EP3138911B1 - Crispr-basierte genommodifizierung und -regulierung - Google Patents

Crispr-basierte genommodifizierung und -regulierung Download PDF

Info

Publication number
EP3138911B1
EP3138911B1 EP16183724.0A EP16183724A EP3138911B1 EP 3138911 B1 EP3138911 B1 EP 3138911B1 EP 16183724 A EP16183724 A EP 16183724A EP 3138911 B1 EP3138911 B1 EP 3138911B1
Authority
EP
European Patent Office
Prior art keywords
sequence
rna
cell
guided endonuclease
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16183724.0A
Other languages
English (en)
French (fr)
Other versions
EP3138911A1 (de
Inventor
Fuqiang Chen
Gregory D. Davis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Aldrich Co LLC
Original Assignee
Sigma Aldrich Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50883989&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3138911(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sigma Aldrich Co LLC filed Critical Sigma Aldrich Co LLC
Priority to PL16183724T priority Critical patent/PL3138911T3/pl
Publication of EP3138911A1 publication Critical patent/EP3138911A1/de
Application granted granted Critical
Publication of EP3138911B1 publication Critical patent/EP3138911B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/10Ophthalmic agents for accommodation disorders, e.g. myopia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/463Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from amphibians
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/21Endodeoxyribonucleases producing 5'-phosphomonoesters (3.1.21)
    • C12Y301/21004Type II site-specific deoxyribonuclease (3.1.21.4)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/09Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/10Fusion polypeptide containing a localisation/targetting motif containing a tag for extracellular membrane crossing, e.g. TAT or VP22
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/80Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
    • C07K2319/81Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor containing a Zn-finger domain for DNA binding
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3513Protein; Peptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present disclosure relates targeted genome modification.
  • the disclosure relates to RNA-guided endonucleases comprising CRISPR/Cas-like protein and methods of using said proteins to modify or regulate targeted chromosomal sequences.
  • Targeted genome modification is a powerful tool for genetic manipulation of eukaryotic cells, embryos, and animals.
  • exogenous sequences can be integrated at targeted genomic locations and/or specific endogenous chromosomal sequences can be deleted, inactivated, or modified.
  • Current methods rely on the use of engineered nuclease enzymes, such as, for example, zinc finger nucleases (ZFNs) or transcription activator-like effector nucleases (TALENs).
  • ZFNs zinc finger nucleases
  • TALENs transcription activator-like effector nucleases
  • These chimeric nucleases contain programmable, sequence-specific DNA-binding modules linked to a nonspecific DNA cleavage domain.
  • Each new genomic target however, requires the design of a new ZFN or TALEN comprising a novel sequence-specific DNA-binding module.
  • these custom designed nucleases tend to be costly and time-consuming to prepare.
  • the specificities of ZFNs and TALENS are such
  • the present invention provides a method for modifying a chromosomal sequence in a eukaryotic cell by integrating a donor sequence, the method comprising (a) introducing into the eukaryotic cell (i) at least one RNA-guided endonuclease comprising at least one nuclear localization signal or nucleic acid encoding at least one RNA-guided endonuclease comprising at least one nuclear localization signal, wherein the at least one RNA-guided endonuclease is a clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated (Cas) (CRISPR/Cas) type II system protein and the CRISPR/Cas type II system protein is a Cas9 protein, (ii) at least one guide RNA or DNA encoding at least one guide RNA, and, (iii) a donor polynucleotide comprising a donor sequence; and (b) culturing the e
  • RNA-guided endonucleases which comprise at least one nuclear localization signal, at least one nuclease domain, and at least one domain that interacts with a guide RNA to target the endonuclease to a specific nucleotide sequence for cleavage. Also disclosed are nucleic acids encoding the RNA-guided endonucleases, as well as methods of using the RNA-guided endonucleases to modify chromosomal sequences of eukaryotic cells or embryos.
  • the RNA-guided endonuclease interacts with specific guide RNAs, each of which directs the endonuclease to a specific targeted site, at which site the RNA-guided endonuclease introduces a double-stranded break that can be repaired by a DNA repair process such that the chromosomal sequence is modified. Since the specificity is provided by the guide RNA, the RNA-based endonuclease is universal and can be used with different guide RNAs to target different genomic sequences.
  • the methods disclosed herein can be used to target and modify specific chromosomal sequences and/or introduce exogenous sequences at targeted locations in the genome of cells or embryos. Methods which comprise a process for modifying the germ line genetic identity of a human being are excluded. Furthermore, the targeting is specific with limited off target effects.
  • RNA-guided endonucleases comprising at least one nuclear localization signal, which permits entry of the endonuclease into the nuclei of eukaryotic cells and embryos such as, for example, non-human one cell embryos.
  • RNA-guided endonucleases also comprise at least one nuclease domain and at least one domain that interacts with a guide RNA.
  • An RNA-guided endonuclease is directed to a specific nucleic acid sequence (or target site) by a guide RNA.
  • the guide RNA interacts with the RNA-guided endonuclease as well as the target site such that, once directed to the target site, the RNA-guided endonuclease is able to introduce a double-stranded break into the target site nucleic acid sequence. Since the guide RNA provides the specificity for the targeted cleavage, the endonuclease of the RNA-guided endonuclease is universal and can be used with different guide RNAs to cleave different target nucleic acid sequences.
  • RNA-guided endonucleases Disclosed herein are isolated RNA-guided endonucleases, isolated nucleic acids (i.e., RNA or DNA) encoding the RNA-guided endonucleases, vectors comprising nucleic acids encoding the RNA-guided endonucleases, and protein-RNA complexes comprising the RNA-guided endonuclease plus a guide RNA.
  • isolated nucleic acids i.e., RNA or DNA
  • vectors comprising nucleic acids encoding the RNA-guided endonucleases
  • protein-RNA complexes comprising the RNA-guided endonuclease plus a guide RNA.
  • the RNA-guided endonuclease can be derived from a clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system.
  • CRISPR/Cas system can be a type I, a type II, or a type III system.
  • Non-limiting examples of suitable CRISPR/Cas proteins include Cas3, Cas4, Cas5, Cas5e (or CasD), Cas6, Cas6e, Cas6f, Cas7, Cas8a1, Cas8a2, Cas8b, Cas8c, Cas9, Cas10, Cas10d, CasF, CasG, CasH, Csy1, Csy2, Csy3, Cse1 (or CasA), Cse2 (or CasB), Cse3 (or CasE), Cse4 (or CasC), Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3,Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csz1, Csx15,
  • the RNA-guided endonuclease is derived from a type II CRISPR/Cas system, more specifically, a Cas9 protein.
  • the Cas9 protein can be from Streptococcus pyogenes , Streptococcus thermophilus , Streptococcus sp ., Nocardiopsis rougevillei, Streptomyces pristinaespiralis, Streptomyces viridochromogenes, Streptomyces viridochromogenes, Streptosporangium roseum, Streptosporangium roseum, Alicyclobacillus acidocaldarius, Bacillus pseudomycoides, Bacillus selenitireducens, Exiguobacterium sibiricum, Lactobacillus delbrueckii, Lactobacillus salivarius, Microscilla marina, Burkholderiales bacterium, Polaromonas naphthalenivorans, Polaromon
  • CRISPR/Cas proteins comprise at least one RNA recognition and/or RNA binding domain.
  • RNA recognition and/or RNA binding domains interact with guide RNAs.
  • CRISPR/Cas proteins can also comprise nuclease domains (i.e., DNase or RNase domains), DNA binding domains, helicase domains, RNAse domains, protein-protein interaction domains, dimerization domains, as well as other domains.
  • the CRISPR/Cas-like protein can be a wild type CRISPR/Cas protein, a modified CRISPR/Cas protein, or a fragment of a wild type or modified CRISPR/Cas protein.
  • the CRISPR/Cas-like protein can be modified to increase nucleic acid binding affinity and/or specificity, alter an enzymatic activity, and/or change another property of the protein.
  • nuclease i.e., DNase, RNase
  • the CRISPR/Cas-like protein can be truncated to remove domains that are not essential for the function of the fusion protein.
  • the CRISPR/Cas-like protein can also be truncated or modified to optimize the activity of the effector domain of the fusion protein.
  • the CRISPR/Cas-like protein can be derived from a wild type Cas9 protein or fragment thereof.
  • the CRISPR/Cas-like protein can be derived from modified Cas9 protein.
  • the amino acid sequence of the Cas9 protein can be modified to alter one or more properties (e.g., nuclease activity, affinity, stability, etc.) of the protein.
  • domains of the Cas9 protein not involved in RNA-guided cleavage can be eliminated from the protein such that the modified Cas9 protein is smaller than the wild type Cas9 protein.
  • a Cas9 protein comprises at least two nuclease (i.e., DNase) domains.
  • a Cas9 protein can comprise a RuvC-like nuclease domain and a HNH-like nuclease domain. The RuvC and HNH domains work together to cut single strands to make a double-stranded break in DNA. ( Jinek et al., Science, 337: 816-821 ).
  • the RNA-guided endonuclease disclosed herein comprises at least one nuclear localization signal.
  • an NLS comprises a stretch of basic amino acids. Nuclear localization signals are known in the art (see, e.g., Lange et al., J. Biol. Chem., 2007, 282:5101-5105 ).
  • the NLS can be a monopartite sequence, such as PKKKRKV (SEQ ID NO:1) or PKKKRRV (SEQ ID NO:2).
  • the NLS can be a bipartite sequence.
  • the NLS can be KRPAATKKAGQAKKKK (SEQ ID NO:3).
  • the NLS can be located at the N-terminus, the C-terminal, or in an internal location of the RNA-guided endonuclease.
  • the RNA-guided endonuclease can further comprise at least one cell-penetrating domain.
  • the cell-penetrating domain can be a cell-penetrating peptide sequence derived from the HIV-1 TAT protein.
  • the TAT cell-penetrating sequence can be GRKKRRQRRRPPQPKKKRKV (SEQ ID NO:4).
  • the cell-penetrating domain can be TLM (PLSSIFSRIGDPPKKKRKV; SEQ ID NO:5), a cell-penetrating peptide sequence derived from the human hepatitis B virus.
  • the cell-penetrating domain can be MPG (GALFLGWLGAAGSTMGAPKKKRKV; SEQ ID NO:6 or GALFLGFLGAAGSTMGAWSQPKKKRKV; SEQ ID NO:7).
  • the cell-penetrating domain can be Pep-1 (KETWWETWWTEWSQPKKKRKV; SEQ ID NO:8), VP22, a cell penetrating peptide from Herpes simplex virus, or a polyarginine peptide sequence.
  • the cell-penetrating domain can be located at the N-terminus, the C-terminus, or in an internal location of the protein.
  • the RNA-guided endonuclease can also comprise at least one marker domain.
  • marker domains include fluorescent proteins, purification tags, and epitope tags.
  • the marker domain can be a fluorescent protein.
  • suitable fluorescent proteins include green fluorescent proteins (e.g., GFP, GFP-2, tagGFP, turboGFP, EGFP, Emerald, Azami Green, Monomeric Azami Green, CopGFP, AceGFP, ZsGreen1), yellow fluorescent proteins (e.g. YFP, EYFP, Citrine, Venus, YPet, PhiYFP, ZsYellow1,), blue fluorescent proteins (e.g.
  • EBFP EBFP2, Azurite, mKalama1, GFPuv, Sapphire, T-sapphire,), cyan fluorescent proteins (e.g. ECFP, Cerulean, CyPet, AmCyan1, Midoriishi-Cyan), red fluorescent proteins (mKate, mKate2, mPlum, DsRed monomer, mCherry, mRFP1, DsRed-Express, DsRed2, DsRed-Monomer, HcRed-Tandem, HcRed1, AsRed2, eqFP611, mRasberry, mStrawberry, Jred), and orange fluorescent proteins (mOrange, mKO, Kusabira-Orange, Monomeric Kusabira-Orange, mTangerine, tdTomato) or any other suitable fluorescent protein.
  • cyan fluorescent proteins e.g. ECFP, Cerulean, CyPet, AmCyan1, Midoriishi-
  • the marker domain can be a purification tag and/or an epitope tag.
  • tags include, but are not limited to, glutathione-S-transferase (GST), chitin binding protein (CBP), maltose binding protein, thioredoxin (TRX), poly(NANP), tandem affinity purification (TAP) tag, myc, AcV5, AU1, AU5, E, ECS, E2, FLAG, HA, nus, Softag 1, Softag 3, Strep, SBP, Glu-Glu, HSV, KT3, S, S1, T7, V5, VSV-G, 6xHis, biotin carboxyl carrier protein (BCCP), and calmodulin.
  • GST glutathione-S-transferase
  • CBP chitin binding protein
  • TRX thioredoxin
  • poly(NANP) tandem affinity purification
  • TAP tandem affinity purification
  • the RNA-guided endonuclease may be part of a protein-RNA complex comprising a guide RNA.
  • the guide RNA interacts with the RNA-guided endonuclease to direct the endonuclease to a specific target site, wherein the 5' end of the guide RNA base pairs with a specific protospacer sequence.
  • the nucleic acid can be RNA or DNA.
  • the nucleic acid encoding the RNA-guided endonuclease is mRNA.
  • the mRNA can be 5' capped and/or 3' polyadenylated.
  • the nucleic acid encoding the RNA-guided endonuclease is DNA.
  • the DNA can be present in a vector (see below).
  • the nucleic acid encoding the RNA-guided endonuclease can be codon optimized for efficient translation into protein in the eukaryotic cell or animal of interest.
  • codons can be optimized for expression in humans, mice, rats, hamsters, cows, pigs, cats, dogs, fish, amphibians, plants, yeast, insects, and so forth (see Codon Usage Database at www.kazusa.or.jp/codon/).
  • Programs for codon optimization are available as freeware (e.g., OPTIMIZER at genomes.urv.es/OPTIMIZER; OptimumGeneTM from GenScript at www.genscript.com/codon_opt.html).
  • Commercial codon optimization programs are also available.
  • DNA encoding the RNA-guided endonuclease can be operably linked to at least one promoter control sequence.
  • the DNA coding sequence can be operably linked to a promoter control sequence for expression in the eukaryotic cell or animal of interest.
  • the promoter control sequence can be constitutive, regulated, or tissue-specific.
  • Suitable constitutive promoter control sequences include, but are not limited to, cytomegalovirus immediate early promoter (CMV), simian virus (SV40) promoter, adenovirus major late promoter, Rous sarcoma virus (RSV) promoter, mouse mammary tumor virus (MMTV) promoter, phosphoglycerate kinase (PGK) promoter, elongation factor (ED1)-alpha promoter, ubiquitin promoters, actin promoters, tubulin promoters, immunoglobulin promoters, fragments thereof, or combinations of any of the foregoing.
  • suitable regulated promoter control sequences include without limit those regulated by heat shock, metals, steroids, antibiotics, or alcohol.
  • tissue-specific promoters include B29 promoter, CD14 promoter, CD43 promoter, CD45 promoter, CD68 promoter, desmin promoter, elastase-1 promoter, endoglin promoter, fibronectin promoter, Flt-1 promoter, GFAP promoter, GPIIb promoter, ICAM-2 promoter, INF- ⁇ promoter, Mb promoter, Nphsl promoter, OG-2 promoter, SP-B promoter, SYN1 promoter, and WASP promoter.
  • the promoter sequence can be wild type or it can be modified for more efficient or efficacious expression.
  • the encoding DNA can be operably linked to a CMV promoter for constitutive expression in mammalian cells.
  • the sequence encoding the RNA-guided endonuclease can be operably linked to a promoter sequence that is recognized by a phage RNA polymerase for in vitro mRNA synthesis.
  • the in vitro -transcribed RNA can be purified for use in the methods detailed below in section (III).
  • the promoter sequence can be a T7, T3, or SP6 promoter sequence or a variation of a T7, T3, or SP6 promoter sequence.
  • the DNA encoding the protein is operably linked to a T7 promoter for in vitro mRNA synthesis using T7 RNA polymerase.
  • the sequence encoding the RNA-guided endonuclease can be operably linked to a promoter sequence for in vitro expression of the RNA-guided endonuclease in bacterial or eukaryotic cells.
  • the expressed protein can be purified for use in the methods detailed below in section (III).
  • Suitable bacterial promoters include, without limit, T7 promoters, lac operon promoters, trp promoters, variations thereof, and combinations thereof.
  • An exemplary bacterial promoter is tac which is a hybrid of trp and lac promoters.
  • suitable eukaryotic promoters are listed above.
  • the DNA encoding the RNA-guided endonuclease also can be linked to a polyadenylation signal (e.g., SV40 polyA signal, bovine growth hormone (BGH) polyA signal, etc.) and/or at least one transcriptional termination sequence.
  • a polyadenylation signal e.g., SV40 polyA signal, bovine growth hormone (BGH) polyA signal, etc.
  • BGH bovine growth hormone
  • the sequence encoding the RNA-guided endonuclease also can be linked to sequence encoding at least one nuclear localization signal, at least one cell-penetrating domain, and/or at least one marker domain, which are detailed above in section (I).
  • the DNA encoding the RNA-guided endonuclease can be present in a vector.
  • Suitable vectors include plasmid vectors, phagemids, cosmids, artificial/mini-chromosomes, transposons, and viral vectors (e.g., lentiviral vectors, adeno-associated viral vectors, etc.).
  • the DNA encoding the RNA-guided endonuclease is present in a plasmid vector.
  • suitable plasmid vectors include pUC, pBR322, pET, pBluescript, and variants thereof.
  • the vector can comprise additional expression control sequences (e.g., enhancer sequences, Kozak sequences, polyadenylation sequences, transcriptional termination sequences, etc.), selectable marker sequences (e.g., antibiotic resistance genes), origins of replication, and the like. Additional information can be found in “ Current Protocols in Molecular Biology” Ausubel et al., John Wiley & Sons, New York, 2003 or " Molecular Cloning: A Laboratory Manual” Sambrook & Russell, Cold Spring Harbor Press, Cold Spring Harbor, NY, 3rd edition, 2001 .
  • additional expression control sequences e.g., enhancer sequences, Kozak sequences, polyadenylation sequences, transcriptional termination sequences, etc.
  • selectable marker sequences e.g., antibiotic resistance genes
  • the expression vector comprising the sequence encoding the RNA-guided endonuclease can further comprise sequence encoding a guide RNA.
  • the sequence encoding the guide RNA generally is operably linked to at least one transcriptional control sequence for expression of the guide RNA in the cell or embryo of interest.
  • DNA encoding the guide RNA can be operably linked to a promoter sequence that is recognized by RNA polymerase III (Pol III).
  • Pol III RNA polymerase III
  • suitable Pol III promoters include, but are not limited to, mammalian U6, U3, H1, and 7SL RNA promoters.
  • the present invention encompasses a method for modifying a chromosomal sequence in a eukaryotic cell by integrating a donor sequence the method comprising (a) introducing into a eukaryotic cell (i) at least one RNA-guided endonuclease comprising at least one nuclear localization signal or nucleic acid encoding at least one RNA-guided endonuclease comprising at least one nuclear localization signal, wherein the at least one RNA-guided endonuclease is a clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated (Cas) (CRISPR/Cas) type II system protein and the CRISPR/Cas type II system protein is a Cas9 protein, (ii) at least one guide RNA or DNA encoding at least one guide RNA, and, (iii) at least one donor polynucleotide comprising a donor sequence; and (b)
  • these methods can comprise introducing one RNA-guided endonuclease (or encoding nucleic acid) and one guide RNA (or encoding DNA) into a cell or embryo, wherein the RNA-guided endonuclease introduces one double-stranded break in the targeted chromosomal sequence.
  • the donor sequence in the donor polynucleotide can be exchanged with or integrated into the chromosomal sequence at the targeted site during repair of the double-stranded break.
  • the donor sequence in embodiments in which the donor sequence is flanked by upstream and downstream sequences having substantial sequence identity with upstream and downstream sequences, respectively, of the targeted site in the chromosomal sequence, the donor sequence can be exchanged with or integrated into the chromosomal sequence at the targeted site during repair mediated by homology-directed repair process.
  • the donor sequence in embodiments in which the donor sequence is flanked by compatible overhangs (or the compatible overhangs are generated in situ by the RNA-guided endonuclease) the donor sequence can be ligated directly with the cleaved chromosomal sequence by a non-homologous repair process during repair of the double-stranded break.
  • Exchange or integration of the donor sequence into the chromosomal sequence modifies the targeted chromosomal sequence or introduces an exogenous sequence into the chromosomal sequence of the cell or embryo.
  • the method can comprise introducing two RNA-guided endonucleases (or encoding nucleic acid) and two guide RNAs (or encoding DNA) into a cell, wherein the RNA-guided endonucleases introduce two double-stranded breaks in the chromosomal sequence. See FIG. 1 .
  • the two breaks can be within several base pairs, within tens of base pairs, or can be separated by many thousands of base pairs.
  • the donor sequence in the donor polynucleotide can be exchanged with or integrated into the chromosomal sequence during repair of the double-stranded breaks by either a homology-based repair process (e.g., in embodiments in which the donor sequence is flanked by upstream and downstream sequences having substantial sequence identity with upstream and downstream sequences, respectively, of the targeted sites in the chromosomal sequence) or a non-homologous repair process (e.g., in embodiments in which the donor sequence is flanked by compatible overhangs).
  • a homology-based repair process e.g., in embodiments in which the donor sequence is flanked by upstream and downstream sequences having substantial sequence identity with upstream and downstream sequences, respectively, of the targeted sites in the chromosomal sequence
  • a non-homologous repair process e.g., in embodiments in which the donor sequence is flanked by compatible overhangs.
  • the method comprises introducing into a cell at least one RNA-guided endonuclease comprising at least one nuclear localization signal or nucleic acid encoding at least one RNA-guided endonuclease comprising at least one nuclear localization signal.
  • RNA-guided endonucleases and nucleic acids encoding RNA-guided endonucleases are described above in sections (I) and (II), respectively. However, the claimed methods exclude those which comprise a process for modifying the germ line genetic identity of a human being.
  • the RNA-guided endonuclease can be introduced into the cell or embryo as an isolated protein.
  • the RNA-guided endonuclease can further comprise at least one cell-penetrating domain, which facilitates cellular uptake of the protein.
  • the RNA-guided endonuclease can be introduced into the cell or embryo as an mRNA molecule.
  • the RNA-guided endonuclease can be introduced into the cell or embryo as a DNA molecule.
  • DNA sequence encoding the protein is operably linked to a promoter sequence that will function in the cell or embryo of interest.
  • the DNA sequence can be linear, or the DNA sequence can be part of a vector.
  • the protein can be introduced into the cell or embryo as an RNA-protein complex comprising the protein and the guide RNA.
  • DNA encoding the RNA-guided endonuclease can further comprise sequence encoding a guide RNA.
  • each of the sequences encoding the RNA-guided endonuclease and the guide RNA is operably linked to appropriate promoter control sequence that allows expression of the RNA-guided endonuclease and the guide RNA, respectively, in the cell or embryo.
  • the DNA sequence encoding the RNA-guided endonuclease and the guide RNA can further comprise additional expression control, regulatory, and/or processing sequence(s).
  • the DNA sequence encoding the RNA-guided endonuclease and the guide RNA can be linear or can be part of a vector
  • the method also comprises introducing into a cell or embryo at least one guide RNA or DNA encoding at least one guide RNA.
  • a guide RNA interacts with the RNA-guided endonuclease to direct the endonuclease to a specific target site, at which site the 5' end of the guide RNA base pairs with a specific protospacer sequence in the chromosomal sequence.
  • Each guide RNA comprises three regions: a first region at the 5' end that is complementary to the target site in the chromosomal sequence, a second internal region that forms a stem loop structure, and a third 3' region that remains essentially single-stranded.
  • the first region of each guide RNA is different such that each guide RNA guides a fusion protein to a specific target site.
  • the second and third regions of each guide RNA can be the same in all guide RNAs.
  • the first region of the guide RNA is complementary to sequence (i.e., protospacer sequence) at the target site in the chromosomal sequence such that the first region of the guide RNA can base pair with the target site.
  • the first region of the guide RNA can comprise from about 10 nucleotides to more than about 25 nucleotides.
  • the region of base pairing between the first region of the guide RNA and the target site in the chromosomal sequence can be about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, or more than 25 nucleotides in length.
  • the first region of the guide RNA is about 19, 20, or 21 nucleotides in length.
  • the guide RNA also comprises a second region that forms a secondary structure.
  • the secondary structure comprises a stem (or hairpin) and a loop.
  • the length of the loop and the stem can vary.
  • the loop can range from about 3 to about 10 nucleotides in length
  • the stem can range from about 6 to about 20 base pairs in length.
  • the stem can comprise one or more bulges of 1 to about 10 nucleotides.
  • the overall length of the second region can range from about 16 to about 60 nucleotides in length.
  • the loop is about 4 nucleotides in length and the stem comprises about 12 base pairs.
  • the guide RNA also comprises a third region at the 3' end that remains essentially single-stranded.
  • the third region has no complementarity to any chromosomal sequence in the cell of interest and has no complementarity to the rest of the guide RNA.
  • the length of the third region can vary. In general, the third region is more than about 4 nucleotides in length. For example, the length of the third region can range from about 5 to about 60 nucleotides in length.
  • the combined length of the second and third regions (also called the universal or scaffold region) of the guide RNA can range from about 30 to about 120 nucleotides in length. In one aspect, the combined length of the second and third regions of the guide RNA range from about 70 to about 100 nucleotides in length.
  • the guide RNA comprises a single molecule comprising all three regions.
  • the guide RNA can comprise two separate molecules.
  • the first RNA molecule can comprise the first region of the guide RNA and one half of the "stem" of the second region of the guide RNA.
  • the second RNA molecule can comprise the other half of the "stem” of the second region of the guide RNA and the third region of the guide RNA.
  • the first and second RNA molecules each contain a sequence of nucleotides that are complementary to one another.
  • the first and second RNA molecules each comprise a sequence (of about 6 to about 20 nucleotides) that base pairs to the other sequence to form a functional guide RNA.
  • the guide RNA can be introduced into the cell or embryo as a RNA molecule.
  • the RNA molecule can be transcribed in vitro.
  • the RNA molecule can be chemically synthesized.
  • the guide RNA can be introduced into the cell or embryo as a DNA molecule.
  • the DNA encoding the guide RNA can be operably linked to promoter control sequence for expression of the guide RNA in the cell or embryo of interest.
  • the RNA coding sequence can be operably linked to a promoter sequence that is recognized by RNA polymerase III (Pol III).
  • Pol III RNA polymerase III
  • suitable Pol III promoters include, but are not limited to, mammalian U6 or H1 promoters.
  • the RNA coding sequence is linked to a mouse or human U6 promoter.
  • the RNA coding sequence is linked to a mouse or human H1 promoter.
  • the DNA molecule encoding the guide RNA can be linear or circular.
  • the DNA sequence encoding the guide RNA can be part of a vector.
  • Suitable vectors include plasmid vectors, phagemids, cosmids, artificial/mini-chromosomes, transposons, and viral vectors.
  • the DNA encoding the RNA-guided endonuclease is present in a plasmid vector.
  • suitable plasmid vectors include pUC, pBR322, pET, pBluescript, and variants thereof.
  • the vector can comprise additional expression control sequences (e.g., enhancer sequences, Kozak sequences, polyadenylation sequences, transcriptional termination sequences, etc.), selectable marker sequences (e.g., antibiotic resistance genes), origins of replication, and the like.
  • additional expression control sequences e.g., enhancer sequences, Kozak sequences, polyadenylation sequences, transcriptional termination sequences, etc.
  • selectable marker sequences e.g., antibiotic resistance genes
  • each can be part of a separate molecule (e.g., one vector containing protein coding sequence and a second vector containing guide RNA coding sequence) or both can be part of the same molecule (e.g., one vector containing coding (and regulatory) sequence for both the protein and the guide RNA).
  • RNA-guided endonuclease in conjunction with a guide RNA is directed to a target site in the chromosomal sequence, wherein the RNA-guided endonuclease introduces a double-stranded break in the chromosomal sequence.
  • the target site has no sequence limitation except that the sequence is immediately followed (downstream) by a consensus sequence.
  • This consensus sequence is also known as a p rotospacer a djacent m otif (PAM).
  • PAM include, but are not limited to, NGG, NGGNG, and NNAGAAW (wherein N is defined as any nucleotide and W is defined as either A or T).
  • the first region (at the 5' end) of the guide RNA is complementary to the protospacer of the target sequence.
  • the first region of the guide RNA is about 19 to 21 nucleotides in length.
  • the sequence of the target site in the chromosomal sequence is 5'-N 19-21 - NGG -3'.
  • the PAM is in italics.
  • the target site can be in the coding region of a gene, in an intron of a gene, in a control region of a gene, in a non-coding region between genes, etc.
  • the gene can be a protein coding gene or an RNA coding gene.
  • the gene can be any gene of interest.
  • the method further comprises introducing at least one donor polynucleotide into the cell or embryo.
  • a donor polynucleotide comprises at least one donor sequence.
  • a donor sequence of the donor polynucleotide corresponds to an endogenous or native chromosomal sequence.
  • the donor sequence can be essentially identical to a portion of the chromosomal sequence at or near the targeted site, but which comprises at least one nucleotide change.
  • the donor sequence can comprise a modified version of the wild type sequence at the targeted site such that, upon integration or exchange with the native sequence, the sequence at the targeted chromosomal location comprises at least one nucleotide change.
  • the change can be an insertion of one or more nucleotides, a deletion of one or more nucleotides, a substitution of one or more nucleotides, or combinations thereof.
  • the cell or embryo/animal can produce a modified gene product from the targeted chromosomal sequence.
  • the donor sequence of the donor polynucleotide corresponds to an exogenous sequence.
  • an "exogenous" sequence refers to a sequence that is not native to the cell or embryo, or a sequence whose native location in the genome of the cell or embryo is in a different location.
  • the exogenous sequence can comprise protein coding sequence, which can be operably linked to an exogenous promoter control sequence such that, upon integration into the genome, the cell or embryo/animal is able to express the protein coded by the integrated sequence.
  • the exogenous sequence can be integrated into the chromosomal sequence such that its expression is regulated by an endogenous promoter control sequence.
  • the exogenous sequence can be a transcriptional control sequence, another expression control sequence, an RNA coding sequence, and so forth. Integration of an exogenous sequence into a chromosomal sequence is termed a "knock in.”
  • the length of the donor sequence can and will vary.
  • the donor sequence can vary in length from several nucleotides to hundreds of nucleotides to hundreds of thousands of nucleotides.
  • Donor polynucleotide comprising upstream and downstream sequences.
  • the donor sequence in the donor polynucleotide is flanked by an upstream sequence and a downstream sequence, which have substantial sequence identity to sequences located upstream and downstream, respectively, of the targeted site in the chromosomal sequence. Because of these sequence similarities, the upstream and downstream sequences of the donor polynucleotide permit homologous recombination between the donor polynucleotide and the targeted chromosomal sequence such that the donor sequence can be integrated into (or exchanged with) the chromosomal sequence.
  • the upstream sequence refers to a nucleic acid sequence that shares substantial sequence identity with a chromosomal sequence upstream of the targeted site.
  • the downstream sequence refers to a nucleic acid sequence that shares substantial sequence identity with a chromosomal sequence downstream of the targeted site.
  • the phrase "substantial sequence identity" refers to sequences having at least about 75% sequence identity.
  • the upstream and downstream sequences in the donor polynucleotide can have about 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity with sequence upstream or downstream to the targeted site.
  • the upstream and downstream sequences in the donor polynucleotide can have about 95% or 100% sequence identity with chromosomal sequences upstream or downstream to the targeted site.
  • the upstream sequence shares substantial sequence identity with a chromosomal sequence located immediately upstream of the targeted site (i.e., adjacent to the targeted site). In other embodiments, the upstream sequence shares substantial sequence identity with a chromosomal sequence that is located within about one hundred (100) nucleotides upstream from the targeted site. Thus, for example, the upstream sequence can share substantial sequence identity with a chromosomal sequence that is located about 1 to about 20, about 21 to about 40, about 41 to about 60, about 61 to about 80, or about 81 to about 100 nucleotides upstream from the targeted site.
  • the downstream sequence shares substantial sequence identity with a chromosomal sequence located immediately downstream of the targeted site (i.e., adjacent to the targeted site). In other embodiments, the downstream sequence shares substantial sequence identity with a chromosomal sequence that is located within about one hundred (100) nucleotides downstream from the targeted site. Thus, for example, the downstream sequence can share substantial sequence identity with a chromosomal sequence that is located about 1 to about 20, about 21 to about 40, about 41 to about 60, about 61 to about 80, or about 81 to about 100 nucleotides downstream from the targeted site.
  • Each upstream or downstream sequence can range in length from about 20 nucleotides to about 5000 nucleotides.
  • upstream and downstream sequences can comprise about 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2800, 3000, 3200, 3400, 3600, 3800, 4000, 4200, 4400, 4600, 4800, or 5000 nucleotides.
  • upstream and downstream sequences can range in length from about 50 to about 1500 nucleotides.
  • Donor polynucleotides comprising the upstream and downstream sequences with sequence similarity to the targeted chromosomal sequence can be linear or circular.
  • the donor polynucleotide can be part of a vector.
  • the vector can be a plasmid vector.
  • Donor polynucleotide comprising targeted cleavage site(s).
  • the donor polynucleotide can additionally comprise at least one targeted cleavage site that is recognized by the RNA-guided endonuclease.
  • the targeted cleavage site added to the donor polynucleotide can be placed upstream or downstream or both upstream and downstream of the donor sequence.
  • the donor sequence can be flanked by targeted cleavage sites such that, upon cleavage by the RNA-guided endonuclease, the donor sequence is flanked by overhangs that are compatible with those in the chromosomal sequence generated upon cleavage by the RNA-guided endonuclease.
  • the donor sequence can be ligated with the cleaved chromosomal sequence during repair of the double stranded break by a non-homologous repair process.
  • donor polynucleotides comprising the targeted cleavage site(s) will be circular (e.g., can be part of a plasmid vector).
  • Donor polynucleotide comprising a short donor sequence with optional overhangs.
  • the donor polynucleotide can be a linear molecule comprising a short donor sequence with optional short overhangs that are compatible with the overhangs generated by the RNA-guided endonuclease.
  • the donor sequence can be ligated directly with the cleaved chromosomal sequence during repair of the double-stranded break.
  • the donor sequence can be less than about 1,000, less than about 500, less than about 250, or less than about 100 nucleotides.
  • the donor polynucleotide can be a linear molecule comprising a short donor sequence with blunt ends.
  • the donor polynucleotide can be a linear molecule comprising a short donor sequence with 5' and/or 3' overhangs.
  • the overhangs can comprise 1, 2, 3, 4, or 5 nucleotides.
  • the donor polynucleotide will be DNA.
  • the DNA may be single-stranded or double-stranded and/or linear or circular.
  • the donor polynucleotide may be a DNA plasmid, a bacterial artificial chromosome (BAC), a yeast artificial chromosome (YAC), a viral vector, a linear piece of DNA, a PCR fragment, a naked nucleic acid, or a nucleic acid complexed with a delivery vehicle such as a liposome or poloxamer.
  • the donor polynucleotide comprising the donor sequence can be part of a plasmid vector. In any of these situations, the donor polynucleotide comprising the donor sequence can further comprise at least one additional sequence.
  • RNA-targeted endonuclease(s) (or encoding nucleic acid), the guide RNA(s) (or encoding DNA), and the optional donor polynucleotide(s) can be introduced into a cell or embryo by a variety of means. In some embodiments, the cell or embryo is transfected.
  • Suitable transfection methods include calcium phosphate-mediated transfection, nucleofection (or electroporation), cationic polymer transfection (e.g., DEAE-dextran or polyethylenimine), viral transduction, virosome transfection, virion transfection, liposome transfection, cationic liposome transfection, immunoliposome transfection, nonliposomal lipid transfection, dendrimer transfection, heat shock transfection, magnetofection, lipofection, gene gun delivery, impalefection, sonoporation, optical transfection, and proprietary agent-enhanced uptake of nucleic acids.
  • nucleofection or electroporation
  • cationic polymer transfection e.g., DEAE-dextran or polyethylenimine
  • viral transduction virosome transfection, virion transfection, liposome transfection, cationic liposome transfection, immunoliposome transfection, nonliposomal lipid transfection, dendrimer transfection, heat shock trans
  • the molecules are introduced into the cell or embryo by microinjection.
  • the embryo is a fertilized one-cell stage embryo of the species of interest.
  • the molecules can be injected into the pronuclei of one cell embryos.
  • RNA-targeted endonuclease(s) (or encoding nucleic acid), the guide RNA(s) (or DNAs encoding the guide RNA), and the optional donor polynucleotide(s) can be introduced into the cell or embryo simultaneously or sequentially.
  • the ratio of the RNA-targeted endonuclease(s) (or encoding nucleic acid) to the guide RNA(s) (or encoding DNA) generally will be about stoichiometric such that they can form an RNA-protein complex.
  • DNA encoding an RNA-targeted endonuclease and DNA encoding a guide RNA are delivered together within the plasmid vector.
  • the method further comprises maintaining the cell or embryo under appropriate conditions such that the guide RNA(s) directs the RNA-guided endonuclease(s) to the targeted site(s) in the chromosomal sequence, and the RNA-guided endonuclease(s) introduce at least one double-stranded break in the chromosomal sequence.
  • a double-stranded break can be repaired by a DNA repair process such that the chromosomal sequence is modified by a deletion of at least one nucleotide, an insertion of at least one nucleotide, a substitution of at least one nucleotide, or a combination thereof.
  • the double-stranded break could be repaired via a non-homologous end-joining (NHEJ) repair process.
  • NHEJ non-homologous end-joining
  • deletions of at least one nucleotide, insertions of at least one nucleotide, substitutions of at least one nucleotide, or combinations thereof can occur during the repair of the break.
  • the sequence at the chromosomal sequence can be modified such that the reading frame of a coding region can be shifted and that the chromosomal sequence is inactivated or "knocked out.”
  • An inactivated protein-coding chromosomal sequence does not give rise to the protein coded by the wild type chromosomal sequence.
  • the double-stranded break can be repaired by a homology-directed repair (HDR) process such that the donor sequence is integrated into the chromosomal sequence.
  • HDR homology-directed repair
  • an exogenous sequence can be integrated into the genome of the cell or embryo, or the targeted chromosomal sequence can be modified by exchange of a modified sequence for the wild type chromosomal sequence.
  • the RNA-guided endonuclease can cleave both the targeted chromosomal sequence and the donor polynucleotide.
  • the linearized donor polynucleotide can be integrated into the chromosomal sequence at the site of the double-stranded break by ligation between the donor polynucleotide and the cleaved chromosomal sequence via a NHEJ process.
  • the short donor sequence can be integrated into the chromosomal sequence at the site of the double-stranded break via a NHEJ process.
  • the integration can proceed via the ligation of blunt ends between the short donor sequence and the chromosomal sequence at the site of the double stranded break.
  • the integration can proceed via the ligation of sticky ends (i.e., having 5' or 3' overhangs) between a short donor sequence that is flanked by overhangs that are compatible with those generated by the RNA-targeting endonuclease in the cleaved chromosomal sequence.
  • the cell is maintained under conditions appropriate for cell growth and/or maintenance. Suitable cell culture conditions are well known in the art and are described, for example, in Santiago et al. (2008) PNAS 105:5809-5814 ; Moehle et al. (2007) PNAS 104:3055-3060 ; Urnov et al. (2005) Nature 435:646-651 ; and Lombardo et al (2007) Nat. Biotechnology 25:1298-1306 . Those of skill in the art appreciate that methods for culturing cells are known in the art and can and will vary depending on the cell type. Routine optimization may be used, in all cases, to determine the best techniques for a particular cell type.
  • An embryo can be cultured in vitro (e.g., in cell culture). Typically, the embryo is cultured at an appropriate temperature and in appropriate media with the necessary O 2 /CO 2 ratio to allow the expression of the RNA endonuclease and guide RNA, if necessary. Suitable non-limiting examples of media include M2, M16, KSOM, BMOC, and HTF media. A skilled artisan will appreciate that culture conditions can and will vary depending on the species of embryo. Routine optimization may be used, in all cases, to determine the best culture conditions for a particular species of embryo. In some cases, a cell line may be derived from an in vitro-cultured embryo (e.g., an embryonic stem cell line).
  • an embryo may be cultured in vivo by transferring the embryo into the uterus of a female host.
  • the female host is from the same or similar species as the embryo.
  • the female host is pseudo-pregnant.
  • Methods of preparing pseudo-pregnant female hosts are known in the art.
  • methods of transferring an embryo into a female host are known. Culturing an embryo in vivo permits the embryo to develop and can result in a live birth of an animal derived from the embryo. Such an animal would comprise the modified chromosomal sequence in every cell of the body. Methods which comprise a process for modifying the germ line genetic identity of a human being are specifically excluded from the scope of the invention.
  • the cell can be a human cell, a non-human mammalian cell, a non-mammalian vertebrate cell, an invertebrate cell, an insect cell, a plant cell, a yeast cell, or a single cell eukaryotic organism.
  • the embryo is non-human mammalian embryo.
  • the embryos can be a one cell non-human mammalian embryo.
  • Exemplary mammalian embryos, including one cell embryos include without limit mouse, rat, hamster, rodent, rabbit, feline, canine, ovine, porcine, bovine, equine, and primate embryos.
  • the cell can be a stem cell.
  • Suitable stem cells include without limit embryonic stem cells, ES-like stem cells, fetal stem cells, adult stem cells, pluripotent stem cells, induced pluripotent stem cells, multipotent stem cells, oligopotent stem cells, unipotent stem cells and others.
  • the cell is a mammalian cell.
  • Non-limiting examples of suitable mammalian cells include Chinese hamster ovary (CHO) cells, baby hamster kidney (BHK) cells; mouse myeloma NS0 cells, mouse embryonic fibroblast 3T3 cells (NIH3T3), mouse B lymphoma A20 cells; mouse melanoma B16 cells; mouse myoblast C2C12 cells; mouse myeloma SP2/0 cells; mouse embryonic mesenchymal C3H-10T1/2 cells; mouse carcinoma CT26 cells, mouse prostate DuCuP cells; mouse breast EMT6 cells; mouse hepatoma Hepa1c1c7 cells; mouse myeloma J5582 cells; mouse epithelial MTD-1A cells; mouse myocardial MyEnd cells; mouse renal RenCa cells; mouse pancreatic RIN-5F cells; mouse melanoma X64 cells; mouse lymphoma YAC-1 cells; rat glioblastoma 9L cells; rat B lymphoma RBL cells;
  • the present disclosure encompasses genetically modified cells, non-human embryos, and non-human animals comprising at least one chromosomal sequence that has been modified using an RNA-guided endonuclease-mediated process, using the methods described herein.
  • the disclosure provides cells comprising at least one DNA or RNA molecule encoding an RNA-guided endonuclease targeted to a chromosomal sequence of interest, at least one guide RNA, and one or more donor polynucleotide(s).
  • the disclosure also provides non-human embryos comprising at least one DNA or RNA molecule encoding an RNA-guided endonuclease targeted to a chromosomal sequence of interest, at least one guide RNA, and one or more donor polynucleotide(s).
  • the present disclosure provides genetically modified non-human animals, non-human embryos, or animal cells comprising at least one modified chromosomal sequence.
  • the modified chromosomal sequence is modified such that it comprises an integrated sequence.
  • the chromosomal sequence is modified with an RNA guided endonuclease-mediated process, using the methods described herein.
  • one aspect of the present disclosure provides a genetically modified animal in which at least one chromosomal sequence has been modified.
  • the genetically modified animal comprises at least one inactivated chromosomal sequence.
  • the modified chromosomal sequence may be inactivated such that the sequence is not transcribed and/or a functional protein product is not produced.
  • a genetically modified animal comprising an inactivated chromosomal sequence may be termed a "knock out” or a "conditional knock out.”
  • the inactivated chromosomal sequence can include a deletion mutation (i.e., deletion of one or more nucleotides), an insertion mutation (i.e., insertion of one or more nucleotides), or a nonsense mutation (i.e., substitution of a single nucleotide for another nucleotide such that a stop codon is introduced).
  • a deletion mutation i.e., deletion of one or more nucleotides
  • an insertion mutation i.e., insertion of one or more nucleotides
  • a nonsense mutation i.e., substitution of a single nucleotide for another nucleotide such that a stop codon is introduced.
  • the inactivated chromosomal sequence comprises no exogenously introduced sequence.
  • genetically modified animals in which two, three, four, five
  • the modified chromosomal sequence can be altered such that it codes for a variant protein product.
  • a genetically modified animal comprising a modified chromosomal sequence can comprise a targeted point mutation(s) or other modification such that an altered protein product is produced.
  • the chromosomal sequence can be modified such that at least one nucleotide is changed and the expressed protein comprises one changed amino acid residue (missense mutation).
  • the chromosomal sequence can be modified to comprise more than one missense mutation such that more than one amino acid is changed.
  • the chromosomal sequence can be modified to have a three nucleotide deletion or insertion such that the expressed protein comprises a single amino acid deletion or insertion.
  • the altered or variant protein can have altered properties or activities compared to the wild type protein, such as altered substrate specificity, altered enzyme activity, altered kinetic rates, etc.
  • the genetically modified animal can comprise at least one chromosomally integrated sequence.
  • a genetically modified animal comprising an integrated sequence may be termed a "knock in” or a "conditional knock in.”
  • the chromosomally integrated sequence can, for example, encode an orthologous protein, an endogenous protein, or combinations of both.
  • a sequence encoding an orthologous protein or an endogenous protein can be integrated into a chromosomal sequence encoding a protein such that the chromosomal sequence is inactivated, but the exogenous sequence is expressed.
  • the sequence encoding the orthologous protein or endogenous protein may be operably linked to a promoter control sequence.
  • a sequence encoding an orthologous protein or an endogenous protein may be integrated into a chromosomal sequence without affecting expression of a chromosomal sequence.
  • a sequence encoding a protein can be integrated into a "safe harbor" locus, such as the Rosa26 locus, HPRT locus, or AAV locus.
  • the present disclosure also encompasses genetically modified animals in which two, three, four, five, six, seven, eight, nine, or ten or more sequences, including sequences encoding protein(s), are integrated into the genome.
  • the chromosomally integrated sequence encoding a protein can encode the wild type form of a protein of interest or can encode a protein comprising at least one modification such that an altered version of the protein is produced.
  • a chromosomally integrated sequence encoding a protein related to a disease or disorder can comprise at least one modification such that the altered version of the protein produced causes or potentiates the associated disorder.
  • the chromosomally integrated sequence encoding a protein related to a disease or disorder can comprise at least one modification such that the altered version of the protein protects against the development of the associated disorder.
  • the genetically modified animal can be a "humanized" animal comprising at least one chromosomally integrated sequence encoding a functional human protein.
  • the functional human protein can have no corresponding ortholog in the genetically modified animal.
  • the wild type animal from which the genetically modified animal is derived may comprise an ortholog corresponding to the functional human protein.
  • the orthologous sequence in the "humanized” animal is inactivated such that no functional protein is made and the "humanized” animal comprises at least one chromosomally integrated sequence encoding the human protein.
  • the genetically modified animal can comprise at least one modified chromosomal sequence encoding a protein such that the expression pattern of the protein is altered.
  • regulatory regions controlling the expression of the protein such as a promoter or a transcription factor binding site, can be altered such that the protein is over-produced, or the tissue-specific or temporal expression of the protein is altered, or a combination thereof.
  • the expression pattern of the protein can be altered using a conditional knockout system.
  • a non-limiting example of a conditional knockout system includes a Cre-Iox recombination system.
  • a Cre-lox recombination system comprises a Cre recombinase enzyme, a site-specific DNA recombinase that can catalyze the recombination of a nucleic acid sequence between specific sites (lox sites) in a nucleic acid molecule.
  • Methods of using this system to produce temporal and tissue specific expression are known in the art.
  • a genetically modified animal is generated with lox sites flanking a chromosomal sequence.
  • the genetically modified animal comprising the lox-flanked chromosomal sequence can then be crossed with another genetically modified animal expressing Cre recombinase.
  • Progeny animals comprising the lox-flanked chromosomal sequence and the Cre recombinase are then produced, and the lox-flanked chromosomal sequence is recombined, leading to deletion or inversion of the chromosomal sequence encoding the protein.
  • Expression of Cre recombinase can be temporally and conditionally regulated to effect temporally and conditionally regulated recombination of the chromosomal sequence.
  • the genetically modified animal disclosed herein can be heterozygous for the modified chromosomal sequence.
  • the genetically modified animal can be homozygous for the modified chromosomal sequence.
  • the genetically modified animals disclosed herein can be crossbred to create animals comprising more than one modified chromosomal sequence or to create animals that are homozygous for one or more modified chromosomal sequences.
  • two animals comprising the same modified chromosomal sequence can be crossbred to create an animal homozygous for the modified chromosomal sequence.
  • animals with different modified chromosomal sequences can be crossbred to create an animal comprising both modified chromosomal sequences.
  • a first animal comprising an inactivated chromosomal sequence gene "x” can be crossed with a second animal comprising a chromosomally integrated sequence encoding a human gene "X" protein to give rise to "humanized” gene "X” offspring comprising both the inactivated gene "x” chromosomal sequence and the chromosomally integrated human gene "X” sequence.
  • a humanized gene "X” animal can be crossed with a humanized gene "Y” animal to create humanized gene X/gene Y offspring.
  • an animal comprising a modified chromosomal sequence can be crossbred to combine the modified chromosomal sequence with other genetic backgrounds.
  • other genetic backgrounds may include wild-type genetic backgrounds, genetic backgrounds with deletion mutations, genetic backgrounds with another targeted integration, and genetic backgrounds with non-targeted integrations.
  • animal refers to a non-human animal.
  • the animal may be an embryo, a juvenile, or an adult.
  • Suitable animals include vertebrates such as mammals, birds, reptiles, amphibians, shellfish, and fish. Examples of suitable mammals include without limit rodents, companion animals, livestock, and primates.
  • rodents include mice, rats, hamsters, gerbils, and guinea pigs.
  • Suitable companion animals include but are not limited to cats, dogs, rabbits, hedgehogs, and ferrets.
  • livestock include horses, goats, sheep, swine, cattle, llamas, and alpacas.
  • Suitable primates include but are not limited to capuchin monkeys, chimpanzees, lemurs, macaques, marmosets, tamarins, spider monkeys, squirrel monkeys, and vervet monkeys.
  • Non-limiting examples of birds include chickens, turkeys, ducks, and geese.
  • the animal may be an invertebrate such as an insect, a nematode, and the like.
  • Non-limiting examples of insects include Drosophila and mosquitoes.
  • An exemplary animal is a rat.
  • suitable rat strains include Dahl Salt-Sensitive, Fischer 344, Lewis, Long Evans Hooded, Sprague-Dawley, and Wistar.
  • the animal is not a genetically modified mouse. In each of the foregoing iterations of suitable animals for the invention, the animal does not include exogenously introduced, randomly integrated transposon sequences.
  • a further aspect of the present disclosure provides genetically modified cells or cell lines comprising at least one modified chromosomal sequence.
  • the genetically modified cell or cell line can be derived from any of the genetically modified animals disclosed herein.
  • the chromosomal sequence can be modified in a cell as described herein above (in the paragraphs describing chromosomal sequence modifications in animals) using the methods descried herein.
  • the disclosure also encompasses a lysate of said cells or cell lines.
  • the cells are eukaryotic cells. Suitable host cells include fungi or yeast, such as Pichia , Saccharomyces, or Schizosaccharomyces; insect cells, such as SF9 cells from Spodoptera frugiperda or S2 cells from Drosophila melanogaster; and animal cells, such as mouse, rat, hamster, non-human primate, or human cells. Exemplary cells are mammalian. The mammalian cells can be primary cells. In general, any primary cell that is sensitive to double strand breaks may be used. The cells may be of a variety of cell types, e.g., fibroblast, myoblast, T or B cell, macrophage, epithelial cell, and so forth.
  • the cell line can be any established cell line or a primary cell line that is not yet described.
  • the cell line can be adherent or non-adherent, or the cell line can be grown under conditions that encourage adherent, non-adherent or organotypic growth using standard techniques known to individuals skilled in the art.
  • suitable mammalian cells and cell lines are provided herein in section (IV)(g).
  • the cell can be a stem cell.
  • suitable stem cells are provided in section (IV)(g).
  • the present disclosure also provides a genetically modified non-human embryo comprising at least one modified chromosomal sequence.
  • the chromosomal sequence can be modified in an embryo as described herein above (in the paragraphs describing chromosomal sequence modifications in animals) using the methods descried herein.
  • the embryo is a non-human fertilized one-cell stage embryo of the animal species of interest.
  • Exemplary mammalian embryos, including one cell embryos include without limit, mouse, rat, hamster, rodent, rabbit, feline, canine, ovine, porcine, bovine, equine, and primate embryos.
  • endogenous sequence refers to a chromosomal sequence that is native to the cell.
  • exogenous refers to a sequence that is not native to the cell, or a chromosomal sequence whose native location in the genome of the cell is in a different chromosomal location.
  • a “gene,” as used herein, refers to a DNA region (including exons and introns) encoding a gene product, as well as all DNA regions which regulate the production of the gene product, whether or not such regulatory sequences are adjacent to coding and/or transcribed sequences. Accordingly, a gene includes, but is not necessarily limited to, promoter sequences, terminators, translational regulatory sequences such as ribosome binding sites and internal ribosome entry sites, enhancers, silencers, insulators, boundary elements, replication origins, matrix attachment sites, and locus control regions.
  • heterologous refers to an entity that is not endogenous or native to the cell of interest.
  • a heterologous protein refers to a protein that is derived from or was originally derived from an exogenous source, such as an exogenously introduced nucleic acid sequence. In some instances, the heterologous protein is not normally produced by the cell of interest.
  • nucleic acid and polynucleotide refer to a deoxyribonucleotide or ribonucleotide polymer, in linear or circular conformation, and in either single- or double-stranded form. For the purposes of the present disclosure, these terms are not to be construed as limiting with respect to the length of a polymer.
  • the terms can encompass known analogs of natural nucleotides, as well as nucleotides that are modified in the base, sugar and/or phosphate moieties (e.g., phosphorothioate backbones). In general, an analog of a particular nucleotide has the same base-pairing specificity; i.e., an analog of A will base-pair with T.
  • nucleotide refers to deoxyribonucleotides or ribonucleotides.
  • the nucleotides may be standard nucleotides (i.e., adenosine, guanosine, cytidine, thymidine, and uridine) or nucleotide analogs.
  • a nucleotide analog refers to a nucleotide having a modified purine or pyrimidine base or a modified ribose moiety.
  • a nucleotide analog may be a naturally occurring nucleotide (e.g., inosine) or a non-naturally occurring nucleotide.
  • Non-limiting examples of modifications on the sugar or base moieties of a nucleotide include the addition (or removal) of acetyl groups, amino groups, carboxyl groups, carboxymethyl groups, hydroxyl groups, methyl groups, phosphoryl groups, and thiol groups, as well as the substitution of the carbon and nitrogen atoms of the bases with other atoms (e.g., 7-deaza purines).
  • Nucleotide analogs also include dideoxy nucleotides, 2'-O-methyl nucleotides, locked nucleic acids (LNA), peptide nucleic acids (PNA), and morpholinos.
  • polypeptide and “protein” are used interchangeably to refer to a polymer of amino acid residues.
  • nucleic acid and amino acid sequence identity are known in the art. Typically, such techniques include determining the nucleotide sequence of the mRNA for a gene and/or determining the amino acid sequence encoded thereby, and comparing these sequences to a second nucleotide or amino acid sequence. Genomic sequences can also be determined and compared in this fashion. In general, identity refers to an exact nucleotide-to-nucleotide or amino acid-to-amino acid correspondence of two polynucleotides or polypeptide sequences, respectively. Two or more sequences (polynucleotide or amino acid) can be compared by determining their percent identity.
  • the percent identity of two sequences is the number of exact matches between two aligned sequences divided by the length of the shorter sequences and multiplied by 100.
  • An approximate alignment for nucleic acid sequences is provided by the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2:482-489 (1981 ). This algorithm can be applied to amino acid sequences by using the scoring matrix developed by Dayhoff, Atlas of Protein Sequences and Structure, M. O. Dayhoff ed., 5 suppl. 3:353-358, National Biomedical Research Foundation, Washington, D.C., USA , and normalized by Gribskov, Nucl. Acids Res. 14(6):6745-6763 (1986 ).
  • a Cas9 gene from Streptococcus pyogenes strain MGAS15252 was optimized with Homo sapiens codon preference to enhance its translation in mammalian cells.
  • the Cas9 gene also was modified by adding a nuclear localization signal PKKKRKV (SEQ ID NO:1) at the C terminus for targeting the protein into the nuclei of mammalian cells.
  • Table 1 presents the modified Cas9 amino acid sequence, with the nuclear localization sequence underlined.
  • Table 2 presents the codon optimized, modified Cas9 DNA sequence.
  • Table 1 Modified Cas9 Amino Acid Sequence Table 2. Optimized Cas9 DNA Sequence (5'-3')
  • the modified Cas9 DNA sequence was placed under the control of cytomegalovirus (CMV) promoter for constituent expression in mammalian cells.
  • CMV cytomegalovirus
  • the modified Cas9 DNA sequence was also placed under the control T7 promoter for in vitro mRNA synthesis with T7 RNA polymerase.
  • In vitro RNA transcription was performed by using MessageMAX T7 ARCA-Capped Message Transcription Kit and T7 mScript Standard mRNA Production System (Cellscript).
  • the adeno-associated virus integration site 1 (AAVS1) locus was used as a target for Cas9-mediated human genome modification.
  • the human AAVS1 locus is located in intron 1 (4427 bp) of protein phosphatase 1, regulatory subunit 12C (PPP1R12C).
  • PPP1R12C protein phosphatase 1, regulatory subunit 12C
  • Table 3 presents the first exon (shaded gray) and the first intron of PPP1R12C.
  • the underlined sequence within the intron is the targeted modification site (i.e., AAVS1 locus).
  • Cas9 guide RNAs were designed for targeting the human AAVS1 locus.
  • a 42 nucleotide RNA (referred to herein as a "crRNA” sequence) comprising (5' to 3') a target recognition sequence (i.e., sequence complementary to the non-coding strand of the target sequence) and protospacer sequence; a 85 nucleotide RNA (referred to herein as a "tracrRNA” sequence) comprising 5' sequence with complementarity to the 3' sequence of the crRNA and additional hairpin sequence; and a chimeric RNA comprising nucleotides 1-32 of the crRNA, a GAAA loop, and nucleotides 19-45 of the tracrRNA were prepared.
  • the crRNA was chemically synthesized by Sigma-Aldrich.
  • the tracrRNA and chimeric RNA were synthesized by in vitro transcription with T7 RNA polymerase using T7-Scribe Standard RNA IVT Kit (Cellscript).
  • the chimeric RNA coding sequence was also placed under the control of human U6 promoter for in vivo transcription in human cells.
  • Table 4 presents the sequences of the guide RNAs. Table 4.
  • AAVS1-GFP DNA donor contained a 5' (1185 bp) AAVS1 locus homologous arm, an RNA splicing receptor, a turbo GFP coding sequence, a 3' transcription terminator, and a 3' (1217 bp) AAVS1 locus homologous arm.
  • Table 5 presents the sequences of the RNA splicing receptor and the GFP coding sequence followed by the 3' transcription terminator.
  • Plasmid DNA was prepared by using GenElute Endotoxin-Free Plasmid Maxiprep Kit (Sigma). Table 5. Sequences in the AAVS1-GFP DNA donor sequence 5'-3' Sequence SEQ ID NO: RNA splicing receptor CTGACCTCTTCTCTTCCTCCCACAG 15 GFP coding sequence and transcription terminator 16
  • Targeted gene integration will result in a fusion protein between the first 107 amino acids of the PPP1R12C and the turbo GFP.
  • the expected fusion protein contains the first 107 amino acid residues of PPP1R12C (highlighted in grey) from RNA splicing between the first exon of PPP1R12C and the engineered splice receptor (see Table 6).
  • the K562 cell line was obtained from American Type Culture Collection (ATCC) and grown in Iscove's Modified Dulbecco's Medium, supplemented with 10% FBS and 2 mM L-glutamine. All media and supplements were obtained from Sigma-Aldrich. Cultures were split one day before transfection (at approximately 0.5 million cells per mL before transfection). Cells were transfected with Nucleofector Solution V (Lonza) on a Nucleofector (Lonza) with the T-016 program. Each nucleofection contained approximately 0.6 million cells. Transfection treatments are detailed in Table 7. Cells were grown at 37°C and 5% CO 2 immediately after nucleofection. Table 7. Transfection Treatments.
  • Fluorescence-activated cell sorting was performed 4 days after transfection. FACS data are presented in FIG. 2 . The percent GFP detected in each of the four experimental treatments (A-D) was greater than in the control treatments (E, F), confirming integration of the donor sequence and expression of the fusion protein.
  • Genomic DNA was extracted from transfected cells with GenElute Mammalian Genomic DNA Miniprep Kit (Sigma) 12 days after transfection. Genomic DNA was then PCR amplified with a forward primer located outside the 5' homologous arm of the AAVS1-GFP plasmid donor and a reverse primer located at the 5' region of the GFP.
  • the forward primer was 5'- CCACTCTGTGCTGACCACTCT-3' (SEQ ID NO:18) and reverse primer was 5'- GCGGCACTCGATCTCCA-3' (SEQ ID NO:19).
  • the expected fragment size from the junction PCR was 1388 bp.
  • the amplification was carried out with JumpStart Taq ReadyMix (Sigma), using the following cycling conditions: 98°C for 2 minutes for initial denaturation; 35 cycles of 98°C for 15 seconds, 62°C for 30 seconds, and 72°C for 1minutes and 30 seconds; and a final extension at 72°C for 5 minutes.
  • PCR products were resolved on 1% agarose gel.
  • the mouse Rosa26 locus can be targeted for genome modifications.
  • Table 8 presents a portion of the mouse Rosa26 sequence in which potential target sites are shown in bold. Each target site comprises a protospacer.
  • Table 8. Mouse Rosa26 Sequence
  • RNAs were designed to target each of the target sites in the mouse Rosa26 locus. The sequences are shown in Table 9, each is 42 nucleotides in length and the 5' region is complementary to the strand that is not presented in Table 8 (i.e., the strand that is complementary to the strand shown in Table 8). Table 9.
  • the crRNAs were chemically synthesized and pre-annealed to the tracrRNA (SEQ ID NO:13; see Example 2).
  • Pre-annealed crRNA / tracrRNA and in vitro transcribed mRNA encoding modified Cas9 protein (SEQ ID NO. 9; see Example 1) can be microinjected into the pronuclei of fertilized mouse embryos.
  • the Cas9 protein cleaves the target site, and the resultant double-stranded break can be repaired via a non-homologous end-joining (NHEJ) repair process.
  • NHEJ non-homologous end-joining
  • the injected embryos can be either incubated at 37°C, 5% CO 2 overnight or for up to 4 days, followed by genotyping analysis, or the injected embryos can be implanted into recipient female mice such that live born animals can be genotyped.
  • the in vitro -incubated embryos or tissues from live born animals can be screened for the presence of Cas9-induced mutation at the Rosa locus using standard methods.
  • the embryos or tissues from fetus or live-born animals can be harvested for DNA extraction and analysis. DNA can be isolated using standard procedures.
  • the targeted region of the Rosa26 locus can be PCR amplified using appropriate primers.
  • NHEJ is error-prone, deletions of at least one nucleotide, insertions of at least one nucleotide, substitutions of at least one nucleotide, or combinations thereof can occur during the repair of the break. Mutations can be detected using PCR-based genotyping methods, such as Cel-I mismatch assays and DNA sequencing.
  • the Rosa26 locus can be modified in mouse embryos by co-injecting a donor polynucleotide, as detailed above in section (III)(d), along with the pre-annealed crRNA / tracrRNA and mRNA encoding modified Cas9 as described above in Example 6.
  • a donor polynucleotide as detailed above in section (III)(d)
  • mRNA encoding modified Cas9 as described above in Example 6.
  • In vitro -incubated embryos or tissues from live born animals (as described in Example 6) can be screened for a modified Rosa26 locus using PCR-based genotyping methods, such as RFLP assays, junction PCR, and DNA sequencing.
  • the rat Rosa26 locus can be targeted for genome modifications.
  • Table 10 presents a portion of the rat sequence in which potential target sites are shown in bold. Each target site comprises a protospacer.
  • Table 10 Rat Rosa26 Sequence
  • Rat Rosa26 Guide RNAs were designed to target each of the target sites in the rat Rosa26 locus. The sequences are shown in Table 11, each is 42 nucleotides in length and the 5' region is complementary to the strand that is not presented in Table 10 (i.e., the strand that is complementary to the strand shown in Table 10). Table 11. Rat Rosa26 Guide RNAs RNA 5'-3'Sequence SEQ ID NO: rRosa26-crRNA-1 25 rRosa26-crRNA-2 26 rRosa26-crRNA-3 27
  • the crRNAs were chemically synthesized and pre-annealed to the tracrRNA (SEQ ID NO:13; see Example 2).
  • Pre-annealed crRNA / tracrRNA and in vitro transcribed mRNA encoding modified Cas9 protein (SEQ ID NO. 9; see Example 1) can be microinjected into the pronuclei of fertilized rat embryos.
  • the Cas9 protein cleaves the target site, and the resultant double-stranded break can be repaired via a non-homologous end-joining (NHEJ) repair process.
  • NHEJ non-homologous end-joining
  • the injected embryos can be either incubated at 37°C, 5% CO 2 overnight or for up to 4 days, followed by genotyping analysis, or the injected embryos can be implanted into recipient female mice such that live born animals can be genotyped.
  • the in vitro -incubated embryos or tissues from live born animals can be screened for the presence of Cas9-induced mutation at the Rosa locus using standard methods.
  • the embryos or tissues from fetus or live-born animals can be harvested for DNA extraction and analysis. DNA can be isolated using standard procedures.
  • the targeted region of the Rosa26 locus can be PCR amplified using appropriate primers.
  • NHEJ is error-prone, deletions of at least one nucleotide, insertions of at least one nucleotide, substitutions of at least one nucleotide, or combinations thereof can occur during the repair of the break. Mutations can be detected using PCR-based genotyping methods, such as Cel-I mismatch assays and DNA sequencing.
  • the Rosa26 locus can be modified in rat embryos by co-injecting a donor polynucleotide, as detailed above in section (III)(d), along with the pre-annealed crRNA / tracrRNA and mRNA encoding modified Cas9 as described above in Example 8.
  • a donor polynucleotide as detailed above in section (III)(d)
  • mRNA encoding modified Cas9 as described above in Example 8.
  • In vitro -incubated embryos or tissues from live born rats (as described in Example 8) can be screened for a modified Rosa26 locus using PCR-based genotyping methods, such as RFLP assays, junction PCR, and DNA sequencing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Claims (17)

  1. Verfahren zum Modifizieren einer chromosomalen Sequenz in einer eukaryotischen Zelle durch Integration einer Donorsequenz, das Verfahren umfassend:
    a) Einbringen in die eukaryotische Zelle
    (i) mindestens einer RNA-geführten Endonuklease, die mindestens ein Kernlokalisierungssignal umfasst, oder einer Nukleinsäure, die mindestens eine RNA-geführte Endonuklease codiert, die mindestens ein Kernlokalisierungssignal umfasst, wobei die mindestens eine RNA-geführte Endonuklease ein Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)/CRISPR-assoziiertes (Cas) (CRISPR/Cas)-Typ-II-Systemprotein und das CRISPR/Cas-Typ-II-Systemprotein ein Cas9-Protein ist,
    (ii) mindestens einer Guide-RNA oder DNA, die mindestens eine Guide-RNA codiert, und
    (iii) eines die Donorsequenz umfassenden Donor-Polynukleotids; und
    b) Kultivieren der eukaryotischen Zelle derart, dass jede Guide-RNA eine RNA-geführte Endonuklease zu einer Zielstelle in der chromosomalen Sequenz führt, die RNA-geführte Endonuklease einen Doppelstrangbruch an der Zielstelle einbringt und der Doppelstrangbruch durch einen DNA-Reparaturprozess derart repariert wird, dass die chromosomale Sequenz durch Insertion oder Substitution der Donorsequenz in die chromosomale Sequenz modifiziert wird, wobei auf die Zielstelle in der chromosomalen Sequenz unmittelbar ein Protospacer Adjacent Motif (PAM) folgt,
    das Verfahren keinen Prozess zum Modifizieren der Keimbahn-genetischen Identität eines Menschen umfasst und
    das Verfahren kein Behandlungsverfahren des menschlichen oder tierischen Körpers mittels Operation oder Therapie umfasst.
  2. Ex-vivo oder In-vitro-Verfahren zum Modifizieren einer chromosomalen Sequenz in einer eukaryotischen Zelle durch Integration einer Donorsequenz, das Verfahren umfassend:
    a) Einbringen in die eukaryotische Zelle
    (i) mindestens einer RNA-geführten Endonuklease, die mindestens ein Kernlokalisierungssignal umfasst, oder einer Nukleinsäure, die mindestens eine RNA-geführte Endonuklease codiert, die mindestens ein Kernlokalisierungssignal umfasst, wobei die mindestens eine RNA-geführte Endonuklease ein Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)/CRISPR-assoziiertes (Cas) (CRISPR/Cas)-Typ-II-Systemprotein und das CRISPR/Cas-Typ-II-Systemprotein ein Cas9-Protein ist,
    (ii) mindestens einer Guide-RNA oder DNA, die mindestens eine Guide-RNA codiert, und
    (iii) eines die Donorsequenz umfassenden Donor-Polynukleotids; und
    b) Kultivieren der eukaryotischen Zelle derart, dass jede Guide-RNA eine RNA-geführte Endonuklease zu einer Zielstelle in der chromosomalen Sequenz führt, die RNA-geführte Endonuklease einen Doppelstrangbruch an der Zielstelle einbringt und der Doppelstrangbruch durch einen DNA-Reparaturprozess derart repariert wird, dass die chromosomale Sequenz durch Insertion oder Substitution der Donorsequenz in die chromosomale Sequenz modifiziert wird, wobei
    auf die Zielstelle in der chromosomalen Sequenz unmittelbar ein Protospacer Adjacent Motif (PAM) folgt und wobei
    das Verfahren keinen Prozess zum Modifizieren der Keimbahn-genetischen Identität eines Menschen umfasst.
  3. Verfahren nach einem der vorstehenden Ansprüche, wobei die Zielstelle ein Rosa26-Locus, ein HPRT-Locus oder ein AAVS1-Locus ist.
  4. Verfahren nach einem der vorstehenden Ansprüche, wobei das mindestens eine Kernlokalisierungssignal sich an dem C-Terminus der Endonuklease befindet.
  5. Verfahren nach einem der vorstehenden Ansprüche, wobei jede Guide-RNA eine erste Region komplementär zu der Zielstelle in der chromosomalen Sequenz umfasst.
  6. Verfahren nach einem der vorstehenden Ansprüche, wobei jede Guide-RNA eine zweite Region umfasst, die mit der RNA-geführten Endonuklease wechselwirkt.
  7. Verfahren nach einem der vorstehenden Ansprüche, wobei die Donorsequenz in dem Donor-Polynukleotid mindestens eine Nukleotidveränderung in Bezug zu der chromosomalen Sequenz in der Nähe der Zielstelle in der chromosomalen Sequenz aufweist.
  8. Verfahren nach einem der vorstehenden Ansprüche, wobei die Donorsequenz in dem Donor-Polynukleotid von Sequenzen flankiert wird, die eine wesentliche Sequenzidentität zu stromaufwärtigen und stromabwärtigen Sequenzen der Zielstelle in der chromosomalen Sequenz aufweisen.
  9. Verfahren nach einem der vorstehenden Ansprüche, wobei das Donor-Polynukleotid ferner eine gezielte Spaltstelle, die von der RNA-geführten Endonuklease erkannt wird, umfasst.
  10. Verfahren nach einem der vorstehenden Ansprüche, wobei die Nukleinsäure, welche die RNA-geführte Endonuklease codiert, mRNA ist.
  11. Verfahren nach einem der Ansprüche 1-9, wobei die Nukleinsäure, welche die RNA-geführte Endonuklease codiert, DNA ist.
  12. Verfahren nach Anspruch 11, wobei die DNA Teil eines Vektors ist, der ferner Sequenzcodieren der Guide-RNA umfasst.
  13. Verfahren nach einem der Ansprüche 1-12, wobei die eukaryotische Zelle eine menschliche Zelle, eine nicht-menschliche Säugerzelle oder ein nicht-menschlicher Säugerembryo ist.
  14. Verfahren nach einem der Ansprüche 1-12, wobei die eukaryotische Zelle eine Wirbellosen-Zelle, eine Insektenzelle, eine Pflanzenzelle, eine Hefezelle oder ein einzelliger eukaryotischer Organismus ist.
  15. Verfahren nach Anspruch 14, wobei die eukaryotische Zelle eine Pflanzenzelle ist.
  16. Verfahren nach einem der Ansprüche 1-15, wobei die eukaryotische Zelle in vitro ist.
  17. Verfahren nach einem der vorstehenden Ansprüche, wobei die mindestens eine Guide-RNA chemisch synthetisiert ist.
EP16183724.0A 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung Active EP3138911B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16183724T PL3138911T3 (pl) 2012-12-06 2013-12-05 Modyfikacja i regulacja genomu oparta na CRISPR

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261734256P 2012-12-06 2012-12-06
US201361758624P 2013-01-30 2013-01-30
US201361761046P 2013-02-05 2013-02-05
US201361794422P 2013-03-15 2013-03-15
PCT/US2013/073307 WO2014089290A1 (en) 2012-12-06 2013-12-05 Crispr-based genome modification and regulation
EP13859964.2A EP2928496B1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP13859964.2A Division-Into EP2928496B1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP13859964.2A Division EP2928496B1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung

Publications (2)

Publication Number Publication Date
EP3138911A1 EP3138911A1 (de) 2017-03-08
EP3138911B1 true EP3138911B1 (de) 2018-12-05

Family

ID=50883989

Family Applications (11)

Application Number Title Priority Date Filing Date
EP18160519.7A Active EP3363902B1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP16183725.7A Revoked EP3138912B1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP18156734.8A Active EP3360964B1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP19201769.7A Pending EP3611263A1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP19189913.7A Pending EP3617309A3 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP16183720.8A Withdrawn EP3141604A1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP16183723.2A Revoked EP3138910B1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP13859964.2A Revoked EP2928496B1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP16183724.0A Active EP3138911B1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP16183719.0A Withdrawn EP3135765A1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP16183717.4A Withdrawn EP3138909A1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung

Family Applications Before (8)

Application Number Title Priority Date Filing Date
EP18160519.7A Active EP3363902B1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP16183725.7A Revoked EP3138912B1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP18156734.8A Active EP3360964B1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP19201769.7A Pending EP3611263A1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP19189913.7A Pending EP3617309A3 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP16183720.8A Withdrawn EP3141604A1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP16183723.2A Revoked EP3138910B1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP13859964.2A Revoked EP2928496B1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP16183719.0A Withdrawn EP3135765A1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung
EP16183717.4A Withdrawn EP3138909A1 (de) 2012-12-06 2013-12-05 Crispr-basierte genommodifizierung und -regulierung

Country Status (17)

Country Link
US (15) US20160017366A1 (de)
EP (11) EP3363902B1 (de)
JP (6) JP6620018B2 (de)
KR (7) KR101844123B1 (de)
CN (3) CN108715602A (de)
AU (9) AU2013355214B2 (de)
BR (1) BR112015012375A2 (de)
CA (3) CA2977152C (de)
DK (6) DK3138912T3 (de)
ES (6) ES2769310T3 (de)
HK (1) HK1218389A1 (de)
IL (5) IL300199A (de)
LT (4) LT3138911T (de)
PL (6) PL3138912T3 (de)
PT (6) PT3360964T (de)
SG (4) SG11201503824SA (de)
WO (1) WO2014089290A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3360964B1 (de) 2012-12-06 2019-10-02 Sigma Aldrich Co. LLC Crispr-basierte genommodifizierung und -regulierung
US11622547B2 (en) 2019-06-07 2023-04-11 Regeneran Pharmaceuticals, Inc. Genetically modified mouse that expresses human albumin

Families Citing this family (362)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008027558A2 (en) 2006-08-31 2008-03-06 Codon Devices, Inc. Iterative nucleic acid assembly using activation of vector-encoded traits
JP6118725B2 (ja) 2010-11-12 2017-04-19 ジェン9・インコーポレイテッドGen9,INC. 核酸合成のための方法およびデバイス
WO2012064975A1 (en) 2010-11-12 2012-05-18 Gen9, Inc. Protein arrays and methods of using and making the same
EP3613852A3 (de) 2011-07-22 2020-04-22 President and Fellows of Harvard College Beurteilung und verbesserung einer nukleasespaltungsspezifität
LT3594340T (lt) 2011-08-26 2021-10-25 Gen9, Inc. Kompozicijos ir būdai, skirti nukleorūgščių didelio tikslumo sąrankai
US11021737B2 (en) 2011-12-22 2021-06-01 President And Fellows Of Harvard College Compositions and methods for analyte detection
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
US9637739B2 (en) 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
US9150853B2 (en) 2012-03-21 2015-10-06 Gen9, Inc. Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis
CA2871505C (en) 2012-04-24 2021-10-12 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
EP2847335B1 (de) 2012-04-25 2018-06-27 Regeneron Pharmaceuticals, Inc. Nukleasevermitteltes targeting mit grossen zielgerichteten vektoren
WO2013163628A2 (en) 2012-04-27 2013-10-31 Duke University Genetic correction of mutated genes
PE20150336A1 (es) 2012-05-25 2015-03-25 Univ California Metodos y composiciones para la modificacion de adn objetivo dirigida por arn y para la modulacion de la transcripcion dirigida por arn
US20150225734A1 (en) 2012-06-19 2015-08-13 Regents Of The University Of Minnesota Gene targeting in plants using dna viruses
AU2013280661A1 (en) 2012-06-25 2015-01-22 Gen9, Inc. Methods for nucleic acid assembly and high throughput sequencing
EP3808844A1 (de) 2012-07-25 2021-04-21 The Broad Institute, Inc. Induzierbare dns-bindende proteine und genomperturbationswerkzeuge und deren anwendungen
CN116064533A (zh) * 2012-10-23 2023-05-05 基因工具股份有限公司 用于切割靶dna的组合物及其用途
US10415024B2 (en) 2012-11-16 2019-09-17 Poseida Therapeutics, Inc. Site-specific enzymes and methods of use
WO2014093694A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes
EP2848690B1 (de) 2012-12-12 2020-08-19 The Broad Institute, Inc. Systeme, Verfahren und Zusammensetzungen mit CRISPR-Cas-Komponenten zur Sequenzmanipulation
MX2015007550A (es) * 2012-12-12 2017-02-02 Broad Inst Inc Suministro, modificación y optimización de sistemas, métodos y composiciones para la manipulación de secuencias y aplicaciones terapéuticas.
DK2931898T3 (en) 2012-12-12 2016-06-20 Massachusetts Inst Technology CONSTRUCTION AND OPTIMIZATION OF SYSTEMS, PROCEDURES AND COMPOSITIONS FOR SEQUENCE MANIPULATION WITH FUNCTIONAL DOMAINS
ES2553782T3 (es) * 2012-12-12 2015-12-11 The Broad Institute, Inc. Ingeniería de sistemas, métodos y composiciones de guía optimizadas para manipulación de secuencias
EP3252160B1 (de) * 2012-12-12 2020-10-28 The Broad Institute, Inc. Systeme, verfahren und zusammensetzungen mit crispr-cas-komponenten zur sequenzmanipulation
US8697359B1 (en) * 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
ES2786193T3 (es) 2012-12-12 2020-10-09 Broad Inst Inc Modificación por tecnología genética y optimización de sistemas, métodos y composiciones enzimáticas mejorados para la manipulación de secuencias
EP3434776A1 (de) 2012-12-12 2019-01-30 The Broad Institute, Inc. Verfahren, modelle, systeme und vorrichtungen zur identifikation von zielsequenzen für cas-enzyme oder crispr-cas-systeme für zielsequenzen und förderresultate davon
RU2699523C2 (ru) * 2012-12-17 2019-09-05 Президент Энд Фэллоуз Оф Харвард Коллидж Рнк-направляемая инженерия генома человека
EP2922393B2 (de) 2013-02-27 2022-12-28 Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Genmanipulation in eizellen durch cas9-nukleasen
EP3578666A1 (de) 2013-03-12 2019-12-11 President and Fellows of Harvard College Verfahren zur erzeugung einer dreidimensionalen nukleinsäure mit matrix
ES2901396T3 (es) 2013-03-14 2022-03-22 Caribou Biosciences Inc Composiciones y métodos de ácidos nucleicos dirigidos a ácido nucleico
US20140273235A1 (en) * 2013-03-15 2014-09-18 Regents Of The University Of Minnesota ENGINEERING PLANT GENOMES USING CRISPR/Cas SYSTEMS
US10760064B2 (en) 2013-03-15 2020-09-01 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
CN113563476A (zh) * 2013-03-15 2021-10-29 通用医疗公司 遗传和表观遗传调节蛋白至特定基因组基因座的rna引导的靶向
PT3456831T (pt) 2013-04-16 2021-09-10 Regeneron Pharma Modificação alvejada do genoma de rato
US20160186208A1 (en) * 2013-04-16 2016-06-30 Whitehead Institute For Biomedical Research Methods of Mutating, Modifying or Modulating Nucleic Acid in a Cell or Nonhuman Mammal
CN116083487A (zh) * 2013-05-15 2023-05-09 桑格摩生物治疗股份有限公司 用于治疗遗传病状的方法和组合物
EP3004349B1 (de) 2013-05-29 2018-03-28 Cellectis S.A. Verfahren zur herstellung einer präzisen dna-spaltung mittels cas9-nickase-aktivität
US9267135B2 (en) 2013-06-04 2016-02-23 President And Fellows Of Harvard College RNA-guided transcriptional regulation
EP3603679B1 (de) * 2013-06-04 2022-08-10 President and Fellows of Harvard College Rna-geführte transkriptionsregulation
EP3004370A4 (de) * 2013-06-05 2017-01-11 Duke University Rna-geführte genmanipulation und genregulierung
AU2014279694B2 (en) 2013-06-14 2020-07-23 Cellectis Methods for non-transgenic genome editing in plants
EP3011033B1 (de) 2013-06-17 2020-02-19 The Broad Institute, Inc. Funktionale genomik unter verwendung von crispr-cas-systemen, zusammensetzungen, verfahren, schirme und anwendungen davon
DK3011031T3 (da) * 2013-06-17 2020-12-21 Broad Inst Inc Fremføring og anvendelse af crispr-cas-systemerne, vektorer og sammensætninger til levermålretning og -terapi
SG11201510286QA (en) 2013-06-17 2016-01-28 Broad Inst Inc Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components
DK3011032T3 (da) * 2013-06-17 2020-01-20 Broad Inst Inc Fremføring, modificering og optimering af systemer, fremgangsmåder og sammensætninger til målretning mod og modellering af sygdomme og forstyrrelser i postmitotiske celler
KR20160034901A (ko) * 2013-06-17 2016-03-30 더 브로드 인스티튜트, 인코퍼레이티드 서열 조작에 최적화된 crispr-cas 이중 닉카아제 시스템, 방법 및 조성물
ES2777217T3 (es) 2013-06-17 2020-08-04 Broad Inst Inc Suministro, modificación y optimización de sistemas de guía en tándem, métodos y composiciones para la manipulación de secuencias
US10011850B2 (en) 2013-06-21 2018-07-03 The General Hospital Corporation Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
US11306328B2 (en) 2013-07-26 2022-04-19 President And Fellows Of Harvard College Genome engineering
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
LT3036327T (lt) 2013-08-22 2019-06-25 Pioneer Hi-Bred International, Inc. Genomo modifikacijos, panaudojant nukreipiančias polinukleotido/cas endonukleazės sistemas, ir panaudojimo būdai
US9340800B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College Extended DNA-sensing GRNAS
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
CN105637087A (zh) * 2013-09-18 2016-06-01 科马布有限公司 方法、细胞与生物体
WO2015065964A1 (en) 2013-10-28 2015-05-07 The Broad Institute Inc. Functional genomics using crispr-cas systems, compositions, methods, screens and applications thereof
WO2015066119A1 (en) 2013-10-30 2015-05-07 North Carolina State University Compositions and methods related to a type-ii crispr-cas system in lactobacillus buchneri
CN106459995B (zh) 2013-11-07 2020-02-21 爱迪塔斯医药有限公司 使用统治型gRNA的CRISPR相关方法和组合物
SI3080279T1 (sl) 2013-12-11 2019-01-31 Regeneron Pharmaceuticals, Inc. Postopki in sestavki za ciljano spremembo genoma
CN105980568B (zh) 2013-12-11 2019-12-03 瑞泽恩制药公司 用于靶向修饰基因组的方法和组合物
WO2015089364A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Crystal structure of a crispr-cas system, and uses thereof
US20150166984A1 (en) * 2013-12-12 2015-06-18 President And Fellows Of Harvard College Methods for correcting alpha-antitrypsin point mutations
WO2015089486A2 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems
AU2014361834B2 (en) 2013-12-12 2020-10-22 Massachusetts Institute Of Technology CRISPR-Cas systems and methods for altering expression of gene products, structural information and inducible modular Cas enzymes
JP6625055B2 (ja) 2013-12-12 2020-01-08 ザ・ブロード・インスティテュート・インコーポレイテッド 組成物、及びヌクレオチドリピート障害におけるcrispr−cas系の使用方法
DK3079725T3 (da) 2013-12-12 2020-01-20 Broad Inst Inc Administration, brug og terapeutiske anvendelser af crispr-cas-systemerne og sammensætninger til genomredigering
US10787654B2 (en) * 2014-01-24 2020-09-29 North Carolina State University Methods and compositions for sequence guiding Cas9 targeting
CN111705365A (zh) 2014-02-11 2020-09-25 科罗拉多州立大学董事会(法人团体) Crispr支持的多路基因组工程化
KR20160130392A (ko) 2014-02-18 2016-11-11 듀크 유니버시티 바이러스 복제의 불활성화를 위한 조성물 및 그의 제조 및 사용 방법
EP3957735A1 (de) 2014-03-05 2022-02-23 Editas Medicine, Inc. Verfahren im zusammenhang mit crispr/cas und verfahren zur behandlung des usher-syndroms und von retinitis pigmentosa
DK3116997T3 (da) 2014-03-10 2019-08-19 Editas Medicine Inc Crispr/cas-relaterede fremgangsmåder og sammensætninger til behandling af lebers kongenitale amaurose 10 (lca10)
US11141493B2 (en) 2014-03-10 2021-10-12 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US11339437B2 (en) 2014-03-10 2022-05-24 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
EP3129484A1 (de) * 2014-03-25 2017-02-15 Editas Medicine, Inc. Verfahren und zusammensetzungen im zusammenhang mit crispr/cas zur behandlung von hiv-infektionen und aids
EP3122880B1 (de) 2014-03-26 2021-05-05 Editas Medicine, Inc. Verfahren und zusammensetzungen in zusammenhang mit crispr/cas zur behandlung von sichelzellanämie
CN106460003A (zh) 2014-04-08 2017-02-22 北卡罗来纳州立大学 用于使用crispr相关基因rna引导阻遏转录的方法和组合物
US9970001B2 (en) 2014-06-05 2018-05-15 Sangamo Therapeutics, Inc. Methods and compositions for nuclease design
LT3152312T (lt) 2014-06-06 2020-04-27 Regeneron Pharmaceuticals, Inc. Tikslinio lokuso modifikavimo būdai ir kompozicijos
ES2788426T3 (es) 2014-06-16 2020-10-21 Univ Johns Hopkins Composiciones y métodos para la expresión de ARNs de guía de CRISPR utilizando el promotor de H1
EP3157328B1 (de) * 2014-06-17 2021-08-04 Poseida Therapeutics, Inc. Verfahren zum lenken von proteinen zu spezifischen loci im genom und verwendungen davon
PT3155099T (pt) 2014-06-23 2018-04-20 Regeneron Pharma Montagem de dna mediada por nuclease
RU2771532C2 (ru) 2014-06-26 2022-05-05 Регенерон Фармасьютикалз, Инк. Способы и композиции для нацеленных генетических модификаций и способы их применения
US20170198268A1 (en) * 2014-07-09 2017-07-13 Gen9, Inc. Compositions and Methods for Site-Directed DNA Nicking and Cleaving
WO2016011080A2 (en) * 2014-07-14 2016-01-21 The Regents Of The University Of California Crispr/cas transcriptional modulation
WO2016022363A2 (en) 2014-07-30 2016-02-11 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
CN113789317B (zh) * 2014-08-06 2024-02-23 基因工具股份有限公司 使用空肠弯曲杆菌crispr/cas系统衍生的rna引导的工程化核酸酶的基因编辑
EP3633032A3 (de) 2014-08-28 2020-07-29 North Carolina State University Neuartige cas9-proteine und führungsmerkmale für dna-targeting und genomeditierung
WO2016036754A1 (en) 2014-09-02 2016-03-10 The Regents Of The University Of California Methods and compositions for rna-directed target dna modification
EP3191595B1 (de) 2014-09-12 2019-12-25 E. I. du Pont de Nemours and Company Erzeugung von stellen zur stellenspezifischen integration für komplexe trait-loci in mais und sojabohnen sowie verfahren zur verwendung
EP3204399A4 (de) * 2014-10-09 2018-04-25 Seattle Children's Hospital, dba Seattle Children's Research Institute Lange poly(a)plasmide und verfahren zur einführung langer poly(a)sequenzen in dieses plasmid
EP3204513A2 (de) * 2014-10-09 2017-08-16 Life Technologies Corporation Crispr-oligonukleotide und geneditierung
SG11201702309RA (en) 2014-10-15 2017-04-27 Regeneron Pharma Methods and compositions for generating or maintaining pluripotent cells
WO2016065364A1 (en) * 2014-10-24 2016-04-28 Life Technologies Corporation Compositions and methods for enhancing homologous recombination
DK3212789T3 (da) * 2014-10-31 2020-07-27 Massachusetts Inst Technology Massiv parallel kombinatorisk genetik til crispr
CN107406838A (zh) * 2014-11-06 2017-11-28 纳幕尔杜邦公司 Rna引导的内切核酸酶向细胞中的肽介导的递送
CA2963820A1 (en) 2014-11-07 2016-05-12 Editas Medicine, Inc. Methods for improving crispr/cas-mediated genome-editing
US20170369848A1 (en) * 2014-11-11 2017-12-28 Q Therapeutics, Inc. Engineering mesenchymal stem cells using homologous recombination
US10858662B2 (en) 2014-11-19 2020-12-08 Institute For Basic Science Genome editing with split Cas9 expressed from two vectors
KR20230070319A (ko) 2014-11-21 2023-05-22 리제너론 파마슈티칼스 인코포레이티드 쌍 형성된 가이드 rna를 사용하는 표적화된 유전자 변형을 위한 방법 및 조성물
GB201421096D0 (en) 2014-11-27 2015-01-14 Imp Innovations Ltd Genome editing methods
CA2969619A1 (en) 2014-12-03 2016-06-09 Agilent Technologies, Inc. Guide rna with chemical modifications
JP6830437B2 (ja) 2014-12-10 2021-02-17 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ 疾患を処置するための遺伝子改変された細胞、組織および臓器
WO2016094867A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Protected guide rnas (pgrnas)
BR112017013104A2 (pt) 2014-12-19 2018-05-15 Regeneron Pharma métodos para modificar um locus genômico alvo em uma célula, para intensificar a recombinação homóloga em um locus genômico alvo em uma célula e para produzir uma geração f0 de um animal não humano.
WO2016100857A1 (en) 2014-12-19 2016-06-23 Regeneron Pharmaceuticals, Inc. Stem cells for modeling type 2 diabetes
ES2894882T3 (es) 2015-01-29 2022-02-16 Meiogenix Procedimiento para inducir recombinaciones meióticas dirigidas
EP3280803B1 (de) 2015-04-06 2021-05-26 The Board of Trustees of the Leland Stanford Junior University Chemisch modifizierte guide-rnas für crispr/ cas-vermittelte genregulierung
JP2018522249A (ja) 2015-04-24 2018-08-09 エディタス・メディシン、インコーポレイテッド Cas9分子/ガイドrna分子複合体の評価
EP3289104B1 (de) 2015-04-29 2020-11-04 New York University Verfahren zur behandlung von hochwertigen gliomen
US11845928B2 (en) 2015-05-04 2023-12-19 Tsinghua University Methods and kits for fragmenting DNA
WO2016182959A1 (en) 2015-05-11 2016-11-17 Editas Medicine, Inc. Optimized crispr/cas9 systems and methods for gene editing in stem cells
EP3303607A4 (de) 2015-05-29 2018-10-10 North Carolina State University Verfahren zum screening von bakterien, archaea, algen und hefe mit crispir-nukleinsäuren
CN108368502B (zh) 2015-06-03 2022-03-18 内布拉斯加大学董事委员会 使用单链dna的dna编辑
CN108026526B (zh) 2015-06-09 2023-05-12 爱迪塔斯医药公司 用于改善移植的crispr/cas相关方法和组合物
CA2983874C (en) 2015-06-15 2022-06-21 North Carolina State University Methods and compositions for efficient delivery of nucleic acids and rna-based antimicrobials
DK3310909T3 (da) * 2015-06-17 2021-09-13 Poseida Therapeutics Inc Sammensætninger og fremgangsmåder til at føre proteiner til specifikke loci i genomet
WO2016205759A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of cas9 orthologs and variants for sequence manipulation
WO2016205613A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Crispr enzyme mutations reducing off-target effects
WO2016210271A1 (en) * 2015-06-24 2016-12-29 Sigma-Aldrich Co. Llc Cell cycle dependent genome regulation and modification
CN108472314A (zh) 2015-07-31 2018-08-31 明尼苏达大学董事会 修饰的细胞和治疗方法
JP2018529759A (ja) 2015-08-14 2018-10-11 ザ ユニバーシティー オブ シドニー 治療用コネキシン45阻害剤
JP6905755B2 (ja) 2015-08-25 2021-07-21 デューク ユニバーシティ Rnaガイド型エンドヌクレアーゼを使用してゲノム工学における特異性を改善する組成物および方法
EP3341477B1 (de) 2015-08-28 2022-03-23 The General Hospital Corporation Manipulierte crispr-cas9-nukleasen
US9512446B1 (en) 2015-08-28 2016-12-06 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US9926546B2 (en) 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
EP3786294A1 (de) 2015-09-24 2021-03-03 Editas Medicine, Inc. Verwendung von exonukleasen zur verbesserung der crispir-/cas-vermittelten genombearbeitung
KR101795999B1 (ko) 2015-09-25 2017-11-09 전남대학교산학협력단 Crispr/cas9 시스템을 이용한 베타2-마이크로글로불린 유전자 제거용 시발체
KR101745863B1 (ko) 2015-09-25 2017-06-12 전남대학교산학협력단 Crispr/cas9 시스템을 이용한 프로히비틴2 유전자 제거용 시발체
EP3356533A1 (de) 2015-09-28 2018-08-08 North Carolina State University Verfahren und zusammensetzungen für sequenzspezifische antimikrobielle mittel
EP4089175A1 (de) * 2015-10-13 2022-11-16 Duke University Genom-engineering mit typ-i-crispr-systemen in eukaryotischen zellen
PL3846375T3 (pl) 2015-10-22 2023-04-24 Telefonaktiebolaget Lm Ericsson (Publ) Sposoby i aparat związane z selektywnym wzmacnianiem sygnałów
IL258821B (en) * 2015-10-23 2022-07-01 Harvard College Nucleobase editors and their uses
WO2017075335A1 (en) 2015-10-28 2017-05-04 Voyager Therapeutics, Inc. Regulatable expression using adeno-associated virus (aav)
WO2017079406A1 (en) 2015-11-03 2017-05-11 President And Fellows Of Harvard College Method and apparatus for volumetric imaging of a three-dimensional nucleic acid containing matrix
CN106893739A (zh) 2015-11-17 2017-06-27 香港中文大学 用于靶向基因操作的新方法和系统
US10240145B2 (en) * 2015-11-25 2019-03-26 The Board Of Trustees Of The Leland Stanford Junior University CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer
WO2017112620A1 (en) 2015-12-22 2017-06-29 North Carolina State University Methods and compositions for delivery of crispr based antimicrobials
IL260532B2 (en) 2016-01-11 2023-12-01 Univ Leland Stanford Junior Systems containing chaperone proteins and their uses for controlling gene expression
SG10202112024PA (en) 2016-01-11 2021-12-30 Univ Leland Stanford Junior Chimeric proteins and methods of immunotherapy
EP3219799A1 (de) 2016-03-17 2017-09-20 IMBA-Institut für Molekulare Biotechnologie GmbH Bedingte crispr-sgrna-expression
US11597924B2 (en) 2016-03-25 2023-03-07 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
US11512311B2 (en) 2016-03-25 2022-11-29 Editas Medicine, Inc. Systems and methods for treating alpha 1-antitrypsin (A1AT) deficiency
EP3443086B1 (de) 2016-04-13 2021-11-24 Editas Medicine, Inc. Cas9-fusionsmoleküle, geneditierungssysteme und verfahren zur verwendung davon
SG11201808920RA (en) * 2016-04-14 2018-11-29 Boco Silicon Valley Inc Genome editing of human neural stem cells using nucleases
US11499168B2 (en) * 2016-04-25 2022-11-15 Universitat Basel Allele editing and applications thereof
CA3210120C (en) 2016-04-25 2024-04-09 President And Fellows Of Harvard College Hybridization chain reaction methods for in situ molecular detection
WO2017201476A1 (en) 2016-05-20 2017-11-23 Regeneron Pharmaceuticals, Inc. Methods for breaking immunological tolerance using multiple guide rnas
AU2017274145B2 (en) * 2016-06-02 2020-07-23 Sigma-Aldrich Co Llc Using programmable DNA binding proteins to enhance targeted genome modification
CN109906271A (zh) * 2016-06-03 2019-06-18 国家医疗保健研究所 编码Cas9核酸酶的核酸的饮食控制的表达及其用途
JP2019517503A (ja) * 2016-06-03 2019-06-24 テンプル ユニバーシティー オブ ザ コモンウェルス システム オブ ハイヤー エデュケーション 遺伝子編集戦略によるhiv−1のネガティブフィードバック調節
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
US10337051B2 (en) 2016-06-16 2019-07-02 The Regents Of The University Of California Methods and compositions for detecting a target RNA
US11293021B1 (en) 2016-06-23 2022-04-05 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems
EP3474669B1 (de) 2016-06-24 2022-04-06 The Regents of The University of Colorado, A Body Corporate Verfahren zur erzeugung von kombinatorischen barcodierten bibliotheken
US11603533B2 (en) 2016-07-12 2023-03-14 Washington University Incorporation of internal polya-encoded poly-lysine sequence tags and their variations for the tunable control of protein synthesis in bacterial and eukaryotic cells
AU2017302611B2 (en) 2016-07-28 2021-12-09 Regeneron Pharmaceuticals, Inc. GPR156 variants and uses thereof
WO2018023014A1 (en) 2016-07-29 2018-02-01 Regeneron Pharmaceuticals, Inc. Mice comprising mutations resulting in expression of c-truncated fibrillin-1
EP3494220A1 (de) 2016-08-02 2019-06-12 Editas Medicine, Inc. Zusammensetzungen und verfahren zur behandlung von mit cep290 assoziierten erkrankungen
US11078481B1 (en) 2016-08-03 2021-08-03 KSQ Therapeutics, Inc. Methods for screening for cancer targets
SG11201900907YA (en) 2016-08-03 2019-02-27 Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US20190185850A1 (en) * 2016-08-20 2019-06-20 Avellino Lab Usa, Inc. Single guide rna/crispr/cas9 systems, and methods of use thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11078483B1 (en) 2016-09-02 2021-08-03 KSQ Therapeutics, Inc. Methods for measuring and improving CRISPR reagent function
US20180105806A1 (en) * 2016-09-07 2018-04-19 Massachusetts Institute Of Technology Method for rna-guided endonuclease-based dna assembly
CN106636197B (zh) * 2016-09-22 2019-09-03 南京市妇幼保健院 一种定向敲降斑马鱼基因组中多拷贝基因的方法
US20190225974A1 (en) 2016-09-23 2019-07-25 BASF Agricultural Solutions Seed US LLC Targeted genome optimization in plants
AU2017335890B2 (en) * 2016-09-30 2024-05-09 The Regents Of The University Of California RNA-guided nucleic acid modifying enzymes and methods of use thereof
WO2018071572A1 (en) * 2016-10-11 2018-04-19 Stemgenics, Inc. Nanoparticles functionalized with gene editing tools and related methods
AU2017341926B2 (en) 2016-10-14 2022-06-30 The General Hospital Corporation Epigenetically regulated site-specific nucleases
GB2573062A (en) 2016-10-14 2019-10-23 Harvard College AAV delivery of nucleobase editors
GB201617559D0 (en) 2016-10-17 2016-11-30 University Court Of The University Of Edinburgh The Swine comprising modified cd163 and associated methods
EP4338799A3 (de) 2016-10-18 2024-06-05 Regents of the University of Minnesota Tumorinfiltrierende lymphozyten und therapieverfahren
MX2019005125A (es) * 2016-11-02 2019-08-29 Univ Basel Variantes de superficie celular discernibles inmunologicamente para uso en terapia celular.
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
CN110300802A (zh) * 2016-12-23 2019-10-01 基础科学研究院 用于动物胚胎碱基编辑的组合物和碱基编辑方法
US11859219B1 (en) 2016-12-30 2024-01-02 Flagship Pioneering Innovations V, Inc. Methods of altering a target nucleotide sequence with an RNA-guided nuclease and a single guide RNA
WO2018136702A1 (en) 2017-01-23 2018-07-26 Regeneron Pharmaceuticals, Inc. Hydroxysteroid 17-beta dehydrogenase 13 (hsd17b13) variants and uses thereof
TW201839136A (zh) 2017-02-06 2018-11-01 瑞士商諾華公司 治療血色素異常症之組合物及方法
CN106978438B (zh) * 2017-02-27 2020-08-28 北京大北农生物技术有限公司 提高同源重组效率的方法
EP3592853A1 (de) 2017-03-09 2020-01-15 President and Fellows of Harvard College Unterdrückung von schmerzen durch geneditierung
WO2018165629A1 (en) 2017-03-10 2018-09-13 President And Fellows Of Harvard College Cytosine to guanine base editor
WO2018170184A1 (en) 2017-03-14 2018-09-20 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
CA3057192A1 (en) 2017-03-23 2018-09-27 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable dna binding proteins
WO2018195129A1 (en) 2017-04-17 2018-10-25 University Of Maryland, College Park Embryonic cell cultures and methods of using the same
US11834670B2 (en) 2017-04-19 2023-12-05 Global Life Sciences Solutions Usa Llc Site-specific DNA modification using a donor DNA repair template having tandem repeat sequences
BR112019021719A2 (pt) 2017-04-21 2020-06-16 The General Hospital Corporation Variantes de cpf1 (cas12a) com especificidade para pam alterada
WO2018201086A1 (en) 2017-04-28 2018-11-01 Editas Medicine, Inc. Methods and systems for analyzing guide rna molecules
WO2018209158A2 (en) 2017-05-10 2018-11-15 Editas Medicine, Inc. Crispr/rna-guided nuclease systems and methods
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
EP3630198A4 (de) 2017-05-25 2021-04-21 The General Hospital Corporation Verwendung von split-deaminasen zur begrenzung unerwünschter abweichender base-editor-deaminierung
MX2019014661A (es) 2017-06-05 2020-07-29 Regeneron Pharma Variantes de b4galt1 y usos de estas.
EP3635104A1 (de) 2017-06-09 2020-04-15 Editas Medicine, Inc. Manipulierte cas9-nukleasen
JP7275054B2 (ja) 2017-06-15 2023-05-17 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 標的化された非ウイルスdna挿入
US9982279B1 (en) 2017-06-23 2018-05-29 Inscripta, Inc. Nucleic acid-guided nucleases
US10011849B1 (en) 2017-06-23 2018-07-03 Inscripta, Inc. Nucleic acid-guided nucleases
US11696572B2 (en) 2017-06-27 2023-07-11 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ASGR1 locus
HRP20220615T1 (hr) 2017-06-30 2022-06-24 Inscripta, Inc. Postupci, moduli, instrumenti i sustavi za automatiziranu obradu stanica
WO2019006418A2 (en) 2017-06-30 2019-01-03 Intima Bioscience, Inc. ADENO-ASSOCIATED VIRAL VECTORS FOR GENE THERAPY
EP3652312A1 (de) 2017-07-14 2020-05-20 Editas Medicine, Inc. Systeme und verfahren zur gezielten integration und genomeditierung und deren detektion unter verwendung von integrierten bindungsstellen
JP2020534795A (ja) 2017-07-28 2020-12-03 プレジデント アンド フェローズ オブ ハーバード カレッジ ファージによって支援される連続的進化(pace)を用いて塩基編集因子を進化させるための方法および組成物
JP2020530992A (ja) * 2017-07-31 2020-11-05 シグマ−アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニーSigma−Aldrich Co. LLC Crispr/casアクチベーターシステムのための合成ガイドrna
CA3065579A1 (en) 2017-07-31 2019-02-07 Regeneron Pharmaceuticals, Inc. Assessment of crispr/cas-induced recombination with an exogenous donor nucleic acid in vivo
AU2018309708A1 (en) 2017-07-31 2020-02-06 Regeneron Pharmaceuticals, Inc. CRISPR reporter non-human animals and uses thereof
WO2019028032A1 (en) 2017-07-31 2019-02-07 Regeneron Pharmaceuticals, Inc. EMBRYONIC STEM CELLS OF TRANSGENIC MOUSE CASES AND MICE AND USES THEREOF
JP7355730B2 (ja) * 2017-08-09 2023-10-03 ベンソン ヒル,インコーポレイティド ゲノムを修飾するための組成物及び方法
US10738327B2 (en) 2017-08-28 2020-08-11 Inscripta, Inc. Electroporation cuvettes for automation
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
WO2019050948A1 (en) * 2017-09-05 2019-03-14 Regeneron Pharmaceuticals, Inc. ADMINISTRATION OF A GENE EDITION SYSTEM HAVING ONLY ONE RETROVIRAL PARTICLE AND METHODS OF GENERATING AND USING
IL272940B1 (en) 2017-09-06 2024-02-01 Regeneron Pharma Variants linked to the interleukin-1 immunoglobulin-single receptor and their uses
SG11202001792UA (en) 2017-09-07 2020-03-30 Regeneron Pharma Solute carrier family 14 member 1 (slc14a1) variants and uses thereof
CN111163633B (zh) 2017-09-29 2022-09-09 瑞泽恩制药公司 包含人源化ttr基因座的非人类动物及其使用方法
CA3074927A1 (en) 2017-09-30 2019-04-04 Inscripta, Inc. Flow through electroporation instrumentation
WO2019079195A1 (en) * 2017-10-16 2019-04-25 University Of Pittsburgh - Of The Commonwealth System Of Higher Education GENETICALLY MODIFIED MESENCHYMAL STEM CELLS FOR USE IN CARDIOVASCULAR PROSTHESES
RU2020115869A (ru) 2017-10-16 2021-11-19 Ридженерон Фармасьютикалз, Инк. Варианты корнулина (crnn) и их применение
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
KR102503130B1 (ko) 2017-10-27 2023-02-24 더 리전트 오브 더 유니버시티 오브 캘리포니아 내인성 t 세포 수용체의 표적화된 대체
US11970719B2 (en) 2017-11-01 2024-04-30 The Regents Of The University Of California Class 2 CRISPR/Cas compositions and methods of use
ES2911249T3 (es) 2017-11-10 2022-05-18 Regeneron Pharma Animales no humanos que comprenden una mutación de slc30a8 y métodos de uso
WO2019099943A1 (en) * 2017-11-16 2019-05-23 Astrazeneca Ab Compositions and methods for improving the efficacy of cas9-based knock-in strategies
JP7361031B2 (ja) 2017-11-30 2023-10-13 リジェネロン・ファーマシューティカルズ・インコーポレイテッド ヒト化trkb遺伝子座を含む非ヒト動物
WO2019126578A1 (en) * 2017-12-20 2019-06-27 Poseida Therapeutics, Inc. Compositions and methods for directing proteins to specific loci in the genome
WO2019123014A1 (en) * 2017-12-22 2019-06-27 G+Flas Life Sciences Chimeric genome engineering molecules and methods
CN111566121A (zh) 2018-01-12 2020-08-21 巴斯夫欧洲公司 小麦7a染色体上决定每穗小穗数QTL的基因
WO2019147302A1 (en) * 2018-01-26 2019-08-01 Bauer Daniel E Targeting bcl11a distal regulatory elements with a cas9-cas9 fusion for fetal hemoglobin reinduction
KR20230022258A (ko) 2018-02-15 2023-02-14 시그마-알드리치 컴퍼니., 엘엘씨 진핵 게놈 변형을 위한 조작된 cas9 시스템
WO2019183123A1 (en) 2018-03-19 2019-09-26 Regeneron Pharmaceuticals, Inc. Transcription modulation in animals using crispr/cas systems
AU2019241967A1 (en) 2018-03-29 2020-11-19 Inscripta, Inc. Automated control of cell growth rates for induction and transformation
US10376889B1 (en) 2018-04-13 2019-08-13 Inscripta, Inc. Automated cell processing instruments comprising reagent cartridges
JP2021521788A (ja) 2018-04-19 2021-08-30 ザ・リージエンツ・オブ・ザ・ユニバーシテイー・オブ・カリフオルニア ゲノム編集のための組成物および方法
US10858761B2 (en) 2018-04-24 2020-12-08 Inscripta, Inc. Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells
US10557216B2 (en) 2018-04-24 2020-02-11 Inscripta, Inc. Automated instrumentation for production of T-cell receptor peptide libraries
WO2019209926A1 (en) 2018-04-24 2019-10-31 Inscripta, Inc. Automated instrumentation for production of peptide libraries
EP3784292A4 (de) * 2018-04-27 2022-01-19 Seattle Children's Hospital (DBA Seattle Children's Research Institute) Editierung therapeutischer genome bei x-verknüpftem hyper-igm-syndrom
CA3098874A1 (en) 2018-05-10 2019-11-14 The Board Of Trustees Of The Leland Stanford Junior University Gene therapy methods and compositions using auxotrophic regulatable cells
CN112105732A (zh) * 2018-05-10 2020-12-18 先正达参股股份有限公司 用于多核苷酸的靶向编辑的方法和组合物
JP2021523745A (ja) 2018-05-16 2021-09-09 シンテゴ コーポレイション ガイドrna設計および使用のための方法およびシステム
CN108624622A (zh) * 2018-05-16 2018-10-09 湖南艾佳生物科技股份有限公司 一种基于CRISPR-Cas9系统构建的能分泌小鼠白细胞介素-6的基因工程细胞株
EP3575402A1 (de) * 2018-06-01 2019-12-04 Algentech SAS Gen-targeting
EP3800998A1 (de) 2018-06-07 2021-04-14 The State of Israel, Ministry of Agriculture & Rural Development, Agricultural Research Organization (ARO) (Volcani Center) Verfahren zur regenerierung und transformation von cannabis
EP3802839A1 (de) 2018-06-07 2021-04-14 The State of Israel, Ministry of Agriculture & Rural Development, Agricultural Research Organization (ARO) (Volcani Center) Nukleinsäurekonstrukte und verfahren zu deren verwendung
US20210230664A1 (en) * 2018-06-25 2021-07-29 Bionano Genomics, Inc. Labeling of dna
WO2020005383A1 (en) 2018-06-30 2020-01-02 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
CN112805379A (zh) * 2018-08-03 2021-05-14 比姆医疗股份有限公司 多效应核碱基编辑器和使用其修饰核酸靶序列的方法
GB201813011D0 (en) 2018-08-10 2018-09-26 Vib Vzw Means and methods for drought tolerance in crops
US10752874B2 (en) 2018-08-14 2020-08-25 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US11142740B2 (en) 2018-08-14 2021-10-12 Inscripta, Inc. Detection of nuclease edited sequences in automated modules and instruments
US10532324B1 (en) 2018-08-14 2020-01-14 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
KR102103103B1 (ko) 2018-08-16 2020-04-21 (주)라트바이오 인위적 뉴클레아제를 생산하는 형질전환 동물 및 형질전환 배아
JP2021533797A (ja) * 2018-08-21 2021-12-09 シグマ−アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニーSigma−Aldrich Co. LLC 細胞質dnaセンサー経路の下方制御
AU2019363487A1 (en) 2018-08-30 2021-04-15 Inscripta, Inc. Improved detection of nuclease edited sequences in automated modules and instruments
CN109055379B (zh) * 2018-09-10 2022-04-15 石铭 一种转基因鸡输卵管生物反应器的制备方法
KR102121817B1 (ko) * 2018-09-12 2020-06-26 한국화학연구원 Crispr 편집 기술을 이용한 재조합 항원을 발현시키는 벡터 및 이를 동시에 다중 삽입시키는 방법
JP7222075B2 (ja) 2018-09-13 2023-02-14 リジェネロン・ファーマシューティカルズ・インコーポレイテッド C3糸球体症のモデルとしての補体因子h遺伝子ノックアウトラット
WO2020072248A1 (en) 2018-10-01 2020-04-09 North Carolina State University Recombinant type i crispr-cas system
EP3867372A1 (de) 2018-10-16 2021-08-25 Blueallele, LLC Verfahren zur gezielten insertion von dna in genen
US11214781B2 (en) 2018-10-22 2022-01-04 Inscripta, Inc. Engineered enzyme
CN113227368B (zh) 2018-10-22 2023-07-07 因思科瑞普特公司 工程化酶
WO2020086908A1 (en) * 2018-10-24 2020-04-30 The Broad Institute, Inc. Constructs for improved hdr-dependent genomic editing
KR20200071198A (ko) 2018-12-10 2020-06-19 네오이뮨텍, 인코퍼레이티드 Nrf2 발현 조절 기반 T 세포 항암면역치료법
US20220073890A1 (en) 2018-12-14 2022-03-10 Pioneer Hi-Bred International, Inc. Novel crispr-cas systems for genome editing
WO2020128478A1 (en) 2018-12-19 2020-06-25 King's College London Immunotherapeutic methods and compositions
JP7449291B2 (ja) 2018-12-20 2024-03-13 リジェネロン・ファーマシューティカルズ・インコーポレイテッド ヌクレアーゼ媒介リピート伸長
CA3125299A1 (en) * 2019-01-04 2020-07-09 The University Of Chicago Systems and methods for modulating rna
WO2020146899A1 (en) * 2019-01-11 2020-07-16 Chan Zuckerberg Biohub, Inc. Targeted in vivo genome modification
WO2020163396A1 (en) 2019-02-04 2020-08-13 The General Hospital Corporation Adenine dna base editor variants with reduced off-target rna editing
CN113728097A (zh) * 2019-02-14 2021-11-30 宏基因组学知识产权技术有限责任公司 具有ruvc结构域的酶
US10947517B2 (en) * 2019-02-15 2021-03-16 Sigma-Aldrich Co. Llc CRISPR/Cas fusion proteins and systems
GB201902277D0 (en) 2019-02-19 2019-04-03 King S College London Therapeutic agents
AU2020231380A1 (en) 2019-03-07 2021-09-23 The Regents Of The University Of California CRISPR-Cas effector polypeptides and methods of use thereof
US11781131B2 (en) 2019-03-18 2023-10-10 Regeneron Pharmaceuticals, Inc. CRISPR/Cas dropout screening platform to reveal genetic vulnerabilities associated with tau aggregation
CN113631700A (zh) 2019-03-18 2021-11-09 瑞泽恩制药公司 用于鉴定tau接种或聚集的基因修饰因子的CRISPR/Cas筛选平台
WO2020191153A2 (en) 2019-03-19 2020-09-24 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
CN113631713A (zh) 2019-03-25 2021-11-09 因思科瑞普特公司 酵母中的同时多重基因组编辑
US11001831B2 (en) 2019-03-25 2021-05-11 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
MX2021011956A (es) 2019-04-03 2021-12-15 Regeneron Pharma Metodos y composiciones para la insercion de secuencias codificantes de anticuerpos en un locus de puerto seguro.
KR102487901B1 (ko) 2019-04-04 2023-01-12 리제너론 파마슈티칼스 인코포레이티드 표적화된 변형의 표적화 벡터로의 무흔적 도입을 위한 방법
WO2020206139A1 (en) 2019-04-04 2020-10-08 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized coagulation factor 12 locus
GB201905360D0 (en) 2019-04-16 2019-05-29 Univ Nottingham Fungal strains, production and uses thereof
US20220220495A1 (en) 2019-05-10 2022-07-14 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
JP2022534867A (ja) 2019-06-04 2022-08-04 リジェネロン・ファーマシューティカルズ・インコーポレイテッド ベータスリップ変異を有するヒト化ttr遺伝子座を含む非ヒト動物と使用方法
CA3139122C (en) 2019-06-06 2023-04-25 Inscripta, Inc. Curing for recursive nucleic acid-guided cell editing
EP3813522A1 (de) 2019-06-14 2021-05-05 Regeneron Pharmaceuticals, Inc. Tauopathiemodelle
US10907125B2 (en) 2019-06-20 2021-02-02 Inscripta, Inc. Flow through electroporation modules and instrumentation
US10920189B2 (en) 2019-06-21 2021-02-16 Inscripta, Inc. Genome-wide rationally-designed mutations leading to enhanced lysine production in E. coli
US10927385B2 (en) 2019-06-25 2021-02-23 Inscripta, Inc. Increased nucleic-acid guided cell editing in yeast
WO2021050398A1 (en) * 2019-09-10 2021-03-18 The Regents Of The University Of California Synthetic lethality screening platform for cells undergoing alt
AU2020344905A1 (en) 2019-09-12 2022-04-28 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
CN114616002A (zh) 2019-09-13 2022-06-10 瑞泽恩制药公司 使用由脂质纳米颗粒递送的crispr/cas系统在动物中进行的转录调控
WO2021069387A1 (en) 2019-10-07 2021-04-15 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
CN110628825A (zh) * 2019-10-14 2019-12-31 上海捷易生物科技有限公司 一种依赖nhej的报告基因敲入组合物及其使用方法
EP4054651A1 (de) 2019-11-08 2022-09-14 Regeneron Pharmaceuticals, Inc. Crispr- und aav-strategien für die therapie der x-chromosomalen retinoschisis
US11203762B2 (en) 2019-11-19 2021-12-21 Inscripta, Inc. Methods for increasing observed editing in bacteria
WO2021108363A1 (en) 2019-11-25 2021-06-03 Regeneron Pharmaceuticals, Inc. Crispr/cas-mediated upregulation of humanized ttr allele
EP4069852A1 (de) 2019-12-03 2022-10-12 Basf Se Regulatorische nukleinsäuremoleküle zur steigerung der genexpression bei pflanzen
US10883095B1 (en) 2019-12-10 2021-01-05 Inscripta, Inc. Mad nucleases
US10704033B1 (en) 2019-12-13 2020-07-07 Inscripta, Inc. Nucleic acid-guided nucleases
CN114829612A (zh) 2019-12-16 2022-07-29 巴斯夫农业种子解决方案美国有限责任公司 使用配对切口酶的改进的基因组编辑
JP2023507566A (ja) 2019-12-18 2023-02-24 インスクリプタ, インコーポレイテッド 核酸誘導ヌクレアーゼ編集済み細胞のin vivo検出のためのカスケード/dCas3相補性アッセイ
WO2021141890A1 (en) * 2020-01-09 2021-07-15 Pioneer Hi-Bred International, Inc. Two-step gene swap
US10689669B1 (en) 2020-01-11 2020-06-23 Inscripta, Inc. Automated multi-module cell processing methods, instruments, and systems
WO2021154706A1 (en) 2020-01-27 2021-08-05 Inscripta, Inc. Electroporation modules and instrumentation
AU2021212668A1 (en) 2020-01-28 2022-08-18 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized PNPLA3 locus and methods of use
US20230081547A1 (en) 2020-02-07 2023-03-16 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized klkb1 locus and methods of use
WO2021178556A1 (en) 2020-03-04 2021-09-10 Regeneron Pharmaceuticals, Inc. Methods and compositions for sensitization of tumor cells to immune therapy
EP4125348A1 (de) 2020-03-23 2023-02-08 Regeneron Pharmaceuticals, Inc. Nichtmenschliche tiere mit einem humanisierten ttr-locus mit einer v30m-mutation und verfahren zur verwendung
KR20220161383A (ko) 2020-03-31 2022-12-06 메타지노미, 인크. 클래스 ii, 유형 ii crispr 시스템
US20210319851A1 (en) 2020-04-03 2021-10-14 Creyon Bio, Inc. Oligonucleotide-based machine learning
US20210332388A1 (en) 2020-04-24 2021-10-28 Inscripta, Inc. Compositions, methods, modules and instruments for automated nucleic acid-guided nuclease editing in mammalian cells
KR20230019843A (ko) 2020-05-08 2023-02-09 더 브로드 인스티튜트, 인코퍼레이티드 표적 이중 가닥 뉴클레오티드 서열의 두 가닥의 동시 편집을 위한 방법 및 조성물
US11787841B2 (en) 2020-05-19 2023-10-17 Inscripta, Inc. Rationally-designed mutations to the thrA gene for enhanced lysine production in E. coli
WO2021263146A2 (en) 2020-06-26 2021-12-30 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ace2 locus
CN111849986A (zh) * 2020-07-24 2020-10-30 江苏集萃药康生物科技有限公司 一种减少CRISPR-Cas9基因编辑中双链DNA片段串联的方法及其应用
US11299731B1 (en) 2020-09-15 2022-04-12 Inscripta, Inc. CRISPR editing to embed nucleic acid landing pads into genomes of live cells
US11512297B2 (en) 2020-11-09 2022-11-29 Inscripta, Inc. Affinity tag for recombination protein recruitment
WO2022120022A1 (en) 2020-12-02 2022-06-09 Regeneron Pharmaceuticals, Inc. Crispr sam biosensor cell lines and methods of use thereof
WO2022133139A2 (en) * 2020-12-16 2022-06-23 Administrators Of The Tulane Educational Fund Wnt+ adipocytes, exosomes from wnt+ adipocyte, and methods of making and using them
AU2021415461A1 (en) 2021-01-04 2023-08-17 Inscripta, Inc. Mad nucleases
US11332742B1 (en) 2021-01-07 2022-05-17 Inscripta, Inc. Mad nucleases
US11884924B2 (en) 2021-02-16 2024-01-30 Inscripta, Inc. Dual strand nucleic acid-guided nickase editing
GB202103131D0 (en) 2021-03-05 2021-04-21 Biosystems Tech Limited Method for preparation of research organisms
CA3218511A1 (en) 2021-05-10 2022-11-17 Sqz Biotechnologies Company Methods for delivering genome editing molecules to the nucleus or cytosol of a cell and uses thereof
WO2022251644A1 (en) 2021-05-28 2022-12-01 Lyell Immunopharma, Inc. Nr4a3-deficient immune cells and uses thereof
EP4347826A1 (de) 2021-06-02 2024-04-10 Lyell Immunopharma, Inc. Nr4a3-defiziente immunzellen und verwendungen davon
US11884915B2 (en) 2021-09-10 2024-01-30 Agilent Technologies, Inc. Guide RNAs with chemical modification for prime editing
WO2023064924A1 (en) 2021-10-14 2023-04-20 Codiak Biosciences, Inc. Modified producer cells for extracellular vesicle production
WO2023077053A2 (en) 2021-10-28 2023-05-04 Regeneron Pharmaceuticals, Inc. Crispr/cas-related methods and compositions for knocking out c5
WO2023077148A1 (en) 2021-11-01 2023-05-04 Tome Biosciences, Inc. Single construct platform for simultaneous delivery of gene editing machinery and nucleic acid cargo
AU2022381205A1 (en) 2021-11-04 2024-03-28 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a modified cacng1 locus
CA3238939A1 (en) 2021-12-08 2023-06-15 Gaurang Patel Mutant myocilin disease model and uses thereof
GB202118058D0 (en) 2021-12-14 2022-01-26 Univ Warwick Methods to increase yields in crops
US20230279442A1 (en) 2021-12-15 2023-09-07 Versitech Limited Engineered cas9-nucleases and method of use thereof
WO2023122506A1 (en) 2021-12-20 2023-06-29 Regeneron Pharmaceuticals, Inc. Non-human animals comprising humanized ace2 and tmprss loci
WO2023122764A1 (en) 2021-12-22 2023-06-29 Tome Biosciences, Inc. Co-delivery of a gene editor construct and a donor template
WO2023129974A1 (en) 2021-12-29 2023-07-06 Bristol-Myers Squibb Company Generation of landing pad cell lines
WO2023150181A1 (en) 2022-02-01 2023-08-10 President And Fellows Of Harvard College Methods and compositions for treating cancer
WO2023150623A2 (en) 2022-02-02 2023-08-10 Regeneron Pharmaceuticals, Inc. Anti-tfr:gaa and anti-cd63:gaa insertion for treatment of pompe disease
WO2023150798A1 (en) 2022-02-07 2023-08-10 Regeneron Pharmaceuticals, Inc. Compositions and methods for defining optimal treatment timeframes in lysosomal disease
WO2023205744A1 (en) 2022-04-20 2023-10-26 Tome Biosciences, Inc. Programmable gene insertion compositions
WO2023212677A2 (en) 2022-04-29 2023-11-02 Regeneron Pharmaceuticals, Inc. Identification of tissue-specific extragenic safe harbors for gene therapy approaches
WO2023215831A1 (en) 2022-05-04 2023-11-09 Tome Biosciences, Inc. Guide rna compositions for programmable gene insertion
WO2023220603A1 (en) 2022-05-09 2023-11-16 Regeneron Pharmaceuticals, Inc. Vectors and methods for in vivo antibody production
WO2023225665A1 (en) 2022-05-19 2023-11-23 Lyell Immunopharma, Inc. Polynucleotides targeting nr4a3 and uses thereof
WO2023225670A2 (en) 2022-05-20 2023-11-23 Tome Biosciences, Inc. Ex vivo programmable gene insertion
WO2023235726A2 (en) 2022-05-31 2023-12-07 Regeneron Pharmaceuticals, Inc. Crispr interference therapeutics for c9orf72 repeat expansion disease
WO2023235725A2 (en) 2022-05-31 2023-12-07 Regeneron Pharmaceuticals, Inc. Crispr-based therapeutics for c9orf72 repeat expansion disease
WO2023250384A2 (en) * 2022-06-22 2023-12-28 The Regents Of The University Of California Crispr-cas effector polypeptides and methods of use thereof
GB2621813A (en) 2022-06-30 2024-02-28 Univ Newcastle Preventing disease recurrence in Mitochondrial replacement therapy
WO2024020587A2 (en) 2022-07-22 2024-01-25 Tome Biosciences, Inc. Pleiopluripotent stem cell programmable gene insertion
WO2024026488A2 (en) 2022-07-29 2024-02-01 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a modified transferrin receptor locus
WO2024026474A1 (en) 2022-07-29 2024-02-01 Regeneron Pharmaceuticals, Inc. Compositions and methods for transferrin receptor (tfr)-mediated delivery to the brain and muscle
WO2024031053A1 (en) 2022-08-05 2024-02-08 Regeneron Pharmaceuticals, Inc. Aggregation-resistant variants of tdp-43
WO2024064958A1 (en) 2022-09-23 2024-03-28 Lyell Immunopharma, Inc. Methods for culturing nr4a-deficient cells
WO2024064952A1 (en) 2022-09-23 2024-03-28 Lyell Immunopharma, Inc. Methods for culturing nr4a-deficient cells overexpressing c-jun
WO2024073606A1 (en) 2022-09-28 2024-04-04 Regeneron Pharmaceuticals, Inc. Antibody resistant modified receptors to enhance cell-based therapies
WO2024077174A1 (en) 2022-10-05 2024-04-11 Lyell Immunopharma, Inc. Methods for culturing nr4a-deficient cells
WO2024083579A1 (en) 2022-10-20 2024-04-25 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
WO2024098002A1 (en) 2022-11-04 2024-05-10 Regeneron Pharmaceuticals, Inc. Calcium voltage-gated channel auxiliary subunit gamma 1 (cacng1) binding proteins and cacng1-mediated delivery to skeletal muscle
WO2024107765A2 (en) 2022-11-14 2024-05-23 Regeneron Pharmaceuticals, Inc. Compositions and methods for fibroblast growth factor receptor 3-mediated delivery to astrocytes
WO2024107670A1 (en) 2022-11-16 2024-05-23 Regeneron Pharmaceuticals, Inc. Chimeric proteins comprising membrane bound il-12 with protease cleavable linkers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050220796A1 (en) 2004-03-31 2005-10-06 Dynan William S Compositions and methods for modulating DNA repair
US20100076057A1 (en) 2008-09-23 2010-03-25 Northwestern University TARGET DNA INTERFERENCE WITH crRNA
WO2011146121A1 (en) 2010-05-17 2011-11-24 Sangamo Biosciences, Inc. Novel dna-binding proteins and uses thereof
WO2013176772A1 (en) 2012-05-25 2013-11-28 The Regents Of The University Of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
WO2014065596A1 (en) 2012-10-23 2014-05-01 Toolgen Incorporated Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof
WO2014089290A1 (en) 2012-12-06 2014-06-12 Sigma-Aldrich Co. Llc Crispr-based genome modification and regulation
WO2014093595A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas component systems, methods and compositions for sequence manipulation

Family Cites Families (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952496A (en) 1984-03-30 1990-08-28 Associated Universities, Inc. Cloning and expression of the gene for bacteriophage T7 RNA polymerase
WO1988008450A1 (en) 1987-05-01 1988-11-03 Birdwell Finlayson Gene therapy for metabolite disorders
US5350689A (en) 1987-05-20 1994-09-27 Ciba-Geigy Corporation Zea mays plants and transgenic Zea mays plants regenerated from protoplasts or protoplast-derived cells
US5767367A (en) 1990-06-23 1998-06-16 Hoechst Aktiengesellschaft Zea mays (L.) with capability of long term, highly efficient plant regeneration including fertile transgenic maize plants having a heterologous gene, and their preparation
US7150982B2 (en) 1991-09-09 2006-12-19 Third Wave Technologies, Inc. RNA detection assays
FR2763797B1 (fr) * 1997-05-30 1999-07-16 Tabacs & Allumettes Ind Cigarette a tres faible taux de goudron presentant un gout de tabac comparable a celui d'une cigarette classique a plus fort taux de goudron
US20040186071A1 (en) 1998-04-13 2004-09-23 Bennett C. Frank Antisense modulation of CD40 expression
US20020182673A1 (en) 1998-05-15 2002-12-05 Genentech, Inc. IL-17 homologous polypedies and therapeutic uses thereof
WO2000046386A2 (en) 1999-02-03 2000-08-10 The Children's Medical Center Corporation Gene repair involving the induction of double-stranded dna cleavage at a chromosomal target site
US8183339B1 (en) * 1999-10-12 2012-05-22 Xigen S.A. Cell-permeable peptide inhibitors of the JNK signal transduction pathway
WO2002026967A2 (en) 2000-09-25 2002-04-04 Thomas Jefferson University Targeted gene correction by single-stranded oligodeoxynucleotides
NZ560966A (en) 2000-10-27 2010-06-25 Novartis Vaccines & Diagnostic Nucleic acids and proteins from streptococcus groups A & B
JP3454818B1 (ja) * 2001-03-16 2003-10-06 直哉 小林 肝臓細胞の増殖方法、該方法により得られる肝臓細胞、およびその用途
IL159756A0 (en) 2001-07-12 2004-06-20 Univ Massachusetts IN VIVO PRODUCTION OF SMALL INTERFERING RNAs THAT MEDIATE GENE SILENCING
US20060253913A1 (en) 2001-12-21 2006-11-09 Yue-Jin Huang Production of hSA-linked butyrylcholinesterases in transgenic mammals
CN100575485C (zh) * 2002-01-23 2009-12-30 犹他大学研究基金会 使用锌指核酸酶的定向染色体诱变
EP2368982A3 (de) 2002-03-21 2011-10-12 Sangamo BioSciences, Inc. Verfahren und Zusammensetzungen zur Verwendung von Zinkfinger-Endonukleasen zur Verbesserung der homologen Rekombination
AU2003224897A1 (en) 2002-04-09 2003-10-27 Kenneth L. Beattie Oligonucleotide probes for genosensor chips
WO2003104451A2 (en) * 2002-06-06 2003-12-18 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Agriculture And Agri-Food Modifying dna recombination and repair
US9447434B2 (en) 2002-09-05 2016-09-20 California Institute Of Technology Use of chimeric nucleases to stimulate gene targeting
DE10260805A1 (de) * 2002-12-23 2004-07-22 Geneart Gmbh Verfahren und Vorrichtung zum Optimieren einer Nucleotidsequenz zur Expression eines Proteins
ES2808687T3 (es) * 2003-08-08 2021-03-01 Sangamo Therapeutics Inc Métodos y composiciones para escisión dirigida y recombinación
US8053232B2 (en) 2004-01-23 2011-11-08 Virxsys Corporation Correction of alpha-1-antitrypsin genetic defects using spliceosome mediated RNA trans splicing
US7972854B2 (en) 2004-02-05 2011-07-05 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
US7919277B2 (en) 2004-04-28 2011-04-05 Danisco A/S Detection and typing of bacterial strains
JP2008525029A (ja) * 2004-12-22 2008-07-17 ニュークレオニクス・インコーポレイテッド 遺伝子サイレンシングに有用なhbvおよびhcv保存配列
US7892224B2 (en) 2005-06-01 2011-02-22 Brainlab Ag Inverse catheter planning
US7534819B2 (en) 2005-06-10 2009-05-19 University Of Washington Compositions and methods for intracellular delivery of biotinylated cargo
US20060282289A1 (en) 2005-06-14 2006-12-14 Healthmatch Solutions, Llc System and method for health care financing
US20100055793A1 (en) * 2005-07-25 2010-03-04 Johns Hopkins University Site-specific modification of the human genome using custom-designed zinc finger nucleases
EP1913149A4 (de) 2005-07-26 2009-08-05 Sangamo Biosciences Inc Gezielte integration und expression exogener nukleinsäuresequenzen
US10022457B2 (en) 2005-08-05 2018-07-17 Gholam A. Peyman Methods to regulate polarization and enhance function of cells
DK2341149T3 (en) 2005-08-26 2017-02-27 Dupont Nutrition Biosci Aps Use of CRISPR-associated genes (Cas)
KR100877824B1 (ko) * 2005-11-11 2009-01-12 한국생명공학연구원 E2epf ucp-vhl 상호작용 및 그 용도
EP2522750A1 (de) * 2006-03-02 2012-11-14 The Ohio State University Mikro-RNA-Expressionsprofil im Zusammenhang mit Bauchspeicheldrüsenkrebs
US9677123B2 (en) 2006-03-15 2017-06-13 Siemens Healthcare Diagnostics Inc. Degenerate nucleobase analogs
JP2009531444A (ja) * 2006-03-28 2009-09-03 ノバルティス アーゲー HIVTATタンパク質およびEnvタンパク質の共有結合的に連結された複合体
EP2016183B1 (de) 2006-05-10 2011-06-15 Deinove Verfahren zur chromosomenmanipulation unter verwendung eines neuen dna-reparatursystems
DK2018441T3 (da) 2006-05-19 2012-01-02 Danisco Mærkede mikroorganismer og fremgangsmåde til mærkning
EP2206782A1 (de) 2006-05-25 2010-07-14 Sangamo BioSciences, Inc. Verfahren und Zusammensetzungen zur Gendeaktivierung
WO2007144770A2 (en) 2006-06-16 2007-12-21 Danisco A/S Bacterium
EP2054514A4 (de) * 2006-08-04 2009-11-04 Univ Georgia State Res Found Enzymsensoren, verfahren zur herstellung und anwendung solcher sensoren sowie verfahren zur erkennung von protease-aktivität
TR201905633T4 (tr) 2007-03-02 2019-05-21 Dupont Nutrition Biosci Aps İyileştirilmiş faj direnci olan kültürler.
GB0806086D0 (en) 2008-04-04 2008-05-14 Ulive Entpr Ltd Dendrimer polymer hybrids
WO2010011961A2 (en) 2008-07-25 2010-01-28 University Of Georgia Research Foundation, Inc. Prokaryotic rnai-like system and methods of use
EP2313515B1 (de) 2008-08-22 2015-03-04 Sangamo BioSciences, Inc. Verfahren und zusammensetzungen für gezielte einzelstrangspaltung und gezielte integration
DK2334794T3 (en) 2008-09-15 2017-02-20 Children's Medical Center Corp MODULATION OF BCL11A FOR TREATMENT OF HEMOGLOBINOPATHIES
US9404098B2 (en) 2008-11-06 2016-08-02 University Of Georgia Research Foundation, Inc. Method for cleaving a target RNA using a Cas6 polypeptide
EP2362915B1 (de) 2008-11-07 2016-12-21 DuPont Nutrition Biosciences ApS Bifidobakterien-crispr-sequenzen
WO2010066907A1 (en) 2008-12-12 2010-06-17 Danisco A/S Genetic cluster of strains of streptococcus thermophilus having unique rheological properties for dairy fermentation
WO2010075424A2 (en) 2008-12-22 2010-07-01 The Regents Of University Of California Compositions and methods for downregulating prokaryotic genes
GB0823658D0 (en) 2008-12-30 2009-02-04 Angiomed Ag Stent delivery device
US8392349B2 (en) 2009-02-23 2013-03-05 Shalini Vajjhala Global adaptation atlas and method of creating same
EP2419511B1 (de) 2009-04-09 2018-01-17 Sangamo Therapeutics, Inc. Gezielte integration in stammzellen
CN102596255B (zh) 2009-04-30 2017-10-13 圣拉法埃莱医院有限公司 基因载体
CA2767377A1 (en) 2009-07-24 2011-01-27 Sigma-Aldrich Co. Llc Method for genome editing
US20120192298A1 (en) * 2009-07-24 2012-07-26 Sigma Aldrich Co. Llc Method for genome editing
EP2461819A4 (de) 2009-07-28 2013-07-31 Sangamo Biosciences Inc Verfahren und zusammensetzungen zur behandlung erblicher trinukleotiderkrankungen
KR101418355B1 (ko) 2009-10-23 2014-07-11 (주)바이오니아 고밀도 유전자 합성기
DE102009052674B4 (de) 2009-11-12 2012-10-18 Karl Weinhold Verfahren und Vorrichtung zum Verbinden von Doppelmantelrohren
US20110294114A1 (en) 2009-12-04 2011-12-01 Cincinnati Children's Hospital Medical Center Optimization of determinants for successful genetic correction of diseases, mediated by hematopoietic stem cells
EP2510096B2 (de) 2009-12-10 2018-02-07 Regents of the University of Minnesota Tal-effektorvermittelte dna-modifizierung
WO2011100058A1 (en) 2010-02-09 2011-08-18 Sangamo Biosciences, Inc. Targeted genomic modification with partially single-stranded donor molecules
US10087431B2 (en) 2010-03-10 2018-10-02 The Regents Of The University Of California Methods of generating nucleic acid fragments
EP3078753B1 (de) 2010-05-10 2018-04-18 The Regents of The University of California Verfahren unter verwendung von endoribonukleasezusammensetzungen
EP2392208B1 (de) * 2010-06-07 2016-05-04 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Fusionsproteine, die eine DNA-Bindungsdomäne eines TAL-Effektorproteins und eine unspezifische Spaltungsdomäne einer Restriktionsnuklease umfassen, und deren Verwendung
WO2011156430A2 (en) 2010-06-07 2011-12-15 Fred Hutchinson Cancer Research Center Generation and expression of engineered i-onui endonuclease and its homologues and uses thereof
JP2013534417A (ja) 2010-06-14 2013-09-05 アイオワ ステート ユニバーシティ リサーチ ファウンデーション,インコーポレーティッド Talエフェクターとfokiの融合タンパク質のヌクレアーゼ活性
EP3489359A1 (de) * 2010-07-23 2019-05-29 Sigma Aldrich Co. LLC Genombearbeitung durch ansteuerung von endonukleasen und einsträngigen nukleinsäuren
US9081737B2 (en) 2010-08-02 2015-07-14 Integrated Dna Technologies, Inc. Methods for predicting stability and melting temperatures of nucleic acid duplexes
WO2012054726A1 (en) 2010-10-20 2012-04-26 Danisco A/S Lactococcus crispr-cas sequences
WO2012069657A1 (en) * 2010-11-26 2012-05-31 Institut Pasteur Identification of a human gyrovirus and applications.
WO2012087756A1 (en) 2010-12-22 2012-06-28 Sangamo Biosciences, Inc. Zinc finger nuclease modification of leucine rich repeat kinase 2 (lrrk2) mutant fibroblasts and ipscs
KR20120096395A (ko) 2011-02-22 2012-08-30 주식회사 툴젠 뉴클레아제에 의해 유전자 변형된 세포를 농축시키는 방법
US20140113376A1 (en) 2011-06-01 2014-04-24 Rotem Sorek Compositions and methods for downregulating prokaryotic genes
EP3498833B1 (de) 2011-09-21 2023-08-16 Sangamo Therapeutics, Inc. Verfahren und zusammensetzungen zur regulierung der transgenexpression
JP6144691B2 (ja) * 2011-11-16 2017-06-07 サンガモ セラピューティクス, インコーポレイテッド 修飾されたdna結合タンパク質およびその使用
US8450107B1 (en) 2011-11-30 2013-05-28 The Broad Institute Inc. Nucleotide-specific recognition sequences for designer TAL effectors
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
ES2641840T3 (es) 2012-02-24 2017-11-14 Fred Hutchinson Cancer Research Center Composiciones y métodos para el tratamiento de hemoglobinopatías
MX359327B (es) 2012-02-29 2018-09-25 Sangamo Biosciences Inc Composiciones y sus usos para tratar y prevenir la enfermedad de huntington.
US9637739B2 (en) * 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
WO2013141680A1 (en) 2012-03-20 2013-09-26 Vilnius University RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
AU2013204327B2 (en) 2012-04-20 2016-09-01 Aviagen Cell transfection method
CA2871008C (en) 2012-04-23 2022-11-22 Bayer Cropscience Nv Targeted genome engineering in plants
EP2847335B1 (de) 2012-04-25 2018-06-27 Regeneron Pharmaceuticals, Inc. Nukleasevermitteltes targeting mit grossen zielgerichteten vektoren
US9523098B2 (en) 2012-05-02 2016-12-20 Dow Agrosciences Llc Targeted modification of malate dehydrogenase
WO2013169802A1 (en) * 2012-05-07 2013-11-14 Sangamo Biosciences, Inc. Methods and compositions for nuclease-mediated targeted integration of transgenes
US11120889B2 (en) 2012-05-09 2021-09-14 Georgia Tech Research Corporation Method for synthesizing a nuclease with reduced off-site cleavage
IN2014DN10996A (de) 2012-05-30 2015-09-25 Baylor College Medicine
US9102936B2 (en) 2012-06-11 2015-08-11 Agilent Technologies, Inc. Method of adaptor-dimer subtraction using a CRISPR CAS6 protein
KR20150023670A (ko) 2012-06-12 2015-03-05 제넨테크, 인크. 조건적 녹아웃 대립유전자의 생성 방법 및 이를 위한 조성물
EP2674501A1 (de) 2012-06-14 2013-12-18 Agence nationale de sécurité sanitaire de l'alimentation,de l'environnement et du travail Verfahren zur Erkennung und Identifikation von enterohämorragischen Escherichia coli
US9688971B2 (en) 2012-06-15 2017-06-27 The Regents Of The University Of California Endoribonuclease and methods of use thereof
US20150225734A1 (en) 2012-06-19 2015-08-13 Regents Of The University Of Minnesota Gene targeting in plants using dna viruses
WO2014011901A2 (en) 2012-07-11 2014-01-16 Sangamo Biosciences, Inc. Methods and compositions for delivery of biologics
AU2013289206B2 (en) 2012-07-11 2018-08-09 Sangamo Therapeutics, Inc. Methods and compositions for the treatment of lysosomal storage diseases
EP3808844A1 (de) 2012-07-25 2021-04-21 The Broad Institute, Inc. Induzierbare dns-bindende proteine und genomperturbationswerkzeuge und deren anwendungen
WO2014022702A2 (en) 2012-08-03 2014-02-06 The Regents Of The University Of California Methods and compositions for controlling gene expression by rna processing
MX367081B (es) 2012-08-29 2019-08-05 Sangamo Biosciences Inc Modificación genética mediada por nucleasas para usarse en el tratamiento de una condición genética.
UA118090C2 (uk) 2012-09-07 2018-11-26 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі Спосіб інтегрування послідовності нуклеїнової кислоти, що представляє інтерес, у ген fad2 у клітині сої та специфічний для локусу fad2 білок, що зв'язується, здатний індукувати спрямований розрив
UA119135C2 (uk) 2012-09-07 2019-05-10 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі Спосіб отримання трансгенної рослини
CN105264067B (zh) 2012-09-07 2020-11-10 美国陶氏益农公司 Fad3性能基因座及相应的能够诱导靶向断裂的靶位点特异性结合蛋白
EP2906602B1 (de) 2012-10-12 2019-01-16 The General Hospital Corporation Transkriptionsaktivator-like-effektor-lysinspezifische demethylase-1 (lsd1)-fusionsproteine
KR20150100651A (ko) 2012-10-30 2015-09-02 리컴비네틱스 인코포레이티드 동물의 성적 성숙 조절
US20150291967A1 (en) 2012-10-31 2015-10-15 Luc Mathis Coupling herbicide resistance with targeted insertion of transgenes in plants
US20140127752A1 (en) 2012-11-07 2014-05-08 Zhaohui Zhou Method, composition, and reagent kit for targeted genomic enrichment
WO2014093479A1 (en) 2012-12-11 2014-06-19 Montana State University Crispr (clustered regularly interspaced short palindromic repeats) rna-guided control of gene regulation
EP3434776A1 (de) 2012-12-12 2019-01-30 The Broad Institute, Inc. Verfahren, modelle, systeme und vorrichtungen zur identifikation von zielsequenzen für cas-enzyme oder crispr-cas-systeme für zielsequenzen und förderresultate davon
WO2014093694A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes
ES2553782T3 (es) 2012-12-12 2015-12-11 The Broad Institute, Inc. Ingeniería de sistemas, métodos y composiciones de guía optimizadas para manipulación de secuencias
EP2931899A1 (de) 2012-12-12 2015-10-21 The Broad Institute, Inc. Funktionale genomik unter verwendung von crispr-cas systemen, zusammensetzungen, verfahren, knockout-bibliotheken und anwendungen davon
EP2848690B1 (de) 2012-12-12 2020-08-19 The Broad Institute, Inc. Systeme, Verfahren und Zusammensetzungen mit CRISPR-Cas-Komponenten zur Sequenzmanipulation
MX2015007550A (es) 2012-12-12 2017-02-02 Broad Inst Inc Suministro, modificación y optimización de sistemas, métodos y composiciones para la manipulación de secuencias y aplicaciones terapéuticas.
ES2786193T3 (es) 2012-12-12 2020-10-09 Broad Inst Inc Modificación por tecnología genética y optimización de sistemas, métodos y composiciones enzimáticas mejorados para la manipulación de secuencias
DK2931898T3 (en) 2012-12-12 2016-06-20 Massachusetts Inst Technology CONSTRUCTION AND OPTIMIZATION OF SYSTEMS, PROCEDURES AND COMPOSITIONS FOR SEQUENCE MANIPULATION WITH FUNCTIONAL DOMAINS
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
CA2893579A1 (en) 2012-12-13 2014-06-19 Dow Agrosciences Llc Dna detection methods for site specific nuclease activity
RU2699523C2 (ru) 2012-12-17 2019-09-05 Президент Энд Фэллоуз Оф Харвард Коллидж Рнк-направляемая инженерия генома человека
ES2705033T3 (es) 2012-12-27 2019-03-21 Keygene Nv Método para eliminar un ligamiento genético en una planta
AU2014207618A1 (en) 2013-01-16 2015-08-06 Emory University Cas9-nucleic acid complexes and uses related thereto
CN103233028B (zh) 2013-01-25 2015-05-13 南京徇齐生物技术有限公司 一种无物种限制无生物安全性问题的真核生物基因打靶方法及螺旋结构dna序列
WO2014127287A1 (en) 2013-02-14 2014-08-21 Massachusetts Institute Of Technology Method for in vivo tergated mutagenesis
ES2904803T3 (es) 2013-02-20 2022-04-06 Regeneron Pharma Modificación genética de ratas
WO2014130955A1 (en) 2013-02-25 2014-08-28 Sangamo Biosciences, Inc. Methods and compositions for enhancing nuclease-mediated gene disruption
ES2901396T3 (es) 2013-03-14 2022-03-22 Caribou Biosciences Inc Composiciones y métodos de ácidos nucleicos dirigidos a ácido nucleico
CN113563476A (zh) 2013-03-15 2021-10-29 通用医疗公司 遗传和表观遗传调节蛋白至特定基因组基因座的rna引导的靶向
US11332719B2 (en) 2013-03-15 2022-05-17 The Broad Institute, Inc. Recombinant virus and preparations thereof
US10760064B2 (en) 2013-03-15 2020-09-01 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US20140273230A1 (en) 2013-03-15 2014-09-18 Sigma-Aldrich Co., Llc Crispr-based genome modification and regulation
US20140364333A1 (en) 2013-03-15 2014-12-11 President And Fellows Of Harvard College Methods for Live Imaging of Cells
US20140273235A1 (en) 2013-03-15 2014-09-18 Regents Of The University Of Minnesota ENGINEERING PLANT GENOMES USING CRISPR/Cas SYSTEMS
US9234213B2 (en) 2013-03-15 2016-01-12 System Biosciences, Llc Compositions and methods directed to CRISPR/Cas genomic engineering systems
WO2014165825A2 (en) 2013-04-04 2014-10-09 President And Fellows Of Harvard College Therapeutic uses of genome editing with crispr/cas systems
KR102192599B1 (ko) 2013-04-05 2020-12-18 다우 아그로사이언시즈 엘엘씨 식물의 게놈 내의 외인성 서열의 통합을 위한 방법 및 조성물
PT3456831T (pt) 2013-04-16 2021-09-10 Regeneron Pharma Modificação alvejada do genoma de rato
CN103224947B (zh) 2013-04-28 2015-06-10 陕西师范大学 一种基因打靶系统
EP2994531B1 (de) 2013-05-10 2018-03-28 Sangamo Therapeutics, Inc. Freisetzungsverfahren und zusammensetzungen für nukleasevermitteltes genomengineering
WO2014190181A1 (en) 2013-05-22 2014-11-27 Northwestern University Rna-directed dna cleavage and gene editing by cas9 enzyme from neisseria meningitidis
US11414695B2 (en) 2013-05-29 2022-08-16 Agilent Technologies, Inc. Nucleic acid enrichment using Cas9
US9267135B2 (en) 2013-06-04 2016-02-23 President And Fellows Of Harvard College RNA-guided transcriptional regulation
EP3011033B1 (de) 2013-06-17 2020-02-19 The Broad Institute, Inc. Funktionale genomik unter verwendung von crispr-cas-systemen, zusammensetzungen, verfahren, schirme und anwendungen davon
SG11201510286QA (en) 2013-06-17 2016-01-28 Broad Inst Inc Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components
KR20160034901A (ko) 2013-06-17 2016-03-30 더 브로드 인스티튜트, 인코퍼레이티드 서열 조작에 최적화된 crispr-cas 이중 닉카아제 시스템, 방법 및 조성물
DK3011032T3 (da) 2013-06-17 2020-01-20 Broad Inst Inc Fremføring, modificering og optimering af systemer, fremgangsmåder og sammensætninger til målretning mod og modellering af sygdomme og forstyrrelser i postmitotiske celler
DK3011031T3 (da) 2013-06-17 2020-12-21 Broad Inst Inc Fremføring og anvendelse af crispr-cas-systemerne, vektorer og sammensætninger til levermålretning og -terapi
CN103382468B (zh) * 2013-07-04 2015-04-29 中国科学院遗传与发育生物学研究所 一种水稻基因组定点改造方法
CN103343120B (zh) 2013-07-04 2015-03-04 中国科学院遗传与发育生物学研究所 一种小麦基因组定点改造方法
BR112016000571B1 (pt) 2013-07-10 2023-12-26 President And Fellows Of Harvard College Métodos in vitro para modular a expressão e para alterar um ou mais ácidos nucleicos alvo em uma célula simultaneamente com a regulação da expressão de um ou mais ácidos nucleicos alvo em uma célula, bem como célula de levedura ou bactéria compreendendo ácidos nucleicos
CN103388006B (zh) 2013-07-26 2015-10-28 华东师范大学 一种基因定点突变的构建方法
US10421957B2 (en) 2013-07-29 2019-09-24 Agilent Technologies, Inc. DNA assembly using an RNA-programmable nickase
BR102014027466B1 (pt) 2013-11-04 2022-09-27 Dow Agrosciences Llc Molécula de ácido nucleico recombinante, método para produzir uma célula vegetal transgênica e usos de uma planta de soja, parte de planta de soja ou célula de planta de soja transgênica
MX364662B (es) 2013-11-04 2019-05-03 Dow Agrosciences Llc Óptimos loci de maíz.
US10233465B2 (en) 2013-11-04 2019-03-19 Dow Agrosciences Llc Optimal soybean loci
CN106459995B (zh) 2013-11-07 2020-02-21 爱迪塔斯医药有限公司 使用统治型gRNA的CRISPR相关方法和组合物
CN105980568B (zh) 2013-12-11 2019-12-03 瑞泽恩制药公司 用于靶向修饰基因组的方法和组合物
US9850525B2 (en) 2014-01-29 2017-12-26 Agilent Technologies, Inc. CAS9-based isothermal method of detection of specific DNA sequence
US20150291969A1 (en) 2014-01-30 2015-10-15 Chromatin, Inc. Compositions for reduced lignin content in sorghum and improving cell wall digestibility, and methods of making the same
US20150225801A1 (en) 2014-02-11 2015-08-13 California Institute Of Technology Recording and mapping lineage information and molecular events in individual cells
US10370680B2 (en) 2014-02-24 2019-08-06 Sangamo Therapeutics, Inc. Method of treating factor IX deficiency using nuclease-mediated targeted integration
CN106459894B (zh) 2014-03-18 2020-02-18 桑格摩生物科学股份有限公司 用于调控锌指蛋白表达的方法和组合物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050220796A1 (en) 2004-03-31 2005-10-06 Dynan William S Compositions and methods for modulating DNA repair
US20100076057A1 (en) 2008-09-23 2010-03-25 Northwestern University TARGET DNA INTERFERENCE WITH crRNA
WO2011146121A1 (en) 2010-05-17 2011-11-24 Sangamo Biosciences, Inc. Novel dna-binding proteins and uses thereof
WO2013176772A1 (en) 2012-05-25 2013-11-28 The Regents Of The University Of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
EP2800811A1 (de) 2012-05-25 2014-11-12 The Regents of The University of California Verfahren und zusammensetzungen zur rna-gerichteten ziel-dna-modifikation und zur rna-gerichteten transkriptionsmodulation
EP3241902A1 (de) 2012-05-25 2017-11-08 The Regents of The University of California Verfahren und zusammensetzungen zur rna-gesteuerten ziel-dna-modifikation und zur rna-gesteuerten transkriptionsmodulation
EP3401400A1 (de) 2012-05-25 2018-11-14 The Regents of The University of California Verfahren und zusammensetzungen zur rna-gesteuerten ziel-dna-modifikation und zur rna-gesteuerten transkriptionsmodulation
WO2014065596A1 (en) 2012-10-23 2014-05-01 Toolgen Incorporated Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof
EP2912175A1 (de) 2012-10-23 2015-09-02 Toolgen Incorporated Zusammensetzung zur spaltung einer ziel-dna mit einer für die ziel-dna spezifischen leit-dna und für cas- protein codierende nukleinsäure oder cas-protein sowie verwendung davon
WO2014089290A1 (en) 2012-12-06 2014-06-12 Sigma-Aldrich Co. Llc Crispr-based genome modification and regulation
WO2014093595A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas component systems, methods and compositions for sequence manipulation

Non-Patent Citations (339)

* Cited by examiner, † Cited by third party
Title
- SUPPLEMENTARY INFORMATION TO MULTIPLEX AND HOMOLOGOUS RECOMBINATION-MEDIATED GENOME EDITING IN ARABIDOPSIS AND NICOTIANA BENTHAM, NATURE BIOTECHNOLOGY, 30 August 2013 (2013-08-30), pages 1 - 15, XP055337097
"CELLS", 2007, article LEWIN ET AL.: "Nuclear localization sequences target proteins to the nucleus", pages: 224, XP055254866
"Cold Spring Harb Symp Quant Biol,", vol. 75, 2010, article HOCKEMEYER ET AL.: "Gene Targeting in Human Pluripotent Cells", pages: 201 - 209, XP055604347
"ENABLING SCIENCE TO IMPROVE THE QUALITY OF LIFE", SIGMA-ALDRICH ANNUAL REPORT, 2012, pages FP - 92, XP55639632
"General Protocol for nucleofection of suspension cell lines", LONZA (WAS AMAXA), March 2008 (2008-03-01), pages 1 - 7, XP055650208
"Genome editing", GENOME EDITING, 6 September 2012 (2012-09-06), XP055604306, Retrieved from the Internet <URL:https://en.wikipedia/wfinder.php?title=Genome_editing&oldid=511115185>
"Recombinant DNA second edition", 1992, SCIENTIFIC AMERICAN BOOKS, ISBN: 0716719940, article JAMES D. WATSON ET AL.: "12 Transferring Genes into Mammalian Cells", pages: 213 - 234, XP055502977
"Transcription activator-like effector nuclease", WIKIPEDIA THE FREE ENCYCLOPEDIA, 16 November 2012 (2012-11-16), XP055514869, Retrieved from the Internet <URL:https://en.wikipedia.org/w/index.php?title=Transcription_activator-like_effector_nuclease&oldid=523335350>
1994, article B. LEWIN, pages: 1096 - 97
1994, article B. LEWIN, pages: 281 - 345
ALBERTS, MOLECULAR BIOLOGY OF THE CELL, 2002, pages 671 - 676
ALTSHULER ET AL.: "National Institute of Diabetes and Digestive and Kidney Diseases", NATIONAL INSTITUTES OF HEALTH (NIH) RESEARCH GRANT NO. 1R01 DK 097768-01, 8 October 2012 (2012-10-08)
ALVAREZ D. F. ET AL.: "Publishing flow cytometry data", AM J PHYSIOL LUNG CELL MOL PHYSIOL., vol. 298, no. 2, February 2010 (2010-02-01), pages 127 - 130, XP055649993
ANDERS, C. ET AL.: "Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease", NATURE, vol. 513, 2014, pages 569 - 573, XP055240929
ANONYMOUS: "pHcRed1- Nuc Vector information", CLONTECH LABORATORIES, INC.,, 11 March 2003 (2003-03-11), pages 1 - 3, XP055285585
ANONYMOUS: "pShooter Vector (pCMV/myc vectors)", ELIFE,, 29 March 2012 (2012-03-29), pages i - iv, 1 - 32, XP055285591
B SAUER: "Functional Expression of the cre-lox Site-Specific Recombination System in the Yeast Saccharomyces cerevisiae", MOLECULAR AND CELLULAR BIOLOGY, vol. 7, 1987, pages 2087 - 2096, XP000923364
BAKER M.: "Gene editing at CRISPR speed", NAT BIOTECHNOL., vol. 32, no. 4, April 2014 (2014-04-01), pages 309 - 12, XP003035060, doi:10.1038/NBT.2863
BARRANGOU, R.: "RNA-mediated programmable DNA cleavage", NATURE BIOTECH., vol. 30, no. 9, 10 September 2012 (2012-09-10), pages 836 - 838, XP055118675, doi:10.1038/nbt.2357
BARRANGOU, RODOLPHE: "RNA-mediated programmable DNA cleavage", NAT. BIOTECHNOL, vol. 30, 2012, pages 836 - 838, XP055118675
BARRANGOU: "RNA-mediated programmable DNA cleavage", NATURE BIOTECHNOLOGY, vol. 30, no. 9, 2012, pages 836 - 838, XP055118675, DOI: 10.1038/nbt.2357
BARRANGOU: "RNA-mediated programmable DNA cleavage", NATURE BIOTECHNOLOGY, vol. 30, no. 9, September 2012 (2012-09-01), pages 836 - 838, XP055118675
BASSETT A. R. ET AL.: "CRISPR/Cas9 and Genome Editing in Drosophila", JOURNAL OF GENETICS AND GENOMICS, vol. 41, no. 1, 20 January 2014 (2014-01-20), pages 7 - 19, XP028826531
BEDELL, V.M. ET AL.: "In vivo genome editing using a high-efficiency TALEN system", NATURE, vol. 491, 2012, pages 114 - 118, XP055048281, DOI: 10.1038/nature11537
BEDELL: "In vivo genome editing using a high-efficiency TALEN system", NATURE, vol. 491, 2012, pages 114 - 118, XP055048281
BEUMER ET AL.: "Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases", PNAS, vol. 105, 2008, pages 19821 - 19826, XP002782686
BIBIKOVA: "Enhancing gene targeting with designed zinc finger nucleases", SCIENCE, vol. 300, 2003, pages 764, XP002974267
BIZZARRI ET AL.: "Fluorescence recovery after photobleaching reveals the biochemistry of nucleocytoplasmic exchange", ANAL BIOANAL CHEM, vol. 403, 2012, pages 2339 - 2351, XP035069015
BOCH: "Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors", SCIENCE, vol. 326, 2009, pages 1509 - 1512, XP002570745
BRISSON ET AL.: "A novel T7 RNA polymerase autogene for efficient cytoplasmic expression of target genes", GENE THERAPY, vol. 6, 1999, pages 263 - 270, XP002302503
BROUNS, S.: "A Swiss army knife of immunity", SCIENCE, vol. 337, 17 August 2012 (2012-08-17), pages 808 - 809, XP055113718, doi:10.1126/science.1227253
BROUNS, S.J.J.: "A Swiss Army Knife of Immunity", SCIENCE, vol. 337, 2012, pages 808 - 809, XP055113718, DOI: 10.1126/science.1227253
BROUNS: "A Swiss Army Knife of Immunity", SCIENCE, vol. 337, 17 August 2012 (2012-08-17), pages 808 - 809, XP055113718
BROUNS: "A Swiss Army Knife of Immunity", SCIENCE, vol. 337, 2012, pages 808 - 809, XP055113718
BROUNS: "A Swiss Army Knife of Immunity", SCIENCE, vol. 337, no. 6096, 28 June 2012 (2012-06-28), pages 808 - 809, XP055113718, doi:10.1126/science.1227253
BRUMMELKAMP: "A system for stable expression of short interfering RNAs in mammalian cells", SCIENCE, vol. 296, 2002, pages 550 - 553, XP002225638
BRUNET ET AL.: "Chromosomal translocations induced at specified loci in human stem cells", PNAS, vol. 106, 2009, pages 10620 - 10625, XP002722146
CAMEY ET AL.: "RecA protein stimulates homologous recombination in plants", METHODS IN MOL BIOL, vol. 113, 1999, pages 465 - 71, XP055340155
CAMPEAU ET AL.: "A versatile viral system for expression and depletion of proteins in mammalian cells", PLOS ONE, vol. 4, no. 8, 6 August 2009 (2009-08-06), pages e6529, XP055251120, doi:10.1371/journal.pone.0006529
CAMPEAU: "A Versatile Viral System for Expression and Depletion of Proteins in Mammalian Cells.", PLOS ONE, vol. 4, 2009, pages 1 - 18, XP055251120
CARLSON ET AL.: "Targeting DNA With Fingers and TALENs", MOLECULAR THERAPY-NUCLEIC ACIDS, vol. 1, January 2012 (2012-01-01), pages 1 - 4, XP055182775
CARLSON: "Targeting DNA With Fingers and TALENs", MOLECULAR THERAPY-NUCLEIC ACIDS, 2012, pages 1 - 4, XP055182775
CARROLL D: "A CRISPR approach to gene targeting", MOLECULAR THERAPY, vol. 20, no. 9, September 2012 (2012-09-01), pages 1658 - 60, XP055106489, doi:10.1038/mt.2012.171
CARROLL, D.: "A CRISPR Approach to Gene Targeting", MOL. THERAP., vol. 20, no. 9, 2012, pages 1658 - 1660, XP055106489, doi:10.1038/mt.2012.171
CARROLL, D.: "A CRISPR approach to gene targeting", MOLECULAR THERAPY, vol. 20, no. 9, September 2012 (2012-09-01), pages 1658, XP055106489, doi:10.1038/mt.2012.171
CARROLL, D.: "Progress and prospects: Zinc-finger nucleases as gene therapy agents", GENE THER., vol. 15, 11 September 2008 (2008-09-11), pages 1463 - 1468, XP055041104
CARROLL, D: "A CRISPR Approach to Gene Targeting", MOLECULAR THERAPY, vol. 20, no. 9, 2012, pages 1658 - 1660, XP055106489, DOI: 10.1038/mt.2012.171
CARROLL, D: "Genome Engineering with Zinc-Finger Nucleases", GENETICS, vol. 188, 2011, pages 773 - 782, XP055171682, DOI: 10.1534/genetics.111.131433
CARROLL, D: "Progress and prospects: zinc-finger nucleases as gene therapy agents", GENE THERAPY, vol. 15, 2008, pages 1463 - 1468, XP055041104, DOI: 10.1038/gt.2008.145
CARROLL: "A CRISPR Approach to Gene Targeting", MOLECULAR THERAPY, vol. 20, 2012, pages 1658 - 1660, XP055106489
CARROLL: "Design, construction and in vitro testing of zinc finger nucleases", NATURE PROTOCOLS, vol. 1, 2006, pages 1329 - 1341, XP001539641
CARROLL: "Genome Engineering With Zinc-Finger Nucleases", GENETICS, vol. 188, 2011, pages 773 - 782, XP055036700
CARROLL: "Progress and prospects: Zinc-finger nucleases as gene therapy agents", GENE THERAPY, vol. 15, 2008, pages 1463 - 1468, XP055041104
CERMAK ET AL.: "Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting", NUCLEIC ACIDS RESEARCH, vol. 39, no. 12, 2011, pages 1 - 11, XP055130093
CERMAK ET AL.: "Efficient design and assembly of EPC custom TALEN and other TAL effector-based constructs for DNA targeting", NUCLEIC ACIDS RES, vol. 39, 14 April 2011 (2011-04-14), pages 1 - 11, XP002659530
CERMAK, T. ET AL.: "Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting", NUCLEIC ACIDS RESEARCH, vol. 39, no. 12, 2011, pages e82, XP055130093, DOI: 10.1093/nar/gkr218
CERMAK: "Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting", NUCLEIC ACIDS RES, vol. 39, 2011, pages 1 - 11, XP002659530
CHANG ET AL.: ""Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos", CELL RESEARCH, vol. 23, 2013, pages 465 - 472, XP055251146
CHANG ET AL.: "Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos", CELL RESEARCH, vol. 23, 26 March 2013 (2013-03-26), pages 465 - 472, XP055251146
CHANG ET AL.: "Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos", CELL RESEARCH, vol. 23, no. 4, 26 March 2013 (2013-03-26), pages 465, XP055251146, doi:10.1038/cr.2013.45
CHANG ET AL.: "Supplementary Information ( tables S1-S6) to Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos", CELL RESEARCH, 1 April 2013 (2013-04-01), pages 10pp, XP055604261
CHANG: "Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos", CELL RESEARCH, vol. 23, 2013, pages 465 - 472, XP055251146
CHANG: "Microtubule-based localization of a synaptic calcium-signaling complex is required for left-right neuronal asymmetry in C. elegans", DEVELOPMENT, vol. 138, 2011, pages 3509 - 3518, XP055502632
CHAPMAN: "Playing the End Game: DNA Double-Strand Break Repair Pathway Choice", MOLECULAR CELL, vol. 47, 2012, pages 497 - 510, XP055502422
CHEN ET AL.: "A Facile System for Encoding Unnatural Amino Acids in Mammalian Cells", NIH PUBLIC ACCESS AUTHOR MANUSCRIPT, vol. 48, 2009, pages 1 - 9, XP055646993
CHEN ET AL.: "Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting", NATURE COMMUNICATIONS, vol. 8, 14958, 2017, pages 1 - 12, XP055548732
CHIU: "Engineered GFP as a vital reporter in plants", CURR BIOL, vol. 6, 1996, pages 325 - 330, XP000571865
CHO ET AL.: "Targeted genome engineering in human cells with the Cas9 RNA- guided endonuclease", NATURE BIOTECHNOLOGY, vol. 31, 29 January 2013 (2013-01-29), pages 230
CHO ET AL.: "Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease (includes Supplementary information)", NATURE BIOTECHNOLOGY, vol. 31, no. 3, 2013, pages 230 - 232, XP002699850
CHO, NATURE BIO TECHNOLOGY, vol. 31, 2013, pages 230 - 232, XP002699850
CHO, S. ET AL.: "Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease (includes Supplementary information)", NATURE BIOTECHNOLOGY, vol. 31, 29 January 2013 (2013-01-29), pages 230 - 232,1-11, XP002699850
CHO: "Heritable Gene Knockout in Caenorhabditis elegans by Direct Injection of Cas9-sgRNA Ribonucleoproteins", GENETICS, vol. 195, 2013, pages 1177 - 1180, XP055102693
CHRISTIAN ET AL.: "Targeting DNA Double-Strand Breaks with TAL Effector Nucleases (plus supporting information)", GENETICS, vol. 186, 2010, pages 757 - 761 + 1SI-8SI, XP002632806
CHRISTIAN ET AL.: "Targeting DNA Double-Strand Breaks with TAL Effector Nucleases (plus supporting information)", GENETICS, vol. 186, 2010, pages 757 - 761, XP002632806
CHRISTIAN ET AL.: "Targeting DNA Double-Strand Breaks with TAL Effector Nucleases", GENETICS, vol. 186, 2010, pages 757 - 761, 1SI-8SI, XP002632806
CHRISTIAN M. ET AL.: "Targeting DNA double-strand breaks with TAL effector nucleases", GENETICS, vol. 186, no. 2, October 2010 (2010-10-01), pages 757 - 61, XP002632806, doi:10.1534/GENETICS.110.120717
CHRISTIAN, M. ET AL.: "Targeting DNA Double-Strand Breaks with TAL Effector Nucleases (plus supporting information)", GENETICS, vol. 186, 26 July 2010 (2010-07-26), pages 757 - 761, 1SI-8SI, XP002632806
CHRISTIAN, M. ET AL.: "Targeting DNA Double-Strand Breaks with TAL Effector Nucleases", GENETICS, vol. 186, 2010, pages 757 - 761, XP002632806
CLOSE ET AL.: "The Evolution of the Bacterial Luciferase Gene Cassette (lux) as a Real-Time Bioreporter", SENSORS, vol. 12, 2012, pages 732 - 752, XP055647253
CNLS MAPPER REPORT FOR S. PYOGENES CAS9
CNLS MAPPER RESULTS, Retrieved from the Internet <URL:http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi>
CONG ET AL.: "Multiplex Genome Engineering Using CRISPR/Cas Systems", SCIENCE, vol. 339, 2013, pages 819 - 823, XP055300065
CONG ET AL.: "Multiplex Genome Engineering Using CRISPR/Cas Systems", SCIENCE, vol. 339, 3 January 2013 (2013-01-03), pages 819 - 823, XP055300065
CONG ET AL.: "Multiplex genome engineering using CRISPR/Cas systems", SCIENCE, vol. 339, 3 January 2013 (2013-01-03), pages 819 - 823, XP055300065, doi:10.1126/science.1231143
CONG L;: "Multiplex Genome Engineering Using CRISPR/Cas Systems", SCIENCE, vol. 339, no. 6121, 2013, pages 819 - 823, XP055400719
CONG, L. ET AL.: "Multiplex genome engineering using 03.01.2013 Art. 54 (2) EPC CRISPR/Cas systems", SCIENCE, vol. 339, 2013, pages 819 - 823
CONG, L. ET AL.: "Multiplex Genome Engineering Using CRISPR/Cas Systems", SCIENCE, vol. 339, 2013, pages 819 - 823, XP002779503
CONG, L. ET AL.: "Multiplex Genome Engineering Using CRISPR/Cas Systems", SCIENCE, vol. 339, 3 January 2013 (2013-01-03), pages 819 - 823, XP055400713
CONG, SCIENCE, vol. 339, no. 6121, 2013, pages 819 - 23, XP055236048
CRISTEA ET AL.: "In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration", BIOTECHNOLOGY AND BIOENGINEERING, vol. 110, 2013, pages 871 - 880, XP055076901
CRISTEA ET AL.: "In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration", BIOTECHNOLOGY AND BIOENGINEERING, vol. 110, no. 3, 2013, pages 871 - 880, XP055076901
CUI: "Targeted integration in rat and mouse embryos with zinc-finger nucleases", NAT BIOTECHNOL, vol. 29, 2011, pages 64 - 67, XP055065200
D CARROLL: "Progress and prospects: Zinc-finger nucleases as gene therapy agents", GENE THERAPY, vol. 15, 2008, pages 1463 - 1468, XP055041104
D. CARROLL: "Progress and prospects: zinc-finger nucleases as gene therapy agents", GENE THER., vol. 15, 2008, pages 1463, XP055041104, doi:10.1038/gt.2008.145
DAI ET AL.: "The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism", J. BIOL. CHEM., vol. 277, no. 27, 6 May 2002 (2002-05-06), pages 24390 - 8, XP055251716, doi:10.1074/jbc.M202490200
DAI: "The Transcription Factors GATA4 and dHAND Physically Interact to Synergistically Activate Cardiac Gene Expression through a p300-dependent Mechanism", J BIOL CHEM, vol. 277, 2002, pages 24390 - 24398, XP055251716
DAME ET AL.: "Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation", NATURE PUBLISHING GROUP, vol. 444, 2006, pages 387 - 90, XP055646986
DARNELL, JAMES E. ET AL., MOLECULAR CELL BIOLOGY, 1990, New York, pages 685
DAVIES: "Zinc Finger Nucleases for Genome Editing", GENETIC ENGINEERING AND BIOTECHNOLOGY NEWS, vol. 30, no. 13, 2010, XP055340181, Retrieved from the Internet <URL:www.genengnews.com/keywordsandtools/print/1/19699/>
DAVIS, G.D. ET AL.: "Zinc Finger Nucleases for Genome Editing", GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, vol. 30, no. 13, 2010, XP055340181, Retrieved from the Internet <URL:www.genengnews.com/keywordsandtools/print/1/19699/>
DEKELVER ET AL.: "Functional genomics , proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome", GENOME RESEARCH, vol. 20, 27 May 2010 (2010-05-27), pages 1133 - 1142, XP055265374
DEKELVER, R. C. ET AL.: "Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome", GENOME RES., vol. 20, 2010, pages 1133 - 1142, XP055265374
DELTCHEVA ET AL.: "Supplementary Information to CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III", NATURE, vol. 471, pages 1 - 35, XP055458423
DELTCHEVA: "CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III", NATURE, vol. 471, 2011, pages 602 - 607, XP055619637
DEROSSI ET AL.: "Cell Internalization of the Third Helix of the Antennapedia Homeodomain Is Receptor- independent", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 271, no. 30, 26 July 1996 (1996-07-26), pages 18188 - 18193, XP002024485
DEROSSI ET AL.: "Cell Internalization of the Third Helix of the Antennapedia Homeodomain Is Receptor-independent", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 271, no. 30, 1996, pages 18188 - 18193, XP002024485
DEROSSI: "Cell Internalization of the Third Helix of the Antennapedia Homeodomain Is Receptor-independent", THE JOURNAL OF BIOLOGICAL BIOCHEMISTRY, vol. 271, 1996, pages 18188 - 18193, XP002024485
DEUSCHLE: "Regulated expression of foreign genes in mammalian cells under the control of coliphage T3 RNA polymerase and lac repressor.", PROC. NATL. ACAD. SCI., vol. 86, 1989, pages 5400 - 5404, XP055648560
DICARLO ET AL.: "Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems", NUCLEIC ACIDS RES., vol. 41, no. 7, 4 March 2013 (2013-03-04), pages 4336 - 4343, XP055086617
DICARLO ET AL.: "Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems", NUCLEIC ACIDS RESEARCH, vol. 41, no. 7, 4 March 2013 (2013-03-04), pages 4336 - 4343, XP055086617
DICARLO ET AL.: "Genome Engineering of Drosophila with the CRISPR RNA- Guided Cas9 Nuclease", NUCLEIC ACIDS RESEARCH, vol. 41, no. 7, 2013, pages 4336 - 4343, XP055102690
DICARLO ET AL.: "Supplemental Data to Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems", NUCLEIC ACIDS RESEARCH ADVANCE ACCESS, vol. 41, pages 1 - 5, XP055604254
DICARLO, J. ET AL.: "Genome engineering in Saccharomyces cerevisiae using CRISPR/Cas systems", NUCL ACID RES., vol. 41, no. 7, 4 March 2013 (2013-03-04), pages 4336 - 4343, XP055086617, doi:10.1093/nar/gkt135
DICARLO: "Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems", NUCLEIC ACIDS RES, vol. 41, 2013, pages 4336 - 4343, XP055086617
DO ET AL.: "Identification of multiple nuclear localization signals in murine Elf3, an ETS transcription factor", FEBS LETTERS, vol. 580, no. 7, 28 February 2006 (2006-02-28), pages 1865 - 71, XP028030315, doi:10.1016/j.febslet.2006.02.049
EFTHYMIADIS ET AL.: "The HIV-1 Tat Nuclear Localization Sequence Confers Novel Nuclear Import Properties", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 273, no. 3, 16 January 1998 (1998-01-16), pages 1623 - 1628, XP003000854
EPINAT ET AL.: "A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells", NUCLEIC ACIDS RESEARCH, vol. 31, no. 11, 1 June 2003 (2003-06-01), pages 2952 - 2962, XP002248751
ERICA A. MOEHLE ET AL.: "Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 104, no. 9, February 2007 (2007-02-01), pages 3055 - 3060, XP002518477, doi:10.1073/PNAS.0611478104
F. D. URNOV ET AL.: "Genome editing with engineered zinc finger nucleases", NAT. REV. GENET., vol. 11, 2010, pages 636, XP055198280, doi:10.1038/nrg2842
FIECK ET AL.: "Modifications of the E. coli Lac repressor for expression in eukaryotic cells: effects of nuclear signal sequences on protein activity and nuclear accumulation", NUCLEIC ACIDS RES., vol. 20, no. 7, 1992, pages 1785 - 1791, XP002095852
FIECK ET AL.: "Modifications of the E. coli Lac repressor for expression in eukaryotic cells: effects of nuclear signal sequences on protein activity and nuclear acumulation", NUCLEIC ACIDS RES, vol. 20, 1992, pages 1785 - 1791, XP002095852
FISCHER-FANTUZZI ET AL.: "Cell - Dependent Efficiency of Reiterated Nuclear Signals in a Mutant Simian Virus 40 Oncoprotein Targeted to the Nucleus", MOLECULAR AND CELLULAR BIOLOGY, vol. 8, no. 12, December 1988 (1988-12-01), pages 5495 - 5503, XP009140368
FISCHER-FANTUZZI: "Cell-dependent efficiency of reiterated nuclear signals in a mutant simian virus 40 oncoprotein targeted to the nucleus", MOL CELL BIOL, vol. 8, 1988, pages 5495 - 5503, XP009140368
FOECKING: "Powerful and versatile enhancer-promoter unit for mammalian expression vectors", GENE, vol. 45, 1986, pages 101 - 105, XP009061501
FONFARA, I. ET AL.: "Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems", NUCLEIC ACIDS RES., vol. 42, no. 4, 2014, pages 2577 - 2590, XP055399937
FREITAS: "Mechanisms and Signals for the Nuclear Import of Proteins", CURRENT GENOMICS, vol. 10, 2009, pages 550 - 557, XP055502464
FUERST: "Use of a hybrid vaccinia virus-T7 RNA polymerase system for expression of target genes", MOL CELL BIOL., vol. 7, 1987, pages 2538 - 2544, XP009100411
FURUTAMA ET AL.: "Expression of the IP3R1 promoter-driven nls-lacZ transgene in Purkinje cell parasagittal arrays of developing mouse cerebellum", J NEUROSCI RES, vol. 88, 2010, pages 2810, XP055502574
GANTZ ET AL.: "Targeted Genomic Integration of a Selectable Floxed Dual Fluorescence Reporter in Human Embryonic Stem Cells", PLOS ONE, vol. 7, no. 10, e46971, 2012, pages 1 - 9, XP055514936
GARNEAU: "The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA", NATURE, vol. 468, 2011, pages 67 - 71, XP055181397
GASIUNAS ET AL.: "Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria", PNAS, 2012, pages e2579 - e2586, XP055068588
GASIUNAS, G. ET AL.: "Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria", PROC. NAT. ACAD. SCI., 4 September 2012 (2012-09-04), pages E2579 - E2586, XP055569955, doi:10.1073/pnas.1208507109
GEURTS, ET AL.: "Knockout Rats via Embryo Microinjection of Zinc-Finger Nucleases", SCIENCE, vol. 325, 2009, pages 433, XP002580718
GOLDFARB ET AL.: "Importin α: a multipurpose nuclear-transport receptor", TRENDS IN CELL BIOLOGY, vol. 14, 2004, pages 505 - 514, XP004552656
GOLIC: "RNA-Guided Nucleases: A New Era for Engineering the Genomes of Model and Nonmodel Organisms", GENETICS, vol. 195, 2013, pages 303 - 308, XP055340188
GOPALAN: "RNase P: Variations and Uses", JBC, vol. 277, 2002, pages 6759 - 6762, XP055647231
GRATZ ET AL.: "Genome Engineering of Drosophila with the CRISPR RNA- Guided Cas9 Nuclease", GENETICS, vol. 194, 24 May 2013 (2013-05-24), pages 1029 - 1035, XP055102690
GRATZ ET AL.: "Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease", GENETICS, vol. 194, no. 1029, 24 May 2013 (2013-05-24)
GRATZ: "Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease", GENETICS, vol. 194, 2013, pages 1029 - 1035, XP055102690
GROTH ET AL.: "A phage integrase directs efficient site-specific integration in human cells", PNAS, vol. 97, 2000, pages 5995 - 00, XP002221880
GUNAWARDANE ET AL.: "A Slicer-Mediated Mechanism for Repeat-Associated siRNA 5Énd Formation in Drosophila", SCIENCE, vol. 315, 2007, pages 1587 - 90, XP055646978
GUO, ET AL.: "Group II Introns Designed to Insert into Therapeutically Relevant DNA Target Sites in Human Cells", SCIENCE, vol. 289, 2000, pages 452 - 457, XP002938491
GUSTAFSON: "Codon bias and heterologous protein expression", TRENDS IN BIOTECHNOLOGY, vol. 22, 2004, pages 346 - 353, XP002676933
HÄNDEL ET AL.: "Versatile and efficient genome editing in human cells by combining zinc-finger nucleases with adeno-associated viral vectors", HUMAN GENE THERAPY, vol. 23, 14 December 2011 (2011-12-14), pages 321 - 329, XP002730956, doi:10.1089/hum.2011.140
HANDEL, E.M. ET AL.: "Versatile and Efficient Genome Editing in Human Cells by Combining Zinc-Finger Nucleases With Adeno-Associated Viral Vectors", HUMAN GENE THERAPY, vol. 23, 2012, pages 321 - 329, XP002730956, DOI: 10.1089/hum.2011.140
HANDEL: "Versatile and efficient genome editing in human cells by combining zinc-finger nucleases with adeno-associated viral vectors", HUMAN GENE THER, vol. 23, 2012, pages 321 - 329, XP002730956
HANNAH DEVLIN: "Interview Jennifer Doudna: ‘I have to be true to who I am as a scientist’", THE GUARDIAN, July 2017 (2017-07-01), XP055648571
HOCKEMEYER ET AL.: "Highly efficient gene targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases", NIH PUBLIC ACCESS AUTHOR MANUSCRIPT, vol. 27, 2009, pages 1 - 17, XP055642140
HOCKEMEYER, D. ET AL.: "Highly efficient gene targeting of expressed and silent genes in human ESCs and iPSCs using zinc finger nucleases", NIH PUBLIC ACCESS AUTHOR MANUSCRIPT, vol. 27, no. 9, 2009, pages 1 - 17, XP055642140
HOCKEMEYER: "Genetic engineering of human pluripotent cells using TALE nucleases", NATURE BIOTECHNOLOGY, vol. 29, 2011, pages 731 - 734, XP055265362
HODEL ET AL.: "Nuclear Localization Signal Receptor Affinity Correlates with in Vivo Localization in Saccharomyces cerevisiae", JBC, vol. 281, 2006, pages 23545 - 23556, XP055502581
HSU ET AL.: "DNA targeting specificity of RNA-guided Cas9 nucleases", NATURE BIOTECH, vol. 31, no. 9, 21 July 2013 (2013-07-21), pages 827 - 834, XP055382777, doi:10.1038/nbt.2647
HU ET AL.: "Comparison of Various Nuclear Localization Signal-Fused Cas9 Proteins and Cas9 mRNA for Genome Editing in Zebrafish", G3 (BETHESDA, vol. 8, 2018, pages 823 - 831, XP055513510
HU ET AL.: "Comparison of Various Nuclear Localization Signal-Fused Cas9 Proteins and Cas9 mRNA for Genome Editing in Zebrafish", G3, vol. 8, no. 3, 2018, pages 823 - 831, XP055513510, doi:10.1534/g3.117.300359
HWANG ET AL.: "Efficient genome editing in zebrafish using a CRISPR-Cas system", NATURE BIOTECHNOLOGY, vol. 31, no. 3, 2013, pages 227 - 229, XP055086625
HWANG ET AL.: "Efficient genome editing in zebrafish using a CRISPR-Cas system", NATURE BIOTECHNOLOGY, vol. 31, no. 3, 29 January 2013 (2013-01-29), pages 227 - 229, XP055086625, doi:10.1038/nbt.2501
HWANG, NATURE BIOTECHNOLOGY, vol. 31, 2013, pages 227 - 229, XP055086625
HWANG, W. ET AL.: "Efficient genome editing in zebrafish using a CRISPR-Cas system", NATURE BIOTECHNOLOGY, vol. 31, 2013, pages 227 - 229, XP055540926, DOI: 10.1038/nbt.2501
IRION ET AL.: "Identification and targeting of the ROSA26 locus in human embryonic stem cells", NAT BIOTECH, vol. 25, no. 12, 25 November 2007 (2007-11-25), pages 1477 - 1482, XP008111005
IRION ET AL.: "Identification and targeting of the ROSA26 locus in human embryonic stem cells", NATURE BIOTECHNOLOGY, vol. 25, 2007, pages 1477 - 1482, XP008111005
J . C. MILLER ET AL.: "A TALE nuclease architecture for efficient genome editing", NAT. BIOTECHNOL., vol. 29, 2011, pages 143, XP055568321, doi:10.1038/nbt.1755
JENSEN: "An update on targeted gene repair in mammalian cells: methods and mechanisms", JOURNAL OF BIOMEDICAL SCIENCE, vol. 18, 2011, pages 1 - 14, XP021085735
JIANG: "Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice", NUCLEIC ACIDS RES., vol. 41, 2013, pages 1 - 12, XP055219328
JINEK ET AL.: "A Programmable Dual- RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity", SCIENCE, vol. 337, 17 August 2012 (2012-08-17), pages 816 - 821, XP055549487, DOI: 10.1126/science.1225829
JINEK ET AL.: "A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity", SCIENCE, vol. 337, no. 6096, 28 June 2012 (2012-06-28), pages 816 - 821, XP055549487, doi:10.1126/science.1225829
JINEK ET AL.: "RNA-programmed genome editing in human cells (includes supplementary information)", ELIFE, vol. 2, 2013, pages 1 - 9, +3pp, XP055285239
JINEK ET AL.: "RNA-programmed genome editing in human cells", ELIFE, vol. 2, 29 January 2013 (2013-01-29), pages e00471, XP002699851, Retrieved from the Internet <URL:http://elifesciences.org/content/2/e00471> doi:10.7554/eLife.00471
JINEK M;: "Supplementary Materials for A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity", SCIENCE,, 2012, pages 1 - 37, XP055067747
JINEK M1 ET AL.: "A programmable dual- RNA-guided DNA endonuclease in adaptive bacterial immunity", SCIENCE, vol. 337, no. 6096, 17 August 2012 (2012-08-17), pages 816 - 21, XP055549487, doi:10.1126/science.1225829
JINEK, M. ET AL.: "A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity", SCIENCE, vol. 337, 2012, pages 816 - 821, XP055067740
JINEK, M. ET AL.: "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity", SCIENCE, vol. 337, 2012, pages 816 - 821, XP055549487, DOI: 10.1126/science.1225829
JINEK, M. ET AL.: "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity", SCIENCE, vol. 337, 28 June 2012 (2012-06-28), pages 816 - 821, XP055549487, doi:10.1126/science.1225829
JINEK, M. ET AL.: "RNA-programmed genome editing in 2 human cells", ELIFE, 9 January 2013 (2013-01-09), pages 1 - 9,3pp, XP055285239
JINEK, M. ET AL.: "RNA-programmed genome editing in human cells", ELIFE, 2013, pages 1 - 9, XP002699851
JINEK, SCIENCE, vol. 337, 2013, pages 816 - 21, XP055299674
JINEK: "A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity", SCIENCE, vol. 337, 2012, pages 816 - 820, XP055067740
JOUNG ET AL.: "TALENs: a widely applicable technology for targeted genome editing", NAT. REV. MOL. CELL BIOL., vol. 14, no. 1, 21 November 2012 (2012-11-21), pages 49 - 55, XP055102236
JOUNG ET AL.: "TALENs: a widely applicable technology for targeted genome editing", NAT. REV. MOL. CELL BIOL., vol. 14, no. 1, 21 November 2012 (2012-11-21), pages 49 - 55, XP055282847, doi:10.1038/nrm3486
JOUNG ET AL.: "TALENs: a widely applicable technology for targeted genome editing", NATURE REVIEWS MOLECULAR CELL BIOLOGY, vol. 14, 2013, pages 49 - 55, XP055282847
JOUNG, J. ET AL.: "TALENS: a widely applicable technology for targeted genome editing", NAT. REV. MOL. CELL BIOL., vol. 14, 11 September 2008 (2008-09-11), pages 49 - 55, XP055282847, doi:10.1038/nrm3486
JOUNG: "TALENs: a widely applicable technology for targeted genome editing", NATURE REVIEWS, vol. 14, 2013, pages 49 - 55, XP055282847
KALDERON ET AL.: "A short Amino Acid Sequence Able to Specify Nuclear Location", CELL, vol. 38, December 1984 (1984-12-01), pages 499 - 509, XP023912340
KARRAN: "DNA DOUBLE STRAND BREAK REPAIR IN MAMMALIAN CELLS", CURRENT OPINION IN GENETICS & DEVELOPMENT, vol. 10, 2000, pages 144 - 150, XP001206008
KIM ET AL.: "Precision genome engineering with programmable DNA-nicking enzymes", GENOME RESEARCH, vol. 22, 2012, pages 1327 - 1333, XP055106309
KIM: "Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins", GENOME RESEARCH, vol. 24, 2014, pages 1012 - 1019, XP055277723
KIM: "RNAi mechanisms and applications", NIH PUBLIC ACCESS AUTHOR MANUSCRIPT, vol. 44, 2008, pages 1 - 7, XP055647387
KOSEKI, ET AL.: "Factors Governing the Activity In Vivo of Ribozymes Transcribed by RNA Polymerase III", J. VIROLOGY, vol. 73, 1999, pages 1868 - 1877, XP001027031
KOURANOVA ET AL.: "CRISPRs for Optimal Targeting: Delivery of CRISPR Components as DNA, RNA, and Protein into Cultured Cells and Single- Cell Embryos", HUM. GENE . THER., vol. 27, no. 6, 2016, pages 464 - 75, XP055465083, doi:10.1089/hum.2016.009
KOURANOVA ET AL.: "CRISPRs for Optimal Targeting: Delivery of CRISPR Components as DNA, RNA, and Protein into Cultured Cells and Single-Cell Embryos", HUMAN GENE THERAPY, vol. 27, no. 6, 2016, pages 464 - 475, XP055465083
KUSPA: "Tagging developmental genes in Dictyostelium by restriction enzyme mediated integration of plasmid DNA", PNAS, vol. 89, 1992, pages 8803 - 8807, XP002115387
L. FISCHER-FANTUZZI ET AL.: "Cell -dependent efficiency of reiterated nuclear signals in a mutant simian virus 40 oncoprotein targeted to the nucleus", MOL CELL BIOL., vol. 8, no. 12, 1988, pages 5495 - 5503, XP009140368, doi:10.1128/MCB.8.12.549
LAMBOWITZ: "Group II Introns: Mobile Ribozymes that Invade DNA", COLD SPRING HARBOR PERSPECTIVES BIOLOGY, 2011, pages a003616, XP055514471
LAUMONIER: "Lentivirus mediated HO-1 gene transfer enhances myogenic precursor cell survival after autologous transplantation in pig", MOL THER, vol. 16, no. 2, 2008, pages 404 - 410, XP008159717
LE CONG ET AL.: "Multiplex Genome Engineering Using CRISPR/Cas Systems", SCIENCE, vol. 339, 15 February 2013 (2013-02-15), XP055458249
LE CONG: "Supplementary Material to : Multiplex Genome Engineering Using CRISPR/Cas Systems", SCIENCE, vol. 339, no. 6121, 3 January 2013 (2013-01-03), pages 1 - 28, XP002730884
LE PROVOST ET AL.: "Zinc finger nuclease technology heralds a new era in mammalian transgenesis", TRENDS IN BIOTECHNOLOGY, vol. 28, no. 3, 2009, pages 134 - 141, XP026906787, DOI: 10.1016/j.tibtech.2009.11.007
LEE ET AL.: "RNA-Guided Genome Editing in Drosophila with the Purified Cas9 Protein", G3 GENES|GENOMES|GENETICS, vol. 4, 2014, pages 1291 - 95, XP055647268
LEE ET AL.: "Targeted chromosomal deletions in human cells using zinc finger nucleases", GENOME RES., vol. 20, 2010, pages 81 - 89, XP055077115
LEE ET AL.: "Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases", GENOME RES., vol. 22, 2012, pages 539 - 548, XP055243750
LEENAY, R. T. ET AL.: "Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems", MOL. CELL, vol. 62, 2016, pages 137 - 147, XP029496719
LEI: "Gene Editing of Human Embryonic Stem Cells via an Engineered Baculoviral Vector Carrying Zinc-finger Nucleases", MOLECULAR THERAPY, vol. 19, 2011, pages 942 - 950, XP055639632
LI ET AL.: "Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes", NUCLEIC ACIDS RES., vol. 39, no. 14, 31 March 2011 (2011-03-31), pages 6315 - 25, XP002681969, doi:10.1093/NAR/GKR188
LI ET AL.: "Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes", NUCLEIC ACIDS RESEARCH, vol. 39, no. 14, 2011, pages 6315 - 6325, XP002680499
LI ET AL.: "Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes", NUCLEIC ACIDS RESEARCH, vol. 39, no. 14, 31 March 2011 (2011-03-31), pages 6315 - 6325, XP002681969
LI ET AL.: "Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9", NATURE BIOTECHNOLOGY, vol. 31, August 2013 (2013-08-01), pages 688 - 691, XP055133339
LI ET AL.: "Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9", NIH PUBLIC ACCESS AUTHOR MANUSCRIPT, vol. 31, no. 8, 2013, pages 1 - 8, XP055438438
LI ET AL.: "Multiplex and homologous recombination-mediated plant genome editing via guide RNA/Cas9", NATURE BIOTECHNOLOGY, vol. 31, no. 8, August 2013 (2013-08-01), pages 688 - 691, XP055438438
LI ET AL.: "TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain", NUCLEIC ACID RES, vol. 39, 2010, pages 1 - 14, XP002659529
LI, T. ET AL.: "Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes", NUCLEIC ACIDS RESEARCH, vol. 39, no. 14, 2011, pages 6315 - 6325, XP002681969, DOI: 10.1093/NAR/GKR188
LI: "In vivo genome editing restores haemostasis in a mouse model of haemophilia", NATURE, vol. 475, 2011, pages 217 - 221, XP002688791
LIANG: "Homology-directed repair is a major double-strand break repair pathway in mammalian cells", PNAS, vol. 95, 1998, pages 5172 - 5177, XP055502633
LIAO ET AL.: "In Vivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation", CELL, vol. 171, 2017, pages 1495 - 1507, XP055643010
LIEBER ET AL.: "High level gene expression in mammalian cells by a nuclear T7-phage RNA polymerase", NUCLEIC ACIDS RESEARCH, vol. 17, 1989, pages 8485 - 8493, XP002052543
LIEBER: "The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway", NIH PUBLIC ACCESS AUTHOR MANUSCRIPT, vol. 79, 2010, pages 1 - 34, XP055502406
LINK ET AL.: "Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches", GENE THERAPY, vol. 16, 2009, pages 1189 - 1201, XP008148752
LINTNER ET AL.: "Structural and Functional Characterization of an Archaeal Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated Complex for Antiviral Defense (CASCADE)", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 286, 2011, pages 21643 - 21656, XP055054080
LIU ET AL.: "Generation of a Triple-Gene Knockout Mammalian Cell Line Using Engineered Zinc-Finger Nucleases", BIOTECHNOL BIOENG., vol. 106, 2010, pages 97 - 105, XP002689346
LOMBARDO: "Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery", NATURE BIOTECHNOLOGY, vol. 11, 2007, pages 1298 - 1306, XP002633002
LUO ET AL.: "Multiple nuclear localization sequences allow modulation of 5- lipoxygenase nuclear import", TRAFFIC, vol. 5, no. 11, 2004, pages 847 - 54, XP055267791, doi:10.1111/j.1600-0854.2004.00227.x
LYNN YARRIS: "Programmable DNA Scissors Found for Bacterial Immune System", YAMS, 28 June 2012 (2012-06-28), XP055340187, Retrieved from the Internet <URL:http://newscenter.lbl.gov/2012/06/28/progammable-dna.scissors>
LYSSENKO ET AL.: "Cognate putative nuclear localization signal effects strong nuclear localization of a GFP reporter and facilitates gene expression studies in Caenorhabditis elegans", BIOTECHNIQUES, vol. 43, 2007, pages 596 - 600, XP055268137
LYSSENKO ET AL.: "Cognate putative nuclear localization signal effects strong nuclear localization of a GFP reporter and facilitates gene expression studies in Caenorhabditis elegans", BIOTECHNIQUES, vol. 43, November 2007 (2007-11-01), pages 596 - 600, XP055268137
M. CHRISTIAN ET AL.: "Targeting DNA double-strand breaks with TAL effector nucleases", GENETICS, vol. 186, 2010, pages 757, XP002632806, doi:10.1534/GENETICS.110.120717
MA ET AL.: "Highly Efficient and Specific Genome Editing in Silkworm Using Custom TALENs", PLOS ONE, vol. 7, 2012, pages 1 - 8, XP055514510
MADRIGAL: "Current bioinformatic approaches to identify DNase I hypersensitive sites and genomic footprints from DNase-seq data", FRONTIERS IN GENETICS, vol. 3, 2012, pages 1 - 3, XP055647230
MAHFOUZ, M.M. ET AL.: "De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double- strand breaks", PNAS, vol. 108, no. 6, 2011, pages 2623 - 2628, XP055007615, DOI: 10.1073/pnas.1019533108
MAHFOUZ: "De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks", PNAS, vol. 108, 2011, pages 2623 - 2628, XP055007615
MALI ET AL.: "RNA-Guided Human Genome Engineering via Cas9", SCIENCE, vol. 339, 2013, pages 823 - 826, XP055613418
MALI ET AL.: "RNA-guided human genome engineering via Cas9", SCIENCE, vol. 339, 3 January 2013 (2013-01-03), pages 823 - 826
MALI ET AL.: "RNA-Guided Human Genome Engineering via Cas9", SCIENCE, vol. 339, 3 January 2013 (2013-01-03), pages 823 - 826, XP055613418
MALI ET AL.: "Supplementary Materials for RNA-Guided Human Genome Engineering via Cas9", SCIENCE, vol. 339, 3 January 2013 (2013-01-03), pages 1 - 36, XP002723674
MALI, P. ET AL.: "RNA-guided human genome engineering via Cas9", SCIENCE, vol. 339, 2013, pages 823 - 826, XP055111247
MALI, P. ET AL.: "RNA-Guided Human Genome Engineering via Cas9", SCIENCE, vol. 339, 3 January 2013 (2013-01-03), pages 823 - 826, XP055111247
MALI: "RNA-guided human genome engineering via Cas9", SCIENCE, vol. 339, 2013, pages 823 - 26, XP055300091
MARESCA: "Obligate Ligation-Gated Recombination (ObLiGaRe): Custom-designed nuclease-mediated targeted integration through nonhomologous end joining", GENOME RESEARCH, vol. 23, 2013, pages 539 - 546, XP055077484
MARFORI ET AL.: "Molecular basis for specificity of nuclear import and prediction of nuclear localization", BIOCHIM. BIOPHYS. ACTA, vol. 1813, 2011, pages 1562 - 1577, XP055378211, doi:10.1016/j.bbamcr.2010.10.013
MASTROIANNI ET AL.: "Group II Intron-Based Gene Targeting Reactions in Eukaryotes", PLOS ONE, vol. 3, 2008, pages 1 - 15, XP055149290
MCCONNELL ET AL.: "Nuclear and cytoplasmic LIMK1 enhances human breast cancer progression", MOLECULAR CANCER, vol. 10, 2011, pages 1 - 13, XP021103688
MEDINA ET AL.: "RNA-polymerase III-driven expression cassettes in human gene therapy.", CURRENT OPINION IN MOLECULAR THERAPEUTICS, vol. 1, 1999, pages 580 - 594, XP001055319
MILLER ET AL.: "A TALE nuclease architecture for efficient genome editing (includes Online Methods)", NATURE BIOTECHNOLOGY, vol. 29, 2011, pages 143 - 148+2pp, XP002685898
MILLER ET AL.: "A TALE nuclease architecture for efficient genome editing.(includes Online Methods)", NATURE BIOTECHNOLOGY, vol. 29, 2011, pages 143 - 148, XP002685898
MILLER, J. C. ET AL.: "A TALE nuclease architecture for efficient genome editing", NAT. BIOTECHNOL., vol. 29, 22 December 2010 (2010-12-22), pages 143, XP055285157, doi:10.1038/nbt.1755
MILLER, J.C. ET AL.: "A TALE nuclease architecture for efficient genome editing", NATURE BIOTECHNOLOGY, vol. 29, no. 2, 2011, pages 143 - 148, XP055568321, DOI: 10.1038/nbt.1755
MINAMI ET AL.: "Ets Motifs Are Necessary for Endothelial Cell -Specific Expression of a 723-bp Tie-2 Promoter/Enhancer in Hprt Targeted Transgenic Mice", ARTERIOSCLER THROMB VASC BIOL., vol. 23, November 2003 (2003-11-01), pages 2041 - 2047, XP055502336
MINAMI ET AL.: "Ets Motifs Are Necessary for Endothelial Cell -Specific Expression of a 723-bp Tie-2 Promoter/Enhancer in Hprt Targeted Transgenic Mice", ARTERIOSCLER THROMB VASE BIOL., vol. 23, 2003, pages 2041 - 2047, XP055502336
MINETA ET AL.: "Multiple-turnover cleavage of double-stranded DNA by sandwiched zinc-finger nuclease", NUCLEIC ACIDS SYMP SER, vol. 53, 2009, pages 279 - 280, XP055647041
MIYAGISHI: "U6 promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells", NATURE BIOTECHNOLOGY, vol. 19, 2002, pages 497 - 500, XP002965488
MOEHLE ET AL.: "Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases", PROC. NATL. ACAD. SCI., vol. 104, no. 9, 27 February 2007 (2007-02-27), pages 3055 - 3060, XP002518477
MOEHLE: "Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases + corrections", PNAS, vol. 104, 2007, pages 3055 - 3066, 6090, XP002518477
MOJICA: "On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals", TRENDS IN MICROBIOLOGY, vol. 24, 2016, pages 811 - 820, XP029736786
MORGAN: "Inducible expression and cytogenetic effects of the EcoRI restriction endonuclease in Chinese hamster ovary cells", MOLECULAR AND CELLULAR BIOLOGY, vol. 8, 1988, pages 4204 - 4211, XP008014767
MOSCOU ET AL.: "A simple cipher governs DNA recognition by TAL effectors", SCIENCE, vol. 326, 2009, pages 1501, XP002599998
MUSSOLINO ET AL: "A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity", NUCLEIC ACID RES, vol. 39, 2011, pages 9283 - 9293, XP055021128
MUSSOLINO, C. ET AL.: "TALE nucleases: tailored genome engineering made easy", CURRENT OPINION BIOTECHNOLOGY, vol. 23, no. 5, 2012, pages 644 - 650, XP055071668, DOI: 10.1016/j.copbio.2012.01.013
MUSSOLINO: "TALE nucleases: tailored genome engineering made easy", CURR OPINION BIOTECHNOL, vol. 23, 2012, pages 644 - 650, XP055071668
NANNAN CHANG;: "Supplementary Information ( tables S1-S6) to Genome editing with RNA-guided Cas9", CELL RESEARCH - XIBAO YANJIU,, 1 April 2013 (2013-04-01), pages 10pp, XP055604261
NEKRASOV: "Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease", NATURE BIOTECHNOLOGY, vol. 31, 2013, pages 691 - 693, XP055647390
NLS MAPPER
NLS MAPPER ANALYSIS OF S. PYOGENES CAS9
NOGUCHI ET AL.: "PDX-1 Protein Containing Its Own Antennapedia-Like Protein Transduction Domain Can Transduce Pancreatic Duct and Islet Cells", DIABETES, vol. 52, 1 July 2003 (2003-07-01), pages 1732 - 1737, XP002549995
NOGUCHI ET AL.: "PDX-1 Protein Containing Its Own Antennapedia-Like Protein Transduction Domain Can Transduce Pancreatic Duct and Islet Cells", DIABETES, vol. 52, 2003, pages 1732 - 1737, XP002549995
NOGUCHI: "PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells", DIABETES, vol. 52, 2003, pages 1732 - 1737, XP002354481
OAKES ET AL.: "Profiling of engineering hotspots identifies an allosteric CRISPR- Cas9 switch", NATURE BIOTECH ADVANCE ONLINE PUBLICATION, 2016, pages 1 - 8, XP055458974
O'GORMAN ET AL.: "Recombinase-mediated gene activation and site-specific integration in mammalian cells", SCIENCE, vol. 251, 1991, pages 1351 - 1355, XP002032986
O'HARE: "Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasmid expressing a prokaryotic dihydrofolte reductase", PNAS, vol. 78, 1981, pages 1527 - 1531, XP055347309
ORLANDO: "Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology", NUCLEIC ACID RES, vol. 38, 2010, pages el52-1 - e152-15, XP055076783
PATTERSON: "Codon optimization of bacterial luciferase (lux) for expression in mammalian cells", J IND MICROBIOL. BIOTECHNOL, vol. 32, 2005, pages 115 - 123, XP002503994
PEREZ-PINERA, P: "Advances in Targeted Genome Editing", NIH PUBLIC ACCESS AUTHOR MANUSCRIPT,, vol. 16, no. 3-4, 2012, pages 1 - 18, XP055065262, DOI: 10.1016/j.cbpa.2012.06.007
PEREZ-PINERA, PABLO ET AL.: "Advances in targeted genome editing", CURRENT OPINION IN CHEMICAL BIOLOGY, vol. 16, no. 3-4, 2012, pages 268 - 77, XP055065262, doi:10.1016/j.cbpa.2012.06.007
PEREZ-PINERA: "Advances in Targeted Genome Editing", NIH PUBLIC ACCESS AUTHOR MANUSCRIPT, vol. 16, 2012, pages 1 - 18, XP055501592
PINGOUD, ET AL.: "Recognition and cleavage of DNA by type-II restriction endonucleases", EUR. J. BIOCHEM, vol. 246, 1997, pages 1 - 22, XP002309745
PLANEV ET AL.: "Inhibition of Glucocorticoid-induced Apoptosis in 697 Pre-B Lymphocytes by the Mineralocorticoid Receptor N-terminal Domain", J. BIOL. CHEM., vol. 277, 2002, pages 42188 - 42196, XP055251719
PLANEY ET AL.: "Inhibition of glucocorticoid-induced apoptosis in 697 pre-B lymphocytes by the mineralocorticoid receptor N-terminal domain", J. BIOL. CHEM., vol. 277, no. 44, 22 August 2002 (2002-08-22), pages 42188 - 96, XP055251719, doi:10.1074/jbc.M205085200
PORTEUS, M.H. ET AL.: "Gene targeting using zinc finger nucleases", NATURE BIOTECHNOLOGY, vol. 23, no. 8, 2005, pages 967 - 973, XP002467422, DOI: 10.1038/nbt1125
PORTEUS: "Chimeric nucleases stimulate gene targeting in human cells", SCIENCE, vol. 300, 2003, pages 763, XP002974231
PSORT II ANALYSIS RESULTS FOR A SELECTION OF CAS9 PROTEINS
PSVK3 VECTOR, Retrieved from the Internet <URL:http://www.addgene.org/vector- database/4288>
PUCHTA: "The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution", JOURNAL OF EXPERIMENTAL BOTANY, vol. 56, no. 409, 2005, pages 1 - 14, XP002394840
RAMACHANDRA ET AL.: "Efficient recombinase-mediated cassette exchange at the AAVS1 locus in human embryonic stem cells using baculoviral vectors", NUCLEIC ACIDS RES., vol. 39, no. 16, 2011, pages e107, XP055264872, doi:10.1093/nar/gkr409
RAMIREZ ET AL.: "Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects", NUCLEIC ACID RES, vol. 40, 2012, pages 5560 - 5568, XP055065311
RATEL ET AL.: "N6-methyladenine: the other methylated base of DNA", BIOESSAYS, vol. 28, 2006, pages 309 - 315, XP055647044
RAVMOND ET AL.: "High-Efficiency FLP and ΦC31 Site-Specific Recombination in Mammalian Cells", PLOS ONE, 2007, pages 1 - 4, XP055069825
RAYMOND C. S. ET AL.: "High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells", PLOS ONE, vol. 2, no. 1, 17 January 2007 (2007-01-17), pages e162, XP055069825, doi:10.1371/journal.pone.0000162
RAYMOND ET AL.: "High-Efficiency FLP and PHIC31 Site-Specific Recombination in Mammalian Cells", PLOS ONE, vol. 2, no. 1, 17 January 2007 (2007-01-17), XP055069825, doi:10.1371/journal.pone.0000162
RAYMOND ET AL.: "High-Efficiency FLP and phiC31 Site-Specific Recombination in Mammalian Cells", PLOSONE, vol. 2, no. 1, 1 January 2007 (2007-01-01), pages e162-1 - e162-4, XP055069825
REBAR ET AL.: "Induction of angiogenesis in a mouse model using engineered transcription factors", NATURE MEDICINE, vol. 8, December 2002 (2002-12-01), pages 1427 - 32, XP002993087, doi:10.1038/nm795
REBAR ET AL.: "Induction of angiogenesis in a mouse model using engineered transcription factors", NATURE MEDICINE, vol. 8, no. 12, 2002, pages 1427 - 1432, XP002993087
REBAR: "Induction of angiogenesis in a mouse model using engineered transcription factors", NATURE MEDICINE, vol. 8, 2002, pages 1427 - 1432, XP002993087
REISS: "RecA protein stimulates homologous recombination in plants", PNAS, vol. 93, 1996, pages 3094 - 3098, XP002113813
REMYET AL.: "Zinc-finger nucleases: a powerful tool for genetic engineering of animals", TRANSGENIC RES, vol. 19, 2010, pages 363 - 371, XP019831645
Retrieved from the Internet <URL:http://www.addgene.org/vector- database/4288>
REYON, D. ET AL.: "FLASH Assembly of TALENS Enables High-Throughput Genome Editing", HHS PUBLIC ACCESS AUTHOR MANUSCRIPT, vol. 30, no. 5, 2012, pages 1 - 23, XP055565802
ROUET: "Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease", MOLECULAR AND CELLULAR BIOLOGY, vol. 14, 1994, pages 8096 - 8106, XP000572018
RUBEN ET AL.: "Structural and Functional Characterization of Human Immunodeficiency Virus tat Protein", JOURNAL OF VIROLOGY, vol. 63, no. 1, January 1989 (1989-01-01), pages 1 - 8, XP009013914
RUDIN ET AL.: "Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences", MOLECULAR AND CELLULAR BIOLOGY, vol. 8, 1988, pages 3918 - 3928, XP055502440
SADELAIN ET AL.: "Safe harbours for the integration of new DNA in the human genome", NAT. REV. CANCER, vol. 12, no. 1, 1 December 2011 (2011-12-01), pages 51 - 58, XP055018235, doi:10.1038/nrc3179
SADELAIN, M. ET AL.: "Safe harbours for the integration of new DNA in the human genome", NAT. REV. CANCER, vol. 12, 2012, pages 51 - 58, XP055018235
SALOMON: "Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells", THE EMBO JOURNAL, vol. 17, 1998, pages 6068 - 6095, XP002259898
SANJANA, N.: "A Transcription Activator-Like Effector (TALE) Toolbox for Genome Engineering", NIH PUBLIC AUTHOR MANUSCRIPT, 5 January 2012 (2012-01-05), pages 1 - 39, XP055502289
SAPRANAUSKAS R ET AL.: "The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli", NUCLEIC ACIDS RES., vol. 39, no. 21, 2011, pages 9275 - 9282, XP055265024, doi:10.1093/nar/gkr606
SAUER ET AL.: "Biological Sciences Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1", PNAS, vol. 85, 1988, pages 5166 - 5170, XP000615552
SCHIESTL: "A simple cipher governs DNA recognition by TAL effectors", PNAS, vol. 88, 1991, pages 7585 - 7589, XP002920453
SCHRAMM: "REVIEW Recruitment of RNA polymerase III to its target promoters", GENES DEV, vol. 16, 2002, pages 2593 - 2620, XP055183585
SCHULTZ ET AL.: "Development of a CRISPR/Cas9 system for high efficiency multiplexed gene deletion in Rhodosporidium toruloides", BIOTECHNOLOGY AND BIOENGINEERING, vol. 116, 2019, pages 2103 - 2109, XP055650332
SHEN ET AL.: "Generation of gene -modified mice via Cas9/RNA-mediated gene targeting", CELL RESEARCH, vol. 23, 2 April 2013 (2013-04-02), pages 720 - 723, XP055141533, doi:10.1038/cr.2013.46
SHEN ET AL.: "Generation of gene-modified mice via Cas9/RNA-mediated gene targeting", CELL RESEARCH, vol. 23, 2013, pages 720 - 723, XP055141533
SHIEH ET AL.: "Nuclear Targeting of the maize R protein requires two nuclear localization sequences", PLANT PHYSIOL., vol. 101, no. 2, 1993, pages 353 - 361, XP055241771, doi:10.1104/pp.101.2.353
SMITH ET AL.: "Structural Basis for Importin-α Binding of the Human Immunodeficiency Virus Tat", SCIENTIFIC REPORTS, vol. 7, 1650, 2017, XP055650327
SOUILHOL ET AL.: "Nas transgenic mouse line allows visualization of Notch pathway activity in vivo", GENESIS, vol. 44, no. 6, 2006, pages 277 - 286, XP055502571
SUNG ET AL.: "Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases", GENOME RESEARCH, vol. 24, 2014, pages 125 - 131, XP055647267
SUPPLEMENTARY MATERIAL TO D1, 28 June 2012 (2012-06-28)
TESSON ET AL.: "Knockout rats generated by embryo microinjection of TALENs", NAT BIOTECHNOL, vol. 29, 2011, pages 695 - 696, XP002681970
THURMAN ET AL.: "The accessible chromatin landscape of the human genome", NATURE, vol. 489, 2012, pages 75 - 82, XP055269699
TRUANT ET AL.: "The Arginine-Rich Domains Present in Human Immunodeficiency Virus Type 1 Tat and Rev Function as Direct Importin beta- Dependent Nuclear Localization Signals", MOLECULAR AND CELLULAR BIOLOGY, vol. 19, no. 2, February 1999 (1999-02-01), pages 1210 - 1217, XP002964815
URNOV ET AL.: "Genome editing with engineered zinc finger nucleases", NAT REV. GENET, vol. 11, 11 September 2010 (2010-09-11), pages 636 - 646, XP055198280, doi:10.1038/nrg2842
URNOV ET AL.: "Genome editing with engineered zinc finger nucleases", NATURE REVIEWS GENETICS, vol. 11, 2010, pages 636 - 646, XP055198280
URNOV, F. ET AL.: "Genome editing with engineered zinc finger nucleases", NAT. REV. GENE, vol. 11, September 2010 (2010-09-01), pages 636 - 646, XP055198280, doi:10.1038/nrg2842
URNOV, F.D. ET AL.: "Genome editing with engineered zinc finger nucleases", NATURE REVIEWS GENETICS, vol. 11, 2010, pages 636 - 646, XP055198280, DOI: 10.1038/nrg2842
URNOV, F.D. ET AL.: "Highly efficient endogenous human gene correction using zinc-finger nucleases", NATURE, vol. 435, 2005, pages 646 - 651, XP002411069, DOI: 10.1038/nature03556
URNOV: "Genome editing with engineered zinc finger nucleases", NAT. REV. GENE ., vol. 11, 2010, pages 636 - 646, XP008150557
VILLION ET AL.: "The double-edged sword of CRISPR-Cas systems", CELL RESEARCH, vol. 23, 2012, pages 15 - 17, XP055086684
WAH ET AL.: "Structure of FokI has implications for DNA cleavage", PROC. NATL. ACAD. SCI., vol. 95, 1998, pages 10564 - 10569, XP008160883
WANG ET AL.: "One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas- mediated genome engineering", CELL, vol. 153, no. 4, 2 May 2013 (2013-05-02), pages 910 - 8, XP028538358, doi:10.1016/j.cell.2013.04.025
WANG ET AL.: "One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering", CELL, vol. 153, 2 May 2013 (2013-05-02), pages 910 - 918, XP028538358
WANG ET AL.: "One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering", CELL, vol. 153, no. 4, 2 May 2013 (2013-05-02), pages 910 - 918, XP028538358
WANG: "One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering", CELL, vol. 153, 9 May 2013 (2013-05-09), pages 910 - 918, XP028538358
WARD ET AL.: "Targeted integration of a rAAV vector into the AAVS1 region", VIROLOGY, vol. 433, 13 September 2012 (2012-09-13), pages 356 - 366, XP055502331, doi:10.1016/j.virol.2012.08.015
WARD ET AL.: "Targeted integration of a rAAV vector into the AAVS1 region", VIROLOGY, vol. 433, 2012, pages 356 - 366, XP055502331
WATERHOUSE: "Exploring plant genomes by RNA-induced gene silencing", NATURE REVIEWS, vol. 4, 2003, pages 29 - 38, XP002372880
WIELAND: "Engineering of ribozyme-based riboswitches for mammalian cells", METHODS, vol. 56, 2012, pages 351 - 357, XP028482025
XIE, ET AL.: "RNA-Guided Genome Editing in Plants Using a CRISPRCas System", MOLECULAR PLANT, vol. 6, 2013, pages 1975 - 1983, XP009179487
XU: "The Next Generation Biotechnology for Apple Improvement and Beyond: The CRISPR/Cas9 Story", NEW YORK FRUIT QUARTERLY, vol. 21, 2013, pages 19 - 22, XP055340191
Y ANG: "HIV-1 TAT-mediated protein transduction and subcellular localization using novel expressin vectors", FEBS LETTERS, vol. 532, 2002, pages 36 - 44, XP055600406
YANG ET AL.: "HIV-1 TAT-mediated protein transduction and subcellular localization using novel expression vectors", FEBS LETTERS, vol. 532, 1 November 2002 (2002-11-01), pages 36 - 44, XP004395339
YAO ET AL.: "Homology-mediated end joining-based targeted integration using CRISPR/Cas9", CELL RESEARCH, vol. 27, 2017, pages 801 - 814, XP055516046
YU ET AL.: "Highly Efficient Genome Modifications Mediated by CRISPR/Cas9 in Drosophila (includes Supporting Information)", GENETICS, vol. 195, no. 1, 5 July 2013 (2013-07-05), pages 289 - 291, 1-14, XP055242275
ZAMBROWICZ, B. P. ET AL.: "Disruption of overlapping transcripts in the ROSA βgeo 26 gene trap strain leads to widespread expression of β-galactosidase in mouse embryos and hematopoietic cells", PROC. NATL. ACAD. SCI. USA, vol. 94, 1997, pages 3789 - 3794, XP002919951
ZHANG ET AL.: "Applications of mRNA injections for analyzing cell lineage and asymmetric cell divisions during segmentation in the leech Helobdella robusta", DEVELOPMENT, vol. 132, 2005, pages 2103 - 13, XP055502340, doi:10.1242/dev.01802
ZHANG: "Applications of mRNA injections for analyzing cell lineage and asymmetric cell divisions during segmentation in the leech Helobdella robusta", DEVELOPMENT, vol. 132, 2005, pages 2103 - 2113, XP055502340

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3360964B1 (de) 2012-12-06 2019-10-02 Sigma Aldrich Co. LLC Crispr-basierte genommodifizierung und -regulierung
US11622547B2 (en) 2019-06-07 2023-04-11 Regeneran Pharmaceuticals, Inc. Genetically modified mouse that expresses human albumin

Also Published As

Publication number Publication date
AU2018229489A1 (en) 2018-10-04
AU2019201344B2 (en) 2020-09-03
LT3138910T (lt) 2017-11-10
DK3138911T3 (en) 2019-01-21
IL291129B2 (en) 2023-07-01
EP3138912B1 (de) 2018-12-05
PL3138910T3 (pl) 2018-01-31
US20210207173A1 (en) 2021-07-08
CN108715602A (zh) 2018-10-30
PT3138912T (pt) 2018-12-28
ES2757325T3 (es) 2020-04-28
ES2713243T3 (es) 2019-05-20
US10731181B2 (en) 2020-08-04
EP3617309A3 (de) 2020-05-06
CN108913676B (zh) 2023-11-03
JP2017192392A (ja) 2017-10-26
PT3360964T (pt) 2019-10-29
AU2019201344C1 (en) 2020-12-24
CA2891347C (en) 2018-02-27
DK3363902T3 (da) 2020-01-02
LT3363902T (lt) 2020-02-10
AU2020230243A1 (en) 2020-10-01
US10745716B2 (en) 2020-08-18
EP2928496A1 (de) 2015-10-14
PL3360964T3 (pl) 2020-03-31
LT3138911T (lt) 2019-02-25
IL300199A (en) 2023-03-01
KR20200098727A (ko) 2020-08-20
EP3138909A1 (de) 2017-03-08
ES2714154T3 (es) 2019-05-27
AU2023216829A1 (en) 2023-09-14
PL2928496T3 (pl) 2020-04-30
EP3135765A1 (de) 2017-03-01
JP7478772B2 (ja) 2024-05-07
CA3034794A1 (en) 2014-06-12
PL3363902T3 (pl) 2020-05-18
EP3617309A2 (de) 2020-03-04
AU2022200330B2 (en) 2023-11-09
JP6620018B2 (ja) 2019-12-11
KR102006880B1 (ko) 2019-08-02
US20210388396A1 (en) 2021-12-16
AU2017204031B2 (en) 2018-06-14
EP3138910A1 (de) 2017-03-08
EP3360964B1 (de) 2019-10-02
US20160298134A1 (en) 2016-10-13
US20160298132A1 (en) 2016-10-13
AU2020273316A1 (en) 2020-12-17
EP3363902A1 (de) 2018-08-22
JP2020120674A (ja) 2020-08-13
IL257178A (en) 2018-03-29
US20160298138A1 (en) 2016-10-13
KR102243092B1 (ko) 2021-04-22
AU2019201344A1 (en) 2019-03-21
AU2013355214A1 (en) 2015-06-04
JP2021101706A (ja) 2021-07-15
CN105142669A (zh) 2015-12-09
DK2928496T3 (da) 2019-11-11
KR102531576B1 (ko) 2023-05-11
IL238856B (en) 2018-03-29
EP2928496A4 (de) 2017-03-01
EP3611263A1 (de) 2020-02-19
PL3138912T3 (pl) 2019-04-30
AU2013355214B2 (en) 2017-06-15
BR112015012375A2 (pt) 2017-09-26
IL267598A (en) 2019-08-29
PT3138911T (pt) 2018-12-28
CA2977152C (en) 2019-04-09
EP3141604A1 (de) 2017-03-15
CN108913676A (zh) 2018-11-30
ES2769310T3 (es) 2020-06-25
US20160017366A1 (en) 2016-01-21
PT3138910T (pt) 2017-10-18
PL3138911T3 (pl) 2019-04-30
IL238856A0 (en) 2015-06-30
WO2014089290A1 (en) 2014-06-12
JP2016502840A (ja) 2016-02-01
JP2019037231A (ja) 2019-03-14
DK3138910T3 (en) 2017-10-16
IL267598B (en) 2022-05-01
US20160298137A1 (en) 2016-10-13
PT2928496T (pt) 2019-11-11
AU2017204031A1 (en) 2017-07-06
SG10201910987SA (en) 2020-01-30
KR20230003624A (ko) 2023-01-06
AU2020230243B2 (en) 2021-10-21
ES2653212T3 (es) 2018-02-06
KR20180011351A (ko) 2018-01-31
EP3138910B1 (de) 2017-09-20
AU2022200330A1 (en) 2022-02-17
KR101844123B1 (ko) 2018-04-02
SG11201503824SA (en) 2015-06-29
CN105142669B (zh) 2018-07-03
SG10201800585VA (en) 2018-02-27
US20160298136A1 (en) 2016-10-13
IL291129B1 (en) 2023-03-01
KR102145760B1 (ko) 2020-08-19
PT3363902T (pt) 2019-12-19
AU2020230246B2 (en) 2020-11-05
KR20230070065A (ko) 2023-05-19
US20200140897A1 (en) 2020-05-07
US20160298135A1 (en) 2016-10-13
DK3138912T3 (en) 2019-01-21
US20170191082A1 (en) 2017-07-06
KR102479178B1 (ko) 2022-12-19
EP3363902B1 (de) 2019-11-27
JP2022115994A (ja) 2022-08-09
AU2018229489B2 (en) 2018-12-06
EP3138911A1 (de) 2017-03-08
EP3138912A1 (de) 2017-03-08
LT3138912T (lt) 2019-02-25
CA2977152A1 (en) 2014-06-12
HK1218389A1 (zh) 2017-02-17
ES2757808T3 (es) 2020-04-30
US20160298133A1 (en) 2016-10-13
IL257178B (en) 2019-07-31
DK3360964T3 (da) 2019-10-28
EP3360964A1 (de) 2018-08-15
EP2928496B1 (de) 2019-10-09
IL291129A (en) 2022-05-01
US20170073705A1 (en) 2017-03-16
CA2891347A1 (en) 2014-06-12
AU2020230246A1 (en) 2020-10-01
US20210079427A1 (en) 2021-03-18
KR20150091052A (ko) 2015-08-07
US20160298125A1 (en) 2016-10-13
AU2020273316B2 (en) 2023-05-18
KR20210045515A (ko) 2021-04-26
SG10202107423UA (en) 2021-08-30
KR20190093680A (ko) 2019-08-09

Similar Documents

Publication Publication Date Title
US20210079427A1 (en) Crispr-based genome modification and regulation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 2928496

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170411

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CHEN, FUQIANG

Inventor name: DAVIS, GREGORY D.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17Q First examination report despatched

Effective date: 20171129

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20181011

AC Divisional application: reference to earlier application

Ref document number: 2928496

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602013048019

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1073085

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013048019

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3138911

Country of ref document: PT

Date of ref document: 20181228

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20181219

26 Opposition filed

Opponent name: SCHLICH, GEORGE

Effective date: 20181206

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190109

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LATSCHA SCHOELLHORN PARTNER AG, CH

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: GRUND, DR., MARTIN

Effective date: 20190130

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E016819

Country of ref document: EE

Effective date: 20181220

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

26 Opposition filed

Opponent name: VOSSIUS & PARTNER PATENTANWAELTE RECHTSANWAELTE MB

Effective date: 20190222

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190305

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2714154

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: BAYER AKTIENGESELLSCHAFT

Effective date: 20190618

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAZ Examination of admissibility of opposition: despatch of communication + time limit

Free format text: ORIGINAL CODE: EPIDOSNOPE2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

R26 Opposition filed (corrected)

Opponent name: BAYER AG / BAYER INTELLECTUAL PROPERTY GMBH

Effective date: 20190618

PLBA Examination of admissibility of opposition: reply received

Free format text: ORIGINAL CODE: EPIDOSNOPE4

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBA Examination of admissibility of opposition: reply received

Free format text: ORIGINAL CODE: EPIDOSNOPE4

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: POHLMAN, SANDRA M.

Effective date: 20190905

Opponent name: PATENT BOUTIQUE LLP

Effective date: 20190904

Opponent name: BASF SE

Effective date: 20190904

26 Opposition filed

Opponent name: COOLEY (UK) LLP

Effective date: 20190905

Opponent name: MATHYS & SQUIRE LLP

Effective date: 20190905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181205

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181205

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131205

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1073085

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181205

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: COOLEY (UK) LLP

Effective date: 20190905

R26 Opposition filed (corrected)

Opponent name: VOSSIUS & PARTNER PATENTANWAELTE RECHTSANWAELTE MBB

Effective date: 20190222

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

REG Reference to a national code

Ref country code: FI

Ref legal event code: MDE

Opponent name: MATHYS & SQUIRE LLP

Ref country code: FI

Ref legal event code: MDE

Opponent name: COOLEY (UK) LLP

Ref country code: FI

Ref legal event code: MDE

Opponent name: POHLMAN, SANDRA M.

Ref country code: FI

Ref legal event code: MDE

Opponent name: PATENT BOUTIQUE LLP

Ref country code: FI

Ref legal event code: MDE

Opponent name: BASF SE

Ref country code: FI

Ref legal event code: MDE

Opponent name: BAYER AG / BAYER INTELLECTUAL PROPERTY GMBH

Ref country code: FI

Ref legal event code: MDE

Opponent name: VOSSIUS & PARTNER PATENTANWAELTE RECHTSANWAELTE MBB

Ref country code: FI

Ref legal event code: MDE

Opponent name: GRUND, DR., MARTIN

Ref country code: FI

Ref legal event code: MDE

Opponent name: SCHLICH, GEORGE

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: GRUND IPG PATENTANWAELTE UND SOLICITOR PARTG MBB

Effective date: 20190130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230602

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602013048019

Country of ref document: DE

Representative=s name: MAIWALD GMBH, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230929

Year of fee payment: 11

Ref country code: NL

Payment date: 20231013

Year of fee payment: 11

Ref country code: FR

Payment date: 20230929

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20231128

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231024

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231012

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20231115

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231204

Year of fee payment: 11

Ref country code: SE

Payment date: 20231002

Year of fee payment: 11

Ref country code: PT

Payment date: 20231205

Year of fee payment: 11

Ref country code: NO

Payment date: 20231212

Year of fee payment: 11

Ref country code: LT

Payment date: 20231123

Year of fee payment: 11

Ref country code: IT

Payment date: 20231110

Year of fee payment: 11

Ref country code: IE

Payment date: 20231009

Year of fee payment: 11

Ref country code: FI

Payment date: 20231219

Year of fee payment: 11

Ref country code: EE

Payment date: 20231023

Year of fee payment: 11

Ref country code: DK

Payment date: 20231215

Year of fee payment: 11

Ref country code: DE

Payment date: 20231010

Year of fee payment: 11

Ref country code: CZ

Payment date: 20231116

Year of fee payment: 11

Ref country code: AT

Payment date: 20231127

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240110

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 11