WO2022208658A1 - メモリ素子を有する半導体装置 - Google Patents

メモリ素子を有する半導体装置 Download PDF

Info

Publication number
WO2022208658A1
WO2022208658A1 PCT/JP2021/013535 JP2021013535W WO2022208658A1 WO 2022208658 A1 WO2022208658 A1 WO 2022208658A1 JP 2021013535 W JP2021013535 W JP 2021013535W WO 2022208658 A1 WO2022208658 A1 WO 2022208658A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gate
gate conductor
pillar
conductor layer
Prior art date
Application number
PCT/JP2021/013535
Other languages
English (en)
French (fr)
Inventor
望 原田
康司 作井
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
望 原田
康司 作井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド, 望 原田, 康司 作井 filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to PCT/JP2021/013535 priority Critical patent/WO2022208658A1/ja
Priority to TW111109232A priority patent/TWI823289B/zh
Priority to US17/706,880 priority patent/US20220320097A1/en
Publication of WO2022208658A1 publication Critical patent/WO2022208658A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/20DRAM devices comprising floating-body transistors, e.g. floating-body cells

Definitions

  • the present invention relates to a semiconductor device having memory elements.
  • the channel In a normal planar MOS transistor, the channel extends horizontally along the upper surface of the semiconductor substrate. In contrast, the SGT channel extends in a direction perpendicular to the upper surface of the semiconductor substrate (see Patent Document 1 and Non-Patent Document 1, for example). For this reason, the SGT enables a higher density semiconductor device compared to a planar MOS transistor.
  • a DRAM Dynamic Random Access Memory
  • a PCM Phase Change Memory
  • Non-Patent Document 4 RRAM (Resistive Random Access Memory, see, for example, Non-Patent Document 4), MRAM (Magneto-resistive Random Access Memory, see, for example, Non-Patent Document 5) that changes the resistance by changing the direction of the magnetic spin by current ) can be highly integrated.
  • DRAM memory cell see Non-Patent Document 6
  • the present application relates to a semiconductor device having a dynamic flash memory that does not have resistance change elements or capacitors and can be configured only with MOS transistors.
  • FIG. 7 shows the write operation of a DRAM memory cell composed of a single MOS transistor without the capacitor described above
  • FIG. 8 shows the problem in operation
  • FIG. 7 shows the write operation of the DRAM memory cell.
  • FIG. 7(a) shows a "1" write state.
  • the memory cell is formed on the SOI substrate 101 and includes a source N + layer 103 (hereinafter, a semiconductor region containing a high concentration of donor impurities is referred to as an “N + layer”) to which a source line SL is connected, a bit line A drain N + layer 104 to which BL is connected, a gate conductive layer 105 to which a word line WL is connected, and a floating body 102 of a MOS transistor 110a. constitutes a DRAM memory cell.
  • the SiO 2 layer 101 of the SOI substrate is in contact directly below the floating body 102 .
  • the MOS transistor 110a When "1" is written to the memory cell constituted by one MOS transistor 110a, the MOS transistor 110a is operated in the linear region. That is, the electron channel 107 extending from the source N + layer 103 has a pinch-off point 108 and does not reach the drain N + layer 104 connected to the bit line. In this way, both the bit line BL connected to the drain N + layer 104 and the word line WL connected to the gate conductive layer 105 are set at a high voltage, and the gate voltage is set to about 1/2 of the drain voltage. , the electric field strength is maximized at the pinch-off point 108 near the drain N + layer 104 .
  • the floating body 102 is filled with the generated holes 106, and when the voltage of the floating body 102 becomes higher than that of the source N + layer 103 by Vb or more, the generated holes are discharged to the source N + layer 103.
  • Vb is the built-in voltage of the PN junction between the source N + layer 103 and the floating body 102 of the P layer, which is about 0.7V.
  • FIG. 7B shows the floating body 102 saturated with the generated holes 106 .
  • FIG. 7(c) shows how the "1" write state is rewritten to the "0" write state.
  • the voltage of the bit line BL is negatively biased, and the PN junction between the drain N + layer 104 and the floating body 102 of the P layer is forward biased.
  • the holes 106 previously generated in the floating body 102 in the previous cycle flow to the drain N + layer 104 connected to the bit line BL.
  • FIG. 7(b) filled with the generated holes 106 and 110b (FIG. 7(c)) from which the generated holes are ejected are stored.
  • the state of the memory cell is obtained.
  • the floating body 102 potential of the memory cell 110a filled with holes 106 will be higher than the floating body 102 without the generated holes. Therefore, the threshold voltage of memory cell 110a is lower than that of memory cell 110b. This state is shown in FIG. 7(d).
  • 0.8.
  • FIG. 9(a) shows the "1" write state
  • FIG. 9(b) shows the "0" write state.
  • Vb is written to the floating body 102 by writing "1”
  • the floating body 102 is pulled down to a negative bias when the word line returns to 0 V at the end of writing.
  • the potential difference margin between "1” and “0” cannot be made sufficiently large because the negative bias becomes even deeper.
  • This small operating margin is a major problem of the present DRAM memory cell.
  • the problem is how to form peripheral circuits for driving the DRAM memory cells on the same substrate.
  • Critoloveanu “A Compact Capacitor-Less High-Speed DRAM Using Field Effect-Controlled Charge Regeneration,” Electron Device Letters, Vol. 35, No.2, pp. 179-181 (2012) T. Ohsawa, K. Fujita, T. Higashi, Y. Iwata, T. Kajiyama, Y. Asao, and K. Sunouchi: “Memory design using a one-transistor gain cell on SOI,” IEEE JSSC, vol.37, No.11, pp1510-1522 (2002). T. Shino, N. Kusunoki, T. Higashi, T. Ohsawa, K. Fujita, K. Hatsuda, N. Ikumi, F.
  • the dynamic flash memory cell comprises: a first semiconductor pillar standing on a substrate in a direction perpendicular to the substrate; a first impurity layer connected to the bottom of the first semiconductor pillar; a second impurity layer on or connected to the top of the first semiconductor pillar; a first gate insulating layer surrounding a lower portion of the first semiconductor pillar and in contact with the first impurity layer; a second gate insulating layer in contact with the first gate insulating layer and surrounding an upper portion of the first semiconductor pillar; a first gate conductor layer surrounding part or all of the first gate insulating layer; a second gate conductor layer surrounding the second gate insulating layer; a first insulating layer between the first gate conductor layer and the second gate conductor layer; By controlling the voltage applied to the first impurity layer, the second impurity layer, the first gate conductor layer, and the second gate conductor layer, the second an
  • the Fin transistor is a second semiconductor pillar standing on the substrate in a direction perpendicular to the substrate; a second insulating layer surrounding the lower portion of the second semiconductor pillar; a third impurity layer and a fourth impurity layer respectively connected to both longitudinal side surfaces of an upper portion of the second semiconductor pillar above the second insulating layer; a third gate insulating layer surrounding the second semiconductor pillar between the third impurity layer and the fourth impurity layer; a third gate conductor layer surrounding the third gate insulating layer; the first semiconductor pillar and the second semiconductor pillar and bottom are substantially at the same position in the vertical direction; (first invention).
  • the position of the lower end of the second gate conductor layer and the position of the lower end of the third gate conductor layer are substantially the same in the vertical direction (second invention). .
  • the tops of the first semiconductor pillar and the top of the second semiconductor pillar are substantially at the same position in the vertical direction (third invention).
  • the second impurity layer, the third impurity layer, and the fourth impurity layer contain the same donor impurity atoms and are made of the same semiconductor matrix. (Fourth Invention).
  • the wiring connected to the first impurity layer is a source line
  • the wiring connected to the second impurity layer is a bit line
  • the wiring connected to the first gate conductor layer is A word line is a first drive control line
  • a wiring connected to the second gate conductor layer and the third gate conductor layer and the source line, the bit line, and the first drive control line.
  • the first gate capacitance between the first gate conductor layer and the first semiconductor pillar is the capacitance between the second gate conductor layer and the first semiconductor pillar. It is characterized by being larger than the second gate capacitance (sixth invention).
  • the first gate conductor layer is separated into two conductor layers surrounding the first gate insulating layer in plan view (seventh invention).
  • FIG. 1 is a structural diagram of a memory device having SGTs according to the first embodiment
  • FIG. FIG. 3 is a diagram for explaining an erase operation mechanism of a memory device having SGTs according to the first embodiment
  • FIG. 4 is a diagram for explaining a write operation mechanism of a memory device having SGTs according to the first embodiment
  • FIG. 2 is a diagram for explaining a read operation mechanism of a memory device having SGTs according to the first embodiment
  • FIG. 2 is a diagram for explaining a read operation mechanism of a memory device having SGTs according to the first embodiment
  • FIG. 2 is a diagram for explaining the structure of the dynamic flash memory cell according to the first embodiment and the Fin transistors used in the drive circuit and signal processing circuit of this dynamic flash memory cell;
  • FIG. 10 is a diagram for explaining a manufacturing method for forming a dynamic flash memory cell and a Fin transistor according to the second embodiment on the same substrate;
  • FIG. 10 is a diagram for explaining a manufacturing method for forming a dynamic flash memory cell and a Fin transistor according to the second embodiment on the same substrate;
  • FIG. 10 is a diagram for explaining a manufacturing method for forming a dynamic flash memory cell and a Fin transistor according to the second embodiment on the same substrate;
  • FIG. 10 is a diagram for explaining a manufacturing method for forming a dynamic flash memory cell and a Fin transistor according to the second embodiment on the same substrate;
  • FIG. 10 is a diagram for explaining a manufacturing method for forming a dynamic flash memory cell and a Fin transistor according to the second embodiment on the same substrate;
  • FIG. 10 is a diagram for explaining a manufacturing method for forming a dynamic flash memory cell and a Fin transistor according to the second embodiment on the same substrate;
  • FIG. 10 is a diagram for explaining a manufacturing method for forming a dynamic flash
  • FIG. 10 is a diagram for explaining a manufacturing method for forming a dynamic flash memory cell and a Fin transistor according to the second embodiment on the same substrate;
  • FIG. 10 is a diagram for explaining a manufacturing method for forming a dynamic flash memory cell and a Fin transistor according to the second embodiment on the same substrate;
  • FIG. 10 is a diagram for explaining a manufacturing method for forming a dynamic flash memory cell and a Fin transistor according to the second embodiment on the same substrate;
  • FIG. 10 is a diagram for explaining a manufacturing method for forming a dynamic flash memory cell and a Fin transistor according to the second embodiment on the same substrate;
  • FIG. 10 is a diagram for explaining a manufacturing method for forming a dynamic flash memory cell and a Fin transistor according to the second embodiment on the same substrate;
  • FIG. 10 is a diagram for explaining a manufacturing method for forming a dynamic flash memory cell and a Fin transistor according to the second embodiment on the same substrate;
  • FIG. 10 is a diagram for explaining a manufacturing method for forming a dynamic flash
  • FIG. 10 is a diagram for explaining a manufacturing method for forming a dynamic flash memory cell and a Fin transistor according to the second embodiment on the same substrate;
  • FIG. 4 is a diagram for explaining operational problems of a conventional DRAM memory cell that does not have a capacitor;
  • FIG. 4 is a diagram for explaining operational problems of a conventional DRAM memory cell that does not have a capacitor;
  • FIG. 2 illustrates a read operation of a DRAM memory cell without a conventional capacitor;
  • dynamic flash memory a memory device using semiconductor elements
  • the drawings show the structure and manufacturing method of the dynamic flash memory cell, the drive circuit connected to the dynamic flash memory cell, and the signal processing circuit when Fin transistors (see, for example, Non-Patent Document 12) are formed on the same substrate.
  • FIG. 1 The structure and operation mechanism of the dynamic flash memory cell according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • FIG. 1 The structure of a dynamic flash memory cell will be described with reference to FIG. Then, a data erasing mechanism will be described with reference to FIG. 2, a data writing mechanism will be described with reference to FIG. 3, and a data writing mechanism will be described with reference to FIG.
  • the structure of a memory cell of a dynamic flash memory and a Fin transistor for driving this memory cell will be described with reference to FIG.
  • FIG. 1 shows the structure of a dynamic flash memory cell according to a first embodiment of the invention.
  • Silicon pillars 2 having a conductivity type of P-type or i-type (intrinsic type) are placed on a substrate 1 (which is an example of the “substrate” in the scope of claims) from the bottom (“first semiconductor pillars” in the scope of claims).
  • the silicon pillar (hereinafter, the silicon pillar is referred to as “Si pillar”)
  • the N + layer 3a (which is an example of the “first impurity layer” in the scope of claims) connected to the bottom of the Si pillar 2 ) and an N + layer 3b (which is an example of the “second impurity layer” in the scope of claims) connected to the top of the Si pillar 2 are formed.
  • N + layer 3a and N + layer 3b serves as a source
  • the other serves as a drain.
  • a channel region 7 is formed between the N + layer 3 a and the N + layer 3 b of the Si pillar 2 .
  • the first gate insulating layer 4a and the second gate insulating layer 4b are in contact with or close to the N + layers 3a and 3b that serve as the source and drain, respectively.
  • a gate conductor layer 5b (which is an example of the "second gate conductor layer” in the claims) is formed respectively.
  • the first gate conductor layer 5a and the second gate conductor layer 5b are separated by an insulating layer 6 (which is an example of the "first insulating layer” in the claims).
  • the channel region 7 consists of a first channel region 7a surrounded by the first gate insulating layer 4a and a second channel region 7b surrounded by the second gate insulating layer 4b.
  • a dynamic flash memory cell 9 is formed.
  • the N + layer 3a serves as a source line SL (an example of a “source line” in claims), and the N + layer 3b serves as a bit line BL (an example of a “bit line” in claims).
  • the first gate conductor layer 5a is connected to the plate line PL (an example of the "first drive control line” in the claims), and the second gate conductor layer 5b is connected to the word lines WL (claimed , which is an example of a "word line” of the
  • the substrate 1 is a base material layer connected to the Si pillars 2 standing in the vertical direction and having an upper surface extending in the horizontal direction. Accordingly, the portion of the N + layer 13 a below the surface of the substrate 1 in the vertical direction is referred to as the substrate 1 . The portion of the N + layer 13a within this substrate 1 may extend horizontally. Also, the substrate 1 may be formed of SOI (Silicon On Insulator), single-layered or multi-layered Si, or other semiconductor materials. Further, the substrate 1 may be a well layer composed of a single layer of N layers or P layers, or a plurality of layers.
  • FIG. 2(a) shows a state in which the hole groups 11 generated by impact ionization in the previous cycle are stored in the channel region 7 before the erasing operation. and.
  • VERA is, for example, -3V.
  • V FB V ERA +Vb.
  • the threshold voltage of the second gate conductor layer 5b connected to this word line WL is increased.
  • the erased state of this channel region 7 is logical storage data "0".
  • the voltage conditions applied to the bit line BL, the source line SL, the word line WL, and the plate line PL are only examples for performing the erase operation, and other operating conditions that enable the erase operation may be used.
  • FIG. 3 shows the write operation of the dynamic flash memory cell according to the first embodiment of the invention.
  • 0 V for example, is input to the N + layer 3a connected to the source line SL
  • 3 V for example, is input to the N + layer 3b connected to the bit line BL
  • the plate line PL 2 V for example, is input to the connected first gate conductor layer 5a
  • 5 V for example, is input to the second gate conductor layer 5b connected to the word line WL.
  • an inversion layer 12a is formed inside the first gate conductor layer 5a to which the plate line PL is connected, and the second gate conductor layer 5a having the first gate conductor layer 5a is formed.
  • One N-channel MOS transistor is operated in the linear region.
  • a pinch-off point 13 exists in the inversion layer 12a inside the second gate conductor layer 5b connected to the plate line PL.
  • the second N-channel MOS transistor having the second gate conductor layer 12b connected to the word line WL is operated in the saturation region.
  • the inversion layer 12b is formed on the entire surface inside the second gate conductor layer 5b to which the word line WL is connected, without any pinch-off point.
  • the inversion layer 12b formed entirely inside the second gate conductor layer 5b connected to the word line WL serves as a substantial drain of the second N-channel MOS transistor having the second gate conductor layer 5b. work.
  • the boundary of the channel region 7 between the first N-channel MOS transistor with the series-connected first gate conductor layer 5a and the second N-channel MOS transistor with the second gate conductor layer 5b The electric field is maximum in the region and the impact ionization phenomenon occurs in this region. Since this region is the region on the source side viewed from the second N-channel MOS transistor having the second gate conductor layer 5b connected to the word line WL, this phenomenon is called the source-side impact ionization phenomenon. Due to this source-side impact ionization phenomenon, electrons flow from the N + layer 3a connected to the source line SL toward the N + layer 3b connected to the bit line.
  • the generated hole group 11 is majority carriers in the channel region 7 and charges the channel region 7 with a positive bias. Since the N + layer 3a connected to the source line SL is at 0 V, the channel region 7 has a built-in voltage Vb (about 0 V) of the PN junction between the N + layer 3a connected to the source line SL and the channel region 7. .7V).
  • Vb about 0 V
  • the threshold voltages of the first N-channel MOS transistor and the second N-channel MOS transistor are lowered due to the substrate bias effect. Thereby, as shown in FIG. 3(c), the threshold voltage of the N-channel MOS transistor in the second channel region 7b connected to the word line WL is lowered.
  • the write state of this channel area 7 is assigned to logical storage data "1".
  • Electron-hole pairs may be generated by the impact ionization phenomenon or the GIDL current in the third boundary region, and the channel region 7 may be charged with the generated hole groups 11 .
  • the voltage conditions applied to the bit line BL, the source line SL, the word line WL, and the plate line PL are examples for performing the write operation, and other operating conditions that allow the write operation may be used.
  • FIGS. 4A and 4B The read operation of the dynamic flash memory cell according to the first embodiment of the present invention and the related memory cell structure will be described with reference to FIGS. 4A and 4B.
  • the read operation of the dynamic flash memory cell will be described with reference to FIGS. 4A(a) to 4(c).
  • FIG. 1(a) when channel region 7 is charged to built-in voltage Vb (approximately 0.7 V), the threshold voltage of the N-channel MOS transistor drops due to the substrate bias effect. This state is assigned to logical storage data "1".
  • FIG. 4B when a memory block selected before writing is in the erased state "0" in advance, the floating voltage VFB of the channel region 7 is VERA +Vb.
  • a write operation randomly stores a write state of "1".
  • logical storage data of logical "0" and "1" are created for the word line WL.
  • FIG. 1(c) reading is performed by the sense amplifier using the level difference between the two threshold voltages for the word line WL.
  • the gate capacitance of the second gate conductor layer 5b connected to the word line WL is preferably designed to be smaller than the gate capacitance of the first gate conductor layer 5a connected to the plate line PL. As shown in FIG. 1A, the vertical length of the first gate conductor layer 5a connected to the plate line PL is longer than the vertical length of the second gate conductor layer 5b connected to the word line WL.
  • FIG. 4(b) shows an equivalent circuit of one cell of the dynamic flash memory of FIG. 4(a).
  • FIG. (c) shows the coupling capacity relationship of the dynamic flash memory.
  • CWL is the capacitance of the second gate conductor layer 5b
  • CPL is the capacitance of the first gate conductor layer 5a
  • CBL is the capacitance of the N + layer 3b serving as the drain and the second channel region 7b
  • C SL is the capacitance of the PN junction between the N + layer 3a serving as the source and the first channel region 7a.
  • V ReadWL is the amplitude potential at the time of reading the word line WL.
  • ⁇ V FB can be reduced by reducing the contribution of C WL compared to the overall capacitance C PL +C WL +C BL +C SL of the channel region 7 .
  • C BL +C SL is the capacity of the PN junction, and in order to increase it, for example, the diameter of the Si pillar 2 is increased.
  • the planar .DELTA.V.sub.FB can be made even smaller without reducing the density of the memory cells in view.
  • the voltage conditions applied to the bit line BL, the source line SL, the word line WL, and the plate line PL are examples for performing the read operation, and other operating conditions that enable the read operation may be used.
  • FIG. 5(a) is a cross-sectional view of the dynamic flash memory
  • FIG. 5(b) is a cross-sectional view along line Y-Y' of FIG. 5(a) and in the vertical direction of FIG. 5(a).
  • FIG. 5(c) is a cross-sectional view of the Fin transistor
  • FIG. 5(d) is a cross-sectional view along line Y1-Y1' of FIG. 5(c) and in the vertical direction of FIG. 5(c).
  • a memory cell of a dynamic flash memory and a Fin transistor are on the same P-layer substrate 10 .
  • a P layer 9 (hereinafter, a semiconductor region containing an acceptor impurity is referred to as a “P layer”) and an N + layer 13a connected to the P layer 9 ( (which is an example of the "first impurity layer” in the scope of claims).
  • a Si pillar 11A (which is an example of a "first semiconductor pillar” in the claims) is connected to the N + layer 13a.
  • N + layer 13b (which is an example of the "second impurity layer” in the claims) on the top of the Si pillar 11A.
  • a SiO 2 layer 14 is present on the N + layer 13a on the outer periphery of the Si pillar 11A.
  • HfO 2 layer 15 (which is an example of the "first gate insulating layer” in the claims) surrounding the lower side surface of the Si pillar 11A.
  • TiN layer 16 which is an example of the "first gate conductor layer” in the claims.
  • HfO 2 layer 18 (“second 2 gate insulating layer”).
  • TiN layer 19 which is an example of a " second gate conductor layer” in the claims.
  • the N + layer 13a is connected to the source line SL shown in FIG.
  • the N + layer 13b is connected to the bit line BL
  • the TiN layer 16 is connected to the plate line PL
  • the TiN layer 19 is connected to the word line WL.
  • the channel layer of the Si pillar 11A sandwiched between the N + layers 13a and 13b consists of the first channel layer 11a surrounded by the HfO 2 layer 15 and the second channel layer 11b surrounded by the HfO 2 layer 18. .
  • Si pillar 11B an example of the "second semiconductor pillar” in the claims
  • SiO 2 layer 20 an example of the "second insulating layer” in the claims
  • N + layer 13c an example of the “third impurity layer” in the claims
  • N + layer 13d the “fourth impurity layer” in the claims
  • the SiO 2 layer 14 in the dynamic flash memory cell may be present on the periphery of the bottom of the Si layer base 11c.
  • the HfO 2 layer 15 in the dynamic flash memory cell may be formed continuously on the side surface of the Si layer base 11c.
  • the Si pillars 11A of the dynamic flash memory shown in FIGS. 5(a) and 5(b) and the Si pillars 11B of the Fin transistors shown in FIGS. 5(c) and 5(d) are both on the substrate 10. .
  • the bottom positions A of the Si pillar 11A and the Si pillar 11B are the same.
  • Both the Si pillar 11A of the dynamic flash memory and the Si pillar 11B of the Fin transistor are divided into two regions near the position B in the vertical direction.
  • the Si pillar 11A consists of a first channel layer 11a surrounded by the HfO 2 layer 15 and a second channel layer 11b surrounded by the HfO 2 layer 18.
  • the Si pillar 11B is composed of the Si layer base 11c and the channel layer 11d of the Fin transistor.
  • the transistor of the dynamic flash memory is above the Si pillar 11A, and the Fin transistor is above the Si pillar 11B.
  • the height AC of the Si pillar 11A of the dynamic flash memory and the height of the Si pillar 11B of the Fin transistor are the same.
  • the dynamic flash memory operation described in this embodiment can be performed even if the horizontal cross-sectional shape of the Si pillar 2 in FIG. 1 and the Si pillar 11A in FIG. 5 is circular, elliptical, or rectangular. Circular, elliptical, and rectangular dynamic flash memory cells may also be mixed on the same chip.
  • the position of the upper surface of the Si pillar 11A is the position of the upper surface of the N + layer 13b .
  • the lower end of the N + layer 13b becomes the upper surface of the Si pillar 11A.
  • the first gate conductor layer 5a is connected to the plate line PL and the second gate conductor layer 5b is connected to the word line WL.
  • the N + layer 3a is connected to the source line SL
  • the N + layer 3b is connected to the bit line BL . Connecting layer 3b to source line SL also allows normal dynamic flash memory operation.
  • the first gate conductor layer 5a surrounds the entire first gate insulating layer 4a.
  • the first gate conductor layer 5a may have a structure surrounding part of the first gate insulating layer 4a in plan view.
  • the outside of the first gate insulating layer not covered with the first gate conductor layer 5a is covered with an insulating layer or a third gate conductor layer electrically isolated from the first gate conductor layer.
  • a third gate conductor layer is provided, a constant voltage or pulse voltage can be applied to the third gate conductor layer to perform dynamic flash memory operation.
  • many holes are accumulated in the first channel region 7a due to the structure in which the first gate conductor layer 5a surrounds part of the first gate insulating layer 4a in plan view. be able to.
  • the voltage of the word line WL of the plate line PL of the dynamic flash memory cell according to the first embodiment of the present invention fluctuates up and down when the dynamic flash memory cell performs write and read operations.
  • the plate line PL serves to reduce the capacitive coupling ratio between the word line WL and the channel region 7 .
  • the influence of the voltage change in the channel region 7 when the voltage of the word line WL swings up and down can be significantly suppressed.
  • the threshold voltage difference between the SGT transistors of the word lines WL indicating logic "0" and "1” can be increased. This leads to increased operating margins for dynamic flash memory cells.
  • the bottoms of the Si pillar 11A of the dynamic flash memory cell and the Si pillar 11B of the Fin transistor are the same at position A, and at the same height above the substrate 10 (between AC). It is formed.
  • the words of the dynamic flash memory cell are formed.
  • the TiN layer 19 of the line WL and the TiN layer 23, which is the gate of the Fin transistor are positioned at substantially the same height in the vertical direction.
  • the transistor connected to the word line WL of the dynamic flash memory and the Fin transistor are formed at substantially the same height.
  • dynamic flash memory cells and Fin transistor circuits can be easily formed on the substrate 10 . This leads to cost reduction in manufacturing semiconductor devices with dynamic flash memory.
  • FIGS. 6A to 6J A manufacturing method for forming a dynamic flash memory cell according to the second embodiment of the present invention and a Fin transistor on the same substrate 21 will be described with reference to FIGS. 6A to 6J.
  • (a) is a cross-sectional view of a dynamic flash memory cell
  • (b) is a cross-sectional view along line YY' of (a) and in the vertical direction of (a).
  • (c) is a cross-sectional view of a Fin transistor
  • (d) is a cross-sectional view taken along line Y1-Y1' of (c) and in the vertical direction of (c).
  • an N + layer 22 is formed in the upper layer of the P layer substrate 21 in the dynamic flash memory cell area by ion implantation of phosphorus (P) impurities.
  • the N + layer 22 may be formed by etching the surface layer of the P-layer substrate 21 in the dynamic flash memory cell area and forming the N + layer 22 there by epitaxial crystal growth.
  • the P-layer substrate 21 outside the dynamic flash memory cell area is first covered with a SiO 2 layer. Then, using the SiO 2 layer as a mask, the surface layer of the P layer substrate 21 is etched. Then, an N + layer is formed on the entire surface by an epitaxial crystal growth method.
  • the surface position is polished by the CMP (Chemical Mechanical Polishing) method so that the P layer substrate 21 is positioned.
  • the N + layer 22 is embedded in the P layer substrate 21 .
  • the surface position of the dynamic flash memory cell region N + layer 22 and the surface of the P layer substrate 21 in the Fin transistor region coincide at position A'.
  • a P layer 23 is formed over the entire dynamic flash memory cell area and Fin transistor area by epitaxial crystal growth. Then, a first mask material layer 24a is formed on the P layer 23 in the dynamic flash memory cell area, and a second mask material layer 24b is formed on the P layer 23 in the Fin transistor area.
  • the P layer 23 is etched until its bottom position is near the upper surface position of the N + layer 22a. Then, Si pillars 23a and 23b are formed.
  • a SiO 2 layer 26 is formed on the N + layer 22a in the dynamic flash memory cell area around the Si pillars 23a and 23b and the P layer substrate 21 in the Fin transistor area.
  • a HfO 2 layer 27 is formed over the entire surface.
  • a TiN layer (not shown) is then deposited over the entire surface.
  • the upper surface position is polished to the upper surface position of the mask material layers 24a and 24b.
  • a mask material layer 30a is then formed covering the dynamic flash memory cell area.
  • the TiN layer in the Fin transistor region is removed.
  • a TiN layer 28 is formed surrounding the HfO 2 layer 27 in the dynamic flash memory cell area.
  • the SiO 2 layer 26 and the HfO 2 layer 27 in the Fin transistor area may be removed.
  • the whole is then covered with a SiO 2 layer (not shown).
  • a SiO 2 layer (not shown).
  • the entire structure is polished by the CMP method until the upper surface positions are the upper surface positions of the mask material layers 24a and 24b, thereby forming the SiO 2 layer 31 in the Fin transistor region.
  • a mask material layer 30b is formed to cover the Fin transistor region.
  • the TiN layer 28 is etched up to the position B by the RIE method to form a TiN layer 28a.
  • the Si pillars 23a and 23b above the position B and the HfO 2 layer 27 covering the mask material layers 24a and 24b are removed, and the Si pillars 23a and 23b below the position B are removed. A surrounding HfO 2 layer 27a is formed. Then, the mask material layer 24b on the Si pillar 23b is removed.
  • lithography and RIE are used to etch the SiO 2 layer 35 to form an SiO 2 layer 35a surrounding the TiN layer 33 in the Fin transistor region.
  • the TiN layer 33 is etched to form a TiN layer 33b.
  • the whole is covered with an insulating layer (not shown).
  • This insulating layer is etched by RIE to form spacer layers 37a and 37b on the side surfaces of the TiN layer 33b and SiO 2 layer 35a, and spacer layers 37c and 37d on the upper side surfaces of the Si pillar 23b.
  • the SiO 2 layer 36 is formed by polishing up to the upper surface position of the mask material layer 24a by the CMP method.
  • a mask material layer 40 is then formed to cover the Fin transistor region.
  • the TiN layer 33 and the SiO 2 layer 35 are etched using the RIE method to form a TiN layer 33a and a SiO 2 layer 35b in the dynamic flash memory cell area.
  • mask material layer 40, SiO2 layer 36, and spacer layers 37c and 37d are removed as shown in FIG. 6J.
  • insulating layers 38a and 38b are formed around the Si pillars 23a and 23b.
  • the HfO 2 layer 32 exposed above the Si pillars 23a and 23b is removed.
  • the mask material layer 24a is removed.
  • N + layers 40a, 41a, 41b are formed by selective epitaxial crystal growth, surrounding the exposed tops of the Si pillars 23a.
  • a source line SL is connected to the N + layer 22a
  • a plate line PL is connected to the TiN layer 28a
  • a word line WL is connected to the TiN layer 33a
  • a bit line BL is connected to the N + layer 40a.
  • a dynamic flash memory cell is formed.
  • a Fin transistor is formed in which a gate line is connected to the TiN layer 33b, one of the N + layers 41a and 41b is connected to a source line, and the other is connected to a drain line.
  • the gate insulating layers of the dynamic flash memory cell and the Fin transistor are formed of the same HfO 2 layer 32, but the gate insulating layers of the dynamic flash memory cell and the Fin transistor are formed separately from different material layers. may be formed with The same applies to the TiN layer 33, which is the gate conductor layer in the dynamic flash memory cell.
  • the N + layers 40a, 41a and 41b when the N + layers 40a, 41a and 41b are formed at the same time, the N + layers 40a, 41a and 41b have the same semiconductor matrix and the same donor impurity atoms. be.
  • the N + layer 40a and the N + layers 41a and 41b may be formed from different semiconductor bases.
  • the N + layer 40a and the N + layers 41a and 41b may contain different donor impurity atoms.
  • the word line transistors and Fin transistors of the dynamic flash memory cell are formed at the same height in the vertical direction, which facilitates manufacturing.
  • the Si pillars 2, 11A, 11B, 23a, and 23b are formed in the present invention, the semiconductor pillars may be made of other semiconductor materials.
  • the N + layers 3a, 3b, 13a, 13b, 13c, and 13d in this embodiment may be formed of Si containing donor impurities or other semiconductor material layers. It may also be formed from different semiconductor material layers. Alternatively, the N+ layer may be formed by an epitaxial crystal growth method or another method.
  • the TiN layer 16 is used as the gate conductor layer 5a connected to the plate line PL.
  • a single layer or a combination of multiple conductive material layers may be used.
  • the TiN layer 19 was used as the word line WL and the gate conductor layer 5b connected to the word line WL.
  • the gate TiN layers 16 and 19 may be connected to a wiring metal layer such as W on the outside thereof. This also applies to other embodiments according to the present invention.
  • the shape of the Si pillars 2 and 11A in plan view was circular.
  • the shape of the Si pillars 2 and 11A in plan view may be a circle, an ellipse, a shape elongated in one direction, or the like.
  • Si pillars with different planar view shapes are mixed in the logic circuit area to form SGTs and Fin transistors. can be done.
  • the Si pillars 11A and 11B having a rectangular cross section are used for explanation, but they may be trapezoidal.
  • the cross section of the Si pillar 11A surrounded by the HfO 2 layer 15 and the cross section of the Si pillar 11A surrounded by the HfO 2 layer 18 are each rectangular and pedestal. They may differ in shape. These matters are the same in other embodiments according to the present invention.
  • the substrates 10 and 21 may be made of SOI (Silicon On Insulator), single-layered or multi-layered Si, or other semiconductor materials. Also, the substrates 10 and 21 may be well layers composed of a single layer of N layers or P layers, or a plurality of layers.
  • SOI Silicon On Insulator
  • the substrates 10 and 21 may be well layers composed of a single layer of N layers or P layers, or a plurality of layers.
  • the HfO 2 layers 15, 18, and 22 described in the first embodiment may be other insulating layers consisting of a single layer or multiple layers as long as they function as gate insulating layers.
  • the TiN layers 16, 19, and 23 may be formed of a single layer or other conductor layers having a plurality of layers as long as they have the function of a gate conductor layer.
  • each of the HfO 2 layers 15, 18, and 22 may be formed of material layers having different physical values such as material and thickness. This also applies to other embodiments according to the present invention.
  • a conductor layer such as a W layer may be used in connection with the N + layer 22a at the bottom of the Si pillar 23a in the second embodiment. This also applies to other embodiments according to the present invention.
  • the N + layers 22a, 40a, 41a, and 41b in the second embodiment may be formed of Si containing donor impurities or other semiconductor material layers.
  • the N + layer may be formed by an epitaxial crystal growth method or another method. This also applies to other embodiments according to the present invention.
  • the TiN layer 16 is used as the plate line PL and the gate conductor layer 5a connected to the plate line PL.
  • a single layer or a combination of multiple conductive material layers may be used.
  • a TiN layer 19 was used as the gate conductor layer 5b connected to this word line WL.
  • the gate TiN layers 16 and 19 may be connected to wiring metal layers such as TaN and W on the outside thereof. This also applies to other embodiments according to the present invention.
  • the gate capacitance of the first gate conductor layer 5a connected to the plate line PL is larger than the gate capacitance of the second gate conductor layer 5b connected to the word line WL.
  • the gate capacitance of the first gate conductor layer 5a is further reduced to the gate length of the second gate conductor layer 5b. Larger than capacity.
  • the film thickness of each gate insulating layer is changed.
  • the thickness of the gate insulating film of the first gate insulating layer 4a is made thinner than the thickness of the gate insulating film of the second gate insulating layer 4b, and the gate capacitance of the first gate conductive layer 5a is increased. , can be made larger than the gate capacitance of the second gate conductor layer 5b. Further, by changing the dielectric constant of the material of each gate insulating layer, the dielectric constant of the gate insulating film of the first gate insulating layer 4a is made higher than that of the gate insulating film of the second gate insulating layer 4b.
  • the gate capacitance of the first gate conductor layer 5a is determined by combining any one of the length of the gate conductor layers 5a and 5b, the film thickness of the gate insulating layers 4a and 4b, and the dielectric constant of the second gate conductor layer 5b. may be even larger than the gate capacitance of . This also applies to other embodiments according to the present invention.
  • the N + layer 13a also serves as a wiring conductor layer for the source line SL.
  • a conductor layer such as a W layer may be used as the source line SL on the outer periphery of the N + layer 13a at the bottom of the Si pillar 11A. This also applies to other embodiments according to the present invention.
  • the TiN layer 28a surrounding the HfO 2 layer 27 may be separated into two regions by lithography and RIE etching steps.
  • a semiconductor device having a memory element according to the present invention a semiconductor device having a high-density and high-performance dynamic flash memory can be obtained.
  • Reference Signs List 1 10 Substrate 21 P-layer substrate 2, 11A, 11B, 23a, 23b Si pillar 11c Si layer base 11d Channel layer 3a, 3b, 13a, 13b, 13c, 13d, 22, 22a, 40a, 41a, 41b N + layer 4a first gate insulating layer 4b second gate insulating layer 5a first gate conductor layer 5b second gate conductor layer 6 insulating layer 7 channel region 7a, 11a first channel layer 7b, 11b second channel layer 11d Fin transistor channel layer SL source line PL plate line WL word line BL bit line 21, 23 P layer 24a, 24b, 30a, 30b, 40 mask material layer 15, 18a, 18b, 27, 27a, 32 HfO 2 layer 16 , 19a, 19b, 23, 28, 28a, 33, 33a, 33b TiN layers 20, 26, 31, 35, 35a, 35b, 36 SiO 2 layers 27a SiN layers 37a, 37b, 37c, 37d Spacer layers 38a, 38b Insulation layer

Landscapes

  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

P層基板10上に立つSi柱11Aの下方を囲んだHfO2層15とTiN層16と、Si柱11Aの上方を囲んだHfO2層18と、TiN層19と、Si柱11Aの底部と頂部に繋がるN+層13a、13bと、を有するダイナミック フラッシュ メモリセルと、同じP層基板10上に立つSi柱11Bの下方を囲んだSiO2層21と、Si柱11Bの上方を囲んだHfO2層22と、TiN層23と、Si柱11Bの上部両側面に繋がるN+層13c、13dと、を有するFinトランジスタとにおいて、Si柱11AとSi柱11Bとの底部位置と、が同じA位置にあり、そして、Si柱11Aの上方部の、HfO2層18と、TiN層19とよりなるSGTトランジスタ部と、Si柱11Bの上方部の、HfO2層22と、TiN層23とよりなるFinトランジスタ部と、の底部が同じB位置にある。

Description

メモリ素子を有する半導体装置
 本発明は、メモリ素子を有する半導体装置に関する。
 近年、LSI(Large Scale Integration)技術開発において、メモリ素子を有する半導体装置の高集積化と高性能化が求められている。
 通常のプレナー型MOSトランジスタでは、チャネルが半導体基板の上表面に沿う水平方向に延在する。これに対して、SGTのチャネルは、半導体基板の上表面に対して垂直な方向に延在する(例えば、特許文献1、非特許文献1を参照)。このため、SGTはプレナー型MOSトランジスタと比べ、半導体装置の高密度化が可能である。このSGTを選択トランジスタとして用いて、キャパシタを接続したDRAM(Dynamic Random Access Memory、例えば、非特許文献2を参照)、抵抗変化素子を接続したPCM(Phase Change Memory、例えば、非特許文献3を参照)、RRAM(Resistive Random Access Memory、例えば、非特許文献4を参照)、電流により磁気スピンの向きを変化させて抵抗を変化させるMRAM(Magneto-resistive Random Access Memory、例えば、非特許文献5を参照)などの高集積化を行うことができる。また、キャパシタを有しない、1個のMOSトランジスタで構成された、DRAMメモリセル(非特許文献6を参照)などがある。本願は、抵抗変化素子やキャパシタを有しない、MOSトランジスタのみで構成可能な、ダイナミック フラッシュ メモリを有する半導体装置に関する。
 図7に、前述したキャパシタを有しない、1個のMOSトランジスタで構成された、DRAMメモリセルの書込み動作を、図8に、動作上の問題点を、図9に、読出し動作を示す(非特許文献6~10を参照)。
 図7にDRAMメモリセルの書込み動作を示す。図7(a)は、“1”書込み状態を示している。ここで、メモリセルは、SOI基板101に形成され、ソース線SLが接続されるソースN+層103(以下、ドナー不純物を高濃度で含む半導体領域を「N+層」と称する)、ビット線BLが接続されるドレインN+層104、ワード線WLが接続されるゲート導電層105、MOSトランジスタ110aのフローティングボディ(Floating Body)102により構成され、キャパシタを有さず、MOSトランジスタ110aが1個でDRAMのメモリセルが構成されている。なお、フローティングボディ102直下には、SOI基板のSiO2層101が接している。この1個のMOSトランジスタ110aで構成されたメモリセルの“1”書込みを行う際には、MOSトランジスタ110aを線形領域で動作させる。すなわち、ソースN+層103から延びる電子のチャネル107には、ピンチオフ点108があり、ビット線が接続しているドレインN+層104までには、到達していない。このようにドレインN+層104に接続されたビット線BLとゲート導電層105に接続されたワード線WLを共に高電圧にして、ゲート電圧をドレイン電圧の約1/2程度で、MOSトランジスタ110aを動作させると、ドレインN+層104近傍のピンチオフ点108において、電界強度が最大となる。この結果、ソースN+層103からドレインN+層104に向かって流れる加速された電子は、Siの格子に衝突して、その時に失う運動エネルギーによって、電子・正孔対が生成される。発生した大部分の電子(図示せず)は、ドレインN+層104に到達する。また、ごく一部のとても熱い電子は、ゲート酸化膜109を飛び越えて、ゲート導電層105に到達する。そして、同時に発生した正孔106は、フローティングボディ102を充電する。この場合、発生した正孔は、フローティングボディ102がP型Siのため、多数キャリアの増分として、寄与する。フローティングボディ102は、生成された正孔106で満たされ、フローティングボディ102の電圧がソースN+層103よりもVb以上に高くなると、さらに生成された正孔は、ソースN+層103に放電する。ここで、Vbは、ソースN+層103とP層のフローティングボディ102との間のPN接合のビルトイン電圧であり、約0.7Vである。図7(b)には、生成された正孔106でフローティングボディ102が飽和充電された様子を示している。
 次に、図7(c)を用いて、メモリセル110の“0”書込み動作を説明する。共通な選択ワード線WLに対して、ランダムに“1”書込みのメモリセル110aと“0”書込みのメモリセル110bが存在する。図7(c)では、“1”書込み状態から“0”書込み状態に書き換わる様子を示している。“0”書込み時には、ビット線BLの電圧を負バイアスにして、ドレインN+層104とP層のフローティングボディ102との間のPN接合を順バイアスにする。この結果、フローティングボディ102に予め前サイクルで生成された正孔106は、ビット線BLに接続されたドレインN+層104に流れる。書込み動作が終了すると、生成された正孔106で満たされたメモリセル110a(図7(b))と、生成された正孔が吐き出されたメモリセル110b(図7(c))の2つのメモリセルの状態が得られる。正孔106で満たされたメモリセル110aのフローティングボディ102の電位は、生成された正孔がいないフローティングボディ102よりも高くなる。したがって、メモリセル110aのしきい値電圧は、メモリセル110bのしきい値電圧よりも低くなる。その様子を図7(d)に示す。
 次に、この1個のMOSトランジスタで構成されたメモリセルの動作上の問題点を、図8を用いて説明する。図8(a)で示したように、フローティングボディ102の容量CFBは、ワード線の接続されたゲートとフローティングボディ102との間の容量CWLと、ソース線の接続されたソースN+層103とフローティングボディ102との間のPN接合の接合容量CSLと、ビット線の接続されたドレインN+層103とフローティングボディ102との間のPN接合の接合容量CBLとの総和で、
CFB = CWL + CBL + CSL (1)
で表される。したがって、書込み時にワード線電圧VWLが振幅すると、メモリセルの記憶ノード(接点)となるフローティングボディ102の電圧も、その影響を受ける。その様子を図8(b)に示している。書込み時にワード線電圧VWLが0VからVProgWLに上昇すると、フローティングボディ102の電圧VFBは、ワード線電圧が変化する前の初期状態の電圧VFB1からVFB2へ、ワード線との容量結合によって上昇する。その電圧変化量ΔVFBは、
ΔVFB = VFB2 - VFB1
       = CWL / (CWL + CBL + CSL) × VProgWL (2)
で表される。
ここで、
β= CWL / (CWL + CBL + CSL) (3)
で表され、βをカップリング率と呼ぶ。このようなメモリセルにおいて、CWLの寄与率が大きく、例えば、CWL:CBL:CSL=8:1:1である。この場合、β=0.8となる。ワード線が、例えば、書込み時の5Vから、書込み終了後に0Vになると、ワード線とフローティングボディ102との容量結合によって、フローティングボディ102が、5V×β=4Vも振幅ノイズを受ける。このため、書込み時のフローティングボディ“1”電位と“0”電位との電位差マージンを十分に取れない問題点があった。
 図9に読出し動作を示す。図9(a)は、“1”書込み状態を、図9(b)は、“0”書込み状態を示している。しかし、実際には、“1”書込みでフローティングボディ102にVbが書き込まれていても、書込み終了でワード線が0Vに戻ると、フローティングボディ102は、負バイアスに引き下げられる。“0”が書かれる際には、さらに深く負バイアスになってしまうため、書込みの際に“1”と“0”との電位差マージンを十分に大きく出来ない。この動作マージンが小さいことが、本DRAMメモリセルの大きい問題であった。そして、このDRAMメモリセルを駆動するための周辺回路を同一基板上に、如何に形成するかが課題である。
特開平2-188966号公報 特開平3-171768号公報 特許第3957774号公報
Hiroshi Takato, Kazumasa Sunouchi, Naoko Okabe, Akihiro Nitayama, Katsuhiko Hieda, Fumio Horiguchi, and Fujio Masuoka: IEEE Transaction on Electron Devices, Vol.38, No.3, pp.573-578 (1991) H. Chung, H. Kim, H. Kim, K. Kim, S. Kim, K. Dong, J. Kim, Y.C. Oh, Y. Hwang, H. Hong, G. Jin, and C. Chung: "4F2 DRAM Cell with Vertical Pillar Transistor(VPT)," 2011 Proceeding of the European Solid-State Device Research Conference, (2011) H. S. Philip Wong, S. Raoux, S. Kim, Jiale Liang, J. R. Reifenberg, B. Rajendran, M. Asheghi and K. E. Goodson: "Phase Change Memory," Proceeding of IEEE, Vol.98, No 12, December, pp.2201-2227 (2010) T. Tsunoda, K .Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama : "Low Power and high Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3V," IEDM (2007) W. Kang, L. Zhang, J. Klein, Y. Zhang, D. Ravelosona, and W. Zhao: "Reconfigurable Codesign of STT-MRAM Under Process Variations in Deeply Scaled Technology," IEEE Transaction on Electron Devices, pp.1-9 (2015) M. G. Ertosum, K. Lim, C. Park, J. Oh, P. Kirsch, and K. C. Saraswat : "Novel Capacitorless Single-Transistor Charge-Trap DRAM (1T CT DRAM) Utilizing Electron," IEEE Electron Device Letter, Vol. 31, No.5, pp.405-407 (2010) J. Wan, L. Rojer, A. Zaslavsky, and S. Critoloveanu: "A Compact Capacitor-Less High-Speed DRAM Using Field Effect-Controlled Charge Regeneration," Electron Device Letters, Vol. 35, No.2, pp.179-181 (2012) T. Ohsawa, K. Fujita, T. Higashi, Y. Iwata, T. Kajiyama, Y. Asao, and K. Sunouchi: "Memory design using a one-transistor gain cell on SOI," IEEE JSSC, vol.37, No.11, pp1510-1522 (2002). T. Shino, N. Kusunoki, T. Higashi, T. Ohsawa, K. Fujita, K. Hatsuda, N. Ikumi, F. Matsuoka, Y. Kajitani, R. Fukuda, Y. Watanabe, Y. Minami, A. Sakamoto, J. Nishimura, H. Nakajima, M. Morikado, K. Inoh, T. Hamamoto, A. Nitayama: "Floating Body RAM Technology and its Scalability to 32nm Node and Beyond," IEEE IEDM (2006). E. Yoshida: "A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory," IEEE IEDM (2006). E. Yoshida, and T. Tanaka: "A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory," IEEE Transactions on Electron Devices, Vol. 53, No. 4, pp. 692-697,Apr. 2006. Asen Asenov, Binjie Cheng, XingshengWang, Andrew Robert Brown, Campbell Millar, Craig Alexander, Salvatore Maria Amoroso, Jente B. Kuang, and Sani R. Nassif," Variability Aware Simulation Based Design-Technology Cooptimization (DTCO) Flow in 14 nm FinFET/SRAM Cooptimization,"IEEE Transaction on Electron Devices, Vol.62,No.6(2015)
 SGTを用いたメモリ装置でキャパシタを無くした、1個のトランジス型のDRAM(ゲインセル)では、ワード線とフローティングのSGTのボディとの容量結合カップリングが大きく、データ読み出し時や書き込み時にワード線の電位を振幅させると、直接SGTボディへのノイズとして、伝達されてしまう問題点があった。この結果、誤読み出しや記憶データの誤った書き換えの問題を引き起こし、キャパシタを無くした1トランジス型のDRAM(ゲインセル)の実用化が困難となっていた。そして、上記問題を解決すると共に、メモリセルと、同一基板上に、メモリセルを駆動するための周辺回路を高密度で、且つ低コストで形成する必要がある。
 上記の課題を解決するために、本発明は、ダイナミック フラッシュ メモリセルとFinトランジスタとを含むメモリ素子を有した半導体装置であって、
 前記ダイナミック フラッシュ メモリセルは、
 基板上に、前記基板に対して、垂直方向に立つ第1の半導体柱と、
 前記第1の半導体柱の底部に繋がる第1の不純物層と、
 前記第1の半導体柱の頂部に、または前記頂部に繋がる第2の不純物層と、
 前記第1の半導体柱の下部を囲こみ、前記第1の不純物層に接する第1のゲート絶縁層と、
 前記第1のゲート絶縁層に接し、且つ前記第1の半導体柱の上部を囲こむ第2のゲート絶縁層と、
 前記第1のゲート絶縁層の一部または全体を囲んだ第1のゲート導体層と、
 前記第2のゲート絶縁層を囲んだ第2のゲート導体層と、
 前記第1のゲート導体層と、前記第2のゲート導体層との間にある第1の絶縁層と、を含み、
 前記1の不純物層と、前記2の不純物層と、前記1のゲート導体層と、前記2のゲート導体層と、に印加する電圧を制御して、前記第1の半導体柱内に、前記第1の不純物層と前記第2の不純物層との間に流す電流によるインパクトイオン化現象、またはゲート誘起ドレインリーク電流により電子群及び正孔群を発生させる動作と、発生させた前記電子群と前記正孔群の内、前記電子群を、前記第1の不純物層、または前記第2の不純物層から、除去する動作と、前記正孔群の一部または全てを、前記第1の半導体柱内に残存させる、メモリ書き込み動作と、前記第1の不純物層と、前記第2の不純物層の一方もしくは両方から、前記正孔群のうちの残存正孔群を抜きとる、メモリ消去動作とを行い、
 前記Finトランジスタは、
 前記基板上に、前記基板に対して、垂直方向に立つ第2の半導体柱と、
 前記第2の半導体柱の下部を囲んだ第2の絶縁層と、
 前記第2の絶縁層より上の、前記第2の半導体柱の上部の長手方向両側面にそれぞれ繋がる第3の不純物層と第4の不純物層と、
 前記第3の不純物層と、前記第4の不純物層と、間の前記第2の半導体柱を囲む第3のゲート絶縁層と、
 前記第3のゲート絶縁層を囲んだ第3のゲート導体層と、を含み、
 前記第1の半導体柱と、前記第2の半導体柱と底部が、垂直方向において実質的に同じ位置にある、
 ことを特徴とする(第1発明)。
 上記の第1発明において、垂直方向において、前記第2のゲート導体層の下端位置と、前記第3のゲート導体層の下端位置が実質的に同じであることを特徴とする(第2発明)。
 上記の第1発明において、前記第1の半導体柱と前記第2の半導体柱の頂部が、垂直方向において実質的に同じ位置にあることを特徴とする(第3発明)。
 上記の第1発明において、前記第2の不純物層と、前記第3の不純物層と、前記第4の不純物層と、が同じドナー不純物原子を含み、且つ同じ半導体母体よりなることを特徴とする(第4発明)。
 上記の第1発明において、前記第1の不純物層に繋がる配線は、ソース線であり、前記第2の不純物層に繋がる配線はビット線であり、前記第1のゲート導体層に繋がる配線が、第1の駆動制御線であり、前記第2のゲート導体層と前記第3のゲート導体層に繋がる配線がワード線であり、前記ソース線と、前記ビット線と、前記第1の駆動制御線と、前記ワード線とに印加する電圧により、前記メモリ消去動作と、前記メモリ書き込み動作と、を行うことを特徴とする(第5発明)。
 上記の第1発明において、前記第1のゲート導体層と前記第1の半導体柱との間の第1のゲート容量は、前記第2のゲート導体層と前記第1の半導体柱との間の第2のゲート容量よりも大きいことを特徴とする(第6発明)。
 上記の第1発明において、前記第1のゲート導体層が、平面視において、前記第1のゲート絶縁層を囲んで2つの導体層に分離していることを特徴とする(第7発明)。
第1実施形態に係るSGTを有するメモリ装置の構造図である。 第1実施形態に係るSGTを有するメモリ装置の消去動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置の書込み動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置の読出し動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置の読出し動作メカニズムを説明するための図である。 第1実施形態に係るダイナミック フラッシュ メモリセルと、本ダイナミック フラッシュ メモリセルの駆動回路と信号処理回路に用いるFinトランジスタの構造を説明するための図である。 第2実施形態に係るダイナミック フラッシュ メモリセルと、Finトランジスタとを同一の基板上に形成する製造方法を説明するための図である。 第2実施形態に係るダイナミック フラッシュ メモリセルと、Finトランジスタとを同一の基板上に形成する製造方法を説明するための図である。 第2実施形態に係るダイナミック フラッシュ メモリセルと、Finトランジスタとを同一の基板上に形成する製造方法を説明するための図である。 第2実施形態に係るダイナミック フラッシュ メモリセルと、Finトランジスタとを同一の基板上に形成する製造方法を説明するための図である。 第2実施形態に係るダイナミック フラッシュ メモリセルと、Finトランジスタとを同一の基板上に形成する製造方法を説明するための図である。 第2実施形態に係るダイナミック フラッシュ メモリセルと、Finトランジスタとを同一の基板上に形成する製造方法を説明するための図である。 第2実施形態に係るダイナミック フラッシュ メモリセルと、Finトランジスタとを同一の基板上に形成する製造方法を説明するための図である。 第2実施形態に係るダイナミック フラッシュ メモリセルと、Finトランジスタとを同一の基板上に形成する製造方法を説明するための図である。 第2実施形態に係るダイナミック フラッシュ メモリセルと、Finトランジスタとを同一の基板上に形成する製造方法を説明するための図である。 第2実施形態に係るダイナミック フラッシュ メモリセルと、Finトランジスタとを同一の基板上に形成する製造方法を説明するための図である。 第2実施形態に係るダイナミック フラッシュ メモリセルと、Finトランジスタとを同一の基板上に形成する製造方法を説明するための図である。 従来例のキャパシタを有しない、DRAMメモリセルの動作上の問題点を説明するための図である。 従来例のキャパシタを有しない、DRAMメモリセルの動作上の問題点を説明するための図である。 従来例のキャパシタを有しない、DRAMメモリセルの読出し動作を示す図である。
 以下、本発明に係る、半導体素子を用いたメモリ装置(以後、ダイナミック フラッシュ メモリと呼ぶ)の実施形態の構造、及び動作について、図面を参照しながら説明する。そして、ダイナミック フラッシュ メモリセルと、ダイナミック フラッシュ メモリセルに繋がった駆動回路、信号処理回路をFinトランジスタ(例えば非特許文献12を参照)を同一基板上に形成した場合の両者の構造、製造方法を図面を参照しながら説明する。
 (第1実施形態)
 図1~図5を用いて、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの構造と動作メカニズムを説明する。図1を用いて、ダイナミック フラッシュ メモリセルの構造を説明する。そして、図2を用いてデータ消去メカニズムを、図3を用いてデータ書き込みメカニズムを、図4を用いてデータ書き込みメカニズムを説明する。図5を用いて、ダイナミック フラッシュ メモリのメモリセルと、本メモリセルを駆動するためのFinトランジスタ、の構造を説明する。
 図1に、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの構造を示す。基板1(特許請求の範囲の「基板」の一例である)上に、下からP型又はi型(真性型)の導電型を有するシリコン柱2(特許請求の範囲の「第1の半導体柱」の一例である)(以下、シリコン柱を「Si柱」と称する。)と、Si柱2の底部に繋がるN+層3a(特許請求の範囲の「第1の不純物層」の一例である)と、Si柱2の頂部に繋がるN+層3b(特許請求の範囲の「第2の不純物層」の一例である)とが形成されている。N+層3aとN+層3bは、一方がソースとなる場合に、他方がドレインとなる。そして、Si柱2のN+層3aとN+層3bの間がチャネル領域7となる。このSi柱2の下部を囲む第1のゲート絶縁層4a(特許請求の範囲の「第1のゲート絶縁層」の一例である)と、Si柱2の上部を囲む第2のゲート絶縁層4b(特許請求の範囲の「第2のゲート絶縁層」の一例である)が形成されている。この第1のゲート絶縁層4a、第2のゲート絶縁層4bは、このソース、ドレインとなるN+層3a、3bに、それぞれ接するか、または近接している。この第1のゲート絶縁層4aを囲む第1のゲート導体層5a(特許請求の範囲の「第1のゲート導体層」の一例である)と、第2のゲート絶縁層4bを囲む第2のゲート導体層5b(特許請求の範囲の「第2のゲート導体層」の一例である)がそれぞれ形成されている。そして、第1のゲート導体層5a、第2のゲート導体層5bは絶縁層6(特許請求の範囲の「第1の絶縁層」の一例である)により分離されている。そして、チャネル領域7は、第1のゲート絶縁層4aで囲まれた第1のチャネル領域7aと、第2のゲート絶縁層4bで囲まれた第2のチャネル領域7bと、よりなる。これによりソース、ドレインとなるN+層3a、3b、チャネル領域7、第1のゲート絶縁層4a、第2のゲート絶縁層4b、第1のゲート導体層5a、第2のゲート導体層5bからなるダイナミック フラッシュ メモリセル9が形成される。そして、N+層3aはソース線SL(特許請求の範囲の「ソース線」の一例である)に、N+層3bはビット線BL(特許請求の範囲の「ビット線」の一例である)に、第1のゲート導体層5aはプレート線PL(特許請求の範囲の「第1の駆動制御線」の一例である)に、第2のゲート導体層5bはワード線WL(特許請求の範囲の「ワード線」の一例である)に、それぞれ接続している。なお、基板1は垂直方向に立ったSi柱2に繋がり、且つ水平方向に広がった上面を持つ母体材料層である。従って、垂直方向において、N+層13aの内、基板1表面より下方にある部分は基板1とする。この基板1内にあるN+層13aの部分は、水平方向に広がっていてもよい。また、基板1はSOI(Silicon On Insulator)、単層または複数層よりなるSiまたは他の半導体材料より形成してもよい。また、基板1はN層、またはP層の単層、又は複数層よりなるウエル層であってもよい。
 図2を用いて、消去動作メカニズムを説明する。N+層3a、3b間のチャネル領域7は、電気的に基板から分離され、フローティングボディとなっている。図2(a)に消去動作前に、前のサイクルでインパクトイオン化により生成された正孔群11がチャネル領域7に蓄えられている状態を示す。そして。図2(b)に示すように、消去動作時には、ビット線BLの電圧を、負電圧VERAにする。ここで、VERAは、例えば、-3Vである。その結果、チャネル領域7の初期電位の値に関係なく、ソース線SLが接続されているソースとなるN+層3aとチャネル領域7のPN接合が順バイアスとなる。その結果、前のサイクルでインパクトイオン化により生成された、チャネル領域7に蓄えられていた、正孔群11が、ソース部のN+層3aに吸い込まれ、チャネル領域7の電位VFBは、VFB=VERA+Vbとなる。ここで、VbはPN接合のビルトイン電圧であり、約0.7Vである。したがって、VERA=-3Vの場合、チャネル領域7の電位は、-2.3Vになる。この値が、消去状態のチャネル領域7の電位状態となる。このため、フローティングボディのチャネル領域7の電位が負の電圧になると、ダイナミック フラッシュ メモリセル9のNチャネルMOSトランジスタのしきい値電圧は、基板バイアス効果によって、高くなる。これにより、図2(c)に示すように、このワード線WLが接続された第2のゲート導体層5bのしきい値電圧は高くなる。このチャネル領域7の消去状態は論理記憶データ“0”となる。なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件は、消去動作を行うための一例であり、消去動作ができる他の動作条件であってもよい。
 図3に、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの書込み動作を示す。図3(a)に示すように、ソース線SLの接続されたN+層3aに例えば0Vを入力し、ビット線BLの接続されたN+層3bに例えば3Vを入力し、プレート線PLの接続された第1のゲート導体層5aに、例えば、2Vを入力し、ワード線WLの接続された第2のゲート導体層5bに、例えば、5Vを入力する。その結果、図3(a)に示したように、プレート線PLの接続された第1のゲート導体層5aの内側には、反転層12aが形成され、第1のゲート導体層5aを有する第1のNチャネルMOSトランジスタは線形領域で動作させる。この結果、プレート線PLの接続された第2のゲート導体層5bの内側の反転層12aには、ピンチオフ点13が存在する。一方、ワード線WLの接続された第2のゲート導体層12bを有する第2のNチャネルMOSトランジスタは飽和領域で動作させる。この結果、ワード線WLの接続された第2のゲート導体層5bの内側には、ピンチオフ点は存在せずに全面に反転層12bが形成される。このワード線WLの接続された第2のゲート導体層5bの内側に全面に形成された反転層12bは、第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタの実質的なドレインとして働く。この結果、直列接続された第1のゲート導体層5aを有する第1のNチャネルMOSトランジスタと、第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタとの間のチャネル領域7の境界領域で電界は最大となり、この領域でインパクトイオン化現象が生じる。この領域は、ワード線WLの接続された第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタから見たソース側の領域であるため、この現象をソース側インパクトイオン化現象と呼ぶ。このソース側インパクトイオン化現象により、ソース線SLの接続されたN+層3aからビット線の接続されたN+層3bに向かって電子が流れる。加速された電子が格子Si原子に衝突し、その運動エネルギーによって、電子・正孔対が生成される。生成された電子の一部は、第1のゲート導体層5aと第2のゲート導体層5bに流れるが、大半はビット線BLの接続されたN+層3bに流れる。また、“1”書込みにおいて、GIDL(Gate Induced Drain Leakage)電流を用いて電子・正孔対を発生させ(非特許文献11を参照)、生成された正孔群でフローティングボディFB内を満たしてもよい。なお、インパクトイオン化現象による電子・正孔対の生成は、N+層3aとチャネル領域7の境界、またはN+層3bとチャネル領域7との境界でも行うことが出来る。
 そして、図3(b)に示すように、生成された正孔群11は、チャネル領域7の多数キャリアであり、チャネル領域7を正バイアスに充電する。ソース線SLの接続されたN+層3aは、0Vであるため、チャネル領域7はソース線SLの接続されたN+層3aとチャネル領域7との間のPN接合のビルトイン電圧Vb(約0.7V)まで充電される。チャネル領域7が正バイアスに充電されると、第1のNチャネルMOSトランジスタと第2のNチャネルMOSトランジスタのしきい値電圧は、基板バイアス効果によって、低くなる。これにより、図3(c)で示すように、ワード線WLの接続された第2のチャネル領域7bのNチャネルMOSトランジスタのしきい値電圧は、低くなる。このチャネル領域7の書込み状態を論理記憶データ“1”に割り当てる。
 なお、書込み動作時に、第1の境界領域に替えて、第1の不純物層と第1のチャネル半導体層との第2の境界領域、または、第2の不純物層と第2のチャネル半導体層との第3の境界領域で、インパクトイオン化現象、またはGIDL電流で、電子・正孔対を発生させ、発生した正孔群11でチャネル領域7を充電しても良い。なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件は、書き込み動作を行うための一例であり、書き込み動作ができる他の動作条件であってもよい。
 図4A、図4Bを用いて、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの読出し動作と、これに関係するメモリセル構造を説明する。図4A(a)~図(c)を用いて、ダイナミック フラッシュ メモリセルの読出し動作を説明する。図(a)に示すように、チャネル領域7がビルトイン電圧Vb(約0.7V)まで充電されると、NチャネルMOSトランジスタのしきい値電圧が基板バイアス効果によって、低下する。この状態を論理記憶データ“1”に割り当てる。図(b)に示すように、書込みを行う前に選択するメモリブロックは、予め消去状態“0”にある場合は、チャネル領域7がフローティング電圧VFBはVERA+Vbとなっている。書込み動作によってランダムに書込み状態“1”が記憶される。この結果、ワード線WLに対して、論理“0”と“1”の論理記憶データが作成される。図(c)に示すように、このワード線WLに対する2つのしきい値電圧の高低差を利用して、センスアンプで読出しが行われる。
 図4B(a)~(d)を用いて、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの読出し動作時の、2つの第1のゲート導体層5aと第2のゲート導体層5bのゲート容量の大小関係と、これに関係する動作を説明する。ワード線WLの接続する第2のゲート導体層5bのゲート容量は、プレート線PLの接続する第1のゲート導体層5aのゲート容量よりも小さく設計することが望ましい。図(a)に示すように、プレート線PLの接続する第1のゲート導体層5aの垂直方向の長さを、ワード線WLの接続する第2のゲート導体層5bの垂直方向の長さより長くして、ワード線WLの接続する第2のゲート導体層5bのゲート容量を、プレート線PLの接続する第1のゲート導体層5aのゲート容量よりも小さくする。図(b)に図4(a)のダイナミック フラッシュ メモリの1セルの等価回路を示す。そして、図(c)にダイナミック フラッシュ メモリの結合容量関係を示す。ここで、CWLは第2のゲート導体層5bの容量であり、CPLは第1のゲート導体層5aの容量であり、CBLはドレインとなるN+層3bと第2のチャネル領域7bとの間のPN接合の容量であり、CSLはソースとなるN+層3aと第1のチャネル領域7aとの間のPN接合の容量である。図(d)に示すように、ワード線WLの電圧が振幅すると、その動作がチャネル領域7にノイズとして影響を与える。この時のチャネル領域7の電位変動ΔVFBは、
ΔVFB = CWL/(CPL+CWL+CBL+CSL) × VReadWL  (1)
となる。ここで、VReadWLはワード線WLの読出し時の振幅電位である。式(1)から明らかなようにチャネル領域7の全体の容量CPL+CWL+CBL+CSLに比べて、CWLの寄与率を小さくすれば、ΔVFBは小さくなることが分かる。CBL+CSLはPN接合の容量であり、大きくするためには、例えば、Si柱2の直径を大きくする。しかしメモリセルの微細化に対しては望ましくない。これに対して、プレートPL接続する第1のゲート導体層5aの垂直方向の長さを、ワード線WLの接続する第1のゲート導体層5bの垂直方向の長さより更に長くすることによって、平面視におけるメモリセルの集積度を落すことなしに、ΔVFBを更に小さくできる。なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件は、読み出し動作を行うための一例であり、読み出し動作ができる他の動作条件であってもよい。
 図5を用いて、本実施形態のダイナミック フラッシュ メモリのメモリセルと、このメモリセの駆動回路、及び信号処理回路に用いられるFinトランジスタと、の構造を説明する。図5(a)は、ダイナミック フラッシュ メモリの断面図、図5(b)は図5(a)のY-Y’線に沿い、且つ図5(a)の垂直方向における断面図である。図5(c)はFinトランジスタの断面図、図5(d)は図5(c)のY1-Y1’線に沿い、且つ図5(c)の垂直方向における断面図を示す。ダイナミック フラッシュ メモリのメモリセルと、Finトランジスタが同じP層基板10上にある。
 図5(a)、図5(b)に示すように、P層9(以下、アクセプタ不純物を含む半導体領域を「P層」と称する)と、P層9に繋がるN+層13a(特許請求の範囲の「第1の不純物層」の一例である)よりなる基板10(特許請求の範囲の「基板」の一例である)がある。そして、N+層13aに繋がってSi柱11A(特許請求の範囲の「第1の半導体柱」の一例である)がある。そして、Si柱11Aの頂部にN+層13b(特許請求の範囲の「第2の不純物層」の一例である)がある。そして、Si柱11Aの外周部のN+層13a上にSiO2層14がある。そして、Si柱11Aの下方側面を囲みHfO2層15(特許請求の範囲の「第1のゲート絶縁層」の一例である)がある。そして、HfO2層15側面を囲みTiN層16(特許請求の範囲の「第1のゲート導体層」の一例である)がある。そして、Si柱11AのHfO2層15の上端と、N+層13bの下端の間のSi柱11Aの側面と、TiN層16との上面に、HfO2層18(特許請求の範囲の「第2のゲート絶縁層」の一例である)がある。そして、HfO2層を囲みTiN層19(特許請求の範囲の「第2のゲート導体層」の一例である)がある。そして、N+層13aは図1に示したソース線SLに接続し、N+層13bはビット線BLに接続し、TiN層16はプレート線PLに接続し、TiN層19はワード線WLに接続する。そして、N+層13a、13bで挟まれたSi柱11Aのチャネル層はHfO2層15で囲まれた第1のチャネル層11aとHfO2層18で囲まれた第2のチャネル層11bよりなる。
 図5(c)、図5(d)に示すように、P層よりなる基板10上にSi柱11B(特許請求の範囲の「第2の半導体柱」の一例である)がある。そして、Si柱11Bの下部にあって、Si柱11Bの外周部のP層基板10上にSiO2層20(特許請求の範囲の「第2の絶縁層」の一例である)がある。そして、Si柱11Bの上部の両端にN+層13c(特許請求の範囲の「第3の不純物層」の一例である)と、N+層13d(特許請求の範囲の「第4の不純物層」の一例である)と、がある。そして、垂直方向において、SiO2層20より上のSi柱11Bの側面を囲みHfO2層18bがある。そして、HfO2層18bを囲みTiN層19b(特許請求の範囲の「第3のゲート導体層」の一例である)がある。N+層13c、13dで挟まれたSi柱11Bの上部がFinトランジスタのチャネル層11dである。Si柱11Bは、Finトランジスタのチャネル層11dと、チャネル層11dの下にあるSi層台11cよりなる。なお、Si層台11cの底部の外周部には、ダイナミック フラッシュ メモリセルにおけるSiO2層14があってもよい。また、Si層台11cの側面にダイナミック フラッシュ メモリセルにおけるHfO2層15が繋がって形成されていてもよい。
 図5(a)、図5(b)に示したダイナミック フラッシュ メモリのSi柱11Aと、図5(c)、図5(d)に示したFinトランジスタのSi柱11Bは、共に基板10上ある。そして、Si柱11Aと、Si柱11Bの底面位置Aは同じである。
 ダイナミック フラッシュ メモリのSi柱11Aと、FinトランジスタのSi柱11Bは、共に、垂直方向におけるB位置の近傍で2つの領域に分かれている。Si柱11Aは、HfO2層15で囲まれた第1のチャネル層11aとHfO2層18で囲まれた第2のチャネル層11bよりなる。そして、Si柱11Bは、Si層台11cと、Finトランジスタのチャネル層11dよりなる。Si柱11Aの上部にダイナミック フラッシュ メモリのトランジスタが、Si柱11Bの上部にFinトランジスタがある。
 ダイナミック フラッシュ メモリのSi柱11Aと、FinトランジスタのSi柱11Bと、の高さA-C間は同じである。
 なお、図1において、Si柱2、及び図5におけるSi柱11Aの水平断面形状は、円形状、楕円状、長方形状であっても、本実施形態で説明したダイナミック フラッシュ メモリ動作ができる。また、同一チップ上に、円形状、楕円状、長方形状のダイナミック フラッシュ メモリセルを混在させてもよい。
 また、図5(a)、図5(b)における説明では、Si柱11Aの上面位置は、N+層13bの上面位置としたが、N+層13bをTiN層19の形成後に、例えば、エピタキシャル結晶成長法により形成した場合は、N+層13bの下端をSi柱11Aの上面となる。
 また、図1において、第1のゲート導体層5aはプレート線PLに、第2のゲート導体層5bはワード線WLに接続すると説明した。これに対し、第1のゲート導体層5aはワード線WLに、第2のゲート導体層5bをプレート線PLに接続しても、正常なダイナミック フラッシュ メモリ動作ができる。同様に、図1において、N+層3aはソース線SLに接続し、N+層3bはビット線BLに接続すると説明したのに対し、N+層3をビット線BLに接続し、N+層3bをソース線SLに接続しても、正常なダイナミック フラッシュ メモリ動作ができる。
 図1においては、第1のゲート導体層5aは、第1のゲート絶縁層4aの全体を囲んでいる。これに対して、第1のゲート導体層5aは、平面視において、第1のゲート絶縁層4aの一部を囲んでいる構造としてもよい。この場合、第1のゲート導体層5aで覆われていない第1のゲート絶縁層の外側は、絶縁層、または第1のゲート導体層と電気的に分離した第3のゲート導体層で覆われていてもよい。なお、第3のゲート導体層を設ける場合は、第3のゲート導体層に、定電圧、またはパルス電圧を印加して、ダイナミック フラッシュ メモリ動作を行うことができる。また、上記のように、平面視において、第1のゲート導体層5aが第1のゲート絶縁層4aの一部を囲む構造によって、第1のチャネル領域7aに、多くの正孔群を蓄積することができる。
 本実施形態は、下記の特徴を供する。
(特徴1)
 本発明の第1実施形態に係るダイナミック フラッシュ メモリセルのプレート線PLはダイナミック フラッシュ メモリセルが書込み、読出し動作をする際に、ワード線WLの電圧が上下に振幅する。この際に、プレート線PLは、ワード線WLとチャネル領域7との間の容量結合比を低減させる役目を担う。この結果、ワード線WLの電圧が上下に振幅する際の、チャネル領域7の電圧変化の影響を著しく抑えることができる。これにより、論理“0”と“1”を示すワード線WLのSGTトランジスタのしきい値電圧差を大きくすることが出来る。これは、ダイナミック フラッシュ メモリセルの動作マージンの拡大に繋がる。
(特徴2)
 図5に示すように、ダイナミック フラッシュ メモリセルのSi柱11Aと、FinトランジスタのSi柱11Bと、の底部が位置Aで同じであり、且つ基板10上の同じ高さ(A-C間)で形成される。そして、基板10上にあるダイナミック フラッシュ メモリの第1のチャネル層11aの頂部と、FinトランジスタのSi層台11cの頂部と、の上面位置を、ほぼ同じにすることにより、ダイナミック フラッシュ メモリセルのワード線WLのTiN層19と、FinトランジスタのゲートであるTiN層23を、垂直方向において、ほぼ同じ高さに位置する。このように、ダイナミック フラッシュ メモリのワード線WLに繋がるトランジスタと、Finトランジスタが、ほぼ同じ高さに形成される。これにより、ダイナミック フラッシュ メモリセルと、Finトランジスタ回路を、基板10上に容易に形成することが出来る。これは、ダイナミック フラッシュ メモリを有した半導体装置製造の低コスト化に繋がる。
(第2実施形態)
 図6A~図6Jを用いて、本発明の第2実施形態に係るダイナミック フラッシュ メモリセルと、Finトランジスタとを同一の基板21上に形成する製造方法を説明する。各図において、(a)はダイナミック フラッシュ メモリセルの断面図、(b)は(a)のY-Y’線に沿い、且つ(a)の垂直方向における断面図である。(c)はFinトランジスタの断面図、(d)は(c)のY1-Y1’線に沿い、且つ(c)の垂直方向における断面図である。
 図6Aに示すように、ダイナミック フラッシュ メモリセル領域のP層基板21の上層に燐(P)不純物をイオン注入法によりN+層22を形成する。なお、N+層22は、例えばダイナミック フラッシュ メモリセル領域のP層基板21表層をエッチングして、ここにエピタキシャル結晶成長法によりN+層22を形成してもよい。この工程では、最初ダイナミック フラッシュ メモリセル領域の外側のP層基板21を、SiO2層で覆う。そして、SiO2層をマスクにして、P層基板21の表層をエッチングする。そして、エピタキシャル結晶成長法により全体にN+層を形成する。そしてCMP(Chemical Mechanical Polishing)法により表面位置がP層基板21になるように研摩する。これにより、N+層22がP層基板21に埋め込まれる。この場合、ダイナミック フラッシュ メモリセル領域N+層22の表面位置と、Finトランジスタ領域のP層基板21との表面はA’位置で一致する。
 次に、図6Bに示すように、ダイナミック フラッシュ メモリセル領域と、Finトランジスタ領域との全体に、エピタキシャル結晶成長法によりP層23を形成する。そして、ダイナミック フラッシュ メモリセル領域のP層23上に第1のマスク材料層24aを、Finトランジスタ領域のP層23上に第2のマスク材料層24bを形成する。
 次に、図6Cに示すように、第1のマスク材料層24a、第2のマスク材料層24bをマスクにして、P層23を、その底部位置がN+層22aの上面位置の近傍までエッチングして、Si柱23a、23bを形成する。
 次に、図6Dに示すように、Si柱23a、23bの外周部のダイナミック フラッシュ メモリセル領域のN+層22aと、Finトランジスタ領域とのP層基板21と、の上にSiO2層26を形成する。そして、全体にHfO2層27を形成する。そして、全体にTiN層(図示せず)を堆積する。そして、CMP法により、その上面位置がマスク材料層24a、24bの上面位置まで研摩する。そして、ダイナミック フラッシュ メモリセル領域を覆って、マスク材料層30aを形成する。そして、マスク材料層30aをマスクにして、Finトランジスタ領域のTiN層を除去する。これにより、ダイナミック フラッシュ メモリセル領域のHfO2層27を囲んでTiN層28を形成する。なお、Finトランジスタ領域のTiN層の除去において、Finトランジスタ領域のSiO2層26、HfO2層27を除去してもよい。
 次に、全体にSiO2層(図示せず)を被覆する。そして、図6Eに示すように、CMP法により、全体を上面位置がマスク材料層24a、24bの上面位置まで研磨して、Finトランジスタ領域にSiO2層31を形成する。そして、Finトランジスタ領域を覆ってマスク材料層30bを形成する。そして、RIE法により、TiN層28を、その上面が位置BまでエッチングしてTiN層28aを形成する。
 次に、図6Fに示すように、位置Bより上方のSi柱23a、23b、マスク材料層24a、24bを覆ったHfO2層27を除去して、位置Bより下方のSi柱23a、23bを囲んだHfO2層27aを形成する。そして、Si柱23b上のマスク材料層24bを除去する。
 次に、図6Gに示すように、そして、全体にHfO2層32を被覆する。そして、全体にTiN層33を被覆する。そして、全体にSiO2層35を形成する。
 次に、図6Hに示すようにリソグラフィ技術とRIE法を用いて、SiO2層35をエッチングして、Finトランジスタ領域のTiN層33を囲むSiO2層35aを形成する。そして、SiO2層35aをマスクにして、TiN層33をエッチングしてTiN層33bを形成する。そして、全体に絶縁層(図示せず)を被覆する。そしてRIE法を用いて、この絶縁層をエッチングして、TiN層33b、SiO2層35aの側面にスペーサ層37a、37bと、Si柱23bの上部側面にスペーサ層37c、37dを形成する。
 次に、全体にSiO2層(図示せず)を被覆する。そして、図6Iに示すように、CMP法により、上面位置がマスク材料層24aの上面位置まで研摩してSiO2層36を形成する。そして、Finトランジスタ領域を覆ってマスク材料層40を形成する。そして、RIE法を用いてTiN層33、SiO2層35をエッチングして、ダイナミック フラッシュ メモリセル領域におけるTiN層33a、SiO2層35bを形成する。
 次に、図6Jに示すようにマスク材料層40と、SiO2層36と、スペーサ層37c、37dを除去する。そして、Si柱23a、23bの外周部に絶縁層38a、38bを形成する。そして、Si柱23a、23bの上部の露出しているHfO2層32を除去する。そして、マスク材料層24aを除去する。
 次に、図6Kに示すように、露出しているSi柱23aの頂部を囲んで選択エピタキシャル結晶成長法によりN+層40a、41a、41bを形成する。そして、N+層22aにソース線SLが接続し、TiN層28aにプレート線PLが接続し、TiN層33aにワード線WLが接続し、N+層40aにビット線BLが接続することにより、ダイナミック フラッシュ メモリセルが形成される。そして、TiN層33bにゲート線が接続し、N+層41a、41bの一方がソース線に繋がると、他方がドレイン線に繋がったFinトランジスタが形成される。
 なお、第2実施形態では、ダイナミック フラッシュ メモリセルとNチャネルFiNトランジスタを、P層基板21上に形成した例を説明した。通常Finトランジスタを用いた回路ではCMOS回路が用いられるので、P層基板21上に同じくPチャネルFinトランジスタが形成される。
 また、本実施形態では、ダイナミック フラッシュ メモリセルと、Finトランジスタとのゲート絶縁層が同じHfO2層32で形成したが、ダイナミック フラッシュ メモリセルと、Finトランジスタとのゲート絶縁層を別々に違う材料層で形成してもよい。また、ダイナミック フラッシュ メモリセルにおけるゲート導体層であるTiN層33の関係においても同じである。
 また、図6Kで示したように、N+層40a、41a、41bを同時に形成する場合は、N+層40a、41a、41bの半導体母体は同じであり、そして含まれるドナー不純物原子は同じである。これに対して、N+層40aと、N+層41a、41bと、を異なる半導体母体で形成してもよい。また、N+層40aと、N+層41a、41bと、に異なるドナー不純物原子を含ませてもよい。
 本実施形態は、下記の特徴を供する。
(特徴1)
 ダイナミック フラッシュ メモリセルのSi柱23aと、FinトランジスタのSi柱23bと、が同時に形成されるので、製造工程が簡易化される。
(特徴2)
 ダイナミック フラッシュ メモリセルのワード線ゲートのTiN層32と、FinトランジスタのゲートTiN層33と、が同時に形成されるので、製造工程が簡易化される。
(特徴3)
 ダイナミック フラッシュ メモリセルのビット線BLに繋がるN+層40aと、Finトランジスタのソース、ドレインとなるN+層41a、41bと、が同時に形成されるので、製造工程が簡易化される。
(特徴4)
 ダイナミック フラッシュ メモリセルのワード線トランジスタと、Finトランジスタとが、垂直方向において、同じ高さに形成されるので、製造が容易になる。
(その他の実施形態)
 なお、本発明では、Si柱2、11A、11B、23a、23bを形成したが、これ以外の半導体材料よりなる半導体柱であってもよい。
 また、本実施形態における、N+層3a、3b、13a、13b、13c、13dは、ドナー不純物を含んだSi、または他の半導体材料層より形成されてもよい。また、異なる半導体材料層より形成されてもよい。また、それらの形成方法はエピタキシャル結晶成長法、または、他の方法でN+層を形成してもよい。
 また、第1実施形態では、プレート線PLに繋がるゲート導体層5aとしてTiN層16を用いた。これに対して、TiN層16に替えて、単層または複数の導体材料層を組み合わせて用いてもよい。同じく、ワード線WLと、このワード線WLに繋がるゲート導体層5bとしてTiN層19を用いた。これに対して、TiN層16、19に替えて、単層または複数の導体材料層を組み合わせて用いてもよい。また、ゲートTiN層16、19は、その外側が、例えばWなどの配線金属層に繋がっていてもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、第1実施形態では、Si柱2、11Aの平面視における形状は、円形状であった。そして、Si柱2,11Aの平面視における形状は、円形、楕円、一方向に長く伸びた形状などであってもよい。そして、ダイナミック フラッシュ メモリセル領域から離れて形成されるロジック回路領域においても、ロジック回路設計に応じて、ロジック回路領域に、平面視形状の異なるSi柱を混在してSGT、Finトランジスタを形成することができる。これらのこのことは、本発明に係るその他の実施形態においても同様である。
 また、図5では、矩形状の断面を有するSi柱11A、11Bを用いて説明したが、台形状であってもよい。また、ダイナミック フラッシュ メモリセルのSi柱11Aでの、HfO2層15で囲まれたSi柱11Aの断面と、HfO2層18で囲まれたSi柱11Aの断面と、のそれぞれが矩形状、台形状に異なっていてもよい。これらのこのことは、本発明に係るその他の実施形態においても同様である。
 なお、基板1と同様に、基板10、21はSOI(Silicon On Insulator)、単層または複数層よりなるSiまたは他の半導体材料より形成してもよい。また、基板10、21はN層、またはP層の単層、又は複数層よりなるウエル層であってもよい。
 なお、第1実施形態で説明した、HfO2層15、18、22は、ゲート絶縁層として機能するものであれば、単層、又は複数層よりなる他の絶縁層であってもよい。また、TiN層16、19、23はゲート導体層の機能を持つものであれば、単層、または複数層よりなる他の導体層を用いてもよい。また、HfO2層15、18、22のそれぞれは、材料、厚さなどの物理値が異なる材料層より形成してもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、第2実施形態における、Si柱23aの底部のN+層22aに接続して例えばW層などの導体層を用いてもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、第2実施形態における、N+層22a、40a、41a、41bは、ドナー不純物を含んだSi、または他の半導体材料層より形成されてもよい。また、それらの形成方法はエピタキシャル結晶成長法、または、他の方法でN+層を形成してもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、第1実施形態では、プレート線PLと、このプレート線PLに繋がるゲート導体層5aとしてTiN層16を用いた。これに対して、TiN層16に替えて、単層または複数の導体材料層を組み合わせて用いてもよい。同じく、このワード線WLに繋がるゲート導体層5bとしてTiN層19を用いた。これに対して、TiN層19に替えて、単層または複数の導体材料層を組み合わせて用いてもよい。また、ゲートTiN層16、19は、その外側を、例えばTaN、Wなどの配線金属層に繋がっていてもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、図1において、プレート線PLに接続された第1のゲート導体層5aのゲート容量が、ワード線WLに接続された第2のゲート導体層5bのゲート容量よりも大きくなるように、第1のゲート導体層5aのゲート長を、第2のゲート導体層5bのゲート長よりも長くすることにより、更に第1のゲート導体層5aのゲート容量を、第2のゲート導体層5bのゲート容量よりも、大きく出来る。また、その他にも、第1のゲート導体層5aのゲート長を、第2のゲート導体層5bのゲート長よりも長くする、または長くしない構造においても、それぞれのゲート絶縁層の膜厚を変えて、第1のゲート絶縁層4aのゲート絶縁膜の膜厚を、第2のゲート絶縁層4bのゲート絶縁膜の膜厚よりも薄くして、更に第1のゲート導体層5aのゲート容量を、第2のゲート導体層5bのゲート容量よりも、大きく出来る。また、それぞれのゲート絶縁層の材料の誘電率を変えて、第1のゲート絶縁層4aのゲート絶縁膜の誘電率を、第2のゲート絶縁層4bのゲート絶縁膜の誘電率よりも高くしてもよい。また、ゲート導体層5a、5bの長さ、ゲート絶縁層4a、4bの膜厚、誘電率のいずれかを組み合わせて、第1のゲート導体層5aのゲート容量が、第2のゲート導体層5bのゲート容量よりも、更に大きくしてもよい。このことは、本発明に係るその他の実施形態においても同様である。
 なお、第1実施形態の図5に示すように、N+層13aはソース線SLの配線導体層を兼ねている。また、ソース線SLとしてSi柱11Aの底部のN+層13aの外周部に、例えばW層などの導体層を用いてもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、図6Eにおいて、TiN層28aを形成した後、リソグラフィ、RIEエッチング工程により、HfO2層27を囲んだTiN層28aを2つの領域に分離してもよい。
 また、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した各実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。上記実施例及び変形例は任意に組み合わせることができる。さらに、必要に応じて上記実施形態の構成要件の一部を除いても本発明の技術思想の範囲内となる。
 本発明に係る、メモリ素子を有する半導体装置によれば、高密度で、かつ高性能のダイナミック フラッシュ メモリを有する半導体装置が得られる。
 1、10 基板
 21 P層基板
 2、11A、11B、23a、23b Si柱
 11c Si層台
 11d チャネル層
 3a、3b、13a、13b、13c、13d、22、22a、40a、41a、41b N+
 4a 第1のゲート絶縁層
 4b 第2のゲート絶縁層
 5a 第1のゲート導体層
 5b 第2のゲート導体層
 6  絶縁層
 7 チャネル領域
 7a、11a 第1のチャネル層
 7b、11b 第2のチャネル層
 11d Finトランジスタのチャネル層
 SL ソース線
 PL プレート線
 WL ワード線
 BL ビット線
 21,23 P層
 24a、24b、30a、30b、40 マスク材料層
 15、18a、18b、27、27a、32 HfO2
 16、19a、19b、23、28、28a、33、33a、33b TiN層
 20,26、31,35、35a、35b、36 SiO2
 27a SiN層
 37a、37b、37c、37d スペーサ層
 38a、38b 絶縁層

Claims (7)

  1.  ダイナミック フラッシュ メモリセルとFinトランジスタとを含むメモリ素子を有した半導体装置であって、
     前記ダイナミック フラッシュ メモリセルは、
     基板上に、前記基板に対して、垂直方向に立つ第1の半導体柱と、
     前記第1の半導体柱の底部に繋がる第1の不純物層と、
     前記第1の半導体柱の頂部に、または前記頂部に繋がる第2の不純物層と、
     前記第1の半導体柱の下部を囲こみ、前記第1の不純物層に接する第1のゲート絶縁層と、
     前記第1のゲート絶縁層に接し、且つ前記第1の半導体柱の上部を囲こむ第2のゲート絶縁層と、
     前記第1のゲート絶縁層の一部または全体を囲んだ第1のゲート導体層と、
     前記第2のゲート絶縁層を囲んだ第2のゲート導体層と、
     前記第1のゲート導体層と、前記第2のゲート導体層との間にある第1の絶縁層と、を含み、
     前記1の不純物層と、前記2の不純物層と、前記1のゲート導体層と、前記2のゲート導体層と、に印加する電圧を制御して、前記第1の半導体柱内に、前記第1の不純物層と前記第2の不純物層との間に流す電流によるインパクトイオン化現象、またはゲート誘起ドレインリーク電流により電子群及び正孔群を発生させる動作と、発生させた前記電子群と前記正孔群の内、前記電子群を、前記第1の不純物層、または前記第2の不純物層から、除去する動作と、前記正孔群の一部または全てを、前記第1の半導体柱内に残存させる、メモリ書き込み動作と、前記第1の不純物層と、前記第2の不純物層の一方もしくは両方から、前記正孔群のうちの残存正孔群を抜きとる、メモリ消去動作とを行い、
     前記Finトランジスタは、
     前記基板上に、前記基板に対して、垂直方向に立つ第2の半導体柱と、
     前記第2の半導体柱の下部を囲んだ第2の絶縁層と、
     前記第2の絶縁層より上の、前記第2の半導体柱の上部の長手方向両側面にそれぞれ繋がる第3の不純物層と第4の不純物層と、
     前記第3の不純物層と、前記第4の不純物層と、間の前記第2の半導体柱を囲む第3のゲート絶縁層と、
     前記第3のゲート絶縁層を囲んだ第3のゲート導体層と、を含み、
     前記第1の半導体柱と、前記第2の半導体柱と底部が、垂直方向において実質的に同じ位置にある、
     ことを特徴とするメモリ素子を有した半導体装置。
  2.  垂直方向において、前記第2のゲート導体層の下端位置と、前記第3のゲート導体層の下端位置が実質的に同じである、
     ことを特徴とする請求項1に記載のメモリ素子を有した半導体装置。
  3.  前記第1の半導体柱と、前記第2の半導体柱と頂部が、垂直方向において実質的に同じ位置にある、
     ことを特徴とする請求項1に記載のメモリ素子を有した半導体装置。
  4.  前記第2の不純物層と、前記第3の不純物層と、前記第4の不純物層と、が同じドナー不純物原子を含み、且つ同じ半導体母体よりなる、
     ことを特徴とする請求項1に記載のメモリ素子を有した半導体装置。
  5.  前記第1の不純物層に繋がる配線は、ソース線であり、前記第2の不純物層に繋がる配線はビット線であり、前記第1のゲート導体層に繋がる配線が、第1の駆動制御線であり、前記第2のゲート導体層と前記第3のゲート導体層に繋がる配線がワード線であり、
     前記ソース線と、前記ビット線と、前記第1の駆動制御線と、前記ワード線とに印加する電圧により、前記メモリ消去動作と、前記メモリ書き込み動作と、を行う、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  6.  前記第1のゲート導体層と前記第1の半導体柱との間の第1のゲート容量は、前記第2のゲート導体層と前記第1の半導体柱との間の第2のゲート容量よりも大きい、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  7.  前記第1のゲート導体層が、平面視において、前記第1のゲート絶縁層を囲んで2つの導体層に分離している、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
PCT/JP2021/013535 2021-03-30 2021-03-30 メモリ素子を有する半導体装置 WO2022208658A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/013535 WO2022208658A1 (ja) 2021-03-30 2021-03-30 メモリ素子を有する半導体装置
TW111109232A TWI823289B (zh) 2021-03-30 2022-03-14 具有記憶元件的半導體裝置
US17/706,880 US20220320097A1 (en) 2021-03-30 2022-03-29 Memory-element-including semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/013535 WO2022208658A1 (ja) 2021-03-30 2021-03-30 メモリ素子を有する半導体装置

Publications (1)

Publication Number Publication Date
WO2022208658A1 true WO2022208658A1 (ja) 2022-10-06

Family

ID=83450121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013535 WO2022208658A1 (ja) 2021-03-30 2021-03-30 メモリ素子を有する半導体装置

Country Status (3)

Country Link
US (1) US20220320097A1 (ja)
TW (1) TWI823289B (ja)
WO (1) WO2022208658A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024116244A1 (ja) * 2022-11-28 2024-06-06 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド メモリ素子を有した半導体装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188279A (ja) * 2001-12-14 2003-07-04 Toshiba Corp 半導体メモリ装置およびその製造方法
JP2006080280A (ja) * 2004-09-09 2006-03-23 Toshiba Corp 半導体装置およびその製造方法
JP2008124209A (ja) * 2006-11-10 2008-05-29 Toshiba Corp 半導体記憶装置
JP2008147514A (ja) * 2006-12-12 2008-06-26 Renesas Technology Corp 半導体記憶装置
JP2008218556A (ja) * 2007-03-01 2008-09-18 Toshiba Corp 半導体記憶装置
WO2016162927A1 (ja) * 2015-04-06 2016-10-13 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 柱状半導体メモリ装置と、その製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020043277A (ja) * 2018-09-13 2020-03-19 キオクシア株式会社 半導体記憶装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188279A (ja) * 2001-12-14 2003-07-04 Toshiba Corp 半導体メモリ装置およびその製造方法
JP2006080280A (ja) * 2004-09-09 2006-03-23 Toshiba Corp 半導体装置およびその製造方法
JP2008124209A (ja) * 2006-11-10 2008-05-29 Toshiba Corp 半導体記憶装置
JP2008147514A (ja) * 2006-12-12 2008-06-26 Renesas Technology Corp 半導体記憶装置
JP2008218556A (ja) * 2007-03-01 2008-09-18 Toshiba Corp 半導体記憶装置
WO2016162927A1 (ja) * 2015-04-06 2016-10-13 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 柱状半導体メモリ装置と、その製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024116244A1 (ja) * 2022-11-28 2024-06-06 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド メモリ素子を有した半導体装置
WO2024116436A1 (ja) * 2022-11-28 2024-06-06 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド メモリ素子を有する半導体装置

Also Published As

Publication number Publication date
TWI823289B (zh) 2023-11-21
US20220320097A1 (en) 2022-10-06
TW202303930A (zh) 2023-01-16

Similar Documents

Publication Publication Date Title
JP7335661B2 (ja) 半導体素子を用いたメモリ装置の製造方法
US11776609B2 (en) Memory-element-including semiconductor device
US20230377635A1 (en) Semiconductor element memory device
WO2022208658A1 (ja) メモリ素子を有する半導体装置
US11925013B2 (en) Memory device using pillar-shaped semiconductor element
US11968822B2 (en) Memory device using semiconductor element
WO2022219762A1 (ja) メモリ素子を有する半導体装置
WO2022239099A1 (ja) メモリ素子を有する半導体装置
WO2022239237A1 (ja) 半導体素子を用いたメモリ装置
WO2023281730A1 (ja) 半導体素子を用いたメモリ装置
WO2022168219A1 (ja) 柱状半導体素子を用いたメモリ装置
JP7057033B1 (ja) 半導体素子を用いたメモリ装置の製造方法
WO2022219763A1 (ja) 半導体素子を用いたメモリ装置
WO2022239102A1 (ja) 半導体素子を用いたメモリ装置
WO2022215157A1 (ja) メモリ素子を有する半導体装置
WO2022180733A1 (ja) 柱状半導体素子を用いたメモリ装置の製造方法
WO2022239198A1 (ja) 半導体素子を用いたメモリ装置の製造方法
WO2022180738A1 (ja) 半導体素子を用いたメモリ装置
WO2022239192A1 (ja) 半導体素子を用いたメモリ装置
WO2022269890A1 (ja) 半導体素子を用いたメモリ装置の製造方法
WO2022239194A1 (ja) 半導体素子を用いたメモリ装置
WO2022168220A1 (ja) 半導体素子を用いたメモリ装置
WO2022208587A1 (ja) 半導体素子を用いたメモリ装置と、その製造方法
WO2023162036A1 (ja) 半導体メモリ装置
WO2022157929A1 (ja) 半導体素子を用いたメモリ装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934829

Country of ref document: EP

Kind code of ref document: A1