる。
別の例では、図26の流れ図に示されているように、ロボットアームを使用して物体の在庫調査を行うための方法1700を取りあげている。この方法は、ブロック1710のように、プラットフォームに結合されているロボットアームで開始位置にある物体を捕捉する操作を含む。ロボットアームの端部に結合されているエンドエフェクターに結合されているスキャナーを使用して物体が捕捉されるときに物体を走査する操作は、ブロック1720のように続く。この方法の次の操作は、ブロック1730のように、プラットフォームを介して物体を端部の位置に動かすことであるものとしてよい。この方法は、ブロック1740のように、端部の位置にある物体を解放することをさらに含む。この方法の次の操作は、ブロック1750のように、物体を端部の位置とともに表す物体参照をログ記録デバイスに記録することであるものとしてよい。
開示されているシステムおよび方法は、物体の配置の記録とともに固定された配置またはコンパートメントを必ずしも有しない在庫物体の自動記録を行うことができる。例えば、在庫システムは、材料、鋼板、および他の物体が数エーカーも覆う可能性がある造船所で使用されうる。重い物体を動かすために使用されるのと同じデバイスが、物体を輸送する過程で物体に関連付けられているデータを走査し、ログに記録することができる。
遠隔操作ロボットデバイスは、プラットフォームに関連付けられているさまざまな持ち上げデバイスをさらに備えることができる。例示的な一実施形態において、持ち上げデバイス1800は、図27Aに例示されているように、プラットフォーム1810に結合されうる。持ち上げデバイスは、フォークリフトに似た構成をとりうる。プラットフォームは、可動であり、軌道1812または車輪を使用して輸送されうる。他のデバイスおよび機器は、プラットフォームによって結合または支持されうる。例えば、ロボットアーム1880は、本明細書で説明されているように、プラットフォームに結合されうる。持ち上げデバイスは、ロボットアームとともに連携動作し、これらのいずれかが単独で実行する機能を超える、またはより効率的に追加の持ち上げ機能を実行するように構成されうる。持ち上げデバイスは、以下で説明されているように、持ち上げマストあり、またはなしで製作されうる。持ち上げデバイスは、ロープロフィルであり、プラットフォームの前部または後部(図示せず)に位置決めされうる。
持ち上げデバイスは、ブラケット1910、ブラケットの回転を円滑にする枢着部1926を備えるアーム1920(例えば、固定アーム)、枢着部の周りでブラケットを回転させるためのアクチュエータ1950、およびブラケットに結合されているリフトキャリッジ(図28Aおよび図28Bに参照番号1944で示されている)を備えることができる。いくつかの態様において、アーム1920は、固定される必要はなく、プラットフォームに関して可動であるものとしてよい。例えば、アーム1920は、プラットフォームから伸展/後退することができる。別の例では、アーム1920は、プラットフォームに関して上昇/下降することができる。アームの端部1928は、プラットフォーム1810に結合されうる。プラットフォーム上の剛体支持体、またはプラットフォームへのアームの結合部は、溶接、ボルト、ピン、リベットなどで形成することができる。アクチュエータ1950の端部1956は、プラットフォーム1810に結合されうる。一態様では、プラットフォームへのアクチュエータの結合点は、アクチュエータのピストンが一方の位置から別の位置に動くときにアクチュエータが回転することを可能にするピン接続部であってよい。
アクチュエータ1950は、ハウジングおよびピストンを備えることができ、ピストンはハウジング内を動く。アクチュエータは、電気、油圧流体圧力、または空気圧で動作するものとしてよい。アクチュエータは、電気エネルギーを運動に変換することができる。アクチュエータを作動させるために制御信号が使用されうる。アクチュエータは、ブラケットを、図27Aに示されているような下降位置から、図27Bに示されているような上昇位置に回転させることができる。
アームまたは補強材1920は、端部1922上に静止した歯車の歯または歯1924を備えることができ、静止した歯車の歯は、図28Aに示されているように、歯車1930を回転させることができる。アームの端部1928は、プラットフォーム1810に結合されうる。ブラケット1910は、枢軸1926によってアーム1920の端部1922に回転可能に結合されうる。枢着部1926は、固定されたアームピン、ボルト、心棒などとすることができる。枢着部1926は、枢着部の摩擦を減らすためにベアリングを備えることができる。ベアリングは、他の回転ジョイントで使用することができる。ボルトは、ナットおよび/またはワッシャによって拘束されうる。歯車をブラケットまたは他の部材に結合するために使用される固定アームピンおよび他のピンは、横方向の拘束部を備えるので、ピンは摺動して回転点から外れることはない。例えば、横方向の拘束部は、コッターピンであってよい。
ブラケット1910は、金属または他の剛体材料から形成することができる。歯車およびコンポーネントは、鋼鉄および他の類似の金属から製作することができる。ブラケットは、多角形の形状を有するものとしてよい。一態様では、ブラケットは、一般的に三角形の形状を有するものとしてよい。アーム1920は、固定アームピンでブラケットの第1の点1926に結合され、リフト歯車1940は、リフト歯車ピンでブラケットの第2の点1942に結合され、アクチュエータ1950は、ブラケットの第3の点1954に結合されうる。アクチュエータピストン1952は、ピン、ボルト、または心棒1954によってブラケットに結合されうる。リフト歯車1940は、ブラケット1910およびリフトキャリッジ1944に結合されうる。リフトキャリッジは、ブラケットが枢着部1926の周りで回転すると高さが上下しうる。中心歯車1930は、中心歯車ピン1932によってブラケットに結合されうる。したがって、中心歯車1930は、アーム1920上の歯車の歯1924をリフト歯車1940に結合することができる。
一態様では、アーム1920の歯車の歯1924、中心歯車1930、およびリフト歯車1940の間の歯車比を計算し、リフト歯車に結合されたリフトキャリッジが地面に関する配向を維持するように回転させることができる。歯車比は、かみ合う2つの歯車または共通ローラーチェーンで接続されている2つのスプロケット上の歯の数の間の関係とすることができる。別の例では、中心歯車の代わりにチェーンが使用されうる。
使用時に、アクチュエータが作動すると、アクチュエータピストンがブラケット1910を枢軸1926の周りに回転させる。アクチュエータ1950が作動してリフトを持ち上げると、枢軸1926の周りのブラケット1910の回転が、リフトキャリッジを回転させて地面から離す。また、ブラケット1910が回転すると、図28Bに示されているように、中心歯車1930は、アーム1920上の歯車の歯1924と係合し、中心歯車1930を反時計回りに回転させる。中心歯車1930は、リフト歯車1940とも係合し、中心歯車1930の反時計回りの回転によりリフト歯車1940を時計回りに回転させる。歯車は、ブラケット1910を介して互いに堅く結合されているため、歯車のこの動作で、リフトキャリッジ1944は、ブラケットが枢軸1926の周りに回転したときに地面に関する配向を維持する。持ち上げデバイスは、同様に逆方向に動作してリフトを下げる。
一態様では、持ち上げアーム1960は、リフトキャリッジ1944に結合されうる。持ち上げアームは、ロードバックレスト1964(図27A)および水平アーム1962(図27A)を備えることができる。水平アーム(または水平部材)は、積載物を持ち上げるために使用され、垂直部材は、積載物を停止させることができる。水平アームは、ロードバックレストと一体化され、水平部材(水平アーム)から垂直部材(ロードバックレスト)に遷移することができる。水平アームと垂直部材との間の遷移部またはジョイントは、遷移部またはジョイントを堅く維持するために角度を付けられるか、または補強されうる。
持ち上げアーム1960は、リフトキャリッジ内のキー付きノッチ1944と嵌合しうるキー付き溝1966を有することができる。キー付き溝またはキー付きフックは、垂直部材またはロードバックレスト1964に結合され、持ち上げアームをリフトキャリッジに装着するために使用されうる。キー付きノッチおよび対応するキー付き溝は、リフトキャリッジ上の持ち上げアームの横方向のある程度の動きを許し、リフトキャリッジの前後軸上の動きを制限することができる。キー付きリフトキャリッジおよび/またはキー付きアームは、リフト歯車が回転したときにプラットフォームが置かれる表面に関して水平位置を維持しうる。キー付きアームは、容易に取り外し可能であり、パレットまたは枠箱などの、積載物との横方向の位置合わせを行うことができるリフトキャリッジ上で摺動しうる。キー付きアームは、重力または摩擦嵌めを利用することができる。リフトキャリッジおよび/またはキー付きアームは、図29に示されているように、アームが横方向位置で調整された後、キー付きアームの横方向の動きを低減するために嵌合面の一部に溝2044を備えることができる。アームは、アームの伸展された端部上で部分的に持ち上げられ、アームをリフトキャリッジ上で横方向に摺動し、位置を調整することができる。アームを下げて、キー付きリフトキャリッジの溝をキー付きアームの溝と係合させることができる。
別の例では、リフト歯車、リフトキャリッジ、またはリフト歯車とリフトキャリッジとの間の結合部は、リフトキャリッジを水平にするための回転アクチュエータを備えることができる。回転リフト歯車は、リフト歯車に関してリフトキャリッジを回転させることができる。回転アクチュエータは、プラットフォームが不整地、傾斜地、または下り坂にあるときにリフトキャリッジの角度にわずかな調整を行うことができ、リフトキャリッジの水平歯車位置は、リフトアームに下り勾配または上り勾配を付けることができる。
アクチュエータ、固定アーム、枢着部、リフト歯車、および中心歯車は、図29に示されているように、右ブラケット2010および左ブラケット2012に対して用意されうる。リフトキャリッジ2044は、右リフト歯車と左リフト歯車との間に結合されうる。キー付きリフトキャリッジ上に、複数のキー付きアーム1960およびキー付きアーム2062が装着されうる。
別の例では、折り畳み持ち上げデバイスは、図27~図29のプラットフォームに類似する、また本明細書で説明されているように、1つまたは複数のロボットアームも支持しうる、図30Aに例示されているような、プラットフォーム2110に結合されうる。折り畳み持ち上げデバイスは、高いプラットフォーム、例えば、トラック、列車、および/または倉庫棚のプラットフォームにキャリッジが届くようにすることができる。マストおよびキャリッジを折り畳めるようにすることで、持ち上げデバイスが使用されていないときに持ち上げデバイスをしまっておくことができる。折り畳み持ち上げデバイスを折り畳むと、ロボットアームおよびクレーンなどの、プラットフォーム上に装着されている機器およびデバイスの移動性を完全に確保できる。
折り畳み持ち上げデバイスは、プラットフォーム2110から伸展するアーム2140およびプラットフォームに回転可能に接続されているマスト2120を有することができる。プラットフォームおよびマストは、マスト枢着部2114に周りに結合されうる。マストは、プラットフォーム上の垂直に近い位置から折り畳み位置へマスト枢軸の周りで回転することができる。キャリッジ2130は、マストに摺動可能に接続され、キャリッジは、マストを上下に摺動することができる。アクチュエータ2122は、プラットフォームおよびマストに結合され、垂直位置と折り畳まれた位置との間でマストを回転するために使用されうる。アクチュエータは、プラットフォームピン2124でプラットフォームに、マストピン2126でマストに結合され、これにより、マストが回転するときにアクチュエータの部材が動きまたは回転するようにできる。キャリッジは、マストを垂直または垂直に近い位置に置いたまま、図30Bに例示されているように上げられるか、または図30Aに例示されているように下げられうる。
キャリッジは、アーム2140およびロードバックレスト2131を備えることができる。アームは、図30A~図30Bに示されているように、マストが垂直位置にあるときに水平に伸展しうる。アームは、積載物を持ち上げるために使用できる。例えば、積載物は、枠箱、パレット、または機器とすることができる。ロードバックレストは、マストとキャリッジとの間に結合部を設け、プラットフォームが積載物を捕捉し、積載物を押すときに積載物のストッパーを構成しうる。アームは、キャリッジ枢軸ピン2134でロードバックレストに回転可能に接続されうる。アームは、図30Cに示されているようなロードバックレストによる垂直位置(開放位置)と図30Dに示されているようなロードバックレストによる平行位置(折り畳み位置)との間で90度回転しうる。
アームストッパー2132は、ロードバックレスト2131と一体化されるか、またはロードバックレスト2131に結合されうる。アームストッパーは、アームが開放固定位置(ロードバックレストと垂直)にあるときにアーム2140のストッパーを構成することができる。アームストッパーは、アームおよびアームが運ぶ積載物を支持することができる。別の例では、キャリッジ枢着部は、ロードバックレストからアームを伸展させ(ロードバックレストと垂直)、および/またはロードバックレスト上でアームを折り畳む(ロードバックレストと平行)ための回転アクチュエータとすることができる。
マスト2120およびキャリッジ2130は、図30C~図30Dに示されているように、プラットフォーム2110の方へ、また場合によってはプラットフォーム2110上に折り畳むことができる。マストは、垂直位置からプラットフォームの方へ少なくとも20度回転することができる。マストがプラットフォーム上に折り畳まれると、マストは、プラットフォームと一体化された、またはプラットフォームに結合されたマストレスト(図示せず)上で支持されうる。マストが垂直位置に開かれると、マストが垂直位置から5度の角度など、指定された位置を超えて回転するのを停止させるためにマストストッパーが使用されうる。マストストッパーは、プラットフォームまたはマストと一体化されるか、またはプラットフォームまたはマストに結合されうる。リフトチェーンおよび他のコンポーネントをマストおよびキャリッジに結合してキャリッジを動かし、持ち上げることができる。マストに結合されているアクチュエータおよびキャリッジに結合されている回転アクチュエータを作動させるために、制御装置が使用されうる。
持ち上げデバイスは、図31A~図31Bに示されている例に示されているように、プラットフォーム上に装着されたロボットアーム2220を有するプラットフォームに結合されうる。車輪2212は、プラットフォームに結合されうる。一態様では、マストはフォーク形であり、これにより、マストの垂直部材によるロボットアームの動きとの干渉の可能性が最小になるようにロボットアームの隙間を設けることができる。別の態様では、マスト部材は分離間隔が広く、これにより、マストの垂直部材によるロボットアームの動きとの干渉が最小になるようにできる。なおも別の態様では、マストは伸縮するものとしてよく、これにより、マストは、キャリッジが下げられた位置にあるときに低い垂直高さ(ロープロファイル)を有する。プラットフォーム、持ち上げデバイス、および/またはロボットアームは、遠隔制御装置によって遠隔制御することができる。折り畳み持ち上げデバイスは、持ち上げデバイスが使用されていないときにプラットフォーム上に折り畳める。他の持ち上げデバイス構成も、当業者には明らかなように使用することができる。
前述の例は、本明細書で説明されている原理および概念を例示するものであるが、実装の形態、使用、および詳細の多数の修正は、発明の才能を用いずとも、これらの原理および概念から逸脱することなく行えることは、当業者には明白であろう。したがって、原理および概念は、以下に記載の請求項による制限を除き、制限されることは意図されていない。
100 遠隔操作ロボットシステム
200A、200B マスター制御アーム
202 ハンドル
204 重力センサー
206 支持体
207 腕支持体
210 基部
211 第1の支持部材
212 第2の支持部材
213 第3の支持部材
214 第4の支持部材
215 第5の支持部材
216 第6の支持部材
217 第7の支持部材
218 伸展部材
221~227 軸
231~237 ジョイント
241~247 位置センサー
251~257 アクチュエータ
261~269 荷重センサー
271 一般DOF制御装置(GDC)
271~277 GDC
281~287 サーボ弁
300A、300B スレーブアーム
304 重力センサー
310 基部
311 第1の支持部材
312 第2の支持部材
313 第3の支持部材
314 第4の支持部材
315 第5の支持部材
316 第6の支持部材
317 第7の支持部材
321~327 軸
331~337 ジョイント
341~347 位置センサー
351~357 アクチュエータ
361~368 荷重センサー
371~377 GDC
381~387 サーボ弁
390 エンドエフェクター
392,393 外側縁
400 プラットフォーム
420,422,426,428,430 枢軸
432 インターフェース
451,453,455 トルク部材
452,454 第1のリンケージ
462,464 第2のリンケージ
470 接続ライン
472 制御弁ポート
474 アクチュエータポート
476 リミッター
481 クランプ弁
482 一方通行弁
483,484,485,486 逆止弁
487 圧力逃し弁
520,522,524,526,528,530,532,534,536,538,540,542,544,546 枢軸
551 トルク部材
552,553,554,557,565 第1のリンケージ
555 第1のトルク部材
556 第2のトルク部材
558,562,563,564,566 第2のリンケージ
559,560 トルク部材
610 中央制御装置
611,612,613,614,615,616,617 コマンドフィルター
621 マスター位置コマンド
631 マスタートルクコマンド
641 マスター位置制御装置
651 マスター弁制御装置
661 マスタートルク制御装置
681 重力補償装置
691 マスタートルク補助制御装置
693 ロードセルカード
700 遠隔操作ロボットシステム
701 燃料供給部
702 動力ユニット
703 油圧ポンプ
704A 右マスター制御アーム
704B 左マスター制御アーム
704C 右スレーブアーム
704D 左スレーブアーム
705 発電機
706 電気バス
707 中央制御装置
708 GDC
709 サーボ弁
721 スレーブ位置コマンド
731 スレーブトルクコマンド
741 スレーブ位置制御装置
751 弁制御装置
761 スレーブトルク制御装置
781 重力補償装置
791 スレーブ荷重制御装置
793 スレーブロードセルカード
800 遠隔操作ロボットシステム
802 マスター制御アーム
803 スレーブアーム
810 移動プラットフォーム
812 制御パネル
814 座席
816 スレーブアーム受入溝
817 緩衝材
818、820 スレーブアーム支持システム
822 取付点
826 マスター制御アーム支持システム
828 ユーザー操作キャビティ
830 マスター制御取付点
831 フットペダル
832 移動軌道システム
910 プラットフォーム
932 車輪
950 全方向システム
952 有向角度
954 前進方向または後退方向
956 視野角/方向
962 方向
970 遠隔操作ロボットシステム
972 障害物
974 通路
976 方向
977 引っ込められた位置
978 方向
980 モビリティシステム
981A、982A、983A、984A、984B 車輪
985 センサーバー
986、987 センサー
1000 遠隔操作ロボットシステム
1010 トレーラープラットフォーム
1020 マスター制御アーム
1030 スレーブアーム
1040 スタビライザー
1100 遠隔操作ロボットシステム
1105 一次プラットフォーム
1110 二次プラットフォーム
1112 支点
1115 レール、レールシステム
1116、1117 レール
1118 レール支持部材
1120 基部
1122 動力源
1125 座席
1130 制御レバー
1135 マスター制御アーム
1136,1137 エルボージョイント
1138 肘関節
1140 スレーブアーム
1155 荷重
1160 アーム支持部材
1166,1167,1168,1169 走行車輪
1170,1171 リンケージ
1175 モーター
1180 駆動軸
1185 制御ライン
1200 トラック
1220 マスター制御アーム
1230 遠隔スレーブアーム
1300,1302,1304 脱着可能マスター制御アームフレーム
1310 マスター制御アームフレーム部材
1312A,1312B フレーム結合点
1314A,1314B ショルダーストラップ
1316 ウエストベルト、ストラップ
1318 マスター制御アームフレーム部材
1320A,1320B アーム結合パッド
1332A,1332B 嵌め合い結合点
1330A,1330B 結合支柱
1340 テザー
1342 モジュール
1343 蓄電デバイス
1344 釣り合いおもり
1345 ワイヤレス通信モジュール
1350 垂直部材
1360 遠隔操作ロボットシステム
1361 プラットフォーム
1362,1364,1366,1403 スレーブアーム
1372,1374 マスター制御アーム
1406 取り付け端部
1408 受け入れ端部
1410,1420,1430 エンドエフェクター
1450 エンドエフェクター制御ユニット
1452,1454 ボタン
1460 エンドエフェクター
1462、1464 伸展可能な長さ
1466 伸展された位置
1510 プラットフォーム
1512 軌道
1520 ロボットスレーブアーム
1530 エンドエフェクター
1540 電磁石
1550A,1550B 走査デバイス
1552A,1552B 走査範囲
1560 位置決めデバイス
1570 プラットフォームトランシーバ
1574 データストレージログ記録デバイス
1580 カメラ
1582 計量器
1620 物体
1622 物体タグ
1630A~1630Q 物品
1632A 物体タグ
1640 中央リポジトリ
1642 データベース
1644 物体記録
1646 物体特性
1672 中央リポジトリトランシーバ
1690 ユーザーインターフェース
1692 ユーザーインターフェーストランシーバ
1694 マッピングデバイス
1700 方法
1812 軌道
1880 ロボットアーム
1910 ブラケット
1920 アーム
1922 端部
1924 静止した歯車の歯または歯
1926 枢着部
1928 アームの端部
1930 歯車
1932 中心歯車ピン
1940 リフト歯車
1942 第2の点
1944 リフトキャリッジ
1950 アクチュエータ
1952 アクチュエータピストン
1954 第3の点
1956 端部
1960 持ち上げアーム
1962 水平アーム
1964 ロードバックレスト
1966 キー付き溝
2010 右ブラケット
2012 左ブラケット
2044 溝
2062 キー付きアーム
2110 プラットフォーム
2114 マスト枢着部
2120 マスト
2122 アクチュエータ
2124 プラットフォームピン
2126 マストピン
2130 キャリッジ
2131 ロードバックレスト
2132 アームストッパー
2134 キャリッジ枢軸ピン
2140 アーム
2220 ロボットアーム
2212 車輪

Claims (35)

  1. 遠隔操作ロボットシステムであって、
    プラットフォームと、
    由度を複数形成するように1つ以上のジョイントの周りに共に結合される複数の支持部材と、複数の前記自由度の1つ以上で複数の支持部材アームの1つ以上を作動させるように動作可能な少なくとも1つのアクチュエータと、を有するマスター制御アームと、
    ユーザーによる前記マスター制御アームの制御を円滑にするために前記マスター制御アームに関連付けられるユーザーインターフェースと、
    前記プラットフォームに取り付けられるスレーブアームであって、前記スレーブアームは、前記マスター制御アームの前記自由度に対応する自由度を複数形成するように1つ以上のジョイントの周りに共に結合される複数の支持部材を有し、前記スレーブアームは、前記スレーブアームと対象物との接触を示す前記マスター制御アームを通じたユーザーへの一時的な力フィードバックを円滑にするように動作可能な荷重センサーを備えており、前記荷重センサーは、前記スレーブアームと対象物との接触の結果発生する測定された荷重に基づく荷重情報の生成を円滑にし、少なくとも1つの前記アクチュエータは、前記荷重情報に基づいてユーザーに前記一時的な力フィードバックを与えるために前記マスター制御アームを作動させるよう構成されている、スレーブアームと、
    を備え、
    前記一時的な力フィードバックは、タップ応答を含むことを特徴とする遠隔操作ロボットシステム。
  2. 少なくとも1つの前記アクチュエータは、前記荷重センサーによって検知された前記荷重の振幅に比例する振幅でユーザーに前記一時的な力フィードバックを与えるように構成されていることを特徴とする請求項1に記載の遠隔操作ロボットシステム。
  3. 少なくとも1つの前記アクチュエータは、前記荷重センサーによって検知された前記荷重情報の荷重の微分に基づいてユーザーに与えられる前記一時的な力フィードバックの振幅を変化させるように構成されていることを特徴とする請求項1に記載の遠隔操作ロボットシステム。
  4. 前記荷重の微分は、前記荷重の微分を、ユーザーが感知できかつ少なくとも1つの前記アクチュエータが生成できる前記一時的な力フィードバックに対応するフィルター出力へと変換するために、フィルターを通過されることを特徴とする請求項に記載の遠隔操作ロボットシステム。
  5. 前記フィルター出力は、前記マスター制御アームの少なくとも1つの前記アクチュエータに対してトルクコマンドとして適用されることを特徴とする請求項に記載の遠隔操作ロボットシステム。
  6. 前記一時的な力フィードバックは、前記マスター制御アームの手首の自由度で少なくとも1つの前記アクチュエータによって適用されることを特徴とする請求項1に記載の遠隔操作ロボットシステム。
  7. 連続的な力反射機能をさらに備えており、前記スレーブアームの前記荷重センサーは、比例する力反射のセッティングにしたがって前記マスター制御アームでの力反射を円滑にするように動作可能であり、前記一時的な力フィードバックは、前記連続的な力反射機能にしたがって与えられる抵抗力に関して不釣り合いな抵抗力での一時的なスパイクを含むことを特徴とする請求項1に記載の遠隔操作ロボットシステム。
  8. 少なくとも1つの前記アクチュエータは、前記スレーブアームにおける荷重の大きさに比例する大きさでユーザーに前記連続的な力反射機能の抵抗力を与えるよう構成されていることを特徴とする請求項に記載の遠隔操作ロボットシステム。
  9. 前記一時的な力フィードバックの抵抗力は、操作中に前記マスター制御アームの動作を阻止する大きさで付与されることを特徴とする請求項に記載の遠隔操作ロボットシステム。
  10. 前記マスター制御アームおよび前記スレーブアームは、前記プラットフォームの周りに共に支持されることを特徴とする請求項1に記載の遠隔操作ロボットシステム。
  11. 前記プラットフォームは、移動遠隔操作機能を提供するよう動作可能な移動プラットフォームを備えることを特徴とする請求項1に記載の遠隔操作ロボットシステム。
  12. 前記マスター制御アームの荷重および位置の少なくとも1つは、前記スレーブアームの荷重および位置のそれぞれの少なくとも1つに比例することを特徴とする請求項1に記載の遠隔操作ロボットシステム。
  13. 前記マスター制御アーム、前記プラットフォームおよび前記スレーブアームの少なくとも1つに動力供給するために前記プラットフォームの周りに支持される動力源をさらに備えることを特徴とする請求項1に記載の遠隔操作ロボットシステム。
  14. 前記プラットフォームは、着座位置でユーザーを支持するための座席をさらに備えることを特徴とする請求項1に記載の遠隔操作ロボットシステム。
  15. 前記プラットフォームは、スレーブアーム受入溝をさらに備えており、前記スレーブアームの少なくとも一部は、操作されていないときに前記スレーブアーム受入溝に受け入れられることを特徴とする請求項1に記載の遠隔操作ロボットシステム。
  16. 前記移動プラットフォームは、地面の周りで前記移動プラットフォームをマニピュレートしかつ動かすために複数の自由度をユーザーに提供するための全方向システムをさらに備えており、前記全方向システムは、互いに独立している有向配向をもたらす少なくとも3つの車輪を備えることを特徴とする請求項11に記載の遠隔操作ロボットシステム。
  17. 前記移動プラットフォームは、牽引車両に取り付け可能であるトレーラープラットフォームを備えることを特徴とする請求項11に記載の遠隔操作ロボットシステム。
  18. 複数のアクチュエータは、前記荷重情報に基づいてユーザーに前記一時的な力フィードバックを与えるために前記マスター制御アームを作動するように構成されていることを特徴とする請求項1に記載の遠隔操作ロボットシステム。
  19. 複数の前記アクチュエータの1つは、前記荷重情報に基づいてユーザーに前記一時的な力フィードバックを与えるために前記マスター制御アームを作動するように構成されていることを特徴とする請求項18に記載の遠隔操作ロボットシステム。
  20. 複数の前記アクチュエータの2つ以上は、前記荷重情報に基づいてユーザーに前記一時的な力フィードバックを与えるために前記マスター制御アームを作動することを特徴とする請求項18に記載の遠隔操作ロボットシステム。
  21. 力反射および一時的な力フィードバックは、複数の前記自由度のうち同じ自由度で与えられることを特徴とする請求項18に記載の遠隔操作ロボットシステム。
  22. 同じアクチュエータが、前記荷重情報に基づいてユーザーに前記一時的な力フィードバックおよび前記力反射を与えるように前記マスター制御アームを作動するよう構成されていることを特徴とする請求項21に記載の遠隔操作ロボットシステム。
  23. 別々のアクチュエータが、前記荷重情報に基づいてユーザーに前記一時的な力フィードバックおよび前記力反射を別々に与えるように、同じ自由度で前記マスター制御アームを作動するよう構成されていることを特徴とする請求項21に記載の遠隔操作ロボットシステム。
  24. 力反射および一時的な力フィードバックは、複数の前記自由度のうち異なる自由度で適用されることを特徴とする請求項18に記載の遠隔操作ロボットシステム。
  25. 別々のアクチュエータが、前記荷重情報に基づいてユーザーに前記一時的な力フィードバックおよび前記力反射を別々に与えるように、別々の自由度で前記マスター制御アームを作動するよう構成されていることを特徴とする請求項24に記載の遠隔操作ロボットシステム。
  26. 遠隔操作ロボットシステムを制御する方法であって、前記遠隔操作ロボットシステムは、ユーザーに制御されかつ自由度を複数形成するように1つ以上のジョイントの周りに共に結合される複数の支持部材を有するマスター制御アームと、前記マスター制御アームの自由度に対応する自由度を複数形成するように1つ以上のジョイントの周りに共に結合された複数の支持部材を有するスレーブアームと、前記スレーブアームと対象物との接触を示す前記マスター制御アームを通じたユーザーへの一時的な力フィードバックを円滑にするように動作可能な荷重センサーと、を備えており、
    前記スレーブアームと対象物との接触の結果発生する測定された荷重に基づいて荷重情報を生成することによって、前記マスター制御アームを通じたユーザーへの一時的な力フィードバックを円滑にするように動作可能な前記荷重センサーを用いて、前記スレーブアームにかかる荷重を測定するステップと、
    前記荷重情報に基づいてユーザーに前記一時的な力フィードバックを与えるために前記マスター制御アームを作動させるステップと、
    を含み、
    前記一時的な力フィードバックは、タップ応答を含むことを特徴とする方法。
  27. 前記一時的な力フィードバックは、前記荷重センサーによって検知された前記荷重の振幅に比例する振幅でユーザーに与えられることを特徴とする請求項26に記載の方法。
  28. 前記荷重センサーによって検知された前記荷重情報の荷重の微分に基づいてユーザーに与えられる前記一時的な力フィードバックを変化させるステップをさらに含むことを特徴とする請求項26に記載の方法。
  29. 前記荷重の微分を、ユーザーが感知できかつ少なくとも1つのアクチュエータが生成できる前記一時的な力フィードバックに対応するフィルター出力へと換するために、前記荷重の微分をフィルターを通過させるステップを含むことを特徴とする請求項28に記載の方法。
  30. 前記フィルター出力を、前記マスター制御アームの少なくとも1つの前記アクチュエータに対してトルクコマンドとして適用するステップをさらに含むことを特徴とする請求項29に記載の方法。
  31. 前記一時的な力フィードバックを、前記マスター制御アームの手首の自由度で、少なくとも1つのアクチュエータによって適用するステップをさらに含むことを特徴とする請求項26に記載の方法。
  32. 前記スレーブアームの前記荷重センサーは、連続的な力反射機能の比例する力反射のセッティングにしたがって前記マスター制御アームでの力反射を円滑にするように動作可能であり、
    前記方法は、前記連続的な力反射機能にしたがって与えられる抵抗力に関して不釣り合いである抵抗力で、一時的なスパイクとして、前記一時的な力フィードバックを適用するステップをさらに含むことを特徴とする請求項26に記載の方法。
  33. 少なくとも1つのアクチュエータは、前記スレーブアームにおける荷重の大きさに比例する大きさでユーザーに前記連続的な力反射機能の抵抗力を与えるよう構成されていることを特徴とする請求項32に記載の方法。
  34. 前記一時的な力フィードバックの抵抗力は、操作中に前記マスター制御アームの動作を阻止する大きさで付与されることを特徴とする請求項32に記載の方法。
  35. 前記マスター制御アームの荷重および位置の少なくとも1つは、前記スレーブアームの荷重および位置のそれぞれの少なくとも1つに比例することを特徴とする請求項26に記載の方法。
JP2022076626A 2011-04-29 2022-05-06 遠隔制御ロボットシステム Active JP7395647B2 (ja)

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
US201161481110P 2011-04-29 2011-04-29
US201161481091P 2011-04-29 2011-04-29
US201161481089P 2011-04-29 2011-04-29
US201161481095P 2011-04-29 2011-04-29
US201161481099P 2011-04-29 2011-04-29
US201161481103P 2011-04-29 2011-04-29
US61/481,110 2011-04-29
US61/481,103 2011-04-29
US61/481,095 2011-04-29
US61/481,099 2011-04-29
US61/481,091 2011-04-29
US61/481,089 2011-04-29
US13/332,165 2011-12-20
US13/332,165 US9789603B2 (en) 2011-04-29 2011-12-20 Teleoperated robotic system
JP2021000847A JP7071548B2 (ja) 2011-04-29 2021-01-06 遠隔制御ロボットシステム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021000847A Division JP7071548B2 (ja) 2011-04-29 2021-01-06 遠隔制御ロボットシステム

Publications (2)

Publication Number Publication Date
JP2022107625A JP2022107625A (ja) 2022-07-22
JP7395647B2 true JP7395647B2 (ja) 2023-12-11

Family

ID=46052902

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2014508144A Active JP6320915B2 (ja) 2011-04-29 2012-04-27 遠隔制御ロボットシステム
JP2017239642A Pending JP2018043343A (ja) 2011-04-29 2017-12-14 遠隔制御ロボットシステム
JP2019181424A Pending JP2019217633A (ja) 2011-04-29 2019-10-01 遠隔制御ロボットシステム
JP2021000847A Active JP7071548B2 (ja) 2011-04-29 2021-01-06 遠隔制御ロボットシステム
JP2022076625A Pending JP2022107624A (ja) 2011-04-29 2022-05-06 遠隔制御ロボットシステム
JP2022076624A Active JP7387804B2 (ja) 2011-04-29 2022-05-06 遠隔制御ロボットシステム
JP2022076626A Active JP7395647B2 (ja) 2011-04-29 2022-05-06 遠隔制御ロボットシステム

Family Applications Before (6)

Application Number Title Priority Date Filing Date
JP2014508144A Active JP6320915B2 (ja) 2011-04-29 2012-04-27 遠隔制御ロボットシステム
JP2017239642A Pending JP2018043343A (ja) 2011-04-29 2017-12-14 遠隔制御ロボットシステム
JP2019181424A Pending JP2019217633A (ja) 2011-04-29 2019-10-01 遠隔制御ロボットシステム
JP2021000847A Active JP7071548B2 (ja) 2011-04-29 2021-01-06 遠隔制御ロボットシステム
JP2022076625A Pending JP2022107624A (ja) 2011-04-29 2022-05-06 遠隔制御ロボットシステム
JP2022076624A Active JP7387804B2 (ja) 2011-04-29 2022-05-06 遠隔制御ロボットシステム

Country Status (5)

Country Link
US (5) US9789603B2 (ja)
EP (4) EP4159383A1 (ja)
JP (7) JP6320915B2 (ja)
CN (1) CN103648730A (ja)
WO (1) WO2012149446A2 (ja)

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9094082B1 (en) * 2012-03-29 2015-07-28 The United States Of America As Represented By The Secretary Of The Navy System and method for remotely-operated deployment and retrieval of communication relays
US9352411B2 (en) 2008-05-28 2016-05-31 Illinois Tool Works Inc. Welding training system
JP5529057B2 (ja) * 2011-02-23 2014-06-25 日立建機株式会社 建設機械のコントロールバルブ取り付け構造
US8942846B2 (en) 2011-04-29 2015-01-27 Raytheon Company System and method for controlling a teleoperated robotic agile lift system
US9789603B2 (en) 2011-04-29 2017-10-17 Sarcos Lc Teleoperated robotic system
US20120283746A1 (en) * 2011-05-02 2012-11-08 Hstar Technologies Mobile Medical Robotic System
US9101994B2 (en) 2011-08-10 2015-08-11 Illinois Tool Works Inc. System and device for welding training
WO2013099091A1 (ja) * 2011-12-28 2013-07-04 パナソニック株式会社 自走式ロボットハンド
JP5957473B2 (ja) * 2012-02-15 2016-07-27 日立建機株式会社 双腕型作業機械
US9616580B2 (en) 2012-05-14 2017-04-11 Sarcos Lc End effector for a robotic arm
US8958916B2 (en) * 2012-05-31 2015-02-17 Northrop Grumman Systems Corporation Robotic arm module
US20140114464A1 (en) * 2012-10-23 2014-04-24 Christopher Williams System and method for remotely positioning an end effector
US9583014B2 (en) 2012-11-09 2017-02-28 Illinois Tool Works Inc. System and device for welding training
US9056396B1 (en) 2013-03-05 2015-06-16 Autofuss Programming of a robotic arm using a motion capture system
US9583023B2 (en) 2013-03-15 2017-02-28 Illinois Tool Works Inc. Welding torch for a welding training system
JP5835254B2 (ja) * 2013-03-15 2015-12-24 株式会社安川電機 ロボットシステム、及び、ロボットシステムの制御方法
GB2516611B (en) * 2013-05-20 2015-09-16 Sevcon Ltd Vehicle controller and method of controlling a vehicle
US10915113B2 (en) * 2013-07-02 2021-02-09 Ubiquity Robotics, Inc. Versatile autonomous mobile platform with 3-d imaging system
US11348066B2 (en) 2013-07-25 2022-05-31 IAM Robotics, LLC System and method for piece picking or put-away with a mobile manipulation robot
US9785911B2 (en) * 2013-07-25 2017-10-10 I AM Robotics, LLC System and method for piece-picking or put-away with a mobile manipulation robot
US10056010B2 (en) 2013-12-03 2018-08-21 Illinois Tool Works Inc. Systems and methods for a weld training system
US10170019B2 (en) 2014-01-07 2019-01-01 Illinois Tool Works Inc. Feedback from a welding torch of a welding system
US10105782B2 (en) 2014-01-07 2018-10-23 Illinois Tool Works Inc. Feedback from a welding torch of a welding system
US9589481B2 (en) 2014-01-07 2017-03-07 Illinois Tool Works Inc. Welding software for detection and control of devices and for analysis of data
US9314922B2 (en) 2014-02-07 2016-04-19 Control Interfaces LLC Remotely operated manipulator and ROV control systems and methods
US10766133B2 (en) 2014-05-06 2020-09-08 Sarcos Lc Legged robotic device utilizing modifiable linkage mechanism
CN104002307A (zh) * 2014-05-23 2014-08-27 智慧城市系统服务(中国)有限公司 穿戴式救援机器人控制方法及系统
US9856037B2 (en) * 2014-06-18 2018-01-02 The Boeing Company Stabilization of an end of an extended-reach apparatus in a limited-access space
US10665128B2 (en) 2014-06-27 2020-05-26 Illinois Tool Works Inc. System and method of monitoring welding information
US10307853B2 (en) 2014-06-27 2019-06-04 Illinois Tool Works Inc. System and method for managing welding data
US9259838B1 (en) 2014-07-24 2016-02-16 Google Inc. Systems and methods for ground plane estimation
US11014183B2 (en) 2014-08-07 2021-05-25 Illinois Tool Works Inc. System and method of marking a welding workpiece
CN107072722B (zh) * 2014-09-15 2020-05-12 柯惠Lp公司 机器人控制手术组件
US10373304B2 (en) 2014-11-05 2019-08-06 Illinois Tool Works Inc. System and method of arranging welding device markers
US10417934B2 (en) 2014-11-05 2019-09-17 Illinois Tool Works Inc. System and method of reviewing weld data
US10402959B2 (en) 2014-11-05 2019-09-03 Illinois Tool Works Inc. System and method of active torch marker control
US10204406B2 (en) 2014-11-05 2019-02-12 Illinois Tool Works Inc. System and method of controlling welding system camera exposure and marker illumination
US10490098B2 (en) 2014-11-05 2019-11-26 Illinois Tool Works Inc. System and method of recording multi-run data
US10210773B2 (en) 2014-11-05 2019-02-19 Illinois Tool Works Inc. System and method for welding torch display
US9623560B1 (en) * 2014-11-26 2017-04-18 Daniel Theobald Methods of operating a mechanism and systems related therewith
US9378484B1 (en) 2014-12-02 2016-06-28 Amazon Technologies, Inc. Management of inventory items
US10201901B2 (en) * 2015-01-29 2019-02-12 Canon Kabushiki Kaisha Robot apparatus, method for controlling robot, program, and recording medium
DE102015004087B3 (de) * 2015-03-31 2016-12-29 gomtec GmbH Fahrbarer Roboter mit Kollisionserkennung
US10427239B2 (en) 2015-04-02 2019-10-01 Illinois Tool Works Inc. Systems and methods for tracking weld training arc parameters
JP6754364B2 (ja) * 2015-08-25 2020-09-09 川崎重工業株式会社 ロボットシステム
EP3344422B1 (en) * 2015-09-01 2020-11-04 Berkshire Grey, Inc. Systems and methods for providing dynamic robotic control systems
US11370128B2 (en) 2015-09-01 2022-06-28 Berkshire Grey Operating Company, Inc. Systems and methods for providing dynamic robotic control systems
US9833294B2 (en) * 2015-10-02 2017-12-05 Synaptive Medical (Barbados) Inc. RFID medical device control interface
KR102543212B1 (ko) * 2015-10-26 2023-06-14 (주)한화 로봇 제어 시스템 및 방법
WO2017072771A1 (en) 2015-10-28 2017-05-04 Bar-Ilan University Robotic cooperative system
WO2017156363A1 (en) * 2016-03-10 2017-09-14 Massachusetts Institute Of Technology Robotic systems for supporting a user
CN105583814B (zh) * 2016-03-17 2019-09-27 钱历 一种可迅速拆卸和组装的机器人
WO2017210497A1 (en) 2016-06-03 2017-12-07 Covidien Lp Systems, methods, and computer-readable program products for controlling a robotically delivered manipulator
DE112017003480B4 (de) * 2016-07-11 2021-01-21 Groove X, Inc. Autonom handelnder Roboter
US10571902B2 (en) * 2016-10-12 2020-02-25 Sisu Devices Llc Robotic programming and motion control
US10828767B2 (en) 2016-11-11 2020-11-10 Sarcos Corp. Tunable actuator joint modules having energy recovering quasi-passive elastic actuators with internal valve arrangements
US10821614B2 (en) 2016-11-11 2020-11-03 Sarcos Corp. Clutched joint modules having a quasi-passive elastic actuator for a robotic assembly
US10919161B2 (en) 2016-11-11 2021-02-16 Sarcos Corp. Clutched joint modules for a robotic system
US10765537B2 (en) 2016-11-11 2020-09-08 Sarcos Corp. Tunable actuator joint modules having energy recovering quasi-passive elastic actuators for use within a robotic system
JP6757240B2 (ja) * 2016-12-15 2020-09-16 三菱重工業株式会社 制御装置、制御方法、プログラム
CN106926260A (zh) * 2017-03-10 2017-07-07 蒙柳 一种遥操作机器人交互控制器
JP6902370B2 (ja) * 2017-03-15 2021-07-14 株式会社オカムラ 管理システム、管理方法及びプログラム
US11230000B2 (en) * 2017-03-20 2022-01-25 Georgia Tech Research Corporation Mobile manipulation device
JP7237942B2 (ja) * 2017-05-17 2023-03-13 ティペット,ジョナサン ジョイントのための制御システムおよびその操作方法
JP7049069B2 (ja) * 2017-05-19 2022-04-06 川崎重工業株式会社 ロボットシステム及びロボットシステムの制御方法
WO2019005945A1 (en) 2017-06-27 2019-01-03 Massachusetts Institute Of Technology PORTABLE ROBOTIC SYSTEMS FOR SUPPORTING A LOAD
WO2019039006A1 (ja) * 2017-08-23 2019-02-28 ソニー株式会社 ロボット
CN107457764A (zh) * 2017-09-14 2017-12-12 智造未来(北京)机器人系统技术有限公司 载人机甲
JP6936712B2 (ja) * 2017-11-24 2021-09-22 川崎重工業株式会社 操作装置
US10843330B2 (en) 2017-12-07 2020-11-24 Sarcos Corp. Resistance-based joint constraint for a master robotic system
US11331809B2 (en) 2017-12-18 2022-05-17 Sarcos Corp. Dynamically controlled robotic stiffening element
US10719085B2 (en) * 2018-02-22 2020-07-21 Boston Dynamics, Inc. Mobile robot sitting and standing
US10966893B2 (en) * 2018-03-23 2021-04-06 Hiwin Technologies Corp. Exoskeleton apparatus for limb rehabilitation
CN108453741B (zh) * 2018-04-13 2021-02-02 珞石(山东)智能科技有限公司 一种工业机器人柔性伺服控制方法
EP3795309B1 (en) * 2018-05-16 2023-08-30 Panasonic Intellectual Property Management Co., Ltd. Encoder abnormality detecting method, operation control device, robot, and robot system
KR20210010871A (ko) 2018-05-18 2021-01-28 아우리스 헬스, 인코포레이티드 로봇식 원격작동 시스템을 위한 제어기
CN108814902B (zh) * 2018-06-29 2020-01-10 华中科技大学 一种人机运动匹配且能对侧互换的上肢外骨骼康复装置
CN110664583A (zh) * 2018-07-03 2020-01-10 中国科学院沈阳自动化研究所 一种八自由度局部力反馈仿生上肢外骨骼主手
JP6950638B2 (ja) * 2018-07-13 2021-10-13 オムロン株式会社 マニピュレータ制御装置、マニピュレータ制御方法、及びマニピュレータ制御プログラム
US11396072B2 (en) 2018-08-20 2022-07-26 Massachusetts Institute Of Technology Robotic manipulation of objects using external contacts
WO2020041117A1 (en) * 2018-08-20 2020-02-27 Massachusetts Institute Of Technology Robotic manipulation of objects for grip adjustment
CN109335989B (zh) * 2018-11-19 2020-07-14 湖北工业大学 带有机械臂的水坝流道检修平台
PE20211717A1 (es) * 2018-12-10 2021-09-03 Esco Group Llc Sistema y proceso para conducir operaciones en el campo
US11241801B2 (en) 2018-12-31 2022-02-08 Sarcos Corp. Robotic end effector with dorsally supported actuation mechanism
US10906191B2 (en) 2018-12-31 2021-02-02 Sarcos Corp. Hybrid robotic end effector
US11351675B2 (en) 2018-12-31 2022-06-07 Sarcos Corp. Robotic end-effector having dynamic stiffening elements for conforming object interaction
CN109676609A (zh) * 2019-01-24 2019-04-26 深圳市工匠社科技有限公司 机器人控制系统及相关产品
JP7383001B2 (ja) * 2019-02-22 2023-11-17 株式会社Fuji モジュール管理システム
DE202019001448U1 (de) * 2019-03-29 2020-07-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Aktuatorsystem
WO2020206457A1 (en) 2019-04-05 2020-10-08 IAM Robotics, LLC Autonomous mobile robotic systems and methods for picking and put-away
WO2020214787A1 (en) * 2019-04-16 2020-10-22 University Of Louisville Research Foundation, Inc. Adaptive robotic nursing assistant
CN110161900B (zh) * 2019-04-25 2021-04-27 中国人民解放军火箭军工程大学 一个远程操作的穿戴式遥控操作平台
CN113748000B (zh) 2019-04-25 2024-04-05 伯克希尔格雷营业股份有限公司 用于维持可编程运动系统中的软管布线系统中的真空软管寿命的系统和方法
EP3960390A4 (en) * 2019-04-26 2023-01-18 Honda Motor Co., Ltd. MOVING BODY HANDLING DEVICE AND HANDLING SYSTEM
US11607804B2 (en) * 2019-05-28 2023-03-21 X Development Llc Robot configuration with three-dimensional lidar
WO2021021637A1 (en) * 2019-07-26 2021-02-04 Ox Industries, Inc. Electric rotary actuator for aerial work platform
KR102277078B1 (ko) * 2019-08-12 2021-07-13 한국로봇융합연구원 작업용 암을 구비하는 재난구조로봇
KR102277074B1 (ko) * 2019-08-12 2021-07-13 한국로봇융합연구원 로봇암을 구비하는 구난 작업 차량
EP4122097A4 (en) 2020-03-20 2024-05-29 Rosendin Electric, Inc. ROBOT ARM COOPERATING WITH AN OFF-ROAD BASE VEHICLE
WO2022002155A1 (zh) * 2020-07-01 2022-01-06 北京术锐技术有限公司 主从运动的控制方法、机器人系统、设备及存储介质
US11338447B2 (en) 2020-07-06 2022-05-24 XYZ Robotics Global Inc. Structural load cell cases for encasing sensors in robotic systems
US11813219B2 (en) * 2020-09-02 2023-11-14 Ford Global Technologies, Llc Powered exoskeleton wrist component
US11623305B2 (en) * 2020-10-16 2023-04-11 Verdant Robotics, Inc. Autonomous laser treatment system for agricultural objects
US11833676B2 (en) 2020-12-07 2023-12-05 Sarcos Corp. Combining sensor output data to prevent unsafe operation of an exoskeleton
US11794345B2 (en) 2020-12-31 2023-10-24 Sarcos Corp. Unified robotic vehicle systems and methods of control
DE102021108906A1 (de) * 2021-04-09 2022-10-13 Linde Material Handling Gmbh Mobiler Kommissionierroboter
CN113218249B (zh) * 2021-05-30 2023-09-26 中国人民解放军火箭军工程大学 跟随式遥操作战车及控制方法
BR102021012724A2 (pt) * 2021-06-25 2022-12-27 Petróleo Brasileiro S.A. - Petrobras Sistema robotizado móvel de amplificação de força
CN113500590A (zh) * 2021-07-26 2021-10-15 李云霞 一种机械手臂机构
US20230049155A1 (en) * 2021-08-12 2023-02-16 Ati Industrial Automation, Inc. Gravity and Inertial Compensation of Force/Torque Sensors
JP2023055151A (ja) * 2021-10-05 2023-04-17 川崎重工業株式会社 制御装置、ロボットシステム、ロボット制御方法及びロボット制御プログラム
US20230146701A1 (en) * 2021-10-25 2023-05-11 Wichita State University Surface preparation end effector for industrial robot system and inspection and repair processes
CN113703377B (zh) * 2021-10-28 2022-02-18 北京惠朗时代科技有限公司 一种校正系统
CN114469356B (zh) * 2022-01-24 2023-09-15 重庆金山医疗机器人有限公司 一种主手的驱动方法及手术机器人医生控制台
CN115106739B (zh) * 2022-07-12 2024-01-23 核工业西南物理研究院 一种耐高剂量γ辐照的电液协同操作臂
US11826907B1 (en) 2022-08-17 2023-11-28 Sarcos Corp. Robotic joint system with length adapter
US11717956B1 (en) * 2022-08-29 2023-08-08 Sarcos Corp. Robotic joint system with integrated safety
WO2024097930A1 (en) * 2022-11-03 2024-05-10 Dexterity, Inc. Variable payload robot
US11897132B1 (en) 2022-11-17 2024-02-13 Sarcos Corp. Systems and methods for redundant network communication in a robot
US11924023B1 (en) 2022-11-17 2024-03-05 Sarcos Corp. Systems and methods for redundant network communication in a robot
TWI847385B (zh) * 2022-11-24 2024-07-01 財團法人金屬工業研究發展中心 鍛造手工具套筒設計系統及方法
CN115830976B (zh) * 2022-12-27 2024-09-27 重庆大学 一种宝塔型六自由度运动模拟平台及其传动方法
US20240227162A1 (en) * 2023-01-09 2024-07-11 Sarcos Corp. Walk-About Exoskeleton

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143449A (ja) 2006-12-13 2008-06-26 Nihon Bisoh Co Ltd 構造物への作業機吊下げ用支持台車装置およびその運転方法
JP2009167673A (ja) 2008-01-15 2009-07-30 Hitachi Constr Mach Co Ltd 作業装置
JP2010083434A (ja) 2008-10-02 2010-04-15 Aichi Corp 高所作業車

Family Cites Families (327)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR691927A (fr) 1929-03-13 1930-10-28 Procédé et dispositif permettant d'effectuer mécaniquement des mouvements quelconques
GB686237A (en) 1948-10-08 1953-01-21 Bendix Aviat Corp Improvements in or relating to toothed clutches
US2850189A (en) 1956-05-14 1958-09-02 M P Mccaffrey Inc Grapple
US2981198A (en) 1958-08-12 1961-04-25 Nettel Frederick Reciprocating variable delivery pump
GB955005A (en) 1961-07-21 1964-04-08 Molins Machine Co Ltd Apparatus for gripping and lifting articles
US3280991A (en) 1964-04-28 1966-10-25 Programmed & Remote Syst Corp Position control manipulator
US3358678A (en) 1964-07-29 1967-12-19 Kultsar Emery Moving and support system for the human body
US3306646A (en) 1965-07-30 1967-02-28 Flexicore Company Inc Lifting hook assembly
US3449769A (en) 1966-06-27 1969-06-17 Cornell Aeronautical Labor Inc Powered exoskeletal apparatus for amplifying human strength in response to normal body movements
JPS44603Y1 (ja) 1966-11-09 1969-01-11
US3449008A (en) 1967-06-08 1969-06-10 Gen Dynamics Corp Object handling system with remote manual control
US3535711A (en) 1967-11-01 1970-10-27 Gen Electric Cutaneous stimuli sensor and transmission network
US3606048A (en) * 1969-09-05 1971-09-20 Long Mfg Co Inc Vehicle having front,central and rear implements
JPS4932826B1 (ja) 1970-12-26 1974-09-03
JPS5615348B2 (ja) 1973-05-22 1981-04-09
JPS509803A (ja) 1973-06-02 1975-01-31
US4046262A (en) 1974-01-24 1977-09-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Anthropomorphic master/slave manipulator system
JPS595516B2 (ja) 1975-07-19 1984-02-04 住友重機械工業株式会社 ツリアゲデンジシヤク
JPS5845724B2 (ja) 1976-05-06 1983-10-12 株式会社日立製作所 力感覚を有する遠隔制御装置
US4179233A (en) 1977-07-14 1979-12-18 National Advanced Drilling Machines, Inc. Vertical motion compensated crane apparatus
JPS5851139B2 (ja) 1978-05-18 1983-11-15 本田技研工業株式会社 エンジンの絞り弁装置
DE2830068C2 (de) * 1978-07-08 1982-09-16 Franz Schmid Vorrichtung zum Entnehmen von gepreßtem Futter
JPS5578505A (en) 1978-12-08 1980-06-13 Kanetsuu Kogyo Kk Attraction type magnetic device
JPS56140510A (en) 1980-04-03 1981-11-02 Matsushita Electric Ind Co Ltd Disk type recording and reproducing device
EP0039578B1 (en) 1980-05-02 1985-04-10 Edward P. Davis Leg aid device
JPS5845764U (ja) * 1981-09-24 1983-03-28 株式会社小松製作所 土木建設作業機械
FR2516843B1 (fr) 1981-11-24 1985-10-25 Calhene Dispositif d'actionnement et son application a un asservissement de position pour un telemanipulateur maitre-esclave
US4575297A (en) 1981-12-24 1986-03-11 Hans Richter Assembly robot
JPS58113586A (ja) 1981-12-28 1983-07-06 Denki Kagaku Keiki Co Ltd 多重プランジヤポンプ
US4483407A (en) 1982-03-26 1984-11-20 Hitachi, Ltd. Variable configuration track laying vehicle
US4398110A (en) 1982-05-05 1983-08-09 Westinghouse Electric Corp. Harmonic electric actuator
EP0142420A3 (fr) 1983-10-28 1986-12-17 "ATECMI", S.A. dite: Procédé de préhension d'une couche de récipients et têtes de préhension de toute une couche de tels récipients
JPS60177883A (ja) 1984-02-22 1985-09-11 株式会社日立製作所 力帰還型バイラテラルサ−ボ機構
JPS60177883U (ja) 1984-05-02 1985-11-26 株式会社学習研究社 ゲ−ム玩具
US4723353A (en) 1984-05-14 1988-02-09 Monforte Mathew L Exchangeable multi-function end effector tools
US4591944A (en) 1984-09-10 1986-05-27 Gmf Robotics Corporation Electronic circuit for tactile sensors
JPS61146482A (ja) 1984-12-20 1986-07-04 工業技術院長 異構造異自由度バイラテラル・マスタスレイブ・マニピユレ−タの制御装置
US4666357A (en) 1985-04-17 1987-05-19 Vmw Industries, Inc. Ship transport system
JPS62193784A (ja) * 1986-02-17 1987-08-25 株式会社東芝 マスタスレ−ブマニピユレ−タ装置
JPS62199375A (ja) 1986-02-24 1987-09-03 工業技術院長 マスタスレ−ブハンドシステムの多感覚バイラテラル制御装置
JPS62200600A (ja) 1986-02-28 1987-09-04 Yamatake Honeywell Co Ltd 記憶素子の寿命判定装置
US4768143A (en) 1986-10-09 1988-08-30 The Babcock & Wilcox Company Apparatus and method using adaptive gain scheduling algorithm
JPH0829509B2 (ja) 1986-12-12 1996-03-27 株式会社日立製作所 マニピユレ−タの制御装置
FR2615778A2 (fr) * 1987-01-30 1988-12-02 Iteca Sarl Appareil de transport et de manutention de charges comprenant un chariot sans conducteur a fourche de levage
US4762455A (en) 1987-06-01 1988-08-09 Remote Technology Corporation Remote manipulator
US4884720A (en) 1987-06-05 1989-12-05 The Coca-Cola Company Post-mix beverage dispenser valve with continuous solenoid modulation
JP2681966B2 (ja) * 1988-02-10 1997-11-26 株式会社明電舎 バイラテラル制御方法
US5038089A (en) 1988-03-23 1991-08-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Synchronized computational architecture for generalized bilateral control of robot arms
JPH01295772A (ja) 1988-05-19 1989-11-29 Mitsubishi Heavy Ind Ltd 宇宙用ロボット
JP2566295B2 (ja) 1988-08-12 1996-12-25 松下電工株式会社 Gps受信用アンテナ
US4883400A (en) 1988-08-24 1989-11-28 Martin Marietta Energy Systems, Inc. Dual arm master controller for a bilateral servo-manipulator
US4921292A (en) 1988-09-23 1990-05-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Magnetic attachment mechanism
JPH0251083U (ja) * 1988-09-30 1990-04-10
US5105367A (en) 1988-10-19 1992-04-14 Hitachi, Ltd. Master slave manipulator system
JPH02205494A (ja) * 1989-02-03 1990-08-15 Hitachi Ltd マニピュレータ画像追従方法及び装置並びに該装置を備えたマニピュレータ装置
JPH0787541B2 (ja) * 1989-02-21 1995-09-20 東京電力株式会社 画像情報伝送装置
US4915437A (en) * 1989-03-27 1990-04-10 Kim Cherry Tool tray
US4997095A (en) 1989-04-20 1991-03-05 The United States Of America As Represented By The United States Department Of Energy Methods of and system for swing damping movement of suspended objects
US5004391A (en) 1989-08-21 1991-04-02 Rutgers University Portable dextrous force feedback master for robot telemanipulation
FR2651220B1 (fr) 1989-08-29 1991-11-29 Koehl Jean Marie Grappin retractable a electro-aimant.
JPH0385398A (ja) 1989-08-30 1991-04-10 Omron Corp 扇風機の送風量ファジイ制御装置
JPH0721510Y2 (ja) * 1989-12-20 1995-05-17 株式会社アイチコーポレーション 作業車の操作装置
US5072361A (en) 1990-02-01 1991-12-10 Sarcos Group Force-reflective teleoperation control system
US5631861A (en) 1990-02-02 1997-05-20 Virtual Technologies, Inc. Force feedback and texture simulating interface device
US5144943A (en) 1990-03-16 1992-09-08 O-Motus, Inc. Dynamic ankle splint
US5117814A (en) 1990-03-16 1992-06-02 Q-Motus, Inc. Dynamic splint
US5390104A (en) 1990-04-02 1995-02-14 Fulton; Francis M. Adaptive control man-augmentation system for a suspended work station
JPH0444296A (ja) 1990-06-07 1992-02-14 Matsushita Electric Ind Co Ltd 半導体チップ内蔵多層基板
US5172951A (en) 1990-08-06 1992-12-22 University Of Utah Research Foundation Robotic grasping apparatus
US5588688A (en) 1990-08-06 1996-12-31 Sarcos, Inc. Robotic grasping apparatus
JPH0444296U (ja) 1990-08-20 1992-04-15
US5101472A (en) 1990-10-04 1992-03-31 Repperger Daniel W Military robotic controller with majorizing function and nonlinear torque capability
US5200674A (en) * 1990-11-16 1993-04-06 Aichi Sharyo Co., Ltd. Electric power supply device for mobile vehicular apparatus with aerial cabin having force-feedback manipulator
JPH075129Y2 (ja) 1991-04-10 1995-02-08 ナショナル住宅産業株式会社 柱・床パネル連結構造
JPH054177A (ja) 1991-06-28 1993-01-14 Takenaka Komuten Co Ltd マニピユレータの制御装置
US5120186A (en) * 1991-07-18 1992-06-09 Jorgenson Parnell L Crane attachment for loading machines
US5282460A (en) 1992-01-06 1994-02-01 Joyce Ann Boldt Three axis mechanical joint for a power assist device
FR2691093B1 (fr) 1992-05-12 1996-06-14 Univ Joseph Fourier Robot de guidage de gestes et procede de commande.
US5239246A (en) 1992-07-08 1993-08-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Force reflection with compliance control
JPH06213266A (ja) 1993-01-18 1994-08-02 Nissan Motor Co Ltd 流体式サスペンションの供給流量制御装置
US5389849A (en) 1993-01-20 1995-02-14 Olympus Optical Co., Ltd. Tactility providing apparatus and manipulating device using the same
IL105034A (en) 1993-03-12 1998-03-10 Sate Of Israel Ministry Of Def Exoskeletal system
US5336982A (en) 1993-03-24 1994-08-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Dual-arm generalized compliant motion with shared control
JP2610094B2 (ja) 1993-05-13 1997-05-14 株式会社明電舎 産業用マニプレータの制御装置
JP3264398B2 (ja) 1993-10-15 2002-03-11 株式会社小松製作所 バイラテラルマスタースレーブ操作方式の操縦装置
JPH0731291A (ja) 1993-07-22 1995-02-03 Kubota Corp 育苗マット自動供給装置
JPH0760679A (ja) 1993-08-31 1995-03-07 Takenaka Komuten Co Ltd マニピュレータ
US5625576A (en) 1993-10-01 1997-04-29 Massachusetts Institute Of Technology Force reflecting haptic interface
IT1264718B1 (it) 1993-10-08 1996-10-04 Scuola Superiore Di Studi Universitari E Di Perfezionamento Sant Anna Dispositivo atto a fornire una retroazione di forza ad un'unita' fisiologica, da utilizzarsi in particolare come interfaccia avanzata
US5664636A (en) * 1993-10-29 1997-09-09 Yamaha Hatsudoki Kabushiki Kaisha Vehicle with electric motor
JPH0731291U (ja) * 1993-11-01 1995-06-13 株式会社アイチコーポレーション マニピュレータ装置
FR2712406B1 (fr) 1993-11-08 1995-12-15 Commissariat Energie Atomique Organe de commande manuelle à retour d'information tactile et/ou kinesthésique.
US6507163B1 (en) 1993-12-20 2003-01-14 Mark A. Allen Robotic bridge maintenance system
JPH07246578A (ja) 1994-03-11 1995-09-26 Yaskawa Electric Corp マスターハンド装置
US5516249A (en) 1994-05-10 1996-05-14 Technical Research Associates, Inc. Exoskeleton with kinesthetic feedback and robotic control
JP3706655B2 (ja) 1994-09-09 2005-10-12 本田技研工業株式会社 リンク装置及び人工ハンド
EP0816020A4 (en) 1994-09-21 1999-04-21 Komatsu Mfg Co Ltd MASTER / SLAVE MANIPULATOR AND ITS CONTROL METHOD
JPH08253950A (ja) * 1995-03-15 1996-10-01 Yanmar Diesel Engine Co Ltd バックホーの制御方法
JPH0911176A (ja) 1995-06-21 1997-01-14 Aichi Corp マニピュレータのマグネットハンド装置
AU6480096A (en) 1995-06-30 1997-02-05 Ross-Hime Designs, Inc. Robotic manipulator
US5784542A (en) 1995-09-07 1998-07-21 California Institute Of Technology Decoupled six degree-of-freedom teleoperated robot system
AU7017396A (en) 1995-09-08 1997-03-27 Ross-Hime Designs, Inc. Robotic manipulator
DE69636230T2 (de) 1995-09-11 2007-04-12 Kabushiki Kaisha Yaskawa Denki, Kitakyushu Robotersteuerung
US5865770A (en) 1995-12-06 1999-02-02 Schectman; Leonard A. Device to counteract paralysis
JP3312098B2 (ja) 1996-06-12 2002-08-05 株式会社クボタ バックホウの遠隔操縦装置
US5785505A (en) 1996-10-21 1998-07-28 Caterpillar Inc. Integral fluid pump and internal combustion engine
US8529582B2 (en) 1996-12-12 2013-09-10 Intuitive Surgical Operations, Inc. Instrument interface of a robotic surgical system
US5797615A (en) * 1996-12-31 1998-08-25 Harley Murray, Inc. Heavy equipment trailer with adjustable tower
US5984618A (en) 1997-06-30 1999-11-16 Caterpillar Inc. Box boom loader mechanism
JPH1142259A (ja) 1997-07-28 1999-02-16 Technol Res Assoc Of Medical & Welfare Apparatus 歩行補助装具
US6016385A (en) 1997-08-11 2000-01-18 Fanu America Corp Real time remotely controlled robot
JPH1156931A (ja) 1997-08-21 1999-03-02 Tadao Totsuka 移搬支援ロボット
US6714839B2 (en) * 1998-12-08 2004-03-30 Intuitive Surgical, Inc. Master having redundant degrees of freedom
JPH11130279A (ja) 1997-10-31 1999-05-18 Murata Mach Ltd 板材分離装置
US6202013B1 (en) * 1998-01-15 2001-03-13 Schwing America, Inc. Articulated boom monitoring system
US6233504B1 (en) * 1998-04-16 2001-05-15 California Institute Of Technology Tool actuation and force feedback on robot-assisted microsurgery system
GB9809102D0 (en) 1998-04-28 1998-07-01 Oceantech Plc Stabilsed ship-borne apparatus
US6425865B1 (en) 1998-06-12 2002-07-30 The University Of British Columbia Robotically assisted medical ultrasound
JP3504507B2 (ja) 1998-09-17 2004-03-08 トヨタ自動車株式会社 適切反力付与型作業補助装置
US6435794B1 (en) 1998-11-18 2002-08-20 Scott L. Springer Force display master interface device for teleoperation
US6659939B2 (en) * 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US6272924B1 (en) 1999-02-19 2001-08-14 Lockheed Martin Energy Research Corporation Apparatus and methods for a human extender
KR100299210B1 (ko) 1999-03-12 2001-09-22 박호군 인간팔 장착형 힘 재현기능을 갖는 마스터 장치
US6322312B1 (en) 1999-03-18 2001-11-27 Applied Materials, Inc. Mechanical gripper for wafer handling robots
US6170162B1 (en) 1999-05-27 2001-01-09 Sarcos, L.C. Rotary displacement system using differential measuring
JP4118462B2 (ja) 1999-07-19 2008-07-16 株式会社リコー 携帯電子機器
US7064472B2 (en) 1999-07-20 2006-06-20 Sri International Electroactive polymer devices for moving fluid
US6338605B1 (en) * 1999-08-30 2002-01-15 Kalmar Industries Usa Inc. Tractor and system for unloading trailers from railcars
JP3188953B2 (ja) 1999-10-13 2001-07-16 経済産業省産業技術総合研究所長 パワーアシスト装置およびその制御方法
US6507165B2 (en) 2000-02-10 2003-01-14 Fanuc Ltd. Controller for machine
US6340065B1 (en) * 2000-04-14 2002-01-22 Airtrax Corporation Low vibration omni-directional wheel
US6360166B1 (en) * 2000-04-24 2002-03-19 Caterpillar Lnc. Apparatus and method for removing logs from a forestry site
FR2810573B1 (fr) 2000-06-21 2002-10-11 Commissariat Energie Atomique Bras de commande a deux branches en parallele
US20020094919A1 (en) 2000-07-26 2002-07-18 Rennex Brain G. Energy-efficient running aid
IT1318801B1 (it) 2000-08-31 2003-09-10 Nuovo Pignone Spa Dispositivo per la regolazione continua della portata di gas trattatada un compressore alternativo.
JP2002161547A (ja) 2000-11-27 2002-06-04 Takahashiworks Co Ltd 積載型ツインアーム作業機
US20020075233A1 (en) 2000-12-20 2002-06-20 White Christopher Daniel Ergonomic pointing device
US6508058B1 (en) 2001-03-15 2003-01-21 Louis A. Seaverson Hydraulic control system with tactile force and position feedback
ITBO20010305A1 (it) 2001-05-17 2002-11-17 Famatec S R L Dispositivo di presa a funzionamento magnetico di tipo servocomandato
US6507773B2 (en) * 2001-06-14 2003-01-14 Sharper Image Corporation Multi-functional robot with remote and video system
JP4188607B2 (ja) 2001-06-27 2008-11-26 本田技研工業株式会社 二足歩行移動体の床反力推定方法及び二足歩行移動体の関節モーメント推定方法
CA2452494A1 (en) 2001-07-05 2003-01-16 Sarcos Investments Lc Rapid response power conversion device
JP3674778B2 (ja) 2001-09-27 2005-07-20 本田技研工業株式会社 脚式移動ロボットの脚体関節アシスト装置
US6554342B1 (en) * 2001-10-16 2003-04-29 Scott A Burnett Storage structure for vehicles
EP1442704B1 (en) 2001-10-16 2010-12-29 Honda Giken Kogyo Kabushiki Kaisha Walking condition determining device and method
FR2832345B1 (fr) 2001-11-19 2003-12-19 Commissariat Energie Atomique Mecanisme articule comprenant un reducteur a cable utilisable dans un bras de robot
JP2003159683A (ja) 2001-11-21 2003-06-03 Ricoh Co Ltd 双腕ロボット及びその制御方法
GB2385111B (en) 2002-02-08 2006-01-18 Bamford Excavators Ltd Control apparatus
FR2839916B1 (fr) 2002-05-22 2004-10-15 Agence Spatiale Europeenne Exosquelette pour bras humain, notamment pour des applications spatiales
US20040004362A1 (en) 2002-07-02 2004-01-08 Dan Love Magnetic grapple
US6925357B2 (en) * 2002-07-25 2005-08-02 Intouch Health, Inc. Medical tele-robotic system
US7156603B2 (en) * 2002-08-13 2007-01-02 Brandt Road Rail Corporation Road transportable loading machine for gondola cars
JP2004105261A (ja) 2002-09-13 2004-04-08 Matsushita Electric Ind Co Ltd 身体装着型パワーアシスト機器
US7402142B2 (en) 2002-09-23 2008-07-22 Honda Giken Kogyo Kabushiki Kaisha Method and processor for obtaining moments and torques in a biped walking system
CA2500005C (en) 2002-09-26 2011-12-06 Barrett Technology, Inc. Intelligent, self-contained robotic hand
US7396337B2 (en) 2002-11-21 2008-07-08 Massachusetts Institute Of Technology Powered orthotic device
US6966882B2 (en) 2002-11-25 2005-11-22 Tibion Corporation Active muscle assistance device and method
US7386365B2 (en) 2004-05-04 2008-06-10 Intuitive Surgical, Inc. Tool grip calibration for robotic surgery
US7409882B2 (en) 2002-12-31 2008-08-12 Bergamasco Massimo Exoskeleton interface apparatus
CN1758990B (zh) 2003-03-25 2010-08-18 日商乐华股份有限公司 自动机械仿真装置
JP2004308717A (ja) 2003-04-03 2004-11-04 Asahi Organic Chem Ind Co Ltd 流体作動弁
US20070129653A1 (en) 2003-04-24 2007-06-07 Thomas Sugar Spring-over-muscle actuator
EP1633534B1 (en) 2003-04-28 2018-09-12 Nikon Metrology NV Cmm arm with exoskeleton
JP2005057429A (ja) 2003-08-01 2005-03-03 Nec Corp Cdma通信装置およびその方法
US7549969B2 (en) 2003-09-11 2009-06-23 The Cleveland Clinic Foundation Apparatus for assisting body movement
JP2005118938A (ja) 2003-10-16 2005-05-12 Sanyo Electric Co Ltd ロボット装置の脚部機構
KR20030086562A (ko) 2003-10-24 2003-11-10 예해금 자력흡착기의 흡착자력 스위치장치
US7628766B1 (en) 2003-10-29 2009-12-08 The Regents Of The University Of California Lower extremity enhancer
US20050193451A1 (en) 2003-12-30 2005-09-01 Liposonix, Inc. Articulating arm for medical procedures
US20050159850A1 (en) 2004-01-16 2005-07-21 Emanuel Melman Shift knob computer operating device
JP4503311B2 (ja) 2004-02-25 2010-07-14 本田技研工業株式会社 脚体運動補助装具の発生トルク制御方法
US8974169B2 (en) * 2004-03-15 2015-03-10 Richard J. Mizner Fork lift attachment tools and methods
JP3909770B2 (ja) 2004-03-29 2007-04-25 川崎重工業株式会社 基板把持装置
US20060136072A1 (en) 2004-05-07 2006-06-22 Bisbee Charles R Iii Magnetorheologically actuated prosthetic knee
JP4517726B2 (ja) 2004-05-25 2010-08-04 株式会社安川電機 アシスト装置
DE102004029513B3 (de) 2004-06-18 2005-09-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur autarken Eigenfortbewegungsunterstützung und/oder -kontrolle eines gehbehinderten Menschen
JP5031978B2 (ja) 2004-07-05 2012-09-26 日立建機株式会社 建設機械の表示装置
JP4469239B2 (ja) 2004-07-20 2010-05-26 キャタピラージャパン株式会社 作業機械の操作装置
JP2006051558A (ja) 2004-08-10 2006-02-23 Tokai Univ 二足歩行ロボット
US7524297B2 (en) 2004-09-08 2009-04-28 Honda Motor Co., Ltd. Walking assistance device provided with a force sensor
US7429253B2 (en) 2004-09-21 2008-09-30 Honda Motor Co., Ltd. Walking assistance system
JP2006088258A (ja) 2004-09-22 2006-04-06 Honda Motor Co Ltd 脚式移動ロボットの脚体関節アシスト装置
JP4129452B2 (ja) 2004-11-30 2008-08-06 株式会社東芝 移動ロボット
US7284471B2 (en) 2004-12-02 2007-10-23 Sarcos Investments Lc Pressure control valve having intrinsic mechanical feedback system
JP4541867B2 (ja) 2004-12-16 2010-09-08 本田技研工業株式会社 外力制御方法、外力制御システム及び外力制御プログラム
JP4426432B2 (ja) 2004-12-17 2010-03-03 本田技研工業株式会社 脚体運動補助装具の補助モーメント制御方法
CA2601220C (en) 2005-01-18 2014-03-18 The Regents Of The University Of California Lower extremity exoskeleton
CN100368162C (zh) * 2005-03-21 2008-02-13 山东科技大学 多关节操作杆
JP2006263895A (ja) 2005-03-25 2006-10-05 Fanuc Ltd ロボットハンドリング装置
US20070162152A1 (en) 2005-03-31 2007-07-12 Massachusetts Institute Of Technology Artificial joints using agonist-antagonist actuators
US20070123997A1 (en) 2005-03-31 2007-05-31 Massachusetts Institute Of Technology Exoskeletons for running and walking
US20060249315A1 (en) 2005-03-31 2006-11-09 Massachusetts Institute Of Technology Artificial human limbs and joints employing actuators, springs, and variable-damper elements
US7211979B2 (en) 2005-04-13 2007-05-01 The Broad Of Trustees Of The Leland Stanford Junior University Torque-position transformer for task control of position controlled robots
CA2595557C (en) 2005-05-27 2011-04-12 Honda Motor Co., Ltd. Walking assisting device
US7731673B2 (en) 2005-05-27 2010-06-08 Honda Motor Co., Ltd. Walking assisting device
JP4417300B2 (ja) 2005-07-13 2010-02-17 本田技研工業株式会社 歩行補助装置
US7841822B2 (en) * 2005-07-15 2010-11-30 Tygard Machine & Manufacturing Company Manipulator for a lift truck
US7369057B2 (en) 2005-08-04 2008-05-06 Siemens Power Generation, Inc. Power generator and power generator auxiliary monitoring
US7862522B1 (en) 2005-08-08 2011-01-04 David Barclay Sensor glove
US8190292B2 (en) * 2005-08-29 2012-05-29 The Board Of Trustees Of The Leland Stanford Junior University High frequency feedback in telerobotics
WO2007049112A1 (en) * 2005-10-28 2007-05-03 Toyota Jidosha Kabushiki Kaisha Power steering system
US20070105070A1 (en) 2005-11-08 2007-05-10 Luther Trawick Electromechanical robotic soldier
JP2007130234A (ja) 2005-11-10 2007-05-31 Matsushita Electric Ind Co Ltd 人体動作補助装置
JP2009521630A (ja) 2005-12-30 2009-06-04 ゴールドウィング ノミニーズ ピーティーワイ リミテッド 複数のレンガで建築物を建設するための自動レンガ積みシステム
AU2007223733B2 (en) 2006-03-09 2013-01-10 The Regents Of The University Of California Power generating leg
JP4997416B2 (ja) 2006-03-22 2012-08-08 国立大学法人 筑波大学 回動調整装置及び回動装置の制御方法
US7862524B2 (en) 2006-03-23 2011-01-04 Carignan Craig R Portable arm exoskeleton for shoulder rehabilitation
US20080009771A1 (en) 2006-03-29 2008-01-10 Joel Perry Exoskeleton
JP4736946B2 (ja) 2006-05-19 2011-07-27 トヨタ自動車株式会社 歩行補助具
US7783384B2 (en) 2006-05-31 2010-08-24 Kraft Brett W Ambidextrous robotic master controller
GB0611776D0 (en) 2006-06-14 2006-07-26 Univ Coventry Control system for earth moving and working apparatus
US8849457B2 (en) 2006-07-17 2014-09-30 Raytheon Company Contact displacement actuator system
KR100760846B1 (ko) 2006-09-04 2007-09-21 한국과학기술연구원 강성 발생 장치 및 이를 구비하는 로봇 머니퓰레이터의조인트
US8435309B2 (en) 2007-01-05 2013-05-07 Victhom Human Bionics Joint actuation mechanism for a prosthetic and/or orthotic device having a compliant transmission
WO2008103959A1 (en) 2007-02-22 2008-08-28 Raytheon Sarcos, Llc First-stage pilot valve
JP4976883B2 (ja) * 2007-02-23 2012-07-18 パナソニック株式会社 マニピュレータシステム
WO2008106618A1 (en) 2007-02-28 2008-09-04 Raytheon Sarcos, Llc Fluid control system having selective recruitable actuators
EP2142132B1 (en) 2007-04-16 2012-09-26 NeuroArm Surgical, Ltd. System for non-mechanically restricting and/or programming movement of a tool of a manipulator along a single axis
US7485074B2 (en) 2007-04-27 2009-02-03 Zhi-Ting Chen Ankle therapy apparatus
JP5331102B2 (ja) 2007-05-08 2013-10-30 レイセオン カンパニー ロボットクローラのための可変プリミティブマッピング
JP5743541B2 (ja) 2007-05-08 2015-07-01 レイセオン カンパニー 定量流体移送システム
JP4852691B2 (ja) 2007-07-24 2012-01-11 宮城県 中腰作業補助装置
US8702078B2 (en) 2007-08-10 2014-04-22 Fanuc Robotics America, Inc. Magnetic tool for robots
JP5004177B2 (ja) 2007-08-27 2012-08-22 国立大学法人名古屋大学 磁気式移動体速度検出装置
KR101393290B1 (ko) 2007-09-27 2014-05-09 고쿠리쯔 다이가쿠 호징 츠쿠바 다이가쿠 회동 조정 장치 및 회동 장치의 제어 방법
US8151401B2 (en) 2007-10-25 2012-04-10 Brian Cheyne Variable strength magnetic window cleaning device
EP2231096B1 (en) 2007-12-26 2013-04-03 Rex Bionics Limited Mobility aid
JP2009178253A (ja) 2008-01-29 2009-08-13 Toyota Motor Corp 脚部補助具
WO2009098855A1 (ja) 2008-02-06 2009-08-13 Panasonic Corporation ロボット、ロボットの制御装置及び制御方法、並びに、ロボットの制御装置の制御プログラム
JP4443615B2 (ja) * 2008-02-27 2010-03-31 トヨタ自動車株式会社 パワーアシスト装置及びその制御方法
JP2009219650A (ja) 2008-03-14 2009-10-01 Gifu Univ 装着型動作補助装置
JP5273773B2 (ja) 2008-03-31 2013-08-28 独立行政法人国立高等専門学校機構 歩行支援装置。
JP5194213B2 (ja) 2008-05-12 2013-05-08 学校法人 芝浦工業大学 肩甲骨鎖骨機構
WO2010019300A1 (en) 2008-05-20 2010-02-18 University Of California At Berkeley Device and method for decreasing oxygen consumption of a person during steady walking by use of a load-carrying exoskeleton
EP2303731A2 (en) 2008-05-21 2011-04-06 Georgia Tech Research Corporation Force balancing mobile robotic system
US20090294218A1 (en) * 2008-05-27 2009-12-03 Geoffrey Archer Bomb disposal robot having a forklift capability and method
US8534439B2 (en) 2008-05-30 2013-09-17 American Axle & Manufacturing, Inc. Electromechanical actuator for friction clutches
JP4565023B2 (ja) 2008-07-04 2010-10-20 ファナック株式会社 物品取り出し装置
NL1035870C2 (nl) 2008-08-26 2009-07-30 Lely Patent Nv Automatische melkinrichting en werkwijze voor het besturen van een automatische melkinrichting.
EP2337527A1 (en) 2008-08-28 2011-06-29 Raytheon Sarcos, LLC A biomimetic mechanical joint
JP2010058616A (ja) 2008-09-02 2010-03-18 Yanmar Co Ltd アンダーガード
US9345592B2 (en) 2008-09-04 2016-05-24 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
JP4708464B2 (ja) 2008-09-30 2011-06-22 ファナック株式会社 ワーク把持装置
JP2010098130A (ja) 2008-10-16 2010-04-30 Hirata Corp エンドイフェクタ
JP5120209B2 (ja) 2008-11-04 2013-01-16 トヨタ自動車株式会社 歩行補助装置
JP5095583B2 (ja) 2008-11-06 2012-12-12 本田技研工業株式会社 歩行補助装置の足首関節構造
EP2370925B1 (en) 2008-12-15 2021-03-03 Oceaneering International, Inc. Rig supply handler
JP4744589B2 (ja) 2008-12-17 2011-08-10 本田技研工業株式会社 歩行補助装置及びその制御装置
JP2011010533A (ja) 2009-05-25 2011-01-13 Yaskawa Electric Corp モータ制御装置及びモータ制御システム
US8473101B2 (en) 2009-08-21 2013-06-25 Harris Corporation Coordinated action robotic system and related methods
US8375982B2 (en) 2009-09-28 2013-02-19 The United States Of America, As Represented By The Administrator Of The U.S. Environmental Protection Agency Hydraulic circuit and manifold with multifunction valve
WO2011112898A1 (en) 2010-03-11 2011-09-15 Hdt Robotics, Inc. High degree of freedom (dof) control actuator
JP2011193899A (ja) 2010-03-17 2011-10-06 Toyota Motor Corp 下肢装具
US8511192B2 (en) 2010-03-29 2013-08-20 Hitec Luxembourg S.A. System and method of positional control with backlash compensation
WO2011127410A2 (en) * 2010-04-09 2011-10-13 Deka Products Limited Partnership System and apparatus for robotic device and methods of using thereof
DE102010029088B4 (de) 2010-05-18 2012-03-01 Deutsches Zentrum für Luft- und Raumfahrt e.V. Formvariables, rekonfigurierbares Strukturelement mit schaltbarer Steifigkeit
JP5170175B2 (ja) 2010-06-30 2013-03-27 株式会社安川電機 ロボットシステム
JP5032716B2 (ja) 2010-08-31 2012-09-26 パナソニック株式会社 マスタースレーブロボットの制御装置及び制御方法、並びに、制御プログラム
US8667643B2 (en) * 2010-09-10 2014-03-11 Euro-Pro Operating Llc Method and apparatus for assisting pivot motion of a handle in a floor treatment device
JP5645564B2 (ja) 2010-09-14 2014-12-24 キヤノン株式会社 センサ装置及びロボット装置
US10318002B2 (en) 2010-09-15 2019-06-11 Inventus Engineering Gmbh Magnetorheological transmission device
EP2616115B1 (en) 2010-09-17 2016-08-24 Ekso Bionics Human machine interface for human exoskeleton
US8776977B2 (en) 2010-09-27 2014-07-15 Foster-Miller, Inc. Drive system for mobile robot arm
IT1401979B1 (it) 2010-09-28 2013-08-28 C N R Consiglio Naz Ricerche Dispositivo biomedico per la riabilitazione robotizzata dell'arto superiore umano, particolarmente per la riabilitazione neuromotoria dell'articolazione della spalla e del gomito.
US9554960B2 (en) 2010-11-24 2017-01-31 Kawasaki Jukogyo Kabushiki Kaisha Wearable motion supporting device
EP2644178B1 (en) 2010-11-25 2015-01-21 Toyota Jidosha Kabushiki Kaisha Walking assistance device
US9200625B2 (en) 2010-12-02 2015-12-01 Sarcos Lc Regenerative hydraulic pump
JP2012125279A (ja) 2010-12-13 2012-07-05 Toyota Motor Corp 脚装具
EP3549558B1 (en) 2011-01-10 2022-03-02 Otto Bock HealthCare LP Powered joint orthosis
US9103339B2 (en) 2011-02-28 2015-08-11 James H. Gammon Piston pump
KR101307265B1 (ko) 2011-03-15 2013-09-11 한국생산기술연구원 착용형 로봇의 유압 장치
DE102011006679B4 (de) 2011-03-16 2018-07-12 Ferrobotics Compliant Robot Technology Gmbh Aktive Handhabungsvorrichtung und Verfahren für Kontaktaufgaben
US9314921B2 (en) 2011-03-17 2016-04-19 Sarcos Lc Robotic lift device with human interface operation
US20130013108A1 (en) 2011-04-29 2013-01-10 Raytheon Company Robotic Agile Lift System With Extremity Control
US8942846B2 (en) 2011-04-29 2015-01-27 Raytheon Company System and method for controlling a teleoperated robotic agile lift system
US8892258B2 (en) 2011-04-29 2014-11-18 Raytheon Company Variable strength magnetic end effector for lift systems
US8977388B2 (en) 2011-04-29 2015-03-10 Sarcos Lc Platform perturbation compensation
US9789603B2 (en) 2011-04-29 2017-10-17 Sarcos Lc Teleoperated robotic system
WO2012149402A2 (en) 2011-04-29 2012-11-01 Raytheon Company Robotic agile lift system with extremity control
CA2836903C (en) 2011-05-20 2017-08-29 The Procter & Gamble Company Alternative pressure control for a low constant pressure injection molding apparatus
KR20130001409A (ko) 2011-06-27 2013-01-04 대우조선해양 주식회사 착용로봇의 가변링크, 가변링크를 구비한 착용로봇 및 착용로봇의 제어방법
JP5854454B2 (ja) 2011-07-15 2016-02-09 国立大学法人 筑波大学 装着式動作補助装置
TWI435743B (zh) 2011-07-21 2014-05-01 Univ Nat Taiwan Science Tech 運動輔具
US9097325B2 (en) 2011-08-05 2015-08-04 Ohio University Motorized drive system and method for articulating a joint
TWM418911U (en) 2011-09-01 2011-12-21 jin-hui Cai Operating device of material clamping machine with both claws and electric rechargeable sucker
ITTO20110848A1 (it) 2011-09-23 2013-03-24 Fond Istituto Italiano Di Tecnologia Attuatore rotante elastico.
US9198821B2 (en) 2011-09-28 2015-12-01 Northeastern University Lower extremity exoskeleton for gait retraining
KR101295004B1 (ko) 2011-10-05 2013-08-08 한국과학기술연구원 근력보조를 위한 외골격장치
JP5636352B2 (ja) 2011-10-24 2014-12-03 本田技研工業株式会社 動作補助装置及び歩行補助装置
KR101219795B1 (ko) 2011-10-26 2013-01-09 한양대학교 에리카산학협력단 근력 지원용 착용형 로봇
KR101290174B1 (ko) 2011-10-26 2013-07-30 한양대학교 에리카산학협력단 근력 지원용 착용형 로봇
JP2013142445A (ja) 2012-01-11 2013-07-22 Hitachi Ltd 電動式ブレーキ装置、及び補助装置
US9283673B2 (en) 2012-01-31 2016-03-15 Florida Institute For Human And Machine Cognition, Inc. Fast runner limb articulation system
US9682005B2 (en) 2012-02-24 2017-06-20 Massachusetts Institute Of Technology Elastic element exoskeleton and method of using same
US20130253385A1 (en) 2012-03-21 2013-09-26 Amit Goffer Motorized exoskeleton unit
US9616580B2 (en) 2012-05-14 2017-04-11 Sarcos Lc End effector for a robotic arm
JP5976401B2 (ja) 2012-05-31 2016-08-23 Thk株式会社 脚式ロボットの下肢構造及び脚式ロボット
US20130333368A1 (en) 2012-06-18 2013-12-19 Regents Of The University Of Minnesota System and method for the production of compressed fluids
US9259281B2 (en) 2012-08-15 2016-02-16 Intuitive Surgical Operations, Inc. Movable surgical mounting platform controlled by manual motion of robotic arms
CN108742967B (zh) 2012-09-07 2020-06-05 加利福尼亚大学董事会 可控被动人工膝部
JP2014054273A (ja) 2012-09-11 2014-03-27 Univ Of Tsukuba 駆動ユニット及びその駆動ユニットを備えた装着式動作補助装置
JP2014073222A (ja) 2012-10-04 2014-04-24 Sony Corp 運動補助装置及び運動補助方法
US9727076B2 (en) 2012-10-31 2017-08-08 Sarcos Lc Hand control device for controlling a peripheral system
JP6112300B2 (ja) 2013-01-10 2017-04-12 パナソニックIpマネジメント株式会社 マスタースレーブロボットの制御装置及び制御方法、マスタースレーブロボット、並びに、制御プログラム
JP6410022B2 (ja) 2013-09-06 2018-10-24 パナソニックIpマネジメント株式会社 マスタスレーブロボットの制御装置及び制御方法、ロボット、マスタスレーブロボットの制御プログラム、並びに、マスタスレーブロボットの制御用集積電子回路
JP6410023B2 (ja) 2013-09-06 2018-10-24 パナソニックIpマネジメント株式会社 マスタスレーブロボットの制御装置及び制御方法、ロボット、マスタスレーブロボットの制御プログラム、並びに、マスタスレーブロボットの制御用集積電子回路
FR3014348B1 (fr) 2013-12-06 2016-01-22 Commissariat Energie Atomique Dispositif de commande a retour d'effort multidirectionnel
CN103610524B (zh) 2013-12-16 2015-09-09 哈尔滨工业大学 一种便携储能式外骨骼助力机器人
EP3083158B1 (en) 2013-12-16 2023-03-15 Massachusetts Institute of Technology Optimal design of a lower limb exoskeleton or orthosis
PL3119552T3 (pl) 2014-03-17 2021-05-31 Bombardier Transportation Gmbh Sposób spawania elementów składowych wzdłuż złącza spawanego za pomocą dwóch robotów
US20150278263A1 (en) 2014-03-25 2015-10-01 Brian Bowles Activity environment and data system for user activity processing
US10512583B2 (en) 2014-05-06 2019-12-24 Sarcos Lc Forward or rearward oriented exoskeleton
US10533542B2 (en) 2014-05-06 2020-01-14 Sarcos Lc Rapidly modulated hydraulic supply for a robotic device
US10406676B2 (en) 2014-05-06 2019-09-10 Sarcos Lc Energy recovering legged robotic device
US9427872B1 (en) 2014-12-21 2016-08-30 Google Inc. Devices and methods for encoder calibration
US10028855B2 (en) 2015-05-14 2018-07-24 Worcester Polytechnic Institute Variable stiffness devices and methods of use
JP6754364B2 (ja) 2015-08-25 2020-09-09 川崎重工業株式会社 ロボットシステム
DE102015218523B4 (de) 2015-09-25 2021-04-29 Schunk Gmbh & Co. Kg Spann- Und Greiftechnik Greifvorrichtung
DE102015117594A1 (de) 2015-10-15 2017-04-20 Inventus Engineering Gmbh Drehdämpfer
WO2017148499A1 (en) 2016-02-29 2017-09-08 Abb Schweiz Ag A multiple disc brake for an industrial robot and an industrial robot including the multiple disc brake
US10919161B2 (en) 2016-11-11 2021-02-16 Sarcos Corp. Clutched joint modules for a robotic system
US10905617B2 (en) 2016-12-19 2021-02-02 Intel Corporation Wearable assistive jamming apparatus and related methods
WO2018114004A1 (en) 2016-12-23 2018-06-28 Admotec Precision Ag Resolver
JP6808181B2 (ja) 2017-05-18 2021-01-06 Smc株式会社 ワーク保持装置
FR3066422B1 (fr) 2017-05-22 2020-10-16 Peugeot Citroen Automobiles Sa Prehenseur pour manipulateur, muni de bras de prehension comprenant des branches reliees par des organes d'articulation a changement d'etats.
US10843330B2 (en) 2017-12-07 2020-11-24 Sarcos Corp. Resistance-based joint constraint for a master robotic system
US11331809B2 (en) 2017-12-18 2022-05-17 Sarcos Corp. Dynamically controlled robotic stiffening element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143449A (ja) 2006-12-13 2008-06-26 Nihon Bisoh Co Ltd 構造物への作業機吊下げ用支持台車装置およびその運転方法
JP2009167673A (ja) 2008-01-15 2009-07-30 Hitachi Constr Mach Co Ltd 作業装置
JP2010083434A (ja) 2008-10-02 2010-04-15 Aichi Corp 高所作業車

Also Published As

Publication number Publication date
EP4159382A1 (en) 2023-04-05
JP7071548B2 (ja) 2022-05-19
JP6320915B2 (ja) 2018-05-09
US20220410367A1 (en) 2022-12-29
US11865705B2 (en) 2024-01-09
JP2022107624A (ja) 2022-07-22
US11738446B2 (en) 2023-08-29
US20180193999A1 (en) 2018-07-12
JP2022107623A (ja) 2022-07-22
EP2701881A2 (en) 2014-03-05
JP2021049642A (ja) 2021-04-01
JP7387804B2 (ja) 2023-11-28
US20120328395A1 (en) 2012-12-27
EP4159381A1 (en) 2023-04-05
WO2012149446A2 (en) 2012-11-01
CN103648730A (zh) 2014-03-19
JP2018043343A (ja) 2018-03-22
JP2014512976A (ja) 2014-05-29
US11745331B2 (en) 2023-09-05
EP4159383A1 (en) 2023-04-05
US20220410366A1 (en) 2022-12-29
US20210069889A1 (en) 2021-03-11
WO2012149446A3 (en) 2013-09-12
JP2019217633A (ja) 2019-12-26
JP2022107625A (ja) 2022-07-22
US9789603B2 (en) 2017-10-17

Similar Documents

Publication Publication Date Title
JP7395647B2 (ja) 遠隔制御ロボットシステム
US8977398B2 (en) Multi-degree of freedom torso support for a robotic agile lift system
US20130013108A1 (en) Robotic Agile Lift System With Extremity Control
US9533411B2 (en) System and method for controlling a teleoperated robotic agile lift system
US8977388B2 (en) Platform perturbation compensation
US20130090764A1 (en) Improvised explosive device defeat system
US20150001269A1 (en) Exoskeleton arm interface
EP1706306B1 (en) A manually actuable steering device
WO2012149402A2 (en) Robotic agile lift system with extremity control
Schwarz et al. DRC team nimbro rescue: perception and control for centaur-like mobile manipulation robot momaro
CN112659091A (zh) 远程控制机器人
US20240227162A1 (en) Walk-About Exoskeleton
US20240225943A1 (en) Conveyance Systems for A Maneuverable Walk-About Platform for A Robotic Upper Exoskeleton
US20240181627A1 (en) Method and system for multirobot collaborative mobile manipulation
Rehnmark et al. Centaur: a mobile dexterous humanoid for surface operations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231129

R150 Certificate of patent or registration of utility model

Ref document number: 7395647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150