WO2015037111A1 - リチウムイオン二次電池用正極活物質およびそれを用いたリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極活物質およびそれを用いたリチウムイオン二次電池 Download PDF

Info

Publication number
WO2015037111A1
WO2015037111A1 PCT/JP2013/074787 JP2013074787W WO2015037111A1 WO 2015037111 A1 WO2015037111 A1 WO 2015037111A1 JP 2013074787 W JP2013074787 W JP 2013074787W WO 2015037111 A1 WO2015037111 A1 WO 2015037111A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
active material
secondary battery
positive electrode
lithium ion
Prior art date
Application number
PCT/JP2013/074787
Other languages
English (en)
French (fr)
Inventor
小西 宏明
章 軍司
達哉 遠山
孝亮 馮
翔 古月
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/074787 priority Critical patent/WO2015037111A1/ja
Publication of WO2015037111A1 publication Critical patent/WO2015037111A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium ion secondary battery and a lithium ion secondary battery using the same.
  • Lithium ion secondary batteries are advantageous for miniaturization because they have a higher energy density per weight than secondary batteries such as nickel hydrogen batteries and lead batteries, and they are widely used in small electronic devices such as portable personal computers and mobile phones. It is used.
  • applications of lithium ion secondary batteries have been expanded to large-sized electric devices (for example, automotive power sources such as HEVs (hybrid vehicles) and EVs (electric vehicles), and power storage power sources).
  • HEVs hybrid vehicles
  • EVs electric vehicles
  • power storage power sources power sources
  • the absolute volume is increased. It is important to ensure higher security.
  • a layered solid solution represented by Li 2 MnO 3 -LiMO 2 (M is a transition metal element such as Co, Ni, or Mn) is a positive electrode active material which can be expected to have a high capacity.
  • Layered solid solution solidifies high capacity but electrochemically inactive Li 2 MnO 3 and small capacity but electrochemically active LiMO 2 to maintain high cycle characteristics while extracting high capacity It is a thing.
  • the layered solid solution may be expressed as a composition Li 1 + x M 1-x ' O 2 in which Li is enriched in the layered oxide positive electrode active material.
  • Patent Document 1 JP 2011-71090, in order to improve the cycle characteristics at high charging voltage, wherein the positive electrode active material, x Li [Li 1/3 Mn 2 /3-q Nb q] O 2 ⁇ (1-x) LiM 1-r Nb r O 2 (0 ⁇ x ⁇ 1, 0 ⁇ xq + (1-x) r 0.3 0.3, 0 q q 0.3 0.3, 0 r r 0 0
  • a lithium-containing secondary metal battery characterized in that it is a Li-containing transition metal oxide containing niobium represented by M.3, M: at least one element selected from the group consisting of Ni, Co, and Mn); ing.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2005-235628 has a general formula Li [Li x Mn 1 -x y z Ni y Z z ] O 2 (I) (I) for the purpose of increasing energy density.
  • Middle Z is at least one of elements selected from V, Nb, Mo, Ru, W, Si and Ti, 0 ⁇ z ⁇ 0.2, 0.1 ⁇ x ⁇ 0.3, 0.1 ⁇ y
  • a positive electrode for a lithium secondary battery characterized by including, as an active material, a complex oxide having a monoclinic structure represented by ⁇ 0.7, 0.2 ⁇ x + y + z ⁇ 1).
  • the layered solid solution is apt to release oxygen as the structure collapses because the stability of the crystal structure is relatively low as compared with the layered compound represented by LiMO 2 .
  • Oxygen is a combustion-supporting gas, and oxygen is released into the battery, which may react with the organic electrolyte as the temperature rises.
  • oxygen is released, the pressure inside the battery increases, and if it becomes abnormal pressure, the battery may be damaged. Therefore, it is desirable to suppress the release of oxygen and improve the thermal stability.
  • an object of the present invention is to provide a lithium ion secondary battery in which both of capacity and safety items are balanced at a higher level than in the case of small electronic devices, in order to be applied to large electric devices. And a positive electrode active material for realizing such a lithium ion secondary battery.
  • a positive electrode active material for a lithium ion secondary battery is prepared by using a composition formula Li x Ni y M z Mn 0.8-y-z O 2- ⁇ (0.95 ⁇ x ⁇ 1.1, 0.2 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.06, ⁇ 1 ⁇ ⁇ ⁇ 1, M is at least one selected from metal elements having a valence of 5 or more And a lithium transition metal oxide represented by
  • FIG. 1 is a graph showing the relationship between the amount of oxygen released and the temperature when mass analysis is performed by raising the temperature of the positive electrode from room temperature to 400 ° C. in vacuum. More specifically, FIG. 1 shows a layered solid solution represented by the composition formula Li 1.2 Ni 0.133 Mn 0.533 Co 0.133 O 2 (shown by the graph of reference numeral 1), a composition formula LiNi 0. A positive electrode is prepared using each of layered compounds (represented by the graph of symbol 2) represented by 5 Co 0.3 Mn 0.2 O 2 to prepare a lithium ion secondary battery, and then 4.
  • the layered solid solution is a lithium transition metal oxide having a rock salt type layered structure, and indicates a material containing an excess of Li relative to the transition metal.
  • the present inventors can effectively suppress oxygen release from crystals by substituting the manganese (Mn) site of the layered solid solution with a metal element (M) having a valence of 5 or more in a specific ratio. I found something.
  • the present invention is based on the above findings.
  • the positive electrode active material for a lithium ion secondary battery according to the present invention has a composition formula Li x Ni y M z Mn 0.8-y-z O 2- ⁇ (0.95 ⁇ x ⁇ 1.1, 0.2 Lithium transition metal oxide represented by ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.06, ⁇ 1 ⁇ ⁇ ⁇ 1, M is at least one selected from metal elements having valences of 5 or more) It is characterized by including.
  • the composition formula is Li x Ni y M z Mn 0.8-y-z O 2- ⁇ (0.95 ⁇ x ⁇ 1.1, 0.2 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.06, ⁇ 1 ⁇ ⁇ ⁇ 1, M is at least one element selected from Mo, W, Nb A transition metal oxide is included.
  • Another embodiment of the present invention is a lithium ion secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolytic solution containing a non-aqueous solvent and a support salt, wherein the positive electrode has a composition formula as a positive electrode active material.
  • Li x Ni y M z Mn 0.8-y-z O 2- ⁇ (0.95 ⁇ x ⁇ 1.1, 0.2 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.06, ⁇ 1 It is characterized by including a lithium transition metal oxide represented by ⁇ ⁇ ⁇ 1, and at least one selected from metal elements having a valence number of 5 or more.
  • Another embodiment of the present invention is a lithium ion secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolytic solution containing a non-aqueous solvent and a support salt, wherein the positive electrode has a composition formula as a positive electrode active material.
  • the lithium ion secondary battery according to the present invention has a composition formula of Li x Ni y M z Mn 0.8-y-z O 2- ⁇ (0.95 ⁇ x ⁇ 1.1, 0) as a positive electrode active material.
  • TDS-MS of the positive electrode using what is a positive electrode active material which is Example 5 mentioned later in FIG. 2 is shown.
  • a temperature programmed desorption analyzer manufactured by Electronic Science Co., Ltd. (ESCO, Ltd.), model: EMD-WA-1000
  • the measurement was performed in vacuum at a temperature rising rate of 5 ° C./min, and after charging to 4.6 V at the time of initial charge, the amount of oxygen released when only the positive electrode was heated was measured.
  • the temperature at which oxygen release is started is high compared with the conventional layered solid solution 1 in the positive electrode active material of the example. From this, it is understood that the positive electrode active material according to the present invention is less likely to release oxygen than the conventional layered solid solution, and is thermally stable. Although the above measurement is performed in vacuum, it is considered that the relative relationship of the oxygen release temperature is not different from that shown in FIGS. 1 and 2 even in the environment (atmospheric pressure) in the battery. Therefore, the positive electrode active material for a lithium ion secondary battery according to the present invention, which is less likely to release oxygen (thermally stable) than the conventional layered solid solution, can further enhance the safety of the battery.
  • the metal element (M) is pentavalent or higher, the above-described effect of suppressing oxygen release can be obtained. It is considered that this is because a metal element having a valence of 5 or more can be stably present in crystals in a charged state (oxidized state).
  • M for example, molybdenum (Mo), tungsten (W) and niobium (Nb) are preferable. These metal elements may be used alone or in combination.
  • the ratio z of M in the lithium transition metal oxide is preferably “0 ⁇ z ⁇ 0.06”, more preferably “0.02 ⁇ z ⁇ 0.04”.
  • z 0
  • the effect of oxygen release suppression can not be obtained.
  • 0.06 ⁇ z the proportion of the metal element M is too high, the resistance of the material increases, and the capacity decreases.
  • the total ratio may be within the above range.
  • the metal element (M) needs to be in solid solution in the lithium transition metal oxide Li x Ni y M z Mn 0.8-y-z O 2- ⁇ .
  • XRD X-ray powder Diffraction
  • I b / I a exceeds 1/50, the metal element (M) is sufficiently dissolved in the lithium transition metal oxide Li x Ni y M z Mn 0.8-y-z O 2- ⁇ There is no fear.
  • the positive electrode active material may contain, in addition to the above-described Li x Ni y M z Mn 0.8 -y-z O 2- ⁇ , impurities derived from raw materials and the like.
  • impurities include Li 1-a Ni a O, Li 2 CO 3 , LiOH and the like.
  • the ratio x of Li in the lithium transition metal oxide is preferably “0.95 ⁇ x ⁇ 1.1”, and more preferably “1.0 ⁇ x ⁇ 1.05”.
  • x ⁇ 0.95 the amount of Li contributing to the reaction is reduced and a high capacity can not be obtained.
  • 1.1 ⁇ x Li is present on the particle surface without solid solution, and the discharge capacity is reduced.
  • the ratio y of Ni in the lithium transition metal oxide is preferably “0.2 ⁇ y ⁇ 0.4”, more preferably “0.3 ⁇ y ⁇ 0.39”.
  • y ⁇ 0.2 the amount of Ni contributing to the reaction is reduced and a high capacity can not be obtained.
  • 0.4 ⁇ y the valence number of Ni becomes high, the charge / discharge capacity involving Ni is reduced, and a high capacity can not be obtained.
  • the ratio y of Ni is set to a relatively large value, and instead, the ratio x of Li is set to a relatively small value.
  • the addition of Mo, W, and Nb is effective in suppressing the capacity reduction.
  • ⁇ in the composition formula of lithium transition metal oxide indicates the amount of oxygen. This value is determined according to the ratio of Li, Ni, and Mn.
  • the positive electrode active material according to the present invention can suppress oxygen release, and can enhance the safety of the lithium ion secondary battery. In particular, significant effects can be exhibited in the initial charging process of a battery in which oxygen is easily released.
  • the positive electrode active material according to the present invention can suppress oxygen release, it is also effective in prolonging the life of the lithium ion secondary battery.
  • FIG. 3 is a half sectional schematic view showing an example of the lithium ion secondary battery according to the present invention.
  • the lithium ion secondary battery 30 includes a positive electrode 21 coated with a positive electrode material on both sides of a current collector, a negative electrode 22 coated with a negative electrode material on both sides of a current collector, and a separator 23. It has the electrode group which it has.
  • the positive electrode 21 and the negative electrode 22 are wound via the separator 23 to form a wound electrode group.
  • the wound body is inserted into the battery can 24.
  • a non-aqueous electrolyte (not shown) containing a non-aqueous solvent and a supporting salt is injected into the inside of the battery can 24.
  • the negative electrode 22 is electrically connected to the battery can 24 via the negative electrode lead piece 26.
  • a sealing lid 27 is attached to the battery can 24 via a packing 28.
  • the positive electrode 21 is electrically connected to the sealing lid 27 via the positive electrode lead piece 25.
  • the wound body is insulated by the insulating plate 29.
  • the electrode group is not limited to the wound body shown in FIG. 3, and may be a laminate in which the positive electrode 21 and the negative electrode 22 are stacked via the separator 23. Moreover, coin shape, cylindrical shape, square shape, aluminum laminate sheet shape etc. may be sufficient.
  • the positive electrode 21 constituting the lithium ion secondary battery is obtained by applying and drying a positive electrode mixture slurry containing a positive electrode active material on one side or both sides of a positive electrode current collector (for example, aluminum foil) using a roll press machine or the like. It is produced by compression molding and cutting into a predetermined size.
  • the negative electrode 22 constituting the lithium ion secondary battery is formed by applying and drying a negative electrode mixture slurry containing a negative electrode active material on one side or both sides of a negative electrode current collector (for example, copper foil) It is produced by compression molding using and cutting into a predetermined size.
  • the above-described positive electrode active material for a lithium ion secondary battery according to the present invention is used as a positive electrode.
  • the positive electrode active material for a lithium ion secondary battery according to the present invention as a positive electrode, it is possible to provide a lithium ion secondary battery in which both items of capacity and safety are balanced at a level higher than before.
  • the lithium ion secondary battery according to the present invention has a high energy density, it can be preferably used, for example, for an electric car.
  • the negative electrode active material used for the negative electrode 22 is not particularly limited as long as it is a material capable of inserting and extracting lithium ions.
  • Materials generally used in lithium ion secondary batteries can be used as the negative electrode active material.
  • graphite artificial graphite, natural graphite, non-graphitizable carbons
  • lithium alloy and the like can be exemplified. Any one of these or a mixture of two or more can be used.
  • a binder, a thickener, a conductive material, a solvent, and the like are mixed as needed with the negative electrode active material to prepare a negative electrode mixture slurry.
  • non-aqueous solvent and the supporting salt contained in the non-aqueous electrolyte those generally used in lithium ion secondary batteries can be used.
  • the nonaqueous solvent include diethyl carbonate, dimethyl carbonate, ethylene carbonate, propylene carbonate, vinylene carbonate, methyl acetate, ethyl methyl carbonate, methyl propyl carbonate, dimethoxyethane and the like.
  • LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2) 2 , LiC (CF 3 SO 2) can be exemplified 3 or the like.
  • separator 23 those generally used in lithium ion secondary batteries can be used.
  • a microporous film or non-woven fabric made of polyolefin such as polypropylene, polyethylene, and a copolymer of propylene and ethylene can be exemplified.
  • Aluminum and stainless steel are preferably used as the battery can 24 and the sealing lid 27.
  • Lithium Ion Secondary Batteries of Examples 1 to 12 and Comparative Examples 1 to 8) (1) as a raw material for manufacturing the positive electrode active material of the positive electrode active material, lithium carbonate (Li 2 CO 3), nickel carbonate (NiCO 3), manganese carbonate (WO 3), molybdenum oxide (MoO 3), tungsten oxide (WO 3 ), Niobium oxide (Nb 2 O 5 ), magnesium oxide (MgO), iron oxide (Fe 2 O 3 ) and vanadium oxide (V 2 O 5 ) are weighed in predetermined amounts so as to have the composition of Table 1 described later And mixed in a ball mill to obtain a precursor. The obtained precursor was calcined at 500 ° C.
  • the obtained fired product was pelletized and then fired in the air at 850 to 1050 ° C. for 12 hours to obtain a lithium transition metal oxide.
  • the obtained lithium transition metal oxide pellet was crushed in an agate mortar, and classified with a 45 ⁇ m sieve to obtain a positive electrode active material.
  • the positive electrode active material (86% by mass), the conductive agent (7% by mass), the binder (7% by mass, polyvinylidene fluoride, manufactured by Kureha Corporation) and the solvent (N-methyl) prepared above 2-Pyrrolidone) was prepared to prepare a positive electrode mixture slurry.
  • the conductive agent a mixture of graphite and carbon black was used. Since the positive electrode active material is an oxide and has a relatively high electrical resistivity, a conductive agent was mixed to compensate for their electrical conductivity.
  • these positive electrode material mixture slurries are applied on a 20 ⁇ m thick aluminum current collector foil, dried at 120 ° C., and compression molded so that the electrode density becomes 2.2 g / cm 3 with a press. An electrode plate was obtained. Thereafter, the electrode plate was punched into a disk shape having a diameter of 15 mm to prepare a positive electrode for a lithium ion secondary battery.
  • Negative Electrode A negative electrode mixture slurry was prepared by preparing a negative electrode active material (92% by mass), a binder (8% by mass, polyvinylidene fluoride, manufactured by Kleha Co., Ltd.) and a solvent (N-methyl-2-pyrrolidone). Made. Metallic lithium (Li) was used as the negative electrode active material.
  • these negative electrode material mixture slurries are applied on a 20 ⁇ m thick aluminum current collector foil, dried at 120 ° C., and compression molded so that the electrode density becomes 2.2 g / cm 3 with a press. An electrode plate was obtained. Thereafter, the electrode plate was punched into a disk shape having a diameter of 15 mm to prepare a negative electrode for a lithium ion secondary battery.
  • LiPF 6 lithium hexafluorophosphate
  • Lithium Ion Secondary Battery A lithium ion secondary battery was manufactured using the positive electrode, the negative electrode and the non-aqueous electrolyte prepared above. Stainless steel was used for the battery can 24 and the sealing lid 27, a porous polyethylene film with a thickness of 30 ⁇ m was used for the separator 24, and a fluorine resin was used for the insulating plate 29. Further, as shown in FIG. 3, the separator 23 is also disposed between the positive electrode 21 and the battery can 24 and between the negative electrode 22 and the battery can 24, and the positive electrode 21 and the negative electrode 22 are shorted through the battery can 24. It was not configured.
  • the oxygen release amount ratio is a value obtained by dividing the oxygen release amount measured in each example and comparative example by the oxygen release amount of comparative example 1 described later. The results are shown in Table 2.
  • Examples 1 to 12 using the positive electrode active material according to the present invention exhibited higher values than Comparative Examples 1 to 8 in terms of both discharge capacity and oxygen release amount (discharge A volume ratio of 1 or more and an oxygen release amount ratio of less than 0.65). In particular, in Examples 1 to 3 and 11, the discharge capacity ratio was large.
  • Comparative Example 2 although the oxygen release amount ratio is less than 0.65, it is understood that the discharge capacity ratio is small. This is considered to be due to the large substitution amount z of Mo. From Examples 1 and 2 and Comparative Example 2, when the substitution amount of Mo is 0.02 ⁇ z ⁇ 0.04, it is found that the discharge capacity is larger and the oxygen release amount is smaller.
  • the powder X-ray diffraction measurement of Comparative Example 5 was performed.
  • a powder X-ray diffractometer manufactured by Rigaku Corporation, model: Rint-2200 Ultima III
  • ICDD International Center for Diffraction Data
  • FIG. 4 is a view showing an example of a powder X-ray diffraction pattern of Comparative Example 5.
  • the main phase LiNi 0.34 M 0.02 Mn 0.44 O X
  • a compound containing M vanadium oxide and lithium vanadium oxide
  • Comparative Examples 6 and 7 although the oxygen release amount ratio was less than 0.65, the discharge capacity decreased. This is considered to be because Li in Comparative Example 6 was as small as 0.9 and Li in Comparative Example 7 was too large as 1.2. In Comparative Example 8, although the oxygen release amount ratio was less than 0.65, the discharge capacity decreased. It is considered that this is because Ni was too large at 0.44.
  • Example 1 when Example 1, 5 and 6 is compared, oxygen release amount ratio is so small that the ratio of Ni is high. From this result, it is understood that the higher the ratio of Ni, the larger the effect of suppressing oxygen release by the addition of Mo.
  • a positive electrode for a lithium ion secondary battery capable of providing a lithium ion secondary battery in which both the items of capacity and safety are balanced at a level higher than before. It has been demonstrated that active materials can be provided.
  • the lithium ion secondary battery using the positive electrode active material for a lithium ion secondary battery according to the present invention is particularly suitable for large-sized electric devices such as industrial batteries having a large battery capacity, and automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 容量及び安全性の両方の項目を従来よりも高いレベルでバランスさせたリチウムイオン二次電池を提供することが可能な、リチウムイオン二次電池用正極活物質を提供する。本発明に係るリチウムイオン二次電池用正極活物質は、組成式が、LiNiMn0.8-y-z2-δ(0.95≦x≦1.1、0.2<y<0.4、0<z<0.06、-1≦δ≦1、Mは5価以上の価数を有する金属元素から選択される少なくとも1種)で表わされるリチウム遷移金属酸化物を含むことを特徴とする。

Description

リチウムイオン二次電池用正極活物質およびそれを用いたリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用正極活物質およびそれを用いたリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、ニッケル水素電池や鉛電池等の二次電池に比べて重量当たりのエネルギー密度が高いことから小型化に有利であり、携帯用パソコンや携帯電話機等の小型電子機器に広く用いられている。近年、リチウムイオン二次電池の用途は、大型電気機器(例えば、HEV(ハイブリッド自動車)やEV(電気自動車)などの自動車用動力電源や、電力貯蔵用電源)にも拡大してきている。リチウムイオン二次電池をこれらの大型電気機器に適用するためには、小型電子機器の場合よりも、はるかに高い出力と容量とを実現することに加えて、絶対的な容積が大きくなるが故により高い安全性を確保することが重要である。
 LiMnO‐LiMO(MはCo,Ni,Mn等の遷移金属元素である)で示される層状固溶体は高容量が期待できる正極活物質である。層状固溶体は、高容量だが電気化学的に不活性なLiMnOと、容量は小さいが電気化学的に活性なLiMOとを固溶させ、高容量を引き出しつつ、高いサイクル特性を維持するものである。層状固溶体は、層状酸化物系の正極活物質のLiを富化した組成Li1+x1-x´として表現されることもある。
 特許文献1(特開2011‐71090号公報)には、高い充電電圧でのサイクル特性を向上させるために、前記正極活物質が、Li[Li1/3Mn2/3-qNb]O・(1-x)LiM1-rNb(0<x<1、0<xq+(1-x)r≦0.3、0≦q≦0.3、0≦r≦0.3、M:Ni、Co、Mnよりなる群から選択される少なくとも1種類の元素)で表わされるニオブを含むLi含有遷移金属酸化物であることを特徴とするリチウムイオン二次電池が開示されている。
 また特許文献2(特開2005‐235628号公報)には、高エネルギー密度化を目的として、一般式Li[LiMn1-x-y-zNi]O(I)(式中ZはV、Nb、Mo、Ru、W、SiおよびTiから選ばれる元素のうちの少なくとも1種、0<z<0.2、0.1<x<0.3、0.1<y<0.7、0.2<x+y+z<1)で示される単斜晶の構造を有する複合酸化物を活物質として含むことを特徴とするリチウム二次電池用正極が開示されている。
 また特許文献3(特開2009‐206100号公報)には、高いサイクル特性及び高い放電特性を有するリチウム電池を提供するために、化学式1のリチウム金属酸化物を含む正極活物質:<化1>Li[LiMe]O2+d、前記式で、x+y+z=1; 0<x<0.33、0<z<0.1; 0≦d≦0.1であり、前記Meは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Al、Mg、Zr及びBからなる群から選択された一つ以上の金属であり、前記Mは、Mo、W、Ir、Ni及びMgからなる群から選択された一つ以上の金属である、が開示されている。
特開2011‐71090号公報 特開2005‐235628号公報 特開2009‐206100号公報
 層状固溶体は、LiMOで表される層状化合物と比較して、結晶構造の安定性が比較的低いことから、構造崩壊に伴って酸素を放出しやすい。酸素は助燃性ガスであり、酸素が電池内に放出され、温度が高くなると有機電解液と反応する恐れがある。また酸素が放出されると電池内部の圧力が高まり、万一、異常圧力になると、電池が破損する恐れがある。したがって、酸素の放出を抑制し、熱安定性を向上させることが望まれる。
 すなわち、リチウムイオン二次電池を大型電気機器に適用する場合、容量及び安全性の両方の項目を、小型電子機器の場合よりも高いレベルでバランスさせることが非常に重要であり、その観点で更なる改善が強く望まれていた。
 上述した特許文献では、リチウムイオン二次電池の電池特性(エネルギー密度、サイクル特性等)を向上させることはできるが、容量及び安全性の両方の項目を、小型電子機器の場合よりも高いレベルでバランスさせることについては記載されていない。
 本発明の目的は、上記事情に鑑み、大型電気機器に適用すべく、容量及び安全性の両方の項目を小型電子機器の場合よりも高いレベルでバランスさせたリチウムイオン二次電池を提供すること、及びそのようなリチウムイオン二次電池を実現させるための正極活物質を提供することにある。
 本発明の一態様は、上記目的を達成するため、リチウムイオン二次電池用の正極活物質は、組成式LiNiMn0.8-y-z2-δ(0.95≦x≦1.1、0.2<y<0.4、0<z<0.06、-1≦δ≦1、Mは5価以上の価数を有する金属元素から選択される少なくとも1種)で表わされるリチウム遷移金属酸化物を含むことを特徴とする。
 本発明によれば、容量及び安全性の両方の項目を従来よりも高いレベルでバランスさせたリチウムイオン二次電池を提供することができる。
層状固溶体と層状化合物をそれぞれ正極活物質として用いた正極の酸素放出量と温度との関係を示すグラフである。 実施例5の正極活物質を用いた正極の酸素放出量と温度との関係を示すグラフである。 本発明に係るリチウムイオン二次電池の1例を示す半断面模式図である。 比較例5の粉末X線回折パターンである。
 リチウムイオン二次電池には、安全性の観点から酸素の放出を抑制することが望まれる。図1は、正極を真空中室温から400℃まで昇温し、質量分析を行ったときの酸素放出量と温度との関係を示すグラフである。より詳細に説明すると、図1は、組成式Li1.2Ni0.133Mn0.533Co0.133で表される層状固溶体(符号1のグラフで示す)、組成式LiNi0.5Co0.3Mn0.2で表される層状化合物(符号2のグラフで示す)をそれぞれ使用して正極を作成し、リチウムイオン二次電池を作成した後、初回充電時に4.6Vまで充電した後、正極のみを加熱した際の酸素放出量を、昇温脱離ガス分析装置(TDS-MS)で測定した結果である。ここで、層状固溶体とは、岩塩型層状構造を有するリチウム遷移金属酸化物であって、遷移金属に対しLiを過剰に含む材料のことを示す。
 図1に示したように、層状固溶体1は、150℃以下の温度領域においても酸素放出が観測され、層状化合物2と比して、酸素放出が開始される温度が低い。この結果は、層状固溶体が層状化合物よりも熱安定性が低いことを示している。これは、層状固溶体の結晶構造の安定性が低く、構造崩壊に伴って酸素を放出しやすいためである。
 本発明者らは、層状固溶体のマンガン(Mn)サイトを、5価以上の価数を有する金属元素(M)で特定の割合、置換することで、結晶からの酸素放出を効果的に抑制可能なことを見出した。本発明は、該知見に基づくものである。
 本発明に係るリチウムイオン二次電池用の正極活物質は、組成式LiNiMn0.8-y-z2-δ(0.95≦x≦1.1、0.2<y<0.4、0<z<0.06、-1≦δ≦1、Mは5価以上の価数を有する金属元素から選択される少なくとも1種)で表わされるリチウム遷移金属酸化物を含むことを特徴とする。
 また、本発明のリチウムイオン二次電池用正極活物質の他の一態様は、組成式が、LiNiMn0.8-y-z2-δ(0.95≦x≦1.1、0.2<y<0.4、0<z<0.06、-1≦δ≦1、MはMo,W,Nbから選択される少なくとも1種の元素)で表わされるリチウム遷移金属酸化物を含むことを特徴とする。
 また、本発明の他の一態様は、正極、負極、および非水溶媒と支持塩とを含む非水電解液を備えたリチウムイオンニ次電池において、前記正極は、正極活物質として、組成式が、LiNiMn0.8-y-z2-δ(0.95≦x≦1.1、0.2<y<0.4、0<z<0.06、-1≦δ≦1、Mは5価以上の価数を有する金属元素から選択される少なくとも1種)で表わされるリチウム遷移金属酸化物を含むことを特徴とする。
 また、本発明の他の一態様は、正極、負極、および非水溶媒と支持塩とを含む非水電解液を備えたリチウムイオンニ次電池において、前記正極は、正極活物質として、組成式が、LiNiMn0.8-y-z2-δ(0.95≦x≦1.1、0.2<y<0.4、0<z<0.06、-1≦δ≦1、MはMo,W,Nbから選択される少なくとも1種の元素)で表わされるリチウム遷移金属酸化物を含むことを特徴とする。
 以下、本発明に係る実施形態について、より具体的に説明する。ただし、本発明は、ここで取り上げた実施の形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。
 (リチウムイオン二次電池の正極活物質)
 本発明に係るリチウムイオン二次電池は、正極活物質として、組成式が、LiNiMn0.8-y-z2-δ(0.95≦x≦1.1、0.2<y<0.4、0<z<0.06、-1≦δ≦1、Mは5価以上の価数を有する金属元素から選択される少なくとも1種)で表わされるリチウム遷移金属酸化物を含む。
 図2に、正極活物質が後述する実施例5であるものを使用した正極のTDS-MSの測定結果を示す。測定装置には、昇温脱離分析装置(電子科学株式会社(ESCO,Ltd.)製、型式:EMD-WA-1000)を用いた。測定は真空中、昇温速度5℃/minで行い、初回充電時に4.6Vまで充電した後、正極のみを加熱した際の酸素放出量を測定した。
 図1と図2を比較すると、実施例の正極活物質は、従来の層状固溶体1と比して酸素放出が開始される温度が高い。このことから、本発明に係る正極活物質は、従来の層状固溶体よりもより酸素を放出しにくく、熱的に安定であることがわかる。上記測定は真空中で行っているが、電池内の環境(大気圧)においても、酸素放出温度の相対的な関係は、図1、2に示したものと変わらないと考えられる。したがって、従来の層状固溶体よりも酸素を放出しにくい(熱的に安定である)本発明に係るリチウムイオン二次電池用正極活物質は、より電池の安全性を高めることができる。
 金属元素(M)は、5価以上のものであれば上述した酸素放出抑制の効果を得ることができる。これは、5価以上の価数を有する金属元素は、充電状態(酸化状態)において安定して結晶中に存在できるためであると考えられる。Mとしては、例えばモリブデン(Mo)、タングステン(W)、ニオブ(Nb)が好適である。これらの金属元素は単独でもよいが、複数を組み合わせても良い。
 リチウム遷移金属酸化物中のMの比率zは、「0<z<0.06」であることが好ましく、「0.02≦z≦0.04」であることがより好ましい。「z=0」の場合、酸素放出抑制の効果を得ることができない。一方、「0.06≦z」の場合、金属元素Mの割合が高過ぎて材料の抵抗が上昇し、容量が低下する。Mとして複数種の金属元素を用いる場合には、その総比率が上記範囲内にあればよい。
 金属元素(M)は、リチウム遷移金属酸化物LiNiMn0.8-y-z2-δに固溶している必要がある。正極活物質について粉末X線回折測定(XRD(X-ray powder Diffraction)測定)を行った場合に、得られた正極活物質LiNiMn0.8-y-z2-δの最強線のピーク強度をIとし、前記リチウム遷移金属酸化物以外の、Mを含む化合物(Mを含む不純物相)の最強線の強度をIとしたときに、I/Iが1/50以下であることが好ましい。I/Iが1/50を超える場合、金属元素(M)がリチウム遷移金属酸化物LiNiMn0.8-y-z2-δ中に十分に固溶していないおそれがある。
 正極活物質には上述したLiNiMn0.8-y-z2-δの他、原料などに由来する不純物が含まれることがある。不純物としては、例えばLi1-aNiO、LiCO、LiOH等が挙げられる。
 リチウム遷移金属酸化物中のLiの比率xは、「0.95≦x≦1.1」であることが好ましく、「1.0≦x≦1.05」であることがより好ましい。「x<0.95」の場合、反応に寄与するLiの量が減り高容量が得られない。一方、「1.1<x」の場合、固溶せずに粒子表面に存在するLiがあり、放電容量が低下する。
 リチウム遷移金属酸化物中のNiの比率yは、「0.2<y<0.4」であることが好ましく、「0.3<y<0.39」であることがより好ましい。「y≦0.2」の場合、反応に寄与するNiの量が減り高容量が得られない。一方、「0.4≦y」の場合、Niの価数が高くなり、Niが関与した充放電容量が低減し、高容量が得られない。
 本発明に係る正極活物質のリチウム遷移金属酸化物では、高電圧とするために、Niの比率yを比較的大きい値とし、その代わりにLiの比率xを比較的小さい値としている。このようにNi含有量が多い場合には、Mo、W、Nbの添加が容量低下抑制の上で効果的である。
 リチウム遷移金属酸化物の組成式におけるδは、酸素量を示す。本値は、Li、Ni、Mnの比が決まると、それに合わせて決まるものである。
 本発明に係る正極活物質は、酸素放出を抑制することができ、リチウムイオン二次電池の安全性を高めることができる。特に、酸素が放出されやすい電池の初充電過程において、顕著な効果を奏することができる。
 また、電池の使用温度領域で正極から酸素が放出されると、放出された酸素と電解液が反応し、電解液が分解するため電池中の電解液量が減少し、電池の性能が低下する(寿命が低下する)。本発明に係る正極活物質は、酸素放出を抑制することができるので、リチウムイオン二次電池の長寿命化にも効果的である。
(リチウムイオン二次電池)
 次に、リチウムイオン二次電池の構成について説明する。図3は、本発明に係るリチウムイオン二次電池の1例を示す半断面模式図である。図3に示したように、リチウムイオン二次電池30は、集電体の両面に正極材料を塗布した正極21と、集電体の両面に負極材料を塗布した負極22と、セパレータ23とを有する電極群を備える。正極21及び負極22は、セパレータ23を介して捲回され、捲回体の電極群を形成している。この捲回体は電池缶24に挿入される。さらに、電池缶24の内部には、非水溶媒と支持塩とを含む非水電解液(図示せず)が注入されている。
 負極22は、負極リード片26を介して、電池缶24に電気的に接続される。電池缶24には、パッキン28を介して、密閉蓋27が取り付けられる。正極21は、正極リード片25を介して、密閉蓋27に電気的に接続される。捲回体は、絶縁板29によって絶縁される。なお、電極群は、図3に示した捲回体に限定されるものではなく、セパレータ23を介して正極21と負22とを積層した積層体でもよい。また、コイン状、円筒状、角形状、アルミラミネートシート状等であってもよい。
 リチウムイオン二次電池を構成する正極21は、正極集電体(例えばアルミニウム箔)の片面または両面に正極活物質を含む正極合剤スラリーを塗布・乾燥させた後、ロールプレス機などを用いて圧縮成形して、所定の大きさに切断することで作製される。同様に、リチウムイオン二次電池を構成する負極22は、負極集電体(例えば銅箔)の片面または両面に負極活物質を含む負極合剤スラリーを塗布・乾燥させた後、ロールプレス機などを用いて圧縮成形して、所定の大きさに切断することで作製される。
 正極21に用いられる正極活物質は、上述した本発明に係るリチウムイオン二次電池用正極活物質を用いる。本発明に係るリチウムイオン二次電池用正極活物質を正極に使用することにより、容量及び安全性の両方の項目を従来よりも高いレベルでバランスさせたリチウムイオン二次電池を提供することができる。本発明に係るリチウムイオン二次電池は高いエネルギー密度を有するので、例えば電気自動車に対して好ましく使用することができる。
 負極22に用いられる負極活物質は、リチウムイオンを吸蔵放出することができる物質であれば特に限定されない。リチウムイオン二次電池において一般的に使用されている物質を負極活物質として使用することができる。例えば、黒鉛(人造黒鉛、天然黒鉛、難黒鉛化炭素類)、リチウム合金等を例示することができる。これらいずれかの単独または2種以上の混合物を用いることができる。負極活物質に対して、バインダ、増粘剤、導電材、溶媒等を必要に応じて混合して負極合剤スラリーが作製される。
 非水電解液に含まれる非水溶媒及び支持塩としては、リチウムイオン二次電池において一般的に使用されているものを使用することができる。非水溶媒としては、ジエチルカーボネート、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、メチルアセテート、エチルメチルカーボネート、メチルプロピルカーボネート、ジメトキシエタン等を例示することができる。また支持塩としては、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO等を例示することができる。
 セパレータ23としては、リチウムイオン二次電池において一般的に使用されているものを使用することができる。例えば、ポリプロピレン、ポリエチレン、プロピレンとエチレンとの共重合体等のポリオレフィン製の微孔性フィルムや不織布等を例示することができる。電池缶24および密閉蓋27としては、アルミニウムやステンレス鋼が好ましく用いられる。
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
 (実施例1~12及び比較例1~8のリチウムイオン二次電池の作製)
 (1)正極活物質の作製
 正極活物質の原料として、炭酸リチウム(LiCO)、炭酸ニッケル(NiCO)、炭酸マンガン(WO)、酸化モリブデン(MoO)、酸化タングステン(WO))、酸化ニオブ(Nb)、酸化マグネシウム(MgO)、酸化鉄(Fe)、酸化バナジウム(V)を、後述する表1の組成となるように所定量秤量し、ボールミルで混合して前駆体を得た。得られた前駆体を大気中、500℃で12時間焼成し、焼成物を得た。得られた焼成物をペレット化した後、大気中において850~1050℃で12時間焼成してリチウム遷移金属酸化物を得た。得られたリチウム遷移金属酸化物ペレットをメノウ乳鉢で粉砕し、45μmのふるいで分級して正極活物質とした。
 (2)正極の作製
 まず、上記で用意した正極活物質(86質量%)、導電剤(7質量%)、バインダ(7質量%、ポリフッ化ビニリデン、株式会社クレハ製)および溶媒(N-メチル-2-ピロリドン)を調合して正極合剤スラリーを作製した。導電剤としては、黒鉛とカーボンブラックとの混合物を用いた。正極活物質が酸化物であって電気抵抗率が比較的高いことから、それらの電気伝導性を補うために導電剤を混合した。
 次に、これらの正極合剤スラリーを、厚み20μmのアルミ集電体箔上に塗布し、120℃で乾燥し、プレスにて電極密度が2.2g/cmになるように圧縮成形して電極板を得た。その後、電極板を直径15mmの円盤状に打ち抜き、リチウムイオン二次電池用正極を作製した。
 (3)負極の作製
 負極活物質(92質量%)、バインダ(8質量%、ポリフッ化ビニリデン、株式会社クレハ製)および溶媒(N-メチル-2-ピロリドン)を調合して負極合剤スラリーを作製した。負極活物質としては、金属リチウム(Li)を用いた。
 次に、これらの負極合剤スラリーを、厚み20μmのアルミ集電体箔上に塗布し、120℃で乾燥し、プレスにて電極密度が2.2g/cmになるように圧縮成形して電極板を得た。その後、電極板を直径15mmの円盤状に打ち抜き、リチウムイオン二次電池用負極を作製した。
 (4)非水電解液の作製
 非水電解液の非水溶媒として、エチレンカーボネート(EC)およびジメチルカーボネート(DMC)の混合溶媒(体積比=33:67)を調合した。次に、該混合溶媒に対して、支持塩として六フッ化リン酸リチウム(LiPF)を1mol/Lとなるように溶解させ、非水電解液を作製した。
 (5)リチウムイオン二次電池の作製
 上記で作製した正極、負極および非水電解液を使用して、リチウムイオン二次電池を作製した。電池缶24および密閉蓋27にはステンレス鋼を用い、セパレータ24には厚さ30μmの多孔性のポリエチレンフィルムを用い、絶縁性板29にはフッ素樹脂を用いた。また、図3に示したように、セパレータ23は、正極21と電池缶24との間、負極22と電池缶24との間にも配置し、電池缶24を通じて正極21と負極22とが短絡しない構成とした。
 (試験評価)
 (a)充放電試験(放電容量評価)
 上記で用意したリチウムイオン二次電池について、以下の充放電試験を実施し、放電容量を評価した。試作電池に対し、充電は0.05C相当の電流で上限電圧を4.6V、放電は0.05C相当の電流で下限電圧を2.5Vとした充放電試験を行った。各実施例及び比較例において、高出力が得られる4.6~3.5Vの領域における放電容量を、後述する比較例1において4.6~3.5Vの領域における放電容量で除した値を放電容量比とした。結果を後述する表2に示す。
 (b)酸素放出量測定(熱安定性評価)
 上記で用意したリチウムイオン二次電池について、初回充電時において4.6V(満充電状態)まで充電した後の酸素放出量を測定し、熱安定性を評価した。まず、上記で用意したリチウムイオン二次電池に対して、初回充電時において4.6V(満充電状態)まで充電した後、電池を解体し、正極を取り出し、炭酸ジメチルで洗浄した。その後、真空中、室温から400℃まで、5℃/minの速度で昇温し、そのときの酸素放出量を測定した。測定装置には昇温脱離分析装置(電子科学株式会社(ESCO,Ltd.)製、型式:EMD-WA-1000)を用いた。各実施例及び比較例において計測された酸素放出量を、後述する比較例1の酸素放出量で除した値を酸素放出量比とした。結果を表2に併記する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、本発明に係る正極活物質を用いた実施例1~12は、放電容量及び酸素放出量の両方の項目において比較例1~8よりも高い値を示した(放電容量比1以上かつ酸素放出量比0.65未満)。特に、実施例1~3、11では放電容量比が大きかった。
 比較例2は、酸素放出量比は0.65未満であったものの、放電容量比が小さいことが分かる。これは、Moの置換量zが多いためであると考えられる。実施例1、2、比較例2より、Moの置換量は、0.02≦z≦0.04であると、より放電容量が大きく、酸素放出量が少なくなることが分かった。
 また、実施例1、3、4では、放電容量比が高く、酸素放出量比が小さいが、比較例3及び4は、放電容量が低下し、酸素放出量の低減効果も小さかった。これは、Mとして、価数が5価未満であるMg、Feでは酸素放出量低減の効果が無いためであると考えられる。比較例5では、放電容量は向上したが、酸素放出量低減の効果が無かった。これは、Vが結晶中に十分に固溶されず、分離した状態となったためであると考えられる。
 上記比較例5の粉末X線回折測定を行った。測定装置には、粉末X線回折装置(株式会社リガク製、型式:Rint-2200 Ultima III)を用いた。測定条件は、X線としてCu-Kα線を用い、X線出力を40kV×140mAとし、走査範囲を2θ=10~70degとし、走査速度を1.0deg/minとし、ステップを0.02°とした。検出された回折ピークの同定には、X線回折標準データ集であるICDD(International Centre for Diffraction Data)を利用した。
 図4は比較例5の粉末X線回折パターンの一例を示す図である。図4に示したように、比較例5の正極活物質は、主相(LiNi0.340.02Mn0.44)と、Mを含む化合物(バナジウム酸化物及びリチウムバナジウム酸化物)とが観測された。主相の最強線の強度をIとし、Mを含む化合物(バナジウム酸化物、およびリチウムバナジウム酸化物)の最強線の強度をIとしたときに、I/Iが0.02であった。このことから、Vはリチウム遷移金属酸化物中に十分に固溶していないことがわかった。
 比較例6及び7は、酸素放出量比は0.65未満であったものの、放電容量が低下した。これは、比較例6ではLiが0.9と少なく、比較例7ではLiが1.2と多すぎたためであると考えられる。比較例8は、酸素放出量比は0.65未満であったものの、放電容量が低下した。これは、Niが0.44と多すぎたためであると考えられる。
 また、実施例1、5、6を比較すると、Niの比率が高いほど、酸素放出量比が小さい。この結果から、Niの比率が高いほど、Moの添加による酸素放出抑制の効果が大きいことが分かる。
 また、実施例7~9のように、Mとして複数の元素を用いても、放電容量比が高く、酸素放出量比が小さくなることが分かる。
 以上説明したように、本発明によれば、容量及び安全性の両方の項目を従来よりも高いレベルでバランスさせたリチウムイオン二次電池を提供することが可能な、リチウムイオン二次電池用正極活物質を提供することができることが実証された。本発明に係るリチウムイオン二次電池用正極活物質を用いたリチウムイオン二次電池は、特に、電池容量が大きい産業用など大型電気機器、自動車に好適である。
 なお、上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。
 1…Li1.2Ni0.133Mn0.533Co0.133の酸素放出量と温度との関係を示すグラフ、2…LiNi0.5Co0.3Mn0.2の酸素放出量と温度との関係を示すグラフ、21…正極、22…負極、23…セパレータ、24…電池缶、25…正極リード片、26…負極リード片、27…密閉蓋、28…パッキン、29…絶縁板、30…リチウムイオン二次電池。

Claims (10)

  1.  組成式が、LiNiMn0.8-y-z2-δ(0.95≦x≦1.1、0.2<y<0.4、0<z<0.06、-1≦δ≦1、Mは5価以上の価数を有する金属元素から選択される少なくとも1種)で表わされるリチウム遷移金属酸化物を含むことを特徴とするリチウムイオン二次電池用正極活物質。
  2.  請求項1に記載のリチウムイオン二次電池用正極活物質において、
     前記Mは、Mo,W,Nbから選択される少なくとも1種の元素であることを特徴とするリチウムイオン二次電池用正極活物質。
  3.  請求項1に記載のリチウムイオン二次電池用正極活物質において、
     前記正極活物質は、粉末X線回折図形における前記リチウム遷移金属酸化物の最強線の強度をIとし、前記リチウム遷移金属酸化物以外のMを含む化合物の最強線の強度をIとしたときに、I/Iが1/50以下であることを特徴とするリチウムイオン二次電池用正極活物質。
  4.  請求項2または3に記載のリチウムイオン二次電池用正極活物質において、
     前記リチウム遷移金属酸化物中のNiの比率yが、0.3<y<0.39であることを特徴とするリチウムイオン二次電池用正極活物質。
  5.  請求項2または3に記載のリチウムイオン二次電池用正極活物質において、
     前記リチウム遷移金属酸化物中のMの比率zが、0.02≦z≦0.04であることを特徴とするリチウムイオン二次電池用正極活物質。
  6.  正極、負極、および非水溶媒と支持塩とを含む非水電解液を備えたリチウムイオンニ次電池において、
     前記正極は、活物質として、組成式が、LiNiMn0.8-y-z2-δ(0.95≦x≦1.1、0.2<y<0.4、0<z<0.06、-1≦δ≦1、Mは5価以上の価数を有する金属元素から選択される少なくとも1種)で表わされるリチウム遷移金属酸化物を含むことを特徴とするリチウムイオン二次電池。
  7.  請求項6に記載のリチウムイオンニ次電池において、
     前記Mは、Mo,W,Nbから選択される少なくとも1種の元素であることを特徴とするリチウムイオン二次電池。
  8.  請求項6に記載のリチウムイオン二次電池において、
     前記正極活物質は、粉末X線回折図形における前記リチウム遷移金属酸化物の最強線の強度をIとし、前記リチウム遷移金属酸化物以外のMを含む化合物の最強線の強度をIとしたときに、I/Iが1/50以下であることを特徴とするリチウムイオン二次電池。
  9.  請求項7または8に記載のリチウムイオン二次電池において、
     前記リチウム遷移金属酸化物中のNiの比率yが、0.3<y<0.39であることを特徴とするリチウムイオン二次電池。
  10.  請求項7または8に記載のリチウムイオン二次電池において、
     前記Mの比率zが、0.02≦z≦0.04であることを特徴とするリチウムイオン二次電池。
PCT/JP2013/074787 2013-09-13 2013-09-13 リチウムイオン二次電池用正極活物質およびそれを用いたリチウムイオン二次電池 WO2015037111A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074787 WO2015037111A1 (ja) 2013-09-13 2013-09-13 リチウムイオン二次電池用正極活物質およびそれを用いたリチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074787 WO2015037111A1 (ja) 2013-09-13 2013-09-13 リチウムイオン二次電池用正極活物質およびそれを用いたリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2015037111A1 true WO2015037111A1 (ja) 2015-03-19

Family

ID=52665253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074787 WO2015037111A1 (ja) 2013-09-13 2013-09-13 リチウムイオン二次電池用正極活物質およびそれを用いたリチウムイオン二次電池

Country Status (1)

Country Link
WO (1) WO2015037111A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126312A1 (ja) * 2016-01-19 2017-07-27 日立金属株式会社 リチウムイオン二次電池用正極活物質、その製造方法及びリチウムイオン二次電池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073425A (ja) * 2005-09-08 2007-03-22 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009140787A (ja) * 2007-12-07 2009-06-25 Nichia Corp 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池。
JP2009289726A (ja) * 2008-05-01 2009-12-10 Mitsubishi Chemicals Corp リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池
JP2012043637A (ja) * 2010-08-19 2012-03-01 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
WO2012035664A1 (ja) * 2010-09-17 2012-03-22 トヨタ自動車株式会社 リチウムイオン二次電池
JP2012178312A (ja) * 2011-02-28 2012-09-13 Hitachi Ltd リチウムイオン二次電池
JP2013033698A (ja) * 2010-09-02 2013-02-14 Sumitomo Chemical Co Ltd 正極活物質の製造方法および正極活物質
JP2013051172A (ja) * 2011-08-31 2013-03-14 Toyota Motor Corp リチウム二次電池
JP2013161644A (ja) * 2012-02-03 2013-08-19 Toyota Motor Corp リチウム二次電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073425A (ja) * 2005-09-08 2007-03-22 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009140787A (ja) * 2007-12-07 2009-06-25 Nichia Corp 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池。
JP2009289726A (ja) * 2008-05-01 2009-12-10 Mitsubishi Chemicals Corp リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池
JP2012043637A (ja) * 2010-08-19 2012-03-01 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP2013033698A (ja) * 2010-09-02 2013-02-14 Sumitomo Chemical Co Ltd 正極活物質の製造方法および正極活物質
WO2012035664A1 (ja) * 2010-09-17 2012-03-22 トヨタ自動車株式会社 リチウムイオン二次電池
JP2012178312A (ja) * 2011-02-28 2012-09-13 Hitachi Ltd リチウムイオン二次電池
JP2013051172A (ja) * 2011-08-31 2013-03-14 Toyota Motor Corp リチウム二次電池
JP2013161644A (ja) * 2012-02-03 2013-08-19 Toyota Motor Corp リチウム二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126312A1 (ja) * 2016-01-19 2017-07-27 日立金属株式会社 リチウムイオン二次電池用正極活物質、その製造方法及びリチウムイオン二次電池
JPWO2017126312A1 (ja) * 2016-01-19 2018-06-28 日立金属株式会社 リチウムイオン二次電池用正極活物質、その製造方法及びリチウムイオン二次電池
US10749176B2 (en) 2016-01-19 2020-08-18 Hitachi Metals, Ltd. Cathode active material used for lithium ion secondary battery, method for producing same, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP5300502B2 (ja) 電池用活物質、非水電解質電池および電池パック
JP4249727B2 (ja) 非水電解質電池およびリチウムチタン複合酸化物
JP5121614B2 (ja) 電池用活物質、非水電解質電池および電池パック
JP5341837B2 (ja) 正極、非水電解質電池及び電池パック
WO2015145521A1 (ja) 非水電解質電池用負極活物質、非水電解質二次電池用負極、非水電解質二次電池及び電池パック
JP5908649B2 (ja) 電池用活物質、非水電解質電池及び電池パック
WO2017046895A1 (ja) 組電池及び電池パック
JP5694254B2 (ja) 活物質、非水電解質電池および電池パック
JP6416214B2 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極、非水電解質二次電池、電池パックおよび非水電解質二次電池用活物質の製造方法
KR101463881B1 (ko) 망간계 스피넬형 리튬 천이 금속 산화물
WO2015140915A1 (ja) 電池用活物質、非水電解質電池及び電池パック
JP5665828B2 (ja) 電池用活物質、非水電解質電池および電池パック
JP2006032321A (ja) 活物質材料、その製造方法、およびそれを含む非水電解質二次電池
EP2840639A1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery using the same
JP6096985B1 (ja) 非水電解質電池及び電池パック
JP2009016234A (ja) 非水電池および非水電池の製造方法
JP2018049718A (ja) 電極、非水電解質電池、電池パック、及び車両
WO2011117992A1 (ja) 電池用活物質および電池
JP6058444B2 (ja) 負極、非水電解質電池、電池パック及び自動車
WO2015045254A1 (ja) リチウムチタン複合酸化物
WO2018062202A1 (ja) 非水電解質電池及び電池パック
JP2015111585A (ja) 活物質、非水電解質電池および電池パック
JP4746846B2 (ja) リチウムイオン電池用負極活物質、その製造方法およびリチウムイオン電池
JP5646661B2 (ja) 正極、非水電解質電池及び電池パック
WO2023026482A1 (ja) 電極、電池、及び電池パック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP