WO2006001169A1 - インバータ装置およびこれを搭載した車両用空調装置 - Google Patents

インバータ装置およびこれを搭載した車両用空調装置 Download PDF

Info

Publication number
WO2006001169A1
WO2006001169A1 PCT/JP2005/010469 JP2005010469W WO2006001169A1 WO 2006001169 A1 WO2006001169 A1 WO 2006001169A1 JP 2005010469 W JP2005010469 W JP 2005010469W WO 2006001169 A1 WO2006001169 A1 WO 2006001169A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
phase
upper arm
modulation
arm switching
Prior art date
Application number
PCT/JP2005/010469
Other languages
English (en)
French (fr)
Inventor
Naomi Goto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN2005800212343A priority Critical patent/CN1973426B/zh
Priority to US11/570,639 priority patent/US7751210B2/en
Publication of WO2006001169A1 publication Critical patent/WO2006001169A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00421Driving arrangements for parts of a vehicle air-conditioning
    • B60H1/00428Driving arrangements for parts of a vehicle air-conditioning electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Definitions

  • the present invention relates to an inverter device that drives a motor by three-phase modulation by pulse width modulation (hereinafter referred to as PWM), that is, PWM three-phase modulation.
  • PWM pulse width modulation
  • Figure 23 is an electrical circuit diagram of the inverter device for sine wave drive, showing the inverter device and its peripheral circuits.
  • the control circuit 107 of the inverter device 121 detects the position of the magnet rotor 105 constituting the sensorless DC brushless motor 111 by calculating the current from the current sensor 106. Then, based on a rotational speed command signal (not shown) or the like, the switching element 102 constituting the inverter circuit 110 is controlled, and the DC voltage from the battery 101 is switched by PWM modulation, so that a sinusoidal AC current is generated.
  • Outputs to the stator winding 104 that constitutes the sensorless DC brushless motor 111 (hereinafter referred to as motor).
  • the diode 103 constituting the inverter circuit 110 serves as a current return no-rate from the stator winding 104.
  • upper arm switching element is defined as 2U, 2 V, 2W
  • lower arm switching element is defined as 2X, 2Y, 2 ⁇
  • each switching element is defined as 2U, 2V, 2W, 2X, 2Y, 2Z Are defined as 3U, 3V, 3W, 3X, 3Y, 3Z.
  • the detected current value of the current sensor 106 is also used for power consumption calculation and determination for protecting the switching element 102 and the like.
  • the current sensor 106 is inserted on the negative side of the power supply line, but since the current is the same, it may be on the positive side.
  • FIG. 24 is a characteristic diagram showing the modulation of each phase waveform in 50% modulation
  • Fig. 25 is the modulation of each phase waveform
  • U phase terminal voltage 141, V phase terminal voltage 14 2, W phase terminal voltage 143, and neutral point Voltage 129 is shown.
  • These terminal voltages are P This is realized by duty (%) shown on the vertical axis in WM modulation.
  • the neutral point voltage 129 is the value obtained by dividing the terminal voltage of each phase by 3.
  • the phase voltage is a value obtained by subtracting the neutral point voltage from the terminal voltage and is a sine wave.
  • Fig. 26 is a timing chart in one carrier (carrier cycle) of two-phase modulation.
  • Upper arm switching elements 2U, 2V, 2W, lower arm switching elements 2X, 2Y, 2 ⁇ are turned on and off. An example is shown. In this case, in the 50% modulation of FIG. 24, the phase is approximately 135 degrees.
  • FIGS. 27A, 27B, and 27C show electric circuit diagrams showing current paths, respectively.
  • the upper arm switching elements 2U, 2V, 2W are all off, and the lower arm switching elements 2X, 2Y, 2 ⁇ are all on.
  • the U-phase current and V-phase current flow from the diodes in parallel with the lower arm switching devices 2 and 2 to the stator winding 104, respectively, and the W-phase current flows from the stator winding 104 to the lower arm switching device 2 ⁇ .
  • Current circulates between the lower arm and the motor 111. Therefore, no power is supplied from the battery 101 to the inverter circuit 110 and the motor 111.
  • the upper arm switching elements 2U and 2V are on, and the lower arm switching element 2Z is on.
  • the U-phase current and V-phase current flow from the upper arm switching elements 2U and 2V to the stator winding 104, respectively, and the W-phase current flows from the stator winding 104 to the lower arm switching element 2Z. Therefore, power is supplied from the battery 101 to the inverter circuit 110 and the motor 111.
  • the W-phase current flows through the power supply line (current sensor 106).
  • Whether the upper arm switching element 2U, 2V, 2W is on or off can be known whether there is a current flowing in the power line (current sensor 106) and the flowing phase current. When there is no ON phase, it does not flow (not energized), when only one phase is ON, the current of that phase flows (energized), and when the two phases are ON, the current of the remaining phase flows (energized).
  • Fig. 28 shows the upper arm switching element within one carrier (carrier cycle) at 90 °, 105 °, 120 °, 135 °, and 150 ° with the two-phase modulation of 50% modulation shown in Fig. 24.
  • the 2U, 2V, and 2W on-periods (duty) are distributed evenly from the center.
  • the ON period of the U phase is represented by a thin solid line
  • the ON period of the V phase is represented by a solid solid line
  • the ON period of the W phase is represented by a thick solid line.
  • the energization period in which power is supplied from the battery 101 to the stator wire 104 is indicated by solid arrows
  • the flowing phase currents are indicated by U, V, and W.
  • the non-energization period is indicated by a broken line arrow.
  • FIG. 29 shows the two-phase modulation of 100% modulation shown in FIG.
  • the flowing phase current changes in one carrier (carrier cycle), but the energization period in which power is supplied to the inverter circuit 110 and the motor 111 is one time. The same is true even if the phase changes.
  • FIG. 30 is a characteristic diagram showing the modulation of each phase waveform in 50% modulation and FIG. 31 in 100% modulation.
  • U-phase terminal voltage 141, V-phase terminal voltage 142, W-phase terminal voltage 143, and neutral point voltage 129 are shown. These terminal voltages are realized by duty (%) shown on the vertical axis by PWM modulation.
  • the neutral point voltage 129 is the value obtained by dividing the terminal voltage of each phase by 3.
  • the phase voltage is a value obtained by subtracting the neutral point voltage from the terminal voltage, and is a sine wave.
  • FIG. 32 is a timing chart of three-phase modulation.
  • the upper arm switching elements 2U, 2V, 2W, the lower arm switching elements 2X, 2Y, 2 ⁇ are turned on and off.
  • An example is shown.
  • the phase chart is approximately 120 degrees.
  • Whether the upper arm switching element 2U, 2V, 2W is on or off can be known whether there is a current flowing in the power line (current sensor 106) and the flowing phase current. When there is no ON phase, it does not flow (not energized), when only one phase is ON, the current of that phase flows (energized), and when the two phases are ON, the current of the remaining phase flows (energized). When it is on, it will not flow (de-energized).
  • Fig. 34 shows the upper arm switching element 2U within one carrier (carrier cycle) at 30 °, 45 °, 60 °, 75 °, and 90 ° in the three-phase modulation of 50% modulation shown in Fig. 30. , 2V, 2W ON periods (duty) are distributed evenly by the central force.
  • the U-phase on period is represented by a thin solid line
  • the V-phase on period is represented by a solid solid line
  • the W-phase on period is represented by a thick solid line.
  • the energization period in which power is supplied from the battery 101 to the stator wire 104 is indicated by solid arrows
  • the phase current flowing through the power supply line is indicated by U, V, and W.
  • the non-energization period is indicated by a broken line arrow.
  • FIG. 35 shows three-phase modulation of 100% modulation in FIG.
  • the center period (d) in the carrier period is a non-energization period.
  • the carrier period shortening effect there are energization periods in the first and second half of the carrier cycle. This is equivalent to half the carrier period (the carrier frequency is doubled) compared to one-time two-phase modulation (hereinafter referred to as the carrier period shortening effect), and PWM modulation becomes more powerful.
  • the carrier period shortening effect the carrier period shortening effect
  • PWM modulation becomes more powerful.
  • three-phase modulation has smaller current ripple and torque ripple than two-phase modulation, resulting in low vibration and low noise.
  • the energization period in the carrier period is only once, and the carrier period shortening effect cannot be obtained.
  • there is no de-energization period at the front and rear ends in the carrier period so it is continuous with the energization period in the preceding and following carrier periods. End up.
  • the energization period in the carrier cycle is 2 times.
  • the energization period per carrier cycle is 1 and the carrier cycle shortening effect cannot be obtained.
  • the inverter device of the present invention has the following configuration. Three series circuits consisting of two switching elements connected in series between the positive and negative terminals of the DC power supply are connected. The connection point of these two switching elements is connected to the motor, and the DC voltage of the DC power supply is modulated by PWM three-phase modulation. By switching at, sinusoidal AC current is output to the motor. For the upper arm switching element connected to the positive terminal of the DC power supply, the same ON period is added or reduced in all phases for each PWM 3-phase modulation carrier period, and the energization period within the carrier period is twice.
  • FIG. 1 is an electric circuit diagram of an inverter device according to an embodiment of the present invention.
  • FIG. 2 is a characteristic diagram showing the modulation of each phase waveform in 50% three-phase modulation.
  • FIG. 3 is a characteristic diagram showing the modulation of each phase waveform in 100% three-phase modulation.
  • FIG. 4 is a timing chart of the above three-phase modulation.
  • FIG. 5A is an electric circuit diagram showing a current path in period (a).
  • FIG. 5B is an electric circuit diagram showing a current path in the same period (b).
  • FIG. 5C is an electric circuit diagram showing a current path in period (c).
  • FIG. 5D is an electric circuit diagram showing a current path in the period (d).
  • Fig. 6 is a characteristic diagram showing the ON period, energization period, and non-energization period of the upper arm for each phase of 50% three-phase modulation.
  • Figure 7 shows the upper arm on period and energization period for each phase of 100% three-phase modulation. It is a characteristic view which shows a non-energization period.
  • FIG. 8 is a characteristic diagram showing the upper arm ON period, energization period, and non-energization period in Embodiment 1 of the present invention.
  • FIG. 9 is a characteristic diagram showing the upper arm ON period, energization period, and non-energization period in Embodiment 2 of the present invention.
  • FIG. 10 is a characteristic diagram of each phase waveform of the three-phase modulation in the third embodiment of the present invention.
  • FIG. 11 is another characteristic diagram of the three-phase modulation waveform in the third embodiment of the present invention.
  • FIG. 12 is another characteristic diagram of the three-phase modulation waveform in the third embodiment of the present invention.
  • FIG. 13 is a characteristic diagram showing the ON period, energization period, and non-conduction period of the upper arm in the fourth embodiment of the present invention.
  • FIG. 14 is another characteristic diagram showing the upper arm ON period, energization period, and non-energization period in Embodiment 4 of the present invention.
  • FIG. 15 is another characteristic diagram showing the upper arm ON period, energization period, and non-energization period in Embodiment 4 of the present invention.
  • FIG. 16 is another characteristic diagram showing the upper arm ON period, energization period, and non-energization period in Embodiment 4 of the present invention.
  • FIG. 17 is another characteristic diagram showing the upper arm ON period, energization period, and non-energization period in Embodiment 4 of the present invention.
  • FIG. 18 is a characteristic diagram showing the ON period margin, the adjustment amount, and the adjusted N period margin within the carrier period in Embodiment 4 of the present invention.
  • FIG. 19 is a characteristic diagram of the three-phase modulation waveforms in the fifth embodiment of the present invention.
  • FIG. 20 is another characteristic diagram of the three-phase modulation each phase waveform in the fifth embodiment of the present invention.
  • FIG. 21 is another characteristic diagram of the three-phase modulation each phase waveform in the fifth embodiment of the present invention.
  • FIG. 22 shows that the inverter device according to the seventh embodiment of the present invention is suitable for a vehicle. It is explanatory drawing used.
  • Fig. 23 is an electric circuit diagram of a conventional inverter device.
  • Fig. 24 is a characteristic diagram showing the modulation of each phase waveform in the conventional 50% two-phase modulation.
  • Fig. 25 is a characteristic diagram showing the modulation of each phase waveform in the conventional 100% two-phase modulation.
  • FIG. 26 is a timing chart in the conventional two-phase modulation.
  • FIG. 27A is an electric circuit diagram showing a current path in the period (a).
  • FIG. 27B is an electric circuit diagram showing a current path in the same period (b).
  • Fig. 27C is an electric circuit diagram showing a current path in period (c).
  • FIG. 28 is a characteristic diagram showing the ON period, energization period, and non-energization period of the upper arm for each phase in conventional 50% two-phase modulation.
  • Figure 29 shows the conventional 100. /.
  • FIG. 6 is a characteristic diagram showing an ON period, energization period, and non-energization period of the upper arm for each phase in two-phase modulation.
  • FIG. 30 is a characteristic diagram showing the modulation of each phase waveform in the conventional 50% three-phase modulation.
  • Fig. 31 is a characteristic diagram showing the modulation of each phase waveform in the conventional 100% three-phase modulation.
  • FIG. 32 is a timing chart of conventional three-phase modulation.
  • FIG. 33 is an electric circuit diagram showing a current path in period (d) of the above.
  • FIG. 34 is a characteristic diagram showing the on-period, energization period, and non-energization period of the upper arm for each phase in the conventional 50% three-phase modulation.
  • FIG. 35 is a characteristic diagram showing the ON period, energization period, and non-energization period of the upper arm for each phase in conventional 100% three-phase modulation.
  • FIG. 1 is an electric circuit diagram of the sine wave drive inverter device of the present invention, showing the inverter device and its peripheral circuits.
  • the control circuit 7 of the inverter device 21 detects the position of the magnet rotor 5 constituting the sensorless DC brushless motor 11 by calculating the current from the current sensor 6. Based on the rotational speed command signal (not shown), etc., the switching element 2 constituting the inverter circuit 10 is controlled, and the DC voltage from the DC power source 1 (hereinafter referred to as “knottery”) is PWM-modulated. By switching, a sinusoidal alternating current is output to the stator winding 4 constituting the sensorless DC brushless motor 11 (hereinafter referred to as motor).
  • motor the stator winding 4 constituting the sensorless DC brushless motor 11
  • the inverter circuit 10 includes three sets of series circuits formed by connecting two switching elements 2 in series, and each is connected between the positive and negative terminals of the battery 1. The connection point of these two switching elements is connected to the stator winding 4 of the motor. In each switching element 2, a diode 3 is connected in parallel, and the current from the stator winding 4 is returned.
  • the upper arm switching element connected to the positive terminal of battery 1 is 2U, 2V, 2W
  • the lower arm switching element connected to the negative terminal of battery 1 is 2X, 2Y, 2 ⁇
  • the diodes connected in parallel to each switching element 2U, 2V, 2W, 2X, 2Y, 2Z are defined as 3U, 3V, 3W, 3X, 3Y, 3Z, respectively.
  • the detected current value of the current sensor 6 is also used for power consumption calculation and determination for protecting the switching element 2 and the like.
  • the current sensor 6 is inserted on the negative side of the power line, but the current is the same.
  • FIG. 6 is a characteristic diagram showing modulation of each phase waveform.
  • U phase terminal voltage 41, V phase terminal voltage 42, W phase terminal voltage 43, and neutral point voltage 29 are shown. These terminal voltages are realized with the duty (%) shown on the vertical axis in PWM modulation.
  • Neutral point voltage 29 is the value obtained by dividing the terminal voltage of each phase by 3.
  • the phase voltage is a value obtained by subtracting the neutral point voltage from the terminal voltage, and is a sine wave.
  • Fig. 4 is a timing chart of three-phase modulation.
  • the phase is approximately 120 degrees.
  • FIGS. 5A, 5B, 5C, and 5D There are four periods (a), (b), (c), and (d) for switching of each switching element, and current paths are shown in FIGS. 5A, 5B, 5C, and 5D, respectively. An electric circuit diagram is shown.
  • the upper arm switching elements 2U, 2V, 2W are all off, and the lower arm switching elements 2X, 2Y, 2 ⁇ are all on.
  • the U-phase current and V-phase current flow from the diode in parallel with the lower arm switching elements 2 ⁇ and 2 ⁇ to the stator winding 4, respectively, and the W-phase current flows from the stator winding 4 to the lower arm switching device 2 ⁇ .
  • Current circulates between the lower arm and motor 11. Therefore, no power is supplied from the battery 1 to the inverter circuit 10 and the motor 11.
  • the upper arm switching elements 2U and 2V are on, and the lower arm switching element 2Z is on.
  • the U-phase current and V-phase current flow from the upper arm switching elements 2U and 2V to the stator winding 4, respectively.
  • the W-phase current flows from the stator winding 4 to the lower arm switching element 2Z. Therefore, power is supplied from the battery 1 to the inverter circuit 10 and the motor 11.
  • the power line (current sensor 6) has W Phase current of the phase flows.
  • the upper arm switching elements 2U, 2V, 2W are all on, and the lower arm switching elements 2X, 2Y, 2 are all off.
  • the U-phase current and V-phase current flow from the upper arm switching elements 2U and 2V to the stator winding 4, respectively, and the W-phase current flows from the stator winding 4 to the diode in parallel with the upper arm switching element W.
  • RU Current circulates between the upper arm and the motor 11. Therefore, no power is supplied from the battery 1 to the inverter circuit 10 and the motor 11.
  • the on period of the U phase is represented by a thin solid line
  • the on period of the V phase is represented by a solid solid line
  • the on period of the W phase is represented by a thick solid line.
  • the period during which power is supplied from the knotter 1 to the stator wire 4 is indicated by solid arrows
  • the phase current flowing through the power supply line is indicated by U, V, and W.
  • the non-energization period is indicated by a dashed arrow.
  • FIG. 7 shows three-phase modulation of 100% modulation in FIG.
  • the center period (d) in the carrier period is a non-energization period.
  • the carrier period shortening effect one-time two-phase modulation
  • PWM modulation becomes more powerful.
  • three-phase modulation has smaller current ripple and torque ripple than two-phase modulation, resulting in low vibration and low noise.
  • the energization period within the carrier period is only once, and the carrier period shortening effect cannot be obtained.
  • the three-phase modulation is more advantageous than the two-phase modulation due to the carrier period shortening effect.
  • the carrier cycle shortening effect may not be obtained, and the merit of low vibration and low noise is weakening.
  • a soundproof device such as a soundproof box can be used in a room air conditioner in order to prevent noise, but an air conditioner for a vehicle It is difficult to use a soundproofing device for the electric compressor used in the above because of restrictions such as mounting space and weight. In addition, to prevent transmission of vibration to the passenger compartment, vibration must be suppressed to a small level, but it is also difficult to use a vibration isolator. Norem air conditioners are required to have as low vibration and noise as possible in consideration of the environment.
  • the inverter device of the present invention adds or reduces the same on-period in all phases during the on-period of the upper arm switching element within the carrier period of PWM three-phase modulation.
  • a sinusoidal alternating current is output to the motor.
  • FIG. 8 is a characteristic diagram showing the ON period, energization period, and non-energization period of the upper arm according to the first embodiment of the present invention.
  • Figure 1 shows the inverter and its peripheral circuits.
  • the V-phase upper arm switching element ON period is 0 at a phase of 30 degrees. /. Therefore, the energization period within the carrier cycle is only once, and the carrier cycle shortening effect cannot be obtained.
  • FIG. 8 shows a solution to this problem.
  • the upper arm on period, energization period, and non-energization period at 30% phase of 100% three-phase modulation are shown as they are.
  • the ON period, energization period, and non-energization period of the upper arm after adjustment are shown.
  • the same ON period ⁇ is added to the ON periods of the upper arm switching elements 2U and 2W, and the ON period of the upper arm switching element 2V of the ON period 0 is ⁇ .
  • the same on-period is added in all phases.
  • the upper arm switching elements of all the U, V, and W phases are turned on, so that a non-energization period (time period) is formed.
  • this non-energization period current circulates between the upper arm and the motor 11. Therefore, the energization period is twice in the carrier period, and the effect of shortening the carrier period is obtained.
  • the total time of the two energization periods is obtained by subtracting the non-energization period (time period) from the time period when the on period period is added to the on period of the upper arm switching elements 2U and 2W before the addition of the on period. This is equal to the ON period of the upper arm switching elements 2U, 2W before the ON period (addition of the ON period before the addition). Therefore, the PWM modulation remains unchanged.
  • the upper arm switching element on-period is close to 0%, specifically when it is 5% or less of the carrier cycle, a sufficient de-energization period at the center of the carrier cycle is ensured to ensure the carrier cycle shortening effect. it can.
  • FIG. 9 is a characteristic diagram showing the on-period, energization period, and non-energization period of the upper arm according to the second embodiment of the present invention.
  • the U-phase upper arm switching element on-period is 100%, so no de-energization periods are formed at the front and rear ends in the carrier cycle. It becomes continuous with the energization period in the carrier cycle.
  • the energization period within the carrier cycle is twice.
  • the energization period is one per carrier cycle, and the carrier cycle shortening effect cannot be obtained.
  • FIG. 9 shows a solution to this problem.
  • the phase of 100% three-phase modulation is 90
  • the upper arm ON period, energization period, and non-energization period are shown as they are.
  • the deenergization period at the center of the carrier period is indicated by i3. During this period, all upper arm switching elements of the U, V, and W phases are turned on. Below the arrow, the adjusted upper arm on period, energized period, and non-energized period are shown.
  • the non-energization period at the center of the carrier cycle that is, the period during which all the upper-arm switching elements of the U, V, and W phases are on is denoted by ⁇ .
  • the period of -y is reduced from the upper arm switching element on period of all the U, V, and W3 phases. Thereby, a non-energization period is formed at the front end and the rear end in the carrier cycle. During this non-energization period, current circulates between the lower arm and the motor 11. As a result, the energization period is twice in the carrier period, and the effect of shortening the carrier period is obtained.
  • the energization period is the same as the non-energization period at the center of the carrier cycle, that is, the period during which the upper arm switching elements of all the U, V, and W3 phases are turned on is shortened from ⁇ to ⁇ . Therefore, the PWM modulation remains unchanged.
  • the upper arm switching element on-period is close to 100%, specifically, when the carrier period is 95% or more of the carrier period, a sufficient de-energization period at the front and rear ends in the carrier period is ensured. The shortening effect can be ensured.
  • FIG. 10 shows a first example of a characteristic diagram of each phase waveform of the three-phase modulation according to Embodiment 3 of the present invention.
  • the upper arm switching element has an ON period of 0 at the phase 0 degree force 60 degrees, 120 degree force 180 degrees, 240 degree force 300 degrees in FIG. / ⁇ or 0. Since there is a phase close to / ⁇ , the same on-period is added for all phases. However, the on-period added by the phase is changed and made continuous so that no discontinuity occurs between the phases where the on-period is not added.
  • the ON period to be added gradually increases from 0 of phase 0 degree, reaches the maximum at phase 30 degrees, and gradually decreases to 0 at phase 60 degrees. The same applies to other places.
  • FIG. 11 shows a second example of the characteristic diagram of the three-phase modulation each phase waveform according to Embodiment 3 of the present invention.
  • the upper arm switching element has an ON period of 100 at a phase of 60 degrees force and 120 degrees, 180 degree force and 240 degrees, and 300 degree force and 360 degrees in FIG. /. Or 100. /. Since there are phases close to, the same on-period is reduced in all phases. However, the on period that is reduced by the phase is changed to be continuous so that there is no discontinuity between the on period and the phase that does not reduce the on period.
  • the ON period to be reduced gradually increases from 0 at 60 degrees, reaches a maximum at 90 degrees, and gradually decreases to 0 at 120 degrees. The same applies to other places.
  • PWM modulation remains unchanged and an inverter device that achieves a carrier cycle shortening effect and realizes further low noise and low vibration can be obtained.
  • FIG. 12 shows a third example of the characteristic diagram of the three-phase modulation each phase waveform according to Embodiment 3 of the present invention. This figure summarizes the additional reduction points during the on-period in Figs. 10 and 11.
  • Embodiments 1 and 2 PWM modulation remains unchanged, and an inverter device that achieves a further reduction in noise and vibration by obtaining a carrier cycle shortening effect can be obtained. In addition, an effect can be obtained over the entire phase.
  • FIG. 13 is a characteristic diagram showing the on-period, energization period, and non-energization period of the upper arm according to the fourth embodiment of the present invention.
  • the period is added in all phases. In other words, if the de-energization period at the front end in the carrier period is 1, the de-energization period at the center of the carrier period is 2, and the de-energization period at the rear end in the carrier period is 1.
  • the energization periods are evenly spaced (the energization is equally spaced times), including the non-energization periods of the front and rear carriers (the upper arm switching elements of all U, V, and W3 phases are turned off). To be done). As a result, the effect of shortening the carrier cycle is improved, and an inverter device that achieves further low noise and vibration can be obtained.
  • FIG. 14 is another characteristic diagram showing the ON period, energization period, and non-energization period of the upper arm according to Embodiment 4 of the present invention.
  • the on-arm period, the conduction period, and the non-energization period of the upper arm at the phase of 90% of 100% three-phase modulation are shown as they are.
  • the adjusted upper arm on period, energized period, and de-energized period are shown.
  • FIG. 17 is a characteristic diagram collectively showing the ON period, energization period, and non-energization period of the upper arm after the adjustment shown in FIG. 13 to FIG.
  • the deenergization period at the center of the carrier cycle (the upper arm switching elements of all U, V, and W3 phases are turned on) It is the same as the non-energization period (the upper arm switching elements of all U, V, and W phases are turned off) There are no adjustments.
  • FIG. 18 shows numerical values related to the adjustment from FIG. 7 to FIG. 17 for each phase.
  • the on-period margin 31 in the carrier period is the same as the on-period that can be added to the on-period of the upper arm switching element in the carrier period (the on-period of any upper arm switching element). Indicates the additional on-period when matches the carrier period. Therefore, the maximum is 30 degrees and the minimum is 90 degrees.
  • Adjustment amount 33 includes a deenergizing period at the center of the carrier cycle (the upper arm switching elements of all U, V, and W3 phases are turned on) and a deenergizing period (U, This is the amount of adjustment (on period that is added or reduced in the same way in all phases) to ensure that the upper arm switching elements in all phases V and W3 are turned off.
  • a positive value indicates 0, and a negative value indicates a reduction. It is 0 at the above phase 60 degrees.
  • the adjusted on-period margin 32 is the difference between the maximum on-period of the upper arm switching element of U, V, and W and the carrier period in FIG. 17 where the adjustment amount 33 is applied to FIG. Indicates. That is, the maximum is 30 degrees, 90 degrees, and the minimum is 60 degrees.
  • FIG. 19 shows a first example of a characteristic diagram of each three-phase modulation waveform according to Embodiment 5 of the present invention.
  • This figure is the phase of Figure 3.
  • the upper arm switching element has an ON period close to 0% or close to 0%. It is a thing. Since the ON period to be added is 0 at the phase 0 degree and 0 at the phase 60 degree, there is no discontinuity between the ON period and the phase where the ON period is not added. The same applies to other places.
  • PWM modulation does not change, the carrier cycle shortening effect is improved, and an inverter device that achieves further low noise and low vibration can be obtained.
  • FIG. 20 shows a second example of the characteristic diagram of the three-phase modulation each phase waveform according to Embodiment 5 of the present invention.
  • This figure shows that the phase of the upper arm switching element is 100% or close to 100% when the phase 60 ° force is 120 °, the 180 ° force is 240 °, and the 300 ° force is 360 °. Therefore, the adjustment amount 33 in Fig. 18 is applied. Reduced on-period is 60 degrees phase
  • the PWM modulation does not change, the carrier cycle shortening effect is improved, and an inverter device that realizes further low noise and low vibration can be obtained, as in the fourth embodiment.
  • FIG. 21 shows a third example of the characteristic diagram of the three-phase modulation each phase waveform according to Embodiment 5 of the present invention.
  • the adjustment amount 33 of FIG. 18 is applied over the entire phase of FIG.
  • the PWM modulation does not change, the effect of shortening the carrier period is improved, and an inverter device that achieves further low noise and low vibration can be obtained. Also, the effect can be obtained over the entire phase.
  • the phase is ⁇
  • the modulation factor is ⁇ (1 for 100% modulation, 0 for 0% modulation)
  • the duty is 100%
  • the on-period margin in the carrier period in Fig. 18 is 31.
  • the adjusted on-period margin 32 is expressed by a mathematical formula. Taking the phase from 30 degrees to 90 degrees as an example, the phase of the V phase is 1120 degrees with the U phase as the phase reference.
  • the on-period margin 31 in the carrier cycle is the difference between the U phase and the duty 100%, and therefore, (Equation 1). This is also the period when the upper arm switching element is off for all three phases.
  • the adjustment amount 33 is expressed by (Equation 4).
  • Equation 4 since ⁇ is a coefficient, the adjustment amount 33 is proportional to the modulation factor ⁇ (1 for 100% modulation and 0 for 0% modulation).
  • the conventional three-phase modulation may be used as the normal mode, and the three-phase modulation according to the present invention may be used as the quiet mode.
  • the adjusted on-period margin 32 as shown in FIGS. 17 and 18 is at least 6.7% (phase 60 degrees, etc.). In other words, if the effect of shortening the carrier period is not obtained only at the maximum output, the minimum value of the adjusted ON period margin 32 is set to 0%, and the output is reduced to 7% [1 Z (100% _6.7%) ] Can be up.
  • FIG. 22 is an explanatory diagram showing an example in which the inverter device according to the seventh embodiment of the present invention is applied to a vehicle.
  • the above-described inverter device 60 (corresponding to 21 in FIG. 1) is mounted in an engine room in front of the vehicle together with an electric compressor 61 having a motor, an outdoor heat exchanger 63, and an outdoor fan 62.
  • an indoor blower fan 65, an indoor heat exchanger 67, and an air conditioner controller 64 are arranged in the vehicle compartment. Air outside the vehicle is sucked from the air inlet 66, and the air heat-exchanged by the indoor heat exchanger 67 is blown out into the vehicle interior.
  • the noise vibration of the electric compressor 61 mounted in the engine room is transmitted to the vehicle interior through the vehicle body and spreads around the vehicle.
  • an electric compressor used for an air conditioner for vehicles it is difficult to use a soundproofing device due to restrictions such as mounting space and weight.
  • vibration must be suppressed to a small level, but it is also difficult to use a vibration isolator.
  • the electric compressor driven by the inverter device described above can greatly reduce the occurrence of noise and vibration itself, and thus has a great effect of quietness when applied to a vehicle. This is particularly effective for vehicles without engine noise, such as electric vehicles, hybrid vehicles, and fuel cell vehicles.
  • the inverter device according to the present invention can be applied to various consumer products and various industrial devices because it can obtain high low noise and low vibration properties. It is particularly preferred for vehicle air conditioners.

Abstract

 本発明のインバータ装置は、直流電源(1)の正負端子間に2個のスイッチング素子(2)を直列に接続して成る直列回路を3組備え、この2個のスイッチング素子の接続点をモータ(11)に接続し、直流電源の直流電圧をPWM3相変調にてスイッチングすることにより正弦波状の交流電流をモータへ出力する。直流電源の正端子に接続された上アームスイッチング素子は、PWM3相変調のキャリア周期毎に、全ての相において同一のオン期間を追加または削減し、キャリア周期内の通電期間を2回とする。

Description

明 細 書
インバータ装置およびこれを搭載した車両用空調装置
技術分野
[0001] 本発明は、パルス幅変調(以下、 PWMという)による 3相変調、すなわち、 PWM3 相変調によりモータを駆動するインバータ装置に関するものである。
背景技術
[0002] 従来、この種のインバータ装置として、 PWM2相変調による正弦波駆動方式がある 。例えば、 日本特許出願特開 2003— 189670号公報に開示されている。
[0003] この方式について以下説明する。図 23は正弦波駆動用インバータ装置の電気回 路図で、インバータ装置とその周辺の回路を示す。インバータ装置 121の制御回路 1 07は、電流センサ 106からの電流を演算することによりセンサレス DCブラシレスモー タ 111を構成する磁石回転子 105の位置検出を行う。そして、回転数指令信号(図 示せず)等に基づき、インバータ回路 110を構成するスイッチング素子 102を制御し 、バッテリー 101からの直流電圧を PWM変調でスイッチングすることにより、正弦波 状の交流電流をセンサレス DCブラシレスモータ 111 (以降モータと称す)を構成する 固定子卷線 104へ出力する。
[0004] インバータ回路 110を構成するダイオード 103は、固定子卷線 104からの電流の還 流ノレートとなる。スイッチング素子 102について、上アームスイッチング素子を 2U、 2 V、 2Wと、下アームスイッチング素子を 2X、 2Y、 2Ζと定義し、また、各スイッチング 素子 2U、 2V、 2W、 2X、 2Y、 2Zに対応するダイオードを 3U、 3V、 3W、 3X、 3Y、 3 Zと定義する。
[0005] 電流センサ 106の検出電流値は、消費電力算出やスイッチング素子 102等を保護 するための判断にも用いられる。図 23において、電流センサ 106は電源ラインのマイ ナス側に挿入されているが、電流は同じなのでプラス側でも良い。
[0006] 2相変調の波形の特性図を示す。図 24は 50%変調、図 25は 100%変調における それぞれの各相波形の変調を示す特性図で、 U相端子電圧 141、 V相端子電圧 14 2、 W相端子電圧 143、及び中性点電圧 129を示している。これらの端子電圧は、 P WM変調にて縦軸に示すデューティ(%)で実現される。中性点電圧 129は、各相の 端子電圧の和を求め 3で除した値である。また、相電圧は、端子電圧から中性点電 圧を引いた値であり正弦波になる。
[0007] 図 26は 2相変調の 1キャリア内(キャリア周期)でのタイミングチャートであり、上ァー ムスイッチング素子 2U、 2V、 2W、下アームスイッチング素子 2X、 2Y、 2Ζのオン、ォ フの一例を示している。この場合、図 24の 50%変調において、位相がおよそ 135度 でのタイミングチャートである。
[0008] 各スイッチング素子のスイッチングには、(a)、(b)、(c)の 3種類があり、それぞれ図 27A、図 27B、図 27Cに電流経路を示す電気回路図を示す。
[0009] 期間(a)においては、上アームスイッチング素子 2U、 2V、 2W全てがオフ、下ァー ムスイッチング素子 2X、 2Y、 2Ζ全てがオンである。 U相電流、 V相電流がそれぞれ、 下アームスイッチング素子 2Χ、 2Υと並列のダイオードから固定子卷線 104へ流れ、 W相電流は固定子卷線 104から下アームスイッチング素子 2Ζへ流れ出ている。下ァ ームとモータ 111間で電流が循環している。よって、バッテリー 101からインバータ回 路 110及びモータ 111へは電力供給されない非通電の状態にある。
[0010] 期間(b)においては、上アームスイッチング素子 2Uがオン、下アームスイッチング 素子 2Y、 2Ζがオンである。 U相電流は上アームスイッチング素子 2Uから固定子卷 線 104へ流れ、 V相電流は下アームスイッチング素子 2Υと並列のダイオードから固 定子卷線 104へ流れ、 W相電流は固定子卷線 104から下アームスィッチング素子 2 Ζへ流れ出ている。よって、バッテリー 101からインバータ回路 110及びモータ 111へ 電力供給される通電状態にある。このとき、電源ライン (電流センサ 106)には、 U相 の相電流が流れる。
[0011] 期間(c)においては、上アームスイッチング素子 2U、 2Vがオン、下アームスィッチ ング素子 2Zがオンである。 U相電流、 V相電流はそれぞれ、上アームスイッチング素 子 2U、 2Vから固定子卷線 104へ流れ、 W相電流は固定子卷線 104から下アームス イッチング素子 2Zへ流れ出ている。よって、バッテリー 101からインバータ回路 110 及びモータ 111へ電力供給される通電状態にある。そして、電源ライン (電流センサ 1 06)には、 W相の相電流が流れる。 [0012] 上アームスイッチング素子 2U、 2V、 2Wのオン、オフ状態で電源ライン(電流セン サ 106)に流れる電流の有無、流れる相電流を知ることができる。オンの相が無い時 は流れず(非通電)、 1相のみオン時はその相の電流が流れ (通電)、 2相オン時は残 りの相の電流が流れる(通電)。
[0013] 図 28に、図 24の 50%変調の 2相変調での位相 90度、 105度、 120度、 135度、 1 50度においての 1キャリア内(キャリア周期)での上アームスイッチング素子 2U、 2V、 2Wのオン期間(デューティ)を中央から均等に振り分け表示している。
[0014] U相のオン期間を細実線で表わし、 V相のオン期間を中実線で表わし、 W相のオン 期間を太実線で表わしている。オン期間の下に、バッテリー 101から固定子卷線 104 へ電力が供給される通電期間を実線矢印で、流れる相電流を U、 V、 Wで示している 。また、非通電期間を破線矢印で示している。同様に、図 29に図 25の 100%変調の 2相変調について示す。
[0015] 上記により、 2相変調においては、 1キャリア内(キャリア周期)において、流れる相 電流は変化するが、インバータ回路 110及びモータ 111へ電力供給される通電期間 は 1回である。位相が変わっても同様である。
[0016] 次に 3相変調について説明する。図 30は 50%変調、図 31は 100%変調における それぞれの各相波形の変調を示す特性図である。 2相変調同様、 U相端子電圧 141 、V相端子電圧 142、 W相端子電圧 143、中性点電圧 129を示している。これらの端 子電圧は PWM変調にて縦軸に示すデューティ(%)で実現される。中性点電圧 129 は、各相の端子電圧の和を求め 3で除した値である。また、相電圧は、端子電圧から 中性点電圧を引いた値であり、正弦波になる。
[0017] 図 32は 3相変調のタイミングチャートであり、 1キャリア内(キャリア周期)での上ァー ムスイッチング素子 2U、 2V、 2W、下アームスイッチング素子 2X、 2Y、 2Ζのオン、ォ フの一例を示している。この場合、図 30の 50%変調において、位相がおおよそ 120 度でのタイミングチャートである。
[0018] 各スイッチング素子のスイッチングには、 2相変調の場合の(a)、 (b)、 (c)に(d)を 加えた 4種類がある。期間(a)、(b)、(c)に関しては、前記 2相変調の図 27A、図 27 B、図 27Cと同様であるので、期間 )について説明する。 [0019] 期間(d)においては、図 33に示すように、上アームスイッチング素子 2U、 2V、 2W 全てがオン、下アームスイッチング素子 2X、 2Y、 2Ζ全てがオフである。 U相電流、 V 相電流はそれぞれ、上アームスイッチング素子 2U、 2Vから固定子卷線 104へ流れ 、W相電流は固定子卷線 104から上アームスイッチング素子 2Wに並列のダイオード へ流れ込んでいる。上アームとモータ 111間で電流が循環している。よって、バッテリ 一 101からインバータ回路 110及びモータ 111へは電力供給されない非通電の状態 にある。
[0020] 上アームスイッチング素子 2U、 2V、 2Wのオン、オフ状態で電源ライン(電流セン サ 106)に流れる電流の有無、流れる相電流を知ることができる。オンの相が無い時 は流れず (非通電)、 1相のみオン時はその相の電流が流れ (通電)、 2相オン時は残 りの相の電流が流れ (通電)、 3相全てオン時は流れなレ、(非通電)。
[0021] 図 34に、図 30の 50%変調の 3相変調での位相 30度、 45度、 60度、 75度、 90度 においての 1キャリア内(キャリア周期)での上アームスイッチング素子 2U、 2V、 2W のオン期間(デューティ)を中央力 均等に振り分け表示している。
[0022] U相のオン期間を細実線で表わし、 V相のオン期間を中実線で表わし、 W相のオン 期間を太実線で表わしてレ、る。バッテリー 101から固定子卷線 104へ電力が供給さ れる通電期間を実線矢印で、電源ラインに流れる相電流を U、 V、 Wで示している。 また、非通電期間を破線矢印で示している。
[0023] 同様に、図 35に図 31の 100%変調の 3相変調について示す。図 34、図 35に示さ れるように、 3相変調においては、キャリア周期内中央の期間(d)は非通電期間となる 。また、キャリア周期内の前端、後端にもそれぞれ非通電期間がある。そのため、キヤ リア周期内の前半と後半にそれぞれ通電期間がある。これは、 2相変調が 1回である のに比べると、キャリア周期が半分 (キャリア周波数が 2倍)と同等になり(以下、キヤリ ァ周期短縮効果という)、 PWM変調がきめ細力べなる。これにより、 3相変調は 2相変 調に比べ、電流リップル、トルクリップルが小さくなり、低振動低騒音となる。但し、図 3 5の 100%変調において位相 30度では、キャリア周期内の通電期間が 1回のみであ り、キャリア周期短縮効果が得られない。また、位相 90度では、キャリア周期内の前 端、後端に非通電期間がないため、前後のキャリア周期における通電期間と連続し てしまう。そのため、キャリア周期内の通電期間は 2回である力 結果として、 1キャリア 周期当たり通電期間は 1回となり、キャリア周期短縮効果が得られない。
[0024] 上記のように PWM変調による正弦波駆動方式のインバータ装置において、低振 動低騒音を求める場合、 3相変調の方が 2相変調に比べキャリア周期短縮効果により 有利である。しかしながら、 100%変調においては、キャリア周期短縮効果が得られ なレ、場合があり低振動低騒音の効果が充分発揮できなレヽとレ、う課題を有してレ、る。 発明の開示
[0025] 本発明のインバータ装置は、下記構成を有する。直流電源の正負端子間に 2個の スイッチング素子を直列に接続して成る直列回路を 3組備え、この 2個のスイッチング 素子の接続点をモータに接続し、直流電源の直流電圧を PWM3相変調にてスイツ チングすることにより正弦波状の交流電流をモータへ出力する。直流電源の正端子 に接続された上アームスイッチング素子は、 PWM3相変調のキャリア周期毎に、全て の相において同一のオン期間を追加または削減し、キャリア周期内の通電期間を 2 回とする。
[0026] この構成により、キャリア周期短縮効果が得られ、低騒音低振動を実現したインバ ータ装置を提供することができる。
図面の簡単な説明
[0027] [図 1]図 1は本発明の実施の形態におけるインバータ装置の電気回路図である。
[図 2]図 2は同上の 50%3相変調における各相波形の変調を示す特性図である。
[図 3]図 3は同上の 100%3相変調における各相波形の変調を示す特性図である。
[図 4]図 4は同上の 3相変調のタイミングチャートである。
[図 5A]図 5Aは同上の期間(a)における電流経路を示す電気回路図である。
[図 5B]図 5Bは同上の期間(b)における電流経路を示す電気回路図である。
[図 5C]図 5Cは同上の期間(c)における電流経路を示す電気回路図である。
[図 5D]図 5Dは同上の期間(d)における電流経路を示す電気回路図である。
[図 6]図 6は同上の 50%3相変調の位相毎における上アームのオン期間、通電期間 、非通電期間を示す特性図である。
[図 7]図 7は同上の 100%3相変調の位相毎における上アームのオン期間、通電期間 、非通電期間を示す特性図である。
園 8]図 8は本発明の実施の形態 1における上アームのオン期間、通電期間、非通電 期間を示す特性図である。
園 9]図 9は本発明の実施の形態 2における上アームのオン期間、通電期間、非通電 期間を示す特性図である。
園 10]図 10は本発明の実施の形態 3における 3相変調各相波形の特性図である。 園 11]図 11は本発明の実施の形態 3における 3相変調各相波形の他の特性図であ る。
園 12]図 12は本発明の実施の形態 3における 3相変調各相波形の他の特性図であ る。
園 13]図 13は本発明の実施の形態 4における上アームのオン期間、通電期間、非通 電期間を示す特性図である。
園 14]図 14は本発明の実施の形態 4における上アームのオン期間、通電期間、非通 電期間を示す他の特性図である。
園 15]図 15は本発明の実施の形態 4における上アームのオン期間、通電期間、非通 電期間を示す他の特性図である。
園 16]図 16は本発明の実施の形態 4における上アームのオン期間、通電期間、非通 電期間を示す他の特性図である。
園 17]図 17は本発明の実施の形態 4における上アームのオン期間、通電期間、非通 電期間を示す他の特性図である。
園 18]図 18は本発明の実施の形態 4におけるキャリア周期内のオン期間裕度、調整 量、調整後の〇N期間裕度を示す特性図である。
園 19]図 19は本発明の実施の形態 5における 3相変調各相波形の特性図である。 園 20]図 20は本発明の実施の形態 5における 3相変調各相波形の他の特性図であ る。
園 21]図 21は本発明の実施の形態 5における 3相変調各相波形の他の特性図であ る。
園 22]図 22は本発明の実施の形態 7における本発明のインバータ装置を車両に適 用した説明図である。
園 23]図 23は従来のインバータ装置の電気回路図である。
園 24]図 24は従来の 50%2相変調における各相波形の変調を示す特性図である。 園 25]図 25は従来の 100%2相変調における各相波形の変調を示す特性図である
[図 26]図 26は従来の 2相変調におけるタイミングチャートである。
園 27A]図 27Aは同上の期間(a)における電流経路を示す電気回路図である。
[図 27B]図 27Bは同上の期間(b)における電流経路を示す電気回路図である。 園 27C]図 27Cは同上の期間(c)における電流経路を示す電気回路図である。
[図 28]図 28は従来の 50%2相変調における位相毎の上アームのオン期間、通電期 間、非通電期間を示す特性図である。
[図 29]図 29は従来の 100。/。2相変調における位相毎の上アームのオン期間、通電 期間、非通電期間を示す特性図である。
園 30]図 30は従来の 50%3相変調における各相波形の変調を示す特性図である。 園 31]図 31は従来の 100%3相変調における各相波形の変調を示す特性図である
[図 32]図 32は従来の 3相変調のタイミングチャートである。
[図 33]図 33は同上の期間(d)における電流経路を示す電気回路図である。
[図 34]図 34は従来の 50%3相変調における位相毎の上アームのオン期間、通電期 間、非通電期間を示す特性図である。
[図 35]図 35は従来の 100%3相変調における位相毎の上アームのオン期間、通電 期間、非通電期間を示す特性図である。
符号の説明
1 直流電源、
2 スイッチング素子
3 ダイオード
4 固定子卷線
5 磁石回転子 6 電流センサ
7 制御回路
10 インバータ回路
11 モータ
21 インバータ装置
発明を実施するための最良の形態
[0029] 以下、本発明の実施の形態について、図面を用いて説明する。図 1は、本発明の 正弦波駆動用インバータ装置の電気回路図で、インバータ装置とその周辺の回路を 示す。インバータ装置 21の制御回路 7は、電流センサ 6からの電流を演算することに よりセンサレス DCブラシレスモータ 11を構成する磁石回転子 5の位置検出を行う。そ して、回転数指令信号(図示せず)等に基づき、インバータ回路 10を構成するスイツ チング素子 2を制御し、直流電源 1 (以下、ノくッテリーという)からの直流電圧を PWM 変調でスイッチングすることにより、正弦波状の交流電流をセンサレス DCブラシレス モータ 11 (以下、モータという)を構成する固定子卷線 4へ出力する。
[0030] インバータ回路 10は、 2個のスイッチング素子 2を直列に接続して成る直列回路を 3 組備え、それぞれバッテリー 1の正負端子間に接続されている。この 2個のスィッチン グ素子の接続点は、モータの固定子卷線 4に接続されている。各スイッチング素子 2 は、それぞれダイオード 3が並列に接続されており、固定子卷線 4からの電流の還流 ノレートとなる。
[0031] スイッチング素子 2について、バッテリー 1の正側端子に接続された上アームスイツ チング素子を 2U、 2V、 2W、バッテリー 1の負側端子に接続された下アームスィッチ ング素子を 2X、 2Y、 2Ζと定義する。また、各スイッチング素子 2U、 2V、 2W、 2X、 2 Y、 2Zに並列接続されたダイオードを、それぞれ 3U、 3V、 3W、 3X、 3Y、 3Zと定義 する。
[0032] 電流センサ 6の検出電流値は、消費電力算出やスイッチング素子 2等を保護するた めの判断にも用いられる。図 1において、電流センサ 6は電源ラインのマイナス側に 挿入されてレ、るが、電流は同じなのでプラス側でも良レ、。
[0033] 次に PWM3相変調について説明する。図 2は 50%変調、図 3は 100%変調におけ るそれぞれの各相波形の変調を示す特性図である。 U相端子電圧 41、 V相端子電 圧 42、 W相端子電圧 43、及び中性点電圧 29を示している。これらの端子電圧は P WM変調にて縦軸に示すデューティ(%)で実現される。中性点電圧 29は、各相の 端子電圧の和を求め 3で除した値である。また、相電圧は、端子電圧から中性点電 圧を引いた値であり、正弦波になる。
[0034] 図 4は 3相変調のタイミングチャートであり、 1キャリア内(キャリア周期)での上アーム スイッチング素子 2U、 2V、 2W、下アームスイッチング素子 2X、 2Y、 2Ζのオン、オフ の一例を示している。この場合、図 2の 50%変調において、位相がおおよそ 120度 でのタイミングチャートである。
[0035] 各スイッチング素子のスイッチングには、(a)、(b)、(c)、 (d)の 4つの期間があり、 それぞれ図 5A、図 5B、図 5C、図 5Dに電流経路を示す電気回路図を示す。
[0036] 期間(a)においては、上アームスイッチング素子 2U、 2V、 2W全てがオフ、下ァー ムスイッチング素子 2X、 2Y、 2Ζ全てがオンである。 U相電流、 V相電流がそれぞれ、 下アームスイッチング素子 2Χ、 2Υと並列のダイオードから固定子卷線 4へ流れ、 W 相電流は固定子卷線 4から下アームスイッチング素子 2Ζへ流れ出ている。下アーム とモータ 11間で電流が循環している。よって、バッテリー 1からインバータ回路 10及 びモータ 11へは電力供給されない非通電の状態にある。
[0037] 期間(b)においては、上アームスイッチング素子 2Uがオン、下アームスイッチング 素子 2Y、 2Ζがオンである。 U相電流は、上アームスイッチング素子 2Uから固定子卷 線 4へ流れ、 V相電流は下アームスイッチング素子 2Υと並列のダイオードから固定子 卷線 4へ流れ、 W相電流は固定子卷線 4から下アームスィッチング素子 2Ζへ流れ出 ている。よって、バッテリー 1からインバータ回路 10及びモータ 11へ電力供給される 通電状態にある。このとき、電源ライン (電流センサ 6)には、 U相の相電流が流れる。
[0038] 期間(c)においては、上アームスイッチング素子 2U、 2Vがオン、下アームスィッチ ング素子 2Zがオンである。 U相電流、 V相電流は、それぞれ、上アームスイッチング 素子 2U、 2Vから固定子卷線 4へ流れ、 W相電流は固定子卷線 4から下アームスイツ チング素子 2Zへ流れ出ている。よって、バッテリー 1からインバータ回路 10及びモー タ 11へ電力供給される通電状態にある。そして、電源ライン (電流センサ 6)には、 W 相の相電流が流れる。
[0039] 期間(d)においては、上アームスイッチング素子 2U、 2V、 2W全てがオン、下ァー ムスイッチング素子 2X、 2Y、 2Ζ全てがオフである。 U相電流、 V相電流は、それぞれ 、上アームスイッチング素子 2U、 2Vから固定子卷線 4へ流れ、 W相電流は固定子卷 線 4から上アームスイッチング素子 Wに並列のダイオードへ流れ込んでレ、る。上ァー ムとモータ 11間で電流が循環している。よって、バッテリー 1からインバータ回路 10及 びモータ 11へは電力供給されない非通電の状態にある。
[0040] 上アームスイッチング素子 2U、 2V、 2Wのオン、オフ状態で電源ライン(電流セン サ 6)に流れる電流の有無、流れる相電流を知ることができる。オンの相が無い時は 流れず(非通電)、 1相のみオン時はその相の電流が流れ (通電)、 2相オン時は残り の相の電流が流れ (通電)、 3相全てオン時は流れなレ、(非通電)。
[0041] 図 6に図 2の 50。/。変調の 3相変調での位相 30度、 45度、 60度、 75度、 90度にお いての 1キャリア内(キャリア周期)での上アームスイッチング素子 2U、 2V、 2Wのォ ン期間(デュ ティ)を中央から均等に振り分け表示してレ、る。
[0042] U相のオン期間を細実線で表わし、 V相のオン期間を中実線で表わし、 W相のオン 期間を太実線で表わしている。ノ ッテリー 1から固定子卷線 4へ電力が供給される通 電期間を実線矢印で、電源ラインに流れる相電流を U、 V、 Wで示している。また、非 通電期間を破線矢印で示してレ、る。
[0043] 同様に、図 7に、図 3の 100%変調の 3相変調について示す。図 6、図 7に示される ように、 3相変調においては、キャリア周期内中央の期間(d)は非通電期間となる。ま た、キャリア周期内の前端、後端にもそれぞれ非通電期間がある。そのため、キャリア 周期内の前半と後半にそれぞれ通電期間がある。これは、 2相変調が 1回であるのに 比べると、キャリア周期が半分 (キャリア周波数が 2倍)と同等になり(以降キャリア周期 短縮効果と称す)、 PWM変調がきめ細力べなる。これにより、 3相変調は 2相変調に 比べ、電流リップル、トルクリップルが小さくなり、低振動低騒音となる。但し、図 7の 1 00%変調において位相 30度では、キャリア周期内の通電期間が 1回のみであり、キ ャリア周期短縮効果が得られない。
[0044] また、位相 90度では、キャリア周期内の前端、後端に非通電期間がないため、前後 のキャリア周期における通電期間と連続してしまう。そのため、キャリア周期内の通電 期間は 2回であるが、結果として、 1キャリア周期当たり通電期間は 1回となり、キャリア 周期短縮効果が得られない。
[0045] 上記のように PWM変調による正弦波駆動方式のインバータ装置において、低振 動低騒音を求める場合、 3相変調の方が 2相変調に比べキャリア周期短縮効果により 有利である。しかしながら、 100%変調においては、キャリア周期短縮効果が得られ ない場合があり低振動低騒音のメリットが弱くなつている。
[0046] 空調装置に用いられる電動圧縮機をインバータ装置で駆動する場合、その騒音を 防止するためルームエアコンなどでは防音箱などの防音装置を用いる事も可能であ るが、車両用の空調装置に用いられる電動圧縮機においては、搭載スペース、重量 などの制約により防音装置を用いる事は困難である。また、車室内への振動伝達防 止のため、振動を小さく抑制しなければならないが、同様に防振装置を用いる事は困 難である。ノレームエアコンにおレ、ても環境を考慮し極力低振動低騒音であることが求 められる。
[0047] 上記課題を解決するために、本発明のインバータ装置は、 PWM3相変調のキヤリ ァ周期内における上アームスイッチング素子のオン期間に、同一のオン期間を、全て の相において追加または削減し、正弦波状の交流電流をモータへ出力するものであ る。上記構成により、 PWM変調はそのままに、あらゆる場合においてキャリア周期短 縮効果を確保するものであって、以下具体的な実施形態について説明する。
[0048] (実施の形態 1)
図 8は、本発明の実施の形態 1に係る上アームのオン期間、通電期間、非通電期 間を示す特性図である。インバータ装置とその周辺の回路に関しては、図 1の通りで ある。
[0049] 先に示した図 7の 100%3相変調において、位相 30度では、 V相の上アームスイツ チング素子オン期間が 0。 /。であるため、キャリア周期内の通電期間が 1回のみであり 、キャリア周期短縮効果が得られない。
[0050] 図 8はこの課題解決を示すものである。図 8の矢印上に、 100%3相変調の位相 30 度における上アームのオン期間、通電期間、非通電期間をそのまま示す。矢印下に 、調整後の上アームのオン期間、通電期間、非通電期間を示す。
[0051] 上アームスイッチング素子 2U、 2Wのオン期間に同一のオン期間 αを追加し、且つ 、オン期間 0の上アームスイッチング素子 2Vのオン期間を αとしている。結果として、 全ての相において同一のオン期間ひを追加したことになる。これにより、キャリア周期 の中央では、 U、 V、 W3相全ての上アームスイッチング素子がオンとなるために、非 通電期間(時間ひ)が形成される。この非通電期間では、上アームとモータ 11間で電 流が循環する。従って、キャリア周期内に通電期間が 2回となり、キャリア周期短縮効 果が得られる。
[0052] 一方、 2回の通電期間の時間合計は、オン期間ひ追加前の上アームスイッチング 素子 2U、 2Wのオン期間にオン期間ひを追加した時間から、非通電期間(時間ひ ) を差し引いた時間であり、これは、オン期間ひ追加前の上アームスイッチング素子 2 U、 2Wのオン期間(=オン期間ひ追加前の通電期間)に等しい。よって、 PWM変調 は変化せずそのままである。
[0053] 上アームスイッチング素子オン期間が 0%に近い場合、具体的にはキャリア周期の 5%以下の場合においては、キャリア周期中央の非通電期間を充分に確保しキャリア 周期短縮効果を確実にできる。
[0054] 従って、キャリア周期内における上アームスイッチング素子のオン期間力 または 0%に近い相がある場合、同一のオン期間を、全ての相において追加することにより 、キャリア周期内の通電期間を 2回とすることができ、キャリア周期短縮効果を得られ る。これにより、更なる低騒音低振動を実現するインバータ装置が得られる。
[0055] (実施の形態 2)
図 9は、本発明の実施の形態 2に係る上アームのオン期間、通電期間、非通電期 間を示す特性図である。図 7の 100%3相変調において、位相 90度では、 U相の上 アームスイッチング素子オン期間が 100%であるため、キャリア周期内の前端、後端 に非通電期間が形成されず、前後のキャリア周期における通電期間と連続してしまう 。そのため、キャリア周期内の通電期間は 2回である力 結果として、 1キャリア周期当 たり通電期間は 1回となり、キャリア周期短縮効果が得られない。
[0056] 図 9はこの課題解決を示すものである。図 9の矢印上に、 100%3相変調の位相 90 度における上アームのオン期間、通電期間、非通電期間をそのまま示す。キャリア周 期中央の非通電期間を i3で示す。この期間は、 U、 V、 W3相全ての上アームスイツ チング素子がオンとなる。矢印下に、調整後の上アームのオン期間、通電期間、非通 電期間を示す。キャリア周期中央の非通電期間、即ち、 U、 V、 W3相全ての上ァー ムスイッチング素子がオンとなる期間を γで示す。
[0057] U、 V、 W3相全ての上アームスイッチング素子オン期間から、 - yの期間が削減 される。これにより、キャリア周期内の前端、後端に非通電期間が形成される。この非 通電期間では、下アームとモータ 11間で電流が循環する。これにより、キャリア周期 内に通電期間が 2回となり、キャリア周期短縮効果が得られる。
[0058] 一方、通電期間は、キャリア周期中央の非通電期間、即ち、 U、 V、 W3相全ての上 アームスイッチング素子がオンとなる期間を βから γへ短縮しただけなので変わらな レ、。従って、 PWM変調は変化せずそのままである。
[0059] 上アームスイッチング素子オン期間が 100%に近い場合、具体的にはキャリア周期 の 95%以上の場合においては、キャリア周期内の前端、後端の非通電期間を充分 に確保しキャリア周期短縮効果を確実にできる。
[0060] 従って、キャリア周期内における上アームスイッチング素子のオン期間が 100%ま たは 100%に近い相がある場合、同一のオン期間を、全ての相において削減するこ とにより、キャリア周期内の通電期間を 2回とすることができ、キャリア周期短縮効果を 得られる。これにより、更なる低騒音低振動を実現するインバータ装置が得られる。
[0061] (実施の形態 3)
図 10は、本発明の実施の形態 3に係る 3相変調各相波形の特性図の第一例を示 す。この図は、図 3における位相 0度力ら 60度、 120度力ら 180度、 240度力ら 300 度において、上アームスイッチング素子のオン期間が 0。/οまたは 0。/οに近い相がある ため、同一のオン期間を、全ての相において追加したものである。但し、オン期間を 追加しない位相との間に不連続点が生じないように、位相により追加するオン期間を 変更して、連続させている。追加するオン期間は、位相 0度の 0から徐々に増加し、位 相 30度で最大、徐々に減少し位相 60度で 0となる。他の箇所でも同様である。
[0062] PWM変調は変化せずそのままであること、キャリア周期短縮効果を得られ更なる 低騒音低振動を実現するインバータ装置が得られることは、実施の形態 1と同様であ る。
[0063] 図 11は、本発明の実施の形態 3に係る 3相変調各相波形の特性図の第二例を示 す。この図は、図 3における位相 60度力ら 120度、 180度力ら 240度、 300度力ら 36 0度において、上アームスイッチング素子のオン期間が 100。/。または 100。/。に近い相 があるため、同一のオン期間を、全ての相において削減したものである。但し、オン 期間を削減しない位相との間に不連続点が生じないように、位相により削減するオン 期間を変更して連続させている。削減するオン期間は、位相 60度の 0から徐々に増 加し、位相 90度で最大、徐々に減少し位相 120度で 0となる。他の箇所でも同様で ある。
[0064] PWM変調は変化せずそのままであること、キャリア周期短縮効果を得られ更なる 低騒音低振動を実現するインバータ装置が得られることは、実施の形態 2と同様であ る。
[0065] 図 12は、本発明の実施の形態 3に係る 3相変調各相波形の特性図の第三例を示 す。この図は、図 10及び図 11における、オン期間の追加削減箇所をまとめたもので ある。
[0066] PWM変調は変化せずそのままであること、キャリア周期短縮効果を得られ更なる 低騒音低振動を実現するインバータ装置が得られることは、実施の形態 1、 2と同様 である。また、位相全体で効果を得られる。
[0067] (実施の形態 4)
図 13は、本発明の実施の形態 4に係る上アームのオン期間、通電期間、非通電期 間を示す特性図である。
[0068] 図 13の矢印上に、 100%3相変調の位相 30度における上アームのオン期間、通 電期間、非通電期間をそのまま示す。矢印下に、調整後の上アームのオン期間、通 電期間、非通電期間を示す。
[0069] 図 8との違レ、は、キャリア周期中央の非通電期間(U、V、W3相全ての上アームスィ ツチング素子がオンとなる)と、キャリア周期内の前端、後端の非通電期間(u、 V、 W
3相全ての上アームスイッチング素子がオフとなる)とが同じになるように、同一のオン 期間を、全ての相において追加している点である。すなわち、キャリア周期内の前端 の非通電期間を 1とすると、キャリア周期中央の非通電期間は 2、キャリア周期内の後 端の非通電期間は 1となっている。
[0070] これにより、前後のキャリアにおける非通電期間(U、 V、 W3相全ての上アームスィ ツチング素子がオフとなる)も含めて、各通電期間が等間隔となる (通電が等間隔時 間に行われる)。これにより、キャリア周期短縮効果が改善され、更なる低騒音低振動 を実現するインバータ装置が得られる。
[0071] 図 14は、本発明の実施の形態 4に係る上アームのオン期間、通電期間、非通電期 間を示す他の特性図である。
[0072] 図 14の矢印上に、 100%3相変調の位相 90度における上アームのオン期間、通 電期間、非通電期間をそのまま示す。矢印下に、調整後の上アームのオン期間、通 電期間、非通電期間を示す。
[0073] 図 9との違いは、キャリア周期中央の非通電期間(U、V、W3相全ての上アームスィ ツチング素子がオンとなる)と、キャリア周期内の前端、後端の非通電期間(U、 V、 W
3相全ての上アームスイッチング素子がオフとなる)とが同じになるように、同一のオン 期間を、全ての相において削減している点である。作用効果は、図 13の場合と同様 である。
[0074] 同様に、キャリア周期中央の非通電期間(U、 V、 W3相全ての上アームスィッチン グ素子がオンとなる)と、キャリア周期内の前端、後端の非通電期間(U、 V、 W3相全 ての上アームスイッチング素子がオフとなる)とが同じになるように、同一のオン期間 を、全ての相において追加する場合を図 15 (100%3相変調の位相 45度)に、削減 する場合を図 16 (100%3相変調の位相 75度)に示している。作用効果は、図 13、 図 14の場合と同様である。また、 PWM変調が変化しないことも同様である。
[0075] 図 17は、上記図 13より図 16に示す調整後における上アームのオン期間、通電期 間、非通電期間を、まとめて示す特性図である。
[0076] 位相 60度においては、調整せずとも、キャリア周期中央の非通電期間(U、 V、 W3 相全ての上アームスイッチング素子がオンとなる)と、キャリア周期内の前端、後端の 非通電期間(U、 V、 W3相全ての上アームスイッチング素子がオフとなる)とが同じで あるので、調整していない。
[0077] 位相 30度より 90度について示したのは、該当する相は異なるとしても、このパター ンの繰り返しになってレ、る力 である。
[0078] 図 18は、図 7から図 17への調整に係る数値を各位相について示したものである。
キャリア周期内のオン期間裕度 31は、図 7において、キャリア周期内における上ァー ムスイッチング素子のオン期間に、同一で追加可能なオン期間(いずれかの上ァー ムスイッチング素子のオン期間がキャリア周期に一致するときの追加オン期間)を示 す。よって、位相 30度で最大、位相 90度で最小となる。
[0079] 調整量 33は、キャリア周期中央の非通電期間(U、 V、 W3相全ての上アームスイツ チング素子がオンとなる)と、キャリア周期内の前端、後端の非通電期間(U、 V、 W3 相全ての上アームスイッチング素子がオフとなる)とが同じになるようにするために必 要となる調整量 (全ての相において、同一に追加もしくは削減するオン期間)である。 プラスは追力 0、マイナスは削減を示す。上記の如ぐ位相 60度においては 0である。
[0080] 調整後のオン期間裕度 32は、図 7に調整量 33を適用した図 17において、 U、 V、 Wの内の上アームスイッチング素子の最大オン期間とキャリア周期との差の期間を示 す。すなわち、位相 30度、位相 90度で最大、位相 60度で最小となっている。
[0081] (実施の形態 5)
図 19は、本発明の実施の形態 5に係る 3相変調各相波形の特性図の第一例を示 す。この図は、図 3の位相。度力も 60度、 120度力ら 180度、 240度力ら 300度にお いて、上アームスイッチング素子のオン期間が 0%または 0%に近い相があるため、 図 18の調整量 33を適用したものである。追加するオン期間は、位相 0度で 0、位相 6 0度で 0となるため、オン期間を追加しない位相との間に不連続点は生じなレ、。他の 箇所でも同様である。
[0082] PWM変調は変化しないこと、キャリア周期短縮効果が改善され、更なる低騒音低 振動を実現するインバータ装置が得られることは、実施の形態 4と同様である。
[0083] 図 20は、本発明の実施の形態 5に係る 3相変調各相波形の特性図の第二例を示 す。この図は、図 3の位相 60度力も 120度、 180度力も 240度、 300度力も 360度に おいて、上アームスイッチング素子のオン期間が 100%または 100%に近い相があ るため、図 18の調整量 33を適用したものである。削減するオン期間は、位相 60度で
0、位相 120度で 0となるため、オン期間を削減しない位相との間に不連続点は生じ ない。他の箇所でも同様である。
[0084] PWM変調は変化しないこと、キャリア周期短縮効果が改善され、更なる低騒音低 振動を実現するインバータ装置が得られることは、実施の形態 4と同様である。
[0085] 図 21は、本発明の実施の形態 5に係る 3相変調各相波形の特性図の第三例を示 す。この図は、図 3の位相全域に渡り、図 18の調整量 33を適用したものである。
[0086] PWM変調は変化しないこと、キャリア周期短縮効果が改善され、更なる低騒音低 振動を実現するインバータ装置が得られることは、実施の形態 4と同様である。また、 位相全体で効果を得られる。
[0087] (実施の形態 6)
上記実施の形態 1から 5においては、 100%変調について述べたが、以下 100% 以下について説明する。
[0088] 位相を Θ、変調度を δ (100%変調で 1、 0%変調で 0)、デュ—ティ 100%を 1とし、 図 18におけるキャリア周期内のオン期間裕度 31、調整量 33、調整後のオン期間裕 度 32を数式で表現する。位相 30度から 90度を例に、 U相を位相の基準とし、 V相の 位相は一 120度となる。
[0089] キャリア周期内のオン期間裕度 31は、 U相とデューティ 100%との差になるので、( 数 1)となる。これは、 3相ともに、上アームスイッチング素子がオフの期間でもある。
[0090] [数 1]
0 . 5— 0 . 5 ό s Ί η θ
[0091] 3相ともに上アームスイッチング素子がオンの期間は、 V相の上アームスイッチング 素子オン期間デュ—ティに等しいので、(数 2)となる。
[0092] [数 2]
0 . 5 δ s i η ( θ - 1 2 0 ) + 0 . 5
[0093] 実施の形態 4の如ぐキャリア周期中央の非通電期間(U、 V、 W3相全ての上ァー ムスイッチング素子がオンとなる)と、キャリア周期内の前端、後端の非通電期間(U、 V、 W3相全ての上アームスイッチング素子がオフとなる)とが同じになるようにすると、 調整後のオン期間裕度 32は、キャリア周期中央の非通電期間とキャリア周期内の前 端、後端の非通電期間との平均で表されるので、(数 1)と (数 2)の和を 2で除した式 になる。加法定理を用い整理すると、(数 3)となる。
[0094] [数 3]
3 3
- —— 6 s I η θ δ c o s Θ + 0 . 5
8 8
[0095] 調整量 33は、キャリア周期内のオン期間裕度 31 = (数 1)と調整後のオン期間裕度
32= (数 3)との差になるので、(数 4)となる。
[0096] [数 4]
1 3
d s i n d H d c o s θ
8 8
[0097] よって、 100%変調以外で、実施の形態 4の如ぐキャリア周期中央の非通電期間( U、 V、 W3相全ての上アームスイッチング素子がオンとなる)と、キャリア周期内の前 端、後端の非通電期間(U、 V、 W3相全ての上アームスイッチング素子がオフとなる) とが同じになるようにする場合、調整量 33は、(数 4)で表現される。 (数 4)は、 δが係 数となっているので、調整量 33は、変調度 δ (100%変調で 1、 0%変調で 0)に比例 している。
[0098] 以上により、 PWM3相変調の変調度が高い程、追加または削減する同一のオン期 間を大きくすれば良いことが分かる。これにより、変調度に応じて適正なオンまたはォ フ期間を適用できる。そして変調度全域においてキャリア周期短縮効果を改善できる 。従って、更なる低騒音低振動を実現するインバータ装置が得られる。
[0099] なお、上記各実施の形態において、上アームスイッチング素子のオン期間に基い て説明したが、オフ期間での表現、また、下アームスイッチング素子のオン、オフ期間 での表現も可能である。モータをセンサレス DCブラシレスモータとした力 誘導モー タ等にも適用できる。
[0100] また、位置検出センサ付き、位置検出用電流センサを複数備えたもの等にも適用 できる。従来の 3相変調を通常モード、本発明の 3相変調を静粛モードとして使い分 けても良い。本発明の 3相変調は、図 17、図 18に示す如ぐ調整後のオン期間裕度 32が最小でも 6. 7% (位相 60度など)ある。すなわち、最大出力時に限りキャリア周 期短縮効果を求めなければ、調整後のオン期間裕度 32の最小値を 0%にして、出 力を 7%〔 1 Z ( 100 % _ 6. 7 %)〕アップできる。
[0101] (実施の形態 7)
図 22は本発明の実施の形態 7における本発明のインバータ装置を車両に適用した 一例を示す説明図である。
[0102] 上述したインバータ装置 60 (図 1における 21に相当する)は、モータを有する電動 圧縮機 61、室外熱交換器 63、室外ファン 62と共に、車両前方のエンジンルームに 搭載される。一方、車両室内には室内送風ファン 65、室内熱交換器 67、エアコンコ ントローラ 64が配置されている。空気導入口 66から車外空気を吸込み、室内熱交換 器 67で熱交換した空気を車室内に吹き出す。
[0103] エンジンルームに搭載された電動圧縮機 61の騒音振動は、車体を通して車室内 に伝達され、また車両周囲に騒音を広げることになる。車両用の空調装置に用いら れる電動圧縮機においては、搭載スペース、重量などの制約により防音装置を用い る事は困難である。また、車室内への振動伝達防止のため、振動を小さく抑制しなけ ればならないが、同様に防振装置を用いる事は困難である。
[0104] 上述のインバータ装置で駆動される電動圧縮機は、騒音振動の発生そのものを大 きく低減できるので、車両に適用した時の静粛性の効果が大きい。特に、電気自動 車、ハイブリッド車、燃料電池車などエンジン騒音のない車両では効果が大きい。 産業上の利用可能性
[0105] 以上のように、本発明におけるインバータ装置は、高い低騒音低振動性を得られる ので、各種民生用製品、各種産業用機器に適用できる。特に、車両用空調装置に好 l である。

Claims

請求の範囲
[1] 直流電源の正負端子間に 2個のスイッチング素子を直列に接続して成る直列回路を 3組備え、 2個の前記スィッチング素子の接続点をモータに接続し、前記直流電源の 直流電圧を PWM3相変調にてスイッチングすることにより正弦波状の交流電流を前 記モータへ出力し、前記直流電源の正端子に接続された上アームスイッチング素子 は、前記 PWM3相変調のキャリア周期毎に、全ての相において同一のオン期間を追 カロまたは削減し、前記キャリア周期内の通電期間を 2回とするインバータ装置。
[2] 前記上アームスイッチング素子のオン期間が 0%または前記キャリア周期の 5%以下 の相がある場合、全ての相において同一のオン期間を追加する請求項 1記載のイン バータ装置。
[3] 前記上アームスイッチング素子のオン期間が 100%または前記キャリア周期の 95% 以上の相がある場合、全ての相において同一のオン期間を削減する請求項 1記載の インバータ装置。
[4] 前記オン期間の追加または削減は、前記キャリア周期内の中央部になされる請求項
1記載のインバータ装置。
[5] 前記上アームスイッチング素子全てがオンとなる期間と、前記上アームスイッチング 素子全てがオフとなる期間とが同じ時間となるように、全ての相において同一のオン 期間を追加または削減する請求項 1記載のインバータ装置。
[6] 前記オン期間の追加または削減は、位相の変化に対して不連続点のないように連続 させる請求項 1記載のインバータ装置。
[7] 前記 PWM3相変調の変調度が高い程、前記追カロまたは削減するオン期間を大きく する請求項 1記載のインバータ装置。
[8] 請求項 1から請求項 7のうちいずれか一項記載のインバータ装置を搭載した車両用 空調装置。
PCT/JP2005/010469 2004-06-25 2005-06-08 インバータ装置およびこれを搭載した車両用空調装置 WO2006001169A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2005800212343A CN1973426B (zh) 2004-06-25 2005-06-08 逆变器装置及搭载其的车辆用空调装置
US11/570,639 US7751210B2 (en) 2004-06-25 2005-06-08 Inverter device with improved 3-phase pulse width modulation and vehicle air conditioner using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004187352 2004-06-25
JP2004-187352 2004-06-25
JP2005070677 2005-03-14
JP2005-070677 2005-03-14

Publications (1)

Publication Number Publication Date
WO2006001169A1 true WO2006001169A1 (ja) 2006-01-05

Family

ID=35781689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010469 WO2006001169A1 (ja) 2004-06-25 2005-06-08 インバータ装置およびこれを搭載した車両用空調装置

Country Status (3)

Country Link
US (1) US7751210B2 (ja)
CN (1) CN1973426B (ja)
WO (1) WO2006001169A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007004094A1 (de) * 2007-01-26 2008-08-07 Siemens Ag Verfahren und Vorrichtung zur Steuerung einer mittels Pulsweitenmodulation steuerbaren Drehstrommaschine mit mehreren Phasenwicklungen
AU2010299394B2 (en) * 2009-09-28 2014-02-27 Daikin Industries, Ltd. Phase current detection device and power conversion device using same
GB201006396D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless motor
GB201006397D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless motor
GB201006388D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of brushless motor
GB201006387D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless motor
GB201006384D0 (en) * 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless motor
GB201006392D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Controller for a brushless motor
GB201006390D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless motor
GB201006398D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless motor
GB201006391D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless permanent-magnet motor
GB201006386D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless motor
GB201006395D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless motor
GB2484289B (en) 2010-10-04 2013-11-20 Dyson Technology Ltd Control of an electrical machine
KR20190060966A (ko) * 2011-03-24 2019-06-04 가부시키가이샤 다이헨 전력변환회로를 제어하는 제어회로, 이 제어회로를 구비한 인버터 장치 및 이 인버터 장치를 구비한 계통연계 인버터 시스템
GB2505189B (en) * 2012-08-20 2020-01-15 Nidec Control Techniques Ltd Modulation of switching signals in power converters
DE102013201733A1 (de) * 2013-02-04 2014-08-07 Robert Bosch Gmbh Verfahren zum Festlegen von Ansteuerzeitdauern für einen Wechselrichter
JP6369852B2 (ja) * 2014-03-04 2018-08-08 三菱重工サーマルシステムズ株式会社 インバータ制御装置及びインバータ装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065675A1 (fr) * 2000-02-28 2001-09-07 Kabushiki Kaisha Yaskawa Denki Procede de commande d'impulsion de modulation de largeur d'impulsion (pwm)
JP2002136152A (ja) * 2000-10-18 2002-05-10 Yaskawa Electric Corp Pwm制御インバータおよびその制御方法
JP2002247860A (ja) * 2001-02-22 2002-08-30 Fuji Electric Co Ltd 電圧形インバータの制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458194A (en) * 1981-11-04 1984-07-03 Eaton Corporation Method and apparatus for pulse width modulation control of an AC induction motor
US4528486A (en) * 1983-12-29 1985-07-09 The Boeing Company Controller for a brushless DC motor
US5463300A (en) * 1993-08-26 1995-10-31 Oximberg; Carol A. AC motor controller with 180 degree conductive switches
GB9600549D0 (en) * 1996-01-11 1996-03-13 Lucas Ind Plc Motor drive control
EP0933858A1 (fr) * 1998-01-28 1999-08-04 Gec Alsthom Acec Transport S.A. Procédé de protection par mise en court-circuit
US6529393B1 (en) * 1999-12-01 2003-03-04 Texas Instruments Incorporated Phase current sensor using inverter leg shunt resistor
JP3931079B2 (ja) 2001-12-14 2007-06-13 松下電器産業株式会社 電動機駆動装置及びそれを用いた冷凍装置
GB0213098D0 (en) * 2002-06-07 2002-07-17 Trw Ltd Motor control device
JP3864308B2 (ja) * 2002-06-12 2006-12-27 株式会社安川電機 Pwmインバータ制御方法
US7583523B2 (en) * 2004-07-20 2009-09-01 Panasonic Corporation Three phase inverter control circuit detecting two phase currents and deducting or adding identical ON periods
US7855527B2 (en) * 2005-10-24 2010-12-21 Panasonic Corporation Inverter device
JP4497149B2 (ja) * 2005-12-16 2010-07-07 パナソニック株式会社 インバータ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065675A1 (fr) * 2000-02-28 2001-09-07 Kabushiki Kaisha Yaskawa Denki Procede de commande d'impulsion de modulation de largeur d'impulsion (pwm)
JP2002136152A (ja) * 2000-10-18 2002-05-10 Yaskawa Electric Corp Pwm制御インバータおよびその制御方法
JP2002247860A (ja) * 2001-02-22 2002-08-30 Fuji Electric Co Ltd 電圧形インバータの制御方法

Also Published As

Publication number Publication date
US20080273360A1 (en) 2008-11-06
US7751210B2 (en) 2010-07-06
CN1973426B (zh) 2010-05-05
CN1973426A (zh) 2007-05-30

Similar Documents

Publication Publication Date Title
WO2006001169A1 (ja) インバータ装置およびこれを搭載した車両用空調装置
JP3931079B2 (ja) 電動機駆動装置及びそれを用いた冷凍装置
CN109874401B (zh) 交流电动机的控制装置及控制方法、以及交流电动机驱动系统
CN104145418A (zh) 空调机
WO2006009145A1 (ja) インバータ装置
WO2007049473A1 (ja) インバータ装置
JP4561838B2 (ja) インバータ装置
JP2006101685A (ja) インバータ装置
JP2015128355A (ja) モータ制御装置
JP6217667B2 (ja) 電動圧縮機
US11223296B2 (en) Power conversion device
JP2007236188A (ja) インバータ装置
JP5200569B2 (ja) インバータ装置
JP4791319B2 (ja) インバータ装置、圧縮機駆動装置および冷凍・空調装置
CN114128131A (zh) 功率转换装置
JP4197974B2 (ja) モータ制御装置及びモータの制御方法
JP4696703B2 (ja) インバータ装置
JP3750691B1 (ja) インバータ装置
JP5146128B2 (ja) インバータ装置
JP2019118245A (ja) モータ制御装置
JP4497148B2 (ja) インバータ装置
JP6786463B2 (ja) 電力変換装置
Singh et al. Isolated Zeta PFC converter based voltage controlled PMBLDCM drive for air-conditioning application
WO2018142738A1 (ja) 空気調和機
JP2008160915A (ja) モータ駆動用インバータ制御装置および該装置を用いた機器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11570639

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580021234.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase