JP3898715B2 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP3898715B2
JP3898715B2 JP2004262320A JP2004262320A JP3898715B2 JP 3898715 B2 JP3898715 B2 JP 3898715B2 JP 2004262320 A JP2004262320 A JP 2004262320A JP 2004262320 A JP2004262320 A JP 2004262320A JP 3898715 B2 JP3898715 B2 JP 3898715B2
Authority
JP
Japan
Prior art keywords
insulating film
region
body region
semiconductor device
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004262320A
Other languages
English (en)
Other versions
JP2006080280A (ja
Inventor
智 彰 篠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004262320A priority Critical patent/JP3898715B2/ja
Priority to US11/044,348 priority patent/US7256459B2/en
Publication of JP2006080280A publication Critical patent/JP2006080280A/ja
Application granted granted Critical
Publication of JP3898715B2 publication Critical patent/JP3898715B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7841Field effect transistors with field effect produced by an insulated gate with floating body, e.g. programmable transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/20DRAM devices comprising floating-body transistors, e.g. floating-body cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)
  • Dram (AREA)

Description

本発明は、半導体装置およびその製造方法に関する。
DRAM等の半導体記憶装置は、近年、益々微細化されている。しかし、1T−1C(1 Transistor−1 Capacitor)型のDRAMでは、キャパシタの蓄積容量(Storage Capacitance)を確保するために、キャパシタの占有面積をある程度大きくしなければならない。よって、1T−1C型のDRAMは、微細化に限度がある。
また、1T−1C型のDRAMでは、キャパシタを形成する必要があるので、製造プロセスが複雑化しコスト高を招くという問題もあった。
これに対処するために、SOI(Silicon On Insulator)基板にDRAMを形成する技術が開発されている。例えば、後述する特許文献1あるいは特許文献2には、FBC(Floating Body Cell)から構成されたDRAMが開示されている。FBCは、SOI基板を用いて1つのトランジスタによって構成されたメモリセルである。
FBCは、SOI基板上にMOSトランジスタとして形成される。SOI層には、ソース領域、ドレイン領域およびボディ領域が形成される。ソース領域とドレイン領域との間に挟まれたボディ領域は浮遊状態にあり、この領域に電荷を蓄積または放出することによって、データを記憶することができる。
このようなFBCにおいては、一般に、ボディ領域と支持基板のような固定電位体との容量が大きいほど、データ保持時間が長く歩留まりが良い。
特許文献1の図32に記載されたFBCでは、薄い埋め込み酸化膜(以下、BOX層という)を備えたSOI基板を用いることによって、ボディ領域と支持基板との容量を増大させている。
一方、特許文献1の図25に記載されたFBCは、厚いBOX層内にバックゲート電極を形成することによって、ボディ領域とバックゲート電極との容量を増大させている。
しかし、これらの構造によっても、データ保持時間が十分長く、歩留まりの高いFBCを形成することは困難であった。
以下に、従来の半導体記憶装置を開示する文献名を記載する。
特開2002−246571号公報 特開2002−343886号公報
本発明は上記事情に鑑み、データ保持時間が長く高い歩留まりが得られるFBCを有する半導体装置およびその製造方法を提供することを目的とする。
本発明の一態様による半導体装置は、
半導体基板と、
前記半導体基板上に第1の絶縁膜を介して形成され、単結晶構造を有する第1導電型の半導体層と、
前記半導体層に形成された第2導電型のソース領域および第2導電型のドレイン領域と、
前記半導体層における前記ソース領域と前記ドレイン領域との間に形成され、フローティング状態にある第1導電型のボディ領域と、
前記ボディ領域の表面における中央部上に、第2の絶縁膜を介して形成されたゲート電極と、
を有する、複数のトランジスタと、
前記複数のトランジスタにおける隣接するもの同士の前記ボディ領域を素子分離する素子分離絶縁膜と、
前記複数のトランジスタの前記ゲート電極を共通接続するワード線と、
前記ドレイン領域に電気的に接続されたビット線と、
前記ソース領域に電気的に接続されたソース線と、
を備え、
前記ワード線に沿う断面において、前記ボディ領域が前記第2の絶縁膜と接触する面積は、前記ボディ領域が前記第1の絶縁膜と接触する面積より小さいことを特徴とする。
本発明の一態様による半導体装置の製造方法は、
第1の絶縁膜によって半導体基板から分離され、単結晶構造を有する第1導電型の半導体層と、前記半導体層上に第2の絶縁膜を介して形成されたゲート電極と、前記半導体層に形成された、第2導電型のソース領域、第2導電型のドレイン領域、及び前記ソース領域と前記ドレイン領域との間に位置するボディ領域とを有するトランジスタを含む半導体装置を製造する方法であって、
前記半導体基板上に前記第1の絶縁膜を介して設けられた前記半導体層上にマスクを形成し、このマスクを用いて前記半導体層にパターニングを行って分割し、部分的に前記第1の絶縁膜の表面を露出させる工程と、
前記マスク、前記半導体層及び前記第1の絶縁膜の表面を覆うように、素子分離用の絶縁膜を堆積する工程と、
前記マスクをストッパとして前記絶縁膜に平坦化を行い、前記マスクを除去することで、分割された各々の前記半導体層の表面における両端の角部を、前記絶縁膜から成る素子分離絶縁膜のT字型形状における片側の肩部によってそれぞれ覆う工程と、
各々の前記半導体層の表面のうち、前記素子分離絶縁膜によって覆われていない中央部上に、前記第2の絶縁膜を形成する工程と、
電極材を堆積してパターニングを行い、前記第2の絶縁膜を介して各々の前記半導体層上に前記ゲート電極を形成すると共に、前記ゲート電極を共通接続するワード線を形成する工程と、
前記ゲート電極をマスクとして各々の前記半導体層に不純物をイオン注入することで、各々の前記半導体層の両端部に第2導電型の前記ソース領域および第2導電型の前記ドレイン領域を形成する工程と、
を備え、
前記半導体層における前記ソース領域と前記ドレイン領域の間のボディ領域が前記第2の絶縁膜と接触する面積は、前記ボディ領域が前記第1の絶縁膜と接触する面積より小さいことを特徴とする。
本発明の半導体装置およびその製造方法によれば、データ保持時間が長いFBCが得られ歩留まりが向上する。
先ず、FBCにおけるデータの書き込み動作の原理について述べる。
FBCは、SOI基板上にMOSトランジスタとして形成される。図84に示されたように、SOI層においてソース領域SR、ドレイン領域DRおよびその間にボディ領域BRが形成される。ソース領域SRとドレイン領域DRとの間に挟まれたボディ領域BRは浮遊状態にあり、このボディ領域BRに電荷を蓄積または放出することによって、データを記憶することができる。
FBCにデータ「1」を書き込む場合は、図84に示すように、例えばワード線WLに1.5V、ドレイン領域DRに1.5Vあるいは2Vを与えて、FBCを飽和状態にバイアスする。これによって、ボディ領域BR内でインパクトイオン化を引き起こし、正孔をボディ領域BRに蓄積する。ボディ領域BR内に多くの正孔数が蓄積され、ボディ電位が上昇することによってデータ「1」が書き込まれる。
FBCにデータ0を書き込む場合は、図85に示すように、例えばワード線WLに1.5V、ドレイン領域DRには−1Vあるいは−1.5Vを与え、ボディ領域BRに含まれるp型ボディ領域とn型ドレイン領域との間のpn接合を順方向にバイアスする。これにより、ボディ領域BR内に蓄積されていた正孔が、ドレイン領域DRへ放出される。その結果、ボディ領域BR内の正孔数は減少してボディ領域BRの電位が下降し、FBCにデータ「0」 が書き込まれる。
データ「0」とデータ「1」とにそれぞれ対応するボディ電位を保持するには、図86に示すように、ワード線WLに負電位として例えば−1.5Vを与え、ドレイン領域DRを0Vとする。
FBCのデータを読み出すには、ドレイン領域DRに0.2Vを与え、ワード線WLに例えば1.5Vを与えてドレイン電流Iを検出する。
図87に示すように、データ「0」に対応するボディ電位が保持されていたときのドレイン電流I0と、データ「1」に対応するボディ電位が保持されていたときのドレイン電流I1との差△Iによって、データ「0」とデータ「1」とを識別することができる。
このようなFBCにおいては、一般に、ボディ領域BRと支持基板のような固定電位体との容量が大きいほど、データ保持時間が長く歩留まりが良いという傾向がある。
以下、本発明の実施の形態による半導体装置について、図面を参照して説明する。
(1)第1の実施の形態による半導体装置
図1に、本発明の第1の実施形態による半導体装置として、DRAM100の平面構成を示す。
DRAM100の周辺部に、DRAM100を制御するための周辺回路を設けてもよい。DRAM100は、ワード線WL、ソース線SLおよび図示されていないビット線BLを備えている。
ワード線WLおよびソース線SLは相互にほぼ平行に延在し、ビット線BLはワード線WLおよびソース線SLに対してほぼ垂直方向へ延在している。
ビット線コンタクトBCは、図示されていないビット線BLと、このビット線BLの下に配置された図示されていないドレイン領域とを電気的に接続している。
図2に、図1に示す素子領域ERを、B1−B1線に沿って切断したときの縦断面構造を示す。図3に、図1に示すワード線WLを、C1−C1線に沿って切断したときの縦断面構造を示す。
また図4に、周辺回路あるいはロジック回路(以下、周辺ロジック回路と呼ぶ)の領域におけるNチャネルMOSトランジスタの平面構成を示す。図5に、図4に示すゲート電極をE1−E1線に沿って切断したときの縦断面構造を示す。
素子領域ERにおける両端部にソース領域及びドレイン領域が配置され、その間のチャネル領域上にゲート絶縁膜を介してゲート電極GEが形成されている。層間絶縁膜170において、ソース領域上には図示されていないソースコンタクトSC、ドレイン領域上には図示されていないドレインコンタクトDC、ゲート電極GE上には図示されていないゲートコンタクトGCがそれぞれ形成されている。
図3を参照して、本第1の実施形態によるDRAMに含まれるFBCにおけるワード線WLに沿う縦断面の構造について述べる。
支持基板110上に埋め込み酸化膜(以下、BOX層という)120(第1の絶縁膜の一例)を介してボディ領域136が形成されており、このボディ領域136の上面に第1ゲート絶縁膜140(第2の絶縁膜の一例)が形成されている。ここで、FBCにおけるボディ領域の上面のゲート絶縁膜を第1ゲート絶縁膜140、周辺回路におけるゲート絶縁膜を第2ゲート絶縁膜141とする。
第1ゲート絶縁膜140以外のボディ領域136はT字型形状を有し、高さHで、肩幅SのSTI埋め込み酸化膜211(素子分離絶縁膜の一例)で覆われている。
そして、第1ゲート絶縁膜140、STI埋め込み酸化膜211の上面にワード線WLが形成されている、
ワード線WLの上面には、低抵抗化用のシリサイド膜162が形成され、さらにその上部には層間絶縁膜170が形成されている。層間絶縁膜170の表面部分には、紙面に直交する方向にビット線BLが形成されている。
本実施の形態によれば、厚さ(高さH)のあるSTI埋め込み酸化膜211が形成されていることにより、FBCのボディ領域136とワード線WLとの間の容量(以下、Cgと称する)が減少する。このため、この容量Cgに対する、ボディ領域136と支持基板110との間の容量(以下、Csubと称する)の比を、大きくすることができる。
これにより、データ「1」とデータ「0」との識別が容易になり、歩留まりが向上し、データ保持時間の長いDRAMを実現することができる。
このようなFBC領域と、図4および図5に示された周辺ロジック回路の領域とを比較すると、周辺ロジック回路におけるボディ領域137は、ゲート電極GEに沿った断面において、ボディ領域137に対するSTI埋め込み酸化膜212の高さが、FBC領域におけるSTI埋め込み酸化膜211の高さよりも低い。
これにより、周辺ロジック回路の領域において、ゲート電極材をエッチングする際のポリシリコン残りを無くし、歩留まりの良いDRAMを提供することができる。
尚、周辺ロジック回路のトランジスタにおけるボディ領域137は、電気的に浮遊状態である必要はない。
また、図2に示されたFBCにおけるビット線BLに沿う縦断面構造について述べる。SOI層130において、n型ソース領域132およびn型ドレイン領域134が設けられており、ソース領域132とドレイン領域134との間にp型ボディ領域136が設けられている。
p型ボディ領域136上には第1ゲート絶縁膜140(第2の絶縁膜の一例)が形成され、この第1ゲート絶縁膜140の上にワード線WLが形成されている。ワード線WLは、第1ゲート絶縁膜140によってボディ領域136から絶縁されている。
ここで、第1ゲート絶縁膜140は、例えばSiOから成る。
BOX層120(第1の絶縁膜の一例)の膜厚は、例えば5nm〜25nmである。ボディ領域136の膜厚は、例えば75nmである。
ソース領域132におけるソースコンタクトSCとの接触面には、シリサイド160が設けられており、接触抵抗を低下させている。
ワード線WLの上面には、シリサイド162が被覆するように形成されており、ワード線WLの抵抗を低下させている。
ドレイン領域134におけるビット線コンタクトBCとの接触面には、シリサイド164が形成されて接触抵抗を低下させている。
ワード線WLとビット線BLとの間の間隙は、例えばSiO等の絶縁材料からなる層間絶縁膜170で充填されている。
さらに、図3に示されたように、ワード線WLに沿う縦断面構造において、ボディ領域136の前後にはSTI埋め込み酸化膜211が設けられている。STI埋め込み酸化膜211は、例えばSiO等の絶縁材料から成る。
これにより、ボディ領域136は、絶縁材料および導電型の異なる半導体材料によってその周囲を囲まれているので、電気的に浮遊状態となる。
従って、ボディ領域136の電位は、支持基板110、ワード線WL、ソース領域132およびドレイン領域134のそれぞれの電位に依存して変化することになる。
図6に、データ「1」又はデータ「0」を書き込んで保持したときのボディ領域136の電位(以下、ボディ電位という)を示す。
データ「1」のときのボディ電位をV1とし、データ「0」のときのボディ電位をV0とする。ここで、横軸は時間を示している。
時間0〜t1において、ワード線WLおよびビット線BLの電位を例えば1.5ボルトとしてデータ「1」をあるボディ領域136へ書き込む。一方で、ワード線WLの電位を例えば1.5ボルト、ビット線BLの電位を例えば−1.5ボルトとして、データ「0」を他のボディ領域136へ書き込む。
時点t1において、ビット線BLを保持状態(例えば、0ボルト)に戻す。
さらに、時点t2において、ワード線WLを保持状態(例えば、−1.5ボルト)に戻す。
ボディ電位V1およびV0が示す曲線のうち、破線で示す曲線L2は、本実施の形態におけるSTI埋め込み酸化膜211を有していない従来のDRAM(便宜的に、DRAM10とする)のボディ電位を示し、実線で示す曲線L1は、本第1の実施の形態によるDRAM100のボディ電位を示している。
時点0〜t1における書込み時において、DRAM10およびDRAM100のそれぞれのボディ電位はほぼ等しい。
このとき、データ「1」とデータ「0」とのボディ電位差は大きく、それらの識別は容易である。
しかし、時点t1〜t2においてビット線BLを保持状態に戻すと、ボディ電位V1が低下し、ボディ電位V0が上昇する。よって、データ「1」とデータ「0」とのボディ電位差が小さくなる。
さらに、時点t2〜t3においてワード線WLを保持状態に戻すと、ボディ電位V0は低下するが、ボディ電位V1はボディ電位V0より大きく低下する。このため、データ「1」とデータ「0」とのボディ電位差がさらに小さくなる。
この図6のグラフに示すように、従来のDRAM10では、時点t1におけるデータ「1」とデータ「0」とのボディ電位差d0が電位差d10へと低下する。本第1の実施の形態によるDRAM100では、ボディ電位差d0が電位差d100へ低下する。
しかし、本実施の形態によるDRAM100の電位差d100は、従来のDRAM10における電位差d10に比較して大きい。
一般に、ボディ電位V1とボディ電位V0との差が大きいと、データ「1」とデータ「0」との識別が容易になり、歩留まりが向上する。
よって、本実施の形態によるDRAM100は、従来のDRAM10に比べてデータ「1」とデータ「0」との識別が容易であり、歩留まりが向上している。
これは、本実施の形態によるDRAM100では、図3に示されたように、STI埋め込み酸化膜211の存在により、ボディ領域136の底面において支持基板110と対向する面積が、ボディ領域136の上面においてワード線WLと対向する面積よりも大きい。すなわち、ワード線に沿う断面においてボディ領域の底部の幅Wbは、チャネル幅Wgよりも幅S×2だけ大きい。このため、支持基板110とボディ領域136との間の容量値Csubと、ボディ領域136とワード線WLとの間の容量値Cgとの比Csub/Cgが、従来のDRAM10の容量値の比Csub/Cgよりも大きいためである。
この理由について、以下に詳細に説明する。支持基板110とボディ領域136との間の容量値をCsub、ドレイン領域134とボディ領域136との間の容量値をCd、ソース領域132とボディ領域136との間の容量値をCs、ワード線WLとボディ領域136との間の容量値をCgとする。
支持基板110とボディ領域136との間の容量Csubがボディ領域136へ寄与する比率Rは、Csub/(Csub+Cd+Cs+Cg)で表される。
ここで、支持基板110には負の固定電位が与えられている。よって、Csubがボディ領域136へ大きく寄与すると、ボディ電位V1およびV0がより安定する。
従って、比率Rが大きいほうが、即ち容量Csubが大きいほうが、ボディ電位V1およびV0が安定する。
その結果、図6において時点t2以降におけるビット線BLおよびワード線WLを保持状態に戻した後であっても、本実施の形態によるDRAM100における電位差d100は、時点0〜t1における書き込み時における電位差d0により近い状態で維持されることになる。
例えば、書き込み時においては、ボディ電位V1とV0との電位差は約1.5ボルトである。しかし、時点t1以降におけるビット線BLを保持状態に戻した後においては、ボディ電位の差(V1−V0)は、約1.5ボルト×(Csub/(Csub+Cd+Cs+Cg))となる。
Cgがボディ領域136へ寄与する比率が大きいと、ワード線WLを保持状態に戻したとき(時点t2〜t3)に、データ「1」とデータ「0」との電位差が大きく低下する。
例えば、ボディ電位V1がボディ電位V0よりも1.5ボルト×(Cg/(Csub+Cd+Cs+Cg))だけ大きく低下する。
これは、データ「1」とデータ「0」では、1.5ボルト分だけトランジスタの閾値電圧が異なるため、ワード線WLとボディ領域136との容量結合の度合いが1.5ボルト分だけ異なるからである。
また、この式(1.5ボルト×(Cg/(Csub+Cd+Cs+Cg)))より、ワード線WLとボディ領域136との容量Cgを小さくすることにより、ボディ電位差(V1−V0)が大きくなることがわかる。
本実施の形態によるDRAM100と従来のDRAM10は共に、約25nmのBOX層を有している。しかし、本実施の形態によるDRAM100では、ボディ領域136と支持基板110との接触面積が増加していることにより、DRAM100のCsubはDRAM10のCsubより増大する。これに伴い、本実施の形態によるDRAM100における電位差d100は、従来のDRAM10における電位差d10よりも大きくなる。
ここで、上述した各容量値を具体的に見積もることとする。
図3に示したチャネル幅Wgを100nm、STI埋め込み酸化膜211の幅を100nm、ワード線WLの幅(ゲート長)Lを100nmとする。
また、ボディ領域136の不純物濃度を1×1018cm−3とする。BOX層120の膜厚を25nm、ゲート絶縁膜140の膜厚を5nm、ボディ領域136の膜厚を75nmとする。
ボディ領域136の上面における角部が、本実施の形態におけるT字型形状を有するSTI埋め込み酸化膜211で覆われていない従来のDRAM10では、容量値CdおよびCsは共に0.021fFである。
容量値Csubは0.014fFである。チャネル下の空乏層容量は0.03fFであり、ゲート絶縁膜の容量は0.069fFであり、両者を直列に接続した容量値Cgは0.021fFである。
この構造では、Csubの値(0.014fF)が、Cd、Cs、Cg(いずれも、0.021fF)に比べて小さい。
容量値Csubは、ボディ領域136の幅Wbおよび第1ゲート長Lに比例し、BOX層120の膜厚Tboxに反比例する。
すなわち、
Csub∝ボディ領域幅Wb×第1ゲート長L/BOX層の膜厚Tbox
という関係式が成り立つ。
一方、容量値Cs、Cdは、それぞれボディ領域の幅WbおよびSOI層の膜厚Tsoiに比例する。すなわち、
Cs∝Wb×Tsoi
Cd∝Wb×Tsoi
が成り立つ。
また、容量値Cgは、チャネル幅Wg、第1ゲート長L、単位面積あたりの第1ゲート容量Cgo(0.021×10−4fF/nm)に比例する。
すなわち、
Cg∝Wg×L×Cgo
が成り立つ。
以上の数値および関係式を用いることで、容量Csubの寄与する割合を大きくし、その結果ボディ電位差d100をより大きくすることができる。
例えば、BOX層120の膜厚をTboxとすると、
Tsoi×Tbox/L<12.5nm (1)
を満たすようにすることで、Csubの方がCdやCsよりも大きくすることができる。
また、
Tbox×Cgo×Wg/Wb<3.5×10−5/nm (2)
を満たすようにすることで、Csubの方がCgよりも大きくなるようにすることができる。
従来のDRAM10では、チャネル幅Wgとボディ領域の幅Wbとは等しい。したがって、Cgに対するCsubの寄与率を増大させるためには、上記(2)式より、BOX層の膜厚を薄くするか、あるいは第1ゲート絶縁膜を厚くする必要があった。
しかしながら、BOX層の膜厚を薄くすると、周辺ロジック回路の寄生容量が増大し、回路の消費電力の増大や速度の低下を招く。
その一方で、第1ゲート絶縁膜を厚くすると、FBCのドレイン電流のばらつきが増大し、歩留まりが低下する。
そこで本実施の形態によるDRAM100は、ボディ領域136の上面における角部を覆っているSTI埋め込み酸化膜211により、ボディ領域の幅Wbよりもチャネル領域の幅Wgが小さくなるような構造を有している。
例えば、25nmの肩幅Sを有するDRAM100を想定した場合、Wgは従来と同じ100nmであり、ボディ領域のBOX層の界面における幅Wbは、150nmである。
この構造において、容量値Csubは従来のDRAM10の値に対して1.5倍、すなわち0.021fFとなる。
つまり、肩幅Sを25nmより大きくすることにより、上記(2)式を満たすことになる。
具体的には、チャネル幅Wgに対し、片側の肩幅Sを約25%以上とすることによって、データ「0」とデータ「1」との識別が容易となり、データ保持時間が長くなる。
ここで、STI埋め込み酸化膜211の高さHは、ゲート絶縁膜140の膜厚に対して10倍以上、すなわち少なくとも50nmとする。
これにより、ボディ領域136の上面における角部のSTI埋め込み酸化膜211を介しての第1ゲートとボディ領域136との容量結合を小さくすることができる。
また、50nmのSOI膜厚を有するDRAM100を想定した場合、容量値CdおよびCsは、0.021fFとなる。
つまり、SOI膜厚を50nmよりも小さくすることにより、上記(1)式を満たすことができる。
尚、ボディ領域136の不純物濃度を1×1018cm−3としている。
このトランジスタに、閾値電圧以上のゲート電圧を与えたときにチャネル下に形成される空乏層幅、いわゆる最大空乏層幅は、約35nmである。
したがって、SOI膜厚が35nm以上の場合、FBCはいわゆる「部分空乏化デバイス」、すなわち、ボディの全体が空乏化せずに底部に中性領域を有するデバイスとなる。
例えば、ボディ領域の不純物濃度を1×1017cm−3とした場合、チャネル下に形成される空乏層の厚さは約100nmである。
この場合、SOI膜厚が100nm以下のFBCは、いわゆる「完全空乏化デバイス」、すなわちボディの全体が空乏化するデバイスとなる。
完全空乏化デバイスは、支持基板にマイナスの電圧を与えボディ底部のポテンシャルを十分にマイナス側に引っ張ることにより、すなわちボディ底部を表面蓄積状態にすることにより、上述したFBC動作をすることができる。
従って、完全空乏化デバイスにおいても容量値Csubが重要な役割を果たし、本実施の形態によるFBC構造によりデータ保持時間を長くすることができる。
(2)第1の実施の形態による半導体装置の製造方法
本発明の第1の実施形態による半導体装置(DRAM100)の製造方法について、工程別に素子の断面を示した図7〜図25を用いて説明する。
このうち、図7〜図9は、図1におけるC1−C1線に沿うワード線WLに沿った縦断面の素子構造を示したフロー図である。
図10から図25のうち、図10、図12、図14、図18、図22は、図1のC1−C1線に沿うワード線WLに沿ったFBCの縦断面構造を示す。
図16、図20、図24は、図1のB1−B1線に沿う素子領域ERに沿ったFBCの縦断面構造を示す。
図11、図13、図15、図19、図23は、図4のE1−E1線に沿う周辺ロジック回路に含まれるNチャネルトランジスタのゲート電極に沿う縦断面を示す。
図17、図21、図25は、図4のF1−F1線に沿うソースコンタクトSC、ドレインコンタクトDCを含む縦断面を示す。
図7に示すように、まず支持基板110、BOX層120およびSOI層130を備えたSOI基板を準備する。
BOX層120の厚さは25nmであり、SOI層130の厚さは60nmである。
SOI層130の上面を酸化して、シリコン酸化膜201を形成する。
CVD法等を用いて、シリコン窒化膜203をシリコン酸化膜201上に堆積し、さらにシリコン酸化膜205をシリコン窒化膜203上に堆積する。
シリコン酸化膜205上にレジストを塗布し、フォトリソグラフィ技術を用いてパターニングを行い、レジスト膜207を形成する。
図8に示すように、レジスト膜207をマスクとして用いて、RIE法等により、シリコン酸化膜205、シリコン窒化膜203およびシリコン酸化膜201をエッチングする。
シリコン酸化膜206を堆積する。このとき窒化膜203の間隔までシリコン酸化膜206によって埋め込まれないように、シリコン酸化膜206の膜厚を調整する。
例えば、シリコン窒化膜203の間隔を200nmとした場合、シリコン酸化膜206の膜厚は80nmとする。
RIE法等により、シリコン酸化膜206をエッチングする。
図9に示すように、RIE法等により、シリコン酸化膜205およびシリコン酸化膜206をマスクとしてSOI層130をエッチングする。
次に、シリコン酸化膜205およびシリコン酸化膜206を選択的に除去する。そしてCVD法等を用いて、隣り合うSOI層130の間を埋め込むように、シリコン酸化膜211を堆積する。
CMP等を用いて、シリコン窒化膜203をストッパとしてシリコン酸化膜211を研磨し、上面を平坦化する。
図10、図11に示すように、エッチストッパとしてのシリコン窒化膜203を除去する。
FBCを形成する領域が開口された図示されてないレジスト膜を形成する。このレジスト膜をマスクとして、ボロンを加速エネルギー130keV、ドーズ量1×1014cm−2でイオン注入する。さらにボロンを加速エネルギー10keV、ドーズ量1×1013cm−2でイオン注入し、レジスト膜を除去する。
1200℃の窒素雰囲気中で10分間程度アニール処理を行う。これにより、SOI層130におけるFBC形成領域に、およそ不純物濃度が1×1018cm−3のボロンが一様に分布する。
同時に、支持基板110におけるFBC形成領域に、およそ1×1018cm−3の濃度のボロンが一様に分布する。
支持基板110内に形成するボロン拡散層は、セルアレイの外まで伸びており、拡散層上に形成される図示されていないコンタクトプラグによって配線に接続され、固定電圧が与えられる。
この後、周辺ロジック回路におけるnチャネルMOSトランジスタ領域およびpチャネルMOSトランジスタ領域のSOI層および支持基板に、適切な不純物を導入する。そしてRapid Thermal Annealing(RTA)を行い、導入した不純物を活性化させる。
図12、図13に示すように、SOI層130上にゲート絶縁膜140,141を形成する。この際、周辺ロジック回路が開口された図示されていないレジストパターンを形成し、弗化アンモニウムによってSTI埋め込み酸化膜211をエッチングする。
この段階で、図12に示すFBC形成領域では、STI埋め込み酸化膜211の高さHは50nm程度、肩幅Sは50nmである。この数値は、シリコン酸化膜206の膜厚に依存する。
一方、図13に示す周辺ロジック回路では、STI埋め込み酸化膜211の高さHおよび肩幅Sはほぼ0とする。
図12に示すFBC領域では、第1ゲート絶縁膜140の厚さは、ドレイン電流差を大きくするために、例えば6nmとする。
一方、図13に示す周辺ロジック回路では、高速化および低消費電力化のため、例えば1nmという非常に薄い第2ゲート酸化膜141を形成する。
図14〜図17に示すように、FBC領域及び周辺ロジック回路領域において、ゲート絶縁膜上にゲート電極材であるポリシリコンを堆積する。
フォトリソグラフィ技術を用いて、図14、図16に示すように、FBC領域にワード線WLのパターンを有する図示されてないレジスト膜175を形成する。
この際、図15、図17に示された周辺ロジック回路領域にはレジスト膜175が覆われており、ゲート電極のパターニングは行わない。
このレジスト膜175をマスクとしてRIEを行い、FBC領域にワード線WLを形成する。
STI埋め込み酸化膜211の高さHが50nmと大きいため、十分なオーバーエッチングを要する。FBC領域では第1ゲート絶縁膜140が6nmと厚いため、オーバーエッチング量を大きくすることができる。
図18、図20に示すように、FBC領域において、ワード線WLをマスクとして、SOI層130へ不純物を自己整合的にイオン注入する。これにより、1018cm−3程度の低濃度ドレイン(Lightly Doped Drain)を形成することができる。
ワード線WLの側面を、スペーサ213で被覆する。スペーサ213は、例えば、シリコン酸化膜またはシリコン窒化膜を用いて形成することができる。
図19、図21に示すように、周辺ロジック回路領域においてゲート電極GEを形成するために、FBC領域を覆い、周辺ロジック回路のゲート電極GEのパターンを有するレジスト膜176を形成する。このレジスト膜176をマスクとしてポリシリコンにRIEを行う。
周辺ロジック回路領域では、1nmという薄い第2ゲート絶縁膜141を形成しているため、オーバーエッチング量を増やすことができない。このため、FBC領域のように、周辺ロジック回路におけるSTI埋め込み酸化膜211の高さHが50nmとなると、ポリシリコン残りが発生してDRAMの歩留まりが低下するという問題があった。
しかし本実施の形態では、FBC領域のSTI埋め込み酸化膜211の高さHよりも周辺ロジック回路におけるSTI埋め込み酸化膜211の高さを低くしている。このため、ポリシリコン残りが発生せず、歩留まりの良いDRAMを実現することができる。
図22〜図25に示すように、ワード線WLおよびスペーサ213をマスクとして、SOI層130へ不純物を自己整合的にイオン注入する。
本実施の形態では、リンまたはヒ素がSOI層130へイオン注入される。これにより、図24に示すように、n型ソース領域132およびn型ドレイン領域134が形成される。
ソース領域132とドレイン領域134との間には、p型ボディ領域136が形成される。ワード線WLのそれぞれの上面に金属を堆積し、シリサイド層160、162および164を形成する。シリサイド層160、162および164は、例えばコバルトシリサイドで形成してもよい。
次に、層間絶縁膜170をシリサイド層160、162および164上に堆積する。シリサイド層164に電気的に接続される図示されていないプラグを、層間絶縁膜170に形成する。
さらに、ワード線WLに対して平行に、図示されていないソースプラグと接続するソース線SLを形成し、ワード線WLにほぼ直交するようにビット線BLを形成する。ソース線SLおよびビット線BLは、例えば銅やアルミニウムやタングステン等の金属材料で形成してもよい。
以上の方法により、本実施の形態によるDRAM100を製造することができる。
(3)第2の実施の形態による半導体装置
図26に、本発明の第2の実施形態による半導体装置(DRAM200)の平面構成を示す。
DRAM200は、DRAM100の構成要素に加え、バックゲート線BGLを備える。このバックゲート線BGLは、ワード線WLにほぼ平行に延在している。
ユニットトランジスタの図示されていないフロントゲート電極FGEがワード線WLに接続され、図示されていないバックゲート電極BGEがバックゲート線BGLに接続されている。
以下、図27に、図26におけるA2−A2線に沿う縦断面を示す。
同様に、図28に図26におけるC2−C2線に沿う縦断面、図29にB2−B2線に沿う縦断面、図30にD2−D2線に沿う縦断面を示す。
図27〜図33のうち、特に図29に示すように、本第2の実施の形態による半導体装置は、ワード線WLに沿う縦断面において、ボディ領域336の下にバックゲート電極BGEを有する。
ボディ領域とバックゲート電極の間には、バックゲート絶縁膜BGI(第1の絶縁膜の一例)が形成されている。またボディ領域とフロントゲート電極の間には、フロントゲート絶縁膜FGI(第2の絶縁膜の一例)が形成されている。
そして、T字型形状を有するSTI埋め込み酸化膜311が形成されていることにより、ボディ領域336とバックゲート絶縁膜BGIとの接触面積よりも、ボディ領域336とフロントゲート絶縁膜FGIとの接触面積の方が小さく設定されている。すなわち、ワード線に沿う断面において、ボディ領域の底部の幅よりもチャネル幅が小さく設定されている。ボディ領域336とフロントゲート電極FGEとの容量は、上記第1の実施の形態で説明した容量Cgに相当する。また、ボディ領域336とバックゲート電極BGEとの容量は、上記第1の実施の形態で説明した容量Csubに相当する。
すなわち、上記第1の実施の形態で詳述したように、本第2の実施の形態における容量Cgに対する容量Csubの比は、従来の装置における容量比に比べて大きい。これにより、データ「1」とデータ「0」との識別が容易であり、歩留まりが高く、データ保持時間の長いDRAMを実現することができる。
(4)第2の実施の形態による半導体装置の製造方法
上述した第2の実施の形態による半導体装置を製造する方法について説明する。
以下、図31、図35、図39、図43、図47、図51、図55、図59、図63、図67に、図26におけるA2−A2線に沿う縦断面を工程別に示す。
同様に、図32、図36、図40、図44、図48、図52、図56、図60、図64、図68に、図26におけるC2−C2線に沿う縦断面を工程別に示す。
図33、図37、図41、図45、図49、図53、図57、図61、図65、図69に、図26におけるB2−B2線に沿う縦断面を工程別に示す。
図34、図38、図42、図46、図50、図54、図58、図62、図65、図70に、図26におけるD2−D2線に沿う縦断面を工程別に示す。
先ず、図31〜図34に示すように、支持基板310の上面にBOX層320、SOI層330を備えたSOI基板を準備する。ここで、BOX層320の厚さは、例えば150nmとする。
SOI層330上に、シリコン窒化膜340、図示されていないシリコン酸化膜を順に堆積する。
図示されていないレジスト膜をマスクにして反応性イオンエッチングを行い、シリコン酸化膜、シリコン窒化膜340、SOI層330、さらにBOX層320の途中の深さまで、選択的に除去する。この後、レジスト膜を剥離してシリコン酸化膜を除去する。
SOI層330の側面に、厚さ2nm程度の図示されていない熱酸化膜を形成する。
図35〜図38に示すように、シリコン窒化膜340、SOI層330、BOX層320の表面を覆うように、CVDにより、厚さ10nm程度のエッチングストッパとしてのシリコン窒化膜350を形成する。
シリコン窒化膜350上に、段差を軽減するためのレジスト膜360を形成した後、この上にSOG(Spin On Glass)膜370を形成する。
SOG膜370上に、ワード線形成領域に対応する部分と、複数のトランジスタにおける素子領域を分離するためのSTI埋め込み酸化膜が形成される領域に対応する部分とが交差する箇所が開口されたレジスト膜380を形成する。
図39〜図42に示すように、レジスト膜380をマスクとして反応性イオンエッチングを行い、SOG膜370、レジスト膜、シリコン窒化膜350、及びBOX層320を選択的に除去する。
そして、図43〜図46に示すように、レジスト膜380、SOG膜370及びレジスト膜360を除去する。
シリコン窒化膜340及び350により、エッチングストッパが構成される。このエッチングストッパが形成された状態で、弗化アンモニウムにより、BOX層320をウエットエッチングにより除去する。これにより、チャネルボディが形成されるSOI層330下に、空洞部321が形成される。
図47〜図50に示すように、シリコン窒化膜340に異方性エッチングを行う。さらに熱酸化を行い、表面が露出したシリコン基板310及びSOI層330上にシリコン酸化膜360を形成する。
空洞部321において表面が露出したSOI層330と接触するシリコン酸化膜が、バックゲート絶縁膜BGIとなる。このバックゲート絶縁膜BGIの厚みは、10nm程度である。
次に、CVD法を用いて、砒素がドープされたアモルファスシリコン膜370を堆積する。
図51〜図54に示すように、このアモルファスシリコン膜370をエッチバックしてアモルファスシリコン膜371とする。
図55〜図58に示すように、弗化アンモニウムにより、露出したシリコン酸化膜を除去した後、CVDにより、砒素がドープされた導電膜の一例としてのアモルファスシリコン膜372を堆積する。
図59〜図62に示すように、隣り合う素子分離部形成領域間、つまり素子形成領域に、シリコン窒化膜340及び350から成るエッチングストッパが残された状態で、アモルファスシリコン膜372に異方性エッチングによりエッチバックを行う。
これにより、素子分離部形成領域のアモルファスシリコン膜372の膜厚を薄くして、バックゲート線をパターニングする。
すなわち、バックゲート絶縁膜BGIを介してバックゲート電極が設けられるように、ワード線形成領域の方向に沿って、バックゲート電極を共通接続するバックゲート線をパターニングする。
バックゲート線のパターニングを行った後、図63〜図66に示すように、熱燐酸により、素子形成領域上のシリコン窒化膜340が60nm程度後退するまで、シリコン窒化膜340をエッチングする。
このエッチング量によって、ボディ領域における上面における角部を覆うシリコン酸化膜のカバー量、すなわち肩幅Sが決定されるので、エッチング量はFBCの特性により適切に設定する必要がある。
図67〜図70に示すように、素子分離部となるシリコン酸化膜311をSOI基板の全面にCVDにより形成する。
次に、シリコン窒化膜340をストッパとして、CMP(Chemical Mechanical Polishing)を行い、シリコン酸化膜311を平坦化する。
以降の工程は、上記第1の実施の形態と同様であり説明を省略する。
(5)第3の実施の形態による半導体装置
本発明の第3の実施の形態によるDRAM300について、図面を用いて説明する。
図71に、このDRAM300に含まれるFBCのワード線WLの長手方向に沿って切断した縦断面構造を示す。
DRAM300は、上記第1の実施の形態と同様にボディ領域の上面における両側の角部を、T字型形状を有するSTI埋め込み酸化膜411における幅S、高さHの両側の肩部でそれぞれ覆っている。
これにより、データ「0」とデータ「1」をそれぞれ読み出す時のドレイン電流の差が大きくなり、データ保持時間が長くなる。
また、ボディ領域436のうち、STI埋め込み酸化膜411の肩部で覆われていない中央の表面部分には、底面部分とは逆導電型の不純物(カウンタ不純物)480を有する。これにより、トランジスタの閾値電圧が低下し、消費電力の低いDRAMを実現することができる。
以下に、消費電力を低下させる原理について説明する。データ「0」とデータ「1」との読み出し時のドレイン電流の差を大きくするためには、保持時のボディ電位の差を大きくする、あるいはボディ効果を高める、の2通りが考えられる。ここで、ボディ効果とは、ボディ電位がドレイン電流を変調する現象をいう。
ボディ領域の不純物濃度を高くすると、ゲート下の空乏層の厚さが薄くなり、ボディ領域とチャネル領域との容量結合が強くなり、ボディ効果が高くなる。 ボディ効果を高めることにより、ドレイン電流の差を大きくすることができる。
しかしながら、ボディ領域のアクセプタ不純物濃度が高くなると、トランジスタの閾値電圧が上昇する。よって、読み出し時および書き込み時のゲート電圧を高くする必要がある。この結果、DRAMの消費電力が増大するという問題が生じる。
この問題を解決するために、本実施の形態では、ボディ領域436の底面領域におけるアクセプタ濃度を、1×1018cm−3以上とする。
そして、ボディ領域436の中央表面部分480には、底面領域とは逆導電型の不純物(カウンタ不純物)を導入し、正味(Net)のアクセプタ不純物濃度を1×1017cm−3以下とする。
ここで、中央表面部分480は、表面から深さ20nm程度までの領域とする。
アクセプタ濃度が1×1017cm−3であるトランジスタに、閾値電圧以上のゲート電圧を与えた場合にチャネル領域下に形成される空乏層幅、いわゆる最大空乏層幅は約100nmである。よって、深さ20nmの中央表面部分480は空乏化する。トランジスタの閾値電圧は、表面部分におけるアクセプタ濃度により決定されるので、本実施の形態によればトランジスタの閾値電圧を低下することができる。
また、厚さ20nmの表面低濃度層に相当する中央表面部分480を加えたことにより、第1ゲート絶縁膜下の最大空乏層幅が厚くなる。
しかし、ボディ領域436の底面領域は、1×1018cm−3以上の濃度を有しているため、表面低濃度層の厚さの十分の1程度の増加に過ぎない。従って、ボディ効果はやや低下することになる。
図72に、深さ方向に対する各不純物濃度の分布を示す。即ち、ゲート電極GEからゲート絶縁膜GEI、ボディ領域436、BOX層420、支持基板410におけるヒ素の不純物濃度を曲線L1、ボロンの不純物濃度を曲線L2、リンの不純物濃度を曲線L3でそれぞれ示す。
このように、カウンター不純物領域480は、STI埋め込み酸化膜411の肩部で覆われていないボディ領域436の中央、すなわち第1ゲート絶縁膜形成領域に自己整合的に形成されている。
このような構造を実現するため、ボディ領域436の底面領域にはボロンを導入し、カウンター不純物としてヒ素を導入することが望ましい。
ここで、ボロンは比較的軽い元素であるので、イオン注入後の分布曲線はなだらかになる。逆に、ヒ素は重い元素であるため、イオン注入後の分布は急峻な曲線を描く。
また、ヒ素の拡散係数はボロンに比べ小さい。よって、熱工程を経た後は、ボロンは拡散によってボディ領域内に一様に分布するのに対し、ヒ素はほとんど拡散せず分布の形状が変わらない。
図73に、特にボディ領域436の中央部の深さ方向におけるヒ素、ボロン、リンを合計した正味(Net)のアクセプタ濃度分布のシミュレーション結果を示す。
ここで、不純物としてボロンが加速電圧15keV、ドーズ量1×1013cm−2、ボディ領域436の厚さが55nm、BOX層420の厚さが25nm、ゲート酸化膜の厚さが6nm、ゲート長が0.15μm、ドレイン電圧が1.5Vであるとする。
ボディ領域436の底面領域におけるアクセプタ濃度は、1.2×1018cm−3であり、中央表面領域では濃度が1×1017cm−3以下となっている。
図74に、カウンタ不純物として導入したヒ素のドーズ量と閾値電圧との関係についてシミュレーションを行った結果を示す。ヒ素のドーズ量が増加するに従い、トランジスタの閾値電圧が低下していることがわかる。
本実施の形態によれば、ボディ領域436における中央表面部分には、底面部分とは逆導電型の不純物をカウンタ不純物として導入することで、トランジスタの閾値電圧を低下させて消費電力を低減させることができる。
(6)第3の実施の形態による半導体装置の製造方法
本発明の第3の実施の形態による半導体装置の製造方法について説明する。
図75に示されたように、支持基板410上のBOX層420の厚さが25nm、ボディ領域436が形成されるSOI層の厚さが60nmのSOI基板を用意し、上記第1の実施の形態と同様の製造工程を経て、ゲート絶縁膜GEI、STI絶縁膜411が形成された構造を得る。
矢印で示されたように、加速エネルギ20keV、ドーズ量3×1012cm−2でヒ素をイオン注入する。
このとき、ボディ領域436の上面における角部は、高さHが60nmのSTI埋め込み酸化膜411で覆われている。このため、ヒ素を第1ゲート絶縁膜GEIが形成される領域に自己整合的に導入することができる。以降は、上記第1の実施の形態による製造方法と同様の工程を経ることにより製造が可能である。
(7)第4の実施の形態による半導体装置
図76に、本発明の第4の実施の形態によるDRAM400におけるFBCのワード線WLに沿って切断した縦断面を示す。
このDRAM400は、上記第1の実施の形態と同様に、ボディ領域536の上面における角部がSTI埋め込み酸化膜511の高さH、幅Sを有する肩部で覆われている。
そして、このボディ領域536は、ゲートに閾値電圧以上の電圧が与えられたときにもボディ領域536全体が空乏化しない程度のアクセプタ不純物濃度として、例えば濃度1×1018cm−3程度の不純物を有する。
また、STI埋め込み酸化膜511の肩部で覆われていないボディ領域536の中央領域580は、トランジスタの閾値電圧以上の電圧がゲートに与えられたときに、ボディ領域536全体が空乏化するような不純物濃度として、例えば不純物濃度1×1017cm−3を有する。
ここで、ボディ領域536の膜厚は55nmであるとする。中央領域580は、例えば不純物濃度1×1017cm−3のボロンを有する。アクセプタ濃度が1×1017cm−3であるトランジスタに、閾値電圧以上のゲート電圧を与えた場合、チャネル下に形成される空乏層は約100nmであるから、厚さ55nmのボディ領域536は全体が空乏化することになる。
また、チャネルの両端領域581は、例えば不純物濃度2×1018cm−3のボロンを有する。
この不純物濃度における空乏層は約25nmであるから、厚さ55nmの両端領域581は、全体が空乏化することはなく、中性領域を有する。
本実施の形態のDRAM400によれば、以下のような効果が得られる。
第1に、トランジスタの閾値電圧を低くすることができる。
これは、ボディ領域536のうち、STI埋め込み酸化膜511の肩部で覆われていない中央領域580のアクセプタ不純物濃度が低く設定されていることによる。
この結果、読み出し時および書き込み時のゲート電圧を低くすることができ、DRAMの消費電力を低減することができる。
第2に、逆バイアスpn接合電流を減少させることができる。
従来の完全空乏型のFBCでは、支持基板にマイナスの電圧を与えてボディ底部のポテンシャルを十分にマイナス側に引っ張り、ボディ底部を表面蓄積状態にする必要があった。
この結果、ボディとソース・ドレインから構成されるpn接合の電界が大きくなり、大きなpn接合電流が流れてデータ保持時間が短縮化するという問題があった。
これに対し、本実施の形態によるDRAM400では、不純物濃度が低いボディ中央領域580は完全空乏化する一方、不純物濃度が高いボディ周辺領域581は中性領域を有する。
このような構造を有するFBCでは、支持基板510に大きな負電位を与えずとも、ボディ周辺領域580における中性領域のホール数によって、データ「0」とデータ「1」とを識別することができる。
この結果、DRAM400によれば、従来の完全空乏型FBCより支持基板510の電圧を上げることができ、pn接合電界が弱まりpn接合電流を減少させることができる。
第3の効果は、データ「0」とデータ「1」の読み出し時におけるドレイン電流の差を大きくすることができる点にある。
完全に空乏化しない中性領域は、厚いSTI埋め込み酸化膜511で覆われたボディ周辺領域581に形成される。これにより、上記第1の実施の形態において述べたように、ゲート電極と中性領域との容量結合Cgを小さくすることができる。この結果、高さHの肩部を有するT字型形状のSTI埋め込み酸化膜が設けられていない構造に比べて、データ「0」とデータ「1」との読み出し時のドレイン電流の差を大きくすることができる。
また、中性領域はボディ周辺領域581に自己整合的に形成されるので、特性のばらつきを抑えることができる。
第4の効果は、上記第3の効果同様に、データ「0」とデータ「1」との読み出し時のドレイン電流差を大きくできる点にある。
STI埋め込み酸化膜511の肩部で覆われていないボディ中央領域580は、完全に空乏化する。完全空乏化デバイスでは、ボディ効果の強さがSOI膜厚に反比例する。よって、SOI膜厚、即ちボディ領域536の膜厚を薄くすることで、データ「0」とデータ「1」との読み出し時のドレイン電流差を大きくすることができる。
次に、本第4の実施の形態によるDRAM400において、書き込み動作および読み出し動作のシミュレーションを行った結果について述べる。
図77に、DRAM400のFBCにおけるビット線に沿う縦断面構造を示し、図78にワード線に沿う縦断面構造を示す。ここで、SOI層、即ちボディ領域536の膜厚は35nm、ゲート絶縁膜GEIの膜厚は6nm、BOX酸化膜520の膜厚は20nmである。
また、図78に示されたようにチャネル幅Wgは110nmであり、チャネル下の領域は濃度1×1017cm−3の不純物を有する。STI埋め込み酸化膜511の肩部の幅Sは60nmであり、肩部の領域には2×1018cm−3の不純物を有する。
比較例として、チャネル幅Wgとボディ領域の幅Wbが等しく230nmであり、不純物濃度1×1017cm−3の不純物を有する従来のDRAMと、本実施の形態4によるDRAM400との比較結果について述べる。
図79に、入力波形として、ドレイン電圧を曲線L11に、ゲート電圧を曲線L12に示す。支持基板は−1Vに固定され、ソース領域は0Vに固定される。
時刻12nsecから時刻30nmにおいてデータ「1」が書き込まれ、時刻42nsecから時刻60nsecにおいてデータ「0」が書き込まれる。
そして、時刻38nsecから時刻40nsec、および時刻68nsecから時刻70nsecの間に、それぞれのデータが読み出される。
図80に、時刻38nsecから時刻40nsec、および時刻68nsecから時刻70nsecの間にそれぞれデータを読み出したときのゲート電圧Vgに対するドレイン電流Idのシミュレーション結果を示す。比較例としてのDRAMにおけるデータ「1」を読み出すときの曲線L31とデータ「0」を読み出すときの曲線L32との差に比して、本実施の形態によるDRAM400におけるデータ「1」を読み出すときの曲線L21とデータ「0」を読み出すときの曲線L22との差、即ちデータ「0」とデータ「1」とのドレイン電流Idの差が大きいことがわかる。
(8)第4の実施の形態による半導体装置の製造方法
本発明の第4の実施の形態による半導体装置の製造方法について説明する。
支持基板510上に、厚さ25nmのBOX層520、厚さ60nmのSOI層が形成されたSOI基板を用意し、上記第1の実施の形態と同様の製造工程を経て図81に示された構造を得る。
次に、FBCを形成する領域が開口され、周辺回路を形成する領域を覆う図示されていないレジスト膜を形成する。
このレジスト膜をマスクとして、ボロンを加速エネルギ130keV、ドーズ量1×1014cm−2でイオン注入した後、レジスト膜を除去する。そして、1200℃の窒素雰囲気中で10分間程度アニール処理を行う。
これにより、FBC形成領域における支持基板510に不純物濃度1×1018cm−3でボロンが一様に分布する。
支持基板510内に形成されたるボロン拡散層は、FBCセルアレイの外まで伸びており、拡散層上に形成される図示されていないコンタクトプラグによって配線に接続され、固定電圧が与えられることになる。
次に、FBCを形成する領域が開口されたレジスト膜をマスクとして、ボロンを加速エネルギ30keV、ドーズ量2×1013cm−2でイオン注入する。
このときボディ領域の上面における角部は、STI埋め込み酸化膜511における高さHが60nmの肩部で覆われている。
そのため、図81における領域510Aとして示されたように、ボロンはゲート絶縁膜が形成される領域では大部分が支持基板510側に打ち込まれ、STI埋め込み酸化膜511で覆われた領域では、領域536Aとして示されたように、SOI層中に大部分が打ち込まれる。
従って、ゲート絶縁膜が形成される領域におけるSOI層中のボロン濃度よりも、STI埋め込み酸化膜511で覆われた領域のSOI層中のボロン濃度を自己整合的に高くすることできる。
以降は、上記第1の実施の形態による製造方法と同様の工程を経ることで、本実施の形態による装置を完成させることが可能である。
上記第4の実施の形態による半導体装置を製造する他の製造方法について説明する。
支持基板510上に、厚さ25nmのBOX層520、厚さ60nmのSOI層が形成されたSOI基板を用意し、上記第1の実施の形態と同様の製造工程を経て図82に示されたように、SOI層536がパターニングされた構造を得る。
次に、FBCを形成する領域が開口された図示されていないレジスト膜を形成する。
このレジスト膜をマスクとして、ボロンを加速エネルギ260keV、ドーズ量1.5×1014cm−2でイオン注入した後、レジスト膜590を除去する。
そして、1200℃の窒素雰囲気中で10分間程度アニール処理を行う。
これにより、FBC形成領域の支持基板510に不純物濃度1×1018cm−3のボロンが一様に分布する。
支持基板510内に形成されたボロン拡散層は、FBCセルアレイの外まで伸びており、拡散層上に形成される図示されていないコンタクトプラグによって配線に接続され、固定電圧が与えられることになる。
図83に示されたように、FBCを形成する領域が開口されたレジスト膜、および上記第1の実施の形態におけるシリコン窒化膜211に対応するシリコン窒化膜590をマスクとして、ボロンを加速エネルギ3keV、ドーズ量1×1013cm−2でイオン注入し、レジスト膜590を除去する。
RTA(Rapid Thermal Annealing)処理を行い、導入した不純物を活性化させる。
これにより、ボディ領域536の両端部に濃度1×1018cm−3のボロンが導入される。
以降は、上記第1の実施の形態による製造方法と同様の工程を経ることで、本実施の形態による装置を完成させることが可能である。
但し、図10、図11に示された構造を形成するための工程のうち、支持基板510に濃度1×1018cm−3のボロンを導入する工程は不要である。
また、ゲート絶縁膜の下の領域は完全空乏化デバイスを形成するため、SOI層中には1×1017cm−3のボロンを導入する。
本実施の形態による製造方法によれば、ゲート絶縁膜が形成される領域に形成されたシリコン窒化膜590をマスクとして、ボディ領域536の両端部にボロンをイオン注入することにより、ゲート絶縁膜が形成される領域以外のボロン濃度を制御性よく高くすることができる。
これにより、データ「0」とデータ「1」とのドレイン電流の差のばらつきを抑制することができ、歩留まりの高いDRAMを提供することができる。
また、この製造方法では、第1ゲート絶縁膜が形成される領域に形成されたシリコン窒化膜590をマスクとしてSOI層の両端部にボロンをイオン注入している。よって、高度なリソグラフィ技術によって非常に小さいパターンを形成してボロンをイオン注入する領域を限定する必要がないので、製造コストを低減することができる。
上述した実施の形態はいずれも一例であり、本発明の技術的範囲内において様々に変形することが可能である。
本発明の第1の実施の形態による半導体装置の平面構成を示す平面図。 図1におけるB1−B1線に沿う断面構造を示す縦断面図。 図1におけるC1−C1線に沿う断面構造を示す縦断面図。 同半導体装置の周辺ロジック回路の平面構成を示す平面図。 図5におけるF1−F1線に沿う断面構造を示す縦断面図。 同半導体装置にデータを書き込んで保持した時の電位の変化を示すグラフ。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のC1−C1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のC1−C1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のC1−C1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のC1−C1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のE1−E1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のC1−C1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のE1−E1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のC1−C1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のE1−E1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のB1−B1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のF1−F1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のC1−C1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のE1−E1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のB1−B1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のF1−F1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のC1−C1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のE1−E1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のB1−B1線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図1のF1−F1線に沿う断面を示す縦断面図。 本発明の第2の実施の形態による半導体装置の平面構成を示す平面図。 図26におけるA2−A2線に沿う断面構造を示す縦断面図。 図26におけるC2−C2線に沿う断面構造を示す縦断面図。 図26におけるB2−B2線に沿う断面構造を示す縦断面図。 図26におけるD2−D2線に沿う断面構造を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のA2−A2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のC2−C2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のB2−B2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のD2−D2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のA2−A2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のC2−C2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のB2−B2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のD2−D2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のA2−A2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のC2−C2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のB2−B2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のD2−D2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のA2−A2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のC2−C2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のB2−B2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のD2−D2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のA2−A2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のC2−C2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のB2−B2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のD2−D2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のA2−A2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のC2−C2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のB2−B2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のD2−D2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のA2−A2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のC2−C2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のB2−B2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のD2−D2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のA2−A2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のC2−C2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のB2−B2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のD2−D2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のA2−A2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のC2−C2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のB2−B2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のD2−D2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のA2−A2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のC2−C2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のB2−B2線に沿う断面を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造として、図26のD2−D2線に沿う断面を示す縦断面図。 本発明の第3の実施の形態による半導体装置のワード線に沿う断面構造を示す縦断面図。 同半導体装置における不純物濃度プロファイルを示すグラフ。 同半導体装置のボディ領域におけるアクセプタ不純物濃度プロファイルを示すグラフ。 カウンタ不純物のヒ素のドーズ量と閾値電圧との関係を示すグラフ。 同半導体装置の製造方法における一工程での素子の断面構造を示す縦断面図。 本発明の第4の実施の形態による半導体装置における素子の断面構造を示す縦断面図。 同半導体装置におけるビット線に沿う断面構造を示す縦断面図。 同半導体装置におけるワード線に沿う断面構造を示す縦断面図。 同半導体装置及び比較例による半導体装置に入力する入力波形を示すグラフ。 同半導体装置及び比較例による半導体装置においてデータ「1」と「0」とを読み出すときのドレイン電流の差を示すグラフ。 本発明の第4の実施の形態による半導体装置の製造方法における一工程での素子の断面構造を示す縦断面図。 本発明の第4の実施の形態による半導体装置の他の製造方法における一工程での素子の断面構造を示す縦断面図。 同半導体装置の製造方法における一工程での素子の断面構造を示す縦断面図。 FBCにデータ「1」を書くときの原理を示した説明図。 FBCにデータ「0」を書くときの原理を示した説明図。 FBCに書き込んだデータを保持する原理を示した説明図。 FBCにデータ「1」、「0」を書き込んだときのドレイン電流の差を示すグラフ。
符号の説明
100、200、300、400 DRAM
WL ワード線
SL ソース線
BL ビット線
110、310、410、510 支持基板
120、320、420、520 BOX層
136、336、436、536 ボディ領域
140、GEI ゲート絶縁膜
211、311、411、511 STI埋め込み酸化膜

Claims (5)

  1. 半導体基板と、
    前記半導体基板上に第1の絶縁膜を介して形成され、単結晶構造を有する第1導電型の半導体層と、
    前記半導体層に形成された第2導電型のソース領域および第2導電型のドレイン領域と、
    前記半導体層における前記ソース領域と前記ドレイン領域との間に形成され、フローティング状態にある第1導電型のボディ領域と、
    前記ボディ領域の表面における中央部上に、第2の絶縁膜を介して形成されたゲート電極と、
    を有する、複数のトランジスタと、
    前記複数のトランジスタにおける隣接するもの同士の前記ボディ領域を素子分離する素子分離絶縁膜と、
    前記複数のトランジスタの前記ゲート電極を共通接続するワード線と、
    前記ドレイン領域に電気的に接続されたビット線と、
    前記ソース領域に電気的に接続されたソース線と、
    を備え、
    前記ワード線に沿う断面において、前記ボディ領域が前記第2の絶縁膜と接触する面積は、前記ボディ領域が前記第1の絶縁膜と接触する面積より小さいことを特徴とする半導体装置。
  2. 前記素子分離絶縁膜は前記ワード線に沿う断面においてT字型形状を有し、前記ボディ領域の表面における両端の角部が、前記素子分離絶縁膜におけるT字型の片側の肩部によってそれぞれ覆われており、この肩部で覆われていない前記中央部上に、前記第2の絶縁膜が形成されていることを特徴とする請求項1記載の半導体装置。
  3. 前記ボディ領域において、前記素子分離絶縁膜の片側の前記肩部によって覆われている前記角部の長さが、前記肩部によって覆われていない前記中央部の長さの25%以上であることを特徴とする請求項2記載の半導体装置。
  4. 前記ボディ領域において、前記第2の絶縁膜が形成された前記中央部の表面部分の正味の不純物濃度より、前記表面部分以外の領域の正味の不純物濃度が高いことを特徴とする請求項1乃至3のいずれかに記載の半導体装置。
  5. 第1の絶縁膜によって半導体基板から分離され、単結晶構造を有する第1導電型の半導体層と、前記半導体層上に第2の絶縁膜を介して形成されたゲート電極と、前記半導体層に形成された、第2導電型のソース領域、第2導電型のドレイン領域、及び前記ソース領域と前記ドレイン領域との間に位置するボディ領域とを有するトランジスタを含む半導体装置を製造する方法であって、
    前記半導体基板上に前記第1の絶縁膜を介して設けられた前記半導体層上にマスクを形成し、このマスクを用いて前記半導体層にパターニングを行って分割し、部分的に前記第1の絶縁膜の表面を露出させる工程と、
    前記マスク、前記半導体層及び前記第1の絶縁膜の表面を覆うように、素子分離用の絶縁膜を堆積する工程と、
    前記マスクをストッパとして前記絶縁膜に平坦化を行い、前記マスクを除去することで、分割された各々の前記半導体層の表面における両端の角部を、前記絶縁膜から成る素子分離絶縁膜のT字型形状における片側の肩部によってそれぞれ覆う工程と、
    各々の前記半導体層の表面のうち、前記素子分離絶縁膜によって覆われていない中央部上に、前記第2の絶縁膜を形成する工程と、
    電極材を堆積してパターニングを行い、前記第2の絶縁膜を介して各々の前記半導体層上に前記ゲート電極を形成すると共に、前記ゲート電極を共通接続するワード線を形成する工程と、
    前記ゲート電極をマスクとして各々の前記半導体層に不純物をイオン注入することで、各々の前記半導体層の両端部に第2導電型の前記ソース領域および第2導電型の前記ドレイン領域を形成する工程と、
    を備え、
    前記半導体層における前記ソース領域と前記ドレイン領域の間のボディ領域が前記第2の絶縁膜と接触する面積は、前記ボディ領域が前記第1の絶縁膜と接触する面積より小さいことを特徴とする半導体装置の製造方法。
JP2004262320A 2004-09-09 2004-09-09 半導体装置およびその製造方法 Expired - Fee Related JP3898715B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004262320A JP3898715B2 (ja) 2004-09-09 2004-09-09 半導体装置およびその製造方法
US11/044,348 US7256459B2 (en) 2004-09-09 2005-01-28 Floating body-type DRAM cell with increased capacitance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004262320A JP3898715B2 (ja) 2004-09-09 2004-09-09 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2006080280A JP2006080280A (ja) 2006-03-23
JP3898715B2 true JP3898715B2 (ja) 2007-03-28

Family

ID=35995326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004262320A Expired - Fee Related JP3898715B2 (ja) 2004-09-09 2004-09-09 半導体装置およびその製造方法

Country Status (2)

Country Link
US (1) US7256459B2 (ja)
JP (1) JP3898715B2 (ja)

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710771B2 (en) * 2002-11-20 2010-05-04 The Regents Of The University Of California Method and apparatus for capacitorless double-gate storage
JP3898715B2 (ja) 2004-09-09 2007-03-28 株式会社東芝 半導体装置およびその製造方法
US7606066B2 (en) 2005-09-07 2009-10-20 Innovative Silicon Isi Sa Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same
JP4822792B2 (ja) * 2005-10-04 2011-11-24 株式会社東芝 半導体装置およびその製造方法
JP4664833B2 (ja) 2006-02-15 2011-04-06 株式会社東芝 半導体記憶装置
US7514714B2 (en) * 2006-02-16 2009-04-07 Stmicroelectronics, Inc. Thin film power MOS transistor, apparatus, and method
JP2007242950A (ja) * 2006-03-09 2007-09-20 Toshiba Corp 半導体記憶装置
US8008137B2 (en) * 2006-03-15 2011-08-30 Marvell World Trade Ltd. Method for fabricating 1T-DRAM on bulk silicon
US7492632B2 (en) 2006-04-07 2009-02-17 Innovative Silicon Isi Sa Memory array having a programmable word length, and method of operating same
WO2007128738A1 (en) 2006-05-02 2007-11-15 Innovative Silicon Sa Semiconductor memory cell and array using punch-through to program and read same
US8069377B2 (en) 2006-06-26 2011-11-29 Micron Technology, Inc. Integrated circuit having memory array including ECC and column redundancy and method of operating the same
JP4755946B2 (ja) * 2006-07-11 2011-08-24 株式会社東芝 半導体記憶装置およびその製造方法
US7542340B2 (en) 2006-07-11 2009-06-02 Innovative Silicon Isi Sa Integrated circuit including memory array having a segmented bit line architecture and method of controlling and/or operating same
KR100806344B1 (ko) * 2006-10-20 2008-03-03 삼성전자주식회사 비휘발성 기억 소자 및 그 형성 방법
US7608898B2 (en) * 2006-10-31 2009-10-27 Freescale Semiconductor, Inc. One transistor DRAM cell structure
US7851859B2 (en) * 2006-11-01 2010-12-14 Samsung Electronics Co., Ltd. Single transistor memory device having source and drain insulating regions and method of fabricating the same
KR100801707B1 (ko) 2006-12-13 2008-02-11 삼성전자주식회사 플로팅 바디 메모리 및 그 제조방법
KR101277402B1 (ko) 2007-01-26 2013-06-20 마이크론 테크놀로지, 인코포레이티드 게이트형 바디 영역으로부터 격리되는 소스/드레인 영역을 포함하는 플로팅-바디 dram 트랜지스터
WO2009031052A2 (en) 2007-03-29 2009-03-12 Innovative Silicon S.A. Zero-capacitor (floating body) random access memory circuits with polycide word lines and manufacturing methods therefor
US8064274B2 (en) 2007-05-30 2011-11-22 Micron Technology, Inc. Integrated circuit having voltage generation circuitry for memory cell array, and method of operating and/or controlling same
US8085594B2 (en) 2007-06-01 2011-12-27 Micron Technology, Inc. Reading technique for memory cell with electrically floating body transistor
US8194487B2 (en) 2007-09-17 2012-06-05 Micron Technology, Inc. Refreshing data of memory cells with electrically floating body transistors
US8536628B2 (en) 2007-11-29 2013-09-17 Micron Technology, Inc. Integrated circuit having memory cell array including barriers, and method of manufacturing same
US8349662B2 (en) 2007-12-11 2013-01-08 Micron Technology, Inc. Integrated circuit having memory cell array, and method of manufacturing same
KR20090075062A (ko) 2008-01-03 2009-07-08 삼성전자주식회사 플로팅 바디 트랜지스터를 이용한 동적 메모리 셀을구비하는 메모리 셀 어레이를 구비하는 반도체 메모리 장치
US8773933B2 (en) 2012-03-16 2014-07-08 Micron Technology, Inc. Techniques for accessing memory cells
US8014195B2 (en) 2008-02-06 2011-09-06 Micron Technology, Inc. Single transistor memory cell
US8189376B2 (en) 2008-02-08 2012-05-29 Micron Technology, Inc. Integrated circuit having memory cells including gate material having high work function, and method of manufacturing same
US7957206B2 (en) 2008-04-04 2011-06-07 Micron Technology, Inc. Read circuitry for an integrated circuit having memory cells and/or a memory cell array, and method of operating same
US7947543B2 (en) 2008-09-25 2011-05-24 Micron Technology, Inc. Recessed gate silicon-on-insulator floating body device with self-aligned lateral isolation
US7933140B2 (en) 2008-10-02 2011-04-26 Micron Technology, Inc. Techniques for reducing a voltage swing
US7924630B2 (en) 2008-10-15 2011-04-12 Micron Technology, Inc. Techniques for simultaneously driving a plurality of source lines
US8223574B2 (en) 2008-11-05 2012-07-17 Micron Technology, Inc. Techniques for block refreshing a semiconductor memory device
US8213226B2 (en) 2008-12-05 2012-07-03 Micron Technology, Inc. Vertical transistor memory cell and array
US8319294B2 (en) 2009-02-18 2012-11-27 Micron Technology, Inc. Techniques for providing a source line plane
WO2010102106A2 (en) * 2009-03-04 2010-09-10 Innovative Silicon Isi Sa Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device
WO2010114890A1 (en) 2009-03-31 2010-10-07 Innovative Silicon Isi Sa Techniques for providing a semiconductor memory device
US8139418B2 (en) 2009-04-27 2012-03-20 Micron Technology, Inc. Techniques for controlling a direct injection semiconductor memory device
US8508994B2 (en) 2009-04-30 2013-08-13 Micron Technology, Inc. Semiconductor device with floating gate and electrically floating body
US8498157B2 (en) 2009-05-22 2013-07-30 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8537610B2 (en) 2009-07-10 2013-09-17 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9076543B2 (en) 2009-07-27 2015-07-07 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8199595B2 (en) 2009-09-04 2012-06-12 Micron Technology, Inc. Techniques for sensing a semiconductor memory device
US8174881B2 (en) 2009-11-24 2012-05-08 Micron Technology, Inc. Techniques for reducing disturbance in a semiconductor device
US8310893B2 (en) 2009-12-16 2012-11-13 Micron Technology, Inc. Techniques for reducing impact of array disturbs in a semiconductor memory device
US8416636B2 (en) 2010-02-12 2013-04-09 Micron Technology, Inc. Techniques for controlling a semiconductor memory device
US8576631B2 (en) 2010-03-04 2013-11-05 Micron Technology, Inc. Techniques for sensing a semiconductor memory device
US8411513B2 (en) 2010-03-04 2013-04-02 Micron Technology, Inc. Techniques for providing a semiconductor memory device having hierarchical bit lines
US8369177B2 (en) 2010-03-05 2013-02-05 Micron Technology, Inc. Techniques for reading from and/or writing to a semiconductor memory device
CN102812552B (zh) 2010-03-15 2015-11-25 美光科技公司 半导体存储器装置及用于对半导体存储器装置进行偏置的方法
US8411524B2 (en) 2010-05-06 2013-04-02 Micron Technology, Inc. Techniques for refreshing a semiconductor memory device
US8531878B2 (en) 2011-05-17 2013-09-10 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9559216B2 (en) 2011-06-06 2017-01-31 Micron Technology, Inc. Semiconductor memory device and method for biasing same
CN102956647B (zh) * 2011-08-31 2015-04-15 中国科学院微电子研究所 半导体器件及其制造方法
US9947701B2 (en) 2016-05-31 2018-04-17 Taiwan Semiconductor Manufacturing Company, Ltd. Low noise device and method of forming the same
US10361158B2 (en) * 2017-08-29 2019-07-23 Micron Technology, Inc. Integrated assemblies having structures along a first pitch coupled with structures along a second pitch different from the first pitch
US12106796B2 (en) 2020-12-25 2024-10-01 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor element-including memory device
WO2023007539A1 (ja) * 2021-07-26 2023-02-02 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
KR20230124701A (ko) * 2020-12-25 2023-08-25 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 반도체 소자를 사용한 메모리 장치
US12048140B2 (en) 2020-12-25 2024-07-23 Unisantis Electronics Singapore Pte. Ltd. Memory device using semiconductor element
WO2022168219A1 (ja) * 2021-02-04 2022-08-11 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 柱状半導体素子を用いたメモリ装置
WO2022180733A1 (ja) * 2021-02-25 2022-09-01 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 柱状半導体素子を用いたメモリ装置の製造方法
WO2023007538A1 (ja) * 2021-07-26 2023-02-02 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2023067748A1 (ja) * 2021-10-21 2023-04-27 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
US12120864B2 (en) 2020-12-25 2024-10-15 Unisantis Electronics Singapore Pte. Ltd. Memory device using semiconductor element
JP7057033B1 (ja) * 2021-01-07 2022-04-19 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置の製造方法
JP7513307B2 (ja) * 2021-01-22 2024-07-09 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置の製造方法
WO2022157954A1 (ja) * 2021-01-25 2022-07-28 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子メモリ装置
JP7057037B1 (ja) * 2021-01-29 2022-04-19 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
JP7057034B1 (ja) * 2021-02-02 2022-04-19 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体メモリセル及び半導体メモリ装置
WO2022168147A1 (ja) * 2021-02-02 2022-08-11 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体メモリ装置
WO2022168160A1 (ja) * 2021-02-02 2022-08-11 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体メモリ装置
WO2022168158A1 (ja) * 2021-02-02 2022-08-11 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体メモリ装置
WO2022168148A1 (ja) * 2021-02-02 2022-08-11 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体メモリ装置
WO2022168159A1 (ja) * 2021-02-02 2022-08-11 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022168220A1 (ja) * 2021-02-04 2022-08-11 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022172318A1 (ja) * 2021-02-09 2022-08-18 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022172316A1 (ja) * 2021-02-09 2022-08-18 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022176181A1 (ja) * 2021-02-22 2022-08-25 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022180738A1 (ja) * 2021-02-25 2022-09-01 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022185540A1 (ja) * 2021-03-05 2022-09-09 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022208587A1 (ja) * 2021-03-29 2022-10-06 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置と、その製造方法
WO2022208658A1 (ja) * 2021-03-30 2022-10-06 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド メモリ素子を有する半導体装置
WO2022219696A1 (ja) * 2021-04-13 2022-10-20 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022219704A1 (ja) * 2021-04-13 2022-10-20 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022219703A1 (ja) * 2021-04-13 2022-10-20 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022219694A1 (ja) * 2021-04-13 2022-10-20 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022219767A1 (ja) * 2021-04-15 2022-10-20 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド メモリ素子を有する半導体装置
WO2022219763A1 (ja) * 2021-04-15 2022-10-20 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022234614A1 (ja) * 2021-05-06 2022-11-10 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022239102A1 (ja) 2021-05-11 2022-11-17 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022239099A1 (ja) * 2021-05-11 2022-11-17 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド メモリ素子を有する半導体装置
WO2022239100A1 (ja) 2021-05-11 2022-11-17 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022239198A1 (ja) * 2021-05-13 2022-11-17 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置の製造方法
WO2022239196A1 (ja) * 2021-05-13 2022-11-17 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022239193A1 (ja) * 2021-05-13 2022-11-17 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022239199A1 (ja) * 2021-05-13 2022-11-17 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022239194A1 (ja) * 2021-05-13 2022-11-17 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022239192A1 (ja) * 2021-05-13 2022-11-17 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022239228A1 (ja) 2021-05-14 2022-11-17 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022239237A1 (ja) * 2021-05-14 2022-11-17 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022269740A1 (ja) * 2021-06-22 2022-12-29 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2022269735A1 (ja) * 2021-06-22 2022-12-29 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2023281613A1 (ja) 2021-07-06 2023-01-12 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2023281728A1 (ja) 2021-07-09 2023-01-12 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2023281730A1 (ja) * 2021-07-09 2023-01-12 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
JP7490285B2 (ja) * 2021-09-08 2024-05-27 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2023058161A1 (ja) * 2021-10-06 2023-04-13 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2023058242A1 (ja) * 2021-10-08 2023-04-13 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2023067686A1 (ja) * 2021-10-19 2023-04-27 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2023105604A1 (ja) * 2021-12-07 2023-06-15 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
WO2023112146A1 (ja) * 2021-12-14 2023-06-22 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド メモリ装置
JPWO2023112122A1 (ja) * 2021-12-14 2023-06-22
WO2023199474A1 (ja) * 2022-04-14 2023-10-19 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0274278B1 (en) * 1987-01-05 1994-05-25 Seiko Instruments Inc. MOS field effect transistor and method of manufacturing the same
US5936278A (en) * 1996-03-13 1999-08-10 Texas Instruments Incorporated Semiconductor on silicon (SOI) transistor with a halo implant
JP2001111056A (ja) * 1999-10-06 2001-04-20 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP4216483B2 (ja) * 2001-02-15 2009-01-28 株式会社東芝 半導体メモリ装置
JP4354663B2 (ja) 2001-03-15 2009-10-28 株式会社東芝 半導体メモリ装置
US6548848B2 (en) * 2001-03-15 2003-04-15 Kabushiki Kaisha Toshiba Semiconductor memory device
JP4058403B2 (ja) 2003-11-21 2008-03-12 株式会社東芝 半導体装置
JP3898715B2 (ja) 2004-09-09 2007-03-28 株式会社東芝 半導体装置およびその製造方法

Also Published As

Publication number Publication date
US20060049444A1 (en) 2006-03-09
JP2006080280A (ja) 2006-03-23
US7256459B2 (en) 2007-08-14

Similar Documents

Publication Publication Date Title
JP3898715B2 (ja) 半導体装置およびその製造方法
US8089801B2 (en) Semiconductor memory device and method of forming the same
US6998676B2 (en) Double-gate structure fin-type transistor
US7859028B2 (en) Independently controlled, double gate nanowire memory cell with self-aligned contacts
US9048131B2 (en) Apparatus and methods relating to a memory cell having a floating body
KR100640616B1 (ko) 매몰 게이트 패턴을 포함하는 전계 효과 트랜지스터구조물 및 그것을 포함하는 반도체 소자의 제조방법
US20100207180A1 (en) High-performance one-transistor floating-body dram cell device
JP2005158952A (ja) 半導体装置及びその製造方法
JP2008177273A (ja) 半導体記憶装置及び半導体記憶装置の製造方法
JP2004214379A (ja) 半導体装置、ダイナミック型半導体記憶装置及び半導体装置の製造方法
US8143656B2 (en) High performance one-transistor DRAM cell device and manufacturing method thereof
KR20110136532A (ko) 함몰된 바디에 두개의 게이트를 갖는 1t 디램 소자와 그 동작방법 및 제조방법
TWI792136B (zh) 半導體裝置結構
JP2011014753A (ja) 半導体装置
US7132751B2 (en) Memory cell using silicon carbide
US20080157162A1 (en) Method of combining floating body cell and logic transistors
TW202247421A (zh) 具有記憶元件的半導體裝置
JP2001036038A (ja) 半導体装置の製造方法及び半導体装置
TW200301013A (en) Non-volatile semiconductor memory and process of fabricating the same
JP4247163B2 (ja) 半導体装置およびその製造方法
JP4058403B2 (ja) 半導体装置
JP3093575B2 (ja) 半導体装置及びその製造方法
US20090101958A1 (en) Trench soi-dram cell and method for making the same
KR100623591B1 (ko) 메모리소자 및 그의 제조 방법
JP2015079865A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees