JP3931079B2 - 電動機駆動装置及びそれを用いた冷凍装置 - Google Patents

電動機駆動装置及びそれを用いた冷凍装置 Download PDF

Info

Publication number
JP3931079B2
JP3931079B2 JP2001381414A JP2001381414A JP3931079B2 JP 3931079 B2 JP3931079 B2 JP 3931079B2 JP 2001381414 A JP2001381414 A JP 2001381414A JP 2001381414 A JP2001381414 A JP 2001381414A JP 3931079 B2 JP3931079 B2 JP 3931079B2
Authority
JP
Japan
Prior art keywords
duty
current
period
inverter
pwm signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001381414A
Other languages
English (en)
Other versions
JP2003189670A (ja
Inventor
英夫 松城
敬三 松井
光夫 河地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001381414A priority Critical patent/JP3931079B2/ja
Priority to KR10-2002-0072141A priority patent/KR100507714B1/ko
Priority to CNB021558906A priority patent/CN1258257C/zh
Publication of JP2003189670A publication Critical patent/JP2003189670A/ja
Application granted granted Critical
Publication of JP3931079B2 publication Critical patent/JP3931079B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Description

【0001】
【発明の属する技術分野】
本発明は、ブラシレスDCモータなどの電動機を任意の回転数で駆動する電動機駆動装置及びそれを用いた冷凍装置に関する。
【0002】
【従来の技術】
近年、空気調和機における圧縮機などの電動機を駆動する装置においては、地球環境保護の観点から消費電力を低減する必要性が大きくなっている。その中で、省電力の技術の一つとして、ブラシレスDCモータのような効率の高い電動機を任意の周波数で駆動するインバータなどが広く一般に使用されている。さらに、駆動する技術としては、矩形波状の電流により駆動を行う矩形波駆動に対して、より効率が高く、騒音も低くすることが可能な正弦波駆動技術が注目されている。
【0003】
空気調和機における圧縮機のような電動機を駆動する場合、電動機の回転子の位置を検出するセンサを取りつけることが困難であるため、回転子の位置を何らかの方法で推定しながら駆動を行う位置センサレス正弦波駆動の技術も発明されている。また、回転子の位置を推定する方法としては、電動機の誘起電圧を推定することにより行う方法(特開2000−350489号公報など)がある。
【0004】
図22に位置センサレス正弦波駆動を実現するためのシステム構成を示す。ブラシレスモータ3を駆動する駆動装置は、直流電源1、インバータ2、制御部6、電流センサ7vと7wとを有する。ブラシレスモータ3は固定子4と回転子5からなる。
【0005】
ブラシレスモータ3は、中性点を中心にY結線された3つの相巻線4u,4v,4wが取付けられる固定子4、および磁石が装着されている回転子5を備える。U相巻線4uの非結線端にU相端子8u、V相巻線4vの非結線端にV相端子8v、W相巻線4wの非結線端にW相端子8wが接続される。
【0006】
インバータ2は、一対のスイッチング素子が電流の上流側と下流側の関係に直列接続された直列回路をU相用,V相用,W相用として3つ有する。これら直列回路に、直流電源1から出力されるDC電圧が印加される。U相用の直列回路は、上流側スイッチング素子12u、および下流側スイッチング素子12xより成る。V相用の直列回路は、上流側スイッチング素子12v、および下流側スイッチング素子12yより成る。W相用の直列回路は、上流側スイッチング素子12w、および下流側スイッチング素子12wより成る。なお、フリーホイールダイオード14u,14v,14w,14x,14y,14zが、各スイッチング素子と並列に接続される。
【0007】
インバータ2におけるスイッチング素子12u,12xの相互接続点、スイッチング素子12v,12yの相互接続点、およびスイッチング素子12w,12zの相互接続点に、ブラシレスモータ3の端子8u,8v,8wがそれぞれ接続される。
【0008】
制御部6は、ブラシレスモータ3の相巻線4v,4wに流れる電流を電流センサ7v,7wによって検出し、この電流値をもとに誘起電圧を推定してインバータ2を制御する信号を出力する。以上のような回路構成にて、ブラシレスモータ3の駆動制御を行っている。
【0009】
【発明が解決しようとする課題】
このような従来の、誘起電圧の推定による位置センサレス正弦波駆動においては、駆動する電動機の相電流を検出するために、電流センサなどの検出器を最低でも2つ用いなければならず、駆動装置を構成する上でコストアップの要因となってしまうという問題があった。
【0010】
本発明は上記の課題を解決するもので、安価な構成で相電流を正確に検出し、低速回転域から高速回転域まで良質な駆動が可能な電動機駆動装置及びそれを用いた冷凍装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明に係る電動機駆動装置は、高圧側に配置された上アームスイッチング素子と低圧側に配置された下アームスイッチング素子からなるスイッチング素子対を複数有し、各スイッチング素子の動作により直流電圧を所望の周波数、電圧の交流電圧に変換し三相電動機にその駆動電圧として供給するインバータと、インバータの母線に流れる電流を検出する電流検出手段と、インバータが出力する電圧値と前記電流検出手段により検出される電流値とから前記電動機の誘起電圧を推定する誘起電圧推定手段と、推定された誘起電圧推定値に基づいて前記電動機の回転子磁極位置を推定する回転子位置速度検出手段と、推定された回転子磁極位置の情報に基づいて、前記インバータの各スイッチング素子の動作を制御するPWM信号を生成するPWM信号生成手段と、PWM信号生成手段で生成されたPWM信号のデューティを補正するデューティ補正手段とを備える。デューティ補正手段は、PWM信号生成手段で生成されたPWM信号のデューティ値を、電流検出手段がインバータ母線電流を検出する期間はPWM信号が変化しないようなデューティ値に補正する。
【0015】
また、デューティ補正手段は、PWM信号の一キャリア周期のうちのインバータの上アームのスイッチング素子が1つのみ通電している第1の期間と上アームのスイッチング素子が2つ通電している第2の期間とにおいて電流検出手段による電流検出のための時間が確保されるようデューティ値を補正するとともに、次のキャリア周期で補正されたデューティの増減分を修正してもよい。または、デューティ補正手段は、PWM信号のキャリア周期の半キャリア周期のうちのインバータの上アームのスイッチング素子が1つのみ通電している第1の期間と上アームのスイッチング素子が2つ通電している第2の期間とにおいて電流検出手段による電流検出のための時間が確保されるようデューティを補正するとともに、次のキャリア周期で補正されたデューティの増減分を修正する。このとき、電流検出手段は電流検出時間が確保された第1の期間と第2の期間に検出されるインバータ母線電流を前記電動機の三相それぞれに流れる相電流に変換する。このとき、さらに、誘起電圧推定手段は、デューティの増減分が修正されたキャリア周期においては、前回のキャリア周期で検出された相電流を用いて誘起電圧の推定を行なってもよい。
【0016】
また、電動機駆動装置は電動機の負荷状態を判断する負荷判定手段をさらに、備えてもよい。このとき、デューティ補正手段は、負荷判定手段の判断結果に基いて、重負荷であると判断された場合は第1のモードに、軽負荷であると判断された場合は第2のモードに切替えて動作する。
【0017】
ここで、第1のモードは、インバータを制御するPWM信号の一キャリア周期のうち、インバータの上アームスイッチング素子が1つ通電している第1の期間と、上アームスイッチング素子が2つ通電している第2の期間において、前記電流検出手段のインバータ母線電流を検出するための時間が確保されるようなデューティ値に補正し、電流検出手段が、第1の期間と第2の期間に検出されるインバータ母線電流を前記電動機の三相それぞれに流れる相電流に変換するモードである。第2のモードは、デューティ補正手段が、PWM信号の一キャリア周期のうち、インバータの上アームスイッチング素子が1つ通電している第1の期間と上アームスイッチング素子が2つ通電している第2の期間において、電流検出手段のインバータ母線電流を検出するための時間が確保されるようなデューティ値に補正するとともに、次のキャリア周期において補正されたデューティの増減分を修正し、電流検出手段が検出時間が確保された第1の期間と第2の期間に検出されるインバータ母線電流を前記電動機の三相それぞれに流れる相電流に変換するモードである。
【0018】
または、第1のモードは、デューティ補正手段が、インバータを制御するPWM信号の半キャリア周期のうち、インバータの上アームスイッチング素子が1つ通電している第1の期間と上アームスイッチング素子が2つ通電している第2の期間とにおいて、電流検出手段のインバータ母線電流を検出するための時間を確保したデューティに補正し、電流検出手段は、第1の期間と第2の期間に検出されるインバータ母線電流を前記電動機の三相それぞれに流れる相電流に変換するモードであってもよい。第2のモードは、デューティ補正手段が、インバータを制御するPWM信号の半キャリア周期のうち、インバータの上アームスイッチング素子が1つ通電している第1の期間と、上アームスイッチング素子が2つ通電している第2の期間において、電流検出手段のインバータ母線電流を検出するための時間が確保されるようなデューティ値に補正するとともに、次のキャリア周期において補正されたデューティの増減分を修正し、電流検出手段は、検出時間が確保された第1の期間と第2の期間に検出されるインバータ母線電流を前記電動機の三相それぞれに流れる相電流に変換するモードであってもよい。
【0019】
第2のモードで動作中は、誘起電圧推定手段は、第2のモードにおいてデューティの増減分が修正されたキャリア周期においては、前回のキャリア周期で検出された相電流を用いて誘起電圧の推定を行なってもよい。
【0020】
また、負荷判定手段は、PWM信号のデューティ値の大きさ、電動機の回転数又は電流検出手段で得られる電流値を用いて負荷状態を判断できる。
【0021】
第1のモードと前記第2のモードの切り替えにおいて、ヒステリシスを設けるのが好ましい。
【0022】
本発明に係る冷凍装置は上記の本発明の電動機駆動装置を冷媒を圧縮する圧縮機の駆動装置として用いる。
【0023】
【発明の実施の形態】
以下、本発明に係るモータ駆動装置の実施の形態について図面を参照して説明する。
【0024】
(実施の形態1)
図1は本発明に係るモータ駆動装置の構成を示すブロック図である。モータ駆動装置は、直流電源1、ブラシレスモータ3に供給する駆動電圧を生成、出力するインバータ2及びインバータ2を制御する制御部6を有する。
【0025】
ブラシレスモータ3は、中性点を中心にY結線された3相巻線4u,4v,4wが取付けられた固定子4と、磁石が装着された回転子5とからなる。U相巻線4uの非結線端にU相端子8uが、V相巻線4vの非結線端にV相端子8vが、W相巻線4wの非結線端にW相端子8wが接続されている。
【0026】
インバータ2は一対のスイッチング素子からなるハーフブリッジ回路をU相用,V相用,W相用として3相分有する。ハーフブリッジ回路の一対のスイッチング素子は、直流電源1の高圧側端と低圧側端の間に直列接続され、ハーフブリッジ回路に直流電源1から出力される直流電圧が印加される。U相用のハーフブリッジ回路は、高圧側(上アーム)のスイッチング素子12u及び低圧側(下アーム)のスイッチング素子12xより成る。V相用のハーフブリッジ回路は、高圧側スイッチング素子12v及び低圧側スイッチング素子12yより成る。W相用のハーフブリッジ回路は、高圧側スイッチング素子12w及び低圧側スイッチング素子12zよりなる。また、各スイッチング素子と並列にフリーホイールダイオード14u,14v,14w,14x,14y,14zが接続されている。
【0027】
インバータ2におけるスイッチング素子12uとスイッチング素子12xの相互接続点、スイッチング素子12vとスイッチング素子12yの相互接続点、スイッチング素子12wとスイッチング素子12zの相互接続点にブラシレスモータ3の端子8u,8v,8wがそれぞれ接続される。
【0028】
インバータ2に印加されている直流電圧は、上述したインバータ2内のスイッチング素子のスイッチング動作によって三相の交流電圧に変換され、それによりブラシレスモータ3が駆動される。
【0029】
制御部6は、PWM信号生成部9と、ベースドライバ10と、電流検出部11と、誘起電圧推定部17と、回転子位置速度検出部18と、デューティ補正部19とからなる。
【0030】
PWM信号生成部9は、外部より与えられる目標速度を実現すべく、現在の速度と目標速度の誤差から演算により求められた出力電圧を出力するために、インバータ2の各スイッチング素子12u、12v、…を駆動するためのPWM信号を生成する。その生成されたPWM信号はデューティ補正部19により補正される。補正後のPWM信号はベースドライバ10により、スイッチング素子を電気的に駆動するためのドライブ信号に変換される。そのドライブ信号にしたがい各スイッチング素子12u,12v,12w,12x,12y,12zが動作する。
【0031】
電流検出部11はインバータ2の母線2aに流れる電流(以下「インバータ母線電流」という。)を観察し、そのインバータ母線電流に現れるブラシレスモータ3の相電流を検出する。電流検出部11は実際にはインバータ母線電流が変化したときから所定期間の間だけ電流を検出する。以下、電流検出部11が相電流を検出する所定期間を「電流検出期間」という。
【0032】
誘起電圧推定部17は、電流検出部11により検出されたブラシレスモータ3の相電流と、PWM信号生成部9で演算される出力電圧と、電圧検出部16により検出されるインバータ2への印加電圧の情報により、ブラシレスモータ3の誘起電圧を推定する。さらに、回転子位置速度推定部18は、推定された誘起電圧からブラシレスモータ3の回転子磁極位置および速度を推定する。推定された回転子磁極位置の情報に基づいて、PWM信号生成部9がブラシレスモータ3を駆動するためのPWM信号を生成する。その際、PWM信号生成部9は推定された回転子5の速度と外部から与えられる目標速度との偏差情報に基いて回転子速度が目標速度となるようにPWM信号を制御する。
【0033】
次に、誘起電圧推定部17の動作について説明する。
電流検出部11により、各相の巻線に流れる相電流(iu、iv、iw)が検出される。また、PWM信号生成部9で演算される出力電圧と、インバータ印加電圧検出部16が検出したインバータ印加電圧の情報から、各相の巻線に印加される相電圧(vu、vv、vw)が求められる。原理的には、これらの値から、下記式(1)、(2)、(3)の演算により、各相の巻線に誘起される誘起電圧値eu、ev、ewが求められる。ここで、Rは抵抗、Lはインダクタンスである。また、d(iu)/dt、d(iv)/dt、d(iw)/dtはそれぞれiu、iv、iwの時間微分である。
eu=vu−R・iu−L・d(iu)/dt …(1)
ev=vv−R・iv−L・d(iv)/dt …(2)
ew=vw−R・iw−L・d(iw)/dt …(3)
式(1)、(2)、(3)をさらに詳細に展開すると、次式(4)、(5)、(6)となる。
Figure 0003931079
ev=vv
Figure 0003931079
ここで、d/dtは時間微分を表し、三角関数に関する微分の演算に現れるdθ/dtには推定速度ωmを電気角速度に変換したものを用いる。また、d(iu)/dt、d(iv)/dt、d(iw)/dtは、1次オイラー近似で求める。なお、w相電流値iwは式(13)のように、u相電流値iuとv相電流値ivとの和の符号を変えたものとする。ここで、Rは巻線一相あたりの抵抗、laは巻線一相あたりの漏れインダクタンス、Laは巻線一相あたりの有効インダクタンスの平均値、およびLasは巻線一相あたりの有効インダクタンスの振幅である。
【0034】
誘起電圧推定部17においては、式(4)、(5)、(6)を簡略化した式(7)、(8)、(9)を使用する。簡略化は、相電流値iu、iv、iwが正弦波であると仮定し、電流指令振幅iaと電流指令位相βTとから相電流iu、iv、iwを作成し、簡略化したものである。
Figure 0003931079
【0035】
次に、回転子位置速度推定部18の動作について説明する。
回転子位置速度推定部18は、誘起電圧推定部17により推定された推定誘起電圧値eu、ev、ewから、回転子5の位置と速度を推定する。回転子位置速度推定部18は、それが認識している推定角度θmを誘起電圧の誤差を用いて補正することにより、真値に収束させる。さらに、それから、推定速度ωmを求める。
【0036】
最初に、各相の誘起電圧基準値(eum、evm、ewm)を以下の式で求める。
eum=em・sin(θm+βT)
evm=em・sin(θm+βT−120°)
ewm=em・sin(θm+βT−240°) …(10)
ここで、em:誘起電圧振幅値は、推定誘起電圧eu、ev、ewの振幅値と一致させることにより求める。
【0037】
この様にして求めた誘起電圧基準値と誘起電圧推定値との偏差εを作成する。
下記式(11)のように、誘起電圧推定値esから誘起電圧基準値esmを減算したものを偏差εにする。ここで、添字sはu、v、wのいずれかの相を示す添字である。
ε=es−esm (s:相 u/v/w) …(11)
【0038】
この偏差が、0になれば推定角度θmが真値になるので、偏差εを0にするように推定角度θmをPI演算などを用いて補正する。また、推定角度θmの変動値を演算することにより、推定速度ωmを作成する。
【0039】
PWM信号生成部9は、目標速度ω*を実現するために、目標速度ω*と推定速度ωmとの差Δωにより出力するべき電圧V*をPI演算などを用いて計算する。その電圧値V*から各相に出力するべき電圧V*s(s:相 u/v/w)を以下の様にして求める。
*u=V*・sin(θm+βT)
*v=V*・sin(θm+βT−120°)
*w=V*・sin(θm+βT−240°) …(12)
【0040】
さらに、このようにして求められた電圧V*s(s:相 u/v/w)を出力するための各スイッチング素子12u,12v,12w,12x,12y,12zのPWM信号はデューティ補正部19により補正され、ベースドライバ10に出力される。各スイッチング素子12u,12v,12w,12x,12y,12zはその補正後のPWM信号にしたがい駆動され、正弦波状の交流を生成する。
【0041】
このように本実施例では、推定誘起電圧値と誘起電圧基準値との偏差εを用いて推定角度θmを作成し、正弦波状の相電流を流すことによりブラシレスモータ3の正弦波駆動を実現している。
【0042】
ここで、図2〜図6を用いてインバータ母線2aに流れる電流においてブラシレスモータ3の相電流が現れる様子を説明する。
【0043】
図2は、ブラシレスモータ3の各相巻線に流る相電流の状態と、60°毎の電気角の各区間における各相巻線に流れる電流の方向とを示した図である。図2を参照すると、電気角0〜60°の区間においては、U相巻線4uとW相巻線4wには非結線端から中性点に向けて、V相巻線4vには中性点から非結線端に向けて電流が流れている(図2(b)参照)。また、電気角60〜120°の区間においては、U相巻線4uには非結線端から中性点に向けて、V相巻線4vとW相巻線4wには中性点から非結線端に向けて電流が流れている(図2(c)参照)。以降、図2(d)〜(g)において、電気角60°毎に各相の巻線に流る相電流の状態が変化していく様子が示されている。
【0044】
例えば、図2において電気角30°の時にPWM信号生成部9で生成された半キャリア周期分のPWM信号が図3のように変化する場合を考える。ここで、図3において、信号「U」は上アームスイッチング素子12uを、信号「V」は上アームスイッチング素子12vを、信号「W」は上アームスイッチング素子12wを、信号「X」は下アームスイッチング素子12xを、信号「Y」は下アームスイッチング素子12yを、信号「Z」は下アームスイッチング素子12zを動作させる信号を示す。これらの信号はアクティブ・ハイで動作する。この場合、インバータ母線2aには、タイミング▲1▼では、図4(a)に示すように電流が現れず、タイミング▲2▼では図4(b)に示すようにW相巻線4wに流れる電流(W相電流)が現れ、タイミング▲3▼では図4(c)に示すようにV相巻線4vに流れる電流(V相電流)が現れる。
【0045】
別の例として、図2において電気角30°の時にPWM信号生成部9で生成された半キャリア周期のPWM信号が図5のように変化する場合を考える。この場合は、図6(a)に示すようにインバータ母線2aにはタイミング▲1▼では電流が現れず、図6(b)に示すようにタイミング▲2▼ではU相巻線4uに流れる電流(U相電流)が現れ、図6(c)に示すようにタイミング▲3▼ではV相巻線4vに流れる電流が現れる。
【0046】
以上のように、インバータ母線2a上にインバータ2のスイッチング素子12u,12v,12w,12x,12y,12zの状態に応じたブラシレスモータ3の相電流が現れることが分かる。
【0047】
上述のように一キャリア周期内の近接したタイミングで二相分の電流を判断することができれば、次式の関係から三相それぞれの電流iu、iv、iwが求められることは明らかである。
iu+iv+iw=0 …(13)
【0048】
しかしながら、図2において電気角30°の時にPWM信号生成部9で生成される一キャリア周期分のPWM信号が図7のように変化する場合、インバータ母線2a上には、タイミング▲1▼では電流が現れず、タイミング▲3▼ではV相電流のみが現れる。つまり、この場合は一キャリア周期において一相分の電流しか検出できない。したがって、このように変化するPWM信号が繰り返されると三相それぞれの電流を求めることができず、誘起電圧推定部17で誘起電圧の推定が不能になり、ブラシレスモータ3の駆動ができなくなる。
【0049】
上記のような不具合を回避すべく、デューティ補正部19は、ブラシレスモータ3の各相の巻線に流る相電流を検出する必要がある期間(電流検出期間)においては、PWM信号生成部9で生成されるPWM信号をチェックし、もし、そのPWM信号が二相分の相電流の検出を不可能とする信号(例えば図7に示すようなPWM信号)である場合、そのPWM信号を二相分の相電流を確実に検出可能とするPWM信号(例えば図3、図5に示すようなPWM信号)に補正する。
【0050】
また、デューティ補正部19から出力されたPWM信号のデューティ情報は電流検出部11にも入力される。電流検出部11はインバータ母線電流にブラシレスモータ3のどの相の電流が現れているのか判断し、各相の電流値に変換する。電流検出部11による各相の検出電流値はその後の誘起電圧推定部17での誘起電圧の推定演算に活用される。
【0051】
本実施形態によれば、制御部6内の制御ループを成立させるために、ブラシレスモータ3の各相の巻線に流れる相電流を検出する必要が生じた際に、誘起電圧を推定するアルゴリズムを変えることなく簡単になおかつ確実に相電流検出を行うことができ、電流検出手段をインバータとモータの間の線間に2つ以上設ける必要がない安価なシステム構成で正弦波駆動を実現することができる。
【0052】
(実施の形態2)
本実施形態では、実施の形態1の制御部6の一部をインバータ制御用マイコンにより具現化した例を示す。図8は、このインバータ制御用マイコン内でのタイマ構成と、PWM信号の1キャリア周期に出力されるインバータ制御信号との関係を示した図である。
【0053】
この種のタイマは一般にインバータ制御用マイコンには標準装備され、PWM信号のキャリア周波数毎にアップダウンカウントを繰り返し、キャリア周波数決定値に到達するとアップカウントからダウンカウントへ移行する。タイマのカウント値が各相のデューティ決定値に到達すると、当該相のPWM信号が反転する。なお、図8ではV相デューティ決定値がキャリア周波数決定値と同じであるため、信号「V」はオフ状態、信号「Y」はオン状態を維持する出力となっている。各相のデューティ決定値はタイマがダウンカウントからアップカウントに移行する際に変更されていき各相所定の出力電圧を発生させる。
【0054】
図9は本実施形態におけるデューティ補正部19の動作を説明した図である。ここで、図中に示された矢印20はインバータ制御用マイコンのADサンプリング期間を示し、電流検出部11でインバータ母線2aに流れる電流を検出する期間(電流検出期間)を表す。ADサンプリング期間はインバータ母線電流が変化した時点からサンプリングに必要な所定時間が経過した期間となる。PWM信号生成部9で図9(a)に示すようなPWMパターン(信号「U」〜信号「Z」)を出力するような演算結果がなされた場合を考える。この場合、上アームスイッチング素子が2つ通電しているタイミング▲3▼の期間がADサンプリング期間20よりも短い状態になっている。このとき、図4から分かるようにこの期間、インバータ母線2aに現れるV相の電流を正確に検出することができない。そこで、デューティ補正部19は、各相のデューティ決定値がおもにマイコンのADサンプリング期間で決められる値よりも大きくなるように、PWM信号のデューティの値を補正する。例えば、デューティ補正部19は、図9(a)のU相デューティ決定値を、図9(b)のように、上アームスイッチング素子が2つ通電しているタイミング▲3▼の期間がADサンプリング期間すなわち電流検出期間よりも長くなるように補正する。
【0055】
また、図10を用いて本実施の形態におけるデューティ補正部19の別の動作について説明する。例えば、PWM信号生成部9で図10(a)に示したようなPWMパターンを出力するような演算結果がなされた場合を考える。上アームスイッチング素子が1つのみ通電しているタイミング▲2▼の期間がADサンプリング期間20よりも短い状態になっている。この場合は、図4から分かるようにこの期間インバータ母線2aに現れるW相の電流を正確に検出することができない。そこで、デューティ補正部19は、U相デューティ決定値とW相デューティ決定値のそれぞれを補正し、タイミング▲2▼の期間がADサンプリング期間20よりも長くなるようにする。図10(b)では、サンプリング期間20よりも長いタイミング▲2▼の期間を確保するために、タイミング▲2▼の必要な期間に対して不足している分の1/2の期間だけ、U相デューティ決定値についてはデューティが少なくなるように補正し、W相デューティ決定値についてはデューティが大きくなるように補正する。なお、この補正の仕方は一例であり、タイミング▲2▼に必要な期間に対して不足している分をU相デューティ決定値についてのみデューティが少なくなるように補正しても構わないし、W相デューティ決定値についてのみデューティが大きくなるように補正しても構わない。
【0056】
この実施の形態によれば、デューティの変更を行う際(上述の説明ではタイマがダウンカウントからアップカウントに移行する際)に、上アームスイッチング素子が1つ通電している期間と2つ通電している期間のそれぞれをチェックし必要時にデューティの補正を行うので、PWM信号の1キャリア周期に1回デューティを変更する簡単なアルゴリズムで確実に相電流検出を行うことができる。
【0057】
(実施の形態3)
図11は、デューティ補正部19のさらに異なる動作を説明するための図である。PWM信号生成部9で図12(a)に示したようなPWMパターンを出力するような演算結果がなされた場合、上アームスイッチング素子が2つ通電しているタイミング▲3▼の期間がADサンプリング時間20よりも短い状態になっていて、図4から分かるようにこの期間インバータ母線2aに現れるV相の電流を正確に検出することができない。そこで、デューティ補正部19ではPWM信号のキャリア半周期において各相のデューティ決定値がマイコンのADサンプリング時間で決められる値よりも大きくなるようにデューティを補正する。つまり、図11(a)に示すU相デューティ決定値が、タイマがアップカウントしているPWM信号のキャリア半周期において補正され、図11(b)に示すように上アームスイッチング素子スイッチングが2つ通電しているタイミング▲3▼の期間がADサンプリング時間よりも長くなるようになっている。
【0058】
次に、図12を用いて本実施の形態におけるデューティ補正部19での別の動作について説明する。例えば、PWM信号生成部9で図12(a)に示したようなPWMパターンを出力するような演算結果がなされた場合を考える。上アームスイッチング素子が1つ通電しているタイミング▲2▼の期間がADサンプリング期間20よりも短い状態になっている。この場合、図6から分かるようにこの期間インバータ母線に現れるU相の電流を正確に検出することができない。そこで、デューティ補正部19ではPWM信号のキャリア周期の半周期においてU相デューティ決定値とW相デューティ決定値のそれぞれが補正され、図12(b)のようにタイマがアップカウントしているPWM信号の半キャリア周期において上アームスイッチング素子が1つ通電しているタイミング▲2▼の期間がADサンプリング時間よりも長くなっている。図12(b)では、サンプリング期間20よりも長いタイミング▲2▼の期間を確保するために、タイミング▲2▼の必要な期間に対する不足分の1/2の期間だけ、U相デューティ決定値についてはデューティが少なくなるように補正し、W相デューティ決定値についてはデューティが大きくなるように補正している。なお、この補正の仕方は一例であり、タイミング▲2▼に必要な期間に対して不足している分をU相デューティ決定値についてのみデューティが少なくなるように補正しても構わないし、W相デューティ決定値についてのみデューティが大きくなるように補正しても構わない。
【0059】
この実施の形態によれば、デューティの変更タイミングをタイマがダウンカウントからアップカウントに移行する時と、アップカウントからダウンカウントに移行する時の2回に増やし、PWM信号の半キャリア周期における上アームスイッチング素子が1つ通電している期間と2つ通電している期間のそれぞれをチェックし、必要時にデューティの補正を行うので、PWM信号の補正量を少なくすることができ、簡単になおかつ確実に相電流検出を行うとともに、デューティの補正による相電流の乱れなどの影響を抑えられることになる。
【0060】
(実施の形態4)
図13はデューティ補正部19のさらに異なる動作を説明するための図である。PWM信号生成部9により図13(a)に示したようなPWM出力をするような演算結果がなされた場合、上アームスイッチング素子が1つ通電しているタイミング▲2▼の期間がADサンプリング時間20よりも短い状態になっており、図4から分かるようにこの期間インバータ母線2aに現れるW相の電流を正確に検出することができない。
【0061】
そこで、デューティ補正部19は、図13(b)のようにタイマがアップカウントしているPWM信号の半キャリア周期において上アームスイッチング素子が1つ通電しているタイミング▲2▼の期間がADサンプリング時間よりも長くなるように、PWM信号の半キャリア周期においてU相デューティ決定値とW相デューティ決定値のそれぞれを補正する。図13(b)では、タイミング▲2▼に必要な期間に対して不足している分の1/2の期間をU相デューティ決定値についてはデューティが少なくなるように、W相デューティ決定値についてはデューティが大きくなるように補正することによってタイミング▲2▼期間を確保している。また、タイマがダウンカウントしているPWM信号の半キャリア周期においては、タイマがアップカウントしている半キャリア周期で補正されたデューティを修正している。U相デューティ決定値については補正時に少なくなったデューティ分を増やし、W相デューティ決定値については補正時に大きくなったデューティ分を減らしている。
【0062】
本実施形態によれば、デューティ値の変更をタイマがダウンカウントからアップカウントに移行する時と、アップカウントからダウンカウントに移行する時の2回に増やし、PWM信号のキャリア半周期における上アームスイッチング素子が1つ通電している期間と2つ通電している期間のそれぞれをチェックし、必要時にデューティの補正を行い、残りのキャリア半周期においては、デューティ補正時に増減した分を修正している。このため、PWM信号の1キャリア周期における変更量をなくすことができ、簡単になおかつ確実に相電流検出を行うとともに、相電流の乱れを排除できる。
【0063】
(実施の形態5)
図14はデューティ補正部19のさらに異なる動作を説明するための図である。PWM信号生成部9により図14(a)に示したようなPWM出力をするような演算結果がなされた場合、上アームスイッチング素子が2つ通電しているタイミング▲3▼の期間がADサンプリング期間20よりも短い状態になっており、図4から分かるようにこの期間インバータ母線に現れるV相の電流を正確に検出することができない。
【0064】
そこで、デューティ補正部19は、各相のデューティ決定値がおもにマイコンのADサンプリング時間で決められる値よりも大きくなるようにデューティを補正する。図14(b)に示すように、1回目のキャリア周期において、上アームスイッチング素子が2つ通電しているタイミング▲3▼の期間がADサンプリング時間よりも長くなるようにU相デューティ決定値が補正される。また、2回目のキャリア周期においては、1回目のキャリア周期におけるU相デューティ決定値の補正時に大きくなったデューティ分を減らしている(結果的にスイッチングなし)。
【0065】
図15は本実施形態においてタイミング▲2▼の期間が短く十分でない場合のデューティ補正を説明するための図である。PWM信号生成部9で図15(a)に示したようなPWM出力をするような演算結果がなされた場合、上アームスイッチング素子が1つ通電しているタイミング▲2▼の期間がADサンプリング時間20よりも短い状態になっている。図4から分かるようにこの期間インバータ母線に現れるW相の電流を正確に検出することができない。
【0066】
そこで、デューティ補正部19は、図15(b)の1回目のキャリア周期において上アームスイッチング素子が1つ通電しているタイミング▲2▼の期間がADサンプリング時間よりも長くなるように、U相デューティ決定値とW相デューティ決定値のそれぞれを補正する。図15(b)では、タイミング▲2▼に必要な期間に対して不足している分の1/2の期間だけ、U相デューティ決定値についてはデューティが少なくなるように、W相デューティ決定値についてはデューティが大きくなるように補正することによってタイミング▲2▼期間を確保している。また、2回目のキャリア周期においては、1回目のキャリア周期におけるU相デューティ決定値の補正時に小さくなったデューティ分を増やし、W相デューティ決定値について補正時に大きくなったデューティ分を減らしている。
【0067】
本実施形態によれば、デューティの変更を行う際(上述説明ではタイマがダウンカウントからアップカウントに移行する際)に、上アームスイッチング素子が1つ通電している期間と2つ通電している期間のそれぞれをチェックし必要時にデューティの補正を行うので、PWM信号の1キャリア周期に1回デューティを変更する簡単なアルゴリズムで確実に相電流検出を行うことができる。
【0068】
また、デューティの補正を行ったキャリア周期の次のキャリア周期においてデューティ補正時に増減した分のデューティを修正しているため、二キャリア周期における変更量を極力低減することができ、相電流の乱れを低減できる。なお、2回目のキャリア周期においても誘起電圧を推定するアルゴリズムを実行する場合は1回目のキャリア周期で検出される相電流値によって演算すればよい。
【0069】
(実施の形態6)
図16はデューティ補正部19のさらに異なる動作を説明するための図である。PWM信号生成部9で図16(a)に示すようなPWM出力をするような演算結果がなされた場合、上アームスイッチング素子が1つ通電しているタイミング▲2▼の期間と上アームスイッチング素子が2つ通電しているタイミング▲3▼の期間がADサンプリング時間20よりも短い状態になっており、図4から分かるようにそれぞれの期間インバータ母線2aに現れるW相の電流とV相の電流を正確に検出することができない。
【0070】
そこで、デューティ補正部19は、図16(b)に示すように、1回目のキャリア周期の前半半周期における上アームスイッチング素子が1つ通電しているタイミング▲2▼の期間と上アームスイッチング素子が2つ通電しているタイミング▲3▼の期間とがADサンプリング時間よりも長くなるように、U相デューティ決定値とW相デューティ決定値のそれぞれを補正する。また、2回目のキャリア周期においては、U相デューティ決定値について1回目のキャリア周期での補正時に大きくなったデューティ分を減らし(結果的にスイッチングなし)、W相デューティ決定値についても補正時に大きくなったデューティ分を減らしている。
【0071】
本実施形態によれば、デューティの変更をタイマがダウンカウントからアップカウントに移行する時と、アップカウントからダウンカウントに移行する時の2回に増やし、PWM信号のキャリア半周期における上アームスイッチング素子が1つ通電している期間と2つ通電している期間のそれぞれをチェックし必要時にデューティの補正を行うので、PWM信号の補正量を少なくすることができ、簡単になおかつ確実に相電流検出を行える。
【0072】
また、デューティの補正を行ったキャリア周期の次の周期では、デューティ補正時に増減した分のデューティを修正しているため、二キャリア周期における変更量を実施の形態5よりも更に低減でき、相電流の乱れを排除できる。
【0073】
(実施の形態7)
本実施形態では、実施の形態5と実施の形態6における2回目のキャリア周期においても誘起電圧を推定するアルゴリズムを実行する。この場合、1回目のキャリア周期で検出される相電流値によって誘起電圧の推定演算を行う。これにより、誘起電圧推定や回転子位置速度推定の演算をPWM信号のキャリア周期毎に行うため制御性が向上し、安定したモータ駆動が実現できる。
【0074】
(実施の形態8)
図17に本実施形態のモータ駆動装置の構成を示すブロック図を示す。本実施形態では、制御部6においてブラシレスモータ3の負荷状態を判断する負荷判定部21をさらに設けている。デューティ補正部19は負荷判定部21の判定結果にしたがい動作モードを切替えて動作する。具体的には、デューティ補正部19は、実施の形態2に示したデューティ補正部19の動作を行なうモードを第1の動作モードとし、実施の形態5に示したデューティ補正部19の動作を実行するモードを第2の動作モードとする。デューティ補正部19は負荷判定部21が負荷状態が「重負荷」であると判断した時は第1の動作モードで、負荷状態が「軽負荷」であると判断した時は第2の動作モードで動作する。
【0075】
図18はブラシレスモータ3が回転している時の電流波形22を、電気角1周期におけるキャリア周期を示す信号23とともに表した図である。図18(a)はブラシレスモータ3が高速回転すなわち重負荷状態で回転している時の様子を示し、図18(b)は低速回転すなわち軽負荷状態で回転している時の様子を示したものである。図18(b)から分かるようにモータが軽負荷状態で回転している時はキャリア周期毎の電流変化量は少なくなり、図18(a)から分かるように重負荷状態の時はキャリア周期毎の電流変化量は多くなる。また、モータが軽負荷状態で回転している時は図16(a)に示したPWM出力がなされる場合が重負荷状態で回転している時と比べて頻繁に生じる。
【0076】
モータが軽負荷状態で回転している時は、キャリア周期毎の電流検出周期をキャリア周期の1/2の周期に減らしても検出毎の電流値は大きく変化しない。このことから、モータが軽負荷状態で回転している時は、PWM信号のデューティの変更量を極力少なくし、正弦波電流に歪みを発生させないことを優先させる制御をするようにする。
【0077】
本実施形態によれば、軽負荷である低速回転域から重負荷である高速回転域まで電流歪みのない正弦波電流による安定したモータ駆動が実現できる。
【0078】
(実施の形態9)
本実施形態のモータ駆動装置の構成は図17に示す構成と同じ構成を有する。すなわち、本実施形態では、制御部6においてブラシレスモータ3の負荷状態を判断する負荷判定部21を設けている。デューティ補正部19は、実施の形態3に示したデューティ補正部19の動作を第1の動作モードとし、実施の形態6に示したデューティ補正部19の動作を第2の動作モードとする。デューティ補正部19は、負荷判定部21が重負荷と判断した時は第1の動作モードで動作し、軽負荷と判断した時は第2の動作モードで動作する。
【0079】
本実施の形態における動作原理は実施の形態8のものと同様であり、軽負荷である低速回転域から重負荷である高速回転域まで電流歪みのない正弦波電流による安定したモータ駆動が実現できる。
【0080】
(実施の形態10)
本実施形態では、誘起電圧推定部17が、実施の形態8と実施の形態9における負荷判定部21が軽負荷と判断した時の2回目のキャリア周期においても、誘起電圧を推定するアルゴリズムを実行する。この場合は、1回目のキャリア周期で検出される相電流値によって誘起電圧の推定演算を行う。これによれば、誘起電圧推定や回転子位置速度推定の演算をPWM信号のキャリア周期毎に行うため制御性が向上し、実施の形態8や実施の形態9よりさらに安定したモータ駆動が実現できる。
【0081】
(実施の形態11)
実施の形態8ないし実施の形態10における負荷判定部21による判断について説明する。具体的には、負荷判定部21による判断は、PWM信号生成部9で生成されるPWM信号のデューティ値に基いて行なわれる。すなわち、PWM信号生成部9で生成されるPWM信号のデューティ値ついて電気角での一周期中の最大値がしきい値に満たない場合に、負荷状態を「軽負荷」である判断する。
【0082】
図19はPWM信号生成部9で生成されるPWM信号のデューティ値の変化の様子を電気角の区切り毎に表した図である。例えば、U相のデューティ値は電気角60°と120°の時に最大値となっているがこの時の値で負荷状態の判定を行う。
【0083】
本実施の形態によれば、制御部6内で演算している値でもって負荷状態の判断が可能なため外部に余計な負荷検出装置のようなものを加える必要がない。なお、本実施の形態ではPWM信号のデューティにおける電気角1周期中の最大値をしきい値と比較しているが、電気角1周期中の平均値やフィルタ演算値などを用いてもよいことは明らかである。
【0084】
また、本実施の形態ではPWM信号生成部9で生成されるPWM信号のデューティ値における電気角1周期中の最大値を負荷状態の判断に用いたが、回転子位置速度検出部18で得られるブラシレスモータ3の回転数や、電流検出部11で得られる相電流値を負荷状態の判断に用いることができる。これによってもシステムの構成、制御性に何ら問題はない。
【0085】
また、本実施の形態における負荷判定部21が軽負荷であるかどうかの判断を行う際に、図20に示すようにヒステリシスを設けると、軽負荷状態での制御と重負荷状態での制御が切り替わる付近でのモータ駆動の安定性がより向上する。
【0086】
(実施の形態12)
図21に上記のモータ駆動装置を利用した冷凍装置の構成例を示す。本冷凍装置においては、冷媒の圧縮を行なうコンプレッサの駆動装置として前述の実施の形態のモータ駆動装置が用いられている。
【0087】
冷凍装置は、上記のいずれかの実施形態のモータ駆動装置100及びコンプレッサ82に加えて、第1のユニット92及び第2のユニット95からなる冷凍サイクルを備えている。第1のユニット92は熱交換器94と送風機93から構成され、第2のユニット95は熱交換器96、送風機97及び膨張弁98より構成される。第1のユニット92は冷凍庫99内を冷却する。
【0088】
冷凍サイクル中は熱媒体である冷媒が循環する。冷媒はコンプレッサ82により圧縮され、熱交換器96にて送風機97からの送風により冷凍庫99外の空気と熱交換され放熱し、熱交換器94にて送風機93からの送風により冷凍庫99内の空気と熱交換され、吸熱する。これにより、冷凍庫99内が冷却される。以上のような冷凍サイクルにおいて、モータ駆動装置100によりコンプレッサ82が駆動される。
【0089】
【発明の効果】
本発明の電動機駆動装置によれば、電流検出手段をインバータと電動機間の線間に少なくとも2つ以上設けることのない安価なシステム構成で正弦波駆動を実現することができるという効果を奏する。
【0090】
また、インバータ母線電流からモータ相電流を検出するために補正したPWM信号のデューティ増減分を以降のタイミングで修正することにより、正弦波電流に歪みを極力生じさせないで済むことから、モータ駆動において低騒音化・低振動化が図れるという効果を奏する。
【0091】
また、モータの駆動状態が軽負荷であると判断した時は、インバータ母線電流からモータ相電流を検出するのをキャリア周期の1/2の周期で行うことにより、低速回転領域から高速回転領域に至るまで正弦波電流に歪みを生じさせない安定したモータ駆動が行えるという効果を奏する。
【図面の簡単な説明】
【図1】 本発明のモータ駆動装置の構成を示すブロック図
【図2】 モータの相電流状態の時間的変化の一例、及び、電気角の各区間におけるモータの各相巻線での電流の状態を表す図
【図3】 半キャリア周期におけるPWM信号の一例を表す図
【図4】 図3における、PWM信号による駆動時にモータ及びインバータに流れる電流状態を表す図
【図5】 半キャリア周期におけるPWM信号の一例を表す図
【図6】 図5における、PWM信号による駆動時にモータ及びインバータに流れる電流状態を表す図
【図7】 相電流が検出が不可能となる、一キャリア周期におけるPWM信号の一例を表す図
【図8】 インバータ制御用マイコン内のタイマ構成と、1キャリア周期に出力されるPWM信号を表す図
【図9】 デューティ補正部での動作の一例を説明するための図
【図10】 デューティ補正部での動作の一例を説明するための図
【図11】 デューティ補正部での動作の一例を説明するための図
【図12】 デューティ補正部での動作の一例を説明するための図
【図13】 デューティ補正部での動作の一例を説明するための図
【図14】 デューティ補正部での動作の一例を説明するための図
【図15】 デューティ補正部での動作の一例を説明するための図
【図16】 デューティ補正部での動作の一例を説明するための図
【図17】 本発明のモータ駆動装置の別の構成例を示すブロック図
【図18】 モータの相電流波形と電気角1周期におけるキャリア周期を示す信号を表す図
【図19】 PWM信号生成部で生成されるPWM信号のデューティの時間的変化を表す図
【図20】 負荷判定部での負荷状態判定のヒステリシスを表す図(横軸:モータ回転数)
【図21】 本発明のモータ駆動装置を利用した冷凍装置の構成を示す図
【図22】 従来のモータ駆動装置の構成を表すブロック図
【符号の説明】
1 直流電源
2 インバータ
2a インバータ母線
3 ブラシレスモータ
6 制御部
9 PWM信号生成部
10 ベースドライバ
11 電流検出部
12u〜12w 上アームスイッチングトランジスタ
12x〜12z 下アームスイッチングトランジスタ
14u〜14w、14x〜14z フリーホイールダイオード
16 インバータ入力電圧検出部
17 誘起電圧推定部
18 回転子位置速度推定部
19 デューティ補正部
21 負荷判定部
82 コンプレッサ
93,97 送風機
94,96 熱交換器
98 膨張弁
99 冷凍庫
100 モータ駆動装置

Claims (10)

  1. 高圧側に配置された上アームスイッチング素子と低圧側に配置された下アームスイッチング素子からなるスイッチング素子対を複数有し、各スイッチング素子の動作により直流電圧を所望の周波数、電圧の交流電圧に変換し、三相電動機にその駆動電圧として供給するインバータと、
    インバータの母線に流れる電流を検出する電流検出手段と、
    前記インバータが出力する電圧値と前記電流検出手段により検出される電流値とから前記電動機の誘起電圧を推定する誘起電圧推定手段と、
    推定された誘起電圧推定値に基づいて前記電動機の回転子磁極位置を推定する回転子位置速度検出手段と、
    推定された回転子磁極位置の情報に基づいて、前記インバータの各スイッチング素子の動作を制御するPWM信号を生成するPWM信号生成手段と、
    前記PWM信号生成手段で生成されたPWM信号のデューティを補正するデューティ補正手段とを備え、
    前記デューティ補正手段は、前記PWM信号生成手段で生成されたPWM信号のデューティ値を、前記電流検出手段がインバータ母線電流を検出する間はPWM信号が変化しないようなデューティ値に補正し、
    前記デューティ補正手段は、前記PWM信号の1キャリア周期または半キャリア周期のうちのインバータの上アームスイッチング素子が1つのみ通電している第1の期間と上アームスイッチング素子が2つ通電している第2の期間とにおいて前記電流検出手段による電流検出のための時間が確保されるようデューティ値を補正するとともに、次のキャリア周期で補正されたデューティの増減分を修正し、
    前記電流検出手段は、電流検出時間が確保された第1の期間と第2の期間に検出されるインバータ母線電流を前記電動機の三相それぞれに流れる相電流に変換する
    ことを特徴とした電動機駆動装置。
  2. 前記誘起電圧推定手段は、前記デューティの増減分が修正されたキャリア周期においては、前回のキャリア周期で検出された相電流を用いて誘起電圧の推定を行なう、ことを特徴とした請求項1記載の電動機駆動装置。
  3. 高圧側に配置された上アームスイッチング素子と低圧側に配置された下アームスイッチング素子からなるスイッチング素子対を複数有し、各スイッチング素子の動作により直流電圧を所望の周波数、電圧の交流電圧に変換し、三相電動機にその駆動電圧として供給するインバータと、
    インバータの母線に流れる電流を検出する電流検出手段と、
    前記インバータが出力する電圧値と前記電流検出手段により検出される電流値とから前記電動機の誘起電圧を推定する誘起電圧推定手段と、
    推定された誘起電圧推定値に基づいて前記電動機の回転子磁極位置を推定する回転子位置速度検出手段と、
    推定された回転子磁極位置の情報に基づいて、前記インバータの各スイッチング素子の動作を制御するPWM信号を生成するPWM信号生成手段と、
    前記PWM信号生成手段で生成されたPWM信号のデューティを補正するデューティ補正手段と、
    電動機の負荷状態を判断する負荷判定手段とを備え、
    前記デューティ補正手段は、前記PWM信号生成手段で生成されたPWM信号のデューティ値を、前記電流検出手段がインバータ母線電流を検出する間はPWM信号が変化しないようなデューティ値に補正し、さらに、前記デューティ補正手段は、前記負荷判定手段の判断結果に基いて、重負荷であると判断された場合は第1のモードに、軽負荷であると判断された場合は第2のモードに切替えて動作し、
    前記第1のモードは、前記インバータを制御するPWM信号の一キャリア周期のうち、前記インバータ上アームスイッチング素子が1つ通電している第1の期間と、上アームスイッチング素子が2つ通電している第2の期間において、前記電流検出手段のインバー タ母線電流を検出するための時間が確保されるようなデューティ値に補正し、前記電流検出手段が、第1の期間と第2の期間に検出されるインバータ母線電流を前記電動機の三相それぞれに流れる相電流に変換するモードであり、
    前記第2のモードは、前記デューティ補正手段が、前記PWM信号の一キャリア周期のうち、前記インバータの上アームスイッチング素子が1つ通電している第1の期間と上アームスイッチング素子が2つ通電している第2の期間において、前記電流検出手段のインバータ母線電流を検出するための時間が確保されるようなデューティ値に補正するとともに、次のキャリア周期において補正されたデューティの増減分を修正し、前記電流検出手段が検出時間が確保された第1の期間と第2の期間に検出されるインバータ母線電流を前記電動機の三相それぞれに流れる相電流に変換するモードである
    ことを特徴とした電動機駆動装置。
  4. 高圧側に配置された上アームスイッチング素子と低圧側に配置された下アームスイッチング素子からなるスイッチング素子対を複数有し、各スイッチング素子の動作により直流電圧を所望の周波数、電圧の交流電圧に変換し、三相電動機にその駆動電圧として供給するインバータと、
    インバータの母線に流れる電流を検出する電流検出手段と、
    前記インバータが出力する電圧値と前記電流検出手段により検出される電流値とから前記電動機の誘起電圧を推定する誘起電圧推定手段と、
    推定された誘起電圧推定値に基づいて前記電動機の回転子磁極位置を推定する回転子位置速度検出手段と、
    推定された回転子磁極位置の情報に基づいて、前記インバータの各スイッチング素子の動作を制御するPWM信号を生成するPWM信号生成手段と、
    前記PWM信号生成手段で生成されたPWM信号のデューティを補正するデューティ補正手段と、
    電動機の負荷状態を判断する負荷判定手段とを備え、
    前記デューティ補正手段は、前記PWM信号生成手段で生成されたPWM信号のデューティ値を、前記電流検出手段がインバータ母線電流を検出する間はPWM信号が変化しないようなデューティ値に補正し、さらに、前記デューティ補正手段は、前記負荷判定手段の判断結果に基いて、重負荷であると判断された場合は第1のモードに、軽負荷であると判断された場合は第2のモードに切替えて動作し、
    前記第1のモードは、前記デューティ補正手段が、前記インバータを制御するPWM信号の半キャリア周期のうち、前記インバータの上アームスイッチング素子が1つ通電している第1の期間と上アームスイッチング素子が2つ通電している第2の期間とにおいて、前記電流検出手段のインバータ母線電流を検出するための時間を確保したデューティに補正し、前記電流検出手段は、第1の期間と第2の期間に検出されるインバータ母線電流を前記電動機の三相それぞれに流れる相電流に変換するモードであり、
    前記第2のモードは、前記デューティ補正手段が、前記インバータを制御するPWM信号の半キャリア周期のうち、前記インバータの上アームスイッチング素子が1つ通電している第1の期間と、上アームスイッチング素子が2つ通電している第2の期間において、前記電流検出手段のインバータ母線電流を検出するための時間が確保されるようなデューティ値に補正するとともに、次のキャリア周期において補正されたデューティの増減分を修正し、前記電流検出手段は、検出時間が確保された第1の期間と第2の期間に検出されるインバータ母線電流を前記電動機の三相それぞれに流れる相電流に変換するモードである
    ことを特徴とした電動機駆動装置。
  5. 前記誘起電圧推定手段は、前記第2のモードにおいてデューティの増減分が修正されたキャリア周期においては、前回のキャリア周期で検出された相電流を用いて誘起電圧の推定を行なう、ことを特徴とした請求項3または請求項4記載の電動機駆動装置。
  6. 前記負荷判定手段はPWM信号のデューティ値の大きさを用いて負荷 状態を判断する、ことを特徴とした請求項3ないし請求項5のいずれか一つに記載の電動機駆動装置。
  7. 前記負荷判定手段は電動機の回転数を用いて負荷状態を判断する、ことを特徴とした請求項3ないし請求項5のいずれか一つに記載の電動機駆動装置。
  8. 前記負荷判定手段は前記電流検出手段で得られる電流値を用いて負荷状態を判断する、ことを特徴とした請求項3ないし請求項5のいずれか一つに記載の電動機駆動装置。
  9. 前記第1のモードと前記第2のモードの切り替えにおいて、ヒステリシスを設けたことを特徴とした請求項3ないし請求項8のいずれか一に記載の電動機駆動装置。
  10. 請求項1ないし請求項9のいずれか一つに記載の電動機駆動装置を冷媒を圧縮する圧縮機の駆動装置として用いたことを特徴とする冷凍装置。
JP2001381414A 2001-12-14 2001-12-14 電動機駆動装置及びそれを用いた冷凍装置 Expired - Fee Related JP3931079B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001381414A JP3931079B2 (ja) 2001-12-14 2001-12-14 電動機駆動装置及びそれを用いた冷凍装置
KR10-2002-0072141A KR100507714B1 (ko) 2001-12-14 2002-11-20 전동기 구동 장치 및 그것을 이용한 냉동 장치
CNB021558906A CN1258257C (zh) 2001-12-14 2002-12-13 电动机驱动装置和使用该电动机驱动装置的冷冻装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381414A JP3931079B2 (ja) 2001-12-14 2001-12-14 電動機駆動装置及びそれを用いた冷凍装置

Publications (2)

Publication Number Publication Date
JP2003189670A JP2003189670A (ja) 2003-07-04
JP3931079B2 true JP3931079B2 (ja) 2007-06-13

Family

ID=19187334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381414A Expired - Fee Related JP3931079B2 (ja) 2001-12-14 2001-12-14 電動機駆動装置及びそれを用いた冷凍装置

Country Status (3)

Country Link
JP (1) JP3931079B2 (ja)
KR (1) KR100507714B1 (ja)
CN (1) CN1258257C (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093503A1 (ja) 2011-01-05 2012-07-12 日本精工株式会社 モータ制御装置及びそれを用いた電動パワーステアリング装置

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3675431B2 (ja) * 2002-10-01 2005-07-27 松下電器産業株式会社 電動機駆動装置
WO2005006534A1 (ja) * 2003-07-15 2005-01-20 Matsushita Electric Industrial Co., Ltd. 空気調和機の圧縮機用電動機駆動装置
JP3985792B2 (ja) * 2004-02-13 2007-10-03 松下電器産業株式会社 電動機駆動装置およびそれを用いた空気調和機
JP4505725B2 (ja) * 2004-03-18 2010-07-21 富士電機システムズ株式会社 三相インバータ装置
WO2006001169A1 (ja) 2004-06-25 2006-01-05 Matsushita Electric Industrial Co., Ltd. インバータ装置およびこれを搭載した車両用空調装置
WO2006009145A1 (ja) 2004-07-20 2006-01-26 Matsushita Electric Industrial Co., Ltd. インバータ装置
JP4609078B2 (ja) * 2005-01-24 2011-01-12 パナソニック株式会社 電動機駆動装置およびこれを用いた空気調和機
JP2006296066A (ja) * 2005-04-08 2006-10-26 Matsushita Electric Ind Co Ltd 電動機駆動装置及びそれを用いた空気調和機
JP4643404B2 (ja) * 2005-09-15 2011-03-02 三菱電機株式会社 インバータ制御装置
JP4497148B2 (ja) * 2005-10-24 2010-07-07 パナソニック株式会社 インバータ装置
WO2007049473A1 (ja) * 2005-10-24 2007-05-03 Matsushita Electric Industrial Co., Ltd. インバータ装置
JP4497149B2 (ja) 2005-12-16 2010-07-07 パナソニック株式会社 インバータ装置
JP4788416B2 (ja) * 2006-03-15 2011-10-05 パナソニック株式会社 モータ駆動用インバータ制御装置及び冷凍装置
JP4715677B2 (ja) * 2006-08-11 2011-07-06 株式会社デンソー 3相回転機の制御装置
JP2008067556A (ja) 2006-09-11 2008-03-21 Sanyo Electric Co Ltd モータ制御装置
JP4429338B2 (ja) 2006-09-11 2010-03-10 三洋電機株式会社 モータ制御装置、電流検出ユニット
US7436233B2 (en) * 2006-11-01 2008-10-14 Sync Power Corp. Normal mode and green mode pulse width modulation controller
DE102006052467A1 (de) * 2006-11-07 2008-05-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Strommessung in einem insbesondere mehrphasigen Stromnetz
JP2008131730A (ja) 2006-11-20 2008-06-05 Matsushita Electric Ind Co Ltd 半導体装置、モータ駆動装置、及び空調機
JP4866216B2 (ja) * 2006-11-22 2012-02-01 株式会社日立製作所 電力変換装置
JP4561838B2 (ja) * 2007-01-24 2010-10-13 パナソニック株式会社 インバータ装置
JP4988374B2 (ja) 2007-02-15 2012-08-01 三洋電機株式会社 モータ制御装置
JP5200569B2 (ja) * 2007-03-05 2013-06-05 パナソニック株式会社 インバータ装置
JP4963246B2 (ja) * 2007-03-16 2012-06-27 ローム株式会社 モータ駆動回路、駆動方法ならびにそれらを用いたディスク装置
US7936146B2 (en) 2007-04-13 2011-05-03 Sanyo Electric Co., Ltd. Motor control device
JP5311864B2 (ja) * 2007-04-13 2013-10-09 三洋電機株式会社 モータ制御装置
JP4961292B2 (ja) 2007-07-27 2012-06-27 三洋電機株式会社 モータ制御装置
JP5098599B2 (ja) * 2007-11-29 2012-12-12 パナソニック株式会社 空気調和機の圧縮機用ブラシレスモータ駆動装置
KR100976309B1 (ko) * 2007-12-28 2010-08-16 엘에스산전 주식회사 인버터의 제어장치
JP2010068581A (ja) * 2008-09-09 2010-03-25 Panasonic Corp 電動機駆動装置
DE102008052933A1 (de) * 2008-10-23 2010-04-29 Hella Kgaa Hueck & Co. Verfahren zum Betreiben eines Elektromotors
JP5325561B2 (ja) * 2008-12-22 2013-10-23 株式会社日立製作所 三相交流モータの制御装置、及びその制御方法
JP5239897B2 (ja) * 2009-01-26 2013-07-17 パナソニック株式会社 冷蔵庫
JP5402336B2 (ja) * 2009-07-10 2014-01-29 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
JP2011125107A (ja) 2009-12-09 2011-06-23 Sanyo Electric Co Ltd モータ制御装置、モータ駆動システム及びインバータ制御装置
JP5377398B2 (ja) * 2010-04-09 2013-12-25 日立アプライアンス株式会社 モータ制御装置及びそのための相電流検出方法
KR101167778B1 (ko) 2010-04-22 2012-07-31 엘지전자 주식회사 모터 제어 장치 및 이의 제어 방법
EP2571158B1 (en) * 2010-05-14 2018-08-01 Mitsubishi Electric Corporation Brushless-motor drive apparatus
DE102010029558A1 (de) * 2010-06-01 2011-12-01 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln eines Nulldurchgangs eines Strangstroms einer elektronisch kommutierten elektrischen Maschine, insbesondere zur Ermittlung einer Läuferlage der elektrischen Maschine
JP2012085379A (ja) * 2010-10-07 2012-04-26 Hitachi Appliances Inc モータ制御システム
JP5821181B2 (ja) * 2010-12-14 2015-11-24 ダイキン工業株式会社 インバータの制御方法
JP5433658B2 (ja) * 2011-09-15 2014-03-05 株式会社東芝 モータ制御装置
JP6003374B2 (ja) * 2011-09-15 2016-10-05 ダイキン工業株式会社 線電流検出装置
KR101250614B1 (ko) * 2011-12-14 2013-04-03 삼성전기주식회사 모터 제어 회로, 모터 구동 장치, 및 모터 제어 방법
CN103107517B (zh) * 2013-03-01 2015-05-20 深圳怡化电脑股份有限公司 直流电机的过载保护方法
JP2014176100A (ja) * 2013-03-05 2014-09-22 Calsonic Kansei Corp モータ制御装置およびモータ制御方法
WO2015025622A1 (ja) * 2013-08-22 2015-02-26 日立オートモティブシステムズ株式会社 交流電動機の制御装置、交流電動機駆動システム、流体圧制御システム、位置決めシステム
JP2015142444A (ja) * 2014-01-29 2015-08-03 ダイヤモンド電機株式会社 Pwm信号制御装置
WO2016117047A1 (ja) * 2015-01-21 2016-07-28 三菱電機株式会社 交流回転機の制御装置および電動パワーステアリングの制御装置
CN108093675B (zh) 2015-08-28 2020-11-13 三菱电机株式会社 马达驱动装置、使用马达驱动装置的热泵装置以及冷冻空调装置
JP6369423B2 (ja) 2015-09-01 2018-08-08 株式会社安川電機 電力変換装置、制御装置および制御方法
EP3316472A4 (en) * 2016-09-02 2018-09-26 Mitsubishi Electric Corporation Inverter device, compressor drive device, and air-conditioner
JP2020048381A (ja) * 2018-09-21 2020-03-26 ミネベアミツミ株式会社 モータ制御装置、モータシステム及びインバータ制御方法
JP7228486B2 (ja) 2019-07-11 2023-02-24 株式会社東芝 モータ制御システム
WO2023079672A1 (ja) * 2021-11-05 2023-05-11 三菱電機株式会社 モータ駆動装置及び冷凍サイクル適用機器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627790B2 (ja) * 1985-08-19 1994-04-13 株式会社明電舍 誘導電動機の定数測定方法
JP2858692B2 (ja) * 1996-12-05 1999-02-17 株式会社安川電機 永久磁石型同期電動機のセンサレス制御方法及び装置
KR19990081162A (ko) * 1998-04-27 1999-11-15 구자홍 비엘디씨(bldc) 모터의 구동방법
JP3419725B2 (ja) * 1999-01-27 2003-06-23 松下電器産業株式会社 位置センサレスモータ制御装置
JP3432486B2 (ja) * 2000-07-18 2003-08-04 シャープ株式会社 モータの制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093503A1 (ja) 2011-01-05 2012-07-12 日本精工株式会社 モータ制御装置及びそれを用いた電動パワーステアリング装置
US8803455B2 (en) 2011-01-05 2014-08-12 Nsk Ltd. Motor controlling apparatus and electric power steering apparatus using the same

Also Published As

Publication number Publication date
JP2003189670A (ja) 2003-07-04
KR100507714B1 (ko) 2005-08-17
CN1426163A (zh) 2003-06-25
KR20030051223A (ko) 2003-06-25
CN1258257C (zh) 2006-05-31

Similar Documents

Publication Publication Date Title
JP3931079B2 (ja) 電動機駆動装置及びそれを用いた冷凍装置
Singh et al. State of the art on permanent magnet brushless DC motor drives
JP4465129B2 (ja) ブラシレスモータの駆動装置と駆動方法
WO2006106654A1 (ja) インバータ装置
WO2006001169A1 (ja) インバータ装置およびこれを搭載した車両用空調装置
JP3675431B2 (ja) 電動機駆動装置
JP6046446B2 (ja) ベクトル制御装置、およびそれを用いたモータ制御装置、空調機
JP2006230049A (ja) モータ制御装置およびモータ電流検出装置
JP4788416B2 (ja) モータ駆動用インバータ制御装置及び冷凍装置
JP5511700B2 (ja) インバータ装置、ファン駆動装置、圧縮機駆動装置および空気調和機
JP2010068581A (ja) 電動機駆動装置
JP2004040861A (ja) モータの駆動装置
JP2003111480A (ja) 電動機駆動装置
JP3985792B2 (ja) 電動機駆動装置およびそれを用いた空気調和機
JP6884916B1 (ja) モータ駆動装置および冷凍機器
JP2005323414A (ja) モータ駆動装置とそのモータ駆動装置を搭載した電動圧縮機及び車両用空調装置
JP2008160915A (ja) モータ駆動用インバータ制御装置および該装置を用いた機器
JP2007244171A (ja) 電動機駆動装置及びそれを用いた空気調和機
JP2008125205A (ja) 電動機駆動装置及びそれを用いた空気調和機
JP2019146360A (ja) インバータ制御装置
JP2006271108A (ja) インバータ制御用半導体装置及びモータ駆動用インバータ制御装置
JPH11187691A (ja) ブラシレスモータの駆動装置
JP2005033957A (ja) 空気調和機の圧縮機用電動機駆動装置
JP2004129336A (ja) 電動機駆動装置
JP5040160B2 (ja) モータ駆動用インバータ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3931079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees