JP2013147416A - ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 - Google Patents

ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 Download PDF

Info

Publication number
JP2013147416A
JP2013147416A JP2012277430A JP2012277430A JP2013147416A JP 2013147416 A JP2013147416 A JP 2013147416A JP 2012277430 A JP2012277430 A JP 2012277430A JP 2012277430 A JP2012277430 A JP 2012277430A JP 2013147416 A JP2013147416 A JP 2013147416A
Authority
JP
Japan
Prior art keywords
positive electrode
composite hydroxide
active material
electrode active
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012277430A
Other languages
English (en)
Other versions
JP5971109B2 (ja
JP2013147416A5 (ja
Inventor
Atsushi Fukui
篤 福井
Hiromasa Toya
広将 戸屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012277430A priority Critical patent/JP5971109B2/ja
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to PCT/JP2012/083128 priority patent/WO2013094701A1/ja
Priority to CN201280070138.8A priority patent/CN104136376B/zh
Priority to US14/366,871 priority patent/US9406930B2/en
Priority to EP12860901.3A priority patent/EP2796415B1/en
Priority to KR1020147020103A priority patent/KR101644252B1/ko
Publication of JP2013147416A publication Critical patent/JP2013147416A/ja
Publication of JP2013147416A5 publication Critical patent/JP2013147416A5/ja
Application granted granted Critical
Publication of JP5971109B2 publication Critical patent/JP5971109B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0497Chemical precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】均一で適度な粒径、かつ、中空構造により高い比表面積を有するリチウム複合酸化物を工業的な規模で生産できるようにする。
【解決手段】原料となるニッケル複合水酸化物の粒度分布を制御し、微細一次粒子からなる中心部と、この中心部の外側に存在し、前記一次粒子よりも大きな板状の一次粒子からなる外殻部を有する構造の複合水酸化物を、晶析時のpH制御により、核生成工程と粒子成長工程に分離するとともに、それぞれの工程における反応雰囲気と、それぞれの工程において供給される金属化合物におけるマンガン含有量とを、それぞれ制御しつつ、得る。
【選択図】図1

Description

本発明は、ニッケル複合水酸化物とその製造方法、この複合水酸化物を原材料とする非水系電解質二次電池用正極活物質とその製造方法、および、この非水系電解質二次電池用正極活物質を正極材料として用いる非水系電解質二次電池に関する。
近年、携帯電話、ノート型パーソナルコンピュータなどの携帯電子機器の普及に伴い、高いエネルギ密度を有する小型で軽量な二次電池の開発が強く望まれている。また、ハイブリット自動車を始めとする電気自動車用の電池として、高出力の二次電池の開発が強く望まれている。このような要求を満たす非水系電解質二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池は、負極、正極、電解液などで構成され、負極および正極の活物質には、リチウムを脱離および挿入することが可能な材料が用いられている。
このようなリチウムイオン二次電池については、現在研究開発が盛んに行われているところであるが、中でも、層状またはスピネル型のリチウム複合酸化物を正極活物質として用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギ密度を有する電池として実用化が進んでいる。
リチウムイオン二次電池の正極活物質として用いられるリチウム複合酸化物としては、現在、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO2)や、コバルトよりも安価なニッケルが用いられたリチウムニッケル複合酸化物(LiNiO2)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/32)、マンガンを用いたリチウムマンガン複合酸化物(LiMn24)などが提案されている。
高サイクル特性、低抵抗、高出力といった優れた性能を電池にもたらすためには、正極活物質が均一で適度な粒径を有する粒子によって構成されていることが必要となる。これは、粒径が大きい正極活物質を使用した場合に、電解液との反応面積が十分に確保されず、正極の反応抵抗が上昇して、高出力の電池が得らなくなる可能性があり、逆に、粒径が極端に小さい正極活物質を使用した場合には、正極の充填密度が低下して、容積あたりの電池容量が低下する可能性があるためである。一方、粒度分布が広い正極活物質を使用した場合には、電極内で正極活物質を構成する粒子に印加される電圧がその粒径の相違に起因して不均一となり、充放電の繰り返しにより微粒子が選択的に劣化して、電池容量の低下や正極の反応抵抗の上昇といった不具合が生ずる可能性があるためである。
また、電池の高出力化を図るためには、正極と負極との間でリチウムイオンが移動する距離を短くすることが有効であることから、正極板を薄くすることが望まれている。このような観点から、容積あたりの電池容量が低下しない範囲で、小粒径の正極活物質を使用することは有用である。
さらなる高出力化を図る観点からは、正極活物質が均一で適度な粒径を有するばかりでなく、高い比表面積を有していることも重要となる。たとえば、正極活物質の粒子表面の平滑性を低下させたり、粒子自体を多孔質構造としたりすることにより、粒子の粒径は同じでも、比表面積を高めることができる。この場合、粒子と電解液との反応面積が大きくなり、両者の反応性を高めることができるため、電池の出力をさらに向上させることが可能となる。
このように、リチウムイオン二次電池の性能を向上させるためには、正極活物質であるリチウム複合酸化物について、均一で適度な粒径を有し、かつ、比表面積が大きな粒子となるように製造することが必要である。
特開2008―147068号公報には、粒度分布曲線において、その累積頻度が50%の粒径を意味する平均粒径D50が3μm〜15μmであり、最小粒径が0.5μm以上で最大粒径が50μm以下である粒度分布を有する粒子であって、かつ、その累積頻度が10%のD10と90%のD90との関係において、D10/D50が0.60〜0.90、D10/D90が0.30〜0.70であるリチウム複合酸化物が開示されている。このリチウム複合酸化物は、高充填性を有し、良好な充放電容量特性および高出力特性を有し、充放電負荷の大きい条件下であっても劣化しにくいため、このリチウム複合酸化物を正極活物質として用いることにより、優れた出力特性を持ち、かつ、サイクル特性の劣化の小さいリチウムイオン二次電池を得ることができると記載されている。
特開2004−253174号公報には、層状構造を備え、外側の外殻部と、この外殻部の内側の空間部とを有する中空粒子からなるリチウム複合酸化物が開示されている。このようなリチウム複合酸化物からなる正極活物質は、サイクル特性、出力特性、熱安定性などの特性に優れ、リチウムイオン二次電池に好適に用いることができると記載されている。
しかしながら、特開2008−147068号公報に開示されているリチウム複合酸化物は、平均粒径が3μm〜15μmでありながら、最小粒径が0.5μm以上で、最大粒径が50μm以下であることから、微細粒子と粗大粒子の両方を含んだものとなっており、上記のD10/D50およびD10/D90の値からは、粒径分布の範囲が狭いということはできない。すなわち、この文献に記載されたリチウム複合酸化物は、その粒径が均一であるとはいえないため、このリチウム複合酸化物を正極活物質として採用しても、リチウムイオン二次電池の性能を向上させることは困難である。
また、特開2004−253174号に開示されているリチウム複合酸化物は、中空粒子であることから、中実粒子よりは比表面積の増加は期待され、比表面積の増加による粒子と電解液との反応性の向上は期待できると考えられる。しかしながら、この文献では、リチウム複合酸化物の粒径および粒度分布に関しては何らの言及もなされていない。このことから、このリチウム複合酸化物ではその粒径および粒度分布について配慮されていないといえるため、粒径の不均一性に起因して、電極内で印加電圧の不均一性による微粒子の選択的劣化が発生し、電池容量が低下することは避けられないと考えられる。
特開2008−147068号公報 特開2004−253174号公報
以上のように、リチウムイオン二次電池の性能を十分に向上させることができるリチウム複合酸化物は未だ開発されていない。また、リチウム複合酸化物の原材料となる複合水酸化物の製造方法に関して種々の検討がなされているものの、優れた電池性能をもたらすリチウム複合酸化物の開発につながる複合水酸化物を工業的規模で生産可能とする製造方法についても未だ有力な提案がなされていないのが実情である。したがって、均一で適度な粒径を有し、かつ、反応面積が大きい、たとえば中空構造を有するリチウム複合酸化物からなる正極活物質、その原材料となる複合水酸化物、およびこれらの工業的な製造方法の開発が要望されている。
本発明は、このような問題点に鑑み、均一で適度な粒径を有し、かつ、中空構造により高い比表面積を有するリチウム複合酸化物が得られる、その原材料としての、複合水酸化物を工業的規模で生産できるようにすることを目的としている。
また、リチウムイオン二次電池における電池容量の低下を抑制でき、正極の反応抵抗を低減させることが可能な、リチウム複合酸化物からなる非水系二次電池用正極活物質を提供するとともに、このような正極活物質を用いることで、高容量で、サイクル特性に優れ、高出力が得られる非水系電解質二次電池を提供することも目的としている。
本発明者らは、リチウムイオン二次電池の正極活物質として用いた場合に、優れた電池特性を発揮できるリチウムニッケル複合酸化物について鋭意検討した結果、原料となるニッケル複合水酸化物の粒度分布を制御し、ニッケル複合水酸化物の微細一次粒子からなる中心部と、この中心部の外側に存在し、ニッケル複合水酸化物からなり、前記一次粒子よりも大きな板状の一次粒子からなる外殻部を有する構造とすることで、均一で適度な粒径を有し、かつ、中空構造を有するリチウムニッケル複合酸化物からなる非水系電解質二次電池用正極活物質が得られるとの知見を得た。また、このニッケル複合水酸化物は、晶析時のpH制御により、核生成工程と粒子成長工程に分離するとともに、それぞれの工程における反応雰囲気と、それぞれの工程において供給される金属化合物、より具体的には、複合水酸化物を構成する金属元素の供給源である混合水溶液におけるマンガン含有量とを、それぞれ制御することで得られるとの知見を得た。本発明は、これらの知見に基づいて完成されたものである。
すなわち、本発明の第1態様は、晶析反応により、一般式(1):NixCoyAlzMn(OH)2+a(x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表されるニッケル複合水酸化物の製造方法に関する。
特に、本発明の製造方法は、
一般式(a):NixCoyAlzMn(x+y+z+t+s=1、0≦y≦0.8、0≦z≦0.1、0.1≦t≦0.8、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)の組成比で金属元素を含有する金属化合物とアンモニウムイオン供給体を含む核生成用水溶液を、液温25℃基準でpH値が12.0〜14.0となるように制御して、酸素濃度が1容量%を超える酸化性雰囲気中で核生成を行う核生成工程と、
前記核生成工程において形成された核を含有する粒子成長用水溶液を、液温25℃基準でpH値が10.5〜12.0となるように制御して、前記核を成長させる粒子成長工程であって、該粒子成長工程の開始から終了までの時間全体に対して、該粒子成長工程の開始時から1%〜15%の範囲で、前記酸化性雰囲気から酸素濃度1容量%以下の酸素と不活性ガスの混合雰囲気に切り替え、かつ、供給される金属化合物を、一般式(b):NixCoyAlzMn(x+y+z+t+s=1、0≦y≦0.3、0≦z≦0.1、0≦t<0.05、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)の組成比で金属元素を含有する金属化合物に切り替える粒子成長工程と、
を備えるとともに、
少なくとも前記核生成用水溶液に含まれる金属化合物および前記粒子成長工程において供給される金属化合物のいずれにもアルミニウムが含まれていない場合には、前記粒子成長工程で得られたニッケル複合水酸化物に、アルミニウム化合物を被覆する工程をさらに備える、ことを特徴とする。
前記酸化性雰囲気の酸素濃度が10容量%以上であることが好ましい。
前記粒子成長工程における前記雰囲気および供給される金属化合物の切り替えを、前記粒子成長工程の開始時から2%〜12.5%の範囲で行うことが好ましい。
前記粒子成長用水溶液として、前記核生成工程が終了した前記核生成用水溶液のpH値を調整して形成されたものを用いることが好ましい。
前記混合雰囲気の酸素濃度を、0.5容量%以下とすることが好ましい。
前記粒子成長工程において、前記粒子成長用水溶液のうちの液体部分の一部を排出することが好ましい。
また、前記核生成工程および前記粒子成長工程において、前記核生成用水溶液および前記粒子成長用水溶液のアンモニア濃度を3g/L〜25g/Lの範囲内に維持することが好ましい。
さらに、前記粒子成長工程で得られたニッケル複合水酸化物に、前記1種以上の添加元素の化合物を被覆する工程をさらに含むことが好ましい。なお、この工程は、前記アルミニウム化合物を被覆する工程と同時に行うことができる。
本発明の第2態様は、一般式(1):NixCoyAlzMn(OH)2+a(x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表され、複数の一次粒子が凝集して形成された略球状の二次粒子からなる、ニッケル複合水酸化物に関する。
前記二次粒子は、平均粒径が3μm〜15μmであり、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.55以下であることを特徴とする。
また、この二次粒子は、一般式(2):NixCoyAlzMn(OH)2+a(x+y+z+t+s=1、0≦y≦0.8、0≦z≦0.1、0.1≦t≦0.8、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表される複合水酸化物の微細一次粒子からなる中心部と、該中心部の外側に存在し、一般式(3):NixCoyAlzMn(OH)2+a(x+y+z+t+s=1、0≦y≦0.3、0≦z≦0.1、0≦t<0.05、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表される複合水酸化物であって、前記微細一次粒子よりも大きな板状一次粒子からなる外殻部とを有し、アルミニウムが、前記中心部および外殻部の少なくとも一方に存在するか、または、前記二次粒子の表面にアルミニウム化合物として存在することを特徴とする。
前記微細一次粒子は、平均粒径が0.01μm〜0.3μmであり、前記板状一次粒子は、平均粒径が0.3μm〜3μmであることが好ましい。
前記外殻部の厚さは、前記二次粒子の粒径に対する比率で5%〜45%であることが好ましい。
また、前記アルミニウムが、前記二次粒子の内部に均一に分布している、および/または、前記アルミニウム化合物が、前記二次粒子の表面を均一に被覆していることが好ましい。
さらに、前記1種以上の添加元素が、前記二次粒子の内部に均一に分布している、および/または、前記1種以上の添加元素の化合物が、前記二次粒子の表面を均一に被覆している、ことが好ましい。
本発明の第3態様は、一般式(4):Li1+uNixCoyAlzMn2(−0.05≦u≦0.20、x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表され、複数の一次粒子が凝集して形成された略球状の二次粒子からなり、層状構造を有する六方晶系の結晶構造を有するリチウムニッケル複合酸化物からなる非水系電解質二次電池用正極活物質の製造方法に関する。
特に、本発明の製造方法は、
前記ニッケル複合水酸化物を105℃〜750℃の温度で熱処理する工程と、
前記熱処理後のニッケル複合水酸化物に対して、リチウム化合物を混合してリチウム混合物を形成する混合工程と、
前記混合工程で形成された前記リチウム混合物を、酸化性雰囲気中、700℃〜800℃の温度で焼成する焼成工程と、を備えることを特徴とする。
前記リチウム混合物を、該リチウム混合物に含まれるリチウム以外の金属の原子数の和とリチウムの原子数との比が、1:0.95〜1.2となるように調整することが好ましい。
また、前記焼成工程において、焼成前に予め350℃〜800℃の温度で仮焼を行うことが好ましい。
さらに、前記焼成工程における酸化性雰囲気を、18容量%〜100容量%の酸素を含有する雰囲気とすることが好ましい。
本発明の第4態様は、一般式(4):Li1+uNixCoyAlzMn2(−0.05≦u≦0.20、x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表され、複数の一次粒子が凝集して形成された略球状の二次粒子からなり、層状構造を有する六方晶系の結晶構造を有するリチウムニッケル複合酸化物からなる非水系電解質二次電池用正極活物質に関する。
特に、本発明の正極活物質は、平均粒径が2μm〜15μmであり、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.60以下であり、凝集した一次粒子が焼結している外殻部と、その内側に存在する中空部とからなる中空構造を備えることを特徴とする。
前記外殻部の厚さは、前記二次粒子の粒径に対する比率で5%〜35%であることが好ましい。
本発明の第5態様は、非水系電解質二次電池に関する。特に、本発明の非水系電解質二次電池は、その正極が、前記非水系電解質二次電池用正極活物質によって形成されていることを特徴とする。
本発明により、均一で適度な粒径を有し、かつ、中空構造を備えることにより、高比表面積であるリチウムニッケル複合酸化物からなる非水系電解質二次電池用の正極活物質を工業的に提供することが可能となる。この正極活物質を正極材料として用いることにより、高容量、高出力で、サイクル特性も良好である、優れた電池特性を備えた非水系電解質二次電池が得られる。
図1は、本発明のニッケル複合水酸化物を製造する工程の概略フローチャートである。 図2は、本発明のニッケル複合水酸化物を製造する他の工程の概略フローチャートである。 図3は、本発明のニッケル複合水酸化物を製造してから、非水系電解質二次電池を製造するまでの概略フローチャートである。 図4は、本発明のニッケル複合水酸化物のSEM写真(観察倍率1,000倍)である。 図5は、本発明のニッケル複合水酸化物の断面SEM写真(観察倍率10,000倍)である。 図6は、本発明の正極活物質であるリチウムニッケル複合酸化物のSEM写真(観察倍率1,000倍)である。 図7は、本発明の正極活物質であるリチウムニッケル複合酸化物の断面SEM写真(観察倍率10,000倍)である。 図8は、電池評価に使用したコイン型電池の概略断面図である。 図9は、インピーダンス評価の測定例と解析に使用した等価回路の概略説明図である。
本発明は、(1)非水系電解質二次電池用正極活物質の原料となるニッケル複合水酸化物(以下、「複合水酸化物」という)とその製造方法、(2)該複合水酸化物を用いた非水系電解質二次電池用正極活物質とその製造方法、(3)該非水系電解質二次電池用正極活物質を正極に用いた非水系電解質二次電池に関する。
非水系電解質二次電池の性能を向上させるためには、正極に採用される非水系電解質二次電池用正極活物質の影響が大きい。かかる優れた電池特性が得られる非水系電解質二次電池用正極活物質を得るためには、その粒径と粒度分布、および比表面積が重要な要因であり、所望の粒子構造を有し、かつ、所望の粒径と粒度分布に調整された正極活物質が好ましい。
このような正極活物質を得るためには、その原料である複合水酸化物として、所望の粒子構造を有し、かつ、所望の粒径と粒度分布のものを使用する必要がある。
以下、上記(1)〜(3)の発明のそれぞれについて詳細に説明するが、最初に、本発明の最大の特徴である、複合水酸化物とその製造方法について説明する。なお、この複合水酸化物は、本発明の中空構造を有する正極活物質の原材料として特に適したものであるので、以下の説明は、正極活物質の原材料として使用することを前提としている。
(1−1)複合水酸化物
(粒子の組成)
本発明の複合水酸化物は、一般式(1):NixCoyAlzMn(OH)2+a(x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表される組成を有する。
このような組成を有する複合水酸化物を原材料として、リチウムニッケル複合酸化物を製造し、これを正極活物質として非水系電解質二次電池を構成した場合、測定される正極抵抗の値を低くできるとともに、電池性能を良好なものとすることができる。この複合水酸化物の組成比(Ni:Co:Al:Mn:M)は、得られる正極活物質においても維持される。したがって、本発明の複合水酸化物の組成比は、得ようとする正極活物質に要求される組成比と同様となるように調整される。
なお、本発明の複合水酸化物およびこれを原材料として得られるリチウムニッケル複合酸化物において、個々の金属元素がもたらす特性やその含有量の規制については、特開2008−147068号公報や特開2004−253174号公報を含む先行技術文献により公知であるため、その説明は省略する。
ただし、本発明の複合水酸化物において、その構成元素であるアルミニウムは、二次粒子の内部に均一に分布させてもよく、および/または、二次粒子の表面を均一に被覆させてもよい。アルミニウムは、熱安定性を向上させるために添加されるものであるが、内部および/または表面に均一に分布させることで、少量であっても粒子全体における上記効果を得ることができるばかりでなく、容量の低下を抑制できる。なお、より少量で上記効果を得るためには、粒子内部より表面におけるアルミニウム濃度を高めることが好ましい。
また、添加元素についても、電池の耐久性や出力特性を向上させるために添加されるものであり、粒子内部および/または表面に均一に分布させることが好ましいが、容量の低下を抑制して、より少量で上記効果を得る場合には、このような添加元素を表面に存在させたり、表面における濃度を高めたりしてもよい。
(粒子構造)
本発明の複合水酸化物は、図4に例示されるように、略球状の粒子である。具体的には、図5に例示されるように、この複合水酸化物は、複数の一次粒子が凝集して形成された略球状の二次粒子から構成されており、さらに詳細には、微細一次粒子が凝集して形成された中心部と、この中心部の外側に存在し、前記微細一次粒子よりも大きな板状一次粒子が凝集して形成された外殻部を有する構造となっている。
このような構造を備えることにより、本発明の正極活物質であるリチウムニッケル複合酸化物を形成する焼結工程において、粒子内へのリチウムの拡散が十分に行われることから、リチウムの分布が均一で良好な正極活物質が得られる。
ここで、中心部を構成する複合水酸化物は、一般式(2):NixCoyAlzMn(OH)2+a(x+y+z+t+s=1、0≦y≦0.8、0≦z≦0.1、0.1≦t≦0.8、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表される組成を有するものである。通常、このようなマンガンの含有量が多い複合水酸化物を単独で用いて、リチウムニッケル複合酸化物を得る場合には、900℃程度の高温で焼成する必要がある。
一方、外郭部を構成する複合水酸化物は、一般式(3):NixCoyAlzMn(OH)2+a(x+y+z+t+s=1、0≦y≦0.3、0≦z≦0.1、0≦t<0.05、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表されるものである。このようなマンガンの含有量が少ない複合水酸化物を用いて、リチウムニッケル複合酸化物とするための焼成温度は、700℃〜800℃である。
本発明の構造の複合水酸化物においては、中心部に存在する複合水酸化物のマンガン含有量は多いものの、中心部は極めて微細な一次粒子から構成され、低密度であると考えられることから、外殻部を構成する複合水酸化物よりも低温から焼結による収縮が開始し、その収縮率も大きくなる。このため、本発明の構造では、外殻部の焼成温度である700℃〜800℃においても、中心部は十分に収縮し、中心部の存在していた場所は十分な大きさの空間となる。これによって、焼成後に得られる正極活物質が中空構造を備えることになる。
また、外殻部は、板状一次粒子がランダムな方向に凝集して二次粒子を形成した構造であることが、より好ましい。板状一次粒子がランダムな方向に凝集することで、一次粒子間にほぼ均一に空隙が生じて、リチウム化合物と混合して焼成するとき、溶融したリチウム化合物が二次粒子内へ行き渡り、リチウムの拡散が十分に行われるためである。
さらに、ランダムな方向に凝集していることで、上記焼成工程における中心部の収縮も均等に生じることから、正極活物質内部に十分な大きさを有する空間を形成することができ、この点でも上記のような構造であることが好ましい。
焼成時の空間形成のため、前記中心部の微細一次粒子は、その平均粒径が0.01μm〜0.3μmであることが、また、前記外殻部の板状一次粒子は、その平均粒径が0.3μm〜3μmであることが好ましい。前記中心部の微細一次粒子の平均粒径0.01μm未満であると、一次粒子の凝集が不十分となって、得られる複合水酸化物に十分な大きさの中心部が形成されないことがあり、0.3μmを超えると、上記の焼結開始の低温化および収縮が十分ではなく、焼成後に十分な大きさの空間が得られないことがある。一方、前記外殻部の板状一次粒子の平均粒径が、0.3μm未満であると、この板状一次粒子の焼成時の焼結が低温化することに起因して、焼成後に十分な大きさの空間が得られないことがあり、3μmを超えると、得られる正極活物質の結晶性を十分なのもとするために、焼成温度を高くする必要があり、二次粒子間での焼結が発生して、得られる正極活物質の粒径が所定の範囲を超えてしまう可能性が高い。
さらに、前記微細一次粒子は、板状および/または針状であることが好ましい。前記微細一次粒子が、板状および/または針状となることで、中心部は十分に低密度となり、焼結開始温度が十分に低温化し、焼成によって大きな収縮が発生して十分な大きさの空間が生じる。
このような構造の二次粒子において、前記外殻部の厚さは、二次粒子の粒径に対する比率で5%〜45%であることが好ましく、7%〜35%であることがより好ましい。これは、この複合水酸化物を原材料として得られる正極活物質において中空構造が形成される程度に十分な大きさの中心部が必要とされるためである。すなわち、正極活物質においても、その二次粒子の粒子径に対する外殻部の厚さの比率は、複合水酸化物の二次粒子の比率がおおむね維持される。したがって、複合水酸化物の二次粒子径に対する外殻部の厚さの比率を上記の範囲とすることで、リチウムニッケル複合酸化物の二次粒子に十分な大きさの中空部を形成することが可能となる。この外殻部の厚さが、二次粒子の粒径に対する比率で5%未満と薄すぎると、正極活物質の製造時の焼成工程において、複合水酸化物の二次粒子の収縮が大きくなり、かつ、リチウムニッケル複合酸化物の二次粒子間に焼結が生じて、正極活物質の粒度分布が悪化することがある。一方、45%を超えると、十分な大きさの中心部が形成されないなどの問題を生ずる。
なお、これらの微細一次粒子および板状一次粒子の粒径、ならびに、二次粒子の粒径に対する外殻部の厚さの比率は、複合水酸化物の二次粒子の断面を、走査型電子顕微鏡を用いて観察することによって測定することができる。
たとえば、複数の複合水酸化物の二次粒子を樹脂などに埋め込み、クロスセクションポリッシャ加工などにより、該粒子の断面観察が可能な状態とする。微細一次粒子および板状一次粒子の粒径は、二次粒子中の、好ましくは10個以上の一次粒子断面の最大径を粒径として測定し、平均値を計算することで求めることができる。
また、外殻部の厚さの二次粒子径に対する比率は、以下のように求める。まず、樹脂中の二次粒子から、ほぼ粒子中心の断面観察が可能な粒子を選択して、3箇所以上の任意の箇所で、外殻部の外周上と中心部側の内周上の距離が最短となる2点間の距離を測定して、粒子ごとの外殻部の平均厚みを求める。二次粒子の外周上で距離が最大となる任意の2点間の距離を二次粒子径として、前記平均厚みをこの二次粒子径で除することにより、粒子ごとの外殻部の厚さの比率を求める。さらに、10個以上の粒子について求めた粒子ごとの比率を平均することで、複合水酸化物の二次粒子における、二次粒子径に対する外殻部の厚さの比率を求めることができる。
(平均粒径)
本発明の複合水酸化物は、二次粒子の平均粒径が、3μm〜15μm、好ましくは3μm〜7μmに調整されている。平均粒径を3μm〜15μmとすることで、本発明の複合水酸化物を原料として得られる正極活物質であるニッケル複合酸化物(以下、「複合酸化物」という)についても、所定の平均粒径(2μm〜15μm)に調整することが可能となる。このように、複合水酸化物の粒径は、得られる正極活物質の粒径と相関するため、この正極活物質を正極材料に用いた電池の特性に影響する。
具体的には、この複合水酸化物の平均粒径が3μm未満であると、得られる正極活物質の平均粒径も小さくなり、正極の充填密度が低下して、容積あたりの電池容量が低下する。逆に、複合水酸化物の平均粒径が15μmを超えると、正極活物質の比表面積が低下して、電解液との界面が減少することにより、正極の抵抗が上昇して電池の出力特性が低下する。
(粒度分布)
本発明の複合水酸化物は、その粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が、0.55以下となるように調整されている。正極活物質の粒度分布は、原料である複合水酸化物の粒度分布の影響を強く受けるため、複合水酸化物に微粒子あるいは粗大粒子が混入していると、正極活物質にも同様の粒子が存在するようになる。すなわち、〔(d90−d10)/平均粒径〕が0.55を超え、粒度分布が広い状態であると、正極活物質にも微粒子あるいは粗大粒子が存在するようになる。
微粒子が多く存在する正極活物質を用いて正極を形成した場合、微粒子の局所的な反応に起因して発熱する可能性があり、電池の安全性が低下するばかりでなく、微粒子が選択的に劣化するため、電池のサイクル特性が悪化してしまう。一方、粗大粒子が多く存在する正極活物質を用いて正極を形成した場合、電解液と正極活物質との反応面積が十分に取れず、反応抵抗の増加により電池出力が低下する。
よって、本発明の複合水酸化物において、〔(d90−d10)/平均粒径〕が0.55以下となるように調整しておけば、これを原料として用いて得られる正極活物質も粒度分布の範囲が狭いものとなり、その粒子径を均一化することができる。すなわち、正極活物質の粒度分布について、〔(d90−d10)/平均粒径〕が0.60以下となるようにすることができる。これにより、本発明の複合水酸化物を原料として形成された正極活物質を正極材料として用いた電池において、良好なサイクル特性および高出力を達成することができる。
なお、粒度分布の広がりを示す指標〔(d90−d10)/平均粒径〕において、d10は、各粒径における粒子数を粒径の小さい側から累積し、その累積体積が全粒子の合計体積の10%となる粒径を意味している。また、d90は、同様に粒子数を累積し、その累積体積が全粒子の合計体積の90%となる粒径を意味している。
平均粒径や、d90、d10を求める方法は、特に限定されないが、たとえば、レーザ光回折散乱式粒度分析計で測定した体積積算値から求めることができる。平均粒径としてd50を用いる場合には、d90と同様に累積体積が全粒子体積の50%となる粒径を用いればよい。
(1−2)複合水酸化物の製造方法
本発明の複合水酸化物の製造方法は、晶析反応により、一般式(1)により表される複合水酸化物を製造する方法であって、(A)核生成を行う核生成工程と、(B)核生成工程において生成された核を成長させる粒子成長工程とから構成されている。
すなわち、従来の連続晶析法では、核生成反応と粒子成長反応とが同じ槽内において同時に進行するため、得られる複合水酸化物の二次粒子の粒度分布が広範囲となってしまう。これに対して、本発明の複合水酸化物の製造方法では、主として核生成反応が生じる時間(核生成工程)と、主として粒子成長反応が生じる時間(粒子成長工程)とを明確に分離することにより、得られる複合水酸化物において狭い粒度分布を達成している点に特徴がある。
さらに、工程ごとに晶析反応時の雰囲気を制御するとともに、ニッケル、コバルト、アルミニウムなどの化合物を所定の割合で水に溶解させた混合水溶液中のマンガンの含有量を所定の範囲に制御することにより、得られる複合水酸化物の粒子構造を、一般式(2)で表される複合水酸化物により構成される微細一次粒子からなる中心部と、一般式(3)で表される複合水酸化物により構成され、微細一次粒子よりも大きな板状一次粒子からなる外殻部からなる二重構造とする点に特徴がある。
最初に、本発明の複合水酸化物の製造方法の概略を、図1に基づいて説明する。なお、図1および図2では、(A)が核生成工程に相当し、(B)が粒子成長工程に相当する。
(第1実施形態)
a)核生成工程
図1に示すように、まず、金属の組成比が、複合水酸化物に関する一般式(2)に対応するように、一般式(a):NixCoyAlzMn(x+y+z+t+s=1、0≦y≦0.8、0≦z≦0.1、0.1≦t≦0.8、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)の組成比となるように、複数の金属化合物を所定の割合で水に溶解させ、混合水溶液を作製する。
特に、この混合水溶液中のマンガン含有量は、一般式(a)におけるtが0.1以上0.8以下の範囲となるように制御することが必要であり、好ましくは0.2以上0.7以下とし、より好ましくは0.3以上0.6以下となるように制御する。tが、0.1未満となると微細一次粒子が得られず、0.8を超えると、焼成時の収縮が少なくなり、十分な中空構造が得られない。
また、コバルト含有量は、複合水酸化物の組成を均一化するため、一般式(a)におけるyが0以上0.8以下、好ましくは0以上0.5以下となるように制御する。
一方、反応槽には、水酸化ナトリウム水溶液などのアルカリ水溶液、アンモニウムイオン供給体を含むアンモニア水溶液、および水を供給して混合して水溶液を形成する。この水溶液(以下、「反応前水溶液」という)について、そのpH値を、アルカリ水溶液の供給量を調整することにより、液温25℃基準でpH値が12.0〜14.0の範囲となるように調節する。また、反応前水溶液中のアンモニウムイオンの濃度を、アンモニア水溶液の供給量を調整することにより、3g/L〜25g/Lとなるように調節する。なお、反応前水溶液の温度についても、好ましくは20℃以上、より好ましくは20℃〜60℃となるように調節する。反応槽内の水溶液のpH、アンモニウムイオンの濃度については、それぞれ一般的なpH計、イオンメータによって測定可能である。
反応槽内において反応前水溶液の温度およびpH値が調整されると、反応前水溶液を攪拌しながら混合水溶液を反応槽内に供給する。これにより、反応槽内には、反応前水溶液と混合水溶液とが混合した、核生成工程における反応水溶液である核生成用水溶液が形成され、この核生成用水溶液中において複合水酸化物の微細な核が生成されることになる。このとき、核生成用水溶液のpH値は上記範囲にあるので、生成した核はほとんど成長することなく、核の生成が優先的に生じる。
なお、混合水溶液の供給による核生成に伴って、核生成用水溶液のpH値およびアンモニウムイオンの濃度が変化するので、核生成用水溶液には、混合水溶液とともに、アルカリ水溶液、アンモニア水溶液を供給して、核生成用水溶液のpH値が、液温25℃基準で12.0〜14.0の範囲、アンモニウムイオンの濃度が、3g/L〜25g/Lの範囲を維持するように制御する。
核生成用水溶液に対する混合水溶液、アルカリ水溶液およびアンモニア水溶液の供給により、核生成用水溶液中では、連続して新しい核の生成が継続されることとなる。そして、核生成用水溶液中に、所定の量の核が生成されると、核生成工程を終了する。
核生成工程において生成する核の量は、特に限定されるものではないが、粒度分布の良好な複合水酸化物を得るためには、全体量、つまり、複合水酸化物を得るために供給する全金属塩の0.1%〜1.5%とすることが好ましく、1.2%以下とすることがより好ましい。なお、所定量の核が生成したか否かは、核生成用水溶液に添加した金属塩の量によって判断することができる。
b)粒子成長工程
核生成工程の終了後、前記核生成用水溶液のpH値を、液温25℃基準でpH値が10.5〜12.0となるように調整して、粒子成長工程における反応水溶液である粒子成長用水溶液を得る。具体的には、この調整時のpH値の制御は、アルカリ水溶液の供給量を調節することにより行う。
粒子成長用水溶液のpH値を上記範囲とすることにより、核の生成反応よりも核の成長反応の方が優先して生じる。このため、粒子成長工程において、粒子成長用水溶液には、新たな核はほとんど生成することなく、核が成長(粒子成長)して、所定の粒子径を有する複合水酸化物が形成される。
同様に、混合水溶液の供給による粒子成長に伴って、粒子成長用水溶液のpH値およびアンモニウムイオンの濃度が変化するので、粒子成長用水溶液にも、混合水溶液とともに、アルカリ水溶液、アンモニア水溶液を供給して、粒子成長用水溶液のpH値が、液温25℃基準で10.5〜12.0の範囲、アンモニウムイオンの濃度が、3g/L〜25g/Lの範囲を維持するように制御する。
粒子成長工程を開始してから所定時間経過後、後述する反応雰囲気の切り替えと同時に、供給される混合水溶液に含まれる各金属の組成比を、一般式(a)によって表わされる組成比から、一般式(b):NixCoyAlzMn(x+y+z+t+s=1、0≦y≦0.3、0≦z≦0.1、0≦t<0.05、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)の組成比に切り替える。これにより、得られる複合水酸化物の粒子構造を、一般式(2)で表される複合水酸化物により構成される微細一次粒子からなる中心部と、一般式(3)で表される複合水酸化物により構成され、この微細一次粒子よりも大きな板状一次粒子からなる外殻部とを有する二次粒子とすることができる。
なお、切り替え後の混合水溶液中のマンガン含有量は、一般式(b)におけるtが0以上0.05未満となるように制御することが必要であり、複合水酸化物全体として一般式(1)のマンガン含有量の範囲となるように制御するが、電池容量を低下させないためには、0以上0.01以下とすることが好ましい。tが0.05以上になると、粒子全体としてマンガン含有量が多くなりすぎるという問題が生じる。
その後、複合水酸化物が所定の粒径まで成長した時点で、反応を停止させて、粒子成長工程を終了する。
複合水酸化物(二次粒子)の粒径は、粒子成長工程の時間により制御できるので、所望の粒径に成長するまで粒子成長工程を継続すれば、所望の粒径を有する複合水酸化物を得ることができる。
また、複合水酸化物の粒径は、粒子成長工程のみならず、核生成工程のpH値と核生成のために投入した原料量でも制御することができる。すなわち、核生成時のpH値を高pH値側とすることにより、あるいは核生成時間を長くすることにより投入する原料量を増やし、生成する核の数を多くする。これにより、粒子成長工程を同条件とした場合でも、複合水酸化物の粒径を小さくできる。一方、核生成数が少なくするように制御すれば、得られる複合水酸化物の粒径を大きくすることができる。このため、予備試験により核生成工程と粒子成長工程の各工程における、それぞれの反応水溶液への金属塩の添加量と得られる粒子の関係を求めおくことが好ましい。
(複合水酸化物の粒径制御)
複合水酸化物(二次粒子)の粒径は、粒子成長工程の時間により制御できるので、所望の粒径に成長するまで粒子成長工程を継続すれば、所望の粒径を有する複合水酸化物を得ることができる。
また、複合水酸化物の粒径は、粒子成長工程のみならず、核生成工程のpH値と核生成のために投入した原料量でも制御することができる。すなわち、核生成時のpH値を高pH値側とすることにより、あるいは核生成時間を長くすることにより投入する原料量を増やし、生成する核の数を多くする。これにより、粒子成長工程を同条件とした場合でも、複合水酸化物の粒径を小さくできる。一方、核生成数が少なくするように制御すれば、得られる複合水酸化物の粒径を大きくすることができる。
c)特徴
以上のように、本発明の複合水酸化物の製造方法においては、核生成工程では核生成が優先して起こり、核の成長はほとんど生じず、逆に、粒子成長工程では核成長のみが生じ、ほとんど新しい核は生成されない。このため、核生成工程では、粒度分布の範囲が狭く均質な核を形成させることができ、また、粒子成長工程では、均質に核を成長させることができる。したがって、本発明の複合水酸化物の製造方法では、粒度分布の範囲が狭く、均質な複合水酸化物を得ることが可能となる。
なお、両方の工程において、金属イオンは、核または複合水酸化物となって晶出するので、それぞれの反応水溶液中の金属成分に対する液体成分の割合が増加する。この場合、見かけ上、供給する混合水溶液の濃度が低下したようになり、特に粒子成長工程において、複合水酸化物が十分に成長しない可能性がある。したがって、反応水溶液中の液体成分の増加を抑制するため、核生成工程終了後から粒子成長工程の途中で、反応水溶液、特に粒子成長用水溶液中の液体成分の一部を反応槽外に排出することが好ましい。具体的には、粒子成長用水溶液に対する混合水溶液、アルカリ水溶液およびアンモニア水溶液の供給および攪拌を停止して、核や複合水酸化物を沈降させて、粒子成長用水溶液の上澄み液を排出する。これにより、粒子成長用水溶液における混合水溶液の相対的な濃度を高めることができる。そして、混合水溶液の相対的な濃度が高い状態で、複合水酸化物を成長させることができるので、複合水酸化物の粒度分布をより狭めることができ、複合水酸化物の二次粒子全体としての密度も高めることができる。
また、図1に示す実施形態では、核生成工程が終了した核生成用水溶液のpH値を調整して粒子成長用水溶液を形成して、核生成工程から引き続いて粒子成長工程を行っているので、粒子成長工程への移行を迅速に行うことができるという利点がある。さらに、核生成工程から粒子成長工程への移行は、反応水溶液のpH値を調整するだけで移行でき、pHの調整も一時的にアルカリ水溶液の供給を停止することで容易に行うことができるという利点がある。なお、反応水溶液のpH値は、金属化合物を構成する酸と同種の無機酸、たとえば、硫酸塩の場合、硫酸を反応水溶液に添加することでも調整することができる。
(第2実施形態)
図2に示す別実施形態のように、核生成用水溶液とは別に、粒子成長工程に適したpH値、アンモニウムイオン濃度に調整された成分調整水溶液を形成しておき、この成分調整水溶液に、別の反応槽で核生成工程を行って生成した核を含有する水溶液(核生成用水溶液、好ましくは核生成用水溶液から液体成分の一部を除去したもの)を添加して反応水溶液とし、この反応水溶液を粒子成長用水溶液として粒子成長工程を行ってもよい。
この場合、核生成工程と粒子成長工程の分離を、より確実に行うことができるので、各工程における反応水溶液の状態を、各工程に最適な条件とすることができる。特に、粒子成長工程の開始時点から、粒子成長用水溶液のpH値を最適な条件とすることができる。粒子成長工程で形成される複合水酸化物を、より粒度分布の範囲が狭く、かつ、均質なものとすることができる。
以下、晶析反応における反応条件などについて説明するが、核生成工程と粒子成長工程との相違点は、反応水溶液のpH値および反応槽内の雰囲気を制御する範囲のみであり、金属化合物、反応液中アンモニア濃度、反応温度などの条件は、両工程において実質的に同様である。
(反応雰囲気)
本発明の核生成工程における反応雰囲気は、酸化性雰囲気、より具体的には、反応槽内の空間の酸素濃度が1容量%を超える酸化性雰囲気とする必要がある。酸素濃度が10容量%を超える酸化性雰囲気が好ましく、制御が容易な大気雰囲気(酸素濃度:21容量%)とすることが特に好ましい。酸素濃度が1容量%を超える雰囲気とすることで、一次粒子の平均粒径を0.01μm〜0.3μmとすることができる。酸素濃度が1容量%以下では、中心部の一次粒子の平均粒径が0.3μmを超えることがある。酸素濃度の上限は、特に限定されるものではないが、30容量%を超えると、一次粒子の平均粒径が0.01μm未満となる場合があり、好ましくない。
一方、本発明の粒子成長工程における反応雰囲気は、後述する所定の時点で、上記の酸化性雰囲気から、弱酸化性〜非酸化性の範囲の雰囲気、具体的には、反応槽内空間の酸素濃度が1容量%以下である雰囲気に切り替える必要がある。好ましくは、酸素濃度が0.5容量%以下、より好ましくは0.2容量%以下となるように、酸素と不活性ガスの混合雰囲気に制御する。反応槽内空間の酸素濃度を1容量%以下にして粒子成長させることで、粒子の不要な酸化を抑制し、一次粒子の成長を促して、平均粒径0.3μm〜3μmの中心部より大きい一次粒子径で粒度が揃った、緻密で高密度の外殻部を有する二次粒子を得ることができる。
このような雰囲気に反応槽内空間を保つための手段としては、特に限定されることはないが、窒素などの不活性ガスを反応槽内空間部へ流通させること、さらには反応液中に不活性ガスをバブリングさせることが挙げられる。
(混合水溶液の組成および反応雰囲気の切り替え)
このように、本発明では、各工程において、それぞれの目的に応じて、反応雰囲気を制御するとともに、混合水溶液の組成を変更する必要がある。すなわち、本発明の複合水酸化物が有する粒子構造は、上述したように、核生成工程および粒子成長工程における、混合水溶液の組成および反応雰囲気を制御することにより形成される。すなわち、核生成工程と粒子成長工程の初期の一部を酸化性雰囲気とし、かつ、混合水溶液の組成を一般式(a)で表わされる組成とすることで、微細一次粒子からなり、空隙が多い低密度の中心部が形成され、その後の粒子成長工程において、酸化性雰囲気から切り替えて、弱酸化性から非酸化性の範囲の雰囲気とするとともに、混合水溶液の組成を一般式(b)で表される組成に切り替えることで、前記中心部の外側に、微細一次粒子よりも大きな板状一次粒子からなり、緻密で高密度の外殻部を有する二次粒子構造を形成することができ、かつ、複合水酸化物の二次粒子の組成を全体として一般式(1)で表される組成とすることができる。
粒子成長工程における雰囲気および混合水溶液の切り替えは、最終的に得られる正極活物質に微粒子が発生し、サイクル特性が悪化しない程度の中空部が得られるようにする必要がある。具体的には、この切り替えのタイミングを粒子成長工程時間の全体(この工程の開始から反応終了まで)に対して、粒子成長工程の開始時からの時間が1%〜15%、好ましくは2%〜12.5%、さらに好ましくは4%〜10%の範囲で行う。粒子成長工程時間の全体に対して15%を超える時点で、この切り替えを行うと、形成される中心部が大きくなり、二次粒子の粒径に対する外殻部の厚さが薄くなり過ぎることがあるばかりでなく、マンガンの含有量が増えるため、充放電容量が小さくなる。一方、粒子成長工程時間の全体に対して1%未満で、この切り替えを行うと、中心部が小さくなりすぎるか、十分な中空構造を有する二次粒子が形成されない。
(pH制御)
核生成工程においては、反応水溶液のpH値が、液温25℃基準で12.0〜14.0の範囲となるように制御する必要がある。pH値が14.0を超える場合、生成する核が微細になり過ぎ、反応水溶液がゲル化する問題がある。また、pH値が12.0未満では、核生成とともに核の成長反応が生じるので、生成される核の粒度分布の範囲が広くなり不均質なものとなってしまう。すなわち、核生成工程において、上述の範囲に反応水溶液のpH値を制御することで、核の成長を抑制して、核生成のみを起こすことができ、生成される核を均質かつ粒度分布の範囲が狭いものとすることができる。
一方、粒子成長工程においては、反応水溶液のpH値が、液温25℃基準で10.5〜12.0の範囲となるように制御する必要がある。pH値が12.0を超える場合、あらたに生成される核が多くなり、微細な二次粒子が生成するため、粒径分布の範囲が狭い複合水酸化物が得られない。また、pH値が10.5未満では、アンモニアイオンによる溶解度が高く、析出せずに液中に残存する金属イオンが増えるため、生産効率が悪化する。すなわち、粒子成長工程において、上述の範囲に反応水溶液のpH値を制御することで、核生成工程で生成した核の成長を優先的に起こさせ、新たな核生成を抑制することができ、得られる複合水酸化物を均質かつ粒度分布の範囲が狭いものとすることができる。
核生成工程および粒子成長工程のいずれにおいても、pHの変動幅は、設定値の上下0.2以内に制御することが好ましい。pHの変動幅が大きい場合、核生成と粒子成長が一定とならず、粒度分布の範囲の狭い均一な複合水酸化物が得られない場合がある。
なお、pH値が12.0の場合は、核生成と核成長の境界条件であるため、反応水溶液中に存在する核の有無により、核生成工程もしくは粒子成長工程のいずれかの条件とすることができる。
すなわち、核生成工程のpH値を12.0より高くして多量に核生成させた後、粒子成長工程でpH値を12.0とすると、反応水溶液中に多量の核が存在するため、核の成長が優先して起こり、粒径分布が狭く比較的大きな粒径の複合水酸化物が得られる。
一方、反応水溶液中に核が存在しない状態、すなわち、核生成工程においてpH値を12.0とした場合、成長する核が存在しないため、核生成が優先して起こり、粒子成長工程のpH値を12.0より小さくすることで、生成した核が成長して良好な複合水酸化物が得られる。
いずれの場合においても、粒子成長工程のpH値を核生成工程のpH値より低い値で制御すればよく、核生成と粒子成長を明確に分離するためには、粒子成長工程のpH値を核生成工程のpH値より0.5以上低くすることが好ましく、1.0以上低くすることがより好ましい。
(アルカリ水溶液)
反応水溶液中のpHを調整するアルカリ水溶液については、特に限定されるものではなく、たとえば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物水溶液を用いることができる。このようなアルカリ金属水酸化物の場合、直接、反応水溶液中に供給してもよいが、反応槽内における反応水溶液のpH値制御の容易さから、水溶液として反応槽内の反応水溶液に添加することが好ましい。
また、アルカリ水溶液を反応槽に添加する方法についても、特に限定されるものではなく、反応水溶液を十分に攪拌しながら、定量ポンプなど、流量制御が可能なポンプで、反応水溶液のpH値が所定の範囲に保持されるように、添加すればよい。
(アンモニア濃度)
反応水溶液中のアンモニア濃度は、以下の問題を生じさせないために、好ましくは3g/L〜25g/Lの範囲内で一定値に保持する。アンモニアは錯化剤として作用するため、アンモニア濃度が3g/L未満であると、金属イオンの溶解度を一定に保持することができず、形状および粒径が整った複合水酸化物の一次粒子が形成されず、ゲル状の核が生成しやすいため粒度分布も広がりやすい。一方、上記アンモニア濃度が25g/Lを超える濃度では、金属イオンの溶解度が大きくなり過ぎ、反応水溶液中に残存する金属イオン量が増えて、組成のずれなどが起きる。
また、アンモニア濃度が変動すると、金属イオンの溶解度が変動し、均一な形状および粒径の水酸化物が形成されないため、一定値に保持することが好ましい。たとえば、アンモニア濃度は、上限と下限の幅を5g/L以下として所望の濃度に保持することが好ましい。
なお、アンモニウムイオン供給体については、特に限定されないが、たとえば、アンモニア、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどを使用することができる。
(金属化合物)
本発明の複合水酸化物の構成元素である、ニッケル、コバルト、アルミニウムおよびマンガンの供給源としては、目的とする金属を含有する化合物を用いる。使用する化合物は、水溶性の化合物を用いることが好ましく、硝酸塩、硫酸塩、塩酸塩などが挙げられる。たとえば、硫酸ニッケル、硫酸マンガン、硫酸コバルト、硫酸アルミニウム、アルミン酸ナトリウムが好ましく用いられる。
アルミニウムを複合水酸化物の内部に均一に分散させる場合には、アルミニウム化合物を混合水溶液に添加するか、あるいは、別途アルミニウム含有水溶液を用意し、これを前記混合水溶液と同時に反応水溶液に添加することが好ましい。これにより、反応水溶液の内部にニッケル、コバルト、マンガンに加えて、アルミニウムを均一に分散させた状態で共沈させることができる。
一方、添加元素(組成式中Mで表され、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種以上の元素)は、水溶性の化合物を用いることが好ましく、たとえば、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸ジルコニウム、硝酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、タングステン酸ナトリウム、タングステン酸アンモニウムなどを用いることができる。これらの添加元素は、アルミニウムの場合と同様の方法により、複合水酸化物中に分散、または、複合水酸化物の表面に被覆させることができる。
(アルミニウムおよび添加元素の被覆)
本発明において、少なくとも前記核生成用水溶液に含まれる金属化合物および前記粒子成長工程において供給される金属化合物のいずれにもアルミニウムが含まれていない場合には、前記粒子成長工程で得られた複合水酸化物に、アルミニウム化合物を被覆する工程をさらに備える必要がある。
このように、複合水酸化物の表面にアルミニウム化合物を被覆する場合には、たとえば、アルミン酸ナトリウムを含んだ水溶液を用いて複合水酸化物をスラリー化し、所定のpHとなるように制御した上で、晶析反応により、アルミニウム化合物を複合水酸化物の表面に析出させれば、その表面を均一に被覆することができる。この場合、アルミニウム酸ナトリウムを含んだ水溶液に替えて、アルミニウムのアルコキシド溶液を用いてもよい。さらに、複合水酸化物に対して、アルミニウム化合物を含んだ水溶液あるいはスラリーを吹き付けて乾燥させることによっても、複合水酸化物の表面をアルミニウム化合物で被覆することができる。また、複合水酸化物とアルミニウムを含む塩が懸濁したスラリーを噴霧乾燥させる、あるいは複合水酸化物とアルミニウムを含む塩を固相法で混合するなどの方法により被覆することもできる。
なお、アルミニウムを含む複合水酸化物の表面をアルミニウム化合物でさらに被覆することもできるが、この場合には、混合水溶液中に存在するアルミニウムイオンの原子数比を被覆する量だけ少なくしておくことで、得られる複合水酸化物の金属イオンの原子数比と一致させることができる。また、粒子の表面をアルミニウム化合物で被覆する工程は、複合水酸化物を加熱した後の粒子に対して行ってもよい。
また、前記添加元素についても、アルミニウムの場合と同様の方法により、複合水酸化物の表面に被覆させることができ、この場合、アルミニウム化合物で被覆する工程と同時に行うことができる。
(混合水溶液の濃度)
混合水溶液の濃度は、金属化合物の合計で1mol/L〜2.2mol/Lとすることが好ましい。混合水溶液の濃度が1mol/L未満では、反応槽当たりの晶析物量が少なくなるために生産性が低下するため好ましくない。一方、混合水溶液の塩濃度が2.2mol/Lを超えると、常温での飽和濃度を超えるため、結晶が再析出して設備の配管を詰まらせるなどの危険がある。
また、金属化合物は、必ずしも混合水溶液として反応槽に供給しなくてもよく、たとえば、混合すると反応して化合物が生成される金属化合物を用いる場合、全金属化合物水溶液の合計の濃度が上記範囲となるように、個別に金属化合物水溶液を調整して、個々の金属化合物の水溶液として所定の割合で同時に反応槽内に供給してもよい。本発明においては、個々に供給する金属化合物の水溶液も含めて混合水溶液と記載することがある。
さらに、混合水溶液など、個々の金属化合物の水溶液を反応槽に供給する量は、晶析反応を終えた時点での晶析物濃度が、概ね30g/L〜200g/Lになるようにすることが望ましい。晶析物濃度が30g/L未満の場合には、一次粒子の凝集が不十分になることがあり、200g/Lを超える場合には、添加する混合水溶液の反応槽内での拡散が十分でなく、粒子成長に偏りが生じることがあるからである。
(反応液温度)
反応槽内において、反応液の温度は、好ましくは20℃以上、特に好ましくは20℃〜60℃に設定する。反応液の温度が20℃未満の場合、溶解度が低いため核発生が起こりやすく制御が難しくなる。一方、60℃を超えると、アンモニアの揮発が促進されるため、所定のアンモニア濃度を保つために、過剰のアンモニウムイオン供給体を添加しなければならならず、コスト高となる。
(製造設備)
本発明の複合水酸化物の製造方法では、反応が完了するまで生成物を回収しない方式の装置を用いる。たとえば、撹拌機が設置された通常に用いられるバッチ反応槽などである。このような装置を採用すると、一般的なオーバーフローによって生成物を回収する連続晶析装置のように、成長中の粒子がオーバーフロー液と同時に回収されるという問題が生じないため、粒度分布が狭く粒径の揃った粒子を得ることができる。
また、反応雰囲気を制御する必要があるため、密閉式の装置などの雰囲気制御可能な装置を用いる。このような装置を用いることで、得られる複合水酸化物を上記構造のものとすることができるとともに、核生成反応や粒子成長反応をほぼ均一に進めることができるので、粒径分布の優れた粒子、すなわち粒度分布の範囲の狭い粒子を得ることができる。
(2−1)非水系電解質二次電池用正極活物質
本発明の正極活物質は、一般式(4):Li1+uNixCoyAlzMn2(−0.05≦u≦0.20、x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表されるリチウムニッケル複合酸化物であって、層状構造を有する六方晶系の結晶構造を有するものである。
(組成)
本発明の正極活物質において、リチウムの過剰量を示すuは、−0.05以上0.20以下の範囲とする。リチウムの過剰量uが−0.05未満の場合、得られた正極活物質を用いた非水系電解質二次電池における正極の反応抵抗が大きくなるため、電池の出力が低くなってしまう。一方、リチウムの過剰量uが0.20を超える場合、上記正極活物質を電池の正極に用いた場合の初期放電容量が低下するとともに、正極の反応抵抗も増加してしまう。リチウムの過剰量uは、この反応抵抗をより低減させるためには0.00以上0.15以下とすることが好ましい。
コバルトの含有量を示すyは、0以上0.3以下の範囲とし、0.1以上0.2以下の範囲とすることが好ましい。コバルトは埋蔵量が少なく高価であるため、yが0.3を超える場合、コストが向上してしまうため好ましくない。
アルミニウムの含有量を示すzは、0を超えて0.1以下の範囲とし、0.2以上0.8以下の範囲とすることが好ましい。zが0.1を超える場合、電池容量が低下するという問題が生じる。
また、マンガンの含有量を示すtは、0.001を超えて0,05以下の範囲とし、0.01以上0.03以下の範囲とすることが好ましい。tが0.001以下では十分な中空構造が得られず、電池の出力が低くなってしまう。一方、tが0.05を超えると、電池の正極に用いた場合の充放電容量が低下する。
さらに、一般式(4)で表されるように、本発明の正極活物質は、リチウムニッケル複合酸化物に添加元素を含有するように調整されていることが、より好ましい。上記添加元素を含有させることで、これを正極活物質として用いた電池の耐久特性や出力特性を向上させることができる。
特に、添加元素が粒子の表面または内部に均一に分布することで、粒子全体で上記効果を得ることができ、少量の添加で上記効果が得られるとともに容量の低下を抑制できる。さらに、より少ない添加量で効果を得るためには、粒子内部より粒子表面における添加元素の濃度を高めることが好ましい。
このような添加元素の含有量を示すsは、0以上0.05以下の範囲とし、0.01以上0.04以下の範囲とすることが好ましい。添加元素の含有量が0.05を超えると、Redox反応に貢献する金属元素が減少するため、電池容量が低下するため好ましくない。
(平均粒径)
本発明の正極活物質は、平均粒径が2μm〜15μmの範囲にある。平均粒径が2μm未満では、正極を形成したときに粒子の充填密度が低下して、正極の容積あたりの電池容量が低下する。一方、平均粒径が15μmを超えると、正極活物質の比表面積が低下して、正極と電解液との界面が減少するため、正極の抵抗が上昇して電池の出力特性が低下する。
正極の抵抗を下げて、さらに出力特性を向上させるためには、正極活物質を小粒径化して、電解液との界面を増加させることが好ましい。このような観点から、正極活物質の平均粒径を3μm〜8μmの範囲とすることが好ましく、3μm〜6μmの範囲とすることがより好ましい。正極活物質の平均粒径をこのような範囲に調整することにより、この正極活物質を正極に用いた電池の容積あたりの電池容量を大きくすることができるとともに、高安全性、高出力といった高い電池特性を得ることができる。
(粒度分布)
図6に例示されるように、本発明の正極活物質は、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.60以下であり、平均粒径が2μm〜15μmである、きわめて均質性が高いリチウムニッケル複合酸化物の二次粒子により構成される。
粒度分布が広範囲になっている場合、正極活物質に、平均粒径に対して粒径が非常に小さい微粒子や、平均粒径に対して非常に粒径の大きい粗大粒子が多く存在することになる。微粒子が多く存在する正極活物質を用いて正極を形成した場合には、微粒子の局所的な反応に起因して発熱する可能性があり、安全性が低下するとともに、微粒子が選択的に劣化するのでサイクル特性が悪化してしまう。一方、粗大粒子が多く存在する正極活物質を用いて正極を形成した場合には、電解液と正極活物質との反応面積が十分に取れず、反応抵抗の増加による電池出力が低下する。
したがって、正極活物質の粒度分布を前記指標〔(d90−d10)/平均粒径〕を0.60以下とし、かつ、平均粒径を2μm〜15μmの範囲に制御することにより、適度な粒径を有しながらも、微粒子や粗大粒子の割合を少なくすることができる。このため、この正極活物質を正極に用いた電池は、安全性に優れ、良好なサイクル特性および電池出力を有するものとなる。なお、上記平均粒径や、d90、d10は、上述した複合水酸化物に用いられているものと同様のものであり、測定も同様にして行うことができる。
(粒子構造)
本発明の正極活物質は、図7に例示するように、二次粒子内部の中空部とその外側の外殻部で構成される中空構造を有する点に特徴がある。このような中空構造とすることにより、反応表面積を大きくすることができ、かつ、外殻部の一次粒子間の粒界あるいは空隙から電解液が浸入して、粒子内部の中空側の一次粒子表面における反応界面でもリチウムの挿脱入が行われるため、Liイオン、電子の移動が妨げられず、出力特性を高くすることができる。
ここで、この外殻部の厚さは、正極活物質の二次粒子の粒径に対する比率において5%〜35%であることが好ましい。特に、本発明の正極活物質の二次粒子の平均粒径が2μm〜15μmの範囲にあることを考慮すれば、外殻部の厚さは、0.5μm〜5μmの範囲にあることがより好ましく、0.5μm〜2.5μmの範囲にあることがさらに好ましい。外殻部の厚さの比率が5%未満であると、正極活物質を構成するリチウムニッケル複合酸化物の強度が低下するため、粉体取扱時および電池の正極とするときに粒子が破壊され微粒子が発生し、特性を悪化させる。一方、外殻部の厚さの比率が35%を超えると、粒子内部の中空部へ電解液が侵入可能な上記粒界あるいは空隙から電解液が少なくなり、電池反応に寄与する表面積が小さくなるため、正極抵抗が上がり、出力特性が低下してしまう。なお、この複合酸化物の粒子径に対する外殻部の厚さの比率は、上述した複合水酸化物に対して行ったのと同様の測定方法により求めることができる。
(特性)
本発明の正極活物質は、たとえば、2032型コイン電池の正極に用いた場合、185mAh/g以上の高い初期放電容量、低い正極抵抗および高いサイクル容量維持率が得られるものとなり、非水系電解質二次電池用正極活物質として優れた特性を示すものである。
(2−2)非水系電解質二次電池用正極活物質の製造方法
本発明の正極活物質の製造方法は、一般式(4)により表される正極活物質を製造する方法であって、上記平均粒径、粒度分布、粒子構造および組成となるように正極活物質を製造できるのであれば、特に限定されないが、以下の方法を採用すれば、該正極活物質をより確実に製造できるので、好ましい。
本発明の正極活物質の製造方法は、a)本発明の正極活物質の原料となる複合水酸化物を熱処理する熱処理工程と、b)熱処理後の複合水酸化物または複合酸化物に対してリチウム化合物を混合して混合物を形成する混合工程、c)混合工程で形成された混合物を焼成する焼成工程を含むものである。以下、各工程を説明する。
a)熱処理工程
熱処理工程は、複合水酸化物を、105℃〜750℃の温度に加熱して熱処理する工程であり、複合水酸化物に含有されている水分を除去するものである。この熱処理工程を行うことによって、粒子中に焼成工程まで残留している水分を一定量まで減少させることができる。これにより、得られる正極活物質中の金属の原子数やリチウムの原子数の割合がばらつくことを防ぐことができる。
なお、熱処理工程の目的は、原子数の割合がばらつくことを抑制するものであるので、厳密な原料の配合などによってばらつきを抑制することができる場合には、熱処理工程を省略してもよい。
熱処理工程では、正極活物質中の金属の原子数やリチウムの原子数の割合にばらつきが生じない程度に水分が除去できればよいので、必ずしもすべての複合水酸化物を複合酸化物に転換する必要はない。しかしながら、上記ばらつきをより少なくするためには、加熱温度を500℃以上として複合水酸化物を複合酸化物にすべて転換することが好ましい。
熱処理工程において、加熱温度が105℃未満の場合、複合水酸化物中の余剰水分が除去できず、上記ばらつきを抑制することができない。一方、加熱温度が750℃を超えると、熱処理により粒子が焼結して均一な粒径の複合酸化物が得られない。このようなばらつきを抑制する観点から、熱処理条件による複合水酸化物中に含有される金属成分を分析によって予め求めておき、リチウム化合物との比を決めておくことが好ましい。
熱処理を行う雰囲気は特に制限されるものではなく、非還元性雰囲気であればよいが、簡易的に行える空気気流中において行うことが好ましい。
また、熱処理時間は、特に制限されないが、1時間未満では複合水酸化物の余剰水分の除去が十分に行われない場合があるので、少なくとも1時間以上が好ましく、5時間〜15時間がより好ましい。
なお、熱処理に用いられる設備は、特に限定されるものではなく、複合水酸化物を非還元性雰囲気中、好ましくは、空気気流中で加熱できるものであればよく、ガス発生がない電気炉などが好適に用いられる。
b)混合工程
混合工程は、上記熱処理工程において熱処理された複合水酸化物(以下、「熱処理粒子」という)などと、リチウムを含有する物質、たとえば、リチウム化合物とを混合して、リチウム混合物を得る工程である。ここで、上記熱処理粒子には、熱処理工程において残留水分を除去された複合水酸化物のみならず、熱処理工程で酸化物に転換された複合酸化物、もしくはこれらが混合したものも含まれる。
熱処理粒子とリチウム化合物とは、リチウム混合物中のリチウム以外の金属の原子数、すなわち、ニッケル、マンガン、コバルトおよびアルミニウムの原子数の和(Me)と、リチウムの原子数(Li)との比(Li/Me)が、0.95〜1.2、好ましくは1〜1.15となるように、混合される。すなわち、焼成工程前後でLi/Meは変化しないので、この混合工程で混合するLi/Meが正極活物質におけるLi/Meとなるため、リチウム混合物におけるLi/Meが、得ようとする正極活物質におけるLi/Meと同じになるように混合される。
混合工程では、熱処理粒子とリチウム化合物とが均一に分散するように、十分に混合することが好ましい。混合が十分でない場合には、個々の粒子間でLi/Meがばらつき、十分な電池特性が得られないなどの問題が生じる可能性がある。
なお、混合には、一般的な混合機を使用することができ、たとえば、シェーカーミキサ、レーディゲミキサ、ジュリアミキサ、Vブレンダなどを用いることができ、熱処理粒子などの形骸が破壊されない程度で、複合酸化物とリチウムを含有する物質とが十分に混合されればよい。
リチウム混合物を形成するために使用されるリチウム化合物は、特に限定されるものではないが、たとえば、水酸化リチウム、硝酸リチウム、炭酸リチウム、もしくはこれらの混合物が、入手が容易であるという点で好ましい。特に、取り扱いの容易さ、品質の安定性を考慮すると、水酸化リチウムを用いることがより好ましい。
c)焼成工程
焼成工程は、上記混合工程で得られたリチウム混合物を焼成して、リチウムニッケル複合酸化物を形成する工程である。焼成工程においてリチウム混合物を焼成することにより、熱処理粒子中に、リチウムを含有する物質中のリチウムが拡散し、リチウムニッケル複合酸化物が形成される。
(焼成温度)
リチウム混合物の焼成は、650℃〜800℃で、より好ましくは700℃〜800℃で、さらに好ましくは740℃〜770℃で行われる。
焼成温度が650℃未満であると、熱処理粒子中へのリチウムの拡散が十分に行われず、余剰のリチウムや未反応の粒子が残ったり、結晶構造が十分整わなくなったりして、電池に用いられた場合に十分な電池特性が得られない。
また、焼成温度が800℃を超えると、複合酸化物の二次粒子間で激しく焼結が生じるとともに、異常粒成長を生じる可能性があり、このため、焼成後の粒子が粗大となって粒子形態(球状二次粒子の形態)を保持できなくなる可能性がある。このような正極活物質は、比表面積が低下するため、電池に用いた場合、正極の抵抗が上昇して電池容量が低下するという問題が生じる。また、リチウムと金属元素のカチオンミキシングが発生して結晶構造が乱れ、電池容量が低下することがある。
なお、熱処理粒子とリチウム化合物の反応を均一に行わせる観点から、昇温速度を3℃/min〜10℃/minとして上記温度まで昇温することが好ましい。さらには、リチウム化合物の融点付近の温度にて1時間〜5時間程度保持することで、より反応を均一に行わせることができる。
(焼成時間)
焼成時間のうち、焼成温度での保持時間は、少なくとも2時間以上とすることが好ましく、より好ましくは、4時間〜24時間である。2時間未満では、リチウムニッケル複合酸化物の生成が十分に行われないことがある。
なお、特に限定されるものではないが、保持時間終了後、匣鉢の劣化を抑止するため、降下速度を2℃/min〜10℃/minとして200℃以下になるまで雰囲気を冷却する。
(仮焼)
特に、リチウム化合物として、水酸化リチウムや炭酸リチウムを使用した場合には、焼成する前に、焼成温度より低い温度、具体的には100℃〜500℃の温度で、1時間〜10時間程度保持して仮焼することが好ましい。すなわち、水酸化リチウムや炭酸リチウムと熱処理粒子の反応温度において仮焼することが好ましい。この場合、水酸化リチウムや炭酸リチウムの上記反応温度付近で保持すれば、熱処理粒子へのリチウムの拡散が十分に行われ、均一なリチウムニッケル複合酸化物を得ることができる。
(焼成雰囲気)
焼成時の雰囲気は、酸化性雰囲気とすることが好ましく、酸素濃度が18容量%〜100容量%の雰囲気とすることがより好ましく、上記酸素濃度の酸素と不活性ガスの混合雰囲気とすることがさらに好ましい。特に、電池特性を考慮すると、酸素気流中で行うことが好ましい。すなわち、焼成は、大気ないしは酸素気流中で行うことが好ましい。酸素濃度が18容量%未満であると、リチウムニッケル複合酸化物の結晶性が十分でない状態になる可能性がある。
なお、焼成に用いられる炉は、特に限定されるものではなく、大気ないしは酸素気流中でリチウム混合物を加熱できるものであればよいが、炉内の雰囲気を均一に保つ観点から、ガス発生がない電気炉が好ましく、バッチ式あるいは連続式の炉をいずれも用いることができる。
(解砕)
焼成によって得られたリチウムニッケル複合酸化物は、凝集もしくは軽度の焼結が生じている場合がある。この場合には、該リチウムニッケル複合酸化物を解砕することが好ましい。これにより、リチウムニッケル複合酸化物、つまり、本発明の正極活物質を得ることができる。なお、解砕とは、焼成時に二次粒子間の焼結ネッキングなどにより生じた複数の二次粒子からなる凝集体に、機械的エネルギを投入して、二次粒子自体をほとんど破壊することなく二次粒子を分離させて、凝集体をほぐす操作のことである。
(3)非水系電解質二次電池
本発明の非水系電解質二次電池は、上記非水系電解質二次電池用正極活物質を正極材料に用いた正極を採用したものであり、以下、本発明の非水系電解質二次電池の構造を説明する。
本発明の非水系電解質二次電池は、正極材料に本発明の正極活物質を用いたこと以外は、一般的な非水系電解質二次電池と実質的に同様の構造を備えている。
たとえば、本発明の二次電池は、ケースと、このケース内に収容された正極、負極、非水系電解液およびセパレータを備えた構造を有している。具体的にいえば、セパレータを介して正極と負極とを積層させて電極体とし、得られた電極体に非水系電解液を含浸させ、正極の正極集電体と外部に通ずる正極端子との間、および、負極の負極集電体と外部に通ずる負極端子との間を、それぞれ集電用リードなどを用いて接続し、ケースに密閉することによって、本発明の二次電池は形成される。
なお、本発明の二次電池の構造は、上記例に限定されないのはいうまでもなく、また、その外形も筒形や積層形など、種々の形状を採用することができる。
(正極)
まず、本発明の二次電池の特徴である正極について説明する。正極は、シート状の部材であり、本発明の正極活物質を含有する正極合材ペーストを、たとえば、アルミニウム箔製の集電体の表面に塗布乾燥して形成されている。
なお、正極は、使用する電池にあわせて適宜処理される。たとえば、目的とする電池に応じて適当な大きさに形成する裁断処理や、電極密度を高めるためにロールプレスなどによる加圧圧縮処理などが行われる。
前記正極合材ペーストは、正極合材に、溶剤を添加して混練して形成されたものである。正極合材は、粉末状になっている本発明の正極活物質と、導電材および結着剤とを混合して形成されたものである。
導電材は、電極に適当な導電性を与えるために添加されるものである。この導電材は、特に限定されないが、たとえば、黒鉛(天然黒鉛、人造黒鉛および膨張黒鉛など)や、アセチレンブラックやケッチェンブラックなどのカーボンブラック系材料を用いることができる。
結着剤は、正極活物質粒子をつなぎ止める役割を果たすものである。この正極合材に使用される結着剤は、特に限定されないが、たとえば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。
なお、正極合材には、活性炭などを添加してもよく、活性炭などを添加することによって、正極の電気二重層容量を増加させることができる。
溶剤は、結着剤を溶解して、正極活物質、導電材および活性炭などを結着剤中に分散させるものである。この溶剤は特に限定されないが、たとえば、N−メチル−2−ピロリドンなどの有機溶剤を用いることができる。
また、正極合材ペースト中における各物質の混合比は、特に限定されない。たとえば、溶剤を除いた正極合材の固形分を100質量部とした場合、一般の非水系電解質二次電池の正極と同様、正極活物質の含有量を60質量部〜95質量部、導電材の含有量を1質量部〜20質量部、結着剤の含有量を1質量部〜20質量部とすることができる。
(負極)
負極は、銅などの金属箔集電体の表面に、負極合材ペーストを塗布し、乾燥して形成されたシート状の部材である。この負極は、負極合材ペーストを構成する成分やその配合、集電体の素材などは異なるものの、実質的に前記正極と同様の方法によって形成され、正極と同様に、必要に応じて各種処理が行われる。
負極合材ペーストは、負極活物質と結着剤とを混合した負極合材に、適当な溶剤を加えてペースト状にしたものである。
負極活物質は、たとえば、金属リチウムやリチウム合金などのリチウムを含有する物質や、リチウムイオンを吸蔵および脱離できる吸蔵物質を採用することができる。
吸蔵物質は、特に限定されないが、たとえば、天然黒鉛、人造黒鉛、フェノール樹脂などの有機化合物焼成体、およびコークスなどの炭素物質の粉状体を用いることができる。このような吸蔵物質を負極活物質に採用した場合には、正極同様に、結着剤として、PVDFなどの含フッ素樹脂を用いることができ、負極活物質を結着剤中に分散させる溶剤としては、N−メチル−2−ピロリドンなどの有機溶剤を用いることができる。
(セパレータ)
セパレータは、正極と負極との間に挟み込んで配置されるものであり、正極と負極とを分離し、電解質を保持する機能を有している。このようなセパレータは、たとえば、ポリエチレンやポリプロピレンなどの薄い膜で、微細な孔を多数有する膜を用いることができるが、上記機能を有するものであれば、特に限定されない。
(非水系電解液)
非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネートなどの環状カーボネート;また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネートなどの鎖状カーボネート;さらに、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタンなどのエーテル化合物;エチルメチルスルホンやブタンスルトンなどの硫黄化合物;リン酸トリエチルやリン酸トリオクチルなどのリン化合物などから選ばれる1種を、単独で、あるいは2種以上を混合して、用いることができる。
支持塩としては、LiPF6、LiBF4、LiClO4、LiAsF6、LiN(CF3
SO22、およびそれらの複合塩などを用いることができる。
なお、非水系電解液は、電池特性改善のため、ラジカル捕捉剤、界面活性剤、難燃剤などを含んでいてもよい。
(本発明の非水系電解質二次電池の特性)
本発明の非水系電解質二次電池は、上述した構成からなり、本発明の正極活物質を用いた正極を有しているので、たとえば、後述する実施例で構成した2032型コイン電池の場合では、185mAh/g以上の高い初期放電容量、6Ω以下の正極抵抗が得られ、高容量で高出力となる。しかも、従来のリチウムニッケル系酸化物の正極活物質との比較においても、熱安定性が高く、安全性においても優れているといえる。
(本発明の二次電池の用途)
本発明の二次電池は、上記特性を有するので、常に高容量を要求される小型携帯電子機器(ノート型パーソナルコンピュータや携帯電話端末など)の電源に好適である。
また、本発明の二次電池は、高出力が要求されるモーター駆動用電源としての電池にも好適である。電池は、大型化すると安全性の確保が困難になり、高価な保護回路が必要不可欠であるが、本発明の二次電池は、優れた安全性を有しているため、安全性の確保が容易になるばかりでなく、高価な保護回路を簡略化し、より低コストにできる。そして、小型化、高出力化が可能であることから、搭載スペースに制約を受ける輸送機器用の電源として好適である。
(実施例1)
[複合水酸化物の製造]
複合水酸化物を、以下のようにして作製した。なお、すべての実施例を通じて、複合水酸化物、正極活物質および二次電池の作製には、特に断りのない限りは、和光純薬工業株式会社製試薬特級の各試料を使用した。
(核生成工程)
まず、反応槽(34L)内に、水を半分の量まで入れて撹拌しながら、槽内温度を40℃に設定した。このときの反応槽内は、大気雰囲気(酸素濃度:21容量%)とした。この反応槽内の水に、25質量%水酸化ナトリウム水溶液と25質量%アンモニア水を適量加えて、液温25℃基準で、槽内の反応液のpH値が13.0となるように調整した。さらに、該反応液中のアンモニア濃度を15g/Lに調節して反応前水溶液とした。
次に、硫酸ニッケルと硫酸コバルトと硫酸マンガンを水に溶かして2.0mol/Lの混合水溶液を調整した。この混合水溶液では、各金属の元素モル比が、Ni:Co:Mn=1:1:1(Al=0)となるように調整した。
この混合水溶液を、反応槽内の反応前水溶液に88ml/minの割合で加えて、反応水溶液とした。同時に、25質量%アンモニア水および25質量%水酸化ナトリウム水溶液も、この反応水溶液に一定速度で加えていき、反応水溶液(核生成用水溶液)中のアンモニア濃度を上記値に保持した状態で、pH値を13.0(核生成pH値)に制御しながら、50ml添加して、核生成を行った。
(粒子成長工程)
核生成終了後、反応水溶液のpH値が液温25℃基準で11.6になるまで35質量%硫酸を添加して、反応水溶液のpH値が11.6に到達した後、反応水溶液(粒子成長用水溶液)に、再度、25質量%水酸化ナトリウム水溶液の供給を再開し、pH値を液温25℃基準で11.6に制御したまま、15分間の晶析を継続し粒子成長を行った後、給液を一旦停止し、反応槽内空間の酸素濃度が0.2容量%以下となるまで窒素ガスを5L/minで流通させた。
次に、硫酸ニッケルと硫酸コバルトとを水に溶かして、2.0mol/Lのニッケルコバルト混合水溶液を調整した。この混合水溶液では、各金属の元素モル比が、Ni:Co=82:15となるように調整した。この混合水溶液を、88ml/minの割合で105分間供給できるように、液量9240mlを準備した。また、アルミン酸ナトリウムを水に溶かして、0.6mol/Lのアルミニウム含有水溶液を調製した。このアルミニウム含有水溶液を、8.8ml/minで105分間供給できるように、液量924mlを準備した。その後、ニッケルコバルト溶液を88ml/minの割合、アルミニウム含有水溶液を8.8ml/minの割合で供給を再開し、105分間晶析を行った。
反応槽内が満液になったところで、晶析を停止するとともに、撹拌を止めて静置することで、生成物の沈殿を促した。その後、反応槽から上澄み液を半量抜き出した。さらに、上記ニッケルコバルト溶液を88ml/minの割合で120分供給できるように、液量10560mlを準備した。また、上記アルミニウム含有水溶液を8.8ml/minの割合で120分供給できるように、液量1056mlを準備した。その後、ニッケルコバルト溶液を88ml/minの割合で、アルミニウム含有水溶液を8.8ml/minの割合で供給を再開し、2時間晶析を行った後(計4時間)、晶析を終了させた。
得られた生成物を水洗、濾過、乾燥させて複合水酸化物を得た。
なお、実施例1では、大気雰囲気から窒素雰囲気への切り替えは、粒子成長工程の開始時から粒子成長工程時間の全体に対して6.25%の時点で行ったことになる。また、上記晶析において、pH値は、pHコントローラにより水酸化ナトリウム水溶液の供給流量を調整することで制御され、変動幅は設定値の上下0.2の範囲内であった。
[複合水酸化物の分析]
得られた複合水酸化物について、その試料を無機酸により溶解した後、ICP発光分光法により化学分析を行ったところ、その組成は、Ni0.79Co0.16Al0.03Mn0.02(OH)2+a(0≦a≦0.5)であった。
また、この複合水酸化物について、平均粒径および粒度分布を示す〔(d90−d10)/平均粒径〕値を、レーザ回折散乱式粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)を用いて測定した体積積算値から算出して求めた。その結果、平均粒径は4.8μmであり、〔(d90−d10)/平均粒径〕値は、0.49であった。
次に、得られた複合水酸化物のSEM(株式会社日立ハイテクノロジース製、走査電子顕微鏡S−4700)観察(倍率:1000倍)を行ったところ、この複合水酸化物は、略球状であり、粒径がほぼ均一に揃っていることが確認された。SEM観察結果を図4に示す。
また、得られた複合水酸化物の試料を、樹脂に埋め込み、クロスセクションポリッシャ加工を行ったものについて、倍率を10,000倍としたSEM観察結果を行ったところ、この複合水酸化物が二次粒子により構成され、該二次粒子は、針状、薄片状の微細一次粒子(粒径およそ0.3μm)からなる中心部と、該中心部の外側にこの微細一次粒子よりも大きい板状の一次粒子(粒径およそ0.6μm)からなる外殻部とにより構成されていることが確認された。この断面のSEM観察結果を、図5に示す。この断面のSEM観察から求めた、二次粒子径に対する外殻部の厚さは、11%であった。
[正極活物質の製造]
上記複合水酸化物を、空気(酸素:21容量%)気流中にて、700℃で6時間の熱処理を行って、複合酸化物に転換して回収した。
Li/Me=1.06となるように水酸化リチウムを秤量し、上記複合酸化物と混合してリチウム混合物を調整した。混合は、シェーカーミキサ装置(ウィリー・エ・バッコーフェン(WAB)社製、TURBULA TypeT2C)を用いて行った。
得られたリチウム混合物を大気中(酸素:21容量%)にて、500℃で9時間仮焼した後、760℃で12時間焼成し、冷却した後、解砕して正極活物質を得た。
[正極活物質の分析]
複合水酸化物と同様の方法で、得られた正極活物質の粒度分布を測定したところ、平均粒径は4.4μmであり、〔(d90−d10)/平均粒径〕値は、0.43であった。
また、複合水酸化物と同様の方法で、正極活物質のSEM観察および断面SEM観察を行ったところ、得られた正極活物質は、略球状であり、粒径がほぼ均一に揃っていることが確認された。この正極活物質のSEM観察結果を図6に示す。一方、断面SEM観察により、この正極活物質が、一次粒子が焼結して構成された外殻部と、その内部に中空部を備える中空構造となっていることを確認した。この正極活物質の断面SEM観察結果を図7に示す。この観察から求めた、正極活物質の粒子径に対する外殻部の厚さの比率は、12%であった。
得られた正極活物質について、流動方式ガス吸着法比表面積測定装置(ユアサアイオニクス社製マルチソーブ)により比表面積を求めたところ、1.3m2/gであった。
また、得られた正極活物質について、X線回折装置(パナリティカル社製、X’Pert PRO)を用いて、Cu−Kα線による粉末X線回折で分析したところ、この正極活物質の結晶構造が、六方晶の層状結晶複合酸化物単相からなることを確認した。
さらに、同様にICP発光分光法により、正極活物質の組成分析を行ったところ、Li1.06Ni0.79Co0.16Al0.03Mn0.022であることが確認された。
[二次電池の製造]
得られた正極活物質の評価には、2032型コイン電池を使用した。図8に示すように、このコイン型電池1は、ケース2と、このケース2内に収容された電極3とから構成されている。
ケース2は、中空かつ一端が開口された正極缶2aと、この正極缶2aの開口部に配置される負極缶2bとを有しており、負極缶2bを正極缶2aの開口部に配置すると、負極缶2bと正極缶2aとの間に電極3を収容する空間が形成されるように構成されている。
電極3は、正極3a、セパレータ3cおよび負極3bとからなり、この順で並ぶように積層されており、正極3aが正極缶2aの内面に接触し、負極3bが負極缶2bの内面に接触するようにケース2に収容されている。
なお、ケース2は、ガスケット2cを備えており、このガスケット2cによって、正極缶2aと負極缶2bとの間が電気的に絶縁状態を維持するように固定されている。また、ガスケット2cは、正極缶2aと負極缶2bとの隙間を密封して、ケース2内と外部との間を気密液密に遮断する機能も有している。
このコイン型電池1を、以下のようにして作製した。まず、得られた正極活物質52.5mg、アセチレンブラック15mg、およびポリテトラフッ化エチレン樹脂(PTFE)7.5mgを混合し、100MPaの圧力で直径11mm、厚さ100μmにプレス成形して、正極3aを作製した。作製した正極3aを、真空乾燥機中、120℃で12時間乾燥した。この正極3aと、負極3b、セパレータ3cおよび電解液とを用いて、コイン型電池1を、露点が−80℃に管理されたAr雰囲気のグローブボックス内で作製した。
なお、負極3bには、直径14mmの円盤状に打ち抜かれた平均粒径20μm程度の黒鉛粉末と、ポリフッ化ビニリデンが銅箔に塗布された負極シートを用いた。また、セパレータ3cには、膜厚25μmのポリエチレン多孔膜を用いた。電解液には、1MのLiClO4を支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(富山薬品工業株式会社製)を用いた。
[電池評価]
得られたコイン型電池1の性能を評価する、初期放電容量および正極抵抗は、以下のように定義した。
初期放電容量は、コイン型電池1を作製してから24時間程度放置し、開回路電圧OCV(open circuit voltage)が安定した後、正極に対する電流密度を0.1mA/cm2としてカットオフ電圧4.8Vまで充電し、1時間の休止後、カットオフ電圧2.5Vまで放電したときの容量を初期放電容量とし、電池の充放電容量の尺度とした。
また、正極抵抗は、以下のようにして評価した。コイン型電池1を充電電位4.1Vで充電して、周波数応答アナライザおよびポテンショガルバノスタット(ソーラトロン製、1255B)を使用して、交流インピーダンス法により測定すると、図9に示すナイキストプロットが得られる。このナイキストプロットは、溶液抵抗、負極抵抗とその容量、および、正極抵抗とその容量を示す特性曲線の和として表しているため、このナイキストプロットに基づき等価回路を用いてフィッティング計算して、正極抵抗の値を算出した。
上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は196.5mAh/gであり、正極抵抗は3.8Ωであった。
本実施例により得られた複合水酸化物の特性を表1に、正極活物質の特性およびこの正極活物質を用いて製造したコイン型電池の各評価を表2に、それぞれ示す。また、以下の実施例2〜5および比較例1〜5についても、同様の内容について、表1および表2に示す。
(実施例2)
複合水酸化物の製造工程における粒子成長工程において、大気雰囲気から窒素雰囲気への切り替えおよび原液の切り替えを、粒子成長工程時間全体に対して開始時から4.2%の時点で行ったこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。なお、得られた複合水酸化物および正極活物質の組成は、Ni0.80Co0.16Al0.03Mn0.01(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.80Co0.16Al0.03Mn0.012であり、複合水酸化物は、実施例1と同様に針状、薄片状の微細一次粒子(粒径およそ0.3μm)からなる中心部と、該中心部の外側にこの微細一次粒子よりも大きい板状の一次粒子(粒径0.7μm)からなる外殻部とにより構成されていた。
上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は198.3mAh/gであり、正極抵抗は4.8Ωであった。
(実施例3)
複合水酸化物の製造工程における粒子成長工程において、大気雰囲気から窒素雰囲気への切り替えおよび原液の切り替えを、粒子成長工程時間全体に対して開始時から2.1%の時点で行ったこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。なお、得られた複合水酸化物および正極活物質の組成は、Ni0.81Co0.15Al0.03Mn0.01(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.81Co0.15Al0.03Mn0.012であり、複合水酸化物は実施例1と同様に針状、薄片状の微細一次粒子(粒径およそ0.3μm)からなる中心部と、該中心部の外側にこの微細一次粒子よりも大きい板状の一次粒子(粒径0.8μm)からなる外殻部とにより構成されていた。
上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は201.4mAh/gであり、正極抵抗は5.2Ωであった。
(実施例4)
複合水酸化物の製造工程において、アルミニウムを添加せず、得られた水酸化物に、一般式(1)においてt=0.03となるように、アルミン酸ナトリウムを用いた被覆法によりアルミニウム化合物を表面に被覆することにより、アルミニウムを添加したこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。なお、得られた複合水酸化物および正極活物質の組成は、Ni0.79Co0.16Al0.03Mn0.02(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.79Co0.16Al0.03Mn0.022であり、複合水酸化物は、実施例1と同様に針状、薄片状の微細一次粒子(粒径およそ0.3μm)からなる中心部と、該中心部の外側にこの微細一次粒子よりも大きい板状の一次粒子(粒径0.8μm)からなる外殻部とにより構成されていた。
上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は196.0mAh/gであり、正極抵抗は4.0Ωであった。
(実施例5)
複合水酸化物の製造工程において、粒子成長工程における、大気雰囲気から窒素雰囲気への切り替えを、粒子成長工程の開始時から20分、すなわち、粒子成長工程時間全体に対して開始時から8.3%の時点で行ったこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。得られた複合水酸化物および正極活物質の組成は、Ni0.78Co0.17Al0.03Mn0.03(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.78Co0.17Al0.03Mn0.032であり、複合水酸化物は実施例1と同様に針状、薄片状の微細一次粒子(粒径0.3μm)からなる中心部と、該中心部の外側にこの微細一次粒子よりも大きい板状の一次粒子(粒径0.5μm)からなる外殻部とにより構成されていた。
上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は188.1mAh/gであり、正極抵抗は4.0Ωであった。
(実施例6)
複合水酸化物の製造工程において、粒子成長工程における、大気雰囲気から窒素雰囲気への切り替えを、粒子成長工程の開始時から20分で行ったこと、晶析時間を合計で8時間としたこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。なお、粒子成長工程における反応槽からの上澄み液の抜き出しは、2時間おきにおこなった。また、実施例6では、大気雰囲気から窒素雰囲気への切り替えは粒子成長工程時間全体に対して開始時から4.2%の時点で行ったことになる。
得られた複合水酸化物および正極活物質の組成は、Ni0.80Co0.16Al0.03Mn0.01(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.80Co0.16Al0.03Mn0.012であり、複合水酸化物は、実施例1と同様に針状、薄片状の微細一次粒子(粒径およそ0.3μm)からなる中心部と、該中心部の外側にこの微細一次粒子よりも大きい板状の一次粒子(粒径0.6μm)からなる外殻部とにより構成されていた。
上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は185.2mAh/gであり、正極抵抗は4.3Ωであった。
(比較例1)
複合水酸化物の製造工程において、粒子成長工程における、大気雰囲気から窒素雰囲気への切り替えを、粒子成長工程の開始時から35分、すなわち、粒子成長工程時間全体に対して開始時から16.6%の時点で行ったこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。得られた複合水酸化物および正極活物質の組成は、Ni0.75Co0.18Al0.03Mn0.05(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.75Co0.18Al0.03Mn0.052であり、複合水酸化物は、実施例1と同様に針状の微細一次粒子(粒径0.3μm)からなる中心部と、該中心部の外側にこの微細一次粒子よりも大きい板状の一次粒子(粒径0.5μm)からなる外殻部とにより構成されていた。一方、正極活物質は、製造工程での粒子の破壊や焼結が発生したため、その後の評価を中止した。
(比較例2)
複合水酸化物の製造工程において、核生成工程で用いた混合水溶液の各金属の元素モル比をNi:Co:Mn=1:1:8となるように調整したこと、粒子成長工程における、大気雰囲気から窒素雰囲気への切り替えを、粒子成長工程の開始時から30分、すなわち粒子成長工程時間全体に対して開示から12.5%の時点で行ったこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。得られた複合水酸化物および正極活物質の組成は、Ni0.73Co0.14Al0.03Mn0.10(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.73Co0.14Al0.03Mn0.102であり、複合水酸化物は、実施例4と同様に針状の微細一次粒子(粒径0.3μm)からなる中心部と、該中心部の外側にこの微細一次粒子よりも大きい板状の一次粒子(粒径0.5μm)からなる外殻部とにより構成されていた。
上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は180.1mAh/gであり、正極抵抗は4.0Ωであった。
(比較例3)
粒成長工程における大気雰囲気から窒素雰囲気への切り替え、および、混合溶液の切り替えを粒子成長工程の開始時から行ったこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。得られた複合水酸化物および正極活物質の組成は、Ni0.82Co0.15Al0.03Mn0.001(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.82Co0.15Al0.03Mn0.0012であり、複合水酸化物は、中心部に針状の微細一次粒子が見られたが、中心部の大きさは十分ではなく、大きい板状の一次粒子が占める割合が大きかった。このため、得られた正極活物質は中実構造であった。
上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は204.1mAh/gであり、正極抵抗は7.6Ωであった。
(比較例4)
核生成工程における混合溶液および粒子成長工程における大気雰囲気から窒素雰囲気への切り替えまでの混合溶液を、窒素雰囲気工程と同じマンガンを含まないニッケルコバルトからなる溶液を使用したこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。得られた複合水酸化物および正極活物質の組成は、Ni0.82Co0.15Al0.03(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.82Co0.15Al0.032であり、複合水酸化物は中心部に針状の微細一次粒子はほとんど見られず、大きい板状の一次粒子から構成されていた。このため、得られた正極活物質は中実構造であった。
上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は206.1mAh/gであり、正極抵抗は8.6Ωであった。
(比較例5)
核生成工程における混合溶液および粒子成長工程における大気雰囲気から窒素雰囲気への切り替えまでの混合溶液を、各金属の元素モル比が、Ni:Co:Mn=80:15:5(Al=0)となるように調整したこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。得られた複合水酸化物および正極活物質の組成は、Ni0.82Co0.15Al0.03Mn0.003(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.82Co0.15Al0.03Mn0.0032であり、複合水酸化物は中心部に針状の微細一次粒子はほとんど見られず、大きい板状の一次粒子から構成されていた。このため、得られた正極活物質は中実構造であった。
上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は203.2mAh/gであり、正極抵抗は8.1Ωであった。
(評価)
実施例1〜6の複合水酸化物および正極活物質は、本発明に従って製造されたため、平均粒径および粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕値のいずれもが、好ましい範囲にあり、均一で適度な粒径を有する粒子となっている。また、いずれの正極活物質も、凝集した一次粒子が焼結している外殻部と、その内側の中空部とからなる構造を備えている。これらの正極活物質を用いたコイン型電池は、初期放電容量が高く、サイクル特性に優れ、正極抵抗も低いものとなっており、優れた特性を有した電池となっている。
なお、実施例5では、粒子成長工程において大気雰囲気から窒素雰囲気への切り替えがやや遅くなり、大気雰囲気に置かれる時間が長かったため、マンガン、コバルトの比率が高くなり、実施例1〜4より初期放電容量がやや低下する傾向が見られる。
また、実施例6は、正極活物質の平均粒径が10.3μmと、実施例1〜5と比べてやや大きく、このことに起因して、初期放電容量がやや低下してしまったものと考えられる。
一方、比較例1では、粒子成長工程において、大気雰囲気に置かれる時間が長すぎたために、複合水酸化物の強度が低下して、正極活物質の製造工程で粒子の破壊や焼結が生じている。
比較例2では、核生成工程における混合水溶液のマンガン濃度が高すぎたこと、および、粒子成長工程において混合水溶液の切り替えまでの時間を長かったことに起因して、粒子全体のマンガン含有量が多くなり、粒子構造については良好であるものの、実施例との比較では、初期放電容量が低下している。
比較例3では、大気雰囲気から窒素雰囲気への切り替え、および、混合溶液の切り替えを粒子成長工程開始時から行ったため、複合水酸化物において、十分な大きさの低密度の中心部が得られず、最終的に得られる正極活物質を構成する二次粒子が中実構造となり、十分な比表面積が得られず、正極抵抗値が高くなっている。
比較例4では、マンガンを含む混合水溶液を核生成工程に用いなかったため、大気雰囲気に置く時間が長かったにもかかわらず、低密度の中心部が小さく、焼成後に二次粒子が中実の緻密な構造となり、十分な比表面積が得られず、正極抵抗値が高くなっている。
比較例5では、大気雰囲気で用いた混合溶液中のマンガン含有量が少なかったため、大気雰囲気に置く時間が長かったにもかかわらず、低密度の中心部が生成されず、焼成後に二次粒子が中実の緻密な構造となり、十分な比表面積が得られず、正極抵抗値が高くなっている。
以上の結果より、本発明の製造方法を用いて、ニッケル複合水酸化物および正極活物質を製造すれば、この正極活物質を用いた非水系電解質二次電池は、初期放電容量が高く、サイクル特性に優れ、正極抵抗も低いものとなり、優れた特性を有した電池となることが確認できる。
本発明の正極活物質およびその前駆体としての複合水酸化物の製造方法は、いずれも容易で、大規模生産に適したものであることから、その工業的価値は極めて大きい。
また、本発明の非水系電解質二次電池は、常に高容量を要求される小型携帯電子機器(ノート型パーソナルコンピュータや携帯電話端末など)の電源に好適であり、高出力が要求される電気自動車用電池にも好適である。さらに、本発明の非水系電解質二次電池は、優れた安全性を有し、かつ、小型化、高出力化が可能であるため、搭載スペースに制約を受ける輸送用機器の電源としても好適である。
1 コイン型電池
2 ケース
2a 正極缶
2b 負極缶
2c ガスケット
3 電極
3a 正極
3b 負極
3c セパレータ

Claims (20)

  1. 晶析反応により、一般式(1):NixCoyAlzMn(OH)2+a(x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表されるニッケル複合水酸化物の製造方法であって、
    一般式(a):NixCoyAlzMn(x+y+z+t+s=1、0≦y≦0.8、0≦z≦0.1、0.1≦t≦0.8、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)の組成比で金属元素を含有する金属化合物とアンモニウムイオン供給体を含む核生成用水溶液を、液温25℃基準でpH値が12.0〜14.0となるように制御して、酸素濃度が1容量%を超える酸化性雰囲気中で核生成を行う核生成工程と、
    前記核生成工程において形成された核を含有する粒子成長用水溶液を、液温25℃基準でpH値が10.5〜12.0となるように制御して、前記核を成長させる粒子成長工程であって、該粒子成長工程の開始から終了までの時間全体に対して、該粒子成長工程の開始時から1%〜15%の範囲で、前記酸化性雰囲気から酸素濃度1容量%以下の酸素と不活性ガスの混合雰囲気に切り替え、かつ、供給される金属化合物を、一般式(b):NixCoyAlzMn(x+y+z+t+s=1、0≦y≦0.3、0≦z≦0.1、0≦t<0.05、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)の組成比で金属元素を含有する金属化合物に切り替える粒子成長工程と、
    を備えるとともに、
    少なくとも前記核生成用水溶液に含まれる金属化合物および前記粒子成長工程において供給される金属化合物のいずれにもアルミニウムが含まれていない場合には、前記粒子成長工程で得られたニッケルコバルト複合水酸化物に、アルミニウム化合物を被覆する工程をさらに備える、
    ことを特徴とする、ニッケル複合水酸化物の製造方法。
  2. 前記酸化性雰囲気の酸素濃度が10容量%以上である、請求項1に記載のニッケル複合水酸化物の製造方法。
  3. 前記粒子成長工程における前記雰囲気および供給される金属化合物の切り替えを、前記粒子成長工程の開始時から2%〜12.5%の範囲で行う、請求項1に記載のニッケル複合水酸化物の製造方法。
  4. 前記粒子成長用水溶液として、前記核生成工程が終了した前記核生成用水溶液のpH値を調整して形成されたものを用いる、請求項1に記載のニッケル複合水酸化物の製造方法。
  5. 前記混合雰囲気の酸素濃度が、0.5容量%以下である、請求項1に記載のニッケル複合水酸化物の製造方法。
  6. 前記粒子成長工程において、前記粒子成長用水溶液のうちの液体部分の一部を排出する、請求項1に記載のニッケル複合水酸化物の製造方法。
  7. 前記核生成工程および前記粒子成長工程において、前記核生成用水溶液および前記粒子成長用水溶液のアンモニア濃度を3g/L〜25g/Lの範囲内に維持する、請求項1に記載のニッケル複合水酸化物の製造方法。
  8. 前記粒子成長工程で得られたニッケル複合水酸化物に、前記1種以上の添加元素の化合物を被覆する工程をさらに含む、請求項1に記載のニッケル複合水酸化物の製造方法。
  9. 一般式(1):NixCoyAlzMn(OH)2+a(x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表され、複数の一次粒子が凝集して形成された略球状の二次粒子からなり、該二次粒子は、平均粒径が3μm〜15μmであり、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.55以下であって、
    前記二次粒子は、一般式(2):NixCoyAlzMn(OH)2+a(x+y+z+t+s=1、0≦y≦0.8、0≦z≦0.1、0.1≦t≦0.8、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表される複合水酸化物の微細一次粒子からなる中心部と、
    該中心部の外側に存在し、一般式(3):NixCoyAlzMn(OH)2+a(x+y+z+t+s=1、0≦y≦0.3、0≦z≦0.1、0≦t<0.05、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表される複合水酸化物であって、前記微細一次粒子よりも大きな板状一次粒子からなる外殻部と、
    を有し、
    アルミニウムが、前記中心部および外殻部の少なくとも一方に存在するか、または、前記二次粒子の表面にアルミニウム化合物として存在する、
    ことを特徴とする、ニッケル複合水酸化物。
  10. 前記微細一次粒子は、平均粒径が0.01μm〜0.3μmであり、前記板状一次粒子は、平均粒径が0.3μm〜3μmである、請求項9に記載のニッケル複合水酸化物。
  11. 前記外殻部の厚さは、前記二次粒子の粒径に対する比率で5%〜45%である、請求項9に記載のニッケル複合水酸化物。
  12. 前記アルミニウムが、前記二次粒子の内部に均一に分布している、および/または、前記アルミニウム化合物が、前記二次粒子の表面を均一に被覆している、請求項9に記載のニッケル複合水酸化物。
  13. 前記1種以上の添加元素が、前記二次粒子の内部に均一に分布している、および/または、前記1種以上の添加元素の化合物が、前記二次粒子の表面を均一に被覆している、請求項9に記載のニッケル複合水酸化物。
  14. 一般式(4):Li1+uNixCoyAlzMn2(−0.05≦u≦0.20、x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表され、複数の一次粒子が凝集して形成された略球状の二次粒子からなり、層状構造を有する六方晶系の結晶構造を有するリチウムニッケル複合酸化物からなる非水系電解質二次電池用正極活物質の製造方法であって、
    請求項9〜13のいずれかに記載のニッケルコバルトアルミニウム複合水酸化物を105℃〜750℃の温度で熱処理する工程と、
    前記熱処理後のニッケル複合水酸化物またはニッケル複合酸化物に対して、リチウム化合物を混合してリチウム混合物を形成する混合工程と、
    前記混合工程で形成された前記リチウム混合物を、酸化性雰囲気中、700℃〜800℃の温度で焼成する焼成工程と
    を備えることを特徴とする、非水系電解質二次電池用正極活物質の製造方法。
  15. 前記リチウム混合物は、該リチウム混合物に含まれるリチウム以外の金属の原子数の和とリチウムの原子数との比が、1:0.95〜1.2となるように調整される、請求項14に記載の非水系電解質二次電池用正極活物質の製造方法。
  16. 前記焼成工程において、焼成前に予め350℃〜800℃の温度で仮焼を行う、請求項14に記載の非水系電解質二次電池用正極活物質の製造方法。
  17. 前記焼成工程における酸化性雰囲気を、18容量%〜100容量%の酸素を含有する雰囲気とする、請求項14に記載の非水系電解質二次電池用正極活物質の製造方法。
  18. 一般式(4):Li1+uNixCoyAlzMn2(−0.05≦u≦0.20、x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表され、複数の一次粒子が凝集して形成された略球状の二次粒子からなり、層状構造を有する六方晶系の結晶構造を有するリチウムニッケルコバルトアルミニウム複合酸化物からなる非水系電解質二次電池用正極活物質であって、平均粒径が2μm〜15μmであり、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.60以下であり、凝集した一次粒子が焼結している外殻部と、その内側に存在する中空部とからなる中空構造を備える、ことを特徴とする非水系電解質二次電池用正極活物質。
  19. 前記外殻部の厚さは、前記二次粒子の粒径に対する比率で5%〜35%である、請求項18に記載の非水系電解質二次電池用正極活物質。
  20. 正極が、請求項18または19に記載の非水系電解質二次電池用正極活物質によって形成されていることを特徴とする、非水系電解質二次電池。
JP2012277430A 2011-12-20 2012-12-19 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 Active JP5971109B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012277430A JP5971109B2 (ja) 2011-12-20 2012-12-19 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
CN201280070138.8A CN104136376B (zh) 2011-12-20 2012-12-20 镍复合氢氧化物及其制造方法、非水系电解质二次电池用正极活性物质及其制造方法以及非水系电解质二次电池
US14/366,871 US9406930B2 (en) 2011-12-20 2012-12-20 Nickel composite hydroxide and production method thereof, cathode active material for non-aqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
EP12860901.3A EP2796415B1 (en) 2011-12-20 2012-12-20 Nickel compound hydroxide and method for producing same, positive pole active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
PCT/JP2012/083128 WO2013094701A1 (ja) 2011-12-20 2012-12-20 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
KR1020147020103A KR101644252B1 (ko) 2011-12-20 2012-12-20 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011278955 2011-12-20
JP2011278955 2011-12-20
JP2012277430A JP5971109B2 (ja) 2011-12-20 2012-12-19 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池

Publications (3)

Publication Number Publication Date
JP2013147416A true JP2013147416A (ja) 2013-08-01
JP2013147416A5 JP2013147416A5 (ja) 2015-03-19
JP5971109B2 JP5971109B2 (ja) 2016-08-17

Family

ID=48668580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012277430A Active JP5971109B2 (ja) 2011-12-20 2012-12-19 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池

Country Status (6)

Country Link
US (1) US9406930B2 (ja)
EP (1) EP2796415B1 (ja)
JP (1) JP5971109B2 (ja)
KR (1) KR101644252B1 (ja)
CN (1) CN104136376B (ja)
WO (1) WO2013094701A1 (ja)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181891A1 (ja) 2013-05-10 2014-11-13 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池
JP2015037067A (ja) * 2013-08-16 2015-02-23 輔仁大學學校財團法人輔仁大學 リチウムニッケルコバルトマンガン正極材料粉体
JP2015076154A (ja) * 2013-10-07 2015-04-20 住友金属鉱山株式会社 非水電解質二次電池用正極活物質およびその製造方法
JP2015164123A (ja) * 2014-01-31 2015-09-10 住友金属鉱山株式会社 ニッケルコバルト複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および、非水電解質二次電池
WO2015198676A1 (ja) * 2014-06-27 2015-12-30 住友金属鉱山株式会社 マンガン複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
WO2016068263A1 (ja) * 2014-10-30 2016-05-06 住友金属鉱山株式会社 ニッケル含有複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2016067959A1 (ja) * 2014-10-30 2016-05-06 住友金属鉱山株式会社 ニッケルコバルトアルミニウム複合水酸化物の製造方法及び非水系電解質二次電池用正極活物質の製造方法
JP2016094307A (ja) * 2014-11-12 2016-05-26 住友金属鉱山株式会社 遷移金属複合水酸化物粒子の製造方法および非水電解質二次電池用正極活物質の製造方法
JP2017001910A (ja) * 2015-06-10 2017-01-05 旭硝子株式会社 リチウム含有複合酸化物、正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JPWO2016017783A1 (ja) * 2014-07-31 2017-05-18 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法
KR20170076164A (ko) * 2015-12-24 2017-07-04 주식회사 포스코 리튬 이차 전지용 양극 활물질 전구체 및 이의 제조 방법, 양극 활물질 및 이의 제조 방법, 상기 양극 활물질을 포함하는 리튬 이차 전지
JP2017154915A (ja) * 2016-02-29 2017-09-07 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに非水系電解質二次電池
JPWO2016143844A1 (ja) * 2015-03-10 2018-01-25 日本化学産業株式会社 非水電解質リチウム二次電池用正極活物質及びその製造方法
KR20180021681A (ko) 2015-06-26 2018-03-05 스미토모 긴조쿠 고잔 가부시키가이샤 전이 금속 함유 복합 수산화물과 그의 제조 방법, 비수전해질 이차 전지용 정극 활물질과 그의 제조 방법 및 비수전해질 이차 전지
JP2018045759A (ja) * 2016-08-31 2018-03-22 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
KR20180040676A (ko) * 2015-08-17 2018-04-20 바스프 에스이 캐소드 활성 물질 및 이의 전구체의 제조 방법, 캐소드 활성 물질 및 이의 용도
JP2018536972A (ja) * 2016-03-04 2018-12-13 エルジー・ケム・リミテッド 二次電池用正極活物質の前駆体およびこれを用いて製造された正極活物質
WO2019013053A1 (ja) 2017-07-12 2019-01-17 住友金属鉱山株式会社 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池
JP2019081703A (ja) * 2019-02-21 2019-05-30 住友化学株式会社 リチウム含有複合酸化物、正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
US10336626B2 (en) 2015-04-28 2019-07-02 Nichia Corporation Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
JP2019169412A (ja) * 2018-03-26 2019-10-03 住友金属鉱山株式会社 高強度リチウムイオン二次電池用正極活物質、及び、該正極活物質を用いたリチウムイオン二次電池
JP2020001935A (ja) * 2018-06-25 2020-01-09 住友金属鉱山株式会社 遷移金属複合水酸化物の粒子とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
JP2020035671A (ja) * 2018-08-30 2020-03-05 トヨタ自動車株式会社 非水電解質二次電池用の正極
JP2020035693A (ja) * 2018-08-31 2020-03-05 住友金属鉱山株式会社 遷移金属複合水酸化物、遷移金属複合水酸化物の製造方法、リチウム遷移金属複合酸化物活物質及びリチウムイオン二次電池
KR20200040760A (ko) 2017-07-12 2020-04-20 스미토모 긴조쿠 고잔 가부시키가이샤 금속 복합 수산화물과 그의 제조 방법, 비수전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 그것을 사용한 비수전해질 이차 전지
KR20200054190A (ko) * 2017-09-13 2020-05-19 스미또모 가가꾸 가부시끼가이샤 리튬 이차 전지용 정극 활물질의 제조 방법
CN111741927A (zh) * 2018-02-22 2020-10-02 住友金属矿山株式会社 金属复合氢氧化物及其制造方法、非水电解质二次电池用正极活性物质及其制造方法、以及非水电解质二次电池
US10923719B2 (en) 2017-11-20 2021-02-16 Sumitomo Chemical Company, Limited Positive-electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US11024839B2 (en) 2016-11-22 2021-06-01 Sumitomo Metal Mining Co., Ltd. Transition metal-containing composite hydroxide and production method thereof, and production method of positive electrode active material for nonaqueous electrolyte secondary battery
US11220438B2 (en) 2015-04-28 2022-01-11 Nichia Corporation Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
JP2023500940A (ja) * 2020-01-29 2023-01-11 エルジー・ケム・リミテッド 二次電池用正極活物質前駆体、正極活物質、その製造方法及びそれを含むリチウム二次電池
JP2023513027A (ja) * 2020-01-29 2023-03-30 エルジー・ケム・リミテッド 二次電池用正極活物質前駆体、正極活物質およびこれを含むリチウム二次電池
JP2023513029A (ja) * 2020-01-29 2023-03-30 エルジー・ケム・リミテッド 二次電池用正極活物質前駆体、正極活物質およびこれを含むリチウム二次電池

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9882204B2 (en) 2012-06-06 2018-01-30 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these
KR102406752B1 (ko) 2014-06-30 2022-06-08 바스프 에스이 리튬 이온 배터리용 캐쏘드 물질의 제조 방법
WO2016068594A1 (ko) * 2014-10-28 2016-05-06 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
CN104300117A (zh) * 2014-11-10 2015-01-21 厦门首能科技有限公司 一种用于锂离子电池的阴极组合物及其制备方法
CN104795558B (zh) * 2015-04-23 2017-02-22 兰州金川新材料科技股份有限公司 一种锂电池用镍钴锰三元氢氧化物的连续合成方法
JP6766322B2 (ja) * 2015-04-28 2020-10-14 住友金属鉱山株式会社 アルミニウム被覆ニッケルコバルト複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP6383326B2 (ja) * 2015-06-05 2018-08-29 プライムアースEvエナジー株式会社 非水電解液二次電池および非水電解液二次電池の正極活物質
US11411214B2 (en) * 2015-10-28 2022-08-09 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, positive electrode mixture material paste for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US20190013519A1 (en) * 2016-01-06 2019-01-10 Sumitomo Metal Mining Co., Ltd. Positive-electrode active material precursor for nonaqueous electrolyte secondary battery, positive-electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive-electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing positive-electrode active material for nonaqueous electrolyte secondary battery
DE112017001534B4 (de) * 2016-03-25 2024-02-22 Nagoya Institute Of Technology Elektrodenmaterial für eine Batterie und Verfahren zu dessen Herstellung
TWI651271B (zh) * 2016-05-27 2019-02-21 比利時商烏明克公司 小粒徑的鎳鋰金屬複合氧化物粉體的製造方法
US11063258B2 (en) * 2016-06-14 2021-07-13 Sumitomo Metal Mining Co., Ltd. Method for producing nickel-containing hydroxide
JP6862727B2 (ja) * 2016-09-13 2021-04-21 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JPWO2018097191A1 (ja) * 2016-11-22 2019-06-24 住友金属鉱山株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
KR102086536B1 (ko) 2017-02-06 2020-03-10 주식회사 엘지화학 리튬 이차전지용 양극 활물질 전구체 및 양극 활물질의 제조방법
CN107403930B (zh) * 2017-07-20 2019-03-15 湖南金富力新能源股份有限公司 镍钴铝酸锂正极材料及其制备方法和应用
JP6924657B2 (ja) * 2017-09-11 2021-08-25 株式会社田中化学研究所 電池用正極活物質に用いられる遷移金属複合水酸化物粒子の製造方法
US11251430B2 (en) 2018-03-05 2022-02-15 The Research Foundation For The State University Of New York ϵ-VOPO4 cathode for lithium ion batteries
JP2019175721A (ja) * 2018-03-29 2019-10-10 三洋電機株式会社 非水電解質二次電池用正極の製造方法及び非水電解質二次電池の製造方法
RU2749604C1 (ru) * 2018-05-21 2021-06-16 Микроваст Пауэр Системс Ко., Лтд. Способ получения частиц прекурсора, частица прекурсора, полученная этим способом, и способ получения активных катодных частиц
CN112236885B (zh) * 2018-06-11 2022-05-20 微宏动力系统(湖州)有限公司 制备颗粒前体的方法及其制备的颗粒前体
JP7310117B2 (ja) * 2018-10-26 2023-07-19 住友金属鉱山株式会社 金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池
KR20210105440A (ko) * 2019-01-17 2021-08-26 캠엑스 파워 엘엘씨 강화된 결정 입계를 갖는 다결정질 금속 옥사이드
US10501335B1 (en) 2019-01-17 2019-12-10 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
US10950857B2 (en) 2019-01-17 2021-03-16 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
WO2020175551A1 (ja) * 2019-02-26 2020-09-03 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
CN111435739B (zh) * 2019-12-26 2024-04-30 蜂巢能源科技有限公司 正极材料及其制备方法和应用
JP6861870B1 (ja) * 2020-04-14 2021-04-21 住友化学株式会社 リチウム二次電池用正極活物質粒子、リチウム二次電池用正極及びリチウム二次電池
CN116057733A (zh) * 2020-11-10 2023-05-02 株式会社Lg新能源 锂二次电池用正极活性材料、制备该正极活性材料的方法和包含其的锂二次电池
KR20220087953A (ko) * 2020-12-18 2022-06-27 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP7296994B2 (ja) * 2021-01-14 2023-06-23 プライムプラネットエナジー&ソリューションズ株式会社 黒鉛系負極活物質
KR102669012B1 (ko) 2021-10-14 2024-05-24 (주)에코프로머티리얼즈 리튬 이차 전지용 양극활물질 전구체 및 이의 제조 방법
KR20230094569A (ko) * 2021-12-21 2023-06-28 포스코홀딩스 주식회사 전고체 전지용 양극 활물질 및 그 제조 방법, 양극 및 전고체 전지
CN114464800B (zh) * 2021-12-31 2023-11-21 北京当升材料科技股份有限公司 正极材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029820A (ja) * 1996-07-12 1998-02-03 Nippon Chem Ind Co Ltd Ni−Co系複合水酸化物とその製造方法及びリチウム二次電池用正極活物質原料
JP2004193115A (ja) * 2002-11-27 2004-07-08 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2006228604A (ja) * 2005-02-18 2006-08-31 Sumitomo Metal Mining Co Ltd リチウムイオン二次電池用正極活物質およびその製造方法
JP2009117369A (ja) * 2007-03-05 2009-05-28 Toda Kogyo Corp 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
WO2011067982A1 (ja) * 2009-12-02 2011-06-09 トヨタ自動車株式会社 活物質粒子およびその利用
WO2011067935A1 (ja) * 2009-12-02 2011-06-09 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310433A (ja) 1997-05-07 1998-11-24 Ise Kagaku Kogyo Kk リチウム二次電池用ニッケル水酸化物、ニッケル酸化物および正極活物質の製造方法
CN100466341C (zh) 2002-08-08 2009-03-04 松下电器产业株式会社 非水电解质二次电池用正极活性物质及其制造方法
JP4096754B2 (ja) 2003-02-18 2008-06-04 日亜化学工業株式会社 非水電解液二次電池用正極活物質
KR100670507B1 (ko) * 2005-04-28 2007-01-16 삼성에스디아이 주식회사 리튬 이차 전지
US8492030B2 (en) * 2006-06-19 2013-07-23 Uchicago Argonne Llc Cathode material for lithium batteries
JP2008147068A (ja) 2006-12-12 2008-06-26 Ise Chemicals Corp 非水電解液二次電池用リチウム複合酸化物
US9177689B2 (en) * 2007-01-29 2015-11-03 Umicore High density and high voltage stable cathode materials for secondary batteries
EP2421077B1 (en) * 2010-08-17 2013-10-23 Umicore Positive electrode materials combining high safety and high power in a Li rechargeable battery
US8709279B2 (en) * 2011-05-03 2014-04-29 Uchicago Argonne, Llc Production of battery grade materials via an oxalate method
CN106044871B (zh) 2011-06-07 2018-04-24 住友金属矿山株式会社 镍复合氢氧化物及其制造方法、非水电解质二次电池用正极活性物质及其制造方法以及非水电解质二次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029820A (ja) * 1996-07-12 1998-02-03 Nippon Chem Ind Co Ltd Ni−Co系複合水酸化物とその製造方法及びリチウム二次電池用正極活物質原料
JP2004193115A (ja) * 2002-11-27 2004-07-08 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2006228604A (ja) * 2005-02-18 2006-08-31 Sumitomo Metal Mining Co Ltd リチウムイオン二次電池用正極活物質およびその製造方法
JP2009117369A (ja) * 2007-03-05 2009-05-28 Toda Kogyo Corp 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
WO2011067982A1 (ja) * 2009-12-02 2011-06-09 トヨタ自動車株式会社 活物質粒子およびその利用
WO2011067935A1 (ja) * 2009-12-02 2011-06-09 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181891A1 (ja) 2013-05-10 2014-11-13 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池
US11283072B2 (en) 2013-05-10 2022-03-22 Sumitomo Metal Mining Co., Ltd. Transition metal composite hydroxide particles and production method thereof, cathode active material for non-aqueous electrolyte rechargeable battery and production method thereof, and nonaqueous electrolyte rechargeable battery
KR20160006172A (ko) 2013-05-10 2016-01-18 스미토모 긴조쿠 고잔 가부시키가이샤 전이 금속 복합 수산화물 입자와 그의 제조 방법, 비수전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수전해질 이차 전지
US10424787B2 (en) 2013-05-10 2019-09-24 Sumitomo Metal Mining Co., Ltd. Transition metal composite hydroxide particles and production method thereof, cathode active material for non-aqueous electrolyte rechargeable battery and production method thereof, and nonaqueous electrolyte rechargeable battery
JP2015037067A (ja) * 2013-08-16 2015-02-23 輔仁大學學校財團法人輔仁大學 リチウムニッケルコバルトマンガン正極材料粉体
JP2015076154A (ja) * 2013-10-07 2015-04-20 住友金属鉱山株式会社 非水電解質二次電池用正極活物質およびその製造方法
JP2015164123A (ja) * 2014-01-31 2015-09-10 住友金属鉱山株式会社 ニッケルコバルト複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および、非水電解質二次電池
JP2016011225A (ja) * 2014-06-27 2016-01-21 住友金属鉱山株式会社 マンガン複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
US11973223B2 (en) 2014-06-27 2024-04-30 Sumitomo Metal Mining Co., Ltd. Manganese composite hydroxide and process for producing same, positive electrode active material and process for producing same, and non-aqueous electrolyte secondary battery
US10840511B2 (en) 2014-06-27 2020-11-17 Sumitomo Metal Mining Co., Ltd. Maganese composite hydroxide and process for producing same, positive electrode active material and process for producing same, and non-aqueous electrolyte secondary battery
WO2015198676A1 (ja) * 2014-06-27 2015-12-30 住友金属鉱山株式会社 マンガン複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
JP2021103689A (ja) * 2014-07-31 2021-07-15 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法
JPWO2016017783A1 (ja) * 2014-07-31 2017-05-18 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法
WO2016067959A1 (ja) * 2014-10-30 2016-05-06 住友金属鉱山株式会社 ニッケルコバルトアルミニウム複合水酸化物の製造方法及び非水系電解質二次電池用正極活物質の製造方法
US10593942B2 (en) 2014-10-30 2020-03-17 Sumitomo Metal Mining Co., Ltd. Nickel-containing composite hydroxide and production process therefor, positive-electrode active material for a nonaqueous-electrolyte secondary battery and production process therefor, and nonaqueous-electrolyte secondary battery
US10297825B2 (en) 2014-10-30 2019-05-21 Sumitomo Metal Mining Co., Ltd. Process for producing nickel cobalt aluminum composite hydroxide and process for producing positive electrode active material for non-aqueous electrolyte secondary batteries
US11909039B2 (en) 2014-10-30 2024-02-20 Sumitomo Metal Mining Co., Ltd. Nickel-containing composite hydroxide and production process thereof
WO2016068263A1 (ja) * 2014-10-30 2016-05-06 住友金属鉱山株式会社 ニッケル含有複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP2016088776A (ja) * 2014-10-30 2016-05-23 住友金属鉱山株式会社 ニッケルコバルトアルミニウム複合水酸化物の製造方法及び非水系電解質二次電池用正極活物質の製造方法
JP2016094307A (ja) * 2014-11-12 2016-05-26 住友金属鉱山株式会社 遷移金属複合水酸化物粒子の製造方法および非水電解質二次電池用正極活物質の製造方法
JPWO2016143844A1 (ja) * 2015-03-10 2018-01-25 日本化学産業株式会社 非水電解質リチウム二次電池用正極活物質及びその製造方法
US11220438B2 (en) 2015-04-28 2022-01-11 Nichia Corporation Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
US11945729B2 (en) 2015-04-28 2024-04-02 Nichia Corporation Positive electrode active material for non-aqueous electrolyte secondary battery comprising lithium transition metal complex oxide, and non-aqueous electrolyte secondary battery
US10336626B2 (en) 2015-04-28 2019-07-02 Nichia Corporation Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
US10964944B2 (en) 2015-06-10 2021-03-30 Sumitomo Chemical Co., Ltd. Lithium-containing composite oxide, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017001910A (ja) * 2015-06-10 2017-01-05 旭硝子株式会社 リチウム含有複合酸化物、正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
US10355276B2 (en) 2015-06-10 2019-07-16 Sumitomo Chemical Co., Ltd. Lithium-containing composite oxide, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US11404690B2 (en) 2015-06-26 2022-08-02 Sumitomo Metal Mining Co., Ltd. Transition metal-containing composite hydroxide and manufacturing method thereof, positive electrode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
US10547052B2 (en) 2015-06-26 2020-01-28 Sumitomo Metal Mining Co., Ltd. Transition metal-containing composite hydroxide and manufacturing method thereof, positive electrode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
KR20180021681A (ko) 2015-06-26 2018-03-05 스미토모 긴조쿠 고잔 가부시키가이샤 전이 금속 함유 복합 수산화물과 그의 제조 방법, 비수전해질 이차 전지용 정극 활물질과 그의 제조 방법 및 비수전해질 이차 전지
JP2018525315A (ja) * 2015-08-17 2018-09-06 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 正極活性材料及びそれによる前駆体の製造方法、正極活性材料及びその使用
KR102567100B1 (ko) 2015-08-17 2023-08-16 바스프 에스이 캐소드 활성 물질 및 이의 전구체의 제조 방법, 캐소드 활성 물질 및 이의 용도
JP7170533B2 (ja) 2015-08-17 2022-11-14 ビーエーエスエフ ソシエタス・ヨーロピア 正極活性材料及びそれによる前駆体の製造方法、正極活性材料及びその使用
KR20180040676A (ko) * 2015-08-17 2018-04-20 바스프 에스이 캐소드 활성 물질 및 이의 전구체의 제조 방법, 캐소드 활성 물질 및 이의 용도
KR20170076164A (ko) * 2015-12-24 2017-07-04 주식회사 포스코 리튬 이차 전지용 양극 활물질 전구체 및 이의 제조 방법, 양극 활물질 및 이의 제조 방법, 상기 양극 활물질을 포함하는 리튬 이차 전지
KR101892225B1 (ko) * 2015-12-24 2018-08-27 주식회사 포스코 리튬 이차 전지용 양극 활물질 전구체 및 이의 제조 방법, 양극 활물질 및 이의 제조 방법, 상기 양극 활물질을 포함하는 리튬 이차 전지
JP2017154915A (ja) * 2016-02-29 2017-09-07 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに非水系電解質二次電池
JP6991530B2 (ja) 2016-03-04 2022-01-12 エルジー・ケム・リミテッド 二次電池用正極活物質の前駆体およびこれを用いて製造された正極活物質
JP2018536972A (ja) * 2016-03-04 2018-12-13 エルジー・ケム・リミテッド 二次電池用正極活物質の前駆体およびこれを用いて製造された正極活物質
JP2018045759A (ja) * 2016-08-31 2018-03-22 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US11417879B2 (en) 2016-08-31 2022-08-16 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
US11024839B2 (en) 2016-11-22 2021-06-01 Sumitomo Metal Mining Co., Ltd. Transition metal-containing composite hydroxide and production method thereof, and production method of positive electrode active material for nonaqueous electrolyte secondary battery
WO2019013053A1 (ja) 2017-07-12 2019-01-17 住友金属鉱山株式会社 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池
KR20200040760A (ko) 2017-07-12 2020-04-20 스미토모 긴조쿠 고잔 가부시키가이샤 금속 복합 수산화물과 그의 제조 방법, 비수전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 그것을 사용한 비수전해질 이차 전지
KR102549064B1 (ko) 2017-09-13 2023-06-28 스미또모 가가꾸 가부시끼가이샤 리튬 이차 전지용 정극 활물질의 제조 방법
KR20200054190A (ko) * 2017-09-13 2020-05-19 스미또모 가가꾸 가부시끼가이샤 리튬 이차 전지용 정극 활물질의 제조 방법
US10923719B2 (en) 2017-11-20 2021-02-16 Sumitomo Chemical Company, Limited Positive-electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN111741927A (zh) * 2018-02-22 2020-10-02 住友金属矿山株式会社 金属复合氢氧化物及其制造方法、非水电解质二次电池用正极活性物质及其制造方法、以及非水电解质二次电池
JP2019169412A (ja) * 2018-03-26 2019-10-03 住友金属鉱山株式会社 高強度リチウムイオン二次電池用正極活物質、及び、該正極活物質を用いたリチウムイオン二次電池
JP7159639B2 (ja) 2018-06-25 2022-10-25 住友金属鉱山株式会社 遷移金属複合水酸化物の粒子の製造方法、及び、リチウムイオン二次電池用正極活物質の製造方法
JP2020001935A (ja) * 2018-06-25 2020-01-09 住友金属鉱山株式会社 遷移金属複合水酸化物の粒子とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
JP7033258B2 (ja) 2018-08-30 2022-03-10 トヨタ自動車株式会社 非水電解質二次電池用の正極
JP2020035671A (ja) * 2018-08-30 2020-03-05 トヨタ自動車株式会社 非水電解質二次電池用の正極
JP7172301B2 (ja) 2018-08-31 2022-11-16 住友金属鉱山株式会社 遷移金属複合水酸化物、遷移金属複合水酸化物の製造方法、リチウム遷移金属複合酸化物活物質及びリチウムイオン二次電池
JP2020035693A (ja) * 2018-08-31 2020-03-05 住友金属鉱山株式会社 遷移金属複合水酸化物、遷移金属複合水酸化物の製造方法、リチウム遷移金属複合酸化物活物質及びリチウムイオン二次電池
JP2019081703A (ja) * 2019-02-21 2019-05-30 住友化学株式会社 リチウム含有複合酸化物、正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP2023513027A (ja) * 2020-01-29 2023-03-30 エルジー・ケム・リミテッド 二次電池用正極活物質前駆体、正極活物質およびこれを含むリチウム二次電池
JP2023513029A (ja) * 2020-01-29 2023-03-30 エルジー・ケム・リミテッド 二次電池用正極活物質前駆体、正極活物質およびこれを含むリチウム二次電池
JP2023500940A (ja) * 2020-01-29 2023-01-11 エルジー・ケム・リミテッド 二次電池用正極活物質前駆体、正極活物質、その製造方法及びそれを含むリチウム二次電池
JP7451728B2 (ja) 2020-01-29 2024-03-18 エルジー・ケム・リミテッド 二次電池用正極活物質前駆体、正極活物質およびこれを含むリチウム二次電池

Also Published As

Publication number Publication date
EP2796415A1 (en) 2014-10-29
WO2013094701A1 (ja) 2013-06-27
EP2796415A4 (en) 2015-09-09
US9406930B2 (en) 2016-08-02
KR101644252B1 (ko) 2016-07-29
US20140377660A1 (en) 2014-12-25
KR20140126302A (ko) 2014-10-30
JP5971109B2 (ja) 2016-08-17
CN104136376B (zh) 2016-06-29
EP2796415B1 (en) 2017-08-23
CN104136376A (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5971109B2 (ja) ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP4915488B1 (ja) ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP4894969B1 (ja) ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池
JP6582824B2 (ja) ニッケルマンガン含有複合水酸化物およびその製造方法
JP6596978B2 (ja) 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP4840545B1 (ja) ニッケル複合水酸化物粒子および非水系電解質二次電池
JP4941617B2 (ja) ニッケル複合水酸化物粒子および非水系電解質二次電池
JP5590337B2 (ja) マンガン複合水酸化物粒子、非水系電解質二次電池用正極活物質、および非水系電解質二次電池と、それらの製造方法
JP7188081B2 (ja) 遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JPWO2014181891A1 (ja) 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池
JP2011116580A (ja) ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP2011116580A5 (ja)
WO2017119451A1 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP6436335B2 (ja) 遷移金属複合水酸化物粒子とその製造方法、およびそれを用いた非水系電解質二次電池用正極活物質の製造方法
WO2017119459A1 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP7183813B2 (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP5392035B2 (ja) 非水系電解質二次電池正極活物質用ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP7183815B2 (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP7183812B2 (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP2011116582A5 (ja)
JP7183814B2 (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP7273260B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
JP7167491B2 (ja) リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質、及びリチウムイオン二次電池
JP2019153567A (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法及び非水系電解質二次電池用正極活物質の製造方法
JP2019021426A (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160627

R150 Certificate of patent or registration of utility model

Ref document number: 5971109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150