EP1413646B2 - Verfahren zur stromlosen Abscheidung von Metallen - Google Patents

Verfahren zur stromlosen Abscheidung von Metallen Download PDF

Info

Publication number
EP1413646B2
EP1413646B2 EP03013706.1A EP03013706A EP1413646B2 EP 1413646 B2 EP1413646 B2 EP 1413646B2 EP 03013706 A EP03013706 A EP 03013706A EP 1413646 B2 EP1413646 B2 EP 1413646B2
Authority
EP
European Patent Office
Prior art keywords
electrolyte
nickel
metal
complexing agent
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03013706.1A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1413646B1 (de
EP1413646A3 (de
EP1413646A2 (de
Inventor
Franz-Josef Stark
Helmut Horsthemke
Ulrich Treuner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MacDermid Enthone Inc
Original Assignee
Enthone Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32010257&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1413646(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Enthone Inc filed Critical Enthone Inc
Publication of EP1413646A2 publication Critical patent/EP1413646A2/de
Publication of EP1413646A3 publication Critical patent/EP1413646A3/de
Application granted granted Critical
Publication of EP1413646B1 publication Critical patent/EP1413646B1/de
Publication of EP1413646B2 publication Critical patent/EP1413646B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1617Purification and regeneration of coating baths
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires

Definitions

  • This invention relates to an electrolyte for electroless deposition of residual pressure nickel layers containing a metal base salt, a reducing agent, a complexing agent, an accelerator and a stabilizer.
  • the electroless plating with metals is based on an autocatalytic process, so that it is also referred to as autocatalytic coating.
  • the electrolyte In order to reduce the metal ions contained in the deposition bath (electrolyte) to elemental metal in such a coating process, the electrolyte must be added to a corresponding reducing agent, which is oxidized during the reaction itself.
  • other components such as phosphorus and / or additional metals, such as copper, etc., are often incorporated into the coating.
  • phosphorus has a significant influence on layer properties such as hardness and corrosion resistance, this is selectively introduced depending on the intended use of the coated article. For example, in the case of non-magnetic coatings with maximum hardness, a phosphorus content of ⁇ 10% by weight is desired. In addition, such electroless deposited metal-phosphorus coatings have a higher hardness and better wear resistance than electrodeposited coatings.
  • hypophosphite baths for electroless deposition of metals tend to become unstable during deposition, as the concentration of metal and hypophosphite ion progressively decreases as the concentration of orthophosphite ion continues to increase and the counterions of the metal and hypophosphite ions increase Form of, for example, sodium sulfate. The electrolyte is thus consumed ".
  • the lifetime of such electroless baths is thus limited because the electrolyte can only be used for a certain number of coating runs with uniform coating results.
  • the age of a bath is usually given in metal turn-over (MTO), where 1 MTO is equal to the amount of metal deposited from the bath. This corresponds to the originally used concentration of the metal ions, in each case based on the total volume of the bath, in the bath.
  • MTO metal turn-over
  • the degradation products in the electrolyte reach such a high concentration after about 5 to 10 MTO that a high deposition rate and a consistently high quality of the deposited metal can no longer be guaranteed.
  • the electrolyte is then either to replace or regenerate using appropriate tools.
  • the regeneration of an electrolyte for nickel deposition means at least withdrawing the resulting orthophosphite as reaction products and optionally an addition of metal and Hypophosphitionen.
  • interfering components are separated from the bath, for example by adsorption on ion exchange resins or by electrodialytic processes. Although such methods allow a significantly longer life of the baths, but they are usually connected by the complex structure, etc. with very high operating costs.
  • the invention has for its object to provide an electrolyte for electroless deposition of Nichel, from the over a long period uniform, pore and crack-free metal-phosphorus coatings with constant layer properties and high phosphorus content, at an increased deposition rate, can be deposited. It is also an object of the present invention to provide an electrolyte having high stability and durability, which contains complexing agents and stabilizers which are effective in a wide volume range and greatly contribute to increasing the deposition rate and prolonging the life of the bath. Another object of the present invention is to provide a process for the electroless deposition of nickel with compressive residual stress.
  • the object is achieved by means of an electrolyte according to claim 1 .
  • the publication DE 40 05 088 discloses a saccarin-containing nickel plating bath for electroless deposition of uniformly blackened nickel layers.
  • the patent US 3, 597, 267 discloses a nickel acetate-containing electrolyte for the electroless deposition of nickel at a high deposition rate.
  • the disadvantages known in the state of the art are eliminated by providing a novel composition of the electrolyte and in this way achieving considerably better deposition conditions, thereby simplifying implementation and making it more economical.
  • This is primarily due to the advantageous composition of the electrolyte.
  • metal salts whose anions are volatile, preferably metal acetates as the electrolyte base salt, the life of the electrolyte at high deposition rates and uniformly deposited layers with constant layer properties can be significantly extended.
  • the electrolyte of the invention is basically composed of one or more metal base salts selected from the group consisting of nickel acetate, nickel formate, nickel oxalate, nickel nitrate, nickel propionate, nickel citrate and nichel ascorbate, preferably metal acetate and a reducing agent, sodium hypophosphite.
  • various additives such as complexing agents, accelerators and stabilizers, which are advantageously used in acidic electrolytes for the electroless deposition of nickel, are added to the electrolyte. Since the deposition rate is significantly higher in an acidic medium, an acid is preferably added to the electrolyte as a complexing agent.
  • carboxylic acids and / or polycarboxylic acids turns out to be particularly advantageous since, on the one hand, it determines the advantageous solubility of the metal salts and the controlled control of the free metal ions and, on the other hand, prescribes the adjustment of the pH required for the process due to their acid strength . facilitated.
  • the pH of the electrolyte is advantageously in the range of 4.0 to 5.2.
  • the dissolved metal is particularly advantageously complexed by the use of carboxylic acids and / or polycarboxylic acids whose salts and / or derivatives, preferably hydroxy (poly) carboxylic acids, particularly preferably 2-hydroxypropanoic acid and / or propanedioic acid. At the same time, these compounds serve as activators and as pH buffers and contribute significantly to the stability of the bath by their advantageous properties.
  • a sulfur-containing heterocycle is added to the electrolyte as accelerator.
  • the sulfur-containing heterocycle used is saccharin, its salts and / or derivatives, particularly preferably sodium saccharin.
  • the addition of saccharinate, even in higher concentrations, does not adversely affect the corrosion resistance of the deposited metal layers.
  • a stabilizer is added to the electrolyte according to the invention in order to counteract a spontaneous decomposition of the metallizing bath.
  • a stabilizer may be, for example, metals, halogen compounds and / or sulfur compounds, such as thioureas.
  • metals as stabilizers has proved to be particularly advantageous.
  • These salts are preferably one or more of the salts from the group consisting of acetates, formates, nitrates, oxalates, propionates, citrates and ascorbinates, more preferably acetates.
  • the metal layers should have, besides phosphorus further components, such as, for example, additional metals, preferably cobalt, and / or finely dispersed particles are incorporated into the layer.
  • additional components such as, for example, salts, preferably potassium iodide.
  • the quality of the metallizing bath is surprisingly improved and the service life is considerably prolonged.
  • the metallization of the surface is improved, especially by more complex substrates.
  • the corrosion-resistant metal layers deposited according to the invention are suitable for coating keys or locks, valves, pipelines, etc. Due to the high phosphorus content, the layer becomes non-magnetic and is therefore ideal for coating connectors and contacts as well as housings for electronic devices, etc. Due to the very good wear resistance, the layers produced by the method according to the invention are preferably used in the field of mechanical engineering for coating running surfaces, couplings, pump housings, etc.
  • the method proposed by the invention is characterized in particular by the composition of the electrolyte. It is therefore advantageously in an economical and environmentally friendly compared to the conventional methods.
  • the electrolyte according to the invention can be regenerated, for example, by means of electrodialytic method.
  • metal salts whose anions are volatile the separation effect of the electrodialysis plant is significantly increased.
  • the number of electrolysis cells for separating Ortophosphitionen can be reduced at the same separation efficiency.
  • the base electrolyte of the electrolyte according to the invention is applied.
  • This contains essentially the following composition: 4 - 6 g / l nickel ions 25 - 60 g / l reducing agent 25 - 70 g / l complexing 1 - 25 g / l accelerated 0.1-2 mg / l stabilizer 0-3 g / l other ingredients
  • metal salts whose anions are volatile are used as metal receivers.
  • metal salts whose anions are volatile one or more salts from the group consisting of metal acetates, metal formates, metal nitrates, metal oxalates, metal propionates, metal citrates and Metallascorbinaten, more preferably exclusively metal acetate are used.
  • the electrolyte according to the invention thus operates throughout the deposition process in a pH range of 4.0 to 5.2, preferably 4.3 to 4.8, without having to be additionally added larger amounts of alkaline media. Due to the extremely advantageous pH self-regulation can be dispensed with during the process on a continuous pH control and alkaline additives.
  • the starting concentration of the metal-base salts is 0.04 to 0.16 mol / l, preferably 0.048 to 0.105 mol / l, based on nickel, the content of metal being between 0.068 and 0.102 mol / l, preferably 0.085 mol / l.
  • the reducing agent used is preferably sodium hypophosphite having a starting concentration of 25 to 65 g / l.
  • the complexing agents used are carboxylic acids and / or polycarboxylic acids, their salts and / or derivatives, preferably hydroxy (poly) carboxylic acids, particularly preferably 2-hydroxypropanoic acid and / or propanedioic acid.
  • the dissolved nickel is particularly advantageously complexed, so that the deposition rate can be maintained in a corresponding interval of 7 to 14 .mu.m / h, preferably 9 to 12 .mu.m / h with continuous addition of such complexing agents.
  • the starting concentration of the complexing agent in the base electrolyte is between 25 and 70 g / l, preferably 30 to 65 g / l.
  • the starting concentration of the accelerator is 2.5 to 22 g / l.
  • Stabilizers used are halogen compound and / or sulfur compound, preferably thiourea.
  • These salts are preferably selected from the group consisting of acetates, formates, nitrates, oxalates, propionates, citrates and ascorbinates. Very particular preference is given to the nitrates of the metals used as stabilizers.
  • the starting concentrations of the stabilizers are advantageously from 0.1 to 2 mg / l, preferably from 0.3 to 1 mg / l.
  • further constituents for example potassium iodide, in a starting concentration of 0 to 3 g / l may also be added to the base electrolyte.
  • this basic electrolyte a variety of substrates are introduced and galvanized. To support the lifetime and the stability of the electrolyte, it can be regenerated during the deposition process by means of electrodialysis and / or ion exchange resins. Likewise, supplemental solutions (as exemplified below) may be added to the electrolyte during the deposition process. These replenisher solutions are specially designed to control the individual contents of the basic components and added to the electrolyte in different amounts.
  • a first replenisher solution includes, for example, the following composition: 500 - 580 g / l reducing agent 5 - 15 g / l complexing 50-150 g / l alkaline buffer 11-20 g / l accelerator 0-3 g / l other ingredients
  • the same substances as in the base electrolyte are advantageously used.
  • the inventive method thus has a decided material cycle, which can be the process thus more economical and environmentally conscious.
  • the complexing agent content and the content of alkaline buffer are chosen so that, taking into account possible carry-over losses of not more than 40%, an increase to a total content of the complexing agents in the electrolyte to 70 to 90 g / l.
  • the content of the accelerator in the electrolyte is controlled so that, for example, in the case of a nickel electrolyte with the use of sodium saccharinate as accelerator per gram of deposited nickel between 0.100 and 0.200 g, preferably 0.150 g are added, wherein the proportion of carryover losses is taken into account. This ensures at the same time a continuous increase to 7.5 - 15 g / l.
  • the following composition can be used: 10 - 50 g / l complexing 0.68 - 2.283 mol / l Metallrezipient 1 - 25 g / l accelerator 40-80 mg / l stabilizer
  • the complexing agent of the second replenisher solution may be the same as in the first replenisher or, if necessary, another.
  • a hydroxycarboxylic acid for example 2-hydroxypropanoic acid of 60 g / l
  • propanedioic acid with a content of 0.5 g / l
  • the content of propanedioic acid is then increased by 0.005 to 0.015 g / g of deposited nickel, taking into account the carry-over losses. Due to the continuous increase of propanedioic acid from 0.5 g / l to about 1.2 g / l at 16 MTO equal to 80 g Ni / l, the deposition rate is maintained at the specified interval.
  • metal sulfate in addition to the metal base salts described so far, a deposition of adherent metal layers with compressive residual stresses is guaranteed up to a throughput of at least 14 MTO.
  • metal-base salts whose anion has at least one carbon atom and which preferably originate from the group of acetates, formates, oxalates, propionates, citrates and ascorbinates, the lifetime of the electrolyte surprisingly increases to 22 MTO.
  • the already mentioned compressive residual stress is an extremely important and very desirable layer property. It positively influences the bending cycle stress and increases the ductility. So z. For example, in the case of nickel, metal layers with a ductility of> 0.5% are deposited. Likewise, the residual compressive stresses have a positive effect on the corrosion resistance of the metal-phosphorus layers.
  • additional metals preferably copper
  • finely disperse particles such as finely dispersed fluorine-containing thermoset or thermosetting plastic
  • composition electrolyte Supplementary solution RA Supplementary solution SA Nickel acetate 4-hydrate (g / l) 12.5 - 25.5 / 200 - 212 Sodium hypophosphite (g / l) 30 - 50 515-565 / Hydroxycarboxylic acid (g / l) 32 - 55 / 25 - 35 Hydroxypolycarboxylic acid (g / l) 0,5 - 5 / / Sodium saccharin (g / l) 2.5 - 22 12.5 - 15 / Potassium iodide (g / l) 0.1 - 2 1 - 2 / Lead acetate (mg / l) 0.3-1 / 60-65 Ammonia 25% by weight (ml / l) 100-150
  • Such an electrolyte has a self-regulating pH range of 4.3 to 4.8 and allows deposition rates of 8 to 12 ⁇ m / hr.
  • the internal stress of the layers deposited therefrom is -10 to -40 N / mm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemically Coating (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Manufacture And Refinement Of Metals (AREA)
EP03013706.1A 2002-10-04 2003-06-17 Verfahren zur stromlosen Abscheidung von Metallen Expired - Lifetime EP1413646B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10246453A DE10246453A1 (de) 2002-10-04 2002-10-04 Verfahren zur stromlosen Abscheidung von Nickel
DE10246453 2002-10-04

Publications (4)

Publication Number Publication Date
EP1413646A2 EP1413646A2 (de) 2004-04-28
EP1413646A3 EP1413646A3 (de) 2008-01-16
EP1413646B1 EP1413646B1 (de) 2011-02-16
EP1413646B2 true EP1413646B2 (de) 2014-09-24

Family

ID=32010257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03013706.1A Expired - Lifetime EP1413646B2 (de) 2002-10-04 2003-06-17 Verfahren zur stromlosen Abscheidung von Metallen

Country Status (8)

Country Link
US (1) US7846503B2 (ja)
EP (1) EP1413646B2 (ja)
JP (1) JP4091518B2 (ja)
KR (1) KR101063851B1 (ja)
CN (1) CN100366795C (ja)
AT (1) ATE498707T1 (ja)
DE (2) DE10246453A1 (ja)
ES (1) ES2357943T5 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004002778C5 (de) * 2004-01-20 2017-04-20 Enthone Inc. Verfahren zur Regenerierung von Metallisierungsbädern
US7410899B2 (en) * 2005-09-20 2008-08-12 Enthone, Inc. Defectivity and process control of electroless deposition in microelectronics applications
US20080041734A1 (en) * 2005-09-22 2008-02-21 Bergelson Alan P Jewelry display apparatus
JP4740724B2 (ja) * 2005-12-01 2011-08-03 コーア株式会社 抵抗体の形成方法及び金属被膜固定抵抗器の形成方法
CN100412232C (zh) * 2006-01-13 2008-08-20 厦门大学 镁合金表面化学镀镍硼合金的方法
EP1816237A1 (de) * 2006-02-02 2007-08-08 Enthone, Inc. Verfahren und Vorrichtung zur Beschichtung von Substratoberflächen
CN100402699C (zh) * 2006-03-15 2008-07-16 厦门大学 一种镁合金表面化学镀镍硼合金的方法
US8317909B2 (en) * 2007-06-05 2012-11-27 Dfhs, Llc Compositions and processes for deposition of metal ions onto surfaces of conductive substrates
WO2011003116A2 (en) 2009-07-03 2011-01-06 Enthone Inc. Beta-amino acid comprising electrolyte and method for the deposition of a metal layer
EP2270255A1 (en) 2009-07-03 2011-01-05 Enthone, Inc. Beta-amino acid comprising electrolyte and method for the deposition of a metal layer
SG176709A1 (en) * 2009-07-16 2012-02-28 Lam Res Corp Electroless deposition solutions and process control
US20110192316A1 (en) * 2010-02-05 2011-08-11 E-Chem Enterprise Corp. Electroless plating solution for providing solar cell electrode
DE102010062357B4 (de) 2010-12-02 2013-08-14 Innovent E.V. Vorrichtung und Verfahren zur Herstellung eines mit zumindest einer Korrosionsschutzschicht beschichteten magnesiumhaltigen Substrats
CN102268658A (zh) * 2011-07-22 2011-12-07 深圳市精诚达电路有限公司 一种化学镀镍液及化学镀镍工艺
BR112015001113B1 (pt) * 2012-07-17 2021-05-18 Coventya, Inc método de formação de um revestimento de níquel autocatalítico preto de um substrato
ES2766775T3 (es) * 2013-09-05 2020-06-15 Macdermid Enthone Inc Composición acuosa de electrolito que tiene una emisión aérea reducida
US11685999B2 (en) 2014-06-02 2023-06-27 Macdermid Acumen, Inc. Aqueous electroless nickel plating bath and method of using the same
US9708693B2 (en) * 2014-06-03 2017-07-18 Macdermid Acumen, Inc. High phosphorus electroless nickel
US9962522B2 (en) 2014-10-29 2018-05-08 Professional Plating, Inc. Braid plating method for torsional stiffness
US20170051411A1 (en) * 2015-08-20 2017-02-23 Macdermid Acumen, Inc. Electroless Silver Plating Bath and Method of Using the Same
ES2712858T3 (es) 2015-10-13 2019-05-16 Macdermid Enthone Inc Uso de fosfa-adamantanos solubles en agua y estables en aire como estabilizadores en electrolitos para deposición no electrolítica de metal
EP3255175A1 (en) 2016-06-07 2017-12-13 MacDermid Enthone Inc. Use of water soluble lanthanide compounds as stabilizer in electrolytes for electroless metal deposition
US10743916B2 (en) 2016-10-14 2020-08-18 Pacesetter, Inc. Catheter-based system for delivery and retrieval of a leadless pacemaker
US10351715B2 (en) * 2017-03-30 2019-07-16 The United States Of America As Represented By The Secretary Of The Navy Synergistic metal polycarboxylate corrosion inhibitors
US10960217B2 (en) 2017-03-31 2021-03-30 Pacesetter, Inc. Catheter-based delivery system for delivering a leadless pacemaker and employing a locking hub
DE102017125954A1 (de) * 2017-11-07 2019-05-09 RIAG Oberflächentechnik AG Außen stromloses Verfahren zur Erzeugung einer Nickellegierung und entsprechender Elektrolyt
CN110318046A (zh) * 2019-06-20 2019-10-11 深圳市宏达秋科技有限公司 一种高耐蚀性化学镀镍液及其制备方法
CN110318045A (zh) * 2019-06-20 2019-10-11 深圳市宏达秋科技有限公司 一种高稳定性化学镀镍液及其制备方法
CN117187792A (zh) * 2023-08-10 2023-12-08 中山博美新材料科技有限公司 一种铝合金高磷化学沉镍液及其使用方法与应用

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2694017A (en) * 1952-09-16 1954-11-09 Gen American Transporation Cor Process of chemical nickel plating of aluminum and its alloys and baths therefor
US3060059A (en) * 1961-05-19 1962-10-23 Goodyear Aircraft Corp Electroless nickel-phosphorous alloy plating bath and method
GB1243134A (en) 1968-07-29 1971-08-18 Texas Instruments Inc Chemical nickel plating bath and process
US3597266A (en) * 1968-09-23 1971-08-03 Enthone Electroless nickel plating
US3597267A (en) * 1969-02-26 1971-08-03 Allied Res Prod Inc Bath and process for chemical metal plating
US3887732A (en) * 1970-10-01 1975-06-03 Gen Am Transport Stress controlled electroless nickel deposits
FR2187940A1 (en) * 1972-06-09 1974-01-18 Imasa Electroless nickel plating concentrate - contg boric and citric acids
US3876434A (en) * 1972-12-07 1975-04-08 Shipley Co Replenishment of electroless nickel solutions
US4152164A (en) * 1976-04-26 1979-05-01 Michael Gulla Electroless nickel plating
US4293089A (en) * 1979-05-08 1981-10-06 The United States Of America As Represented By The United States Department Of Energy Brazing method
JPS5743978A (en) * 1980-08-27 1982-03-12 Suzuki Motor Co Ltd Nickel electroless plating method
US4483711A (en) * 1983-06-17 1984-11-20 Omi International Corporation Aqueous electroless nickel plating bath and process
JPS6421082A (en) * 1987-07-15 1989-01-24 Nippon Chemical Ind Production of powdery plated material
JPH01201484A (ja) * 1987-10-06 1989-08-14 Hitachi Ltd 化学ニッケルめっき液及びその使用方法
JPH01123079A (ja) * 1987-11-06 1989-05-16 Minoru Tsuda 非晶質Ni−P合金
JPH01195720A (ja) * 1988-01-04 1989-08-07 Nec Corp 半導体集積回路
GB2231063A (en) * 1989-02-27 1990-11-07 Omi International Electroless plating composition containing saccharin
JPH02225776A (ja) * 1989-02-27 1990-09-07 Fujita Corp 制振壁及び制振建造物
ES2027496A6 (es) 1989-10-12 1992-06-01 Enthone Metodo para precipitar una capa metalica no electrica lisa sobre un substrato de aluminio.
JPH0693460A (ja) * 1991-04-15 1994-04-05 Mitsubishi Gas Chem Co Inc 薄膜形成基材の製造法
JP2962496B2 (ja) 1991-08-12 1999-10-12 三井金属鉱業株式会社 マグネ基合金のめっき方法
JPH0565661A (ja) * 1991-09-06 1993-03-19 Kawasaki Kasei Chem Ltd 無電解ニツケルめつき皮膜の製造法
JPH05156458A (ja) * 1991-12-06 1993-06-22 Hitachi Chem Co Ltd 無電解ニッケル−リンめっき液
JP3192003B2 (ja) 1992-10-02 2001-07-23 三井金属鉱業株式会社 マグネ基合金の高耐食性塗装方法
US5258061A (en) * 1992-11-20 1993-11-02 Monsanto Company Electroless nickel plating baths
JPH08176837A (ja) * 1994-12-22 1996-07-09 Hitachi Chem Co Ltd 無電解ニッケルリンめっき液
JPH09137277A (ja) * 1995-11-10 1997-05-27 Ibiden Co Ltd 無電解めっき液、無電解めっき方法およびプリント配線板の製造方法
WO1997046326A1 (en) * 1996-06-05 1997-12-11 The University Of Toledo Electroless plating of a metal layer on an activated substrate
IL125249A (en) * 1996-11-14 2001-04-30 Atotech Deutschland Gmbh Removal of orthophosphite ions from baths for nickel-plating without electricity
US6106927A (en) * 1998-02-03 2000-08-22 Seagate Technology, Inc. Ultra-smooth as-deposited electroless nickel coatings
JP2001049448A (ja) * 1999-08-09 2001-02-20 C Uyemura & Co Ltd 無電解ニッケルめっき方法
FR2798677B1 (fr) * 1999-09-22 2001-12-21 A Richard Ets Procede d'epuration/regenaration d'un bain de nickelage chimique
JP2001192850A (ja) * 2000-01-11 2001-07-17 Ebe Katsuo 摺動部品用表面処理液及び摺動部品の表面処理方法及び摺動部品
JP2001214279A (ja) 2000-01-28 2001-08-07 Kyocera Corp 無電解ニッケルめっき浴
JP3479639B2 (ja) * 2000-12-08 2003-12-15 日鉱メタルプレーティング株式会社 無電解ニッケルめっき液
JP2002212746A (ja) * 2001-01-11 2002-07-31 Okuno Chem Ind Co Ltd 未貫通穴を有する被めっき物への無電解ニッケルめっき方法
US6391177B1 (en) * 2001-02-20 2002-05-21 David Crotty High temperature continuous electrodialysis of electroless plating solutions
JP4171604B2 (ja) * 2002-03-18 2008-10-22 株式会社大和化成研究所 無電解めっき浴及び該めっき浴を用いて得られた金属被覆物

Also Published As

Publication number Publication date
DE10246453A1 (de) 2004-04-15
EP1413646B1 (de) 2011-02-16
US7846503B2 (en) 2010-12-07
CN1497062A (zh) 2004-05-19
JP4091518B2 (ja) 2008-05-28
EP1413646A3 (de) 2008-01-16
JP2004124261A (ja) 2004-04-22
CN100366795C (zh) 2008-02-06
DE50313472D1 (de) 2011-03-31
KR20040031629A (ko) 2004-04-13
ES2357943T5 (es) 2015-11-25
KR101063851B1 (ko) 2011-09-14
ES2357943T3 (es) 2011-05-04
US20040144285A1 (en) 2004-07-29
EP1413646A2 (de) 2004-04-28
ATE498707T1 (de) 2011-03-15

Similar Documents

Publication Publication Date Title
EP1413646B2 (de) Verfahren zur stromlosen Abscheidung von Metallen
DE102010012204B4 (de) Verbessertes Verfahren zur Direktmetallisierung von nicht leitenden Substraten
EP1408141B1 (de) Verfahren und Elektrolyt zur galvanischen Abscheidung von Bronzen
DE2522939A1 (de) Nickel enthaltende polymetallische nickellegierungen und hierfuer geeignete plattierungsbaeder
EP1979511B1 (de) Verfahren zur beschichtung von substratoberflächen
WO2009059915A2 (de) Goldhaltige nickelschicht
EP3070188A2 (de) Verfahren zur beschichtung eines einpresspins und einpresspin
DE3320308A1 (de) Waessriges bad zur stromlosen abscheidung von gold und ein verfahren zur stromlosen abscheidung von gold unter verwendung dieses bades
DE10006128B4 (de) Plattierungsbad zum Abscheiden einer Sn-Bi-Legierung und dessen Verwendung
WO2009059917A2 (de) Silberhaltige nickelschicht
DE112019006704T5 (de) LÖSUNG ZUR STROMLOSEN ABSCHEIDUNG EINER Ni-Fe LEGIERUNG
EP1881090B1 (de) Elektrolytzusammensetzung und Verfahren zur Abscheidung einer Zink-Nickel-Legierungsschicht auf einem Gusseisen- oder Stahlsubstrat
AT395023B (de) Alkalisches waesseriges bad zur galvanischen abscheidung von zink-eisen-legierungen und hochkorrosionsbestaendige zink-eisen-legierung
DE1621352C3 (de) Stabilisiertes alkalisches Kupferbad zur stromlosen Abscheidung von Kupfer
EP1763594B1 (de) Verfahren zur verbesserung der lötbarkeit von nickelüberzügen
EP0152601A1 (de) Wässriges alkalisches Bad zur Chemischen Abscheidung von Kupfer oder Nickel
DE4326206C2 (de) Autokatalytisches Metallisierungsbad zu stromloser Abscheidung von Lötmittel
DE2943399C2 (de) Verfahren und Zusammensetzung zur galvanischen Abscheidung von Palladium
EP2588644B1 (de) Tribologisch belastbare edelmetall/metallschichten
EP0161343A1 (de) Wässriges, stabiles bad zur chemischen Abscheidung von Kobalt-Phosphor-, Nickel-Phosphor- und Kobalt-Nickel-Phosphor-Legierungen
EP3480338B1 (de) Stromlose abscheidung einer nickel-phosphor legierung und entsprechender elektrolyt
CH680449A5 (ja)
DE2236493C3 (de) Verfahren zum galvanischen Abscheiden glänzender Goldüberzüge mit hohem Goldgehalt
DE843785C (de) Verfahren zur Herstellung harter galvanischer Silberueberzuege
EP0168705B1 (de) Bad und Verfahren zur galvanischen Hartvergoldung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20080618

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081015

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 18/36 20060101ALI20100818BHEP

Ipc: C23C 18/16 20060101AFI20100818BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50313472

Country of ref document: DE

Date of ref document: 20110331

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50313472

Country of ref document: DE

Effective date: 20110331

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2357943

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110504

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110517

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110516

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

26 Opposition filed

Opponent name: DR. HESSE GMBH & CIE KG

Effective date: 20111116

Opponent name: COMPAGNIE INTERNATIONALE DE GALVANOPLASTIE - CIGAL

Effective date: 20111116

26 Opposition filed

Opponent name: ATOTECH DEUTSCHLAND GMBH

Effective date: 20111115

Opponent name: DR. HESSE GMBH & CIE KG

Effective date: 20111116

Opponent name: COMPAGNIE INTERNATIONALE DE GALVANOPLASTIE - CIGAL

Effective date: 20111116

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 50313472

Country of ref document: DE

Effective date: 20111116

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

R26 Opposition filed (corrected)

Opponent name: ATOTECH DEUTSCHLAND GMBH

Effective date: 20111115

Opponent name: COMPAGNIE INTERNATIONALE DE GALVANOPLASTIE - CIGAL

Effective date: 20111116

Opponent name: DR. HESSE GMBH & CIE KG

Effective date: 20111116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20120607

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130617

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140618

Year of fee payment: 12

27A Patent maintained in amended form

Effective date: 20140924

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50313472

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50313472

Country of ref document: DE

Effective date: 20140924

REG Reference to a national code

Ref country code: SE

Ref legal event code: NAV

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

REG Reference to a national code

Ref country code: NL

Ref legal event code: NE

Effective date: 20150917

REG Reference to a national code

Ref country code: ES

Ref legal event code: NE2A

Effective date: 20151116

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2357943

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20151125

REG Reference to a national code

Ref country code: NL

Ref legal event code: NG

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: ES

Effective date: 20151116

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: NL

Effective date: 20160219

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160614

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150618

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50313472

Country of ref document: DE

Representative=s name: BRINKMANN & PARTNER PATENTANWAELTE PARTNERSCHA, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50313472

Country of ref document: DE

Representative=s name: RAUSCH WANISCHECK-BERGMANN BRINKMANN PARTNERSC, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170618

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220518

Year of fee payment: 20

Ref country code: GB

Payment date: 20220519

Year of fee payment: 20

Ref country code: FR

Payment date: 20220519

Year of fee payment: 20

Ref country code: DE

Payment date: 20220518

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220526

Year of fee payment: 20

Ref country code: BE

Payment date: 20220523

Year of fee payment: 20

Ref country code: AT

Payment date: 20220519

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50313472

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20230616

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20230617

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230616

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 498707

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230616