WO2006009145A1 - インバータ装置 - Google Patents

インバータ装置 Download PDF

Info

Publication number
WO2006009145A1
WO2006009145A1 PCT/JP2005/013253 JP2005013253W WO2006009145A1 WO 2006009145 A1 WO2006009145 A1 WO 2006009145A1 JP 2005013253 W JP2005013253 W JP 2005013253W WO 2006009145 A1 WO2006009145 A1 WO 2006009145A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
phase
current
arm switching
phases
Prior art date
Application number
PCT/JP2005/013253
Other languages
English (en)
French (fr)
Inventor
Naomi Goto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/631,868 priority Critical patent/US7583523B2/en
Publication of WO2006009145A1 publication Critical patent/WO2006009145A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00421Driving arrangements for parts of a vehicle air-conditioning
    • B60H1/00428Driving arrangements for parts of a vehicle air-conditioning electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Definitions

  • the present invention relates to a PWM three-phase modulation inverter device provided with phase current detection means.
  • phase current detection method in an inverter device that drives a sensorless DC brushless motor by a sine wave drive method using PWM modulation, two out of three output lines of the inverter device are used.
  • a method of directly detecting the current is known (for example, JP 2000-333465 A, page 9, FIG. 2).
  • FIG. 11 shows the inverter device and the electrical circuit around it.
  • the control circuit 7 of the inverter device 20 receives the W-phase current from the current sensor 8 and the U-phase current force current sensor 9, respectively. From the two current values, obtain the V-phase current by applying Kirchhoff's current law at the neutral point of the stator winding 4. Based on these U-phase, V-phase, and W-phase current values, the induced voltage of the magnet rotor 5 constituting the sensorless DC brushless motor 11 (hereinafter referred to as the motor) is calculated and its position is detected.
  • the motor the induced voltage of the magnet rotor 5 constituting the sensorless DC brushless motor 11
  • the inverter circuit 10 is configured, for example, the switching element 2 configured by IGBT is controlled, and the DC voltage from the knotter 1 is switched by PWM modulation. Then, a sinusoidal alternating current is output to the stator winding 4 constituting the motor 11.
  • the diode 3 constituting the inverter circuit 10 serves as a return route for the current flowing through the stator wire 4.
  • the upper arm switching elements of switching element 2 are defined as U, V, and W, and the lower arm switching elements are defined as X, Y, and Z, respectively.
  • the diodes corresponding to the switching elements U, V, W, X, Y, and Z are defined as 3U, 3V, 3W, 3X, 3Y, and 3Z, respectively.
  • the current sensors 8 and 9 are configured using Hall elements because the potential changes between the positive side and the negative side of the battery 1 and it is difficult to configure the current sensors 8 and 9 with a shunt resistor.
  • phase current detection As another method of phase current detection, a method of detecting phase current with a shunt resistor is shown. (For example, JP 2003-189670, page 2, claim 2, page 14, FIG. 1, page 15, FIG. 9)
  • Figure 12 shows the inverter and its peripheral circuits.
  • the control circuit 12 of the inverter device 21 calculates the current based on the voltage generated in the shunt resistor 6.
  • FIG. 13 is a waveform characteristic diagram of three-phase modulation in 50% modulation and FIG. 14 is 100% modulation, respectively.
  • U phase terminal voltage 41, V phase terminal voltage 42, W phase terminal voltage 43 and neutral point voltage 29 are shown. These terminal voltages are realized by duty (%) shown on the vertical axis by PWM modulation.
  • the neutral point voltage 29 is the value obtained by dividing the terminal voltage of each phase by 3.
  • the phase voltage is a value obtained by subtracting the neutral point voltage from the terminal voltage force and is a sine wave.
  • FIG. 15 is a timing chart within one carrier (carrier cycle) of three-phase modulation.
  • An example of ONZOFF of upper arm switching elements U, V, and W and lower arm switching elements X, Y, and Z in one carrier (carrier cycle) is shown.
  • the phase chart is approximately 120 degrees. This is generally realized by the timer function of the microcomputer. If the upper arm switching element of the same phase is ON, the lower arm switching element is OFF. Conversely, if the upper arm switching element is OFF, the lower arm switching element is ON. However, in order to simplify the display, the dead time for preventing a short circuit between the upper arm switching element and the lower arm switching element is omitted.
  • each switching element has four states (a), (b), (c), and (d), which are shown in FIGS. 16 to 19, respectively.
  • U-phase current flows from upper arm switching element U to stator winding 4, and V-phase current flows from diode 3Y in parallel with lower arm switching element Y to stator winding 4. W-phase current flows from the stator winding 4 to the lower arm switching element Z. Therefore, the power is supplied from the knotter 1 to the inverter circuit 10 (motor 11). At this time, a U-phase current flows through the power supply line (shunt resistor 6).
  • Figure 20 [this, position Ne th 30 degrees at 50 0/0 3 Ne th modulation of Fig. 13, 45 degrees, 60 degrees, 75 degrees, 90 degrees [freezing! 1 the carrier of Te ⁇ (carrier Display the ON period (Duty) of the upper arm switching elements U, V, and W in (cycle) based on Fig.15.
  • U-phase upper arm switching element The ON period of U is represented by a thin solid line.
  • the ON period of switching element V is represented by a solid solid line
  • the ON period of W-phase upper arm switching element W is represented by a thick solid line.
  • the energization period during which electric power is supplied from the battery 1 to the stator wire 4 is indicated by solid arrows, and the phase currents flowing through the power line (shunt resistor 6) at this time are indicated by U, V, and W.
  • the non-energization periods (lower circulation period, upper circulation period) are indicated by broken arrows.
  • FIG. 21 shows the 100% three-phase modulation of FIG.
  • the shunt resistor 6 can detect the phase current for one phase or two phases. Increase the ON period of some phases (upper arm switching elements) when only one phase can be detected! Or a method of reducing the number is shown (for example, Japanese Patent Laid-Open No. 2003-189670, page 2, claim 2, page 14, FIG. 1, page 15, FIG. 9).
  • the center period (d) in the carrier period is a non-energization period.
  • 2-phase modulation since one phase is fixed, there is no period (d).
  • three-phase modulation has smaller current ripple and torque ripple than two-phase modulation, resulting in low vibration and low noise.
  • Figure 22 shows the inverter and its peripheral circuits.
  • the control circuit 13 of the inverter device 22 is a shunt provided between the U-phase lower arm and the ground.
  • the current is calculated according to the magnitude of the voltage generated at resistor 15, shunt resistor 16 provided between the V-phase lower arm and ground, and shunt resistor 17 provided between the W-phase lower arm and ground.
  • FIG. 23 shows the ON periods (Duty) of the lower arm switching elements X, Y, and Z corresponding to FIG.
  • the dead time for preventing a short circuit between the upper arm switching element and the lower arm switching element is omitted.
  • the ON period of the U-phase lower arm switching element X is indicated by a thin solid line
  • the ON period of the V-phase lower arm switching element Y is indicated by a solid solid line
  • the ON period of the W-phase lower arm switching element Z is bold. It is represented by a solid line.
  • the lower circulation period is indicated by a thick dashed arrow
  • the upper circulation period is indicated by a thin dashed arrow.
  • FIG. 24 shows the ON periods (Duty) of the lower arm switching elements X, Y, and Z corresponding to FIG.
  • the current flows through the shunt resistor 15, that is, the current can be detected because the current flows through the shunt resistor 16 during the ON period of the lower arm switching element X, that is, the current can be detected. This is the ON period of the lower arm switching element Y.
  • the current flows through the shunt resistor 17, that is, the current can be detected during the ON period of the lower arm switching element Z.
  • the energization period within the carrier cycle is one in a specific phase.
  • the carrier period shortening effect may not be obtained in a specific phase.
  • the current sensor In the method of directly detecting the current of the output line of the inverter device force, the current sensor is composed of a Hall element, a coil for generating magnetic flux, an element peripheral circuit, etc. It becomes a problem. Also, because of its large size, it can be placed on a printed circuit board. Is required.
  • a soundproof device such as a soundproof box can be used in a room air conditioner in order to prevent the noise.
  • a soundproofing device for an electric compressor used in an air conditioner for a vehicle due to restrictions such as mounting space and weight.
  • the vibration must be suppressed to a small level, but it is also difficult to use a vibration isolator.
  • Even room air conditioners are required to have as low vibration and noise as possible in consideration of the environment.
  • the present invention solves such a conventional problem, and does not require complicated control software development, and can detect a phase current with a small and high vibration-proof configuration without causing current distortion.
  • the purpose is to provide an inverter device.
  • an inverter device includes an upper arm switching element connected to a positive (first power supply terminal) side of a DC power supply and a negative (second power supply terminal) of the DC power supply.
  • the lower arm switching element connected to the side has three phases, and the DC voltage of the DC power supply is switched by PWM three-phase modulation to output a sinusoidal three-phase AC current.
  • a three-phase current detector is connected between the lower arm switching element and the negative side of the DC power supply. In each of the two phases, the same ON period is reduced in all three phases from the ON period of the upper arm switching element within the carrier period, so that the two phases in the phase where the current detector is provided
  • the method uses the specified two-phase current detection value
  • the conventional method using the specified two-phase current detection value that is, directly detects the current of the output line from the inverter device. Changes in method power can be easily performed. That is, the degree of freedom of arrangement of the current detector on the printed circuit board is increased.
  • the inverter device of the present invention does not require complicated control software, can further smooth the current without causing current distortion, and can detect the phase current with a small and highly vibration-resistant configuration.
  • the first invention includes three phases of an upper arm switching element connected to the positive side of the DC power source and a lower arm switching element connected to the negative side of the DC power source.
  • a sinusoidal three-phase AC current is output.
  • a current detector is provided between the lower arm switching element of the two phases of the three phases and the negative side of the DC power supply.
  • the ON period of the lower arm switching element can be lengthened without requiring complicated control software.
  • all three phases of the lower arm switching element in one carrier There is a period during which current flows. Therefore, it is possible to detect current for three phases with only two current detectors (the other one phase can be calculated).
  • the method uses the specified two-phase current detection value
  • the conventional method using the specified two-phase current detection value that is, directly detects the current of the output line from the inverter device. Changes in method power can be easily performed. That is, the degree of freedom of arrangement of the current detector on the printed circuit board is increased.
  • the second invention is the inverter device of the first invention, wherein the ON period of the upper arm switching element in all three phases is reduced when the ON period of the lower arm switching element is 0 in the carrier period. This is done when there is a phase close to% or 0%. In other words, if the dead time is not taken into account, it is performed when the ON period of the upper arm switching element in the carrier period is 100% or close to 100%, and the degree of modulation is limited. Only if you do. As a result, an inverter device that is easier to control can be obtained.
  • the ON period of the upper switching elements in all the three phases is reduced by 0% of the period in which all the upper arm switching elements are ON. Or avoid the vicinity of 0%, that is, do not approach 0%.
  • the carrier cycle shortening effect can be secured.
  • An inverter device that can be used is obtained.
  • the ON-arm switching element reduction in all three phases is such that all the upper arm switching elements are turned on.
  • the period and the period in which all the upper arm switching elements are turned off are the same time, the intervals between the energization periods are equal, the carrier cycle shortening effect is improved, and the current of three-phase modulation is generated. Further smoothing can be achieved. This further improves the low-noise and low-vibration properties of three-phase modulation, and an inverter device that can detect the three-phase phase current without causing current distortion without requiring complicated control software.
  • the fifth invention comprises three phases of an upper arm switching element connected to the positive side of the DC power source and a lower arm switching element connected to the negative side of the DC power source, and the direct current voltage of the DC power source is set to the PWM three phase. Switching by modulation.
  • each of the three phases is provided with a current detector that detects the current between the upper arm switching element of the two phases and the positive side of the direct current power source. To detect the phase current of two phases in the phase where the current detector is provided by adding the same ON period to all three phases in the ON period of the upper arm switching element within the period Can do.
  • the ON period of the upper arm switching element can be lengthened without requiring complicated control software. This allows a period for current to flow through all three phases of the upper arm switching element within one carrier. Therefore, the current for three phases can be detected by two current detectors. The other phase is calculated. In addition, the same ON period is added to all three phases, and the ON period of only a part of the phases (upper arm switching elements) is not increased or decreased. As it is, no current distortion occurs. Further, even in a region where the carrier cycle shortening effect cannot be obtained, the carrier cycle shortening effect can be obtained, and the current can be further smoothed.
  • the method uses the specified two-phase current detection value
  • the conventional method using the specified two-phase current detection value that is, directly detects the current of the output line from the inverter device. Changes in method power can be easily performed. That is, the degree of freedom of arrangement of the current detector on the printed circuit board is increased.
  • an inverter device can be obtained in which the current can be smoothed without generating current distortion and the phase current for three phases can be detected without requiring complicated control software.
  • a sixth aspect of the invention is the inverter device of the fifth aspect of the invention, wherein all three phases are improved.
  • the ON period of the switching element is added when the ON period of the upper arm switching element in the carrier cycle is 0% or close to 0%.
  • the dead time is not taken into account, it is performed when the ON period of the lower arm switching element in the carrier period is 100% or close to 100%, and the degree of modulation is limited. Only if you do.
  • an inverter device that is easier to control can be obtained.
  • the ON period addition of the upper switching elements in all three phases is such that the period during which all the lower arm switching elements are ON is 0% Avoid near 0%, ie not close to 0%.
  • the carrier cycle shortening effect can be secured.
  • the current can be smoothed without causing current distortion without the need for complicated control software, and the phase current for three phases can be detected. An inverter device that can be used is obtained.
  • the addition of the ON period of the upper switching elements in all three phases includes the period in which all the upper arm switching elements are ON, Make sure that the period when all arm switching elements are OFF is the same time.
  • the intervals between energization periods are equalized, the carrier cycle shortening effect is improved, and the current of three-phase modulation can be smoothed further.
  • the low noise and low vibration property of the three-phase modulation can be further improved, and an inverter device can be obtained which can detect the phase currents for three phases without causing current distortion without requiring complicated control software.
  • a ninth invention is the inverter device of the first or fifth invention, wherein the current detector is a shunt resistor. Thereby, vibration resistance can be enhanced with a small size.
  • a sinusoidal three-phase alternating current is output to a sensorless DC brushless motor, and based on the detected phase currents for two phases, Sensorless DC brushless motor rotor position is detected.
  • An eleventh aspect of the invention is the inverter apparatus of the tenth aspect of the invention, wherein the sensorless DC brushless It is mounted on an electric compressor driven by a motor.
  • Inverter devices mounted on electric compressors are limited in installation space and need to be miniaturized, and must have vibration resistance against vibrations from the motor, so they are small and vibration resistant. This inverter device that can drive the motor is useful.
  • a twelfth aspect of the invention is the inverter device of the first or fifth aspect of the invention mounted on a vehicle.
  • the mounting space is limited and downsizing is required, and it is difficult to install soundproofing and vibration isolation devices due to restrictions such as weight, and vibration resistance against running vibration is also required.
  • This inverter device with small size, high vibration resistance, low noise and low vibration is useful.
  • FIG. 1 is an electric circuit diagram of an inverter device according to Embodiment 1 of the present invention and its periphery.
  • FIG. 2 is a characteristic diagram showing an upper arm ON period, a conduction period, and a circulation period at a phase of 90 degrees according to the first embodiment of the present invention.
  • FIG. 3 is a characteristic diagram showing an ON period, a conduction period, and a circulation period of the upper arm at a phase of 75 degrees according to the first embodiment of the present invention.
  • FIG. 4 is a characteristic diagram showing the upper arm ON period, energization period, and circulation period in the phase of 30 to 90 degrees according to the first embodiment of the present invention.
  • FIG. 5 is a characteristic diagram showing an ON period, an upper circulation period, and a lower circulation period of the lower arm at a phase of 30 degrees to 90 degrees according to the first embodiment of the present invention.
  • FIG. 6 is a characteristic diagram showing the upper arm ON period, the conduction period, and the circulation period at a phase of 90 degrees according to the second embodiment of the present invention.
  • FIG. 7 is a characteristic diagram showing the upper arm ON period, the conduction period, and the circulation period at a phase of 75 degrees according to the second embodiment of the present invention.
  • FIG. 8 is a characteristic diagram showing the upper arm ON period, energization period, and circulation period for a phase of 30 to 90 degrees according to the second embodiment of the present invention.
  • FIG. 9 is a characteristic diagram showing an ON period, an upper circulation period, and a lower circulation period of the lower arm in a phase of 30 degrees to 90 degrees according to the second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of the inverter apparatus-integrated electric compressor according to the third embodiment of the present invention.
  • Figure 11 shows the inverter circuit that directly detects the phase current and the electrical circuit diagram around it.
  • FIG. 12 is an inverter device that detects a phase current by a shunt resistor of a power supply line and an electric circuit diagram of the inverter device.
  • FIG. 13 is a characteristic diagram showing modulation of each phase waveform in 50% three-phase modulation.
  • FIG. 14 is a characteristic diagram showing modulation of each phase waveform in 100% three-phase modulation.
  • FIG. 15 is a timing chart of three-phase modulation.
  • FIG. 16 is an electric circuit diagram showing a current path in period (a) shown in FIG.
  • FIG. 17 is an electric circuit diagram showing a current path in period (b) shown in FIG.
  • FIG. 18 is an electric circuit diagram showing a current path in period (c) shown in FIG.
  • FIG. 19 is an electric circuit diagram showing a current path in period (d) shown in FIG.
  • FIG. 20 is a characteristic diagram showing the upper arm ON period, energization period, and circulation period in the phase of 30% to 90 ° of 50% three-phase modulation.
  • FIG. 21 is a characteristic diagram showing the ON period, the conduction period, and the circulation period of the upper arm in the phase of 30% to 90 degrees of 100% three-phase modulation.
  • FIG. 22 is an electrical circuit diagram of an inverter device for detecting a phase current by three shunt resistors between the lower arm and the ground and its surroundings.
  • FIG. 23 is a characteristic diagram showing the lower arm ON period, the upper circulation period, and the lower circulation period in the phase of 30% to 90 ° of 50% three-phase modulation.
  • FIG. 24 is a characteristic diagram showing the lower arm ON period, the upper circulation period, and the lower circulation period in the phase of 30% to 90 degrees of 100% three-phase modulation.
  • FIG. 1 shows an inverter device 23 according to Embodiment 1 of the present invention and its surrounding electric circuit.
  • the background art differs from FIG. 22 in that there is no shunt resistor 17 and the control circuit 13 is a control circuit 14.
  • the other circuit parts are the same as those in Fig. 22, and the symbols etc. are applied as they are.
  • the control circuit 14 includes upper arm switching elements U, V, W, and a lower arm switching element X.
  • connection line 18 to control each switching element.
  • FIG. 2 shows a method of allowing a current for three phases to flow in the lower arm at a phase of 90 degrees.
  • the upper side of FIG. 2 shows the case of 90 degrees in FIG. In this state, the carrier cycle shortening effect cannot be obtained.
  • the lower ON is the same ON period 2a reduced from the upper arm U, V and W ON periods. Reduces the same ON period for all three phases Therefore, the length of the energization period during which the U-phase current flows through the power supply line does not change. In other words, the current distortion does not occur because the PW M3 phase modulation does not change.
  • a circulation period of length ⁇ is formed at the front and rear ends in the carrier cycle. As a result, the energization period per carrier cycle becomes two times, and the carrier cycle shortening effect can be obtained.
  • the carrier period is a unit time in the case of PWM modulation, and is a time when the switching duty becomes 100%.
  • the frequency with this period as one period is the carrier frequency.
  • the carrier frequency is 5 kHz
  • the carrier period is 200 / z s.
  • the carrier cycle shortening effect means that in the three-phase modulation, the center period in the carrier cycle and the front end and the rear end in the carrier cycle also have non-energization periods, respectively.
  • the first half and the second half are energized.
  • the carrier cycle is equivalent to half (the carrier frequency is doubled), and PWM modulation is very powerful.
  • the carrier period is 100 s and the carrier frequency is 10 kHz.
  • FIG. 3 shows the case of a phase of 75 degrees.
  • the same ON period 2 ( ⁇ -y) is reduced from the ON periods of U, V, and W of the upper arm, and a circulation period of length ⁇ is formed at the front end and rear end in the carrier cycle.
  • ⁇ -y the same ON period 2
  • FIG. 4 shows the case where the phase of 90 degrees and the phase of 75 degrees in FIG. 24 is replaced with FIG. 2 and FIG.
  • FIG. 5 shows the lower arm ON period, upper circulation period, and lower circulation period in the phase of 30 to 90 degrees based on FIG. Since the dead time is omitted, a downward circulation period of
  • phase 90 degrees, phase 210 degrees, phase 330 degrees, etc. Is fixed to U phase and V phase.
  • the remaining W-phase current is at the neutral point of stator winding 4.
  • the shunt resistor 17 can be eliminated by changing the control software of the control circuit 13 of the inverter device 22 in FIG.
  • the induced voltage of the magnet rotor 5 constituting the motor 11 is calculated, and its position is detected.
  • the control software that reduces the same ON period does not cause a current distortion without causing a change in the PWM three-phase modulation, and it is not necessary to change the phase for detecting the current according to the phase, and the shunt resistance is reduced. Can be reduced to two. Further, even in a region where the carrier cycle shortening effect cannot be obtained, the carrier cycle shortening effect can be obtained, and the current can be made smoother.
  • the time (length) of a and ⁇ may be set to be equal to or longer than the minimum time required to detect current in the lower arm ON period (more than the minimum time required to detect current).
  • An example of the minimum time required to detect the current is about 3 s depending on the performance of the control circuit. That is, if the dead time is not taken into account, the time (length) of a and j8 is about 3 ⁇ s, and if applied to 200 ⁇ s as an example of the carrier period described above, a or ⁇ Is 6 s in total because it is at the front and rear ends, which corresponds to about 3% of the carrier period.
  • the time (length) of a and ⁇ is a value obtained by adding the dead time to the minimum time required to detect the current.
  • the same ON period can be reduced because there is a phase in which the ON period of the lower arm switching element in the carrier cycle is 0% or close to 0%, such as around the 90% phase of 100% three-phase modulation. Only if it is not possible to secure the minimum time required to detect a current with a short down-circulation period. Therefore, in many cases, reducing the same ON period can prevent the control circuit from becoming complicated.
  • the reduction of the ON period of the upper arm switching elements in all three phases is to avoid the period in which all the upper arm switching elements are ON (upper circulation period) is around 0% or 0%. In other words, by performing so as not to approach 0%, it is possible to secure the effect of shortening the carrier period and maintain the effect of smoothing the current of the three-phase modulation.
  • both the phase of 90 degrees and the phase of 75 degrees ensure the length of the period (upper circulation period) in which all of the upper arm switching elements are turned on.
  • Embodiment 1 if shunt resistor 17 (W phase) is added to Fig. 1 and the same adjustment is performed, current flows in the lower arm for all three phases. Current detection is possible for all three phases. This eliminates the need to calculate the current value of the current for the two phases and simplifies the control software.
  • the shunt resistor 15 (U phase) and the shunt resistor 16 (V phase) may be provided with the force shunt resistor 17 (W phase), which is indispensable.
  • the shunt resistor 15 and the shunt resistor 16 are one of current detectors.
  • current detectors include those using Hall elements and those using diode forward voltage, and are not particularly limited.
  • FIG. 6 to 9 show characteristic diagrams according to Embodiment 2 of the present invention.
  • the inverter device and the surrounding electric circuit are the same as those in FIG. 1 according to the first embodiment of the present invention.
  • the upper side of FIG. 6 shows the case of the phase of 90 degrees in FIG.
  • the carrier cycle shortening effect is improved and the current of the three-phase modulation becomes smoother.
  • FIG. 8 shows a case where the phase of 90 degrees and the phase of 75 degrees in FIG. 24 is replaced with FIG. 6 and FIG.
  • FIG. 9 shows the lower arm ON period, the upper circulation period, and the lower circulation period in the phase of 30 degrees to 90 degrees based on FIG. Since the dead time is omitted, a downward circulation period of ⁇ is secured at 90 degrees and ⁇ at 75 degrees.
  • FIG. 10 shows a diagram in which the inverter device 23 is attached in close contact with the right side of the electric compressor 40.
  • a compression mechanism 28, a motor 11, etc. are installed in a metal casing 32.
  • the refrigerant is sucked from the suction port 33 and compressed by the compression mechanism 28 (scroll in this example) being driven by the motor 11.
  • the compressed refrigerant cools the motor 11 when passing through the motor 11 and is discharged from the discharge port 34.
  • the inverter device 23 uses a case 30 so that it can be attached to the electric compressor 40.
  • the inverter circuit unit 10 serving as a heat source is cooled by the low-pressure refrigerant via the low-pressure pipe 38.
  • the inverter device 23 is arranged below the suction pipe 38, and the ambient temperature of the inverter circuit section 10 is also lowered so that the temperature difference is reduced.
  • the terminal 39 connected to the winding of the motor 11 inside the electric compressor 40 is connected to the output section of the inverter circuit section 10.
  • the connection line 36 fixed to the inverter device 23 by the holding unit 35 includes a power line to the knotter 1 and a signal line to an air conditioner controller (not shown) that transmits a rotation speed signal.
  • the inverter device 23 is small. Since it is necessary to be resistant to vibration and to drive the motor of the electric compressor with low vibration, it is suitable as an embodiment of the present invention.
  • the power using a DC power supply as a battery is not limited to this, and a DC power supply obtained by rectifying a commercial AC power supply may be used.
  • the motor is a sensorless DC brushless motor, it can also be applied to induction motors.
  • quietness in vehicles without engine noise, such as electric vehicles, cars, hybrid vehicles, and fuel cell vehicles.
  • the force applied to the case of three phases as an example can be similarly applied to a multiphase having three or more phases.
  • the inverter device does not require complicated control software development and can detect a phase current with a small size and high vibration resistance without causing current distortion. Applicable to products and various industrial equipment. The load can also be applied to AC devices other than motors.

Abstract

 複雑な制御ソフト開発を必要とせず、電流歪を生ずることなく、小型で耐振性高く相電流の検出ができるインバータ装置を提供する。3相のうち2相の下アームスイッチング素子(U,V,W)と直流電源のマイナス側との間に電流検出器の1種であるシャント抵抗(15),(16)をそれぞれ設ける。キャリア周期内における上アームスイッチング素子(U,V,W)のON期間から、同一のON期間だけ、3相全ての相において削減する。これにより、シャント抵抗(15),(16)の設けられた相における2相分の相電流を検出する。制御回路(14)に内蔵された制御ソフトにより接続線(18)を介してインバータ回路(10)を制御することで、制御ソフトが複雑になることを解消し、電流歪を生ずることなく相電流の検出ができるインバータ装置を提供する。

Description

明 細 書
インバータ装置
技術分野
[0001] 本発明は、相電流検出手段を備えた PWM3相変調インバータ装置に関するもの である。
背景技術
[0002] 従来、この種の相電流検出方法としては、 PWM変調による正弦波駆動方式により センサレス DCブラシレスモータを駆動するインバータ装置にお 、て、インバータ装置 の出力ライン 3本の中から 2本の電流を直接検出する方法が知られている(例えば、 特開 2000— 333465号公報、第 9頁、第 2図)。
[0003] この回路について以下説明する。図 11にインバータ装置とその周辺の電気回路を 示す。インバータ装置 20の制御回路 7には、電流センサ 8から U相の電流力 電流セ ンサ 9からは W相の電流がそれぞれ入力される。その 2つの電流値から V相の電流を 、固定子卷線 4の中性点において、キルヒホッフの電流の法則を適用して求める。こ れらの U相, V相及び W相の電流値に基づき、センサレス DCブラシレスモータ 11 ( 以降モータと称す)を構成する磁石回転子 5の誘起電圧を演算し、その位置検出を 行う。そして、回転数指令信号(図示せず)等に基づき、インバータ回路 10を構成し、 たとえば IGBTで構成されたスイッチング素子 2を制御し、ノ ッテリー 1からの直流電 圧を PWM変調でスイッチングすることにより、正弦波状の交流電流をモータ 11を構 成する固定子卷線 4に出力する。インバータ回路 10を構成するダイオード 3は、固定 子卷線 4に流れる電流の還流ルートとなる。スイッチング素子 2の上アームスィッチン グ素子を U, V及び W、下アームスイッチング素子を X, Y及び Zとしてそれぞれ定義 する。また、各スイッチング素子 U, V, W, X, Y及び Zに対応するダイオードを、それ ぞれ 3U, 3V, 3W, 3X, 3Y及び 3Zと定義する。
[0004] 電流センサ 8, 9は、電位がバッテリー 1のプラス側、マイナス側に変化するため、シ ヤント抵抗で構成するのに困難が伴うので、ホール素子を用いて構成される。
[0005] 相電流検出の別の方法として、シャント抵抗で相電流を検出する方法が示されてい る(例えば、特開 2003— 189670号公報、第 2頁、請求項 2、第 14頁、第 1図、第 15 頁、第 9図)
この方式について以下説明する。図 12にインバータ装置とその周辺の回路を示す 。インバータ装置 21の制御回路 12は、シャント抵抗 6に生じた電圧により電流を演算 する。
[0006] 図 13は 50%変調、図 14は 100%変調におけるそれぞれ 3相変調の波形特性図で ある。 U相端子電圧 41, V相端子電圧 42, W相端子電圧 43及び中性点電圧 29を 示している。これらの端子電圧は PWM変調にて縦軸に示す Duty (%)で実現される 。中性点電圧 29は、各相の端子電圧の和を求め 3で除した値である。また、相電圧 は、端子電圧力も中性点電圧を引いた値であり正弦波になる。
[0007] 図 15は 3相変調の 1キャリア内(キャリア周期)でのタイミングチャートである。 1キヤリ ァ内(キャリア周期)での上アームスイッチング素子 U, V及び W、下アームスィッチン グ素子 X, Y及び Zの ONZOFFの一例を示している。この場合、図 13の 50%変調 において、位相がおおよそ 120度でのタイミングチャートである。これは、一般的に、 マイコンのタイマ機能により具現ィ匕される。同一相の上アームスイッチング素子が ON ならば下アームスイッチング素子は OFF、逆に上アームスイッチング素子が OFFなら ば下アームスイッチング素子は ONの関係にある。但し、表示を簡明にするために、 上アームスイッチング素子と下アームスイッチング素子との短絡防止用デッドタイムは 割愛している。
[0008] 各スイッチング素子のスイッチングには、期間(a) , (b) , (c)及び (d)の 4つの状態 があり、それぞれ図 16〜図 19に示す。
[0009] 期間(a)にお!/、ては、上アームスイッチング素子 U, V及び Wの全てが OFF、下ァ 一ムスイッチング素子 X, Y及び Zの全てが ONである。 U相電流, V相電流がそれぞ れ、下アームスイッチング素子 X, Yと並列のダイオード 3X, 3Yから固定子卷線 4へ 流れ、 W相電流は固定子卷線 4から下アームスイッチング素子 Zへ流れ出ている。下 アームとモータ 11間で電流が循環している(以降、下循環期間と称す)。よって、バッ テリー 1からインバータ回路 10 (モータ 11)へは電力供給されな!/、非通電の状態に置 かれる。 [0010] 期間(b)においては、上アームスイッチング素子 Uが ON状態で、下アームスィッチ ング素子 Y及び Zも ON状態に置かれている。 U相電流は、上アームスイッチング素 子 Uから固定子卷線 4へ流れ、 V相電流は下アームスイッチング素子 Yと並列のダイ オード 3Yから固定子卷線 4へ流れる。 W相電流は固定子卷線 4から下アームスイツ チング素子 Zへ流れ出ている。よって、ノ ッテリー 1からインバータ回路 10 (モータ 11 )へ電力供給される通電状態にある。このとき、電源ライン (シャント抵抗 6)には、 U相 の相電流が流れる。
[0011] 期間(c)においては、上アームスイッチング素子 U, Vが ON、下アームスイッチング 素子 Zが ONである。 U相電流, V相電流は、それぞれ、上アームスイッチング素子 U 、 Vから固定子卷線 4へ流れ、 W相電流は固定子卷線 4から下アームスイッチング素 子 Zへ流れ出ている。よって、ノ ッテリー 1からインバータ回路 10 (モータ 11)へ電力 供給される通電状態にある。そして、電源ライン (シャント抵抗 6)には、 W相の相電流 が流れる。
[0012] 期間(d)においては、上アームスイッチング素子 U, V及び Wの全てが ON、下ァー ムスイッチング素子 X, Y及び Zの全てが OFFである。 U相電流, V相電流は、それぞ れ、上アームスイッチング素子 U, Vから固定子卷線 4へ流れ、 W相電流は固定子卷 線 4から上アームスイッチング素子 Wと並列のダイオード 3Wへ流れ込んで!/、る。上ァ ームとモータ 11間で電流が循環している(以降上循環期間と称す)。よって、バッテリ 一 1からインバータ回路 10 (モータ 11)へは電力供給されない非通電の状態にある。
[0013] 以上のように、上アームスイッチング素子 U, V及び Wの ON, OFF状態で電源ライ ン (シャント抵抗 6)に流れる電流の有無及びその相電流を知ることができる。上ァー ムスイッチング素子の ONする相が無い時は流れず (非通電、下循環期間)、 1相が O N時はその相の電流が流れ (通電)、 2相 ON時は残りの相の電流が流れ (通電)、 3 相全てが ON時には流れない (非通電、上循環)。
[0014] 図 20【こ、図 13の 500/03ネ目変調での位ネ目 30度、 45度、 60度、 75度、 90度【こお!ヽ ての 1キャリア内(キャリア周期)での上アームスイッチング素子 U, V及び Wの ON期 間(Duty)を図 15に基き表示して!/、る。
[0015] U相の上アームスイッチング素子 Uの ON期間を細実線で表わし、 V相の上アーム スイッチング素子 Vの ON期間を中実線で表わし、 W相の上アームスイッチング素子 Wの ON期間を太実線で表わしている。バッテリー 1から固定子卷線 4へ電力が供給 される通電期間を実線矢印で、このとき電源ライン (シャント抵抗 6)に流れる相電流を U, V及び Wで示している。また、非通電期間(下循環期間、上循環期間)を破線矢 印で示している。
[0016] 同様に、図 21に、図 14の 100%3相変調について示す。図 20、図 21に示されるよ うに、シャント抵抗 6により、 1相分もしくは 2相分の相電流が検出できる。 1相分しか検 出できない場合に、一部の相(上アームスイッチング素子)の ON期間を増力!]もしくは 減少させる方法が示されている(例えば、特開 2003— 189670号公報、第 2頁、請 求項 2、第 14頁、第 1図、第 15頁、第 9図)。
[0017] 図 20、図 21に示されるように、 3相変調においては、キャリア周期内中央の期間(d )は非通電期間となる。なお、 2相変調においては、 1相が固定されるため、期間(d) が存在しない。また、キャリア周期内の前端、後端にもそれぞれ非通電期間がある。 そのため、キャリア周期内の前半と後半にそれぞれ通電期間がある。これは、 2相変 調が 1回であるのに比べると、キャリア周期が半分、すなわち、キャリア周波数が 2倍と 同等になり(以降キャリア周期短縮効果と称す)、 PWM変調がきめ細力べなる。これ により、 3相変調は 2相変調に比べ、電流リップル、トルクリップルが小さくなり、低振動 低騒音となる。
[0018] 図 21の 100%変調において位相 30度では、キャリア周期内の通電期間が 1回の みであり、キャリア周期短縮効果が得られない。また、位相 90度では、キャリア周期内 の前端、後端に非通電期間がないため、前後のキャリア周期における通電期間と連 続してしまう。そのため、キャリア周期内の通電期間は 2回である力 結果として、 1キ ャリア周期当たり通電期間は 1回となり、キャリア周期短縮効果が得られない。
[0019] なお、相電流を検出する方法としては上記方法とは別のシャント抵抗で相電流を検 出する方法も提案されている(例えば、特開 2003— 284374号公報、第 7頁、第 1図
) o
[0020] この方式について以下説明する。図 22にインバータ装置とその周辺の回路を示す 。インバータ装置 22の制御回路 13は、 U相下アームとアース間に設けられたシャント 抵抗 15、 V相下アームとアース間に設けられたシャント抵抗 16及び W相下アームと アース間に設けられたシャント抵抗 17に生じたそれぞれの電圧の大きさにより電流を 演算する。
[0021] 図 23に、図 20に対応する下アームスイッチング素子 X, Y及び Zの ON期間(Duty )を表示している。但し、表示を簡明にするために、上アームスイッチング素子と下ァ 一ムスイッチング素子との短絡防止用デッドタイムは割愛している。
[0022] U相の下アームスイッチング素子 Xの ON期間を細実線で表わし、 V相の下アーム スイッチング素子 Yの ON期間を中実線で表わし、 W相の下アームスイッチング素子 Zの ON期間を太実線で表わしている。また、下循環期間を太線の破線矢印で、上循 環期間を細線の破線矢印で示して 、る。
[0023] 同様に、図 24に、図 21に対応する下アームスイッチング素子 X, Y及び Zの ON期 間(Duty)を表示している。シャント抵抗 15に電流が流れるのは、すなわち、電流を 検出することができるのは、下アームスイッチング素子 Xの ON期間、シャント抵抗 16 に電流が流れるのは、すなわち、電流を検出することができるのは、下アームスィッチ ング素子 Yの ON期間である。シャント抵抗 17に電流が流れるのは、すなわち、電流 を検出することができるのは、下アームスイッチング素子 Zの ON期間である。
[0024] よって、図 23においては、 3相ともに電流を検出できる力 図 24においては、位相 9 0度において 2相分 (V相、 W相)し力検出できない。よって、位相 210度においては、 W相, U相の電流を、位相 330度においては、 U相, V相の電流を検出するように制 御する必要がある。
[0025] 上記のように、 PWM3相変調を行うインバータ装置において、特定の位相では、キ ャリア周期内の通電期間が 1回である。また、キャリア周期内の前端、後端に非通電 期間がないため、前後のキャリア周期における通電期間と連続してしまう。そのため、 特定の位相にお 、て、キャリア周期短縮効果が得られな 、場合がある。
[0026] そして、従来のインバータ装置の相電流検出方法には、それぞれに課題がある。
[0027] インバータ装置力 の出力ラインの電流を直接検出する方法においては、電流セン サが、ホール素子,磁束発生用のコイル,素子周辺回路等で構成されるため、小型 ィ匕,耐振強化が課題となる。また、サイズが大きいため、プリント基板上などでの配置 の自由度が求められる。
[0028] 電源ラインに流れる相電流をシャント抵抗により検出する方法においては、シャント 抵抗により 1相分し力検出できない場合、一部の相(上アームスイッチング素子)のみ の ON期間を増カロもしくは減少させる必要があり、制御ソフトが複雑になる。また、この 一部の相(上アームスイッチング素子)のみの ON期間を増カロもしくは減少させること により、電流波形が歪み、騒音振動悪ィ匕の要因となっている。
[0029] 空調装置に用いられる電動圧縮機をインバータ装置で駆動する場合、その騒音を 防止するためルームエアコンなどでは防音箱などの防音装置を用いる事も可能であ る。しかし、車両用の空調装置に用いられる電動圧縮機においては、搭載スペース、 重量などの制約により防音装置を用いる事は困難である。また、車室内への振動伝 達防止のため、振動を小さく抑制しなければならないが、同様に防振装置を用いる 事は困難である。ルームエアコンにお 、ても環境を考慮し極力低振動低騒音である ことが求められる。
[0030] 各相の下アームとアース間に設けられたシャント抵抗により相電流を検出する方法 においては、キャリア周期内における下アームスイッチング素子の ON期間が 0%ま たは 0%に近い相がある場合、特定の 2相分し力検出できない。よって、位相により検 出する 2相を変更する必要があり、制御ソフトが複雑になる。また、そのため、 3相とも にシャント抵抗が必要となり、部品点数が増え、小型化の障害となる。シャント抵抗に よる消費電力 '発熱に対しての考慮も必要になる。
[0031] 本発明はこのような従来の課題を解決するものであり、複雑な制御ソフト開発を必 要とせず、電流歪を生ずることなぐ小型で耐振性高い構成で、相電流の検出ができ るインバータ装置の提供を目的とする。
発明の開示
[0032] 上記課題を解決するために、本発明のインバータ装置は、直流電源のプラス (第 1 電源端子)側に接続される上アームスイッチング素子と、直流電源のマイナス (第 2電 源端子)側に接続される下アームスイッチング素子を 3相備え、直流電源の直流電圧 を PWM3相変調にてスイッチングすることにより正弦波状の 3相交流電流を出力する 。下アームスイッチング素子と直流電源のマイナス側との間に電流検出器を 3相のう ち 2相にそれぞれ設け、キャリア周期内における上アームスイッチング素子の ON期 間から、同一の ON期間を、 3相全ての相において削減することにより、電流検出器 の設けられた相における 2相分の相電流を検出する制御回路を備える。
[0033] 上記構成により、複雑な制御ソフト開発を必要とせず、下アームスイッチング素子の ON期間を長くすることができる。これにより、 1キャリア内で下アームスイッチング素子 の 3相全てに電流が流れる期間ができる。従って、電流検出器 2個のみにより 3相分 電流検出(他の 1相は演算で求められる)できる。また、 3相全ての相において同一の ON期間を削減するものであり、一部の相(上アームスイッチング素子)のみの ON期 間を増加もしくは減少させるものではないので、 3相変調の通電時間はそのままであ り、電流歪を生ずることはない。また、キャリア周期短縮効果が得られない領域におい ても、キャリア周期短縮効果が得られるようになり、更に電流を滑らかにできる。
[0034] そして、特定された 2相の電流検出値を用いる方法であるので、従来の特定された 2相の電流検出値を用いる方法、すなわち、インバータ装置からの出力ラインの電流 を直接検出する方法力もの変更を容易に行うことができる。即ち、プリント基板上など での電流検出器の配置自由度が高まる。
[0035] また、電流検出器をシャント抵抗にすることにより、小型化、耐振耐熱性強化を図る ことができる。
[0036] 本発明のインバータ装置は、複雑な制御ソフトを必要とせず、電流歪を生ずることな ぐ更に電流を滑らかにし、小型で耐振性の高い構成で、相電流の検出ができる。
[0037] 第 1の発明は、直流電源のプラス側に接続される上アームスイッチング素子と、直 流電源のマイナス側に接続される下アームスイッチング素子を 3相備える。直流電源 の直流電圧を PWM3相変調にてスイッチングすることにより正弦波状の 3相交流電 流を出力する。そして、 3相のうち 2相の下アームスイッチング素子と直流電源のマイ ナス側との間に電流検出器をそれぞれ設ける。キャリア周期内における上アームスィ ツチング素子の ON期間から、同一の ON期間を、 3相全ての相において削減するこ とにより、電流検出器の設けられた相における 2相分の相電流を検出する。
[0038] 上記構成により、複雑な制御ソフトを必要とせずに、下アームスイッチング素子の O N期間を長くできる。これにより、 1キャリア内で下アームスイッチング素子の 3相全て に電流が流れる期間ができる。従って、電流検出器 2個のみにより 3相分電流検出( 他の 1相は演算で求められる)できる。また、 3相全ての相において同一の ON期間を 削減するものであり、一部の相(上アームスイッチング素子)のみの ON期間を増加も しくは減少させるものではないので、 3相変調の通電時間はそのままであり、電流歪 を生ずることはない。また、キャリア周期短縮効果が得られない領域においても、キヤ リア周期短縮効果が得られるようになり、更に電流を滑らかにすることができる。
[0039] そして、特定された 2相の電流検出値を用いる方法であるので、従来の特定された 2相の電流検出値を用いる方法、すなわち、インバータ装置からの出力ラインの電流 を直接検出する方法力もの変更を容易に行うことができる。即ち、プリント基板上など での電流検出器の配置自由度が高まる。
[0040] これにより、複雑な制御ソフトを必要とせずに、電流歪を生ずることなぐ更に電流を 滑らかにし、 3相分の相電流の検出が可能なインバータ装置が得られる。
[0041] 第 2の発明は、第 1の発明のインバータ装置において、 3相全ての相における上ァ 一ムスイッチング素子の ON期間の削減は、キャリア周期内における下アームスイツ チング素子の ON期間が 0%または 0%に近い相がある場合に行うものである。換言 すれば、デッドタイムを割愛して考慮しなければ、キャリア周期内における上アームス イッチング素子の ON期間が 100%または 100%に近い相がある場合に行うもので、 変調度の高い限定された場合にのみ行う。これにより、更に制御が簡便なインバータ 装置が得られる。
[0042] 第 3の発明は、第 1の発明のインバータ装置において、 3相全ての相における上ァ 一ムスイッチング素子の ON期間の削減は、上アームスイッチング素子全てが ONと なる期間が 0%または 0%の近辺を避けて、すなわち 0%に近くならないように行う。こ れにより、キャリア周期短縮効果を確保できる。これにより、 3相変調の電流が滑らかと なる作用効果を維持しつつ、複雑な制御ソフトを必要とせずに、電流歪を生ずること なぐ更に電流を滑らかにし、 3相分の相電流を検出ができるインバータ装置が得ら れる。
[0043] 第 4の発明は、第 1の発明のインバータ装置において、 3相全ての相における上ァ 一ムスイッチング素子の ON期間削減は、上アームスイッチング素子全てが ONとなる 期間と、上アームスイッチング素子全てが OFFとなる期間とが同じ時間となるように行 うもので、通電期間同士の間隔が等しくなり、キャリア周期短縮効果が向上し、 3相変 調の電流を更に滑らかにすることができる。これにより、 3相変調の低騒音低振動性 を更に向上し、複雑な制御ソフトを必要とせずに、電流歪を生ずることなぐ 3相分の 相電流を検出ができるインバータ装置が得られる。
[0044] 第 5の発明は、直流電源のプラス側に接続される上アームスイッチング素子と直流 電源のマイナス側に接続される下アームスイッチング素子を 3相備え、直流電源の直 流電圧を PWM3相変調にてスイッチングする。これにより正弦波状の 3相交流電流 を出力するインバータ装置において、 3相のうち 2相の上アームスイッチング素子と直 流電源のプラス側との間の電流を検出する電流検出器をそれぞれ設け、キャリア周 期内における上アームスイッチング素子の ON期間に、同一の ON期間を、 3相全て の相において追加することにより、電流検出器の設けられた相における 2相分の相電 流を検出することができる。
[0045] 上記構成により、複雑な制御ソフトを必要とせずに、上アームスイッチング素子の O N期間を長くできる。これにより、 1キャリア内で上アームスイッチング素子の 3相全て に電流が流れる期間ができる。従って、電流検出器 2個により 3相分の電流を検出す ることができる。他の 1相は演算で求められる。また、 3相全ての相において同一の O N期間を追加するものであり、一部の相(上アームスイッチング素子)のみの ON期間 を増加もしくは減少させるものではないので、 3相変調の通電時間はそのままであり、 電流歪を生ずることはない。また、キャリア周期短縮効果が得られない領域において も、キャリア周期短縮効果が得られるようになり、更に電流を滑らかにできる。
[0046] そして、特定された 2相の電流検出値を用いる方法であるので、従来の特定された 2相の電流検出値を用いる方法、すなわち、インバータ装置からの出力ラインの電流 を直接検出する方法力もの変更を容易に行うことができる。即ち、プリント基板上など での電流検出器の配置自由度が高まる。
[0047] これにより、複雑な制御ソフトを必要とせずに、電流歪を生ずることなぐ更に電流を 滑らかにし、 3相分の相電流の検出が可能なインバータ装置が得られる。
[0048] 第 6の発明は、第 5の発明のインバータ装置において、 3相全ての相における上ァ 一ムスイッチング素子の ON期間追加は、キャリア周期内における上アームスィッチン グ素子の ON期間が 0%または 0%に近い相がある場合に行うものである。換言すれ ば、デッドタイムを割愛して考慮しなければ、キャリア周期内における下アームスイツ チング素子の ON期間が 100%または 100%に近い相がある場合に行うもので、変 調度の高い限定された場合にのみ行う。これにより、更に制御が簡便なインバータ装 置が得られる。
[0049] 第 7の発明は、第 5の発明のインバータ装置において、 3相全ての相における上ァ 一ムスイッチング素子の ON期間追加は、下アームスイッチング素子全てが ONとなる 期間が 0%または 0%の近辺を避けて、すなわち 0%に近くならないように行う。これ により、キャリア周期短縮効果を確保できる。また、 3相変調の電流が滑らかとなる作 用効果を維持しつつ、複雑な制御ソフトを必要とせずに、電流歪を生ずることなぐ更 に電流を滑らかにし、 3相分の相電流を検出ができるインバータ装置が得られる。
[0050] 第 8の発明は、第 5の発明のインバータ装置において、 3相全ての相における上ァ 一ムスイッチング素子の ON期間の追加は、上アームスイッチング素子全てが ONと なる期間と、上アームスイッチング素子全てが OFFとなる期間とが同じ時間となるよう に行う。通電期間同士の間隔が等しくなり、キャリア周期短縮効果が向上し、 3相変調 の電流を更に滑らかにできる。これにより、 3相変調の低騒音低振動性を更に向上し 、複雑な制御ソフトを必要とせず、電流歪を生ずることなぐ 3相分の相電流を検出が できるインバータ装置が得られる。
[0051] 第 9の発明は、第 1または第 5の発明のインバータ装置において、電流検出器をシ ヤント抵抗とするものである。これにより、小型で耐振性強化を図ることができる。
[0052] 第 10の発明は、第 1または第 5の発明のインバータ装置において、正弦波状の 3相 交流電流はセンサレス DCブラシレスモータへ出力され、検出される 2相分の相電流 に基づいて、センサレス DCブラシレスモータのロータの位置検出を行う。これにより、 小型で耐振性が高く且つ複雑な制御ソフトを必要とせずに、電流歪を生ずることなく センサレス DCブラシレスモータを低騒音低振動で駆動するインバータ装置が得られ る。
[0053] 第 11の発明は、第 10の発明のインバータ装置において、センサレス DCブラシレス モータにより駆動される電動圧縮機に搭載されるものである。電動圧縮機に搭載され るインバータ装置は、取り付けスペースに制約があり小型化が必要で、モータからの 振動に対して耐振性が必要であるため、小型で耐振性高ぐ電流歪がなく低振動で モータを駆動できる本インバータ装置は有用である。
[0054] 第 12の発明は、第 1または第 5の発明のインバータ装置において、車両に搭載する ものである。車両用においては、搭載スペースに制約があり小型化が必要で、重量な どの制約により防音装置、防振装置の設置が困難であり、また、走行による振動に対 する耐振性も必要なため、小型で耐振性高く低騒音低振動の本インバータ装置は有 用である。
[0055] 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実 施の形態によって本発明が限定されるものではない。
図面の簡単な説明
[0056] [図 1]図 1は本発明の実施の形態 1に係るインバータ装置とその周辺の電気回路図で ある。
[図 2]図 2は本発明の実施の形態 1に係る位相 90度における上アームの ON期間,通 電期間及び循環期間を示す特性図である。
[図 3]図 3は本発明の実施の形態 1に係る位相 75度における上アームの ON期間,通 電期間及び循環期間を示す特性図である。
[図 4]図 4は本発明の実施の形態 1に係る位相 30度〜 90度における上アームの ON 期間,通電期及び循環期間を示す特性図である。
[図 5]図 5は本発明の実施の形態 1に係る位相 30度〜 90度における下アームの ON 期間,上循環期間及び下循環期間を示す特性図である。
[図 6]図 6は本発明の実施の形態 2に係る位相 90度における上アームの ON期間,通 電期間及び循環期間を示す特性図である。
[図 7]図 7は本発明の実施の形態 2に係る位相 75度における上アームの ON期間,通 電期間及び循環期間を示す特性図である。
[図 8]図 8は本発明の実施の形態 2に係る位相 30度〜 90度における上アームの ON 期間,通電期間及び循環期間を示す特性図である。 [図 9]図 9は本発明の実施の形態 2に係る位相 30度〜 90度における下アームの ON 期間,上循環期間及び下循環期間を示す特性図である。
圆 10]図 10は本発明の実施の形態 3に係るインバータ装置一体型電動圧縮機の断 面図である。
圆 11]図 11は相電流を直接検出するインバータ装置とその周辺の電気回路図であ る。
[図 12]図 12は電源ラインのシャント抵抗で相電流を検出するインバータ装置とその周 辺の電気回路図である。
[図 13]図 13は 50%3相変調における各相波形の変調を示す特性図である。
[図 14]図 14は 100%3相変調における各相波形の変調を示す特性図である。
[図 15]図 15は 3相変調のタイミングチャートである。
[図 16]図 16は図 15に示した期間(a)における電流経路を示す電気回路図である。
[図 17]図 17は図 15に示した期間(b)における電流経路を示す電気回路図である。
[図 18]図 18は図 15に示した期間(c)における電流経路を示す電気回路図である。
[図 19]図 19は図 15に示した期間(d)における電流経路を示す電気回路図である。
[図 20]図 20は 50%3相変調の位相 30度〜 90度における上アームの ON期間,通電 期間及び循環期間を示す特性図である。
[図 21]図 21は 100%3相変調の位相 30度〜 90度における上アームの ON期間,通 電期間及び循環期間を示す特性図である。
[図 22]図 22は下アームとアース間のシャント抵抗 3個により相電流を検出するインバ ータ装置とその周辺の電気回路図である。
[図 23]図 23は 50%3相変調の位相 30度〜 90度における下アームの ON期間、上循 環期間、下循環期間を示す特性図である。
[図 24]図 24は 100%3相変調の位相 30度〜 90度における下アームの ON期間、上 循環期間、下循環期間を示す特性図である。
符号の説明
1 バ、、ノアリ ~
2 スイッチング素子 3 ダイオード
4 固定子卷線
5 磁石回転子
10 インバータ回路
11 センサレス DCブラシレスモータ
14 制御回路
15, 16 シャント抵抗
18 接続線
23 インバータ装置
40 電動圧縮機
発明を実施するための最良の形態
[0058] (実施の形態 1)
図 1は、本発明の実施の形態 1に係るインバータ装置 23とその周辺の電気回路で ある。背景技術における図 22との相違点はシャント抵抗 17が無い点、制御回路 13 が制御回路 14となっている点である。その他の回路部に関しては、図 22と同一であ り、記号等はそのまま適用する。
[0059] 制御回路 14は、上アームスイッチング素子 U, V, W、下アームスイッチング素子 X
, Υ, Zと、接続線 18により接続されており、各スイッチング素子を制御している。スィ ツチング素子力 GBT、パワー MOSFETの場合はゲート電圧を、パワートランジスタ の場合はベース電流を制御する。
[0060] 図 24の位相 90度においては、下アームには 2相分 (V相、 W相)しか電流が流れな い。同様に、位相 210度においては、 W相, U相、位相 330度においては、 U相, V 相しか電流が流れない。そのため、図 22に示すインバータ装置 22のように、シャント 抵抗が 3個必要になる。
[0061] 図 2に、位相 90度において、下アームに 3相分電流が流れるようにする方法を示す 。図 2の上側は、図 24の位相 90度の場合をそのまま示している。この状態では、キヤ リア周期短縮効果が得られない。上アームの U, V及び Wの各 ON期間から同一の O N期間 2 aを削減したものを下側に示す。 3相ともに同一の ON期間を削減している ので、 U相の電流が電源ラインに流れる通電期間の長さは変わらない。つまり、 PW M3相変調は変化しないので電流歪は発生しない。また、キャリア周期内の前端、後 端に長さ αの循環期間が形成されている。これにより、 1キャリア周期当たりの通電期 間が 2回となり、キャリア周期短縮効果を得られるようになる。
[0062] ここで、キャリア周期とは、一般に知られているように、 PWM変調する場合の単位 時間であり、スイッチングの Dutyが 100%となる時間である。この時間を 1周期とした 周波数が、キャリア周波数である。一例として、キャリア周波数が 5kHzの場合、キヤリ ァ周期は、 200 /z sとなる。
[0063] また、キャリア周期短縮効果とは、前述のように、 3相変調において、キャリア周期内 中央の期間、また、キャリア周期内の前端、後端もそれぞれ非通電期間があるため、 キャリア周期内の前半と後半に分けて通電される。これにより、通電に関して、キヤリ ァ周期が半分 (キャリア周波数が 2倍)と同等になり、 PWM変調がきめ細力べなること をいう。上記の例によれば、キャリア周期は 100 s、キャリア周波数は 10kHzと同等 になる。
[0064] 図 3に、位相 75度の場合を示す。この場合、上アームの U, V及び Wの各 ON期間 から同一の ON期間 2 ( β - y )を削減し、キャリア周期内の前端、後端に長さ βの循 環期間を形成している。上記同様、 3相ともに同一の ON期間を削減しているので、 U 相、 V相の電流が電源ラインに流れる通電期間の長さは変わらない。つまり、 PWM3 相変調は変化しな 、ので電流歪は発生しな 、。
[0065] 図 4に、図 24の位相 90度、位相 75度の場合を、上記図 2、図 3と入れ替えたものを 示す。
[0066] 図 5に、図 4に基づいた位相 30度〜 90度における下アームの ON期間,上循環期 間及び下循環期間を示す。デッドタイムは割愛しているので、位相 90度では a、位 相 75度では |8の下循環期間が確保されている。これにより、 3相ともに下アームに電 流が流れるようになる。同様に、位相 210度、位相 330度及びその周辺においても、 U相, V相及び W相ともに下アームに電流が流れるようになる。
[0067] そのため、位相(位相 90度、位相 210度、位相 330度など)によって、電流を検出 する相を変更する必要はなぐいずれかの 2相に固定できる。実施の形態 1において は、 U相と V相に固定している。残りの W相の電流は固定子卷線 4の中性点において
、キルヒホッフの電流の法則を適用することにより求められる。
[0068] 上記のように、従来の図 22におけるインバータ装置 22の制御回路 13の制御ソフト を変更して制御回路 14とすれば、シャント抵抗 17を削除することができる。
[0069] これらの検出された電流値に基づき、モータ 11を構成する磁石回転子 5の誘起電 圧を演算し、その位置検出を行う。
[0070] 従って、同一の ON期間を削減するという制御ソフトにより、 PWM3相変調に変化を 生じさせることなく電流歪を発生させず、電流検出する相を位相により変更する必要 もなく、シャント抵抗を 2個に削減することができる。また、キャリア周期短縮効果が得 られない領域においても、キャリア周期短縮効果が得られるようになり、更に電流を滑 らかにできる。
[0071] また、モータ 11の駆動においては、電流検出 (位置検出)において電流歪が発生し ないので、低騒音低振動で駆動することができる。
[0072] a、 βの時間(長さ)は、下アームの ON期間において電流を検出するのに要する 最小時間以上に設定すれば良い(電流を検出するのに要する最小時間以上)。電流 を検出するのに要する最小時間の一例としては、制御回路の性能にもよる力 約 3 sである。すなわち、デッドタイムを割愛して考慮しなければ、 a、 j8の時間(長さ)は 約 3 μ sであり、前述したキャリア周期の一例としての 200 μ sに当てはめれば、 a又 は βは前端と後端にあるため合計 6 sとなり、キャリア周期の約 3%に相当する。
[0073] なお、デッドタイムを考慮すると、 a、 βの時間(長さ)は、電流を検出するのに要す る最小時間にデッドタイムをカ卩えた値になる。
[0074] また、同一の ON期間の削減は、 100%3相変調の位相 90度周辺のように、キヤリ ァ周期内における下アームスイッチング素子の ON期間が 0%または 0%に近い相が ある場合 (下循環期間の時間が短ぐ電流を検出するのに要する最小時間を確保で きない場合)にのみ行うだけで良い。従って、多くの場合、同一の ON期間の削減は 必要なぐ制御回路の複雑ィ匕を防止することができる。
[0075] 3相全ての相における上アームスイッチング素子の ON期間の削減は、上アームス イッチング素子全てが ONとなる期間(上循環期間)が 0%または 0%の近辺を避けて 、すなわち 0%に近くならないように行うことにより、キャリア周期短縮効果を確保し、 3 相変調の電流が滑らかとなる作用効果を維持することができる。実施の形態 1におい ては、図 5に示す如ぐ位相 90度,位相 75度ともに、上アームスイッチング素子の全 てが ONとなる期間(上循環期間)の長さを確保している。
[0076] 図 4、図 5において、位相 30度〜 90度に特定して示したのは、該当する相は異なる としても、このパターンの繰り返しになって 、る力らである。
[0077] シャント抵抗は 2個必要である力 シャント抵抗 15 (U相)とシャント抵抗 16 (V相)、 シャント抵抗 16 (V相)とシャント抵抗 17 (W相)、シャント抵抗 17 (W相)とシャント抵 抗 15 (U相)のどの組合せでも良 、。
[0078] 例えば、シャント抵抗 17 (W相)とシャント抵抗 15 (U相)の組合せとすれば、 W相と U相の電流値を検出できるので、図 11に示す従来のインバータ装置からの出力ライ ンの電流を直接検出する方法であるところの、 W相と U相の電流値を検出するインバ ータ装置 20からの変更を容易に行うことができる。すなわち、電流センサ 8、電流セン サ 9の削除、シャント抵抗 17、シャント抵抗 15の追加を行い、制御回路 7から制御回 路 14への変更は上記の同一の ON期間を削減させるという制御ソフトの変更で良い
[0079] なお、実施の形態 1において、図 1にシャント抵抗 17 (W相)も追カ卩し、同様の調整 を実行すれば、 3相ともに下アームに電流が流れるので、 1キャリア内で 3相ともに電 流検出が可能となる。このため、 2相分の電流値力も残りの相の電流を演算する必要 がなくなり、制御ソフトがシンプルになる。また、図 1において、シャント抵抗 15 (U相) 、シャント抵抗 16 (V相)は必要不可欠である力 シャント抵抗 17 (W相)が設けてあつ ても、差し支えない。
[0080] シャント抵抗 15とシャント抵抗 16は、電流検出器の一つである。電流検出器として はこれらの抵抗の他に、ホール素子を用いたもの、ダイオードの順方向電圧を用いた ものなどがあり、特に限定するものではない。
[0081] (実施の形態 2)
図 6〜図 9に、本発明の実施の形態 2に係る特性図を示す。インバータ装置とその 周辺の電気回路は、本発明の実施の形態 1に係る図 1と同様である。 [0082] 図 6の上側は、図 24の位相 90度の場合をそのまま示している。上アームの U, V及 び W各 ON期間から同一の ON期間 2 δを削減し、上循環期間の長さ(2 δ )と下循環 期間の長さ(2 δ = δ + δ )とを同じにしたものを下側に示す。
[0083] 同様に、図 7に位相 75度の場合で、上アームの U, V及び Wの各 ON期間から同一 の ON期間、 2 ( τ— γ )を削減し、上循環期間の長さ(2 て )と下循環期間の長さ(2 τ = τ + τ )とを同じにしたものを下側に示す。
[0084] これにより、前後のキャリアにおいて、通電期間同士の間隔が等しくなる、そのため
、キャリア周期短縮効果が向上し、 3相変調の電流が更に滑らかになる。
[0085] 図 8に、図 24の位相 90度、位相 75度の場合を、上記図 6、図 7と入れ替えたものを 示す。
[0086] 図 9に、図 8に基づいた位相 30度〜 90度における下アームの ON期間、上循環期 間、下循環期間を示す。デッドタイムは割愛しているので、位相 90度では δ、位相 7 5度では τの下循環期間が確保されている。
[0087] (実施の形態 3)
図 10に、電動圧縮機 40の右側にインバータ装置 23を密着させて取り付けた図を 示す。金属製筐体 32の中に圧縮機構部 28、モータ 11等が設置されている。
[0088] 冷媒は、吸入口 33から吸入され、圧縮機構部 28 (この例ではスクロール)がモータ 11で駆動されることにより、圧縮される。この圧縮された冷媒は、モータ 11を通過す る際にモータ 11を冷却し、吐出口 34より吐出される。
[0089] インバータ装置 23は電動圧縮機 40に取り付けられるように、ケース 30を使用して いる。発熱源となるインバータ回路部 10は、低圧配管 38を介して低圧冷媒で冷却さ れる。この冷却で結露しないように、インバータ装置 23は吸入管 38の下方に配置し、 インバータ回路部 10の周囲温度も下げて温度差が小さくなるようにしている。
[0090] 電動圧縮機 40の内部でモータ 11の巻き線に接続されているターミナル 39は、イン バータ回路部 10の出力部に接続される。保持部 35でインバータ装置 23に固定され る接続線 36には、ノ ッテリー 1への電源線と回転数信号を送信するエアコンコント口 ーラ(図示せず)との信号線がある。
[0091] このようなインバータ装置一体型電動圧縮機では、インバータ装置 23が小さいこと 、振動に強いこと、低振動で電動圧縮機のモータを駆動できることが必要になるので 、本発明の実施の形態として好適である。
[0092] なお、上記各実施の形態において、直流電源をバッテリーとした力 これに限るもの ではなぐ商用交流電源を整流した直流電源でもよい。モータをセンサレス DCブラシ レスモータとしたが、誘導モータ等にも適用できる。また、車両用としては、電気自動 車、ノ、イブリツド車、燃料電池車などエンジン騒音のない車両で静粛性の効果が大き い。
[0093] また、 3相の場合を例に挙げた力 3相以上の多相においても同様に適用すること ができる。
[0094] また、 3相のうち 2相の下アームスイッチング素子と直流電源のマイナス側との間に シャント抵抗をそれぞれ設ける場合を示した。下アームスイッチング素子とモータとの 間の電流は下アームスイッチング素子と直流電源のマイナス側との間の電流に等し いので、モータとの間の電流が検出できるように、下アームスイッチング素子の上側 に配置しても良い。
[0095] さらに、下循環において、電流検出する場合を例に挙げたが、キャリア周期中央付 近の上循環において電流検出する場合にも適用できる。この場合、上アームと電源 のプラス側との間の電流を検出するシャント抵抗を 2相分設け、 3相 100%変調の位 相 30度、位相 45度などにおいて、 3相ともに、同一の ON期間を追加することになる 。この場合も同様の作用効果が得られる。
産業上の利用可能性
[0096] 以上のように、本発明に力かるインバータ装置は、複雑な制御ソフト開発を必要とせ ず、電流歪を生ずることなぐ小型で耐振性高く相電流の検出ができるので、各種民 生用製品、各種産業用機器に適用できる。負荷としてモータ以外の交流機器にも適 用可能である。

Claims

請求の範囲
[1] 直流電源のプラス側に接続される上アームスイッチング素子と前記直流電源のマイ ナス側に接続される下アームスイッチング素子を 3相備え、前記直流電源の直流電 圧を PWM3相変調にてスイッチングすることにより正弦波状の 3相交流電流を出力 するインバータ装置にお 、て、前記下アームスイッチング素子と前記直流電源のマイ ナス側との間に流れる電流を検出する電流検出器を 3相のうち 2相にそれぞれ設け、 キャリア周期内における上アームスイッチング素子の ON期間から、 3相全ての相に おいて同一の ON期間を削減することにより、前記電流検出器の設けられた相にお ける 2相分の相電流を検出する制御回路を備えたインバータ装置。
[2] 前記 3相全ての相における上アームスイッチング素子の ON期間削減は、キャリア周 期内における下アームスイッチング素子の ON期間が 0%または 0%に近い相がある 場合に行う請求項 1に記載のインバータ装置。
[3] 前記 3相全ての相における上アームスイッチング素子の ON期間削減は、上アームス イッチング素子全てが ONとなる期間が 0%または 0%の近辺を避けて行う請求項 1に 記載のインバータ装置。
[4] 前記 3相全ての相における上アームスイッチング素子の ON期間削減は、上アームス イッチング素子全てが ONとなる期間と、上アームスイッチング素子全てが OFFとなる 期間とがほぼ同じ時間となるように行う請求項 1に記載のインバータ装置。
[5] 直流電源のプラス側に接続される上アームスイッチング素子と前記直流電源のマイ ナス側に接続される下アームスイッチング素子を 3相備え、前記直流電源の直流電 圧を PWM3相変調にてスイッチングすることにより正弦波状の 3相交流電流を出力 するインバータ装置にぉ 、て、前記上アームスイッチング素子と前記直流電源のブラ ス側との間に流れる電流を検出する電流検出器を 3相のうち 2相にそれぞれ設け、キ ャリア周期内における上アームスイッチング素子の ON期間へ、 3相全ての相にお!/ヽ て同一の ON期間を追加することにより、前記電流検出器の設けられた相における 2 相分の相電流を検出する制御回路を備えたインバータ装置。
[6] 前記 3相全ての相における上アームスイッチング素子の ON期間追カ卩は、キャリア周 期内における上アームスイッチング素子の ON期間が 0%または 0%に近い相がある 場合に行う請求項 5に記載のインバータ装置。
[7] 前記 3相全ての相における上アームスイッチング素子の ON期間追カ卩は、下アームス イッチング素子全てが ONとなる期間が 0%または 0%の近辺を避けて行う請求項 5に 記載のインバータ装置。
[8] 前記 3相全ての相における上アームスイッチング素子の ON期間追カ卩は、上アームス イッチング素子全てが ONとなる期間と、上アームスイッチング素子全てが OFFとなる 期間とがほぼ同じ時間となるように行う請求項 5に記載のインバータ装置。
[9] 前記電流検出器は、シャント抵抗である請求項 1または 5に記載のインバータ装置。
[10] 前記正弦波状の 3相交流電流はセンサレス DCブラシレスモータへ出力され、前記検 出される 2相分の相電流に基づ 、て、前記センサレス DCブラシレスモータのロータ の位置検出を行う請求項 1または 5に記載のインバータ装置。
[11] 前記センサレス DCブラシレスモータを駆動源とする電動圧縮機に搭載される請求項
10に記載のインバータ装置。
[12] 車両に搭載される請求項 1または 5に記載のインバータ装置。
PCT/JP2005/013253 2004-07-20 2005-07-19 インバータ装置 WO2006009145A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/631,868 US7583523B2 (en) 2004-07-20 2005-07-19 Three phase inverter control circuit detecting two phase currents and deducting or adding identical ON periods

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-211313 2004-07-20
JP2004211313 2004-07-20
JP2004370588 2004-12-22
JP2004-370588 2004-12-22
JP2005-147876 2005-05-20
JP2005147876 2005-05-20

Publications (1)

Publication Number Publication Date
WO2006009145A1 true WO2006009145A1 (ja) 2006-01-26

Family

ID=35785253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013253 WO2006009145A1 (ja) 2004-07-20 2005-07-19 インバータ装置

Country Status (2)

Country Link
US (1) US7583523B2 (ja)
WO (1) WO2006009145A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7751210B2 (en) * 2004-06-25 2010-07-06 Panasonic Corporation Inverter device with improved 3-phase pulse width modulation and vehicle air conditioner using the same
JP5446324B2 (ja) * 2008-03-12 2014-03-19 三洋電機株式会社 インバータ装置
JP5396948B2 (ja) 2009-03-17 2014-01-22 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
JP5402336B2 (ja) * 2009-07-10 2014-01-29 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
AU2010299394B2 (en) * 2009-09-28 2014-02-27 Daikin Industries, Ltd. Phase current detection device and power conversion device using same
JP2011084224A (ja) * 2009-10-18 2011-04-28 Masahide Tanaka モータ駆動可能な車両
US9601945B2 (en) * 2013-01-29 2017-03-21 Reynolds & Reynolds Electronics, Inc. Emergency back-up power system for traction elevators
US9634590B2 (en) * 2013-07-23 2017-04-25 Aisin Aw Co., Ltd. Drive device
CN105340169B (zh) * 2013-07-23 2018-06-12 爱信艾达株式会社 驱动装置
RU2632916C1 (ru) * 2013-09-25 2017-10-11 Мицубиси Электрик Корпорейшн Переключающее устройство, устройство преобразования мощности, устройство возбуждения двигателя, нагнетатель воздуха, компрессор, кондиционер воздуха, холодильник и морозильный аппарат
WO2015083244A1 (ja) 2013-12-03 2015-06-11 三菱電機株式会社 電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機
JP6408938B2 (ja) * 2015-03-06 2018-10-17 日立オートモティブシステムズ株式会社 インバータの故障診断装置及び故障診断方法
EP3236567B1 (en) * 2016-04-19 2021-06-09 Bombardier Transportation GmbH A voltage source converter and a method for control thereof
JP2019013071A (ja) 2017-06-29 2019-01-24 ルネサスエレクトロニクス株式会社 演算装置及び処理装置
CN110366816B (zh) * 2018-01-26 2021-09-10 新电元工业株式会社 电子模块
WO2019146069A1 (ja) * 2018-01-26 2019-08-01 新電元工業株式会社 電子モジュール
KR102014185B1 (ko) * 2018-03-27 2019-08-26 엘에스산전 주식회사 인버터 피크전류 검출장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207754A (ja) * 1992-01-28 1993-08-13 Toyo Electric Mfg Co Ltd Pwm変調方式
JP2003079159A (ja) * 2001-06-18 2003-03-14 Matsushita Electric Ind Co Ltd パルス幅変調型電力変換装置
JP2003164159A (ja) * 2001-11-29 2003-06-06 Denso Corp 三相インバータの電流検出装置
JP2003348858A (ja) * 2002-05-23 2003-12-05 Toshiba Corp インバータ装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2190754A (en) * 1986-04-11 1987-11-25 Hitachi Ltd Load current detecting device for pulse width modulation inverter
US4777578A (en) * 1988-01-04 1988-10-11 General Electric Company Integrated current sensor torque control for ac motor drives
JPH0834709B2 (ja) * 1990-01-31 1996-03-29 株式会社日立製作所 半導体集積回路及びそれを使つた電動機制御装置
JP2812528B2 (ja) * 1990-03-20 1998-10-22 株式会社日立製作所 インバータ回路
JPH04210779A (ja) * 1990-12-14 1992-07-31 Mitsubishi Electric Corp インバータ装置の地絡検出器及び地絡検出方法
DE19802604A1 (de) * 1997-01-27 1998-08-06 Int Rectifier Corp Motor-Steuergeräteschaltung
WO2000019591A1 (fr) * 1998-09-30 2000-04-06 Mitsubishi Denki Kabushiki Kaisha Circuit onduleur
JP2000333465A (ja) 1999-05-18 2000-11-30 Matsushita Electric Ind Co Ltd インバータ装置、電動機駆動装置、および電動機駆動システム装置
CA2288581A1 (en) * 1999-11-05 2001-05-05 Hui Li Three-phase current sensor and estimator
JP3931079B2 (ja) 2001-12-14 2007-06-13 松下電器産業株式会社 電動機駆動装置及びそれを用いた冷凍装置
JP4122806B2 (ja) 2002-03-22 2008-07-23 株式会社豊田自動織機 ブラシレスモータ制御装置
KR100789441B1 (ko) * 2005-12-30 2007-12-28 엘에스산전 주식회사 인버터의 전류 검출 장치 및 방법
JP5230068B2 (ja) * 2006-01-13 2013-07-10 オムロンオートモーティブエレクトロニクス株式会社 インバータ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207754A (ja) * 1992-01-28 1993-08-13 Toyo Electric Mfg Co Ltd Pwm変調方式
JP2003079159A (ja) * 2001-06-18 2003-03-14 Matsushita Electric Ind Co Ltd パルス幅変調型電力変換装置
JP2003164159A (ja) * 2001-11-29 2003-06-06 Denso Corp 三相インバータの電流検出装置
JP2003348858A (ja) * 2002-05-23 2003-12-05 Toshiba Corp インバータ装置

Also Published As

Publication number Publication date
US20070189048A1 (en) 2007-08-16
US7583523B2 (en) 2009-09-01

Similar Documents

Publication Publication Date Title
WO2006009145A1 (ja) インバータ装置
JP4497149B2 (ja) インバータ装置
US7574873B2 (en) Inverter device and air conditioner using inverter device
WO2007049473A1 (ja) インバータ装置
JP4561838B2 (ja) インバータ装置
JP2006101685A (ja) インバータ装置
JP5256837B2 (ja) インバータ装置
CN100568699C (zh) 变换器装置
WO2006001169A1 (ja) インバータ装置およびこれを搭載した車両用空調装置
CN109981019B (zh) 电机控制装置
JP2007236188A (ja) インバータ装置
JP6217667B2 (ja) 電動圧縮機
JP5200569B2 (ja) インバータ装置
JP4539237B2 (ja) インバータ装置
JP3750691B1 (ja) インバータ装置
JP2004147430A (ja) 電動機のセンサレス駆動制御方法及び駆動制御システム
JP4497148B2 (ja) インバータ装置
JP5146128B2 (ja) インバータ装置
JP2009194974A (ja) インバータ装置
JP2005323414A (ja) モータ駆動装置とそのモータ駆動装置を搭載した電動圧縮機及び車両用空調装置
JP5353025B2 (ja) 電動圧縮機の制御装置
JP2019118245A (ja) モータ制御装置
JP4311045B2 (ja) モータ駆動装置
WO2013038612A1 (ja) インバータ装置、電動圧縮機及び車両
JPH0848140A (ja) 冷凍サイクル用圧縮機制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11631868

Country of ref document: US

Ref document number: 2007189048

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580024402.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11631868

Country of ref document: US

122 Ep: pct application non-entry in european phase