WO2020175551A1 - リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池 Download PDF

Info

Publication number
WO2020175551A1
WO2020175551A1 PCT/JP2020/007737 JP2020007737W WO2020175551A1 WO 2020175551 A1 WO2020175551 A1 WO 2020175551A1 JP 2020007737 W JP2020007737 W JP 2020007737W WO 2020175551 A1 WO2020175551 A1 WO 2020175551A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
active material
electrode active
secondary battery
Prior art date
Application number
PCT/JP2020/007737
Other languages
English (en)
French (fr)
Inventor
崇洋 東間
貴裕 小川
祥之 松浦
一臣 漁師
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN202080016032.4A priority Critical patent/CN113474297A/zh
Priority to US17/433,379 priority patent/US20220140337A1/en
Priority to JP2021502315A priority patent/JP7164006B2/ja
Publication of WO2020175551A1 publication Critical patent/WO2020175551A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Positive electrode active material for lithium ion secondary battery method for producing positive electrode active material for lithium ion secondary battery, lithium ion secondary battery
  • the present invention relates to a positive electrode active material for a lithium ion secondary battery, a method for producing a positive electrode active material for a lithium ion secondary battery, and a lithium ion secondary battery.
  • a lithium-ion secondary battery is composed of a negative electrode, a positive electrode, an electrolyte, and the like, and a material capable of desorbing and charging lithium is used as an active material of the negative electrode and the positive electrode.
  • the positive electrode active material needs to have a high charge/discharge capacity.
  • increasing the ratio of nickel (1 ⁇ 1) in the positive electrode active material is effective for increasing the battery capacity.
  • Nickel has a lower electrochemical potential than cobalt and manganese, and changes in the transition metal valence that contribute to charge and discharge increase, resulting in an increase in charge and discharge capacity.
  • increasing the nickel ratio is a trade-off with decreasing thermal stability. Therefore, a method for increasing thermal stability has been studied, and a method of ensuring thermal stability by mixing a positive electrode material having high thermal stability, for example, a lithium manganese composite oxide with a lithium nickel composite oxide is known. ing.
  • Patent Document 1 discloses that a nickel lithium composite oxide having a predetermined composition and a lithium manganese composite oxide are mixed at a mixing ratio (mass ratio) of 80:20 to 90:10. Disclosed is a positive electrode active material.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 8 8-2 8 2 6 6 7
  • the thermal stability of the positive electrode active material for a lithium-ion secondary battery decreases when the structure of the positive electrode active material for a lithium-ion secondary battery becomes uncertain due to desorption of lithium during charging and the battery is charged. It is believed that this is due to the exothermic reaction between oxygen released from the positive electrode active material for lithium-ion secondary batteries and organic substances contained in the electrolyte. Therefore, there has been a demand for a positive electrode active material for a lithium ion secondary battery that can suppress oxygen release when it is in a charged state.
  • one aspect of the present invention is ⁇ 2020/175551 3 (:171? 2020/007737
  • a positive electrode active material for a lithium ion secondary battery which has a [( 90 — 10) / volume average particle size] showing a broad particle size distribution of 1.25 or less.
  • a positive electrode active material for a lithium ion secondary battery which suppresses oxygen release in a charged state.
  • FIG. 1 is a schematic sectional view of a 2032 type coin battery specified for battery evaluation.
  • the positive electrode active material for a lithium ion secondary battery of the present embodiment may contain a lithium metal composite oxide.
  • the lithium metal composite oxide is composed of lithium (!_ ⁇ ), nickel (1 ⁇ 1 ⁇ ), and the material mass ratio of 1_ ⁇ : 1 ⁇ 1 ⁇ : ⁇ : It can be contained in the ratio of. However, 3, X and S in the above formula are 10. 50, ⁇ £ father £ ⁇
  • the inventor of the present invention relates to powder characteristics of a lithium metal composite oxide used as a positive electrode active material in order to obtain a positive electrode active material in which oxygen release in a charged state is suppressed, and positive electrode resistance of a battery. The influence was studied earnestly.
  • an oxygen easy-releasing layer that easily releases oxygen may be formed on the particle surface of the lithium metal composite oxide at the time of charging. It was found that there is a correlation with the amount of oxygen released from the positive electrode active material. Furthermore, due to the non-uniformity of the electrochemical reaction between the particles in the electrode, the oxygen easy release layer! _ Since the layer is formed by excessively desorbed particles, the particle characteristics are controlled. ⁇ 2020/175 551 5 (:171? 2020/007737
  • the positive electrode active material of the present embodiment can contain a lithium metal composite oxide as described above.
  • the positive electrode active material of this embodiment can also be composed of a lithium metal composite oxide.
  • the lithium metal composite oxide is composed of lithium (!_ ⁇ ), nickel (1 ⁇ 1 ⁇ ), and the ratio of the material amounts of 1_ ⁇ : 1 ⁇ 1 ⁇ : ⁇ ⁇ : It can be contained in the ratio of.
  • X and S0 are 10 respectively. 5 0, 0 £ father £ 0 .35,
  • the value of 3 indicating the excess amount of lithium (!_ ⁇ ) is, as described above, preferably 10 0.05 or more and 0.50 or less, and more preferably 0 or more and 0.20 or less.
  • the positive electrode resistance of the secondary battery becomes large, so that the output characteristics may not be sufficiently improved.
  • the initial discharge capacity may decrease and the positive electrode resistance may increase.
  • the father indicating the cobalt content can be 0 or more and 0.35 or less as described above. However, particularly when the content of nickel is increased, the content of X can be selected so that the ratio of cobalt is low, for example, 0 or more and 0.20 or less.
  • the lithium metal composite oxide further improves the durability and output characteristics of the secondary battery when the positive electrode active material containing the lithium metal composite oxide is used in the secondary battery. ⁇ 2020/175 551 6 ⁇ (: 171? 2020 /007737
  • the additional element IV! may be contained.
  • element 1 ⁇ /1 magnesium (IV! 9), calcium (
  • M n manganese
  • V vanadium
  • IV! ⁇ molybdenum
  • tangsten niobium (1 ⁇ 1 ⁇
  • titanium (chome) zirconium (c)
  • tantalum (chome 3) One or more of these can be used.
  • the value of SO indicating the content of the element IV! is preferably 0 or more and 0.35 or less, more preferably 0 or more and 0.010 or less, and 0.01 It is more preferably not less than 0.05 and not more than 0.05.
  • the element IV! may be uniformly dispersed inside the secondary particles of the lithium metal composite oxide contained in the positive electrode active material, or may cover the surface of the secondary particles of the lithium metal composite oxide. Furthermore, the surface of the secondary particles of the lithium metal composite oxide may be coated after being uniformly dispersed inside the secondary particles of the lithium metal composite oxide. That is, the element IV! may be uniformly distributed inside the secondary particles of the lithium metal composite oxide, or may evenly coat the surfaces of the secondary particles, or both. preferable.
  • the lithium metal composite oxide of the present embodiment has, for example, the general formula !_ ⁇ 1 + 3 1 ⁇ 1 ⁇
  • the positive electrode active material of the present embodiment may contain primary particles and secondary particles formed by aggregating a plurality of primary particles.
  • a plurality of positive electrode active materials of the present embodiment It can also be composed of secondary particles formed by agglomeration of primary particles.
  • the primary particles and the secondary particles can be particles of a lithium metal composite oxide, for example.
  • the positive electrode active material of the present embodiment is characterized in that particles of the lithium metal composite oxide during charging at 4.3 V (v s. It is preferable that the oxygen easy-emission layer has a thickness of 200 nm or less, which is obtained by observing with a lectron Microscope (scanning transmission electron microscope) -Electron Energy Loss Spectroscopy (electron energy loss spectroscopy).
  • an oxygen easy-release layer may be formed on the surface of particles of the lithium metal composite oxide at the time of charging.
  • the thickness of the easy release layer There is a correlation between the thickness of the easy release layer and the amount of oxygen released from the positive electrode active material during charging.
  • the oxygen easy release layer had a thickness of 200 nm or less.
  • the positive electrode active material can sufficiently suppress the amount of oxygen released from the positive electrode active material during charging. That is, a positive electrode active material having excellent thermal stability can be obtained.
  • the layer thickness is more preferably 100 nm or less, further preferably 50 nm or less.
  • the thickness of the oxygen easy release layer on the surface of the lithium metal composite oxide particles during charging can be evaluated by observation using STEM-EELS. Specifically, using ST EM-EELS, the secondary particle size is smaller than the volume average particle size of the positive electrode active material, and it is easy to observe the oxygen easy release layer. Select lithium metal composite oxide particles with a volume average particle size of 2/3 or less and observe the cross-sectional structure. Then, in the cross section of the particle, from the surface of the particle toward the center, EELS is made at regular intervals along the diameter direction. ⁇ 2020/175 551 8 (: 171-1? 2020/007737
  • the intensity ratio (1 3 1/2 n) of the peak near 5306V (1 3 1:) and the peak near 5456 (2nd) at 1 ⁇ It can be determined by measuring the thickness of the oxygen easy release layer below 9 from the particle surface.
  • the peak (2 nd) near 5 4 5 6 V represents 1 ⁇ 1 ⁇ , while the compound having 1 ⁇ 1 ⁇ 2 as the skeleton is represented.
  • the oxygen easy release layer has a ratio of the intensity of the peak of 1 3 1 to the intensity of the peak of 1 3 1 to the intensity of the 2nd peak that represents 1 ⁇ 1. Is a layer with a low ability to retain oxygen. By so doing, the amount of oxygen released can be suppressed even when the temperature rises, and thermal stability can be improved.
  • the positive electrode active material of the present embodiment is an index showing the spread of the particle size distribution.
  • (90_10)/volume average particle diameter] is preferably 1.25 or less, more preferably 1.20 or less, and even more preferably 1.00 or less. Are more preferable, and 0.90 or less is particularly preferable.
  • the above index By setting the above index to be equal to or less than 1.25, it is possible to prevent the difference between the particles having a large particle size and the particles having a small particle size from increasing in the particles contained in the positive electrode active material, and to make the small particles electrically It is possible to prevent concentrated chemical reactions from occurring. For this reason, it is possible to suppress deterioration of particles having a small particle size, and by allowing the electrochemical reaction to occur uniformly, oxygen release is suppressed and high thermal stability is obtained.
  • the lower limit of [( ⁇ 90-0-6 ⁇ 0)/volume average particle size], which is an index showing the spread of the particle size distribution of the positive electrode active material of the present embodiment, is not particularly limited, but is too low
  • the plate filling property may be reduced, which may lead to a reduction in the capacity per volume of the battery. Therefore, the lower limit is preferably 0.3 or more, and more preferably 0.4 or more.
  • 10 means a cumulative 10% particle diameter, and means a particle diameter at a volume integrated value of 10% in a particle size distribution obtained by a laser diffraction scattering method.
  • 90 means the cumulative 90% particle size, which is the particle size distribution obtained by the laser diffraction scattering method.
  • the particle size of the particles contained in the positive electrode active material of the present embodiment is not particularly limited, but in the particle size distribution by the laser diffraction scattering method, the volume average particle size (1 ⁇ /1) is 5 111 or more 20 It is preferably ⁇ ! or less, more preferably 70! or more and 20 or less, and even more preferably 7 or more and 15 or less.
  • the volume average particle size (1 ⁇ /1) of the positive electrode active material within the above range, the battery capacity per unit volume of the secondary battery using the positive electrode active material can only be increased. Not only that, thermal stability and output characteristics can also be particularly improved.
  • volume average particle size (IV! V) For example, by setting the volume average particle size (IV! V) to 5 or more, the filling property of the positive electrode active material can be enhanced and the battery capacity per unit volume can be increased. Further, by setting the volume average particle size (IV! V) to 20 or less, the reaction area of the positive electrode active material can be increased and the interface with the electrolyte can be increased, so that the output characteristics can be improved.
  • the volume average particle diameter (IV! V) of the positive electrode active material means the volume-based average particle diameter (IV! V), and for example, the volume product measured by a laser light diffraction scattering particle size analyzer. It can be calculated from a calculated value.
  • the specific surface area of the positive electrode active material of the present embodiment is not particularly limited, it is preferable that the specific surface area is 0. 7 2/9 or more 2. 1 0 1 2/9 hereinafter ⁇ . 7 2/9 It is more preferably 2.00 1 2 /9 or less, further preferably 0.8 2/9 or more and 1.7 2 /9 or less.
  • the contact area with the electrolyte can be made sufficiently large. -It is possible to widen the reaction field in which the intercalation reaction of ⁇ ions occurs. Therefore, local excessive desorption of lithium can be reduced, oxygen release can be particularly suppressed, and thermal stability can be particularly enhanced.
  • the specific surface area of the positive electrode active material to be 0.70 ⁇ /9 or more, particles that secure a sufficient electrochemical reaction field and locally increase lithium desorption. Can be suppressed, and thermal stability can be particularly enhanced. Also, the positive electrode active material ⁇ 2020/175 551 10 ⁇ (: 171-1? 2020/007737
  • the specific surface area By setting the specific surface area of 2.10 ⁇ /9 or less, it is possible to prevent the reactivity with the electrolyte from becoming excessively high, and particularly to improve the thermal stability.
  • the specific surface area In addition to the above-described broadening of the particle size distribution of the positive electrode active material, by setting the specific surface area within the above range, it is possible to particularly suppress the formation of the easy oxygen release layer during charging.
  • the specific surface area of the positive electrode active material can be measured, for example, by the Mitsumi method using nitrogen gas adsorption.
  • the tap density of the positive electrode active material of the present embodiment is not particularly limited, and can be arbitrarily selected according to the required performance and the like.
  • increasing the capacity of lithium-ion secondary batteries is an important issue in order to extend the operating time of portable electronic devices and the mileage of electric vehicles.
  • the thickness of the electrode of the lithium-ion secondary battery is required to be about several microns due to problems such as packing of the entire battery and electronic conductivity. Therefore, in addition to using a high-capacity positive electrode active material, it is required to enhance the filling property of the positive electrode active material and increase the capacity of the lithium-ion secondary battery as a whole.
  • the tap density which is an index of filling property, is 2. It is more preferable that it is 2.29/ ⁇ !3 or more.
  • Tap density is 2.0 By the above, the filling property can be particularly enhanced, and the battery capacity of the entire lithium ion secondary battery can be particularly enhanced.
  • the upper limit of tap density is not particularly limited, but the upper limit under normal manufacturing conditions is 3. The following is preferable.
  • the tap density is the bulk density after tapping the sample powder sampled in a container 100 times based on "1 3 1 2 5 0 4 (2 0 1 2 )". It can be measured by using a specific gravity measuring device.
  • the method for producing a positive electrode active material for a lithium ion secondary battery of the present embodiment (hereinafter, also simply referred to as "a method for producing a positive electrode active material”) can include the following steps.
  • a heat treatment step of heat treating the metal composite hydroxide to obtain a heat treated metal composite compound A mixing step of mixing the heat-treated metal composite compound and the lithium compound to form a lithium mixture.
  • Heat treatment step includes a first heat treatment step of performing heat treatment of the metal complex hydroxide 1 0 5 ° ⁇ As 4 5 0 ° ⁇ below, after the first heat treatment step, 5 0 0 ° ⁇ As 7 5 0 ° ⁇ less And a second heat treatment step for further heat treatment in.
  • the [(90_10)/volume average particle size] showing the spread of the particle size distribution of the positive electrode active material for a lithium ion secondary battery obtained after the firing step should be set to 1.25 or less.
  • the method for producing the positive electrode active material for a lithium ion secondary battery of the present embodiment will be described in detail for each step.
  • the positive electrode active material described above can be manufactured by the method for manufacturing a positive electrode active material of the present embodiment. For this reason, some of the items already described are omitted.
  • the method for producing the positive electrode active material of the present embodiment can include a heat treatment step of heat treating the metal composite hydroxide to obtain a heat treated metal composite compound.
  • heat treatment ⁇ 2020/175 551 12 ⁇ (:171? 2020 /007737
  • the heat-treated metal complex compound obtained in the heat treatment step includes not only the metal complex hydroxide from which excess water has been removed in the heat treatment step, but also the metal complex oxide converted into an oxide in the heat treatment step and a mixture thereof. Be done.
  • the heat treatment conditions in the heat treatment step are not particularly limited, but it is preferable to carry out the heat treatment in two stages. For example a first heat treatment step of heat treating the metal complex hydroxide 1 0 5 ° ⁇ As 4 5 0 ° ⁇ below, a second heat treatment step of heat treatment at 5 0 0 ° ⁇ As 7 5 0 ° ⁇ less It is preferable to have
  • the first heat treatment step by performing heat treatment at 450°C or less, it is possible to prevent the excessive water content in the metal complex hydroxide from being rapidly reduced.
  • the spread of the particle size distribution of the positive electrode active material can be suppressed.
  • the heat treatment is performed at 500°C or higher to sufficiently remove excess water in the metal composite hydroxide, and the positive electrode active material obtained after the firing step is obtained. It is possible to particularly suppress the variation in the composition. However, even if the heat treatment temperature is excessively increased to more than 750 °, there is no great difference in the effect, and it is preferable to set it to 750 ° or less from the viewpoint of cost reduction.
  • the number of atoms of each metal component in the positive electrode active material obtained after the firing step and! -Water can be removed to the extent that there is no variation in the ratio of the number of atoms ⁇ 2020/175 551 13 ⁇ (:171? 2020 /007737
  • the atmosphere in which the heat treatment is performed is not particularly limited and may be a non-reducing atmosphere, but it is preferably performed in an air stream that can be easily performed.
  • X It can be contained in the ratio of so. Since X, SO, and element IV! have already been described, description thereof is omitted here. Further, X and V can take the same preferable ranges as those of X and S described for the positive electrode active material.
  • the metal composite hydroxide has, for example, a general formula: ( ⁇ 1 to 1) 2 + can be represented by « .
  • X and S in the above formula satisfy the above-mentioned range.
  • be, for example, 10 0.2 £ a £ 0.2.
  • the heat-treated metal composite compound and the lithium compound are mixed as described above to obtain a lithium mixture.
  • the ratio of the heat-treated metal composite compound and the lithium compound to be mixed is not particularly limited, and can be arbitrarily selected according to the composition required for the positive electrode active material to be produced.
  • the lithium compound used in the mixing step is not particularly limited, but it is preferable to use one or more selected from lithium hydroxide, lithium nitrate, and lithium carbonate in view of easy availability. In particular, it is more preferable to use lithium hydroxide or lithium carbonate in consideration of ease of handling and quality stability.
  • the heat-treated metal composite compound and the lithium compound are preferably mixed sufficiently so as not to generate fine powder. This is because if the mixing is not sufficient, there may be variations in !_ ⁇ / IV! 6 between individual particles, and it may not be possible to obtain sufficient battery characteristics.
  • a general mixer can be used for mixing. For example, a shaker mixer, a Rödege mixer, a Julia mixer, a V blender, etc. can be used.
  • the firing step is a step in which the lithium mixture obtained in the mixing step is fired under predetermined conditions to diffuse lithium in the heat-treated metal composite compound to obtain a lithium metal composite oxide.
  • the furnace used in the firing step is not particularly limited as long as it can heat the lithium mixture in the air or an oxygen stream.
  • an electric furnace that does not generate gas is preferable, and either a batch type or a continuous type electric furnace can be preferably used. In this respect, the same applies to the heat treatment step described above and the furnace used for the calcination step described later.
  • Baking temperature of the lithium mixture 6 5 0 ° ⁇ As 9 0 0 ° ⁇ follows that it is good preferred, and more preferably to 8 5 0 ° ⁇ below 6 5 0 ° ⁇ As.
  • the firing temperature 650 ° ⁇ or more, lithium is sufficiently spread in the heat-treated metal composite compound.
  • the firing temperature is set to 900°C or less, it is possible to prevent the particles of the lithium metal composite oxide from being strongly sintered or to cause abnormal grain growth, and to form irregular coarse particles. Can be suppressed.
  • the rate of temperature increase in the firing step is not particularly limited, but may be, for example, 2 ° O/min or more 1
  • It is preferably 0/min or less, more preferably 3/min or more and 8/min or less.
  • the temperature rise it is preferable to stop the temperature rise once and hold it at a temperature near the melting point of the lithium compound. In this case, it is preferable to hold it for 1 hour to 5 hours, and 2 hours to 5 hours. It is more preferable to hold it below.
  • the holding time at the above-mentioned firing temperature is not particularly limited, but is preferably 2 hours or longer, more preferably 4 hours or longer.
  • the holding time at the firing temperature at the firing temperature is set to 2 hours or more, lithium can be sufficiently diffused in the metal composite oxide and excess lithium and unreacted metal composite oxide can be suppressed from remaining. It is also preferable because the crystallinity of the obtained lithium metal composite oxide can be enhanced.
  • the upper limit of the firing time is not particularly limited, but is preferably 48 hours or less from the viewpoint of productivity.
  • the cooling rate from the firing temperature after the holding at the above firing temperature is not particularly limited, but for example, the cooling rate from the firing temperature to 200 ° ⁇ is 2 ° ⁇ / min or more 10 ° ⁇ / min It is preferably not more than 3° O/min and not more than 7° O/min. Ensure productivity by setting the cooling rate in the above range ⁇ 0 2020/175 551 16 ⁇ (: 17 2020 /007737
  • the atmosphere during firing is preferably an oxidizing atmosphere, and more preferably an atmosphere having an oxygen concentration of 18% by volume or more and 100% by volume or less. This is because the crystallinity of the obtained lithium metal composite oxide can be particularly enhanced by setting the oxygen concentration to 18% by volume or more.
  • the balance other than oxygen is not particularly limited, but may be, for example, nitrogen or an inert gas such as a rare gas. Further, carbon dioxide, water vapor, etc. may be contained in the balance other than the oxygen. It is more preferable that the firing is performed in the air or an oxygen stream, for example.
  • the method for producing a positive electrode active material of the present embodiment may have any step other than the heat treatment step, the mixing step, and the baking step.
  • a calcining step of calcining the lithium mixture before the calcining step and a crushing step of crushing the lithium metal composite oxide obtained after the calcining step can be included.
  • these arbitrary steps will be described.
  • lithium hydroxide or lithium carbonate is used as the lithium compound, it is preferable to have a calcining step of calcining the lithium mixture after the mixing step and before the firing step.
  • the calcination temperature in the calcination step is not particularly limited, but it is preferable that calcination is performed at a temperature lower than the calcination temperature in the calcination step and not less than 350°C and not more than 8000°. It is more preferable to perform calcination at a temperature of not less than 0 ° and not more than 780 ° .
  • lithium can be sufficiently diffused in the heat-treated metal composite compound, and a more uniform lithium metal composite oxide can be obtained.
  • the holding time at the calcination temperature is preferably 1 hour or more and 10 hours or less, and more preferably 3 hours or more and 6 hours or less. ⁇ 2020/175 551 17 ⁇ (: 171-1? 2020/007737
  • the atmosphere in the calcination step is preferably an oxidizing atmosphere as in the firing step, and more preferably an atmosphere having an oxygen concentration of 18% by volume or more and 100% by volume or less. ..
  • the lithium metal composite oxide obtained by the firing step may have aggregated or slightly sintered. In such a case, it is preferable to disintegrate the aggregate or sintered body of the lithium metal composite oxide. This makes it possible to adjust the average particle size and particle size distribution of the obtained positive electrode active material within a suitable range.
  • crushing means that mechanical energy is applied to an agglomerate composed of a plurality of secondary particles generated by sintering necking between secondary particles during firing, and the secondary particles themselves are almost destroyed. It means the operation to loosen the aggregates without separating them.
  • a known means can be used, and for example, a pin mill, a hammer mill or the like can be used. At this time, it is preferable to adjust the crushing force to an appropriate range so as not to destroy the secondary particles.
  • the [(90_10)/volume average particle size] showing the spread of the particle size distribution of the obtained positive electrode active material should be adjusted to 1.25 or less.
  • the heat treatment step, the mixing step, and the firing step described so far under the conditions described above and setting the particle size distribution of the positive electrode active material obtained in the crushing step to be within a predetermined range the positive electrode active material obtained is obtained.
  • the thickness of the oxygen easy-release layer formed upon charging can be particularly suppressed.
  • the lithium-ion secondary battery (hereinafter, also referred to as “secondary battery”) of the present embodiment can have a positive electrode containing the positive electrode active material described above.
  • the secondary battery of the present embodiment includes, for example, a positive electrode, a negative electrode, and a non-aqueous electrolyte, and is composed of the same constituent elements as a general lithium ion secondary battery. Note that the embodiment described below is merely an example, and the lithium ion of the present embodiment is ⁇ 2020/175 551 18 ⁇ (:171? 2020 /007737
  • the secondary battery can be implemented in various modifications and improvements based on the knowledge of those skilled in the art, including the following embodiments. Moreover, the secondary battery is not particularly limited in its use.
  • the positive electrode included in the secondary battery of this embodiment may include the positive electrode active material described above.
  • the positive electrode active material (powdered form) described above, the conductive material and the binder (binder) are mixed to form a positive electrode mixture, and further activated carbon or a solvent for the purpose of adjusting the viscosity is added, if necessary. This can be kneaded to produce a positive electrode mixture paste.
  • the mixing ratio of the respective materials in the positive electrode mixture is a factor that determines the performance of the lithium-ion secondary battery, and thus can be adjusted according to the application.
  • the mixing ratio of the materials can be the same as that of the positive electrode of a known lithium ion secondary battery.
  • the positive electrode active material is used.
  • the obtained positive electrode mixture paste is applied to the surface of a current collector made of aluminum foil, dried, and the solvent is scattered to prepare a sheet-shaped positive electrode. If necessary, it is possible to apply pressure by a mouth press or the like to increase the electrode density.
  • the sheet-shaped positive electrode thus obtained can be cut into an appropriate size according to the intended battery and used for the production of the battery.
  • the conductive material for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), and force-black material such as acetylene black and Ketjenblack (registered trademark) can be used.
  • the binder plays a role of binding the active material particles, and includes, for example, polyvinylidene fluoride ( ⁇ ), polytetrafluoroethylene (chome), fluororubber, ethylene propylenediene rubber, Suchi ⁇ 2020/175 551 19 (: 171-1? 2020/007737
  • len butadiene cellulosic resins, polyacrylic acid and the like.
  • a positive electrode active material, a conductive material, and the like may be dispersed, and a solvent that dissolves the binder may be added to the positive electrode mixture.
  • a solvent specifically, an organic solvent such as 1 ⁇ 1-methyl-2-pyrrolidone can be used.
  • activated carbon can be added to the positive electrode mixture to increase the electric double layer capacity.
  • the method for producing the positive electrode is not limited to the above-described example, and other methods may be used.
  • it can be manufactured by press-molding the positive electrode mixture and then drying it in a vacuum atmosphere.
  • metallic lithium, lithium alloy, or the like can be used.
  • the negative electrode mix the negative electrode active material capable of absorbing and desorbing lithium ions with a binder and add an appropriate solvent to make a negative electrode mixture material into a paste. You may use what was formed by apply
  • the negative electrode active material for example, an organic compound fired body such as natural graphite, artificial graphite and phenol resin, and a powdery body of a carbon material such as coke can be used.
  • a fluorine-containing resin such as V 0 can be used as the negative electrode binder, and 1 ⁇ 1-methyl-2-pyrrolidone is used as the solvent for dispersing these active materials and the binder.
  • An organic solvent such as dong can be used.
  • a separator may be sandwiched between the positive electrode and the negative electrode.
  • the separator is a separator that separates the positive electrode and the negative electrode and retains the electrolyte, and a known material can be used. For example, a thin film such as polyethylene or propylene, which has a large number of minute holes, is used. You can
  • non-aqueous electrolyte for example, a non-aqueous electrolytic solution can be used.
  • non-aqueous electrolyte for example, a solution obtained by dissolving a lithium salt as a supporting salt in an organic solvent can be used. Further, as the non-aqueous electrolyte solution, a solution in which a lithium salt is dissolved in an ionic liquid may be used.
  • the ionic liquid is a salt that is composed of cations and anions other than lithium ions and is liquid even at room temperature.
  • Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate, and chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate and dipropyl carbonate, and One selected from ether compounds such as tetrahydrofuran, 2-methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethyl sulfone and butane sultone, phosphorus compounds such as triethyl phosphate and trioctyl phosphate may be used alone, It is also possible to use a mixture of two or more kinds.
  • ether compounds such as tetrahydrofuran, 2-methyltetrahydrofuran and dimethoxyethane
  • sulfur compounds such as ethylmethyl sulfone and butane sultone
  • phosphorus compounds such as triethyl phosphate and trio
  • the non-aqueous electrolyte may contain a radical scavenger, a surfactant, a flame retardant, and the like.
  • a solid electrolyte may be used as the non-aqueous electrolyte.
  • the solid electrolyte has the property of withstanding high voltage.
  • Examples of the solid electrolyte include inorganic solid electrolytes and organic solid electrolytes.
  • Examples of the inorganic solid electrolyte include oxide solid electrolytes and sulfide solid electrolytes.
  • the oxide-based solid electrolyte is not particularly limited, and for example, one containing oxygen (O) and having lithium ion conductivity and electronic insulation can be suitably used.
  • oxide-based solid electrolytes include lithium phosphate (!_ ⁇ 2020/175 551 21 ⁇ (: 171-1? 2020/007737
  • the sulfide-based solid electrolyte is not particularly limited and, for example, one containing sulfur) and having lithium ion conductivity and electronic insulation is suitably used! _ ,,-1_ ⁇ 2 3_3 ⁇ 3 2 , 1_ ⁇ ⁇ 4 _1_ ⁇ 2 3_3 ⁇ 3, 1_ ⁇ ⁇ _1_ ⁇ 2 3_ 2 ⁇ 5, 1_ 1 ⁇ 1 1 -1 3 ? ⁇ 4 -? 2 3 5 Is mentioned.
  • inorganic solid electrolyte those other than the above may be used, for example,
  • One or more types selected from 1_ ⁇ 3 1 ⁇ 1, 1_ ⁇ ⁇ , 1_ ⁇ 3 1 ⁇ 1_1_ ⁇ _ I- ⁇ ⁇ 1 ⁇ 1 etc. can be used.
  • the organic solid electrolyte is not particularly limited as long as it is a polymer compound exhibiting ion conductivity, and, for example, polyethylene oxide, polypropylene oxide, a copolymer thereof, or the like can be used.
  • the organic solid electrolyte may contain a supporting salt (lithium salt).
  • the lithium ion secondary battery of the present embodiment described above can be formed into various shapes such as a cylindrical shape and a laminated shape. Whichever shape is adopted, if the secondary battery of the present embodiment uses a non-aqueous electrolyte solution as the non-aqueous electrolyte, the positive electrode and the negative electrode are laminated with a separator to form an electrode body. The obtained electrode body is impregnated with a non-aqueous electrolyte solution, and between the positive electrode current collector and the positive electrode terminal that communicates with the outside, and between the negative electrode current collector and the negative electrode terminal that communicates with the outside. ⁇ 2020/175 551 22 ⁇ (:171? 2020 /007737
  • the secondary battery of the present embodiment is not limited to the form in which the non-aqueous electrolyte solution is used as the non-aqueous electrolyte.
  • a secondary battery using a solid non-aqueous electrolyte is used. It can also be a battery, ie an all-solid-state battery. In the case of an all-solid-state battery, the configuration other than the positive electrode active material can be changed as necessary.
  • the secondary battery of the present embodiment is provided with a positive electrode using the positive electrode active material of the present embodiment as a positive electrode material, and thus has excellent thermal stability. Moreover, it can be said that it is superior in thermal stability even when compared with a secondary battery using a conventional positive electrode active material composed of lithium nickel composite oxide particles.
  • the secondary battery of the present embodiment is excellent in thermal stability as described above, and is also excellent in battery capacity, output characteristics, and cycle characteristics. It can be suitably used as a power source for portable electronic devices such as notebook personal computers and mobile phones. In addition, the secondary battery of the present embodiment is excellent in safety, and not only can it be made smaller and have higher output, but also an expensive protection circuit can be simplified, so that it can be installed in a small space. It can also be suitably used as a power source for transportation equipment that receives a contract.
  • .. 2 is heat-treated for 5 hours at 400 ° C in an air (oxygen concentration: 21% by volume) air flow (first heat treatment step), and then at 700 ° C . Heat treatment was performed for 5 hours at ⁇ (second heat treatment step). As a result, a heat-treated metal composite compound is obtained. ⁇ 2020/175 551 23 (: 171-1? 2020/007737
  • Te general formula:. 1 ⁇ 1 ⁇ give the 90 thousand 07 eight ⁇ 03 ⁇ metal composite oxide represented by...
  • the metal composite oxide obtained in the heat treatment step and lithium hydroxide were compared with the number of lithium atoms (!_ ⁇ ) in the obtained lithium mixture and the number of metal atoms other than lithium. It is a ratio with! - ⁇ was weighed and mixed sufficiently to obtain a lithium mixture (mixing step).
  • the lithium mixture obtained in the mixing step was heated to 750° ⁇ in an oxygen (oxygen concentration: 100% by volume) airflow at a heating rate of 3° ⁇ /minute, It was fired by holding for a time. After firing, the material was cooled down to room temperature at a cooling rate of about 4 ° ⁇ /minute (firing step).
  • the positive electrode active material obtained after the firing step was agglomerated or slightly sintered.
  • this positive electrode active material was crushed and the average particle size and particle size distribution were adjusted (crushing step).
  • the positive electrode active material obtained by an analysis using an emission spectrophotometer (manufactured by Shimadzu Corporation, 10000_9000) has the general formula:! To consist of _ ⁇ 01 1 ⁇ 1 ⁇ . 90 Yes Yes 0.07 eight I ⁇ . 03 ⁇ 2 with lithium metal composite oxide expressed was confirmed. Cross section of the secondary particles of the lithium metal composite oxide contained in the positive electrode active material As a result of analysis, it was confirmed that eighty-six of them were uniformly dispersed in the secondary particles. The same applies to the other examples below.
  • the volume average particle size (IV! V) of the positive electrode active material is measured using a laser light diffraction/scattering particle size analyzer (Microtrac Bell Co., Ltd., Microtrac 1 ⁇ /1 Chome 3300, Mitra). At the same time, 10 and 90 were measured, and [( 90_ 10) / volume average particle size], which is an index showing the spread of the particle size distribution, was calculated. ⁇ 2020/175 551 24 ⁇ (:171? 2020 /007737
  • the specific surface area was measured by a flow-type gas adsorption specific surface area measuring device (McTech Soap 1200 series manufactured by Mountech Co., Ltd.), and the tap density was measured by a tapping machine (Kurachi Scientific Instrument Co., Ltd., ⁇ [3 ⁇ 43_406]). As a result, the specific surface area is 1.34. And the tap density is 2.85
  • a 2032 type coin battery was produced using the obtained positive electrode active material.
  • FIG. Figure 1 schematically shows the cross-sectional configuration of a coin battery.
  • the coin battery 10 is composed of a case 11 and an electrode 12 housed in the case 11.
  • the case 11 includes a positive electrode can 11 1 that is hollow and has one end opened, and the positive electrode can 1 1
  • the negative electrode can 1 1 2 is placed in the opening of the positive electrode can 1 1 2 and the negative electrode can 1 1 2 is placed in the opening of the positive electrode can 1 1 1.
  • a space for accommodating the electrodes 12 is formed between the electrodes 1 and 2.
  • the electrode 12 is composed of a positive electrode 1 21, a separator 122, and a negative electrode 123, which are laminated in this order, and the positive electrode 1 2 1 touches the inner surface of the positive electrode can 1 1 1.
  • the negative electrode 123 is housed in the case 11 so that it contacts the inner surface of the negative electrode can 1 12.
  • the case 11 is equipped with the gasket 1 13 and the gasket 1
  • the gasket 1 13 also has the function of sealing the gap between the positive electrode can 1 1 1 and the negative electrode can 1 12 to shut off the inside and the outside of the case 11 in an airtight and liquidtight manner. There is.
  • This coin battery 10 was produced as follows.
  • the negative electrode 123 of this 203 type 2 coin battery is made of lithium metal with a diameter of 17 mm and a thickness of 1 mm, and the electrolyte solution is ethylene carbonate containing 1 M L i C 0 4 as a supporting electrolyte.
  • An equal volume mixture of Bonate (EC) and diethyl carbonate (D EC) (manufactured by Toyama Yakuhin Kogyo Co., Ltd.) was used.
  • a polyethylene porous film having a film thickness of 25 Mm was used as the separator 122.
  • the 2032 type coin battery was manufactured, it was left for about 24 hours, and after the open circuit voltage ⁇ CV (O pen Circuit Voltage) became stable, the current density to the positive electrode was set to ⁇ 0.1 mA/cm 2
  • the charge-discharge test was performed to measure the discharge capacity when the battery was charged until the cut-off voltage reached 4.3 V, and after 1 hour rest, the discharge capacity was measured until the cut-off voltage reached 3.0 V to obtain the initial discharge capacity. ..
  • the initial discharge capacity was 2 15.8 mA h/g.
  • a multi-channel voltage/current generator (R 674 1 A manufactured by Advantest Corporation) was used for the measurement of the initial discharge capacity.
  • the thermal stability of the positive electrode active material was evaluated by quantifying the amount of oxygen released by heating the positive electrode active material in an overcharged state. Make the above 2032 type coin battery ⁇ 2020/175 551 26 ⁇ (:171? 2020 /007737
  • the semi-quantitative value of the amount of oxygen generated was calculated by injecting pure oxygen gas as a standard sample into 0.01 ⁇ /13 and externally calibrating the calibration curve obtained from the measurement results. Then, the mass ratio of oxygen gas to helium, which is the carrier gas, was calculated and used as the oxygen release amount. As a result, an amount of released oxygen of 8.0 mass% was confirmed.
  • the thickness of the oxygen easy-release layer in the positive electrode active material particles during charging was evaluated in the same manner as in the thermal stability test, after the 2032 type coin battery was charged, the coin battery was disassembled, and only the positive electrode was used to prevent short circuit. After taking out, the positive electrode was embedded in a resin, and the cross-sectional observation was made possible by focused ion beam processing. Then, a scanning transmission electron microscope (3 Chome IV!) (manufactured by Hitachi High-Technologies Corporation,
  • the thickness of the oxygen easy release layer was evaluated by using an electron energy loss spectroscope (Minomi 1_3), Mitsumi 1_V-2000 type Element View, which was mounted on the 8000).
  • lithium metal composite oxide particles having a secondary particle diameter of 2/3 or less of the volume average particle diameter of the positive electrode active material were selected. .. Then, with respect to the particle, the spectrum due to Mitsumi !_ 3 was measured at regular intervals along the diametrical direction from the particle surface to the center, and a peak (1 3 I) and the peak near 5456 V (intensity ratio (1 st/2 nd) with 2 n ⁇ ⁇ is 0.9 or less, the thickness from the particle surface is measured to obtain the oxygen easy release layer. The thickness of the easy oxygen release layer was calculated. ⁇ 2020/175 551 27 ⁇ (:171? 2020 /007737
  • the diameter of the circle circumscribing the lithium metal composite oxide particles was taken as the secondary particle diameter of the lithium metal composite oxide particles.
  • the oxygen easy release layer has a thickness of 40 Met.
  • the positive electrode active material and the negative electrode active material were prepared in the same manner as in Example 1 except that the particle size distribution was adjusted so that [(90_10)/volume average particle size] was 1.18. The next battery was obtained and evaluated. The results are shown in Table 1.
  • the positive electrode active material and the negative electrode active material were mixed in the same manner as in Example 1 except that the particle size distribution was adjusted so that [(90 _ 10) / volume average particle size] was 0.85.
  • the next battery was obtained and evaluated. The results are shown in Table 1.
  • the positive electrode active material and the negative electrode active material were mixed in the same manner as in Example 1 except that the particle size distribution was adjusted so that [(90_10)/volume average particle size] was 0.50. The next battery was obtained and evaluated. The results are shown in Table 1.
  • the positive electrode active material and the negative electrode active material were mixed in the same manner as in Example 1 except that the particle size distribution was adjusted so that [(90_10)/volume average particle size] was 1.36. The next battery was obtained and evaluated. The results are shown in Table 1.
  • the thickness of the oxygen easy-release layer is 200 001 or less, and [(90 _ 10) / volume average particle size] is 1.25 or less.
  • the oxygen release amount was 15% by mass or less, and it was confirmed that the oxygen release in the charged state was sufficiently suppressed. That is, it was confirmed that a positive electrode active material having excellent thermal stability was obtained when used in a lithium ion secondary battery.
  • the positive electrode active material for a lithium ion secondary battery, the method for producing a positive electrode active material for a lithium ion secondary battery, and the lithium ion secondary battery have been described above in the embodiments and examples.
  • the present invention is not limited to the embodiments and examples described above. Not limited to.
  • Various modifications and changes are possible within the scope of the gist of the present invention described in the claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

リチウム金属複合酸化物を含有し、 リチウム金属複合酸化物はLiと、Niと、Coと、元素Mを物質量比でLi:Ni:Co:M=1+a:1-x-y:x:y(-0.05≦a≦0.50、0≦x≦0.35、0≦y≦0.35、元素MはMg、Ca、Al、Si、Fe、Cr、Mn、V、Mo、W、Nb、Ti、Zrから選ばれる少なくとも1種)の割合で含有し、 4.3V充電時のリチウム金属複合酸化物の粒子断面において、粒子の表面から中心にSTEM-EELSで線分析を行った場合に、O-K端において530eV付近のピークと545eV付近のピークとの強度比が0.9以下となる酸素易放出層の厚みが200nm以下、 粒度分布の広がりを示す〔(d90-d10)/体積平均粒径〕が1.25以下のリチウムイオン二次電池用正極活物質。

Description

\¥0 2020/175551 1 2020 /007737
明 細 書
発明の名称 :
リチウムイオンニ次電池用正極活物質、 リチウムイオンニ次電池用正極活 物質の製造方法、 リチウムイオンニ次電池
技術分野
[0001 ] 本発明は、 リチウムイオンニ次電池用正極活物質、 リチウムイオンニ次電 池用正極活物質の製造方法、 リチウムイオンニ次電池に関するものである。 背景技術
[0002] 近年、 携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、 高 いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が強く 望まれている。 また、 電気自動車や、 各種ハイブリッ ド自動車、 燃料電池自 動車等の電動車 ( 巳 ) 向けの電池として容量密度に優れる二次電池の開 発が強く望まれている。
[0003] このような要求を満たす二次電池として、 リチウムイオンニ次電池がある 。 リチウムイオンニ次電池は、 負極および正極と電解質等で構成され、 負極 および正極の活物質は、 リチウムを脱離および揷入することの可能な材料が 用いられている。
[0004] このようなリチウムイオンニ次電池は、 現在研究、 開発が盛んに行われて いるところであるが、 中でも、 層状またはスピネル型のリチウム金属複合酸 化物を正極材料に用いたリチウムイオンニ次電池は、 4 V級の高い電圧が得 られるため、 高いエネルギー密度を有する電池として実用化が進んでいる。
[0005] これまで主に提案されている材料としては、 合成が比較的容易なリチウム コバルト複合酸化物 (!_ 丨 〇〇〇2) や、 コバルトよりも安価なニッケルを用 いたリチウムニッケル複合酸化物 (I - 丨 1\1 丨 〇 2) 、 リチウムニッケルコバル トマンガン複合酸化物
Figure imgf000003_0001
マンガンを用い たリチウムマンガン複合酸化物 (1 - 丨 1\/^ 24) などを挙げることができる 〇 2020/175551 2 卩(:171? 2020 /007737
[0006] エネルギー密度に優れたリチウムイオンニ次電池を得るためには、 正極活 物質が高い充放電容量を有することが必要となる。 ここで、 電池容量を増加 させるためには正極活物質のニッケル (1\1 丨) 比率を増やすことが有効であ ることが知られている。 ニッケルはコバルトやマンガンと比較して低い電気 化学ポテンシャルを有し、 充放電に寄与する遷移金属価数の変化が増加し、 充放電容量が増加する。 しかしながら、 ニッケル比率を上げると、 背反とし て熱安定性が低下する。 そこで、 従来から熱安定性を高める方法が検討され ており、 熱安定性の高い正極材、 例えばリチウムマンガン複合酸化物をリチ ウムニッケル複合酸化物に混ぜて熱安定性を担保する手法が知られている。
[0007] 特許文献 1 には、 所定の組成を有するニッケルリチウム複合酸化物と、 リ チウムマンガン複合酸化物とを、 8 0 : 2 0〜 9 0 : 1 0の混合比 (質量比 ) で混合してなる正極活物質が開示されている。
先行技術文献
特許文献
[0008] 特許文献 1 : 日本国特開 2 0 0 8— 2 8 2 6 6 7号公報
発明の概要
発明が解決しようとする課題
[0009] しかしながら、 特許文献 1 に開示された正極活物質のように、 二組成の粒 子を混合する手法では、 エネルギー密度を高くすることが本質的に難しいと いう問題があった。
[0010] リチウムイオンニ次電池用正極活物質の熱安定性が低下するのは、 充電に よるリチウム脱離に伴いリチウムイオンニ次電池用正極活物質の構造が不安 定になり、 充電状態とした場合にリチウムイオンニ次電池用正極活物質から 放出される酸素と電解質などに含まれる有機物とが発熱反応を起こすことに 起因すると考えられている。 このため、 充電状態とした場合の酸素放出を抑 制できるリチウムイオンニ次電池用正極活物質が求められていた。
[001 1 ] そこで上記従来技術が有する問題に鑑み、 本発明の一側面では、 充電状態 〇 2020/175551 3 卩(:171? 2020 /007737
での酸素放出を抑制したリチウムイオンニ次電池用正極活物質を提供するこ とを目的とする。
課題を解決するための手段
[0012] 上記課題を解決するため本発明の一態様によれば、
リチウム金属複合酸化物を含有するリチウムイオンニ次電池用正極活物質で あって、
前記リチウム金属複合酸化物は、 リチウム (!_ 丨) と、 ニッケル (1\1 1) と、 コバルト (〇〇) と、 元素 IV! (IV!) と、 を物質量の比で 1_ 丨 : 1\1 丨 : 〇 〇 : 1\/1= 1 +3 : 1—父一7 : 父 : 7 (ただし、 一 0. 05£ £〇. 50 、 八 I、
Figure imgf000005_0001
から選ば れる少なくとも 1種の元素) の割合で含有し、
4. 3 ( 3. !_ 丨 +/!_ 丨) 充電時の前記リチウム金属複合酸化物の粒 子断面において、 前記粒子の表面から中心に向かって 3丁巳 IV!—巳巳 !_ 3で 線分析を行った場合に、 〇_<端において 5306 V付近のピーク (1 3 1 ) と 5456 V付近 (2 n ) のピークとの強度比 ( 1 3 t/2 n d) が 0 . 9以下となる酸素易放出層の厚みが 200 n 以下であり、
粒度分布の広がりを示す 〔 ( 90_ 1 0) /体積平均粒径〕 が 1. 2 5以下であるリチウムイオンニ次電池用正極活物質を提供する。
発明の効果
[0013] 本発明の一態様によれば、 充電状態での酸素放出を抑制したリチウムイオ ンニ次電池用正極活物質を提供することができる。
図面の簡単な説明
[0014] [図 1]電池評価に仕様した 2032型コイン電池の概略断面図である。
発明を実施するための形態
[0015] 以下、 本発明を実施するための形態について図面を参照して説明するが、 本発明は、 下記の実施形態に制限されることはなく、 本発明の範囲を逸脱す 〇 2020/175551 4 卩(:171? 2020 /007737
ることなく、 下記の実施形態に種々の変形および置換を加えることができる
[リチウムイオンニ次電池用正極活物質]
本実施形態のリチウムイオンニ次電池用正極活物質 (以下、 単に 「正極活 物質」 とも記載する) は、 リチウム金属複合酸化物を含有することができる
[0016] リチウム金属複合酸化物は、 リチウム (!_ 丨) と、 ニッケル (1\1 丨) と、 と、 を物質量の比で 1_ 丨 : 1\1 丨 : 〇〇 :
Figure imgf000006_0001
の割合で含有することができる。 ただし、 上記式中の 3、 X、 ソは、 それぞれ一〇.
Figure imgf000006_0002
5 0、 〇£父£〇
. 3 5、 0 £ V £〇. 3 5を満たすことが好ましい。 また、 元素 1\/1は1\/1 9、
Figure imgf000006_0003
丁 3から選ばれる少なくとも 1種の元素とすることができる。
[0017] そして、 4 . 3 (V 3 . !_ 丨 +/ !_ 丨) 充電時のリチウム金属複合酸化物 の粒子断面において、 粒子の表面から中心に向かって 3丁巳 IV!—巳巳 !_ 3で 線分析を行った場合に、 〇_<端において 5 3 0 6 V付近のピーク (1 3 1 ) と 5 4 5 6 V付近 (2 n ) のピークとの強度比 ( 1 3 t/2nd) が 0 . 9以下となる酸素易放出層の厚みを 2 0 0 n 以下とすることができる。 また、 正極活物質の粒度分布の広がりを示す 〔 ( 9 0 _ 1 0) /体積平 均粒径〕 を 1 . 2 5以下とすることができる。
[0018] 本発明の発明者は、 充電状態での酸素放出を抑制した正極活物質とするた めに正極活物質として用いられるリチウム金属複合酸化物の粉体特性や、 電 池の正極抵抗に対する影響について鋭意検討を行った。
[0019] その結果、 充電時のリチウム金属複合酸化物の粒子表面に、 酸素を容易に 放出する酸素易放出層が形成されている場合があり、 係る酸素易放出層の厚 みと、 充電時の正極活物質からの酸素放出量との間に相関があることを見出 した。 さらに、 酸素易放出層が電極中の粒子間の電気化学反応の不均一性に より、 !_ 丨が過剰に脱離した粒子で生じる層であることから、 粒子特性を制 〇 2020/175551 5 卩(:171? 2020 /007737
御し、 電気化学反応が均一に起こるようにすることで酸素放出が抑制され、 高い熱安定性が得られることを見出した。 このため、 含まれるリチウム金属 複合酸化物の粒子表面の酸素易放出層の厚みを抑制し、 所定の粒子特性を有 する正極活物質とすることで、 充電状態での酸素放出を抑制し、 熱安定を高 められることを見出し、 発明を完成させた。
[0020] 本実施形態の正極活物質は、 上述のようにリチウム金属複合酸化物を含有 することができる。 本実施形態の正極活物質は、 リチウム金属複合酸化物か ら構成することもできる。
[0021 ] リチウム金属複合酸化物は、 リチウム (!_ 丨) と、 ニッケル (1\1 丨) と、 と、 を物質量の比で 1_ 丨 : 1\1 丨 : 〇〇 :
Figure imgf000007_0001
の割合で含有することができる。 上記式中 の 3、 X、 ソは、 それぞれ一〇.
Figure imgf000007_0002
5 0、 0 £父£〇. 3 5、
0 £ V £〇. 3 5を満たすことが好ましい。
[0022] リチウム (!_ 丨) の過剰量を示す 3の値は、 上述のように一〇. 0 5以上 〇. 5 0以下が好ましく、 0以上〇. 2 0以下であることがより好ましく、
0以上〇. 1 0以下がさらに好ましい。
[0023] 3を一〇. 0 5以上〇. 5 0以下とすることにより、 係るリチウム金属複 合酸化物を含有する正極活物質を正極材料として用いた二次電池の出力特性 および電池容量を向上させることができる。 これに対して、 3の値が一〇.
0 5未満では、 係る二次電池の正極抵抗が大きくなるため、 出力特性を十分 に向上させることができない恐れがある。 一方、 〇. 5 0を超えると、 初期 放電容量が低下し、 正極抵抗が大きくなる恐れがある。
[0024] コバルトの含有量を示す父は上述のように 0以上〇. 3 5以下とすること ができる。 ただし、 特にニッケルの含有量を高くする場合には、 Xは例えば 0以上 0 . 2 0以下のようにコバルトの比率が低くなるようにその含有量を 選択することもできる。
[0025] リチウム金属複合酸化物は、 該リチウム金属複合酸化物を含む正極活物質 を二次電池に用いた場合に、 二次電池の耐久性や出力特性をさらに改善する 〇 2020/175551 6 卩(:171? 2020 /007737
ため、 上述したリチウム、 ニッケル、 コバルト以外に添加元素である元素 IV! を含有してもよい。 元素 1\/1としては、 マグネシウム (IV! 9) 、 カルシウム (
〇 3) 、 アルミニウム (八 I) 、 シリコン (3 1) 、 鉄 ( 4 、 クロム (
〇 〇 、 マンガン (M n) 、 バナジウム (V) 、 モリブデン (IV!〇) 、 タン グステン 、 ニオブ (1\1匕) 、 チタン (丁 丨) 、 ジルコニウム ( 〇 、 タンタル (丁 3) から選択される 1種以上を用いることができる。
[0026] 元素 IV!の含有量を示すソの値は、 0以上〇. 3 5以下であることが好まし く、 0以上〇. 1 0以下であることがより好ましく、 〇. 0 0 1以上 0 . 0 5以下であることがさらに好ましい。 ソの値を〇. 3 5以下とすることで、
〇 X反応に寄与する金属元素を十分に確保することができ、 電池容量 を十分に高めることができる。 また、 元素 1\/1は添加しなくても良いため、 0 以上とすることができる。
[0027] 元素 IV!は、 正極活物質に含まれるリチウム金属複合酸化物の二次粒子内部 に均一に分散させてもよく、 リチウム金属複合酸化物の二次粒子表面を被覆 させてもよい。 さらには、 リチウム金属複合酸化物の二次粒子内部に均一に 分散させた上で、 リチウム金属複合酸化物の二次粒子の表面を被覆させても よい。 すなわち、 元素 IV!は、 リチウム金属複合酸化物の二次粒子の内部に均 —に分布しているか、 該二次粒子の表面を均一に被覆しているかのいずれか 、 もしくは両方とすることが好ましい。
[0028] なお、 元素 1\/1はどのような態様でリチウム金属複合酸化物に含まれていた としても、 その添加量が既述の範囲を充足するように制御することが好まし い。
[0029] 本実施形態のリチウム金属複合酸化物は、 例えば一般式 !_ 丨 1 + 3 1\1 丨
〇〇
Figure imgf000008_0001
で表すことができる。 なお、 上記一般式中の 8、 X、 ソについ ては既述のため、 ここでは説明を省略する。 また、 2は、 例えば
Figure imgf000008_0002
. 1 0であることが好ましい。
[0030] 本実施形態の正極活物質は、 一次粒子や、 複数の一次粒子が凝集して形成 された二次粒子を含有することができる。 本実施形態の正極活物質は、 複数 の一次粒子が凝集して形成された二次粒子から構成することもできる。
[0031] なお、 係る一次粒子や、 二次粒子は、 例えばリチウム金属複合酸化物の粒 子とすることができる。
[0032] そして、 本実施形態の正極活物質は、 4. 3 V (v s. L i +/L i ) 充電 時のリチウム金属複合酸化物の粒子を ST EM-E E LS (S c a n n i n g t r a n s m i s s i o n ヒ l e c t r o n M i c r o s c o p e (走査型透過電子顕微鏡) -E l e c t r o n E n e r g y-L o s s S p e c t r o s c o p y (電子エネルギー損失分光) ) で観測することで 求められる酸素易放出層の厚みが 200 n m以下であることが好ましい。
[0033] 既述の様に、 本発明の発明者らの検討によれば、 充電時のリチウム金属複 合酸化物の粒子表面に、 酸素易放出層が形成されている場合があり、 係る酸 素易放出層の厚みと、 充電時の正極活物質からの酸素放出量との間に相関が ある。 そして、 4. 3 V (v s. L i +/L i ) 充電時のリチウム金属複合酸 化物の粒子を S T EM- E E L Sで観測した場合に酸素易放出層の厚みが 2 〇〇 n m以下の場合、 充電時の正極活物質からの酸素放出量を十分に抑制し た正極活物質とすることができる。 すなわち、 熱安定性に優れた正極活物質 とすることができる。
[0034] なお、 4. 3 V (v s. L i +/L i ) 充電時のリチウム金属複合酸化物の 粒子を 3丁巳1\/1-巳巳 1_3で観測した場合の酸素易放出層の厚みは1 00 n m以下であることがより好ましく、 50 n m以下であることがさらに好まし い。
[0035] 充電時のリチウム金属複合酸化物の粒子表面における酸素易放出層の厚み については、 S T E M - E E L Sを用いた観察により評価することができる 。 具体的には S T EM- E E L Sを用いて、 その二次粒子径が正極活物質の 体積平均粒径よりも小さく、 酸素易放出層を観察しやすい、 例えばその二次 粒子径が正極活物質の体積平均粒径の 2 / 3以下であるリチウム金属複合酸 化物の粒子を選択し、 断面構造を観察する。 そして、 該粒子の断面において 、 粒子表面から中心に向かって、 直径方向に沿って一定の間隔で E E L Sに 〇 2020/175551 8 卩(:171? 2020 /007737
よるスペクトルを測定し、 〇一<端において 5 3 0 6 V付近のピーク ( 1 3 1:) と 5 4 5 6 (2 n d) 付近のピークとの強度比 ( 1 3 1 / 2 n ) が 〇. 9以下となる酸素易放出層の、 粒子表面からの厚さを測定することで求 めることができる。
[0036] これは、 5 3 0 6 V近傍のピーク ( 1 3 I) は 1_ 丨 1\1 丨 〇2、 もしくは 1_ 1
1\1 丨 〇2を骨格とする化合物を表しているのに対して、 5 4 5 6 V近傍のピー ク (2 n d) は 1\1 丨 〇を表している。 そして、 本発明の発明者らの検討によ れば、 1\1 丨 〇を表す 2 n dのピークの強度に対する、 1 3 1のピークの強度 の比が〇. 9以下となる酸素易放出層は、 酸素を保持する能力が低い層とな っており、 係る層の厚みを 2 0 0 n
Figure imgf000010_0001
とすることで、 温度が高くなった 場合でも放出する酸素量を抑制し、 熱安定性を高めることができる。
[0037] また、 本実施形態の正極活物質は、 粒度分布の広がりを示す指標である 〔
( 9 0 _ 1 0) /体積平均粒径〕 が、 1 . 2 5以下であることが好まし く、 1 . 2 0以下であることがより好ましく、 1 . 0 0以下であることがさ らに好ましく、 〇. 9 0以下が特に好ましい。
[0038] 上記指標を 1 . 2 5以下とすることで、 正極活物質が含有する粒子につい て粒径が大きい粒子と、 小さい粒子との差が大きくなることを抑制し、 小さ い粒子に電気化学反応が集中して生じることを抑制できる。 このため、 粒径 が小さい粒子の劣化を抑制することができ、 電気化学反応が均一に起こるよ うにすることで酸素放出が抑制され、 高い熱安定性が得られる。
[0039] 本実施形態の正極活物質の粒度分布の広がりを示す指標である 〔 (〇^ 9 0 - 6 ^ 0) /体積平均粒径〕 の下限値は特に限定されないが、 低すぎると極 板充填性が低下し、 電池の体積当たりの容量低下を招く恐れがある。 そこで 、 下限値は〇. 3以上であることが好ましく、 〇. 4以上であることがより 好ましい。
[0040] なお、 1 0は、 累積 1 0 %粒子径を意味し、 レーザー回折散乱法によっ て求めた粒度分布における体積積算値 1 0 %での粒径を意味する。 9 0は 、 累積 9 0 %粒子径を意味し、 レーザー回折散乱法によって求めた粒度分布 〇 2020/175551 9 卩(:171? 2020 /007737
おける体積積算値 9 0 %での粒径を意味する。
[0041 ] 本実施形態の正極活物質が含有する粒子の粒径等は特に限定されないが、 レーザー回折散乱法による粒度分布において、 体積平均粒径 (1\/1 ) が、 5 111以上 2 0 〇!以下であることが好ましく、 7 〇!以上 2 0 以下であ ることがより好ましく、 7 以上1 5 以下であることがさらに好まし い。
[0042] 正極活物質の体積平均粒径 (1\/1 ) を上記範囲とすることで、 該正極活物 質を用いた二次電池の単位体積あたりの電池容量を増加させることができる ばかりでなく、 熱安定性や出力特性も特に高めることができる。
[0043] 例えば体積平均粒径 (IV! V) を 5 以上とすることで、 正極活物質の充 填性を高め、 単位体積あたりの電池容量を増加させることができる。 また、 体積平均粒径 (IV! V) を 2〇 以下とすることで、 正極活物質の反応面積 を高め、 電解質との界面を増加させることができるため、 出力特性を高める ことができる。
[0044] なお、 正極活物質の体積平均粒径 (IV! V) とは、 体積基準平均粒径 (IV! V ) を意味し、 たとえば、 レーザー光回折散乱式粒度分析計で測定した体積積 算値から求めることができる。
[0045] 本実施形態の正極活物質の比表面積は特に限定されないが、 比表面積が 0 . 7 2 / 9以上 2 . 1 01 2/ 9以下であることが好ましく、 〇. 7 2/ 9以 上 2 . 0 01 2 / 9以下であることがより好ましく、 〇. 8 2/ 9以上 1 . 7 2 / 9以下であることがさらに好ましい。
[0046] 正極活物質の比表面積を上記範囲とすることで、 電解質との接触面積を十 分に大きくすることができ、 !- 丨 イオンのインターカレーシヨン反応が生じ る反応場を広くとることができる。 このため、 局所的なリチウムの過剰脱離 を低減し、 酸素放出を特に抑制し、 熱安定性を特に高めることができる。
[0047] 具体的には、 正極活物質の比表面積を〇. 7 0^ / 9以上とすることで、 電 気化学反応場を十分に確保し、 局所的にリチウムの脱離が多くなる粒子が生 じることを抑制し、 熱安定性を特に高めることができる。 また、 正極活物質 〇 2020/175551 10 卩(:171? 2020 /007737
の比表面積を 2 . 1 0^ / 9以下とすることで、 電解質との反応性が過度に高 くなることを抑制し、 熱安定性を特に高めることができる。 正極活物質の既 述の粒度分布の広がりに加えて、 比表面積を上記範囲とすることで、 充電時 に酸素易放出層が形成されることを特に抑制することができる。
[0048] なお、 正極活物質の比表面積は、 例えば窒素ガス吸着による巳巳丁法によ り測定することができる。
[0049] また、 本実施形態の正極活物質のタップ密度についても特に限定されるも のではなく、 要求される性能等に応じて任意に選択することができる。 ただ し、 携帯電子機器の使用時間や電気自動車の走行距離を伸ばすために、 リチ ウムイオンニ次電池の高容量化は重要な課題となっている。 一方、 リチウム イオンニ次電池の電極の厚さは、 該電池全体のパッキングや電子伝導性の問 題から数ミクロン程度とすることが要求される。 このため、 正極活物質とし て高容量のものを使用するばかりでなく、 正極活物質の充填性を高め、 リチ ウムイオンニ次電池全体としての高容量化を図ることが求められている。
[0050] このような観点から、 本実施形態の正極活物質では、 充填性の指標である タップ密度が、 2 .
Figure imgf000012_0001
2 . 2 9 /〇〇! 3以上であることがより好ましい。
[0051 ] タップ密度を 2 . 0
Figure imgf000012_0002
以上とすることで、 充填性を特に高め、 リチ ウムイオンニ次電池全体の電池容量を特に高めることができる。 一方、 タッ プ密度の上限値は、 特に制限されるものではないが、 通常の製造条件での上 限は、 3 .
Figure imgf000012_0003
以下とするこ とが好ましい。
[0052] なお、 タップ密度とは、 」 1 3 1 2 5 0 4 ( 2 0 1 2 ) に基づき、 容 器に採取した試料粉末を、 1 〇〇回タッピングした後のかさ密度を表し、 振 とう比重測定器を用いて測定することができる。
[リチウムイオンニ次電池用正極活物質の製造方法]
次に、 本実施形態のリチウムイオンニ次電池用正極活物質の製造方法につ いて説明する。 〇 2020/175551 1 1 卩(:171? 2020 /007737
[0053] 本実施形態のリチウムイオンニ次電池用正極活物質の製造方法 (以下、 単 に 「正極活物質の製造方法」 とも記載する) は、 以下の工程を有することが できる。
[0054] 金属複合水酸化物を熱処理し、 熱処理金属複合化合物を得る熱処理工程。 熱処理金属複合化合物と、 リチウム化合物とを混合して、 リチウム混合物 を形成する混合工程。
混合工程で形成されたリチウム混合物を、 酸化性雰囲気中、 6 5 0 °〇以上 9 0 0 °〇以下の温度で焼成する焼成工程。
熱処理工程は、 金属複合水酸化物を 1 0 5 °〇以上 4 5 0 °〇以下で熱処理を 行う第 1熱処理ステップと、 第 1熱処理ステップ後、 5 0 0 °〇以上 7 5 0 °〇 以下でさらに熱処理を行う第 2熱処理ステップとを有することができる。
[0055] なお、 金属複合水酸化物は、 ニッケル (1\1 丨) と、 コバルト (〇〇) と、 元素 IV! (1\/〇 と、 を物質量の比で 1\1 丨 : 〇〇 : 1\/1 = 1 — X—ソ : 父 : ソの割 合で含有することができる。 ただし、 上記式中の X、 ソは、 0£父£0. 3 5、 0 £ V £〇. 3 5を満たすことが好ましい。 また、 元素 1\/1は1\/1 9、 0 3
Figure imgf000013_0001
から選ばれる少なくとも 1種の元素とすることができる。
[0056] さらに、 焼成工程後に得られるリチウムイオンニ次電池用正極活物質の粒 度分布の広がりを示す 〔 ( 9 0 _ 1 0) /体積平均粒径〕 を 1 . 2 5以 下とすることができる。
[0057] 以下、 本実施形態のリチウムイオンニ次電池用正極活物質の製造方法をエ 程ごとに詳細に説明する。 なお、 本実施形態の正極活物質の製造方法により 、 既述の正極活物質を製造することができる。 このため、 既に説明した事項 については一部説明を省略する。
( 1) 熱処理工程
本実施形態の正極活物質の製造方法は、 金属複合水酸化物を熱処理し、 熱 処理金属複合化合物とする熱処理工程を有することができる。 ここで、 熱処 〇 2020/175551 12 卩(:171? 2020 /007737
理工程で得られる熱処理金属複合化合物は、 熱処理工程において余剰水分を 除去された金属複合水酸化物のみならず、 熱処理工程により、 酸化物に転換 された金属複合酸化物や、 これらの混合物も含まれる。
[0058] 熱処理工程における熱処理条件は特に限定されないが、 2段階で熱処理を 実施することが好ましい。 例えば金属複合水酸化物を 1 0 5 °〇以上 4 5 0 °〇 以下で熱処理する第 1熱処理ステップと、 5 0 0 °〇以上 7 5 0 °〇以下で熱処 理する第 2熱処理ステップとを有することが好ましい。
[0059] 熱処理工程を実施することで、 金属複合水酸化物に含有される余剰水分を 低減、 除去し、 焼成工程後まで残留する水分を一定量まで減少させることが できる。 このため、 得られる正極活物質の組成のばらつきを抑制することが できる。
[0060] また、 熱処理工程を 2段階で実施することで、 金属複合水酸化物から水分 を段階的に除去することができるため、 焼成工程後に得られる正極活物質の 粒度分布の広がりを特に抑制することができる。
[0061 ] 第 1熱処理ステップにおいて、 4 5 0 °〇以下で熱処理することで、 金属複 合水酸化物内の余剰水分が急激に低減されることを抑制することができ、 焼 成工程後に得られる正極活物質の粒度分布の広がりを抑制することができる 。 ただし、 第 1熱処理ステップでの熱処理温度が低すぎると、 第 1熱処理ス テップにおいて水分を殆ど低減できなくなる恐れがあるため、 1 0 5 °〇以上 で熱処理を行うことが好ましく、 1 2 0 °〇以上で熱処理を行うことがより好 ましい。
[0062] 上述のように、 第 2熱処理ステップにおいて、 5 0 0 °〇以上で熱処理する ことで、 金属複合水酸化物内の余剰水分を十分に除去し、 焼成工程後に得ら れる正極活物質の組成のばらつきを特に抑制することができる。 ただし、 7 5 0 °〇を超えて、 過度に熱処理温度を高く しても、 効果に大きな差異はなく 、 コストを低減する観点から、 7 5 0 °〇以下とすることが好ましい。
[0063] なお、 熱処理工程では、 焼成工程後に得られる正極活物質中の各金属成分 の原子数や、 !- 丨の原子数の割合にばらつきが生じない程度に水分が除去で 〇 2020/175551 13 卩(:171? 2020 /007737
きればよいので、 必ずしもすべての金属複合水酸化物を酸化物に転換する必 要はない。
[0064] なお、 熱処理条件による熱処理金属複合化合物に含有される金属成分を分 析によって予め求めておき、 リチウム化合物との混合比を決めておくことで 、 上述したばらつきをより抑制することができる。
[0065] 熱処理を行う雰囲気は特に制限されるものではなく、 非還元性雰囲気であ ればよいが、 簡易的に行える空気気流中で行うことが好ましい。
[0066] 熱処理工程に供する金属複合水酸化物は、 ニッケル (1\1 丨) と、 コバルト (〇〇) と、 元素 IV!
Figure imgf000015_0001
と、 を物質量の比で 1\1 丨 : 〇〇 : 1\/1 = 1 — X—ソ
: X : ソの割合で含有することができる。 なお、 X、 ソや、 元素 IV!について は既に説明したため、 ここでは説明を省略する。 また、 X、 Vは正極活物質 において説明した X、 ソと同様のより好ましい範囲を取ることもできる。
[0067] 金属複合水酸化物は、 例えば一般式
Figure imgf000015_0002
(〇1~1) 2 + «で表 すことができる。 なお、 上記式中の X、 ソについては、 既述の範囲を充足す ることが好ましい。 また、 《は、 例えば一〇. 2 £ a £〇. 2であることが 好ましい。
(2) 混合工程
混合工程では、 上述のように熱処理金属複合化合物と、 リチウム化合物と を混合して、 リチウム混合物を得ることができる。
[0068] 混合工程において、 熱処理金属複合化合物と、 リチウム化合物とを混合す る割合は特に限定されず、 製造する正極活物質に要求される組成等に応じて 任意に選択することができる。 例えば混合工程で得られる、 リチウム混合物 中のリチウム以外の金属原子、 具体的には、 ニッケル、 コバルト、 および元 素 IV!との原子数の和
Figure imgf000015_0003
と、 リチウムの原子数 (!_ 丨) との比 (!_ 丨 /
IV! 6) が、 〇. 9 5以上·! . 5以下となるように熱処理金属複合化合物と、 リチウム化合物とを混合することが好ましい。 特に、 上記!- 丨 /1\/^が 1 .
0以上·! . 2以下となるように混合することがより好ましく、 1 . 0以上 1 . 1以下となるように混合することがさらに好ましい。 〇 2020/175551 14 卩(:171? 2020 /007737
[0069] これは、 焼成工程の前後では!- 丨 /IV! 6はほとんど変化しないので、 混合 工程で得られるリチウム混合物の 1_ 丨 / IV! 6が、 目的とする正極活物質の 1_
I /IV! 6となるように、 各原料を混合することが好ましいからである。
[0070] 混合工程で供するリチウム化合物は特に制限されないが、 入手の容易性か ら、 水酸化リチウム、 硝酸リチウム、 炭酸リチウムから選択された 1種類以 上を用いることが好ましい。 特に、 取り扱いの容易さや品質の安定性を考慮 すると、 水酸化リチウムまたは炭酸リチウムを用いることがより好ましい。
[0071 ] 熱処理金属複合化合物とリチウム化合物とは、 微粉が生じない程度に十分 に混合することが好ましい。 混合が不十分であると、 個々の粒子間で !_ 丨 / IV! 6にばらつきが生じ、 十分な電池特性を得ることができない場合があるた めである。 なお、 混合には、 一般的な混合機を使用することができる。 例え ば、 シエーカーミキサ、 レーディゲミキサ、 ジュリアミキサ、 Vブレンダな どを用いることができる。
( 3 ) 焼成工程
焼成工程は、 混合工程で得られたリチウム混合物を所定条件の下で焼成し 、 熱処理金属複合化合物中にリチウムを拡散させて、 リチウム金属複合酸化 物を得る工程である。
[0072] なお、 焼成工程に用いられる炉は、 特に制限されることはなく、 大気ない しは酸素気流中でリチウム混合物を加熱できるものであればよい。 ただし、 炉内の雰囲気を均一に保つ観点から、 ガス発生がない電気炉が好ましく、 バ ツチ式あるいは連続式の電気炉のいずれも好適に用いることができる。 この 点については、 既述の熱処理工程や、 後述する仮焼工程に用いる炉について も同様である。
[0073] 以下、 焼成工程の好適な焼成条件について説明する。
( 3 - 1 ) 焼成温度
リチウム混合物の焼成温度は、 6 5 0 °〇以上 9 0 0 °〇以下とすることが好 ましく、 6 5 0 °〇以上 8 5 0 °〇以下とすることがより好ましい。 焼成温度を 6 5 0 °〇以上とすることで、 熱処理金属複合化合物中にリチウムを十分に拡 〇 2020/175551 15 卩(:171? 2020 /007737
散することができ、 余剰のリチウムや、 未反応の熱処理金属複合化合物が残 存することを抑制できる。 また、 得られるリチウム金属複合酸化物の結晶性 を高めることができるため好ましい。
[0074] また、 焼成温度を 9 0 0 °〇以下とすることで、 リチウム金属複合酸化物の 粒子間が激しく焼結したり、 異常粒成長が引き起こされることを抑制し、 不 定形な粗大粒子の発生を抑制できる。
[0075] 焼成工程における昇温速度は特に限定されないが、 例えば 2 °〇/分以上 1
0で/分以下とすることが好ましく、 3で/分以上 8で/分以下とすること がより好ましい。
[0076] また、 焼成工程中、 リチウム化合物の融点付近の温度で一旦昇温を止め、 保持することが好ましく、 この場合 1時間以上 5時間以下保持することが好 ましく、 2時間以上 5時間以下保持することがより好ましい。 リチウム化合 物の融点付近の温度で一旦昇温を止め、 保持することで、 熱処理金属複合化 合物とリチウム化合物とを、 より均一に反応させることができる。
( 3 - 2 ) 焼成時間
焼成時間のうち、 上述した焼成温度での保持時間についても特に限定され ないが、 例えば 2時間以上とすることが好ましく、 4時間以上とすることが より好ましい。 焼成温度における焼成温度での保持時間を 2時間以上とする ことで、 金属複合酸化物中にリチウムを十分に拡散させ、 余剰のリチウムや 未反応の金属複合酸化物が残存することを抑制できる。 また、 得られるリチ ウム金属複合酸化物の結晶性を高めることができるため好ましい。
[0077] なお、 焼成時間の上限値は特に限定されないが、 生産性の観点から 4 8時 間以下であることが好ましい。
( 3 - 3 ) 冷却速度
なお、 上記焼成温度での保持終了後、 焼成温度からの冷却速度についても 特に限定されないが、 例えば焼成温度から 2 0 0 °〇までの冷却速度は 2 °〇/ 分以上 1 0 °〇 /分以下であることが好ましく、 3 °〇 /分以上 7 °〇 /分以下で あることがより好ましい。 冷却速度を上記範囲とすることで、 生産性を確保 \¥0 2020/175551 16 卩(:17 2020 /007737
しつつ、 匣鉢などの設備が、 急冷により破損することをより確実に防止でき る。
( 3 - 4 ) 焼成雰囲気
焼成時の雰囲気は、 酸化性雰囲気とすることが好ましく、 酸素濃度が 1 8 容量%以上 1 〇〇容量%以下の雰囲気とすることがより好ましい。 これは酸 素濃度を 1 8容量%以上とすることで、 得られるリチウム金属複合酸化物の 結晶性を特に高めることができるからである。 なお、 酸素以外の残部は特に 限定されないが、 例えば窒素や、 希ガス等の不活性ガスとすることができる 。 また、 係る酸素以外の残部には二酸化炭素や、 水蒸気等が含まれていても 良い。 焼成は、 例えば大気ないしは酸素気流中で行うことがさらに好ましい
[0078] 本実施形態の正極活物質の製造方法は、 上記熱処理工程や、 混合工程、 焼 成工程以外に任意の工程を有することもできる。 例えば焼成工程の前にリチ ウム混合物を仮焼する仮焼工程や、 焼成工程後に得られたリチウム金属複合 酸化物を解砕する解砕工程等を有することもできる。 以下、 これらの任意の 工程について説明する。
( 4 ) 仮焼工程
リチウム化合物として、 水酸化リチウムや炭酸リチウムを使用する場合に は、 混合工程後、 焼成工程の前に、 リチウム混合物を仮焼する仮焼工程を有 することが好ましい。
[0079] 仮焼工程の仮焼温度は特に限定されないが、 焼成工程における焼成温度よ りも低温、 かつ 3 5 0 °〇以上 8 0 0 °〇以下で仮焼することが好ましく、 4 5 〇 °〇以上 7 8 0 °〇以下で仮焼することがより好ましい。
[0080] 仮焼工程を実施することで、 熱処理金属複合化合物中に、 リチウムを十分 に拡散させることができ、 より均一なリチウム金属複合酸化物を得ることが できる。
[0081 ] なお、 仮焼温度での保持時間は、 1時間以上 1 0時間以下とすることが好 ましく、 3時間以上 6時間以下とすることがより好ましい。 〇 2020/175551 17 卩(:171? 2020 /007737
[0082] また、 仮焼工程における雰囲気は、 焼成工程と同様に、 酸化性雰囲気とす ることが好ましく、 酸素濃度が 1 8容量%以上 1 0 0容量%以下の雰囲気と することがより好ましい。
(5) 解砕工程
焼成工程によって得られたリチウム金属複合酸化物は、 凝集または軽度の 焼結が生じている場合がある。 このような場合には、 リチウム金属複合酸化 物の凝集体または焼結体を解砕することが好ましい。 これによって、 得られ る正極活物質の平均粒径や粒度分布を好適な範囲に調整することができる。 なお、 解砕とは、 焼成時に二次粒子間の焼結ネッキングなどにより生じた複 数の二次粒子からなる凝集体に、 機械的エネルギーを投入して、 二次粒子自 体をほとんど破壊することなく分離させて、 凝集体をほぐす操作を意味する
[0083] 解砕の方法としては、 公知の手段を用いることができ、 たとえば、 ピンミ ルやハンマーミルなどを使用することができる。 なお、 この際、 二次粒子を 破壊しないように解砕力を適切な範囲に調整することが好ましい。
[0084] また、 解砕工程において、 得られる正極活物質の粒度分布の広がりを示す 〔 ( 9 0 _ 1 0) /体積平均粒径〕 が 1 . 2 5以下となるように調整す ることもできる。 ここまで説明した熱処理工程、 混合工程、 焼成工程を既述 の条件で実施し、 解砕工程において得られる正極活物質の粒度分布の広がり を所定の範囲とすることで、 得られる正極活物質を充電した際に形成される 酸素易放出層の厚さを特に抑制することができる。
[リチウムイオンニ次電池]
本実施形態のリチウムイオンニ次電池 (以下、 「二次電池」 ともいう。 ) は、 既述の正極活物質を含む正極を有することができる。
[0085] 以下、 本実施形態の二次電池の一構成例について、 構成要素ごとにそれぞ れ説明する。 本実施形態の二次電池は、 例えば正極、 負極及び非水系電解質 を含み、 一般のリチウムイオンニ次電池と同様の構成要素から構成される。 なお、 以下で説明する実施形態は例示に過ぎず、 本実施形態のリチウムイオ 〇 2020/175551 18 卩(:171? 2020 /007737
ンニ次電池は、 下記実施形態をはじめとして、 当業者の知識に基づいて種々 の変更、 改良を施した形態で実施することができる。 また、 二次電池は、 そ の用途を特に限定するものではない。
(正極)
本実施形態の二次電池が有する正極は、 既述の正極活物質を含むことがで きる。
[0086] 以下に正極の製造方法の一例を説明する。 まず、 既述の正極活物質 (粉末 状) 、 導電材および結着剤 (バインダー) を混合して正極合材とし、 さらに 必要に応じて活性炭や、 粘度調整などの目的の溶剤を添加し、 これを混練し て正極合材ぺーストを作製することができる。
[0087] 正極合材中のそれぞれの材料の混合比は、 リチウムイオンニ次電池の性能 を決定する要素となるため、 用途に応じて、 調整することができる。 材料の 混合比は、 公知のリチウムイオンニ次電池の正極と同様とすることができ、 例えば、 溶剤を除いた正極合材の固形分の全質量を 1 〇〇質量%とした場合 、 正極活物質を 6 0質量%以上 9 5質量%以下、 導電材を 1質量%以上 2 0 質量%以下、 結着剤を 1質量%以上 2 0質量%以下の割合で含有することが できる。
[0088] 得られた正極合材ぺーストを、 例えば、 アルミニウム箔製の集電体の表面 に塗布し、 乾燥して溶剤を飛散させ、 シート状の正極が作製される。 必要に 応じ、 電極密度を高めるべく口ールプレス等により加圧することもできる。 このようにして得られたシート状の正極は、 目的とする電池に応じて適当な 大きさに裁断等し、 電池の作製に供することができる。
[0089] 導電材としては、 例えば、 黒鉛 (天然黒鉛、 人造黒鉛および膨張黒鉛など ) や、 アセチレンブラックやケッチェンブラック (登録商標) などの力ーボ ンブラック系材料などを用いることができる。
[0090] 結着剤 (バインダー) としては、 活物質粒子をつなぎ止める役割を果たす もので、 例えば、 ポリフッ化ビニリデン ( 〇 ) 、 ポリテトラフルオロ ェチレン ( 丁 巳) 、 フッ素ゴム、 ェチレンプロピレンジェンゴム、 スチ 〇 2020/175551 19 卩(:171? 2020 /007737
レンブタジエン、 セルロース系樹脂およびポリアクリル酸等から選択された 1種類以上を用いることができる。
[0091 ] 必要に応じ、 正極活物質、 導電材等を分散させて、 結着剤を溶解する溶剤 を正極合材に添加することもできる。 溶剤としては、 具体的には、 1\1 -メチ ルー 2—ピロリ ドンなどの有機溶剤を用いることができる。 また、 正極合材 には、 電気二重層容量を増加させるために、 活性炭を添加することもできる
[0092] 正極の作製方法は、 上述した例示のものに限られることなく、 他の方法に よってもよい。 例えば正極合材をプレス成形した後、 真空雰囲気下で乾燥す ることで製造することもできる。
(負極)
負極は、 金属リチウム、 リチウム合金等を用いることができる。 また、 負 極は、 リチウムイオンを吸蔵 ·脱離できる負極活物質に結着剤を混合し、 適 当な溶剤を加えてペースト状にした負極合材を、 銅等の金属箔集電体の表面 に塗布、 乾燥し、 必要に応じて電極密度を高めるべく圧縮して形成したもの を用いてもよい。
[0093] 負極活物質としては、 例えば、 天然黒鉛、 人造黒鉛およびフエノール樹脂 などの有機化合物焼成体、 およびコークスなどの炭素物質の粉状体を用いる ことができる。 この場合、 負極結着剤としては、 正極同様、 V 0 などの 含フッ素樹脂を用いることができ、 これらの活物質および結着剤を分散させ る溶剤としては、 1\1—メチルー 2—ピロリ ドンなどの有機溶剤を用いること ができる。
(セパレータ)
正極と負極との間には、 必要に応じてセパレータを挟み込んで配置するこ とができる。 セパレータは、 正極と負極とを分離し、 電解質を保持するもの であり、 公知のものを用いることができ、 例えば、 ポリエチレンやポリプロ ピレンなどの薄い膜で、 微小な孔を多数有する膜を用いることができる。
(非水系電解質) 〇 2020/175551 20 卩(:171? 2020 /007737
非水系電解質としては、 例えば非水系電解液を用いることができる。
[0094] 非水系電解液としては、 例えば支持塩としてのリチウム塩を有機溶媒に溶 解したものを用いることができる。 また、 非水系電解液として、 イオン液体 にリチウム塩が溶解したものを用いてもよい。 なお、 イオン液体とは、 リチ ウムイオン以外のカチオンおよびアニオンから構成され、 常温でも液体状の 塩をいう。
[0095] 有機溶媒としては、 エチレンカーボネート、 プロピレンカーボネート、 ブ チレンカーボネートおよびトリフルオロプロピレンカーボネートなどの環状 力ーボネートや、 ジエチルカーボネート、 ジメチルカーボネート、 エチルメ チルカーボネートおよびジプロピルカーボネートなどの鎖状力ーボネート、 さらにテトラヒドロフラン、 2 -メチルテトラヒドロフランおよびジメ トキ シエタンなどのエーテル化合物、 エチルメチルスルホン、 ブタンスルトンな どの硫黄化合物、 リン酸トリエチル、 リン酸トリオクチルなどのリン化合物 等から選ばれる 1種類を単独で用いてもよく、 2種類以上を混合して用いる こともできる。
[0096] 支持塩としては、 !_ I 6、 L \ B F ^ !_ I 〇 I 〇4、 !_ I 八 3 6、 !_
I (〇 3 3〇22、 およびそれらの複合塩などを用いることができる。 さ らに、 非水系電解液は、 ラジカル捕捉剤、 界面活性剤および難燃剤などを含 んでいてもよい。
[0097] また、 非水系電解質としては、 固体電解質を用いてもよい。 固体電解質は 、 高電圧に耐えうる性質を有する。 固体電解質としては、 無機固体電解質、 有機固体電解質が挙げられる。
[0098] 無機固体電解質としては、 酸化物系固体電解質、 硫化物系固体電解質等が 挙げられる。
[0099] 酸化物系固体電解質としては、 特に限定されず、 例えば酸素 (〇) を含有 し、 かつリチウムイオン伝導性と電子絶縁性とを有するものを好適に用いる ことができる。 酸化物系固体電解質としては、 例えば、 リン酸リチウム (!_
Figure imgf000022_0001
〇 2020/175551 21 卩(:171? 2020 /007737
1_ 1 23 1 〇3、 1 - 143 1 〇4_ 1 - 1 34、 1 - 143 1 〇4_ 1 - 1 3 V〇4、 1_ I £〇—巳 2325、 し 丨 2〇— 3 I 〇 2、 1— 丨 2〇—巳 23|-|〇、 1 _ 丨 八 I 丁 I 〇43 (0£乂£ 1) 、 !_ I 八 I
Figure imgf000023_0001
を用いることができる。
[0100] 硫化物系固体電解質としては、 特に限定されず、 例えば硫黄 ) を含有 し、 かつリチウムイオン伝導性と電子絶縁性とを有するものを好適に用いる !_
Figure imgf000023_0002
、 、 - 1_ 丨 23_3 丨 32、 1_ 丨 〇4_1_ 丨 23_3 丨 3、 1_ 丨 丨 _1_ 丨 23_ 2〇 5、 1_ 1 丨 一1 - 1 3?〇4-?235等が挙げられる。
[0101] なお、 無機固体電解質としては、 上記以外のものを用いてよく、 例えば、
1_ 丨 31\1、 1_ 丨 丨、 1_ 丨 31\1_1_ 丨 丨 _ I - 丨 〇 1~1等から選択される 1種類以上 を用いることができる。
[0102] 有機固体電解質としては、 イオン伝導性を示す高分子化合物であれば、 特 に限定されず、 例えば、 ポリエチレンオキシド、 ポリプロピレンオキシド、 これらの共重合体などを用いることができる。 また、 有機固体電解質は、 支 持塩 (リチウム塩) を含んでいてもよい。
(二次電池の形状、 構成)
以上のように説明してきた本実施形態のリチウムイオンニ次電池は、 円筒 形や積層形など、 種々の形状にすることができる。 いずれの形状を採る場合 であっても、 本実施形態の二次電池が非水系電解質として非水系電解液を用 いる場合であれば、 正極および負極を、 セパレータを介して積層させて電極 体とし、 得られた電極体に、 非水系電解液を含浸させ、 正極集電体と外部に 通ずる正極端子との間、 および、 負極集電体と外部に通ずる負極端子との間 〇 2020/175551 22 卩(:171? 2020 /007737
を、 集電用リードなどを用いて接続し、 電池ケースに密閉した構造とするこ とができる。
[01 03] なお、 既述の様に本実施形態の二次電池は非水系電解質として非水系電解 液を用いた形態に限定されるものではなく、 例えば固体の非水系電解質を用 いた二次電池、 すなわち全固体電池とすることもできる。 全固体電池とする 場合、 正極活物質以外の構成は必要に応じて変更することができる。
[0104] 本実施形態の二次電池は、 本実施形態の正極活物質を正極材料として用い た正極を備えているため、 熱安定性に優れる。 しかも、 従来のリチウムニッ ケル複合酸化物粒子からなる正極活物質を用いた二次電池との比較において も、 熱安定性において優れているといえる。
[01 05] 本実施形態の二次電池は、 上述のように熱安定性に優れ、 さらには電池容 量、 出力特性およびサイクル特性に優れており、 これらの特性が高いレベル で要求される小型携帯電子機器、 例えばノート型パーソナルコンピュータや 携帯電話などの電源に好適に利用することができる。 また、 本実施形態の二 次電池は、 安全性にも優れており、 小型化および高出力化が可能であるばか りでなく、 高価な保護回路を簡略することができるため、 搭載スペースに制 約を受ける輸送用機器の電源としても好適に利用することができる。
実施例
[01 06] 以下に、 実施例及び比較例によって本発明をさらに詳細に説明するが、 本 発明は、 これらの実施例によってなんら限定されるものではない。 なお、 以 下の実施例および比較例では、 特に断りがない限り、 正極活物質の作製には 、 和光純薬工業株式会社製試薬特級の各試料を使用した。
[実施例 1]
( 1) 正極活物質の作製
Figure imgf000024_0001
. . 2で表 わされる金属複合水酸化物を、 空気 (酸素濃度: 2 1容量%) 気流中、 4 0 0 °〇で 5時間熱処理し (第 1熱処理ステップ) 、 次いで 7 0 0 °〇で 5時間熱 処理した (第 2熱処理ステップ) 。 これにより、 熱処理金属複合化合物とし 〇 2020/175551 23 卩(:171? 2020 /007737
て、 一般式: 1^1 丨 〇. 90〇〇〇. 07八 丨 〇. 03〇で表わされる金属複合酸化物を 得た。
[0107] 次に、 熱処理工程で得られた金属複合酸化物と、 水酸化リチウムとを、 得 られるリチウム混合物中のリチウムの原子数 (!_ 丨) と、 リチウム以外の金 属の原子数
Figure imgf000025_0002
との比である!- 丨
Figure imgf000025_0001
が 1. 01 となるように、 秤量 し、 十分に混合し、 リチウム混合物を得た (混合工程) 。
[0108] 混合には、 シェーカーミキサ装置 (ウイ リー · エ バッコーフェン ( 八 巳) 社製丁
Figure imgf000025_0003
丁ソ 6丁 2〇) を用いた。
[0109] 混合工程で得られたリチウム混合物を、 酸素 (酸素濃度: 1 〇〇容量%) 気流中、 昇温速度を 3°〇/分として 750°〇まで昇温し、 750°〇で 6時間 保持することにより焼成した。 焼成後、 冷却速度を約 4 °〇/分として室温ま で冷却した (焼成工程) 。
[0110] 焼成工程後に得られた正極活物質は、 凝集または軽度の焼結が生じていた
。 このため、 この正極活物質を解砕し、 平均粒径および粒度分布を調整した (解砕工程) 。
(2) 正極活物質の評価
(2- 1) 組成
丨 〇 発光分光分析装置 (株式会社島津製作所製、 1 〇 巳_9000) を用いた分析により、 得られた正極活物質は、 一般式: !_ 丨 011\1 丨 〇. 90〇 〇0. 07八 I 〇. 032で表されるリチウム金属複合酸化物からなることが確認 できた。 正極活物質が含有するリチウム金属複合酸化物の二次粒子の断面を 3
Figure imgf000025_0004
により分析したところ、 八 丨が該二次粒子内に均一に分散し ていることを確認できた。 以下の他の実施例についても同様であった。
(2-2) 体積平均粒径および粒度分布
レーザー光回折散乱式粒度分析計 (マイクロトラック ·ベル株式会社製、 マイクロトラック 1\/1丁 3300巳乂 丨 丨) を用いて、 正極活物質の体積平均 粒径 ( IV! V) を測定するとともに、 1 0および 90を測定し、 粒度分布 の広がりを示す指標である 〔 ( 90_ 1 0) /体積平均粒径〕 を算出し 〇 2020/175551 24 卩(:171? 2020 /007737
た。
[0111] この結果、 体積平均粒径 (IV! V) は 1 1. 8 であり、 〔 ( 90_
1 0) /体積平均粒径〕 は 1. 00であることが確認された。
(2-3) 比表面積およびタップ密度
流動方式ガス吸着法比表面積測定装置 (株式会社マウンテック製、 マック ソープ 1 200シリーズ) により比表面積を、 タッピングマシン (株式会社 蔵持科学器械製作所、 <[¾3_406) によりタップ密度を、 それぞれ測定 した。 この結果、 比表面積は 1. 34
Figure imgf000026_0001
であり、 タップ密度は 2. 85
9 /〇 013であることが確認された。
[0112] 比表面積は窒素ガス吸着による巳巳丁法により測定を行った。 タップ密度 は」 丨 3 I 2504 (201 2) に基づき、 容器に採取した試料粉末を
1 00回タッビングした後のかさ密度を測定することで求めた。
(3) リチウムイオンニ次電池の作製
得られた正極活物質を用いて、 2032型コイン電池を作製した。
[0113] 図 1 を用いて、 作製したコイン電池の構成について説明する。 図 1はコイ ン電池の断面構成図を模式的に示している。
[0114] 図 1 に示す様に、 このコイン電池 1 0は、 ケース 1 1 と、 このケース 1 1 内に収容された電極 1 2とから構成されている。
[0115] ケース 1 1は、 中空かつ一端が開口された正極缶 1 1 1 と、 この正極缶 1
1 1の開口部に配置される負極缶 1 1 2とを有しており、 負極缶 1 1 2を正 極缶 1 1 1の開口部に配置すると、 負極缶 1 1 2と正極缶 1 1 1 との間に電 極 1 2を収容する空間が形成されるように構成されている。
[0116] 電極 1 2は、 正極 1 2 1、 セパレータ 1 22および負極 1 23からなり、 この順で並ぶように積層されており、 正極 1 2 1が正極缶 1 1 1の内面に接 触し、 負極 1 23が負極缶 1 1 2の内面に接触するようにケース 1 1 に収容 されている。
[0117] なお、 ケース 1 1は、 ガスケッ ト 1 1 3を備えており、 このガスケッ ト 1
1 3によって、 正極缶 1 1 1 と負極缶 1 1 2との間が電気的に絶縁状態を維 持するように固定されている。 また、 ガスケッ ト 1 1 3は、 正極缶 1 1 1 と 負極缶 1 1 2との隙間を密封して、 ケース 1 1内と外部との間を気密、 液密 に遮断する機能も有している。
[0118] このコイン電池 1 0を、 以下のようにして作製した。
[0119] まず、 正極活物質 52. 5 m gと、 アセチレンブラック 1 5 m gと、 P T
E E 7. 5 m gとを混合し、 1 00 M P aの圧力で、 直径 1 1 m m、 厚さ 1 00 Mmにプレス成形した後、 真空乾燥機中、 1 20°Cで 1 2時間乾燥する ことにより、 正極 1 2 1 を作製した。
[0120] 次に、 この正極 1 2 1 を用いて 2032型コイン電池 1 0を、 露点が一 8
0°Cに管理された A r雰囲気のグローブボックス内で作製した。 この 203 2型コイン電池の負極 1 23には、 直径 1 7 mm、 厚さ 1 mmのリチウム金 属を用い、 電解液には、 1 Mの L i C 丨 〇 4を支持電解質とするエチレンカー ボネート (EC) とジエチルカーボネート (D EC) の等量混合液 (富山薬 品工業株式会社製) を用いた。 また、 セパレータ 1 22には、 膜厚 25 Mm のポリエチレン多孔膜を用いた。
(4) リチウムイオンニ次電池の評価
(4- 1 ) 初期放電容量
2032型コイン電池を作製してから 24時間程度放置し、 開回路電圧〇 C V (O p e n C i r c u i t Vo l t a g e) が安定した後、 正極に 対する電流密度を〇. 1 m A/c m2として、 カッ トオフ電圧が 4. 3Vとな るまで充電し、 1時間の休止後、 カッ トオフ電圧が 3. 0Vになるまで放電 したときの放電容量を測定する充放電試験を行ない、 初期放電容量を求めた 。 この結果、 初期放電容量は、 2 1 5. 8mA h/gであることが確認され た。 なお、 初期放電容量の測定には、 マルチチャンネル電圧/電流発生器 ( 株式会社アドバンテスト製、 R 674 1 A) を用いた。
(4 - 2) 熱安定性
正極活物質の熱安定性評価は、 正極活物質を過充電状態とし、 加熱するこ とで放出される酸素量の定量により行った。 上記 2032型コイン電池を作 〇 2020/175551 26 卩(:171? 2020 /007737
製し、 カッ トオフ電圧 4. 3 まで 0. 2〇レートで〇〇〇 V充電 (定電流 —定電圧充電) した。 その後、 コイン電池を解体し、 短絡しないよう慎重に 正極のみ取り出して、 口1\/1〇 (ジメチルカーボネート) で洗浄し、 乾燥した 。 乾燥後の正極活物質をおよそ 2 9量りとり、 ガスクロマトグラフ質量分 析計 (〇〇1\/13、 島津製作所、 0 ?-201 0 丨 1_| 3) を用いて、 昇温速 度 5°〇/〇1 丨 nで室温から 450°〇まで昇温した。 キャリアガスにはへリウ ムを用いた。 加熱時に発生した酸素 (01/2 = 32) の発生挙動を測定し、 得られた最大酸素発生ピーク高さとピーク面積から酸素発生量の半定量を行 い、 これらを熱安定性の評価指標とした。 なお、 酸素発生量の半定量値は、 純酸素ガスを標準試料として 0〇1\/13に注入し、 その測定結果から得た検量 線を外揷して算出した。 そして、 キャリアガスであるヘリウムに対する酸素 ガスの質量割合を算出し、 酸素放出量とした。 この結果、 8. 0質量%の酸 素放出量が確認された。
(4-3) 酸素易放出層の厚み
充電時の正極活物質粒子における酸素易放出層の厚みの評価は、 熱安定性 試験の場合と同様にして上記 2032型コイン電池を充電後、 該コイン電池 を解体し、 短絡しないように正極のみを取り出したのち、 正極を樹脂に埋め 込み、 収束イオンビーム加工によって断面観察可能な状態とした上で、 走査 型透過電子顕微鏡 (3丁巳 IV!) (日立ハイテクノロジーズ社製、
Figure imgf000028_0001
00八) に搭載された電子エネルギー損失分光装置 (巳巳 1_3) である巳 1_ V - 2000形エレメンツビユーにより酸素易放出層の厚みを評価した。
[0121] なお、 酸素易放出層の厚みを評価するに当っては、 二次粒子径が正極活物 質の体積平均粒径の 2 / 3以下となるリチウム金属複合酸化物粒子を選択し た。 そして、 該粒子について、 粒子表面から中心に向かって、 直径方向に沿 って一定の間隔で巳巳 !_ 3によるスぺクトルを測定し、 〇一<端において 5 306 V付近のピーク ( 1 3 I) と 5456 V付近のピーク (2 n〇〇 との 強度比 (1 s t/2 n d) が〇. 9以下となる領域の、 粒子表面からの厚み を測定することで、 酸素易放出層の厚みを求めた。 なお、 酸素易放出層の厚 〇 2020/175551 27 卩(:171? 2020 /007737
みを評価するリチウム金属複合酸化物粒子を選択する際には、 リチウム金属 複合酸化物粒子に外接する円の直径を、 該リチウム金属複合酸化物粒子の二 次粒子径とした。 その結果、 酸素易放出層の厚みは 4 0
Figure imgf000029_0001
であった。
[0122] 結果を表 1 にまとめて示す。
[実施例 2 ]
解砕工程において、 〔 ( 9 0 _ 1 0) /体積平均粒径〕 が 1 . 1 8と なるよう、 粒度分布を調整したこと以外は、 実施例 1 と同様にして正極活物 質および二次電池を得て、 その評価を行った。 その結果を表 1 に示す。
[実施例 3 ]
解砕工程において、 〔 ( 9 0 _ 1 0) /体積平均粒径〕 が〇. 8 5と なるよう、 粒度分布を調整したこと以外は、 実施例 1 と同様にして、 正極活 物質および二次電池を得て、 その評価を行った。 その結果を表 1 に示す。
[実施例 4 ]
解砕工程において、 〔 ( 9 0 _ 1 0) /体積平均粒径〕 が〇. 5 0と なるよう、 粒度分布を調整したこと以外は、 実施例 1 と同様にして、 正極活 物質および二次電池を得て、 その評価を行った。 その結果を表 1 に示す。
[比較例 1 ]
解砕工程において、 〔 ( 9 0 _ 1 0) /体積平均粒径〕 が 1 . 3 6と なるよう、 粒度分布を調整したこと以外は、 実施例 1 と同様にして、 正極活 物質および二次電池を得て、 その評価を行った。 その結果を表 1 に示す。
[0123]
〔¾二
Figure imgf000030_0001
〇 2020/175551 29 卩(:171? 2020 /007737
表 1 に示した結果によると、 酸素易放出層の厚みが 2 0 0 01以下であり 、 〔 ( 9 0 _ 1 0) /体積平均粒径〕 が 1 . 2 5以下である実施例 1〜 実施例 4では酸素放出量が 1 5質量%以下となっており、 充電状態での酸素 放出を十分に抑制できていることを確認できた。 すなわち、 リチウムイオン 二次電池に用いた際に、 熱安定性に優れた正極活物質を得られていることを 確認できた。
以上にリチウムイオンニ次電池用正極活物質、 リチウムイオンニ次電池用 正極活物質の製造方法、 リチウムイオンニ次電池を、 実施形態および実施例 等で説明したが、 本発明は上記実施形態および実施例等に限定されない。 特 許請求の範囲に記載された本発明の要旨の範囲内において、 種々の変形、 変 更が可能である。
本出願は、 2 0 1 9年 2月 2 6日に日本国特許庁に出願された特願 2 0 1 9— 0 3 3 3 2 4号に基づく優先権を主張するものであり、 特願 2 0 1 9— 0 3 3 3 2 4号の全内容を本国際出願に援用する。

Claims

〇 2020/175551 30 卩(:171? 2020 /007737 請求の範囲
[請求項 1] リチウム金属複合酸化物を含有するリチウムイオンニ次電池用正極 活物質であって、
前記リチウム金属複合酸化物は、 リチウム (!_ 丨) と、 ニッケル ( 1\1 I) と、 コバルト (〇〇) と、 元素 IV! (IV!) と、 を物質量の比で !_
I
Figure imgf000032_0001
: 〇〇 : 1\/1= 1 +3 : 1 —父一7 : 父 : 7 (ただし、 一 0.
〇 5£3£〇. 50、 0£父£〇. 35、 0£ V £〇. 35、 前記元 素1\/1は IV! 9、 〇 3、 八 I、 3 I , 6、 〇 「、 IV!门、 V、 IV!〇、 、
Figure imgf000032_0002
丁 し 「、 丁 3から選ばれる少なくとも 1種の元素) の割合 で含有し、
4. 3 ( V 3. !_ 丨 +/!_ 丨) 充電時の前記リチウム金属複合酸 化物の粒子断面において、 前記粒子の表面から中心に向かって 3丁巳 M-E E !_ 3で線分析を行った場合に、 〇一 <端において 5306 V 付近のピーク ( 1 3 I) と 5456 V付近 (2 n〇〇 のピークとの強 度比 (1 s t/2 n d) が〇. 9以下となる酸素易放出層の厚みが 2 00 〇!以下であり、
粒度分布の広がりを示す 〔 ( 90_ 1 0) /体積平均粒径〕 が 1. 25以下であるリチウムイオンニ次電池用正極活物質。
[請求項 2] 前記元素 IV!は、 前記リチウム金属複合酸化物の二次粒子の内部に均 —に分布しているか、 前記二次粒子の表面を均一に被覆しているかの いずれか、 もしくは両方である請求項 1 に記載のリチウムイオンニ次 電池用正極活物質。
[請求項 3] 金属複合水酸化物を熱処理し、 熱処理金属複合化合物を得る熱処理 工程と、
熱処理金属複合化合物と、 リチウム化合物とを混合して、 リチウム 混合物を形成する混合工程と、
前記混合工程で形成された前記リチウム混合物を、 酸化性雰囲気中 、 650°〇以上 900°〇以下の温度で焼成する焼成工程とを有し、 〇 2020/175551 31 卩(:171? 2020 /007737
前記熱処理工程は、 前記金属複合水酸化物を 1 0 5 °〇以上 4 5 0 °〇 以下で熱処理を行う第 1熱処理ステップと、 第 1熱処理ステップ後、
5 0 0 °〇以上 7 5 0 °〇以下でさらに熱処理を行う第 2熱処理ステップ とを有し、
前記金属複合水酸化物は、 ニッケル (1\1 丨) と、 コバルト (〇〇) と、 元素 IV! (IV!) と、 を物質量の比で 1\! 丨
Figure imgf000033_0001
X : V (ただし、 0 £父£〇. 3 5、 0 £ V £〇. 3 5、 前記元素 IV!
Figure imgf000033_0002
、 丁 し 「、 丁 3から選ばれる少なくとも 1種の元素) の割合で含 有し、
前記焼成工程後に得られるリチウムイオンニ次電池用正極活物質の 粒度分布の広がりを示す 〔 ( 9 0 _ 1 0) /体積平均粒径〕 が 1 . 2 5以下であるリチウムイオンニ次電池用正極活物質の製造方法。
[請求項 4] 請求項 1 または請求項 2に記載のリチウムイオンニ次電池用正極活 物質を含む正極を有するリチウムイオンニ次電池。
PCT/JP2020/007737 2019-02-26 2020-02-26 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池 WO2020175551A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080016032.4A CN113474297A (zh) 2019-02-26 2020-02-26 锂离子二次电池用正极活性物质、锂离子二次电池用正极活性物质的制造方法、锂离子二次电池
US17/433,379 US20220140337A1 (en) 2019-02-26 2020-02-26 Positive electrode active material for lithium ion secondary battery, method of manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2021502315A JP7164006B2 (ja) 2019-02-26 2020-02-26 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-033324 2019-02-26
JP2019033324 2019-02-26

Publications (1)

Publication Number Publication Date
WO2020175551A1 true WO2020175551A1 (ja) 2020-09-03

Family

ID=72238335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007737 WO2020175551A1 (ja) 2019-02-26 2020-02-26 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池

Country Status (4)

Country Link
US (1) US20220140337A1 (ja)
JP (1) JP7164006B2 (ja)
CN (1) CN113474297A (ja)
WO (1) WO2020175551A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011008950A (ja) * 2009-06-23 2011-01-13 Toyota Central R&D Labs Inc リチウム二次電池用活物質、リチウム二次電池及びリチウム二次電池用活物質の製造方法
JP2013065467A (ja) * 2011-09-16 2013-04-11 Panasonic Corp リチウムイオン二次電池
WO2018043515A1 (ja) * 2016-08-29 2018-03-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池
JP2018129228A (ja) * 2017-02-09 2018-08-16 トヨタ自動車株式会社 正極活物質とそれを用いたリチウム二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4807467B1 (ja) * 2010-07-23 2011-11-02 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法および非水系電解質二次電池
JP5741932B2 (ja) * 2011-06-01 2015-07-01 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の前駆体となる遷移金属複合水酸化物とその製造方法、及び非水系電解質二次電池用正極活物質の製造方法
JP5971109B2 (ja) * 2011-12-20 2016-08-17 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP6244713B2 (ja) * 2013-07-24 2017-12-13 住友金属鉱山株式会社 非水電解質二次電池用正極活物質の製造方法
JP6252010B2 (ja) * 2013-07-24 2017-12-27 住友金属鉱山株式会社 非水電解質二次電池用正極活物質およびその製造方法、並びに、非水電解質二次電池
JP6090609B2 (ja) * 2014-11-28 2017-03-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
EP3261158A4 (en) * 2015-02-17 2018-08-08 Toda Kogyo Corp. Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP6555636B2 (ja) * 2015-03-03 2019-08-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法
JP6536939B2 (ja) * 2015-03-05 2019-07-03 住友金属鉱山株式会社 非水系電解液二次電池用正極活物質及びそれを用いた非水系電解液二次電池
CN108886144B (zh) * 2016-03-30 2022-03-04 巴斯夫户田电池材料有限公司 用于非水电解质二次电池的正极活性物质及其制造方法、以及使用其的非水电解质二次电池
JP6879710B2 (ja) * 2016-10-31 2021-06-02 住友化学株式会社 リチウム二次電池用正極及びリチウム二次電池
JP6944641B2 (ja) * 2017-04-24 2021-10-06 トヨタ自動車株式会社 リチウムイオン二次電池およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011008950A (ja) * 2009-06-23 2011-01-13 Toyota Central R&D Labs Inc リチウム二次電池用活物質、リチウム二次電池及びリチウム二次電池用活物質の製造方法
JP2013065467A (ja) * 2011-09-16 2013-04-11 Panasonic Corp リチウムイオン二次電池
WO2018043515A1 (ja) * 2016-08-29 2018-03-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池
JP2018129228A (ja) * 2017-02-09 2018-08-16 トヨタ自動車株式会社 正極活物質とそれを用いたリチウム二次電池

Also Published As

Publication number Publication date
JPWO2020175551A1 (ja) 2021-12-23
JP7164006B2 (ja) 2022-11-01
US20220140337A1 (en) 2022-05-05
CN113474297A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
KR101675208B1 (ko) 비수계 전해질 이차 전지용 양극 재료와 그의 제조 방법, 및 이 양극 재료를 이용한 비수계 전해질 이차 전지
KR101630209B1 (ko) 양극 활물질, 그를 갖는 리튬이차전지 및 그의 제조 방법
JP2016115658A (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
WO2016171051A1 (ja) 非水系電解質二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系電解質二次電池
JP2010199001A (ja) リチウムイオン二次電池用正極材料及びそれを用いたリチウムイオン二次電池
JP2020004506A (ja) リチウムイオン二次電池用の正極活物質とその製造方法、およびチウムイオン二次電池
CN111770896A (zh) 金属复合氢氧化物及其制造方法、非水电解质二次电池用正极活性物质及其制造方法、以及非水电解质二次电池
CN111741928A (zh) 金属复合氢氧化物及其制造方法、非水电解质二次电池用正极活性物质及其制造方法、以及非水电解质二次电池
JP2020129498A (ja) リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池
JP2020035605A (ja) リチウムイオン二次電池用正極活物質の製造方法、およびリチウムイオン二次電池の製造方法
JP2023093555A (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JP2016051548A (ja) 非水系電解質二次電池用正極材料とその製造方法、および該正極材料を用いた非水系電解質二次電池
JP7226521B2 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JP2020123494A (ja) リチウムイオン二次電池用正極活物質およびその製造方法と、リチウムイオン二次電池
CN108242537B (zh) 非水系二次电池用正极材料、非水系二次电池及非水系二次电池用正极材料的制造方法
JP7173275B2 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
WO2020175551A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JP7031150B2 (ja) 非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質の製造方法、および該正極活物質を用いた非水系電解質二次電池
JPWO2019163847A1 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP2020123493A (ja) リチウムイオン二次電池用正極活物質およびその製造方法と、リチウムイオン二次電池
JP6652744B2 (ja) 非水電解質二次電池用セパレータ、および非水電解質二次電池
WO2015037111A1 (ja) リチウムイオン二次電池用正極活物質およびそれを用いたリチウムイオン二次電池
WO2015019483A1 (ja) 非水系二次電池用正極活物質、それを用いた非水系二次電池用正極、非水系二次電池
JP2016058334A (ja) リチウム二次電池用正極材料
JP2016225096A (ja) 非水系電解質二次電池用電解液、および該電解液を用いた非水系電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502315

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762618

Country of ref document: EP

Kind code of ref document: A1