WO2022239196A1 - 半導体素子を用いたメモリ装置 - Google Patents

半導体素子を用いたメモリ装置 Download PDF

Info

Publication number
WO2022239196A1
WO2022239196A1 PCT/JP2021/018247 JP2021018247W WO2022239196A1 WO 2022239196 A1 WO2022239196 A1 WO 2022239196A1 JP 2021018247 W JP2021018247 W JP 2021018247W WO 2022239196 A1 WO2022239196 A1 WO 2022239196A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gate conductor
conductor layer
line
gate
Prior art date
Application number
PCT/JP2021/018247
Other languages
English (en)
French (fr)
Inventor
康司 作井
望 原田
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
康司 作井
望 原田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド, 康司 作井, 望 原田 filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to PCT/JP2021/018247 priority Critical patent/WO2022239196A1/ja
Priority to US17/741,914 priority patent/US20220367469A1/en
Priority to TW111117682A priority patent/TWI802404B/zh
Publication of WO2022239196A1 publication Critical patent/WO2022239196A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/20DRAM devices comprising floating-body transistors, e.g. floating-body cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/404Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with one charge-transfer gate, e.g. MOS transistor, per cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4094Bit-line management or control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4096Input/output [I/O] data management or control circuits, e.g. reading or writing circuits, I/O drivers or bit-line switches 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/036Making the capacitor or connections thereto the capacitor extending under the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/33DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor extending under the transistor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4091Sense or sense/refresh amplifiers, or associated sense circuitry, e.g. for coupled bit-line precharging, equalising or isolating
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/401Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C2211/4016Memory devices with silicon-on-insulator cells

Definitions

  • the present invention relates to a memory device using semiconductor elements.
  • the channel In a normal planar MOS transistor, the channel extends horizontally along the upper surface of the semiconductor substrate. In contrast, the SGT channel extends in a direction perpendicular to the upper surface of the semiconductor substrate (see Patent Document 1 and Non-Patent Document 1, for example). For this reason, the SGT enables a higher density semiconductor device compared to a planar MOS transistor.
  • a DRAM Dynamic Random Access Memory
  • a PCM Phase Change Memory
  • Non-Patent Document 4 RRAM (Resistive Random Access Memory, see, for example, Non-Patent Document 4), MRAM (Magneto-resistive Random Access Memory, see, for example, Non-Patent Document 5) that changes the resistance by changing the direction of the magnetic spin by current ) can be highly integrated.
  • DRAM memory cell see Non-Patent Document 7 which is composed of one MOS transistor and does not have a capacitor.
  • the present application relates to a dynamic flash memory that does not have resistance change elements or capacitors and can be configured only with MOS transistors.
  • FIGS. 7(a) to 7(d) show the write operation of a DRAM memory cell composed of a single MOS transistor without the aforementioned capacitor
  • FIGS. 8(a) and 8(b) show the operation The problem is shown in FIGS. 9(a) to 9(c) for the read operation (see Non-Patent Documents 7 to 10).
  • FIG. 7(a) shows a "1" write state.
  • the memory cell is formed on the SOI substrate 100 and includes a source N + layer 103 (hereinafter, a semiconductor region containing a high concentration of donor impurities is referred to as an “N + layer”) to which a source line SL is connected.
  • a memory cell of the DRAM is composed of these pieces.
  • the SiO 2 layer 101 of the SOI substrate is in contact directly below the floating body 102 .
  • the MOS transistor 110 is operated in the saturation region. That is, the electron channel 107 extending from the source N + layer 103 has a pinch-off point 108 and does not reach the drain N + layer 104 connected to the bit line.
  • both the bit line BL connected to the drain N + layer and the word line WL connected to the gate conductive layer 105 are set at a high voltage, and the MOS transistor 110 is turned on by setting the gate voltage to about half the drain voltage.
  • the electric field strength is maximum at the pinch-off point 108 near the drain N + layer 104 .
  • FIG. 7B shows the floating body 102 saturated with the generated holes 106 .
  • FIG. 7(c) shows how the "1" write state is rewritten to the "0" write state.
  • the capacitance CFB of the floating body is composed of the capacitance CWL between the gate connected to the word line and the floating body, and the source N + layer 103 connected to the source line.
  • FIGS. 9(a) to (c) The read operation is shown in FIGS. 9(a) to (c), where FIG. 9(a) shows a "1" write state and FIG. 9(b) shows a "0" write state.
  • FIGS. 9(a) to (c) show a "1" write state
  • FIG. 9(b) shows a "0" write state.
  • Vb the floating body 102
  • the floating body 102 is pulled down to a negative bias when the word line returns to 0 V at the end of writing.
  • the negative bias becomes even deeper. Therefore, as shown in FIG. Therefore, it has been difficult to commercialize a DRAM memory cell that does not actually have a capacitor.
  • Critoloveanu “A Compact Capacitor-Less High-Speed DRAM Using Field Effect-Controlled Charge Regeneration,” Electron Device Letters, Vol. 35, No.2, pp. 179-181 (2012) T. Ohsawa, K. Fujita, T. Higashi, Y. Iwata, T. Kajiyama, Y. Asao, and K. Sunouchi: “Memory design using a one-transistor gain cell on SOI,” IEEE JSSC, vol.37, No.11, pp1510-1522 (2002). T. Shino, N. Kusunoki, T. Higashi, T. Ohsawa, K. Fujita, K. Hatsuda, N. Ikumi, F.
  • the memory device includes: A memory device in which pages are configured by a plurality of memory cells arranged in a row direction on a substrate and the plurality of pages are arranged in a column direction, each memory cell included in each page, a semiconductor body on a substrate, standing vertically or extending horizontally with respect to the substrate; a first impurity layer and a second impurity layer at both ends of the semiconductor matrix; a first gate insulating layer surrounding part or all of a side surface of the semiconductor substrate between the first impurity layer and the second impurity layer and in contact with or in close proximity to the first impurity layer; When, a second gate insulating layer surrounding the side surface of the semiconductor base, connected to the first gate insulating layer, and in contact with or close to the second impurity layer; a first gate conductor layer covering part or all of the first gate insulating layer; a second gate conductor layer covering the second gate insulating layer; the semiconductor matrix has a channel semiconductor layer covered with
  • the first impurity layer of the memory cell is connected to a source line
  • the second impurity layer is connected to a bit line
  • one of the first gate conductor layer and the second gate conductor layer is connected.
  • the bit line is connected to a forced inversion type sense amplifier circuit through a switch circuit;
  • page read operation page data of a memory cell group selected by the word line is read to the bit line, charge sharing is performed between the bit line and a charge sharing node on the opposite side of the bit line of the switch circuit, and the Accelerating the read determination of the forced inversion type sense amplifier circuit, (1st invention)
  • a memory device using a semiconductor element characterized by:
  • the charge-sharing node is precharged to a voltage equal to or higher than that of the bit line before the page read operation is started.
  • the first gate capacitance between the first gate conductor layer and the channel semiconductor layer is between the second gate conductor layer and the channel semiconductor layer. It is characterized by being larger than the second gate capacitance (third invention).
  • the first gate conductor layer surrounds the first gate insulating layer and is separated into at least two conductor layers when viewed from the central axis direction.
  • FIG. 1 is a structural diagram of a memory device having SGTs according to the first embodiment;
  • FIG. The gate capacitance of the first gate conductor layer 5a connected to the plate line PL of the memory device having the SGT according to the first embodiment is greater than the gate capacitance of the second gate conductor layer 5b connected to the word line WL.
  • FIG. 10 is a diagram for explaining the effect of increasing the .
  • FIG. 4 is a diagram for explaining a write operation mechanism of a memory device having SGTs according to the first embodiment;
  • FIG. 4 is a diagram for explaining a write operation mechanism of a memory device having SGTs according to the first embodiment;
  • FIG. 4 is a diagram for explaining a page erase operation mechanism of a memory device having SGTs according to the first embodiment;
  • FIG. 4 is a diagram for explaining a page erase operation mechanism of a memory device having SGTs according to the first embodiment;
  • FIG. 4 is a diagram for explaining a page erase operation mechanism of a memory device having SGTs according to the first embodiment;
  • FIG. 4 is a diagram for explaining a page erase operation mechanism of a memory device having SGTs according to the first embodiment;
  • FIG. 4 is a diagram for explaining a page erase operation mechanism of a memory device having SGTs according to the first embodiment;
  • FIG. 4 is a diagram for explaining a page erase operation mechanism of a memory device having SGTs according to the first embodiment;
  • FIG. 4 is a diagram for explaining a page erase operation mechanism of a memory device having SGTs according to the first embodiment;
  • FIG. 2 is a diagram for explaining a read operation mechanism of a memory device having SGTs according to the first embodiment; Using the switch circuit and the forced inversion type sense amplifier circuit connected to the bit line of the memory device having the SGT according to the first embodiment, the charge between the bit line and the charge sharing node on the opposite side of the bit line of the switch circuit is detected.
  • FIG. 10 is a diagram for explaining sharing and accelerating read determination of the forced inversion type sense amplifier circuit; Using the switch circuit and the forced inversion type sense amplifier circuit connected to the bit line of the memory device having the SGT according to the first embodiment, the charge between the bit line and the charge sharing node on the opposite side of the bit line of the switch circuit is detected.
  • FIG. 10 is a diagram for explaining sharing and accelerating read determination of the forced inversion type sense amplifier circuit; Using the switch circuit and the forced inversion type sense amplifier circuit connected to the bit line of the memory device having the SGT according to the first embodiment, the charge between the bit line and the charge sharing node on the opposite side of the bit line of the switch circuit is detected.
  • FIG. 10 is a diagram for explaining sharing and accelerating read determination of the forced inversion type sense amplifier circuit; Using the switch circuit and the forced inversion type sense amplifier circuit connected to the bit line of the memory device having the SGT according to the first embodiment, the charge between the bit line and the charge sharing node on the opposite side of the bit line of the switch circuit is detected.
  • FIG. 10 is a diagram for explaining sharing and accelerating read determination of the forced inversion type sense amplifier circuit
  • FIG. 4 is a diagram for explaining the write operation of the forced inversion type sense amplifier circuit of the memory device having the SGT according to the first embodiment
  • FIG. 10 is a diagram for explaining a write operation of a conventional DRAM memory cell that does not have a capacitor
  • FIG. 4 is a diagram for explaining operational problems of a conventional DRAM memory cell that does not have a capacitor
  • FIG. 2 illustrates a read operation of a DRAM memory cell without a conventional capacitor
  • dynamic flash memory a memory device using semiconductor elements (hereinafter referred to as dynamic flash memory) according to the present invention will be described with reference to the drawings.
  • FIG. 1 The structure and operation mechanism of the dynamic flash memory cell according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • FIG. 2 The structure of a dynamic flash memory cell will be described with reference to FIG.
  • the gate capacitance of the first gate conductor layer 5a connected to the plate line PL becomes larger than the gate capacitance of the second gate conductor layer 5b connected to the word line WL.
  • a data write operation mechanism will be described with reference to FIG. 3
  • a data erase operation mechanism will be described with reference to FIG. 4
  • a data read operation mechanism will be described with reference to FIG.
  • FIG. 1 shows the structure of a dynamic flash memory cell according to a first embodiment of the invention.
  • a silicon semiconductor pillar 2 having a conductivity type of P-type or i-type (intrinsic type) formed on a substrate hereinafter, a silicon semiconductor pillar is referred to as a “Si pillar”) (of “semiconductor matrix” in claims) ), one of which serves as a source and the other serves as a drain . ”) is formed.
  • Si pillar silicon semiconductor pillar
  • a first gate insulating layer 4a (which is an example of the "first gate insulating layer” in the claims) and a second gate insulating layer 4b (the “first gate insulating layer” in the claims) surround the channel region 7. 2) is formed.
  • the first gate insulating layer 4a and the second gate insulating layer 4b are in contact with or close to the N + layers 3a and 3b serving as the source and drain, respectively.
  • a first gate conductor layer 5a (which is an example of the "first gate conductor layer” in the scope of claims) and a second gate conductor layer 5a surround the first gate insulation layer 4a and the second gate insulation layer 4b.
  • a gate conductor layer 5b (which is an example of the "second gate conductor layer” in the claims) is formed respectively.
  • the first gate conductor layer 5a and the second gate conductor layer 5b are separated by an insulating layer 6 (which is an example of the "first insulating layer” in the claims).
  • a channel region 7 between the N + layers 3a and 3b is a first channel Si layer 7a (an example of a "first channel semiconductor layer” in the scope of claims) surrounded by a first gate insulating layer 4a. ) and a second channel Si layer 7b (which is an example of the "second channel semiconductor layer” in the claims) surrounded by the second gate insulating layer 4b.
  • a dynamic flash memory cell 10 is formed.
  • the N + layer 3a serving as the source is connected to the source line SL (an example of the "source line” in the scope of claims), and the N + layer 3b serving as the drain is connected to the bit line BL ("bit line" in the scope of claims).
  • the first gate conductor layer 5a is a plate line PL (an example of a “first drive control line” in the scope of claims)
  • the second gate conductor layer 5b is a word line WL (which is an example of "word line” in the scope of claims), respectively.
  • the gate capacitance of the first gate conductor layer 5a to which the plate line PL is connected may be larger than the gate capacitance of the second gate conductor layer 5b to which the word line WL is connected. desirable.
  • the gate capacitance of the first gate conductor layer 5a connected to the plate line PL is made larger than the gate capacitance of the second gate conductor layer 5b connected to the word line WL.
  • the gate length of the first gate conductor layer 5a is made longer than the gate length of the second gate conductor layer 5b.
  • the gate length of the first gate conductor layer 5a is not made longer than the gate length of the second gate conductor layer 5b.
  • the thickness of the gate insulating film of the gate insulating layer 4a may be thinner than the thickness of the gate insulating film of the second gate insulating layer 4b.
  • the dielectric constant of the gate insulating film of the first gate insulating layer 4a is made higher than that of the gate insulating film of the second gate insulating layer 4b.
  • the gate capacitance of the first gate conductor layer 5a connected to the plate line PL is It may be larger than the gate capacitance of the second gate conductor layer 5b to which the word line WL is connected.
  • FIG. 2(a) shows a structural diagram of the dynamic flash memory cell according to the first embodiment of the present invention with only the main parts simplified.
  • a bit line BL, a word line WL, a plate line PL, and a source line SL are connected to the dynamic flash memory cell, and the potential state of the channel region 7 is determined by the voltage state thereof.
  • FIG.2(b) is a figure for demonstrating each capacity
  • the capacitance CFB of the channel region 7 is composed of the capacitance CWL between the gate conductor layer 5b connected to the word line WL and the channel region 7, and the capacitance CWL between the gate conductor layer 5a connected to the plate line PL and the channel region 7.
  • C PL >C WL ⁇ PL > ⁇ WL .
  • FIG. 2(c) is a diagram for explaining changes in the voltage VFB of the channel region 7 when the voltage VWL of the word line WL rises and then falls during read and write operations.
  • FB is as follows.
  • FIG. 3A(a)-(c) and FIG. 3B illustrate a memory write operation (which is an example of a "memory write operation" in the claims) of a dynamic flash memory cell according to a first embodiment of the present invention.
  • FIG. 3A(a) shows the mechanism of the write operation
  • FIG. 3A(b) shows the operation waveforms of the bit line BL, the source line SL, the plate line PL, the word line WL, and the channel region 7 which is the floating body FB.
  • V FB the voltage of channel region 7
  • V FB the voltage of channel region 7
  • Vss is applied to the bit line BL, source line SL and word line WL
  • V PLL is applied to the plate line PL.
  • Vss is 0V and V PLL is 2V.
  • V PLL is 2V.
  • word line WL rises from Vss to V WLH .
  • the threshold voltage for erasing "0" of the second N-channel MOS transistor is VtWL "0".
  • the second capacitive coupling between the word line WL and the channel region 7 increases the voltage of the channel region 7 to V FB "0"+ ⁇ BL ⁇ V BLH + ⁇ WL ⁇ VtWL becomes "0".
  • an annular inversion layer 12b is formed in the channel region 7 on the inner circumference of the second gate conductor layer 5b, and the word line WL and the channel region 7 are separated from each other. block the capacitive coupling of 2.
  • V PLL 2 V
  • an annular inversion layer 12a is formed in the inner channel region 7 of the first gate conductor layer 5a connected to the plate line PL.
  • a pinch-off point 13 exists.
  • the first N-channel MOS transistor having the first gate conductor layer 5a operates in the linear region.
  • the second N channel MOS transistor having second gate conductor layer 5b connected to word line WL operates in the saturation region.
  • there is no pinch-off point in channel region 7 on the inner periphery of second gate conductor layer 5b connected to word line WL and inversion layer 12b is formed on the entire inner periphery of gate conductor layer 5b.
  • the inversion layer 12b formed entirely on the inner periphery of the second gate conductor layer 5b connected to the word line WL is the substantial drain of the second N-channel MOS transistor having the second gate conductor layer 5b.
  • the channel region 7 between the first N-channel MOS transistor having the first gate conductor layer 5a and the second N-channel MOS transistor having the second gate conductor layer 5b, which are connected in series, has a second The electric field is maximum at the boundary region of 1 and the impact ionization phenomenon occurs in this region. Since this region is the region on the source side viewed from the second N-channel MOS transistor having the second gate conductor layer 5b connected to the word line WL, this phenomenon is called the source-side impact ionization phenomenon. Due to this source-side impact ionization phenomenon, electrons flow from the N + layer 3a connected to the source line SL toward the N + layer 3b connected to the bit line.
  • the generated hole group 9 (an example of the "hole group” in the claims) is the majority carrier of the channel region 7, and the channel region 7 is Charge to positive bias. Since the N + layer 3a connected to the source line SL is at 0V, the channel region 7 is at the built-in voltage Vb (approximately 0 V) of the PN junction between the N + layer 3a connected to the source line SL and the channel region 7. .7V). When channel region 7 is positively biased, the threshold voltages of the first N-channel MOS transistor and the second N-channel MOS transistor are lowered due to the substrate bias effect.
  • bit line BL drops from V BLH to Vss. Since the bit line BL and the channel region 7 are capacitively coupled, the final "1" write voltage V FB "1" of the channel region 7 is as follows.
  • VFB "1" Vb - ⁇ WL x VtWL "1" - ⁇ BL x VBLH (7)
  • the coupling ratio ⁇ BL between the bit line BL and the channel region 7 is also small.
  • the threshold voltage of the second N-channel MOS transistor in the second channel region 7b connected to the word line WL is lowered.
  • a memory write operation is performed by setting the "1" write state of the channel region 7 as a first data retention voltage (which is an example of a "first data retention voltage” in the scope of claims), and logical storage data "1" is stored. ”.
  • Electron-hole pairs may be generated by the impact ionization phenomenon in the third boundary region between the channel semiconductor layer 7b and the channel region 7 may be charged with the generated hole groups 9 .
  • the voltage conditions applied to the bit line BL, the source line SL, the word line WL, and the plate line PL and the potential of the floating body described above are examples for performing the write operation, and other operating conditions under which the write operation can be performed. may be
  • FIG. 4A shows a memory block circuit diagram for explaining the page erase operation. Although a total of 9 memory cells CL11 to CL33 of 3 rows ⁇ 3 columns are shown here, the actual memory block is larger than this matrix. When memory cells are arranged in rows and columns, one direction of the arrangement is called “row direction” (or “row”), and the direction perpendicular thereto is called “column direction” (or “column”).
  • a source line SL, bit lines BL 1 to BL 3 , plate lines PL 1 to PL 3 and word lines WL 1 to WL 3 are connected to each memory cell.
  • memory cells CL21 to CL23 connected to plate line PL2 and word line WL2 of an arbitrary page (which is an example of "page” in the scope of claims) are selected, and page erase is performed. Suppose you do an action.
  • FIG. 4B(a) shows the timing operation waveform diagram of the main nodes of the erase operation.
  • T0 to T12 represent times from the start to the end of the erasing operation.
  • FIG. 4B(b) shows a state in which the hole groups 9 generated by impact ionization in the previous cycle are stored in the channel region 7 at time T0 before the erasing operation.
  • the bit lines BL 1 to BL 3 and the source line SL go from Vss to high voltage states of V BLH and V SLH , respectively.
  • Vss is 0V, for example.
  • the plate line PL 2 and the word line WL 2 selected in the page erase operation are set to the first voltage V PLL to the second voltage V PLH and the third voltage V PLH , respectively, during the next period T3 to T4.
  • the inversion layer 12b on the inner circumference of the connected second gate conductor layer 5b is not formed.
  • VBLH and VSLH are the threshold voltages of the second N-channel MOS transistor on the word line WL2 side and the first N-channel MOS transistor on the plate line PL2 side , respectively.
  • tPL it is desirable that V BLH >V WLH +V tWL and V SLH >V PLH +V tPL .
  • V tWL and V tPL are 0.5 V
  • V WLH and V PLH should be set to 3 V
  • V BLH and V SLH should be set to 3.5 V or more.
  • the floating channel is accompanied by the plate line PL 2 and the word line WL 2 going to the high voltage state of the second voltage V PLH and the fourth voltage V WLH .
  • the voltage in region 7 is boosted by a first capacitive coupling between plate line PL 2 and channel region 7 and a second capacitive coupling between word line WL 2 and channel region 7 .
  • the voltage of the channel region 7 becomes a high voltage from V FB "1" in the "1" write state.
  • the voltages of the bit lines BL 1 to BL 3 and the source line SL are high voltages V BLH and V SLH , the PN junction between the source N + layer 3a and the channel region 7 and the drain N + A boost is possible because the PN junction between layer 3b and channel region 7 is in a reverse biased state.
  • the page erase operation mechanism of FIG. 4B(a) will be described.
  • the voltages on the bit lines BL 1 -BL 3 and the source line SL drop from the high voltages V BLH and V SLH to Vss.
  • the PN junction between the source N + layer 3a and the channel region 7 and the PN junction between the drain N + layer 3b and the channel region 7 are forward biased as shown in FIG.
  • the remaining hole groups in the hole groups 9 in the channel region 7 are discharged to the source N + layer 3a and the drain N + layer 3b.
  • the voltage V FB of the channel region 7 becomes the PN junction formed between the source N + layer 3 a and the P layer channel region 7 and the PN junction formed between the drain N + layer 3 b and the P layer channel region 7 . is the built-in voltage Vb.
  • the page erase operation mechanism of FIG. 4B(a) will be described.
  • the voltages of the bit lines BL 1 -BL 3 and the source line SL rise from Vss to high voltages V BLH and V SLH .
  • the plate line PL 2 and the word line WL 2 are changed from the second voltage V PLH and the fourth voltage V WLH to the first voltage V at times T9 to T10, respectively.
  • the voltage in the channel region 7 can be efficiently reduced without forming the inversion layer 12a on the plate line PL2 side and the inversion layer 12b on the word line WL2 side in the channel region 7.
  • V FB changes from Vb to V FB "0" due to the first capacitive coupling between plate line PL 2 and channel region 7 and the second capacitive coupling between word line WL 2 and channel region 7 . Therefore, the voltage difference ⁇ V FB between the "1" written state and the "0" erased state of the channel region 7 is expressed by the following equation.
  • VFB "1” Vb - ⁇ WL x VtWL “1” - ⁇ BL x VBLH (7)
  • V FB "0” Vb - ⁇ WL ⁇ V WLH - ⁇ PL ⁇ (V PLH - V PLL )
  • the sum of ⁇ WL and ⁇ PL is 0.8 or more, ⁇ V FB becomes large, and a sufficient margin can be obtained.
  • the page erase operation mechanism of FIG. 4B(a) will be described.
  • the voltages of the bit lines BL 1 to BL 3 and the source line SL drop from V BLH to Vss and from V SLH to Vss, respectively, and the erase operation ends.
  • the bit lines BL 1 to BL 3 and the source line SL slightly lower the voltage of the channel region 7 by capacitive coupling. Since the voltage of the region 7 is equivalent to the amount raised by the capacitive coupling, the increase and decrease of the voltages of the bit lines BL 1 to BL 3 and the source line SL are canceled out, and as a result, the voltage of the channel region 7 is not affected. .
  • the page erase operation is performed by using the voltage V FB "0" in the "0" erased state of the channel region 7 as the second data retention voltage (which is an example of the "second data retention voltage” in the scope of claims). and assigns it to logical storage data "0".
  • the difference between FIG. 4D and FIG. 4B is that the bit lines BL 1 to BL 3 are set to Vss or floating, and the word line WL 2 is fixed to Vss during the page erase operation.
  • the second N-channel MOS transistor of the word line WL2 becomes non-conductive and no memory cell current flows. Therefore, the hole group 9 is not generated by the impact ionization phenomenon.
  • the source line SL swings between Vss and V SLH
  • the plate line PL2 swings between V PLL and V PLH , as in FIG . 4B.
  • the hole group 9 is discharged to the first impurity layer N + layer 3a of the source line SL as shown in FIG. 4D(c).
  • the difference between FIG. 4E and FIG. 4B is that the source line SL is kept at Vss or in a floating state, and the plate line PL2 is fixed at Vss during the page erase operation.
  • the bit lines BL 1 to BL 3 rise from Vss to V BLH at times T1 to T2
  • the first N-channel MOS transistors of the plate line PL 2 are rendered non-conductive and no memory cell current flows. . Therefore, the hole group 9 is not generated by the impact ionization phenomenon.
  • bit lines BL 1 to BL 3 swing between Vss and V BLH
  • word line WL 2 swings between Vss and V WLH , as in FIG. 4B.
  • the hole group 9 is discharged to the second impurity layer N + layer 3b of the bit lines BL 1 to BL 3 as shown in FIG. 4E(c).
  • the voltage conditions applied to the bit line BL, the source line SL, the word line WL, and the plate line PL and the potential of the floating body described above are examples for performing the page erase operation. It may be an operating condition.
  • FIG. 5A to 5C are diagrams for explaining the read operation of the dynamic flash memory cell according to the first embodiment of the present invention.
  • FIG. 5(a) when the channel region 7 is charged to the built-in voltage Vb (approximately 0.7V), a second N-channel having a second gate conductor layer 5b connected to the word line WL is formed.
  • the threshold voltage of the MOS transistor is lowered due to the substrate bias effect. This state is assigned to logical storage data "1".
  • FIG. 5(b) the memory block selected before writing is in the erased state "0" in advance, and the voltage VFB of the channel region 7 is VFB "0".
  • a write operation randomly stores a write state of "1".
  • logical storage data of logical "0" and “1” are created for the word line WL.
  • reading is performed by the sense amplifier using the level difference between the two threshold voltages for the word line WL.
  • the voltage conditions applied to the bit line BL, the source line SL, the word line WL, and the plate line PL and the potential of the floating body are examples for performing the read operation, and other operating conditions for the read operation. may be
  • a switch circuit and a forced inversion sense amplifier circuit connected to the bit line BL of the dynamic flash memory cell according to the first embodiment of the present invention.
  • memory cell group (which is an example of a "amplifier circuit") selected by a word line WL during a page read operation
  • the page data (which is an example of the "memory cell group") is read out to the bit line BL, and the bit line BL and the switch circuit on the opposite side of the bit line are charged.
  • Charge sharing with a node which is an example of a "charge sharing node” in the claims) to accelerate the read determination of the forced inversion sense amplifier circuit will now be described.
  • FIG. 6A is an operation waveform diagram of main nodes for explaining in detail charge sharing during reading of the dynamic flash memory according to the first embodiment of the present invention.
  • Vt1 is the threshold voltage of the transistor TR11.
  • the bit line reading the "1" written memory cell then discharges to Vss with the memory cell current.
  • the charge sharing signal line FC is set to the second high level VFCH2. If the bit line potential is lower than VFCH2-Vt1 at this time, the potential of the charge-sharing node P instantaneously drops below VFCH2-Vt1, which is the same as that of the bit line.
  • the bit line capacitance CB is much larger than the parasitic capacitance CS of the charge sharing node.
  • the potential difference (VFCH2-VFCH1) of the charge sharing signal line FC is hardly affected by the difference in the threshold voltage due to the process variation, so that the highly accurate sensing operation can be performed at high speed.
  • FIG. 6B shows the memory cell array MA of the dynamic flash memory.
  • (m+1) ⁇ (n+1) memory cells CELL00 to CELLmn are arranged.
  • word lines WL0 to WLm and plate lines PL0 to PLm are connected in the row direction
  • bit lines BL0 to BLn are connected in the column direction
  • source lines SL are connected to the substrate of the memory cell. This source line SL is negatively biased when erasing data stored in the memory cell. Therefore, the word lines WL0 to WLm in the row direction, the plate lines PL0 to PLm, and the bit lines BL0 to BLn in the column direction can selectively perform writing and reading to/from the memory cells.
  • bit lines BL0 to BLn are single-ended, and each bit line BL0 to BLn is connected to sense amplifiers S/A0 to S/An for reading and writing.
  • sense amplifiers S/A0 to S/An are forcibly inverted latch type sense amplifiers. Therefore, the flip-flop circuits forming the sense amplifiers are unidirectionally reset before the write data is input to the sense amplifiers S/A0 to S/An and before the read data is latched.
  • Sense amplifiers S/A0 to S/An are connected to complementary input/output lines IO and /IO via transistors TR10 to TR2n.
  • Column select lines CSL0 to CSLn are connected to the gates of the transistors TR10 to TR2n.
  • write data can be selectively input to the sense amplifiers S/A0-S/An from the input/output lines IO and /IO through the column select lines CSL0-CSLn.
  • the read data latched in the sense amplifiers S/A0-S/An can be selectively read out to the input/output lines IO and /IO by the column selection lines CSL0-CSLn.
  • FIG. 6C shows a more detailed circuit diagram of the sense amplifiers S/Ak and S/Ap shown in FIG. 6B.
  • the sense amplifiers S/Ak and S/Ap are respectively composed of transistors TR3k to TR12k, capacitors CBk and CSk, transistors TR3p to TR12p and capacitors CBp and CSp.
  • TR3k, TR4k, TR3p, and TR4p are P-type MOS transistors
  • TR5k to TR12k and TR5p to TR12p are N-type MOS transistors.
  • the latch-type sense amplifiers (flip-flops) LAk and LAp are respectively composed of transistors TR3k to TR6k and transistors TR3p to TR6p.
  • Latch type sense amplifiers LAk and LAp have complementary sense nodes Sk, /Sk, Sp and /Sp.
  • a left signal line FL is input to the gates of the transistors TR7k and TR7p, and a right signal line FR is input to the gates of the transistors TR8k and TR8p.
  • the sources of the transistors TR7k and TR8k are connected to the activation node Rk, and the sources of the transistors TR7p and TR8p are connected to the node Rp.
  • the activation nodes Rk and Rp are connected to the drains of transistors TR9k and TR9p whose gates receive charge sharing nodes Pk and Pp.
  • a precharge signal line FP is input to the gates of the transistors TR10k and TR10p, and the sources thereof are connected to the charge sharing nodes Pk and Pp. Also, stray capacitors CSk and CSp are connected to the charge-sharing nodes Pk and Pp, respectively.
  • a write signal line FW is connected to the gates of the transistors TR12k and TR12p, and the sources thereof are connected to the bit lines BLk and BLp, respectively.
  • Bit line capacitances CBk and CBp are connected to the bit lines BLk and BLp, respectively.
  • bit line capacitances CBk and CBp are much larger than the parasitic capacitances CSk and CSp, and there are relationships of CBk>CSk and CBp>CSp.
  • transistors TR11k and TR11p having gates connected to the charge-sharing signal line FC are connected, respectively.
  • the transistors TR11k and TR11p operate as a switch circuit.
  • single-ended forced inversion sense amplifiers S/Ak and S/Ap are configured. Read data on bit lines BLk and BLp are latched at high speed by latch type sense amplifiers (flip-flops) LAk and LAp by charge sharing nodes Pk and Pp.
  • FIG. 6D is an operating waveform diagram of main nodes during reading of the dynamic flash memory according to the first embodiment of the present invention.
  • the precharge signal line FP rises from Vss to VFPH.
  • the charge-sharing nodes Pk and Pp rise from Vss to Vcc, and the activation nodes Rk and Rp fall from VRH to Vss.
  • the right signal line FR rises from Vss to VFRH
  • the sense node Sk and the sense node Sp are precharged to the initial set value VSH (an example of "preliminary charge” in the scope of claims), and read data is read.
  • VSH an example of "preliminary charge” in the scope of claims
  • latch type sense amplifiers (flip-flops) LAk and LAp are set up.
  • VSH is precharged to a voltage equal to or higher than that of the bit line BL.
  • the charge sharing signal line FC changes from Vss to the first high level VFCH1
  • the bit lines BLk and BLp are charged from Vss to the bit line read potential VReadBL.
  • word line WLj is selected, and when Vss changes to VReadWL, data in memory cells CELLjk and CELLjp are read out to bit lines BLk and BLp, respectively.
  • the column selection line CSLk is selected, and when Vss changes to VCSLH, the data "1" latched by the latch-type sense amplifier LAk is read out to the input/output lines IO and /IO, and IO becomes VIOH. /IO goes to Vss.
  • the column selection line CSLp is selected and Vss becomes VCSLH, the data "0" latched by the latch-type sense amplifier LAp is read out to the input/output lines IO and /IO, IO becomes Vss and /IO becomes VIOBH. become.
  • FIG. 6E is an operation waveform diagram of main nodes during writing of the dynamic flash memory according to the first embodiment of the present invention.
  • the precharge signal line FP rises from Vss to VFPH.
  • the charge-sharing nodes Pk and Pp rise from Vss to Vcc, and the activation nodes Rk and Rp fall from VRH to Vss.
  • the left signal line FL rises from Vss to VFLH
  • the sense node Sk and the sense node Sp are initialized to Vss, and the latch type sense amplifiers (flip-flops) LAk and LAp are set up before the write data is input. be done.
  • the input/output line IO becomes VIOH
  • the input/output line /IO becomes Vss
  • the column select line CSLk rises from Vss to VCSLH. becomes conductive
  • write data is taken into the latch-type sense amplifier LAk.
  • the input/output line IO goes to Vss
  • the input/output line /IO goes to VIOH
  • the column selection line CSLp rises from Vss to VCSLH.
  • Conductive, write data is taken into the latch-type sense amplifier LAp. In this way, a plurality of write data are taken into the latch-type sense amplifier (not shown).
  • the plate line PLj maintains VProgPL.
  • the bit line BLp of the memory cell CELLjp is at Vss, the impact ionization phenomenon does not occur in the channel region 7 in this memory cell CELLjp. As a result, the "0" erased state is maintained.
  • data "1" can be selectively written to the memory cells CELLjk and CELLjp by the data of the latch-type sense amplifiers LAk and LAp.
  • the dynamic flash memory operation described in this embodiment can be performed even if the horizontal cross-sectional shape of the Si pillar 2 is circular, elliptical, or rectangular. Circular, elliptical, and rectangular dynamic flash memory cells may also be mixed on the same chip.
  • a first gate insulating layer 4a and a second gate insulating layer 4b are provided to surround the entire side surface of the Si pillar 2 standing vertically on the substrate.
  • the dynamic flash memory device has been described by taking as an example the SGT having the first gate conductor layer 5a and the second gate conductor layer 5b surrounding the entirety of the two gate insulating layers 4b.
  • this dynamic flash memory device may have any structure as long as it satisfies the condition that the hole groups 9 generated by the impact ionization phenomenon are retained in the channel region 7 .
  • the channel region 7 may have a floating body structure separated from the substrate 1.
  • Non-Patent Document 10 GAA (Gate All Around: see, for example, Non-Patent Document 10 10) technology and Nanosheet technology (see, for example, Non-Patent Document 11), which is one of the SGTs, the semiconductor matrix in the channel region is formed into the substrate 1
  • the dynamic flash memory operation described above is possible even if it is formed horizontally with respect to the
  • it may be a device structure using SOI (Silicon On Insulator) (for example, see Non-Patent Documents 7 to 10).
  • SOI Silicon On Insulator
  • the bottom of the channel region is in contact with the insulating layer of the SOI substrate, and other channel regions are surrounded by a gate insulating layer and an element isolation insulating layer.
  • the channel region has a floating body structure.
  • the dynamic flash memory device only needs to satisfy the condition that the channel region has a floating body structure. Also, even in a structure in which a Fin transistor (see, for example, Non-Patent Document 13) is formed on an SOI substrate, the dynamic flash operation can be performed if the channel region has a floating body structure.
  • a Fin transistor see, for example, Non-Patent Document 13
  • a gate induced drain leakage (GIDL) current (see, for example, Non-Patent Document 14) is used to generate electron-hole pairs, and the generated hole groups The inside of the channel region 7 may be filled.
  • GIDL gate induced drain leakage
  • equations (1) to (12) in this specification and drawings are equations used to qualitatively explain phenomena, and phenomena are not limited by those equations.
  • the reset voltage of the word line WL, bit line BL, and source line SL is described as Vss, but they may be set to different voltages.
  • FIG. 4A an example of page erase operation conditions is shown.
  • the voltage applied to the word line WL may be changed.
  • a voltage may be applied to the source line SL of the selected page, and the bit line BL may be in a floating state.
  • a voltage may be applied to the bit line BL of the selected page, and the source line SL may be in a floating state.
  • the vertical length of the first gate conductor layer 5a connected to the plate line PL is made longer than the vertical length of the second gate conductor layer 5b connected to the word line WL, It is desirable that C PL >C WL .
  • simply adding the plate line PL reduces the capacitive coupling ratio (C WL /(C PL +C WL +C BL +C SL )) of the word line WL to the channel region 7 .
  • the potential variation ⁇ V FB of the channel region 7 of the floating body becomes small.
  • a fixed voltage of about 1 V, for example, may be applied as the voltage V PLL of the plate line PL.
  • a gate insulating layer, a gate conductor layer, or the like covers a channel or the like means “to cover”. It also includes the case of surrounding a part of the transistor like a transistor, and the case of overlapping a planar object like a planar transistor.
  • the first gate conductor layer 5a surrounds the entire first gate insulating layer 4a.
  • the first gate conductor layer 5a may have a structure surrounding part of the first gate insulating layer 4a in plan view.
  • the first gate conductor layer 5a may be divided into at least two gate conductor layers to operate as plate line PL electrodes.
  • the second gate conductor layer 5b may be divided into two or more, each of which may be operated synchronously or asynchronously as a conductor electrode of a word line. This allows for dynamic flash memory operation.
  • FIGS. 6A-6E the page addition read operation of a 1-bit dynamic flash memory cell made up of a single semiconductor body has been described.
  • the present invention is also effective for each operating mode of a 1-bit high-speed dynamic flash memory cell consisting of
  • the N + layer 3a serving as the source is connected to the source line SL
  • the N + layer 3b serving as the drain is connected to the bit line BL
  • the first gate conductor layer 5a is connected to the plate line PL
  • the second gate conductor layer 5b is connected to the word line. line WL, respectively.
  • the structure is characterized in that the gate capacitance of the first gate conductor layer 5a to which the plate line PL is connected is larger than the gate capacitance of the second gate conductor layer 5b to which the word line WL is connected. .
  • a first gate conductor layer and a second gate conductor layer are stacked vertically. Therefore, the structure is such that the gate capacitance of the first gate conductor layer 5a to which the plate line PL is connected is larger than the gate capacitance of the second gate conductor layer 5b to which the word line WL is connected.
  • it does not increase the memory cell area in plan view. As a result, high performance and high integration of dynamic flash memory cells can be realized at the same time.
  • the sense amplifier that reads and writes the dynamic flash memory cell according to the first embodiment of the present invention is a forced inversion sense amplifier that inputs a single-ended bit line, and is a charge sharing circuit that is resistant to process variations. can be used to rapidly amplify and read out a small bit line readout amplitude. As a result, a significant system speedup can be achieved.
  • the features of the sense amplifier can be summarized as follows. (1) Since the sense amplifier uses a forced inversion latch type sense amplifier, the flip-flop circuit forming the sense amplifier is unidirectionally reset before inputting the write data and before latching the read data. (2) A small amplitude of the bitline can be sensed with a sensitive charge sharing circuit to rapidly amplify the small amplitude of the bitline. (3) The charge-sharing circuit is designed so that the threshold voltages of adjacent transistors do not fluctuate so much even if process variations occur, so that a highly reliable sensing operation can be obtained.
  • the plate line PL may be shared by, for example, a block of memory cells CELL00 to CELLmn. As a result, not only the process and circuit become simpler, but also higher speed can be realized.
  • a Si pillar is formed, but a semiconductor pillar made of a semiconductor material other than Si may be used. This also applies to other embodiments according to the present invention.
  • a dynamic flash memory which is a memory device using high-density and high-performance SGTs, can be obtained.
  • Dynamic flash memory cell 2 Si pillars 3a, 3b having P-type or i-type (intrinsic) conductivity type: N + layer 7: Channel regions 4a, 4b: Gate insulating layers 5a, 5b: Gate conductor layer 6 : Insulating layer for separating two gate conductor layers

Abstract

メモリ装置は、基板上に列状に配列された複数のメモリセルからなるページを備える。前記ページに含まれる各メモリセルの、第1のゲート導体層と、第2のゲート導体層と、第1の不純物領域と、第2の不純物領域に印加する電圧を制御して、チャネル半導体層の内部に、インパクトイオン化現象、またはゲート誘起ドレインリーク電流により形成した正孔群を保持するページ書込み動作と、前記第1のゲート導体層と、前記第2のゲート導体層と、前記第3のゲート導体層と、前記第4のゲート導体層と、前記第1の不純物領域と、前記第2の不純物領域と、に印加する電圧を制御して、前記正孔群を前記チャネル半導体層の内部から除去するページ消去動作を行う。前記メモリセルの前記第1の不純物層は、ソース線と接続し、前記第2の不純物層は、ビット線と接続し、前記第1のゲート導体層と前記第2のゲート導体層のうちの一方はワード線と接続し、他方は第1の駆動制御線と接続し、前記ビット線は、スイッチ回路を介してセンスアンプ回路に接続する。ページ読出し動作時には、前記ワード線で選択するメモリセル群のページデータを前記ビット線に読出し、前記ビット線と前記スイッチ回路の前記ビット線と反対側の電荷共有ノードとの電荷共有を行い、前記強制反転型センスアンプ回路の読出し判定を加速する。

Description

半導体素子を用いたメモリ装置
 本発明は、半導体素子を用いたメモリ装置に関する。
 近年、LSI(Large Scale Integration)技術開発において、メモリ素子の高集積化と高性能化が求められている。
 通常のプレナー型MOSトランジスタでは、チャネルが半導体基板の上表面に沿う水平方向に延在する。これに対して、SGTのチャネルは、半導体基板の上表面に対して垂直な方向に延在する(例えば、特許文献1、非特許文献1を参照)。このため、SGTはプレナー型MOSトランジスタと比べ、半導体装置の高密度化が可能である。このSGTを選択トランジスタとして用いて、キャパシタを接続したDRAM(Dynamic Random Access Memory、例えば、非特許文献2を参照)、抵抗変化素子を接続したPCM(Phase Change Memory、例えば、非特許文献3を参照)、RRAM(Resistive Random Access Memory、例えば、非特許文献4を参照)、電流により磁気スピンの向きを変化させて抵抗を変化させるMRAM(Magneto-resistive Random Access Memory、例えば、非特許文献5を参照)などの高集積化を行うことができる。また、キャパシタを有しない、1個のMOSトランジスタで構成された、DRAMメモリセル(非特許文献7を参照)などがある。本願は、抵抗変化素子やキャパシタを有しない、MOSトランジスタのみで構成可能な、ダイナミック フラッシュ メモリに関する。
 図7(a)~(d)に、前述したキャパシタを有しない、1個のMOSトランジスタで構成された、DRAMメモリセルの書込み動作を、図8(a)と(b)に、動作上の問題点を、図9(a)~(c)に、読出し動作を示す(非特許文献7~10を参照)。図7(a)は、“1”書込み状態を示している。ここで、メモリセルは、SOI基板100に形成され、ソース線SLが接続されるソースN+層103(以下、ドナー不純物を高濃度で含む半導体領域を「N+層」と称する。)、ビット線BLが接続されるドレインN+層104、ワード線WLが接続されるゲート導電層105、MOSトランジスタ110のフローティングボディ(Floating Body)102により構成され、キャパシタを有さず、MOSトランジスタ110が1個でDRAMのメモリセルが構成されている。なお、フローティングボディ102直下には、SOI基板のSiO2層101が接している。このMOSトランジスタ110、1個で構成されたメモリセルの“1”書込みを行う際には、MOSトランジスタ110を飽和領域で動作させる。すなわち、ソースN+層103から延びる電子のチャネル107には、ピンチオフ点108があり、ビット線が接続しているドレインN+層104までには、到達していない。このようにドレインN+層に接続されたビット線BLとゲート導電層105に接続されたワード線WLを共に高電圧にして、ゲート電圧をドレイン電圧の約1/2程度で、MOSトランジスタ110を動作させると、ドレインN+層104近傍のピンチオフ点108において、電界強度が最大となる。この結果、ソースN+層103からドレインN+層104に向かって流れる加速された電子は、Siの格子に衝突して、その時に失う運動エネルギーによって、電子・正孔対が生成される(インパクトイオン化現象)。発生した大部分の電子(図示せず)は、ドレインN+層104に到達する。また、ごく一部のとても熱い電子は、ゲート酸化膜109を飛び越えて、ゲート導電層105に到達する。そして、同時に発生した正孔106は、フローティングボディ102を充電する。この場合、発生した正孔は、フローティングボディ102がP型Siのため、多数キャリアの増分として、寄与する。フローティングボディ102は、生成された正孔106で満たされ、フローティングボディ102の電圧がソースN+層103よりもVb以上に高くなると、さらに生成された正孔は、ソースN+層103に放電する。ここで、Vbは、ソースN+層103とP層のフローティングボディ102との間のPN接合のビルトイン電圧であり、約0.7Vである。図7(b)には、生成された正孔106でフローティングボディ102が飽和充電された様子を示している。
 次に、図7(c)を用いて、メモリセル110の“0”書込み動作を説明する。共通な選択ワード線WLに対して、ランダムに“1”書込みのメモリセル110と“0”書込みのメモリセル110が存在する。図7(c)では、“1”書込み状態から“0”書込み状態に書き換わる様子を示している。“0”書込み時には、ビット線BLの電圧を負バイアスにして、ドレインN+層104とP層のフローティングボディ102との間のPN接合を順バイアスにする。この結果、フローティングボディ102に予め前サイクルで生成された正孔106は、ビット線BLに接続されたドレインN+層104に流れる。書込み動作が終了すると、生成された正孔106で満たされたメモリセル110(図7(b))と、生成された正孔が吐き出されたメモリセル110(図7(c))の2つのメモリセルの状態が得られる。正孔106で満たされたメモリセル110のフローティングボディ102の電位は、生成された正孔がいないフローティングボディ102よりも高くなる。したがって、“1”書込みのメモリセル110のしきい値電圧は、“0”書込みのメモリセル110のしきい値電圧よりも低くなる。その様子を図7(d)に示している。
 次に、この1個のMOSトランジスタ110で構成されたメモリセルの動作上の問題点を図8(a)と(b)を用いて、説明する。図8(a)に示したように、フローティングボディの容量CFBは、ワード線の接続されたゲートとフローティングボディとの間の容量CWLと、ソース線の接続されたソースN+層103とフローティングボディ102との間のPN接合の接合容量CSLと、ビット線の接続されたドレインN+層104とフローティングボディ102との間のPN接合の接合容量CBLとの総和で、
CFB = CWL + CBL + CSL (10)
で表される。また、ワード線の接続されたゲートとフローティングボディ間の容量結合比βWLは、
βWL=CWL/(CWL + CBL + CSL) (11)
で表される。したがって、読出し時または書込み時にワード線電圧VWLが振幅すると、メモリセルの記憶ノード(接点)となるフローティングボディ102の電圧も、その影響を受ける。その様子を図8(b)に示している。読出し時、または、書込み時にワード線電圧VWLが0VからVWLHに上昇すると、フローティングボディ102の電圧VFBは、ワード線電圧が変化する前の初期状態の電圧VFB1からVFB2へワード線との容量結合によって上昇する。その電圧変化量ΔVFBは、
ΔVFB = VFB2 - VFB1
       = βWL ×VWLH (12)
で表される。
ここで、式(11)のβWLにおいて、CWLの寄与率が大きく、例えば、CWL:CBL:CSL=8:1:1である。この場合、βWL=0.8となる。ワード線が、例えば、書込み時の5Vから、書込み終了後に0Vになると、ワード線WLとフローティングボディ102との容量結合によって、フローティングボディ102が、5V×βWL=4Vも振幅ノイズを受ける。このため、書込み時のフローティングボディ102の“1”電位と“0”電位との電位差マージンを十分に取れない問題点があった。
 図9(a)~(c)に読出し動作を示しており、図9(a)は、“1”書込み状態を、図9(b)は、“0”書込み状態を示している。しかし、実際には、“1”書込みでフローティングボディ102にVbが書き込まれていても、書込み終了でワード線が0Vに戻ると、フローティングボディ102は、負バイアスに引き下げられる。“0”が書かれる際には、さらに深く負バイアスになってしまうため、図9(c)に示すように、書込みの際に“1”と“0”との電位差マージンを十分に大きく出来ないため、実際にキャパシタを有しない、DRAMメモリセルの製品化が困難な状況にあった。
特開平2-188966号公報 特開平3-171768号公報 特許第3957774号公報
Hiroshi Takato, Kazumasa Sunouchi, Naoko Okabe, Akihiro Nitayama, Katsuhiko Hieda, Fumio Horiguchi, and Fujio Masuoka: IEEE Transaction on Electron Devices, Vol.38, No.3, pp.573-578 (1991) H. Chung, H. Kim, H. Kim, K. Kim, S. Kim, K. Dong, J. Kim, Y.C. Oh, Y. Hwang, H. Hong, G. Jin, and C. Chung: "4F2 DRAM Cell with Vertical Pillar Transistor (VPT)," 2011 Proceeding of the European Solid-State Device Research Conference, (2011) H. S. Philip Wong, S. Raoux, S. Kim, Jiale Liang, J. R. Reifenberg, B. Rajendran, M. Asheghi and K. E. Goodson: "Phase Change Memory," Proceeding of IEEE, Vol.98, No 12, December, pp.2201-2227 (2010) T. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama: "Low Power and High Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3V," IEDM (2007) W. Kang, L. Zhang, J. Klein, Y. Zhang, D. Ravelosona, and W. Zhao: "Reconfigurable Codesign of STT-MRAM Under Process Variations in Deeply Scaled Technology," IEEE Transaction on Electron Devices, pp.1-9 (2015) M. G. Ertosum, K. Lim, C. Park, J. Oh, P. Kirsch, and K. C. Saraswat: "Novel Capacitorless Single-Transistor Charge-Trap DRAM (1T CT DRAM) Utilizing Electron," IEEE Electron Device Letter, Vol. 31, No.5, pp.405-407 (2010) J. Wan, L. Rojer, A. Zaslavsky, and S. Critoloveanu: "A Compact Capacitor-Less High-Speed DRAM Using Field Effect-Controlled Charge Regeneration," Electron Device Letters, Vol. 35, No.2, pp.179-181 (2012) T. Ohsawa, K. Fujita, T. Higashi, Y. Iwata, T. Kajiyama, Y. Asao, and K. Sunouchi: "Memory design using a one-transistor gain cell on SOI," IEEE JSSC, vol.37, No.11, pp1510-1522 (2002). T. Shino, N. Kusunoki, T. Higashi, T. Ohsawa, K. Fujita, K. Hatsuda, N. Ikumi, F. Matsuoka, Y. Kajitani, R. Fukuda, Y. Watanabe, Y. Minami, A. Sakamoto, J. Nishimura, H. Nakajima, M. Morikado, K. Inoh, T. Hamamoto, A. Nitayama: "Floating Body RAM Technology and its Scalability to 32nm Node and Beyond," IEEE IEDM (2006). E. Yoshida: "A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory," IEEE IEDM (2006). J. Y. Song, W. Y. Choi, J. H. Park, J. D. Lee, and B-G. Park: "Design Optimization of Gate-All-Around (GAA) MOSFETs," IEEE Trans. Electron Devices, vol. 5, no. 3, pp.186-191, May 2006. N. Loubet, et al.: "Stacked Nanosheet Gate-All-Around Transistor to Enable Scaling Beyond FinFET," 2017 IEEE Symposium on VLSI Technology Digest of Technical Papers, T17-5, T230-T231, June 2017. H. Jiang, N. Xu, B. Chen, L. Zeng1, Y. He, G. Du, X. Liu and X. Zhang: "Experimental investigation of self-heating effect (SHE) in multiple-fin SOI FinFETs," Semicond. Sci. Technol. 29 (2014) 115021 (7pp). E. Yoshida, and T. Tanaka: "A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory," IEEE Transactions on Electron Devices, Vol. 53, No. 4, pp. 692-69, Apr. 2006.
 SGTを用いたメモリ装置でキャパシタを無くした、1個のトランジス型のDRAM(ゲインセル)では、ワード線とフローティング状態のSGTのボディとの容量結合カップリングが大きく、データ読み出し時や書き込み時にワード線の電位を振幅させると、直接SGTボディへのノイズとして、伝達されてしまう問題点があった。この結果、誤読み出しや記憶データの誤った書き換えの問題を引き起こし、キャパシタを無くした1トランジス型のDRAM(ゲインセル)の実用化が困難となっていた。
 上記の課題を解決するために、本発明に係るメモリ装置は、
 基板上に行方向に配列された複数のメモリセルによってページが構成され、複数のページが列方向に配列されたメモリ装置であって、
 前記各ページに含まれる各メモリセルは、
 基板上に、前記基板に対して、垂直方向に立つか、または水平方向に伸延する半導体母体と、
 前記半導体母体の両端にある第1の不純物層と、第2の不純物層と、
 前記第1の不純物層と前記第2の不純物層の間の前記半導体母体の側面の一部または全てを囲こみ、前記第1の不純物層に接するか、または、近接した第1のゲート絶縁層と、
 前記半導体母体の側面を囲み、前記第1のゲート絶縁層に繋がり、且つ前記第2の不純物層に接するか、または、近接した第2のゲート絶縁層と、
 前記第1のゲート絶縁層の一部または全体を覆う第1のゲート導体層と、
 前記第2のゲート絶縁層を覆う第2のゲート導体層と、
 前記半導体母体が前記第1のゲート絶縁層と、前記第2のゲート絶縁層とで覆われたチャネル半導体層をと、有し、
 前記第1のゲート導体層と、前記第2のゲート導体層と、前記第1の不純物領域と、前記第2の不純物領域と、に印加する電圧を制御して、前記チャネル半導体層の内部に、インパクトイオン化現象、またはゲート誘起ドレインリーク電流により形成した正孔群を保持し、
 ページ書込み動作時には、前記チャネル半導体層の電圧を、前記第1の不純物層及び前記第2の不純物層の一方もしくは両方の電圧より高い、第1のデータ保持電圧とし、
 ページ消去動作時には、前記第1の不純物層と、前記第2の不純物層と、前記第1のゲート導体層と、前記第2のゲート導体層とに印加する電圧を制御して、前記第1の不純物層と、前記第2の不純物層の一方もしくは両方から、前記正孔群を抜きとり、前記チャネル半導体層の電圧を、前記第1のデータ保持電圧よりも低い、第2のデータ保持電圧とし、
 前記メモリセルの前記第1の不純物層は、ソース線と接続し、前記第2の不純物層は、ビット線と接続し、前記第1のゲート導体層と前記第2のゲート導体層のうちの一方はワード線と接続し、他方は第1の駆動制御線と接続し、
 前記ビット線は、スイッチ回路を介して強制反転型センスアンプ回路に接続し、
 ページ読出し動作時には、前記ワード線で選択するメモリセル群のページデータを前記ビット線に読出し、前記ビット線と前記スイッチ回路の前記ビット線と反対側の電荷共有ノードとの電荷共有を行い、前記強制反転型センスアンプ回路の読出し判定を加速する、
 ことを特徴とする(第1発明)半導体素子を用いたメモリ装置。
 上記の第1発明において、前記電荷共有ノードは、前記ページ読出し動作開始前に前記ビット線と同電圧か、もしくはそれ以上の電圧に予備充電されている、
 ことを特徴とする(第2発明)。
 上記の第1発明において、前記第1のゲート導体層と、前記チャネル半導体層との間、の第1のゲート容量が、前記第2のゲート導体層と、前記チャネル半導体層との間、の第2のゲート容量よりも大きいことを特徴とする(第3発明)。
 上記の第1発明において、前記第1のゲート導体層が、中心軸方向から見たときに、前記第1のゲート絶縁層を囲んで少なくとも2つの導体層に分離している、
 ことを特徴とする(第4発明)。
第1実施形態に係るSGTを有するメモリ装置の構造図である。 第1実施形態に係るSGTを有するメモリ装置のプレート線PLに接続された第1のゲート導体層5aのゲート容量が、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくなるようにした場合の効果を説明する図である。 第1実施形態に係るSGTを有するメモリ装置の書込み動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置の書込み動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置のページ消去動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置のページ消去動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置のページ消去動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置のページ消去動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置のページ消去動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置の読出し動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置のビット線に接続されたスイッチ回路と強制反転型センスアンプ回路とを用いて、ビット線とスイッチ回路のビット線と反対側の電荷共有ノードとの電荷共有を行い、強制反転型センスアンプ回路の読出し判定を加速することを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置のビット線に接続されたスイッチ回路と強制反転型センスアンプ回路とを用いて、ビット線とスイッチ回路のビット線と反対側の電荷共有ノードとの電荷共有を行い、強制反転型センスアンプ回路の読出し判定を加速することを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置のビット線に接続されたスイッチ回路と強制反転型センスアンプ回路とを用いて、ビット線とスイッチ回路のビット線と反対側の電荷共有ノードとの電荷共有を行い、強制反転型センスアンプ回路の読出し判定を加速することを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置のビット線に接続されたスイッチ回路と強制反転型センスアンプ回路とを用いて、ビット線とスイッチ回路のビット線と反対側の電荷共有ノードとの電荷共有を行い、強制反転型センスアンプ回路の読出し判定を加速することを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置の強制反転型センスアンプ回路の書込み動作を説明するための図である。 従来例のキャパシタを有しない、DRAMメモリセルの書込み動作を説明するための図である。 従来例のキャパシタを有しない、DRAMメモリセルの動作上の問題点を説明するための図である。 従来例のキャパシタを有しない、DRAMメモリセルの読出し動作を示す図である。
 以下、本発明に係る、半導体素子を用いたメモリ装置(以後、ダイナミック フラッシュ メモリと呼ぶ)の実施形態について、図面を参照しながら説明する。
 (第1実施形態)
 図1~図5を用いて、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの構造と動作メカニズムを説明する。図1を用いて、ダイナミック フラッシュ メモリセルの構造を説明する。そして、図2を用いて、プレート線PLに接続された第1のゲート導体層5aのゲート容量が、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくなるようにした場合の効果を説明する。そして、図3を用いてデータ書込み動作メカニズムを、図4を用いてデータ消去動作メカニズムを、図5を用いてデータ読出し動作メカニズムを説明する。
 図1に、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの構造を示す。基板上に形成した、P型又はi型(真性型)の導電型を有するシリコン半導体柱2(以下、シリコン半導体柱を「Si柱」と称する。)(特許請求の範囲の「半導体母体」の一例である)内の上下の位置に、一方がソースとなる場合に、他方がドレインとなるN+層3a、3b(特許請求の範囲の「第1の不純物層」、「第2の不純物層」の一例である)が形成されている。このソース、ドレインとなるN+層3a、3b間のSi柱2の部分がチャネル領域7(特許請求の範囲の「チャネル半導体層」の一例である)となる。このチャネル領域7を囲むように第1のゲート絶縁層4a(特許請求の範囲の「第1のゲート絶縁層」の一例である)、第2のゲート絶縁層4b(特許請求の範囲の「第2のゲート絶縁層」の一例である)が形成されている。この第1のゲート絶縁層4a、第2のゲート絶縁層4bは、このソース、ドレインとなるN+層3a、3bに、それぞれ接するか、または近接している。この第1のゲート絶縁層4a、第2のゲート絶縁層4bを囲むように第1のゲート導体層5a(特許請求の範囲の「第1のゲート導体層」の一例である)、第2のゲート導体層5b(特許請求の範囲の「第2のゲート導体層」の一例である)がそれぞれ形成されている。そして、第1のゲート導体層5a、第2のゲート導体層5bは絶縁層6(特許請求の範囲の「第1の絶縁層」の一例である)により分離されている。そして、N+層3a、3b間のチャネル領域7は、第1のゲート絶縁層4aで囲まれた第1のチャネルSi層7a(特許請求の範囲の「第1のチャネル半導体層」の一例である)と、第2のゲート絶縁層4bで囲まれた第2のチャネルSi層7b(特許請求の範囲の「第2のチャネル半導体層」の一例である)と、よりなる。これによりソース、ドレインとなるN+層3a、3b、チャネル領域7、第1のゲート絶縁層4a、第2のゲート絶縁層4b、第1のゲート導体層5a、第2のゲート導体層5bからなるダイナミック フラッシュ メモリセル10が形成される。そして、ソースとなるN+層3aはソース線SL(特許請求の範囲の「ソース線」の一例である)に、ドレインとなるN+層3bはビット線BL(特許請求の範囲の「ビット線」の一例である)に、第1のゲート導体層5aはプレート線PL(特許請求の範囲の「第1の駆動制御線」の一例である)に、第2のゲート導体層5bはワード線WL(特許請求の範囲の「ワード線」の一例である)に、それぞれ接続している。プレート線PLが接続された、第1のゲート導体層5aのゲート容量は、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくなるような構造を有することが望ましい。
 なお、図1では、プレート線PLに接続された第1のゲート導体層5aのゲート容量が、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくなるように第1のゲート導体層5aのゲート長を、第2のゲート導体層5bのゲート長よりも長くしている。しかし、その他にも、第1のゲート導体層5aのゲート長を、第2のゲート導体層5bのゲート長よりも長くせずに、それぞれのゲート絶縁層の膜厚を変えて、第1のゲート絶縁層4aのゲート絶縁膜の膜厚を、第2のゲート絶縁層4bのゲート絶縁膜の膜厚よりも薄くしてもよい。また、それぞれのゲート絶縁層の材料の誘電率を変えて、第1のゲート絶縁層4aのゲート絶縁膜の誘電率を、第2のゲート絶縁層4bのゲート絶縁膜の誘電率よりも高くしてもよい。また、ゲート導体層5a、5bの長さ、ゲート絶縁層4a、4bの膜厚、誘電率のいずれかを組み合わせて、プレート線PLに接続された第1のゲート導体層5aのゲート容量が、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくしてもよい。
 図2(a)~(c)は、プレート線PLに接続された第1のゲート導体層5aのゲート容量が、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくなるようにした場合の効果を説明する図である。
 図2(a)は、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの構造図を主要部分のみを簡略化して示している。ダイナミック フラッシュ メモリセルには、ビット線BL、ワード線WL、プレート線PL、ソース線SLが接続されており、その電圧状態によって、チャネル領域7の電位状態が決まる。
 図2(b)は、それぞれの容量関係を説明するための図である。チャネル領域7の容量CFBは、ワード線WLの接続されたゲート導体層5bとチャネル領域7の間の容量CWLと、プレート線PLの接続されたゲート導体層5aとチャネル領域7の間の容量CPLと、ソース線SLの接続されたソースN+層3aとチャネル領域7の間のPN接合の接合容量CSLと、ビット線BLの接続されたドレインN+層3bとチャネル領域7の間のPN接合の接合容量CBLとの総和で、
CFB = CWL + CPL + CBL + CSL (1)
で表される。
したがって、ワード線WLとチャネル領域7の間のカップリング率βWL、プレート線PLとチャネル領域7の間のカップリング率βPL、ビット線BLとチャネル領域7の間のカップリング率βBL、ソース線SLとチャネル領域7の間のカップリング率βSLは、以下でそれぞれ表される。
βWL= CWL / (CWL + CPL+ CBL + CSL) (2)
βPL= CPL / (CWL + CPL+ CBL + CSL) (3)
βBL= CBL / (CWL + CPL+ CBL + CSL) (4)
βSL= CSL / (CWL + CPL+ CBL + CSL) (5)
ここで、CPL >CWL であるため、βPL>βWLとなる。
 図2(c)は、ワード線WLの電圧VWLが、読出し動作と書込み動作で、上昇し、その後に下降する時のチャネル領域7の電圧VFBの変化を説明するための図である。ここで、ワード線WLの電圧VWLが、0Vから高電圧状態VWLHに上がった時に、チャネル領域7の電圧VFBが、低電圧状態VFBLから高電圧状態VFBHになるときの電位差ΔVFBは、以下となる。
ΔVFB=VFBH-VFBL
    =βWL×VWLH (6)
ワード線WLとチャネル領域7の間のカップリング率βWLが小さく、プレート線PLとチャネル領域7の間のカップリング率βPLが大きいため、ΔVFBは、小さく、ワード線WLの電圧VWLが、読出し動作と書込み動作で、上下しても、チャネル領域7の電圧VFBは、殆ど変化しない。
 図3A(a)~(c)と図3Bに、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルのメモリ書込み動作(特許請求の範囲の「メモリ書込み動作」の一例である)を示す。図3A(a)に書込み動作のメカニズム、図3A(b)にビット線BL、ソース線SL、プレート線PL、ワード線WLと、フローティングボディFBとなっているチャネル領域7の動作波形を示す。時刻T0で、ダイナミック フラッシュ メモリセルは、“0”消去状態にあり、チャネル領域7の電圧は、VFB“0”となっている。また、ビット線BL、ソース線SL、ワード線WLには、Vssが、プレート線PLには、VPLLが印加している。ここで、例えば、Vssは0Vで、VPLLは、2Vである。次に時刻T1~T2で、ビット線BLがVssからVBLHへと上がると、例えば、Vssが0Vの場合、チャネル領域7の電圧は、ビット線BLとチャネル領域7との容量結合により、VFB“0”+βBL×VBLHとなる。
 引き続き、図3A(a)と(b)を用いて、ダイナミック フラッシュ メモリセルの書込み動作を説明する。時刻T3~T4で、ワード線WLがVssからVWLHへと上がる。これにより、ワード線WLの接続された第2のゲート導体層5bがチャネル領域7を取り囲む第2のNチャネルMOSトランジスタの“0”消去のしきい値電圧をVtWL“0”とすると、ワード線WLの電圧上昇に伴い、VssからVtWL“0”までは、ワード線WLとチャネル領域7との第2の容量結合により、チャネル領域7の電圧は、VFB“0”+βBL×VBLH+βWL×VtWL“0”となる。ワード線WLの電圧がVtWL“0”以上に上昇すると、第2のゲート導体層5bの内周のチャネル領域7に環状の反転層12bが形成され、ワード線WLとチャネル領域7との第2の容量結合を遮る。
 引き続き、図3A(a)と(b)を用いて、ダイナミック フラッシュ メモリセルの書込み動作を説明する。時刻T3~T4で、プレート線PLの接続された第1のゲート導体層5aに、例えば、VPLL=2Vを固定入力し、ワード線WLの接続された第2のゲート導体層5bを、例えば、VWLH=4Vまで上げる。その結果、図3A(a)で示したように、プレート線PLの接続された第1のゲート導体層5aの内周のチャネル領域7に環状の反転層12aが形成され、その反転層12aには、ピンチオフ点13が存在する。この結果、第1のゲート導体層5aを有する第1のNチャネルMOSトランジスタは線形領域で動作する。一方、ワード線WLの接続された第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタは飽和領域で動作する。この結果、ワード線WLの接続された第2のゲート導体層5bの内周のチャネル領域7にピンチオフ点は存在せずにゲート導体層5bの内周全面に反転層12bが形成される。このワード線WLの接続された第2のゲート導体層5bの内周に全面に形成された反転層12bは、第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタの実質的なドレインとして働く。この結果、直列接続された第1のゲート導体層5aを有する第1のNチャネルMOSトランジスタと、第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタとの間のチャネル領域7の第1の境界領域で電界は最大となり、この領域でインパクトイオン化現象が生じる。この領域は、ワード線WLの接続された第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタから見たソース側の領域であるため、この現象をソース側インパクトイオン化現象と呼ぶ。このソース側インパクトイオン化現象により、ソース線SLの接続されたN+層3aからビット線の接続されたN+層3bに向かって電子が流れる。加速された電子が格子Si原子に衝突し、その運動エネルギーによって、電子・正孔対が生成される。生成された電子の一部は、第1のゲート導体層5aと第2のゲート導体層5bに流れるが、大半はビット線BLの接続されたN+層3bに流れる(図示せず)。
 そして、図3A(c)に示すように、生成された正孔群9(特許請求の範囲の「正孔群」の一例である)は、チャネル領域7の多数キャリアであり、チャネル領域7を正バイアスに充電する。ソース線SLの接続されたN+層3aは、0Vであるため、チャネル領域7はソース線SLの接続されたN+層3aとチャネル領域7との間のPN接合のビルトイン電圧Vb(約0.7V)まで充電される。チャネル領域7が正バイアスに充電されると、第1のNチャネルMOSトランジスタと第2のNチャネルMOSトランジスタのしきい値電圧は、基板バイアス効果によって、低くなる。
 引き続き、図3A(b)を用いて、ダイナミック フラッシュ メモリセルの書込み動作を説明する。時刻T6~T7で、ワード線WLの電圧がVWLHからVssに低下する。その際にワード線WLとチャネル領域7とは、第2の容量結合をするが、ワード線WLの電圧VWLHが、チャネル領域7の電圧がVbの時の、第2のNチャネルMOSトランジスタのしきい値電圧VtWL“1”以下になるまでは、反転層12bが、この第2の容量結合を遮る。したがって、ワード線WLとチャネル領域7との、実質的な容量結合は、ワード線WLがVtWL“1”以下になり、Vssまで下降する時のみである。この結果、チャネル領域7の電圧は、Vb-βWL×VtWL“1”となる。ここで、VtWL“1”は、前記VtWL“0”よりも低く、βWL×VtWL“1”は小さい。
 引き続き、図3A(b)を用いて、ダイナミック フラッシュ メモリセルの書込み動作を説明する。時刻T8~T9で、ビット線BLが、VBLHからVssへと低下する。ビット線BLとチャネル領域7とは、容量結合しているため、最終的にチャネル領域7の“1”書込み電圧VFB“1”は、以下のようになる。
FB“1”=Vb-βWL×VtWL“1”-βBL×VBLH     (7)
ここで、ビット線BLとチャネル領域7とのカップリング比βBLも小さい。これにより、図3Bに示すように、ワード線WLの接続された第2のチャネル領域7bの第2のNチャネルMOSトランジスタのしきい値電圧は、低くなる。このチャネル領域7の“1”書込み状態を第1のデータ保持電圧(特許請求の範囲の「第1のデータ保持電圧」の一例である)とする、メモリ書込み動作を行い、論理記憶データ“1”に割り当てる。
 なお、書込み動作時に、第1の境界領域に替えて、第1の不純物層3aと第1のチャネル半導体層7aとのあいだの第2の境界領域、または、第2の不純物層3bと第2のチャネル半導体層7bとのあいだの第3の境界領域において、インパクトイオン化現象で、電子・正孔対を発生させ、発生した正孔群9でチャネル領域7を充電しても良い。
 なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件と、フローティングボディの電位は、書込み動作を行うための一例
であり、書込み動作ができる他の動作条件であってもよい。
 図4A~図4Eを用いて、メモリ消去動作(特許請求の範囲の「メモリ消去動作」の一例である)メカニズムを説明する。
 図4Aに、ページ消去動作を説明するためのメモリブロック回路図を示す。ここでは、3行×3列の計9個のメモリセルCL11~CL33を示しているが、実際のメモリブロックは、この行列よりも大きい。メモリセルが行列状に配列されているときに、その配列の一方の方向を「行方向」(もしくは「行状」)、これに垂直な方向を「列方向」(もしくは「列状」)という。各メモリセルには、ソース線SL、ビット線BL1~BL3、プレート線PL1~PL3、ワード線WL1~WL3が接続されている。例えば、このブロックにおいて、任意のページ(特許請求の範囲の「ページ」の一例である)のプレート線PL2とワード線WL2とが接続するメモリセルCL21~CL23が選択され、ページ消去動作を行うことを想定する。
 図4B(a)~(d)と図4Cを用いて、ページ消去動作のメカニズムを説明する。ここで、N+層3a、3b間のチャネル領域7は、電気的に基板から分離され、フローティングボディとなっている。図4B(a)は、消去動作の主要ノードのタイミング動作波形図を示している。図4B(a)において、T0~T12は、消去動作開始から終了までの時刻を表している。図4B(b)に消去動作前の時刻T0に、前のサイクルでインパクトイオン化により生成された正孔群9がチャネル領域7に蓄えられている状態を示す。そして、時刻T1~T2において、ビット線BL1~BL3とソース線SLとが、それぞれVssからVBLHとVSLHの高電圧状態になる。ここで、Vssは、例えば、0Vである。この動作は、次の期間時刻T3~T4で、ページ消去動作で選択されたプレート線PL2とワード線WL2とが、それぞれ第1の電圧VPLLから第2の電圧VPLHと、第3の電圧Vssから第4の電圧VWLHと高電圧状態になり、チャネル領域7にプレート線PL2の接続された第1のゲート導体層5aの内周の反転層12aと、ワード線WL2の接続された第2のゲート導体層5bの内周の反転層12bとを、形成させない。したがって、VBLHとVSLHの電圧は、ワード線WL2側の第2のNチャネルMOSトランジスタとプレート線PL2側の第1のNチャネルMOSトランジスタのしきい値電圧を、それぞれVtWLとVtPLとした場合、VBLH>VWLH+VtWL、VSLH>VPLH+VtPLであることが望ましい。例えば、VtWLとVtPLが0.5Vの場合、VWLHとVPLHは、3Vに設定して、VBLHとVSLHは、3.5V以上に設定すれば良い。
 引き続き、図4B(a)のページ消去動作メカニズムを説明する。第1の期間の時刻T3~T4で、プレート線PL2とワード線WL2とが、第2の電圧VPLHと第4の電圧VWLHの高電圧状態になるのに伴い、フローティング状態のチャネル領域7の電圧が、プレート線PL2とチャネル領域7との第1の容量結合と、ワード線WL2とチャネル領域7との第2の容量結合とによって、押し上げられる。チャネル領域7の電圧は、“1”書込み状態のVFB“1”から高電圧になる。これは、ビット線BL1~BL3とソース線SLの電圧が、VBLHとVSLHと高電圧であるため、ソースN+層3aとチャネル領域7との間のPN接合と、ドレインN+層3bとチャネル領域7との間のPN接合が逆バイアス状態であるため、昇圧することが可能である。
 引き続き、図4B(a)のページ消去動作メカニズムを説明する。次の期間の時刻T5~T6で、ビット線BL1~BL3とソース線SLの電圧が、高電圧のVBLHとVSLHからVssへと低下する。この結果、ソースN+層3aとチャネル領域7との間のPN接合と、ドレインN+層3bとチャネル領域7との間のPN接合は、図4B(c)に示すように、順バイアス状態となり、チャネル領域7の正孔群9のうちの残存正孔群は、ソースN+層3aと、ドレインN+層3bとに、排出する。その結果、チャネル領域7の電圧VFBは、ソースN+層3aとP層のチャネル領域7とが形成するPN接合と、ドレインN+層3bとP層のチャネル領域7とが形成するPN接合のビルトイン電圧Vbとなる。
 引き続き、図4B(a)のページ消去動作メカニズムを説明する。次に時刻T7~T8で、ビット線BL1~BL3とソース線SLの電圧が、Vssから高電圧のVBLHとVSLHへと上昇する。この施策によって、図4B(d)に示すように、時刻T9~T10で、プレート線PL2とワード線WL2を第2の電圧VPLHと第4の電圧VWLHからそれぞれ第1の電圧VPLLと第3の電圧Vssに下降する際に、チャネル領域7にプレート線PL2側の反転層12aとワード線WL2側の反転層12bを形成させずに、効率良く、チャネル領域7の電圧VFBは、プレート線PL2とチャネル領域7との第1の容量結合と、ワード線WL2とチャネル領域7との第2の容量結合によって、VbからVFB“0”となる。したがって、“1”書込み状態と“0”消去状態のチャネル領域7の電圧差ΔVFBは、以下の式で表される。
FB“1”=Vb-βWL×VtWL“1”-βBL×VBLH  (7)
FB“0”=Vb-βWL×VWLH-βPL×(VPLH-VPLL) (8)
ΔVFB=VFB“1”-VFB“0”
    =βWL×VWLH+βPL×(VPLH-VPLL
     -βWL×VtWL“1”-βBL×VBLH      (9)
ここで、βWLとβPLとの和は、0.8以上あり、ΔVFBは、大きくなり、十分にマージンが取れる。
 その結果、図4Cに示すように、“1”書込み状態と“0”消去状態とで、マージンを大きく取れる。ここで、“0”消去状態において、プレート線PL2側のしきい値電圧は、基板バイアス効果により、高くなっている。したがって、プレート線PL2の印加電圧を、例えば、そのしきい値電圧以下にすると、プレート線PL2側の第1のNチャネルMOSトランジスタは、非導通となりメモリセル電流を流さない。図4Cの右側の「PL:非導通」は、その様子を示している。
 引き続き、図4B(a)のページ消去動作メカニズムを説明する。次に第4の期間の時刻T11~T12で、ビット線BL1~BL3とソース線SLの電圧が、VBLHからVssへ、VSLHからVssへとそれぞれ下降して、消去動作が終了する。その際、ビット線BL1~BL3とソース線SLとが、チャネル領域7の電圧を容量結合で若干引き下げるが、時刻T7~T8にビット線BL1~BL3とソース線SLとが、チャネル領域7の電圧を容量結合で引き上げていた分と同等であるため、ビット線BL1~BL3とソース線SLの電圧の上げ下げは相殺され、結果的にチャネル領域7の電圧に影響を与えない。このチャネル領域7の“0”消去状態の電圧VFB“0”を第2のデータ保持電圧(特許請求の範囲の「第2のデータ保持電圧」の一例である)とする、ページ消去動作を行い、論理記憶データ“0”に割り当てる。
 次に図4D(a)~(d)を用いて、ページ消去動作のメカニズムを説明する。図4Dの図4Bとの違いは、ページ消去動作中は、ビット線BL1~BL3は、Vssもしくは、フローティング状態とする点と、ワード線WL2は、Vssに固定する点である。これにより、時刻T1~T2で、ソース線SLがVssからVSLHに上がっても、ワード線WL2の第2のNチャネルMOSトランジスタは、非導通となり、メモリセル電流は流れない。従って、インパクトイオン化現象による正孔群9の生成は無い。その他は、図4Bと同様にソース線SLがVssとVSLHとの間を振幅し、プレート線PL2は、VPLLとVPLHとの間を振幅する。その結果、図4D(c)に示すように正孔群9は、ソース線SLの第1の不純物層N+層3aへ排出される。
 次に図4E(a)~(d)を用いて、ページ消去動作のメカニズムを説明する。図4Eの図4Bとの違いは、ページ消去動作中は、ソース線SLは、Vssもしくは、フローティング状態とする点と、プレート線PL2は、Vssに固定する点である。これにより、時刻T1~T2で、ビット線BL1~BL3がVssからVBLHに上がっても、プレート線PL2の第1のNチャネルMOSトランジスタは、非導通となり、メモリセル電流は流れない。従って、インパクトイオン化現象による正孔群9の生成は無い。その他は、図4Bと同様にビット線BL1~BL3がVssとVBLHとの間を振幅し、ワード線WL2は、VssとVWLHとの間を振幅する。その結果、図4E(c)に示すように正孔群9は、ビット線BL1~BL3の第2の不純物層N+層3bへ排出される。
 なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件と、フローティングボディの電位は、ページ消去動作を行うための一例であり、ページ消去動作ができる他の動作条件であってもよい。
 図5(a)~(c)は、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの読出し動作を説明するための図である。図5(a)に示すように、チャネル領域7がビルトイン電圧Vb(約0.7V)まで充電されると、ワード線WLの接続された第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタのしきい値電圧が基板バイアス効果によって、低下する。この状態を論理記憶データ“1”に割り当てる。図5(b)に示すように、書込みを行う前に選択するメモリブロックは、予め消去状態“0”になっており、チャネル領域7の電圧VFBはVFB“0”となっている。書込み動作によってランダムに書込み状態“1”が記憶される。この結果、ワード線WLに対して、論理“0”と“1”の論理記憶データが作成される。図5(c)に示すように、このワード線WLに対する2つのしきい値電圧の高低差を利用して、センスアンプで読出しが行われる。
 なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件と、フローティングボディの電位は、読出し動作を行うための一例であり、読出し動作ができる他の動作条件であってもよい。
 図6A~図6Eを用いて、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルのビット線BLに接続されたスイッチ回路と強制反転型センスアンプ回路(特許請求の範囲の「強制反転型センスアンプ回路」の一例である)とを用いて、ページ読出し動作(特許請求の範囲の「ページ読出し動作」の一例である)時には、ワード線WLで選択するメモリセル群(特許請求の範囲の「メモリセル群」の一例である)のページデータ(特許請求の範囲の「ページデータ」の一例である)を前記ビット線BLに読出し、ビット線BLとスイッチ回路のビット線と反対側の電荷共有ノード(特許請求の範囲の「電荷共有ノード」の一例である)との電荷共有を行い、強制反転型センスアンプ回路の読出し判定を加速することを説明する。
 図6Aは、本発明の第1実施形態に係るダイナミック フラッシュメモリの読出し時の電荷共有を詳細に説明するための主要ノードの動作波形図である。読出し時に最初に電荷共有信号線FCが第1のハイレベルVFCH1になり、ビット線BLは、VReadBL=VFCH1-Vt1に充電される。ここで、Vt1は、トランジスタTR11のしきい値電圧である。次に“1”書込みメモリセルを読み出すビット線は、メモリセル電流でVssへと放電する。次に電荷共有信号線FCが第2のハイレベルVFCH2に設定される。もし、この時にビット線電位が、VFCH2-Vt1よりも低い場合、電荷共有ノードPの電位は、ビット線と同一のVFCH2-Vt1以下に瞬時になる。それは、ビット線容量CBは、電荷共有ノードの寄生容量CSよりも、遥かに大きいためである。この結果、僅かなビット線の振幅ΔVBLが、VFCH2-VFCH1よりも大きくなると、電荷共有ノードの電位は、ロウレベルVPL=Vcc-Vt2となる。ここで、Vt2は、トランジスタTR10のしきい値電圧である。トランジスタTR10とトランジスタTR11は、レイアウト上近接の位置にあるため、プロセスのバラツキが同等であり、Vt1=Vt2である。この結果、電荷共有ノードの振幅ΔVPは、ΔVP=(Vcc-Vt2)-(VFCH2 - Vt1)=Vcc-VFCH2と増幅される。このように電荷共有信号線FCの電位差(VFCH2-VFCH1)は、プロセスのバラツキによるしきい値電圧の差異の影響を殆ど受けないため、精度の高いセンス動作を高速に行うことができる。
 図6Bは、ダイナミック フラッシュメモリのメモリセルアレイMAを示している。ここでは、メモリセルCELL00~CELLmnが(m+1)×(n+1)個配列している。各メモリセルには、ロウ方向にワード線WL0~WLmとプレート線PL0~PLmが接続し、カラム方向にビット線BL0~BLn、メモリセルの基板にソース線SLが接続している。このソース線SLは、メモリセルの記憶データを消去する際に負バイアスになる。したがって、ロウ方向のワード線WL0~WLmとプレート線PL0~PLmと、カラム方向のビット線BL0~BLnとによって、選択的にメモリセルへの書込みと読出しを行うことができる。なお、ビット線BL0~BLnは、シングルエンド型(Single End)であり、それぞれ1本のビット線BL0~BLnが読出しと書込みを行うセンスアンプS/A0~S/Anに接続している。メモリセルCELL00~CELLmnは、読出し時に“1”書込み状態のメモリセルのみメモリセル電流が流れ、ビット線BL0~BLnを放電し、“0”消去状態では、メモリセル電流を流さない。したがって、センスアンプS/A0~S/Anには、強制反転型のラッチ型センスアンプを用いている。このため、センスアンプS/A0~S/Anに書込みデータを入力する前と読出しデータがラッチされる前にセンスアンプを構成するフリップフロップ回路を一方向にリセットして置く。また、センスアンプS/A0~S/Anは、トランジスタTR10~TR2nを介して、相補の入出力線IOと/IOに接続している。また、トランジスタTR10~TR2nのゲートには、カラム選択線(Column Select Line)CSL0~CSLnが接続している。この結果、入出力線IOと/IOから、書込みデータがカラム選択線CSL0~CSLnにより、選択的にセンスアンプS/A0~S/Anに入力することができる。また、センスアンプS/A0~S/An内にラッチされた読出しデータがカラム選択線CSL0~CSLnにより、選択的に入出力線IOと/IOに読み出すことができる。
 図6Cは、図6Bで示したセンスアンプS/AkとS/Apのより詳細な回路図を示している。センスアンプS/AkとS/Apは、それぞれトランジスタTR3k~TR12kとキャパシタCBkとCSk、トランジスタTR3p~TR12pとキャパシタCBpとCSpで構成されている。この内、TR3k、TR4k、TR3p、TR4pはP型MOSトランジスタであり、TR5k~TR12kとTR5p~TR12pは、N型MOSトランジスタである。ここで、ラッチ型センスアンプ(フリップフロップ)LAkとLApは、それぞれ、トランジスタTR3k~TR6kと、トランジスタTR3p~TR6pとで構成されている。また、ラッチ型センスアンプLAkとLApには、相補のセンスノードSkと/Skと、Spと/Spとがある。また、トランジスタTR7kとTR7pのゲートには、左信号線FLが入力し、トランジスタTR8kとTR8pのゲートには、右信号線FRが入力している。また、トランジスタTR7kとTR8kのソースは、活性化ノードRkに接続し、トランジスタTR7pとTR8pのソースは、ノードRpに接続している。そして、活性化ノードRkとRpには、電荷共有(Charge Sharing)ノードPkとPpをゲート入力するトランジスタTR9kとTR9pのドレインが、それぞれ接続している。トランジスタTR10kとTR10pのゲートには、プリチャージ信号線FPが入力しており、そのソースは、電荷共有ノードPkとPpに接続している。また、電荷共有ノードPkとPpには、寄生容量(Stray Capacitor)CSkとCSpが、それぞれ接続している。また、トランジスタTR12kとTR12pのゲートには、書込み信号線FWが接続し、そのソースは、ビット線BLkとBLpにそれぞれ接続している。そして、ビット線BLkとBLpには、それぞれビット線容量CBkとCBpが接続されている。ここで、ビット線容量CBkとCBpは、寄生容量CSkとCSpよりも遥かに大きく、CBk>CSkとCBp>CSpの関係がある。また、ビット線BLkとBLpと電荷共有ノードPkとPpとの間には、ゲートを電荷共有信号線FCとする、トランジスタTR11kとTR11pとが、それぞれ接続している。トランジスタTR11kとTR11pとスイッチ回路として動作する。
 図6Cで詳細に示したように、シングルエンドの強制反転型センスアンプS/AkとS/Apが構成されている。また、電荷共有ノードPkとPpによって、ビット線BLkとBLpとの読出しデータは、ラッチ型センスアンプ(フリップフロップ)LAkとLApに高速にラッチされる。
 図6Dは、本発明の第1実施形態に係るダイナミック フラッシュメモリの読出し時の主要ノードの動作波形図である。時刻tR0で、読出し動作が始まると、プリチャージ信号線FPがVssからVFPHに上昇する。この結果、電荷共有ノードPkとPpがVssからVccに上昇し、活性化ノードRkとRpがVRHからVssに下降する。そして、右信号線FRがVssからVFRHに上昇すると、センスノードSkとセンスノードSpは、初期設定値のVSHに予備充電(特許請求の範囲の「予備充電」の一例である)され、読出しデータが入力される前にラッチ型センスアンプ(フリップフロップ)LAkとLApがセットアップされる。この時、VSHは、ビット線BLと同電圧か、もしくはそれ以上の電圧に予備充電されている。次に時刻tR1で、電荷共有信号線FCがVssから第1のハイレベルVFCH1になると、ビット線BLkとビット線BLpは、Vssからビット線読出し電位VReadBLに充電される。次に時刻tR2で、ワード線WLjが選択され、VssからVReadWLになると、メモリセルCELLjkとCELLjpのデータがビット線BLkとBLpにそれぞれ読み出される。“1”が書き込まれたCELLjkでは、メモリセル電流が流れ、ビット線BLkは、VReadBLから放電し、Vssへと下降する。一方、消去状態“0”のCELLjpでは、メモリセル電流が流れず、ビット線BLpは、VReadBLを保つ。なお、この時のプレート線PLの電圧は、VReadPLを保つ。そして、電荷共有信号線FCがVssから第2のハイレベルVFCH2になると、電荷共有ノードPkとPpに蓄えられている電荷が、ビット線BLkとBLpとで共有される。“1”データを読み出しているビット線BLkの電位はVssと低くなっているため、ビット線BLkと電荷共有ノードPkとの間で、電荷共有が生じ、電荷共有ノードPkの電位は、急速に低下する。その後、左信号線FLの電位が、VssからVFLHに上昇すると、センスノードSpがVSHからVssに下降し、ラッチ型センスアンプLApに“0”がラッチされる。一方、センスノードSkがVSHを保ち、ラッチ型センスアンプLAkに“1”がラッチされる。その後、時刻tR3で、カラム選択線CSLkが選択され、VssからVCSLHになると、ラッチ型センスアンプLAkにラッチされたデータ“1”が入出力線IOと/IOに読み出され、IOがVIOHに/IOがVssになる。次にカラム選択線CSLpが選択され、VssからVCSLHになると、ラッチ型センスアンプLApにラッチされたデータ“0”が入出力線IOと/IOに読み出され、IOがVssに/IOがVIOBHになる。
 図6Eは、本発明の第1実施形態に係るダイナミック フラッシュメモリの書込み時の主要ノードの動作波形図である。ダイナミック フラッシュメモリの書込みが開始時刻tP0で始まると、プリチャージ信号線FPがVssからVFPHに上昇する。この結果、電荷共有ノードPkとPpがVssからVccに上昇し、活性化ノードRkとRpがVRHからVssに下降する。そして、左信号線FLがVssからVFLHに上昇すると、センスノードSkとセンスノードSpは、Vssに初期設定され、書込みデータが入力される前にラッチ型センスアンプ(フリップフロップ)LAkとLApがセットアップされる。次に時刻tP1で、入出力線IOがVIOHと、入出力線/IOがVssとなる、書込みデータが入力している間に、カラム選択線CSLkがVssからVCSLHに上昇すると、トランジスタTR1kとTR2kが導通して、書込みデータが、ラッチ型センスアンプLAkに取り込まれる。カラム選択線CSLkがVCSLHからVssに下降した後に、今度は、入出力線IOがVssと、入出力線/IOがVIOHとなり、カラム選択線CSLpがVssからVCSLHに上昇すると、トランジスタTR1pとTR2pが導通して、書込みデータが、ラッチ型センスアンプLApに取り込まれる。このように複数個の書込みデータがラッチ型センスアンプに取り込まれる(図示せず)。その後、時刻tP2で、書込み信号線FWが、VssからVFWHに上昇すると、ビット線BLkは、“1”を書き込むための電圧VProgBLに、トランジスタTR12kを通して、充電される。また、消去状態を保つ、“1”を書き込まないビット線BLpの電圧は、Vssを保つ。その後、時刻tP3で、ワード線WLjが選択され、VssからVProgWLに上昇すると、メモリセルCELLjkのチャネル領域7でインパクトイオン化現象が起こり、正孔群が発生し、チャネル領域7のフローティングボディFBjkに“1”が書き込まれる。なお、この時のプレート線PLjは、VProgPLを保つ。一方、メモリセルCELLjpのビット線BLpは、Vssであるため、このメモリセルCELLjp内のチャネル領域7では、インパクトイオン化現象は起こらない。その結果、“0”消去状態を保つ。このようにラッチ型センスアンプLAkとLApのデータによって、選択的にメモリセルCELLjkとCELLjpとに“1”データを書き込むことができる。
 図1において、Si柱2の水平断面形状は、円形状、楕円状、長方形状であっても、本実施形態で説明したダイナミック フラッシュ メモリ動作ができる。また、同一チップ上に、円形状、楕円状、長方形状のダイナミック フラッシュ メモリセルを混在させてもよい。
 また、図1では、基板上に垂直方向に立ったSi柱2の側面全体を囲んだ第1のゲート絶縁層4a、第2のゲート絶縁層4bを設け、第1のゲート絶縁層4a、第2のゲート絶縁層4bの全体を囲んで第1のゲート導体層5a、第2のゲート導体層5bを有するSGTを例にダイナミック フラッシュ メモリ素子を説明した。本実施形態の説明で示したように、本ダイナミック フラッシュ メモリ素子は、インパクトイオン化現象により発生した正孔群9がチャネル領域7に保持される条件を満たす構造であればよい。このためには、チャネル領域7は基板1と分離されたフローティング・ボディ構造であればよい。これより、例えばSGTの1つであるGAA(Gate All Around :例えば非特許文献10を参照)技術、Nanosheet技術(例えば、非特許文献11を参照)を用いて、チャネル領域の半導体母体を基板1に対して水平に形成されていても、前述のダイナミック フラッシュ メモリ動作ができる。また、SOI(Silicon On Insulator)を用いたデバイス構造(例えば、非特許文献7~10を参照)であってもよい。このデバイス構造ではチャネル領域の底部がSOI基板の絶縁層に接しており、且つ他のチャネル領域を囲んでゲート絶縁層、及び素子分離絶縁層で囲まれている。この構造においても、チャネル領域はフローティング・ボディ構造となる。このように、本実施形態が提供するダイナミック フラッシュ メモリ素子では、チャネル領域がフローティング・ボディ構造である条件を満足すればよい。また、Finトランジスタ(例えば非特許文献13を参照)をSOI基板上に形成した構造であっても、チャネル領域がフローティング・ボディ構造であれば、本ダイナミック・フラッシュ動作が出来る。
 また、“1”書込みにおいて、ゲート誘起ドレインリーク(GIDL:Gate Induced Drain Leakage)電流(例えば非特許文献14を参照)を用いて、電子・正孔対を発生させ、生成された正孔群でチャネル領域7内を満たしてもよい。
 また、本明細書及び図面の式(1)~(12)は、現象を定性的に説明するために用いた式であり、現象がそれらの式でよって限定されるものではない。
 なお、図3Aと図3Bの説明において、ワード線WL、ビット線BL、ソース線SLのリセット電圧をVssと記載しているが、それぞれを異なる電圧にしても良い。
 また、図4A及びその説明において、ページ消去動作条件の一例を示した。これに対して、チャネル領域7にある正孔群9を、N+層3a、N+層3bのいずれか、または両方から除去する状態が実現できれば、ソース線SL、プレート線PL、ビット線BL、ワード線WLに印加する電圧を変えてもよい。また、ページ消去動作において、選択されたページのソース線SLに電圧を印加し、ビット線BLはフローティング状態にしても良い。また、ページ消去動作において、選択されたページのビット線BLに電圧を印加し、ソース線SLはフローティング状態にしても良い。
 また、図1において、垂直方向において、第1の絶縁層である絶縁層6で囲まれた部分のチャネル領域7では、第1のチャネル領域7a、第2のチャネル領域7bの電位分布が繋がって形成されている。これにより、第1のチャネル領域7a、第2のチャネル領域7bのチャネル領域7が、垂直方向において、第1の絶縁層である絶縁層6で囲まれた領域で繋がっている。
 なお、図1において、プレート線PLの接続する第1のゲート導体層5aの垂直方向の長さを、ワード線WLの接続する第2のゲート導体層5bの垂直方向の長さより更に長くし、CPL>CWLとすることが、望ましい。しかし、プレート線PLを付加することだけで、ワード線WLのチャネル領域7に対する、容量結合のカップリング比(CWL/(CPL+CWL+CBL+CSL))が小さくなる。その結果、フローティングボディのチャネル領域7の電位変動ΔVFBは、小さくなる。
 また、プレート線PLの電圧VPLLは、例えば、1V程度の固定電圧を印加しても良い。
 なお、本明細書及び特許請求の範囲において「ゲート絶縁層やゲート導体層等がチャネル等を覆う」と言った場合の「覆う」の意味として、SGTやGAAのように全体を囲む場合、Finトランジスタのように一部を残して囲む場合、さらにプレナー型トランジスタのように平面的なものの上に重なるような場合も含む。
 図1においては、第1のゲート導体層5aは、第1のゲート絶縁層4aの全体を囲んでいる。これに対して、第1のゲート導体層5aは、平面視において、第1のゲート絶縁層4aの一部を囲んでいる構造としてもよい。この第1のゲート導体層5aを少なくとも2つのゲート導体層に分割して、プレート線PL電極として、動作させても良い。同様に、第2のゲート導体層5bは2つ以上に分割して、それぞれをワード線の導体電極として、同期または非同期で動作させてもよい。これにより、ダイナミック フラッシュ メモリ動作を行うことができる。
 図6A~図6Eにおいては、1個の半導体母体から成る1ビットのダイナミック フラッシュ メモリセルのページ加算読出し動作を説明したが、“1”と“0”相補のデータを記憶する2個の半導体母体から成る1ビットの高速ダイナミック フラッシュ メモリセルの各動作モードに関しても本発明は有効である。
 本実施形態は、下記の特徴を供する。
(特徴1)
 本実施形態のダイナミック フラッシュ メモリセルでは、ソース、ドレインとなるN+層3a、3b、チャネル領域7、第1のゲート絶縁層4a、第2のゲート絶縁層4b、第1のゲート導体層5a、第2のゲート導体層5bが、全体として柱状に形成される。また、ソースとなるN+層3aはソース線SLに、ドレインとなるN+層3bはビット線BLに、第1のゲート導体層5aはプレート線PLに、第2のゲート導体層5bはワード線WLに、それぞれ接続している。プレート線PLが接続された、第1のゲート導体層5aのゲート容量は、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくなるような構造を特徴としている。本ダイナミック フラッシュ メモリセルでは、垂直方向に第1のゲート導体層と、第2のゲート導体層が、積層されている。このため、プレート線PLが接続された、第1のゲート導体層5aのゲート容量が、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくなるような構造にしても、平面視において、メモリセル面積を大きくさせない。これによりダイナミック フラッシュ メモリセルの高性能化と高集積化が同時に実現できる。
(特徴2)
 本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの読出しと書込みを行うセンスアンプは、シングルエンドのビット線を入力する、強制反転型のセンスアンプであり、プロセスのバラツキに強い電荷共有回路を用いて、僅かなビット線の読出し振幅を高速に増幅して、読み出すことができる。この結果、著しいシステムの高速化が達成できる。以下のようにセンスアンプの特徴を纏めることができる。
(1) センスアンプは強制反転型のラッチ型センスアンプを用いているため、書込みデータの入力の前と読出しデータのラッチ前にセンスアンプを構成しているフリップフロップ回路を一方向にリセットする。
(2) ビット線の僅かな振幅を検知可能な電荷共有回路でセンスして、ビット線の僅かな振幅を急速に増幅することができる。
(3) 電荷共有回路は、プロセスのバラツキが生じても、近接のトランジスタのしきい値電圧はそれほどばらつかないため、信頼性の高いセンス動作が得られる設計となっている。
(特徴3)
 本発明の第1実施形態に係るダイナミック フラッシュ メモリセルのプレート線PLの接続する第1のゲート導体層5aの役割に注目すると、ダイナミック フラッシュ メモリセルが書込み、読出し動作をする際に、ワード線WLの電圧が上下に振幅する。この際に、プレート線PLは、ワード線WLとチャネル領域7との間の容量結合比を低減させる役目を担う。この結果、ワード線WLの電圧が上下に振幅する際の、チャネル領域7の電圧変化の影響を著しく抑えることができる。これにより、論理“0”と“1”を示すワード線WLのSGTトランジスタのしきい値電圧差を大きくすることが出来る。これは、ダイナミック フラッシュ メモリセルの動作マージンの拡大に繋がる。
(特徴4)
 図6A~6Eにおいて、プレート線PLを例えば、メモリセルCELL00~CELLmnのブロックで共通にしても良い。その結果、よりプロセスと回路が簡便になるだけではなく、より高速化が実現できる。
(その他の実施形態)
 なお、本発明では、Si柱を形成したが、Si以外の半導体材料よりなる半導体柱であってもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した各実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。上記実施例及び変形例は任意に組み合わせることができる。さらに、必要に応じて上記実施形態の構成要件の一部を除いても本発明の技術思想の範囲内となる。
 本発明に係る、半導体素子を用いたメモリ装置によれば、高密度で、かつ高性能のSGTを用いたメモリ装置であるダイナミック フラッシュ メモリが得られる。
10: ダイナミック フラッシュ メモリセル
2: P型又はi型(真性型)の導電型を有するSi柱
3a、3b: N+
7: チャネル領域
4a、4b: ゲート絶縁層
5a、5b: ゲート導体層
6: 2層のゲート導体層を分離するための絶縁層
BL: ビット線
SL: ソース線
PL: プレート線
WL: ワード線
FB: フローティングボディ

CL11~CL33: メモリセル
SL: ソース線
BL1~BL3、BL: ビット線
PL1~PL3、PL: プレート線
WL1~WL3、WL: ワード線

C00~C32: メモリセル
SL: ソース線
BL0~BL3: ビット線
PL0~PL2: プレート線
WL0~WL2: ワード線
SA0~SA3: 強制反転型センスアンプ回路
T1~T6B: MOSトランジスタ
Nb_LAT: Nビットのラッチ回路
2b_LAT0~2b_LAT3: 2ビットのラッチ回路
IO、/IO: 入出力線
CSL、CSL0~CSL3: カラム選択線

110: キャパシタを有しない、DRAMメモリセル
100: SOI基板
101: SOI基板のSiO2
102: フローティングボディ(Floating Body)
103: ソースN+
104: ドレインN+
105: ゲート導電層
106: 正孔
107: 反転層、電子のチャネル
108: ピンチオフ点
109: ゲート酸化膜

Claims (4)

  1.  基板上に行方向に配列された複数のメモリセルによってページが構成され、複数のページが列方向に配列されたメモリ装置であって、
     前記各ページに含まれる各メモリセルは、
     基板上に、前記基板に対して、垂直方向に立つか、または水平方向に伸延する半導体母体と、
     前記半導体母体の両端にある第1の不純物層と、第2の不純物層と、
     前記第1の不純物層と前記第2の不純物層の間の前記半導体母体の側面の一部または全てを囲こみ、前記第1の不純物層に接するか、または、近接した第1のゲート絶縁層と、
     前記半導体母体の側面を囲み、前記第1のゲート絶縁層に繋がり、且つ前記第2の不純物層に接するか、または、近接した第2のゲート絶縁層と、
     前記第1のゲート絶縁層の一部または全体を覆う第1のゲート導体層と、
     前記第2のゲート絶縁層を覆う第2のゲート導体層と、
     前記半導体母体が前記第1のゲート絶縁層と、前記第2のゲート絶縁層とで覆われたチャネル半導体層をと、有し、
     前記第1のゲート導体層と、前記第2のゲート導体層と、前記第1の不純物領域と、前記第2の不純物領域と、に印加する電圧を制御して、前記チャネル半導体層の内部に、インパクトイオン化現象、またはゲート誘起ドレインリーク電流により形成した正孔群を保持し、
     ページ書込み動作時には、前記チャネル半導体層の電圧を、前記第1の不純物層及び前記第2の不純物層の一方もしくは両方の電圧より高い、第1のデータ保持電圧とし、
     ページ消去動作時には、前記第1の不純物層と、前記第2の不純物層と、前記第1のゲート導体層と、前記第2のゲート導体層とに印加する電圧を制御して、前記第1の不純物層と、前記第2の不純物層の一方もしくは両方から、前記正孔群を抜きとり、前記チャネル半導体層の電圧を、前記第1のデータ保持電圧よりも低い、第2のデータ保持電圧とし、
     前記メモリセルの前記第1の不純物層は、ソース線と接続し、前記第2の不純物層は、ビット線と接続し、前記第1のゲート導体層と前記第2のゲート導体層のうちの一方はワード線と接続し、他方は第1の駆動制御線と接続し、
     前記ビット線は、スイッチ回路を介して強制反転型センスアンプ回路に接続し、
     ページ読出し動作時には、前記ワード線で選択するメモリセル群のページデータを前記ビット線に読出し、前記ビット線と前記スイッチ回路の前記ビット線と反対側の電荷共有ノードとの電荷共有を行い、前記強制反転型センスアンプ回路の読出し判定を加速する、
     ことを特徴とする半導体素子を用いたメモリ装置。
  2.  前記電荷共有ノードは、前記ページ読出し動作開始前に前記ビット線と同電圧か、もしくはそれ以上の電圧に予備充電されている、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  3.  前記第1のゲート導体層と、前記チャネル半導体層との間、の第1のゲート容量が、前記第2のゲート導体層と、前記チャネル半導体層との間、の第2のゲート容量よりも大きい、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  4.  前記第1のゲート導体層が、中心軸方向から見たときに、前記第1のゲート絶縁層を囲んで少なくとも2つの導体層に分離している、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
PCT/JP2021/018247 2021-05-13 2021-05-13 半導体素子を用いたメモリ装置 WO2022239196A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/018247 WO2022239196A1 (ja) 2021-05-13 2021-05-13 半導体素子を用いたメモリ装置
US17/741,914 US20220367469A1 (en) 2021-05-13 2022-05-11 Memory device through use of semiconductor device
TW111117682A TWI802404B (zh) 2021-05-13 2022-05-11 使用半導體元件的記憶裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018247 WO2022239196A1 (ja) 2021-05-13 2021-05-13 半導体素子を用いたメモリ装置

Publications (1)

Publication Number Publication Date
WO2022239196A1 true WO2022239196A1 (ja) 2022-11-17

Family

ID=83998023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018247 WO2022239196A1 (ja) 2021-05-13 2021-05-13 半導体素子を用いたメモリ装置

Country Status (3)

Country Link
US (1) US20220367469A1 (ja)
TW (1) TWI802404B (ja)
WO (1) WO2022239196A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080280A (ja) * 2004-09-09 2006-03-23 Toshiba Corp 半導体装置およびその製造方法
JP2008218556A (ja) * 2007-03-01 2008-09-18 Toshiba Corp 半導体記憶装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585059B1 (en) * 1992-08-21 1999-05-12 STMicroelectronics, Inc. Vertical memory cell processing and structure manufactured by that processing
WO2009095998A1 (ja) * 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. 半導体記憶装置
JP5524547B2 (ja) * 2009-09-14 2014-06-18 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体記憶装置
US10515948B2 (en) * 2017-11-15 2019-12-24 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device including vertical routing structure and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080280A (ja) * 2004-09-09 2006-03-23 Toshiba Corp 半導体装置およびその製造方法
JP2008218556A (ja) * 2007-03-01 2008-09-18 Toshiba Corp 半導体記憶装置

Also Published As

Publication number Publication date
US20220367469A1 (en) 2022-11-17
TW202303605A (zh) 2023-01-16
TWI802404B (zh) 2023-05-11

Similar Documents

Publication Publication Date Title
WO2022239100A1 (ja) 半導体素子を用いたメモリ装置
WO2022172318A1 (ja) 半導体素子を用いたメモリ装置
WO2022162870A1 (ja) 半導体素子を用いたメモリ装置
TWI815350B (zh) 半導體元件記憶裝置
TWI806492B (zh) 半導體元件記憶裝置
WO2023112146A1 (ja) メモリ装置
WO2022219694A1 (ja) 半導体素子を用いたメモリ装置
WO2022239196A1 (ja) 半導体素子を用いたメモリ装置
WO2022239193A1 (ja) 半導体素子を用いたメモリ装置
WO2022234614A1 (ja) 半導体素子を用いたメモリ装置
WO2023281613A1 (ja) 半導体素子を用いたメモリ装置
WO2022269735A1 (ja) 半導体素子を用いたメモリ装置
WO2022185540A1 (ja) 半導体素子を用いたメモリ装置
WO2022239228A1 (ja) 半導体素子を用いたメモリ装置
WO2022239199A1 (ja) 半導体素子を用いたメモリ装置
WO2022269740A1 (ja) 半導体素子を用いたメモリ装置
WO2022269737A1 (ja) 半導体素子を用いたメモリ装置
WO2022219703A1 (ja) 半導体素子を用いたメモリ装置
WO2023105604A1 (ja) 半導体素子を用いたメモリ装置
WO2022168160A1 (ja) 半導体メモリ装置
WO2022219696A1 (ja) 半導体素子を用いたメモリ装置
WO2023058242A1 (ja) 半導体素子を用いたメモリ装置
WO2022168148A1 (ja) 半導体メモリ装置
WO2022168147A1 (ja) 半導体メモリ装置
WO2022172316A1 (ja) 半導体素子を用いたメモリ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE