EP1413646B2 - Process for electroless plating of metals - Google Patents

Process for electroless plating of metals Download PDF

Info

Publication number
EP1413646B2
EP1413646B2 EP03013706.1A EP03013706A EP1413646B2 EP 1413646 B2 EP1413646 B2 EP 1413646B2 EP 03013706 A EP03013706 A EP 03013706A EP 1413646 B2 EP1413646 B2 EP 1413646B2
Authority
EP
European Patent Office
Prior art keywords
electrolyte
nickel
metal
complexing agent
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03013706.1A
Other languages
German (de)
French (fr)
Other versions
EP1413646A3 (en
EP1413646A2 (en
EP1413646B1 (en
Inventor
Franz-Josef Stark
Helmut Horsthemke
Ulrich Treuner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MacDermid Enthone Inc
Original Assignee
Enthone Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32010257&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1413646(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Enthone Inc filed Critical Enthone Inc
Publication of EP1413646A2 publication Critical patent/EP1413646A2/en
Publication of EP1413646A3 publication Critical patent/EP1413646A3/en
Application granted granted Critical
Publication of EP1413646B1 publication Critical patent/EP1413646B1/en
Publication of EP1413646B2 publication Critical patent/EP1413646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1617Purification and regeneration of coating baths
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires

Definitions

  • This invention relates to an electrolyte for electroless deposition of residual pressure nickel layers containing a metal base salt, a reducing agent, a complexing agent, an accelerator and a stabilizer.
  • the electroless plating with metals is based on an autocatalytic process, so that it is also referred to as autocatalytic coating.
  • the electrolyte In order to reduce the metal ions contained in the deposition bath (electrolyte) to elemental metal in such a coating process, the electrolyte must be added to a corresponding reducing agent, which is oxidized during the reaction itself.
  • other components such as phosphorus and / or additional metals, such as copper, etc., are often incorporated into the coating.
  • phosphorus has a significant influence on layer properties such as hardness and corrosion resistance, this is selectively introduced depending on the intended use of the coated article. For example, in the case of non-magnetic coatings with maximum hardness, a phosphorus content of ⁇ 10% by weight is desired. In addition, such electroless deposited metal-phosphorus coatings have a higher hardness and better wear resistance than electrodeposited coatings.
  • hypophosphite baths for electroless deposition of metals tend to become unstable during deposition, as the concentration of metal and hypophosphite ion progressively decreases as the concentration of orthophosphite ion continues to increase and the counterions of the metal and hypophosphite ions increase Form of, for example, sodium sulfate. The electrolyte is thus consumed ".
  • the lifetime of such electroless baths is thus limited because the electrolyte can only be used for a certain number of coating runs with uniform coating results.
  • the age of a bath is usually given in metal turn-over (MTO), where 1 MTO is equal to the amount of metal deposited from the bath. This corresponds to the originally used concentration of the metal ions, in each case based on the total volume of the bath, in the bath.
  • MTO metal turn-over
  • the degradation products in the electrolyte reach such a high concentration after about 5 to 10 MTO that a high deposition rate and a consistently high quality of the deposited metal can no longer be guaranteed.
  • the electrolyte is then either to replace or regenerate using appropriate tools.
  • the regeneration of an electrolyte for nickel deposition means at least withdrawing the resulting orthophosphite as reaction products and optionally an addition of metal and Hypophosphitionen.
  • interfering components are separated from the bath, for example by adsorption on ion exchange resins or by electrodialytic processes. Although such methods allow a significantly longer life of the baths, but they are usually connected by the complex structure, etc. with very high operating costs.
  • the invention has for its object to provide an electrolyte for electroless deposition of Nichel, from the over a long period uniform, pore and crack-free metal-phosphorus coatings with constant layer properties and high phosphorus content, at an increased deposition rate, can be deposited. It is also an object of the present invention to provide an electrolyte having high stability and durability, which contains complexing agents and stabilizers which are effective in a wide volume range and greatly contribute to increasing the deposition rate and prolonging the life of the bath. Another object of the present invention is to provide a process for the electroless deposition of nickel with compressive residual stress.
  • the object is achieved by means of an electrolyte according to claim 1 .
  • the publication DE 40 05 088 discloses a saccarin-containing nickel plating bath for electroless deposition of uniformly blackened nickel layers.
  • the patent US 3, 597, 267 discloses a nickel acetate-containing electrolyte for the electroless deposition of nickel at a high deposition rate.
  • the disadvantages known in the state of the art are eliminated by providing a novel composition of the electrolyte and in this way achieving considerably better deposition conditions, thereby simplifying implementation and making it more economical.
  • This is primarily due to the advantageous composition of the electrolyte.
  • metal salts whose anions are volatile, preferably metal acetates as the electrolyte base salt, the life of the electrolyte at high deposition rates and uniformly deposited layers with constant layer properties can be significantly extended.
  • the electrolyte of the invention is basically composed of one or more metal base salts selected from the group consisting of nickel acetate, nickel formate, nickel oxalate, nickel nitrate, nickel propionate, nickel citrate and nichel ascorbate, preferably metal acetate and a reducing agent, sodium hypophosphite.
  • various additives such as complexing agents, accelerators and stabilizers, which are advantageously used in acidic electrolytes for the electroless deposition of nickel, are added to the electrolyte. Since the deposition rate is significantly higher in an acidic medium, an acid is preferably added to the electrolyte as a complexing agent.
  • carboxylic acids and / or polycarboxylic acids turns out to be particularly advantageous since, on the one hand, it determines the advantageous solubility of the metal salts and the controlled control of the free metal ions and, on the other hand, prescribes the adjustment of the pH required for the process due to their acid strength . facilitated.
  • the pH of the electrolyte is advantageously in the range of 4.0 to 5.2.
  • the dissolved metal is particularly advantageously complexed by the use of carboxylic acids and / or polycarboxylic acids whose salts and / or derivatives, preferably hydroxy (poly) carboxylic acids, particularly preferably 2-hydroxypropanoic acid and / or propanedioic acid. At the same time, these compounds serve as activators and as pH buffers and contribute significantly to the stability of the bath by their advantageous properties.
  • a sulfur-containing heterocycle is added to the electrolyte as accelerator.
  • the sulfur-containing heterocycle used is saccharin, its salts and / or derivatives, particularly preferably sodium saccharin.
  • the addition of saccharinate, even in higher concentrations, does not adversely affect the corrosion resistance of the deposited metal layers.
  • a stabilizer is added to the electrolyte according to the invention in order to counteract a spontaneous decomposition of the metallizing bath.
  • a stabilizer may be, for example, metals, halogen compounds and / or sulfur compounds, such as thioureas.
  • metals as stabilizers has proved to be particularly advantageous.
  • These salts are preferably one or more of the salts from the group consisting of acetates, formates, nitrates, oxalates, propionates, citrates and ascorbinates, more preferably acetates.
  • the metal layers should have, besides phosphorus further components, such as, for example, additional metals, preferably cobalt, and / or finely dispersed particles are incorporated into the layer.
  • additional components such as, for example, salts, preferably potassium iodide.
  • the quality of the metallizing bath is surprisingly improved and the service life is considerably prolonged.
  • the metallization of the surface is improved, especially by more complex substrates.
  • the corrosion-resistant metal layers deposited according to the invention are suitable for coating keys or locks, valves, pipelines, etc. Due to the high phosphorus content, the layer becomes non-magnetic and is therefore ideal for coating connectors and contacts as well as housings for electronic devices, etc. Due to the very good wear resistance, the layers produced by the method according to the invention are preferably used in the field of mechanical engineering for coating running surfaces, couplings, pump housings, etc.
  • the method proposed by the invention is characterized in particular by the composition of the electrolyte. It is therefore advantageously in an economical and environmentally friendly compared to the conventional methods.
  • the electrolyte according to the invention can be regenerated, for example, by means of electrodialytic method.
  • metal salts whose anions are volatile the separation effect of the electrodialysis plant is significantly increased.
  • the number of electrolysis cells for separating Ortophosphitionen can be reduced at the same separation efficiency.
  • the base electrolyte of the electrolyte according to the invention is applied.
  • This contains essentially the following composition: 4 - 6 g / l nickel ions 25 - 60 g / l reducing agent 25 - 70 g / l complexing 1 - 25 g / l accelerated 0.1-2 mg / l stabilizer 0-3 g / l other ingredients
  • metal salts whose anions are volatile are used as metal receivers.
  • metal salts whose anions are volatile one or more salts from the group consisting of metal acetates, metal formates, metal nitrates, metal oxalates, metal propionates, metal citrates and Metallascorbinaten, more preferably exclusively metal acetate are used.
  • the electrolyte according to the invention thus operates throughout the deposition process in a pH range of 4.0 to 5.2, preferably 4.3 to 4.8, without having to be additionally added larger amounts of alkaline media. Due to the extremely advantageous pH self-regulation can be dispensed with during the process on a continuous pH control and alkaline additives.
  • the starting concentration of the metal-base salts is 0.04 to 0.16 mol / l, preferably 0.048 to 0.105 mol / l, based on nickel, the content of metal being between 0.068 and 0.102 mol / l, preferably 0.085 mol / l.
  • the reducing agent used is preferably sodium hypophosphite having a starting concentration of 25 to 65 g / l.
  • the complexing agents used are carboxylic acids and / or polycarboxylic acids, their salts and / or derivatives, preferably hydroxy (poly) carboxylic acids, particularly preferably 2-hydroxypropanoic acid and / or propanedioic acid.
  • the dissolved nickel is particularly advantageously complexed, so that the deposition rate can be maintained in a corresponding interval of 7 to 14 .mu.m / h, preferably 9 to 12 .mu.m / h with continuous addition of such complexing agents.
  • the starting concentration of the complexing agent in the base electrolyte is between 25 and 70 g / l, preferably 30 to 65 g / l.
  • the starting concentration of the accelerator is 2.5 to 22 g / l.
  • Stabilizers used are halogen compound and / or sulfur compound, preferably thiourea.
  • These salts are preferably selected from the group consisting of acetates, formates, nitrates, oxalates, propionates, citrates and ascorbinates. Very particular preference is given to the nitrates of the metals used as stabilizers.
  • the starting concentrations of the stabilizers are advantageously from 0.1 to 2 mg / l, preferably from 0.3 to 1 mg / l.
  • further constituents for example potassium iodide, in a starting concentration of 0 to 3 g / l may also be added to the base electrolyte.
  • this basic electrolyte a variety of substrates are introduced and galvanized. To support the lifetime and the stability of the electrolyte, it can be regenerated during the deposition process by means of electrodialysis and / or ion exchange resins. Likewise, supplemental solutions (as exemplified below) may be added to the electrolyte during the deposition process. These replenisher solutions are specially designed to control the individual contents of the basic components and added to the electrolyte in different amounts.
  • a first replenisher solution includes, for example, the following composition: 500 - 580 g / l reducing agent 5 - 15 g / l complexing 50-150 g / l alkaline buffer 11-20 g / l accelerator 0-3 g / l other ingredients
  • the same substances as in the base electrolyte are advantageously used.
  • the inventive method thus has a decided material cycle, which can be the process thus more economical and environmentally conscious.
  • the complexing agent content and the content of alkaline buffer are chosen so that, taking into account possible carry-over losses of not more than 40%, an increase to a total content of the complexing agents in the electrolyte to 70 to 90 g / l.
  • the content of the accelerator in the electrolyte is controlled so that, for example, in the case of a nickel electrolyte with the use of sodium saccharinate as accelerator per gram of deposited nickel between 0.100 and 0.200 g, preferably 0.150 g are added, wherein the proportion of carryover losses is taken into account. This ensures at the same time a continuous increase to 7.5 - 15 g / l.
  • the following composition can be used: 10 - 50 g / l complexing 0.68 - 2.283 mol / l Metallrezipient 1 - 25 g / l accelerator 40-80 mg / l stabilizer
  • the complexing agent of the second replenisher solution may be the same as in the first replenisher or, if necessary, another.
  • a hydroxycarboxylic acid for example 2-hydroxypropanoic acid of 60 g / l
  • propanedioic acid with a content of 0.5 g / l
  • the content of propanedioic acid is then increased by 0.005 to 0.015 g / g of deposited nickel, taking into account the carry-over losses. Due to the continuous increase of propanedioic acid from 0.5 g / l to about 1.2 g / l at 16 MTO equal to 80 g Ni / l, the deposition rate is maintained at the specified interval.
  • metal sulfate in addition to the metal base salts described so far, a deposition of adherent metal layers with compressive residual stresses is guaranteed up to a throughput of at least 14 MTO.
  • metal-base salts whose anion has at least one carbon atom and which preferably originate from the group of acetates, formates, oxalates, propionates, citrates and ascorbinates, the lifetime of the electrolyte surprisingly increases to 22 MTO.
  • the already mentioned compressive residual stress is an extremely important and very desirable layer property. It positively influences the bending cycle stress and increases the ductility. So z. For example, in the case of nickel, metal layers with a ductility of> 0.5% are deposited. Likewise, the residual compressive stresses have a positive effect on the corrosion resistance of the metal-phosphorus layers.
  • additional metals preferably copper
  • finely disperse particles such as finely dispersed fluorine-containing thermoset or thermosetting plastic
  • composition electrolyte Supplementary solution RA Supplementary solution SA Nickel acetate 4-hydrate (g / l) 12.5 - 25.5 / 200 - 212 Sodium hypophosphite (g / l) 30 - 50 515-565 / Hydroxycarboxylic acid (g / l) 32 - 55 / 25 - 35 Hydroxypolycarboxylic acid (g / l) 0,5 - 5 / / Sodium saccharin (g / l) 2.5 - 22 12.5 - 15 / Potassium iodide (g / l) 0.1 - 2 1 - 2 / Lead acetate (mg / l) 0.3-1 / 60-65 Ammonia 25% by weight (ml / l) 100-150
  • Such an electrolyte has a self-regulating pH range of 4.3 to 4.8 and allows deposition rates of 8 to 12 ⁇ m / hr.
  • the internal stress of the layers deposited therefrom is -10 to -40 N / mm 2 .

Abstract

In an electrolyte for electroless plating with nickel films with residual compressive stress, containing a nickel base salt (I), reducing agent, chelant, accelerator and stabilizer, (I) is Ni acetate in an initial concentration of 12-26 g/l. An Independent claim is also included for the process for electroless plating with this electrolyte, in which uniform Ni films are deposited at a constant high rate of deposition of not less than 7-12 microns/hour, with a throughput of not less than 15-22 MTO (metal turn-over) = 70-110 g Ni/l.

Description

Diese Erfindung betrifft einen Elektrolyten zur stromlosen Abscheidung von Nickelschichten mit Druckeigenspannungen, enthaltend ein Metallbasissalz, ein Reduktionsmittel, einen Komplexbildner, einen Beschleuniger und einen Stabilisator.This invention relates to an electrolyte for electroless deposition of residual pressure nickel layers containing a metal base salt, a reducing agent, a complexing agent, an accelerator and a stabilizer.

Neben elektrolytischen Verfahren zur Beschichtung von Werkstücken mit einer Metallschicht sind sogenannte außenstromtose bzw. stromlose Beschichtungsverfahren (electroless plating) seit langem bekannt. Unter außenstromloser oder auch chemischer Metallisierung ist eine chemische Oberflächenveredelung von nahezu allen Metallen und vielen Nichtleitern zu verstehen. Sie unterscheidet sich in ihren chemischen, physikalischen und mechanischen Merkmalen wesentlich von galvanisch aufgebrachten Metallüberzügen. Vorteilhaft ist beispielsweise, daß die chemische Metallisierung gleichmäßig in tiefsten Bohrungen und Passungen erfolgt und zudem eine nahezu gleichbleibende und konturengenauere Schichtdicke erzeugt wird. Diese Verfahren werden besonders häufig zum Beschichten von nicht leitenden Substraten, beispielsweise Kunststoffteilen, angewendet, um diese beispielsweise durch eine metallische Oberfläche leitfähig zu machen und/oder ihnen ein ästhetisches Erscheinungsbild zu verleihen. Ebenso können durch derartige Verfahren die Materialeigenschaften der so behandelten Substrate verbessert werden. So kann je nach Verfahren beispielsweise die Korrosionsbeständigkeit, Härte und/oder Verschleißfestigkeit des verwendeten Materials verbessert werden.In addition to electrolytic processes for coating workpieces with a metal layer, so-called external current or electroless plating processes have long been known. Under electroless or even chemical metallization is a chemical surface refinement of almost all metals and many non-conductors to understand. It differs significantly in its chemical, physical and mechanical characteristics of galvanically applied metal coatings. It is advantageous, for example, that the chemical metallization takes place uniformly in the deepest boreholes and fits and, moreover, a virtually constant and contoured layer thickness is produced. These methods are particularly often used for coating non-conductive substrates, for example plastic parts, in order to make them conductive, for example by a metallic surface, and / or to give them an aesthetic appearance. Likewise, by such methods, the material properties of the substrates thus treated can be improved. Thus, depending on the method, for example, the corrosion resistance, hardness and / or wear resistance of the material used can be improved.

Die stromlose Beschichtung mit Metallen beruht auf einem autokatalytischen Prozeß, so daß diese auch als autokatalytische Beschichtung bezeichnet wird. Um bei einem solchen Beschichtungsverfahren die im Abscheidebad (Elektrolyten) enthaltenen Metallionen zu elementarem Metall zu reduzieren, muß dem Elektrolyten ein entsprechendes Reduktionsmittel, das während der Reaktion selbst oxidiert wird, beigegeben werden. Zudem werden oft auch weitere Komponenten, wie beispielsweise Phosphor und/oder zusätzliche Metalle, wie Kupfer etc., in die Beschichtung mit eingebaut.The electroless plating with metals is based on an autocatalytic process, so that it is also referred to as autocatalytic coating. In order to reduce the metal ions contained in the deposition bath (electrolyte) to elemental metal in such a coating process, the electrolyte must be added to a corresponding reducing agent, which is oxidized during the reaction itself. In addition, other components, such as phosphorus and / or additional metals, such as copper, etc., are often incorporated into the coating.

So werden im Falle eines stromlosen Metallbades durch den Einsatz von Hypophosphit als Reduktionsmittel Metallüberzüge mit einem verhältnismäßig hohen Phosphorgehalt erzeugt. Die entsprechende Reaktionsgleichung lautet hierfür wie folgt:

        MSO4 + 6NaH2PO2 → M + 2H2 + 2P + 4 NaH2PO3 + Na2SO4

Thus, in the case of an electroless metal bath by the use of hypophosphite as a reducing agent metal coatings are produced with a relatively high phosphorus content. The corresponding reaction equation is as follows:

MSO 4 + 6NaH 2 PO 2 → M + 2H 2 + 2P + 4 NaH 2 PO 3 + Na 2 SO 4

Da der Anteil an Phosphor einen wesentlichen Einfluß auf Schichteigenschaften wie beispielsweise Härte und Korrosionsbeständigkeit hat, wird dieser je nach Verwendungszweck des beschichteten Gegenstands gezielt eingebracht. So ist beispielsweise bei unmagnetischen Überzügen mit maximaler Härte ein Phosphoranteil von ≥ 10 Gew.-% erwünscht. Zudem haben derart stromlos abgeschiedene Metall-Phosphor-Überzüge eine höhere Härte und eine bessere Verschleißbeständigkeit als elektrolytisch abgeschiedene Überzüge.Since the proportion of phosphorus has a significant influence on layer properties such as hardness and corrosion resistance, this is selectively introduced depending on the intended use of the coated article. For example, in the case of non-magnetic coatings with maximum hardness, a phosphorus content of ≥ 10% by weight is desired. In addition, such electroless deposited metal-phosphorus coatings have a higher hardness and better wear resistance than electrodeposited coatings.

Hypophosphithaltige Bäder zur stromlosen Abscheidung von Metallen neigen jedoch tendenziell dazu, während der Abscheidung instabil zu werden, da die Konzentration der Metall- und Hypophosphitionen mit fortschreitender Metallisierung ständig abnimmt, während die Konzentration an Orthophosphitionen fortlaufend zunimmt und sich die Gegenionen der Metall- und Hypophosphitionen in Form von beispielsweise Natriumsulfat anreichern. Der Elektrolyt wird somit verbraucht".However, hypophosphite baths for electroless deposition of metals tend to become unstable during deposition, as the concentration of metal and hypophosphite ion progressively decreases as the concentration of orthophosphite ion continues to increase and the counterions of the metal and hypophosphite ions increase Form of, for example, sodium sulfate. The electrolyte is thus consumed ".

Die Lebensdauer derartiger stromloser Bäder ist somit begrenzt, da der Elektrolyt nur für eine bestimmte Anzahl von Beschichtungsdurchläufen mit gleichmäßigen Beschichtungsergebnissen verwendet werden kann. Das Alter eines Bades wird üblicherweise in Metal-Turn-Over (MTO) angegeben, wobei 1 MTO gleich der Menge an abgeschiedenem Metall aus dem Bad ist. Dies entspricht der ursprünglich eingesetzten Konzentration der Metallionen, jeweils bezogen auf das Gesamtvolumen des Bades, im Bad. Bei den derzeit im Stand der Technik bekannten Verfahren erreichen die Abbauprodukte im Elektrolyten nach etwa 5 bis 10 MTO eine so hohe Konzentration, daß eine hohe Abscheidegeschwindigkeit sowie eine gleichbleibend hohe Qualität des abgeschiedenen Metalls nicht mehr gewährleistet werden kann. Der Elektrolyt ist dann entweder zu ersetzen oder mittels geeigneter Hilfsmittel zu regenerieren.The lifetime of such electroless baths is thus limited because the electrolyte can only be used for a certain number of coating runs with uniform coating results. The age of a bath is usually given in metal turn-over (MTO), where 1 MTO is equal to the amount of metal deposited from the bath. This corresponds to the originally used concentration of the metal ions, in each case based on the total volume of the bath, in the bath. In the processes currently known in the art, the degradation products in the electrolyte reach such a high concentration after about 5 to 10 MTO that a high deposition rate and a consistently high quality of the deposited metal can no longer be guaranteed. The electrolyte is then either to replace or regenerate using appropriate tools.

Das erforderliche Entsorgen der verbrauchten Bäder sowie der erforderliche Neuansatz von frischen Bädern führt jedoch nachteiligerweise zu hohen Kosten und einer erheblichen Umweltbelastung.However, the required disposal of the spent baths as well as the required new batch of fresh baths disadvantageously leads to high costs and a significant environmental impact.

Die Regenerierung eines Elektrolyten zur Nickelabscheidung bedeutet zumindest das Entziehen der als Reaktionsprodukte anfallenden Orthophosphitionen sowie gegebenenfalls ein Zufügen von Metall- und Hypophosphitionen. In bereits bekannten Verfahren werden hierbei störende Komponenten beispielsweise mittels Adsorption an Ionenaustauscherharzen oder durch elektrodialytische Verfahren aus dem Bad abgetrennt. Derartige Verfahren ermöglichen zwar eine erheblich längere Lebensdauer der Bäder, sie sind jedoch zumeist durch den komplexen Aufbau etc. mit sehr hohen Betriebskosten verbunden.The regeneration of an electrolyte for nickel deposition means at least withdrawing the resulting orthophosphite as reaction products and optionally an addition of metal and Hypophosphitionen. In previously known processes, interfering components are separated from the bath, for example by adsorption on ion exchange resins or by electrodialytic processes. Although such methods allow a significantly longer life of the baths, but they are usually connected by the complex structure, etc. with very high operating costs.

Eine weitere, weniger kostenintensive Form der Regenerierung von Bädern zur stromlosen Abscheidung von Metallen ist die in situ Fällung und Abtrennung unerwünschter lonen in Form von schwerlöslichen Verbindungen sowie die anschließende Nachdosierung von benötigten und im Verlaufe der Badstandzeit verbrauchten tonen. Als Fällungsmittel kommen jedoch meist nur seltene Metalle in Frage, deren Anschaffung wiederum sehr teuer ist. Außerdem können die im Bad verbleibenden gelösten Bestandteile dieser Zusätze die Qualität des Metallüberzugs beeinträchtigen.Another, less expensive form of regenerating baths for the electroless deposition of metals is the in situ precipitation and separation of unwanted ions in the form of sparingly soluble compounds and the subsequent replenishment of required and consumed in the course of bath life time. As precipitant but usually only rare metals in question, the acquisition in turn is very expensive. In addition, the dissolved in the bath dissolved components of these additives can affect the quality of the metal coating.

Des weiteren sind bereits Verfahren bekannt, in denen störende Ausfällungen von Metallorthophosphit durch Zugabe von Komplexbildnern verhindert werden, und somit, durch die gezielte Verringerung der Konzentration an gelösten freien Nickelionen, die Stabilität der Bäder erheblich verbessert werden kann. So wurden in der Vergangenheit die unterschiedlichsten Badzusätze vorgeschlagen, die jedoch sämtlich den Nachteil aufweisen, daß eine gleichmäßige, porenfreie und haftfeste Abscheidung von Metall-Phosphor-Überzügen aus derartigen Bädern mit einer wirtschaftlich vertretbaren Abscheidegeschwindigkeit von 7-10 µm/h und mit Druckeigenspannungen bei einem Phosphorgehalt des Überzugs von > 10% über einen längeren Zeitraum nicht möglich ist. Üblicherweise liegt die Lebensdauer beziehungsweise der Anwendungszeitraum solcher Bäder bei 7 bis max. 10 MTO, wobei keine S2- - haltigen Beschleuniger verwendet werden.Furthermore, methods are already known in which interfering precipitations of metal orthophosphite are prevented by the addition of complexing agents, and thus, by the targeted reduction of the concentration of dissolved free nickel ions, the stability of the baths can be significantly improved. Thus, in the past a wide variety of bath additives have been proposed, but all have the disadvantage that a uniform, non-porous and adherent deposition of metal-phosphorus coatings from such baths with an economically acceptable deposition rate of 7-10 microns / h and with compressive stresses at Phosphorus content of the coating of> 10% over a longer period is not possible. Usually, the life or the period of application of such baths is 7 to max. 10 MTO, using no S 2- containing accelerators.

Der Erfindung liegt die Aufgabe zugrunde, einen Elektrolyten zur stromlosen Abscheidung von Nichel anzugeben, aus dem über einen längeren Zeitraum gleichmäßige, poren- und rißfreie Metall-Phosphor-Überzüge mit konstanten Schichteigenschaften und hohen Phosphorgehalten, bei einer erhöhten Abscheidegeschwindigkeit, abgeschieden werden können. Ferner soll ein Elektrolyt mit hoher Stabilität und Lebensdauer bereitgestellt werden, der Komplexbildner und Stabilisatoren enthält, die in einem weiten Volumenbereich wirksam sind und erheblich zur Erhöhung der Abscheidegeschwindigkeit sowie zur Verlängerung der Lebensdauer des Bades beitragen. Eine weitere Aufgabe der vorliegenden Erfindung ist ein Verfahren zur stromlosen Abscheidung von Nickel mit Druckeigenspannung bereitzustellen.The invention has for its object to provide an electrolyte for electroless deposition of Nichel, from the over a long period uniform, pore and crack-free metal-phosphorus coatings with constant layer properties and high phosphorus content, at an increased deposition rate, can be deposited. It is also an object of the present invention to provide an electrolyte having high stability and durability, which contains complexing agents and stabilizers which are effective in a wide volume range and greatly contribute to increasing the deposition rate and prolonging the life of the bath. Another object of the present invention is to provide a process for the electroless deposition of nickel with compressive residual stress.

Die Aufgabe wird erfindungsgemäß mittels eines Elektrolyten gemäß Anspruch 1 gelöst. The object is achieved by means of an electrolyte according to claim 1 .

Die Druckschrift DE 40 05 088 offenbart ein saccarin-enthaltendes Nickel-Plattierungsbad zur stromlosen Abscheidung von gleichförmig geschwärzten Nickelschichten.The publication DE 40 05 088 discloses a saccarin-containing nickel plating bath for electroless deposition of uniformly blackened nickel layers.

Die Patentschrift US 3, 597, 267 offenbart einen nickelacetat-enthaltenden Elektrolyt zur stromlosen Abscheidung von Nickel bei einer hohen Abscheidegeschwindigkeit.The patent US 3, 597, 267 discloses a nickel acetate-containing electrolyte for the electroless deposition of nickel at a high deposition rate.

Chen C-J et Al beschreiben in "Internal stress and adhesion of amorphous Ni-Cu-P alloy on aluminium", Thin Solid Films, Nr. 1-2, 1. Juli 2000, Seiten 106-113 , die stromlose Abscheidung von Nickel-Kupfer-Phosphor - Legierungen mit Druckeigenspannung in einem Nickelsulfat und Saccarin - enthaltenden Elektrolyt. Chen CJ et al describe in "Internal stress and adhesion of amorphous Ni-Cu-P alloy on aluminum", Thin Solid Films, No. 1-2, 1 July 2000, pages 106-113 , the electroless deposition of nickel-copper-phosphorus alloys with compressive residual stress in a nickel sulfate and saccarin-containing electrolyte.

Durch den erfindungsgemäßen Elektrolyten werden die im Stand der Technik bekannten Nachteile mit der Bereitstellung einer neuartigen Zusammensetzung des Elektrolyten beseitigt und auf diese Weise erheblich bessere Abscheidebedingungen erzielt, wodurch die Durchführung vereinfacht und wirtschaftlicher gestaltet wird. Dies liegt vornehmlich in der vorteilhaften Zusammensetzung des Elektrolyten begründet. Insbesondere durch den Einsatz von Metallsalzen, dessen Anionen flüchtig sind, bevorzugt Metallacetate als Elektrolytbasissalz läßt sich die Lebensdauer des Elektrolyten bei hohen Abscheidegeschwindigkeiten und gleichmäßig abgeschiedenen Schichten mit konstanten Schichteigenschaften erheblich verlängern.By means of the electrolyte according to the invention, the disadvantages known in the state of the art are eliminated by providing a novel composition of the electrolyte and in this way achieving considerably better deposition conditions, thereby simplifying implementation and making it more economical. This is primarily due to the advantageous composition of the electrolyte. In particular, by the use of metal salts whose anions are volatile, preferably metal acetates as the electrolyte base salt, the life of the electrolyte at high deposition rates and uniformly deposited layers with constant layer properties can be significantly extended.

Der erfindungsgemäße Elektrolyt setzt sich im Grunde aus einem oder mehreren Metallbasissalzen aus der Gruppe bestehend aus Nickelacetat, Nickelformiat, Nickeloxalat, Nickelnitraten, Nickelpropionat, Nickelcitrat und Nichelascorbinat, bevorzugt Metallacetat und einem Reduktionsmittel, Natriumhypophosphit, zusammen. Weiterhin werden dem Elektrolyten verschiedene Zusätze, wie komplexbildner, Beschleuniger und Stabilisatoren, welche vorteilhafterweise in sauren Elektrolyten zur stromlosen Abscheidung von Nickel verwendet werden, zugegeben. Da die Abscheidegeschwindigkeit im sauren Milieu deutlich höher ist, wird dem Elektrolyten als Komplexbildner bevorzugt eine Säure zugegeben. Als besonders vorteilhaft stellt sich der Einsatz von Carbonsäuren und/oder Polycarbonsäuren heraus, da diese zum einen eine vorteilhafte Löslichkeit der Metallsalze sowie die gezielte Steuerung der freien Metallionen bedingt und zum anderen aufgrund ihrer Säurestärke die Einstellung des für das Verfahren benötigten pH-Wertes vorgibt bzw. erleichtert. Der pH-Wert des Elektrolyten liegt vorteilhafterweise im Bereich von 4,0 bis 5,2. Zudem wird das gelöste Metall besonders vorteilhaft durch den Einsatz von Carbonsäuren und/oder Polycarbonsäuren deren Salze und/oder Derivate, vorzugsweise Hydroxyd (Poly) Carbonsäuren, besonders bevorzugt 2-Hydroxy-Propansäure und/oder Propandisäure komplex gebunden. Gleichzeitig dienen diese Verbindungen als Aktivatoren und als pH-Puffer und tragen durch ihre vorteilhaften Eigenschaften wesentlich zur Stabilität des Bades bei.The electrolyte of the invention is basically composed of one or more metal base salts selected from the group consisting of nickel acetate, nickel formate, nickel oxalate, nickel nitrate, nickel propionate, nickel citrate and nichel ascorbate, preferably metal acetate and a reducing agent, sodium hypophosphite. Furthermore, various additives, such as complexing agents, accelerators and stabilizers, which are advantageously used in acidic electrolytes for the electroless deposition of nickel, are added to the electrolyte. Since the deposition rate is significantly higher in an acidic medium, an acid is preferably added to the electrolyte as a complexing agent. The use of carboxylic acids and / or polycarboxylic acids turns out to be particularly advantageous since, on the one hand, it determines the advantageous solubility of the metal salts and the controlled control of the free metal ions and, on the other hand, prescribes the adjustment of the pH required for the process due to their acid strength . facilitated. The pH of the electrolyte is advantageously in the range of 4.0 to 5.2. In addition, the dissolved metal is particularly advantageously complexed by the use of carboxylic acids and / or polycarboxylic acids whose salts and / or derivatives, preferably hydroxy (poly) carboxylic acids, particularly preferably 2-hydroxypropanoic acid and / or propanedioic acid. At the same time, these compounds serve as activators and as pH buffers and contribute significantly to the stability of the bath by their advantageous properties.

Es wird dem Elektrolyten als Beschleuniger ein schwefelhaltiger Heterocyklus zugegeben. Als schwefelhaltiger Heterocyklus wird Saccharin, dessen Salze und/oder Derivate, besonders bevorzugt Natriumsaccharin eingesetzt. Im Gegensatz zu den im Stand der Technik bekannten und üblicherweise eingesetzten Beschleunigern auf S2- Basis, wirkt sich die Zugabe von Saccharinat auch in höheren Konzentration nicht negativ auf die Korrosionsbeständigkeit der abgeschiedenen Metallschichten aus.A sulfur-containing heterocycle is added to the electrolyte as accelerator. The sulfur-containing heterocycle used is saccharin, its salts and / or derivatives, particularly preferably sodium saccharin. In contrast to the S 2 -based accelerators known and commonly used in the prior art, the addition of saccharinate, even in higher concentrations, does not adversely affect the corrosion resistance of the deposited metal layers.

Eine weitere wichtige Voraussetzung für eine schnelle sowie qualitativ hochwertige Abscheidung von Metallschichten ist der Einsatz geeigneter Verbindungen zur Stabilisierung des Elektrolyten. Hierzu sind im Stand der Technik eine Reihe unterschiedlichster Stabilisatoren bekannt. Da jedoch die Stabilität des erfindungsgemäßen Elektrolyten maßgeblich durch den Einsatz von Metallsalzen, deren Anionen flüchtig sind, die Acetate, Formiate, Nitrate, Oxalate, Propionat, Citrat und Ascorbinat der Metalle, besonders bevorzugt Metallacetat, beeinflußt wird, werden vorteilhafterweise nur geringe Mengen an Stabilisatoren verwendet. Dies ist zum einen wirtschaftlicher, zum anderen werden dadurch Ausfällungen etc. vermieden, die durch die Zugabe zusätzlicher Stoffe entstehen können und damit die Lebensdauer des Elektrolyten erheblich verkürzen. So werden vorteilhafterweise dem erfindungsgemäßen Elektrolyten nur geringe Mengen eines Stabilisators zugegeben, um einer Spontanzersetzung des Metallisierungsbades entgegen zu wirken. Diese können beispielsweise Metalle, Halogenverbindungen und/oder Schwefelverbindungen, wie Thioharnstoffe sein. Hierbei hat sich als besonders vorteilhaft der Einsatz von Metallen als Stabilisatoren herausgestellt. Bevorzugt wird hierbei die Verwendung von Blei, Wismut, Zink und/oder Zinn, die besonders bevorzugt in Form eines Salzes, dessen Anion mindestens ein Kohlenstoffatom enthalten vorliegen. Bei diesen Salzen handelt es sich bevorzugt um ein oder mehrere der Salze aus der Gruppe bestehend aus Acetaten, Formiaten, Nitraten, Oxalaten, Propionaten, Citraten und Ascorbinaten, besonders bevorzugt um Acetate.Another important prerequisite for rapid and high-quality deposition of metal layers is the use of suitable compounds for stabilizing the electrolyte. For this purpose, a number of different stabilizers are known in the art. However, since the stability of the electrolyte according to the invention is significantly influenced by the use of metal salts whose anions are volatile, the acetates, formates, nitrates, oxalates, propionate, citrate and ascorbate of the metals, particularly preferably metal acetate, advantageously only small amounts of stabilizers used. This is on the one hand more economical, on the other hand precipitates etc. are avoided, which can be caused by the addition of additional substances and thus significantly shorten the life of the electrolyte. Thus, advantageously only small amounts of a stabilizer are added to the electrolyte according to the invention in order to counteract a spontaneous decomposition of the metallizing bath. These may be, for example, metals, halogen compounds and / or sulfur compounds, such as thioureas. In this case, the use of metals as stabilizers has proved to be particularly advantageous. Preference is given here to the use of lead, bismuth, zinc and / or tin, which are particularly preferably in the form of a salt whose anion contains at least one carbon atom. These salts are preferably one or more of the salts from the group consisting of acetates, formates, nitrates, oxalates, propionates, citrates and ascorbinates, more preferably acetates.

Je nachdem welche zusätzlichen Eigenschaften die Metallschichten aufweisen sollen, werden neben Phosphor weitere Komponenten, wie beispielsweise zusätzliche Metalle, vorzugsweise Cobalt, und/oder fein disperse Partikel in die Schicht mit eingelagert. Zudem weist der erfindungsgemäße Elektrolyt kleinere Mengen zusätzlicher Komponenten, wie beispielsweise Salze, vorzugsweise Kaliumjodid auf.Depending on which additional properties the metal layers should have, besides phosphorus further components, such as, for example, additional metals, preferably cobalt, and / or finely dispersed particles are incorporated into the layer. In addition, the electrolyte according to the invention has smaller amounts of additional components, such as, for example, salts, preferably potassium iodide.

Bezüglich der vorstehenden Aufgabe wird diese durch ein Verfahren gemäß Anspruch 10 gelöst. With regard to the above object, this is achieved by a method according to claim 10 .

Durch den Einsatz des erfindungsgemäßen Verfahrens wird überraschenderweise die Qualität des Metallisierungsbades verbessert sowie die Lebensdauer erheblich verlängert. Das hat vorteilhafterweise zur Folge, daß durch den Einsatz des erfindungsgemäßen Verfahrens nicht nur hohe Abscheidegeschwindigkeiten erreicht werden, sondern daß zudem die durch das Verfahren erzielten Nickelschichten gleichmäßig und qualitativ hochwertig sind, eine sehr gute Haftfestigkeit aufweisen sowie durchgehend poren- und rißfrei sind. Zudem wird die Metallisierung der Oberfläche vor allem von komplexeren Substraten verbessert. Insbesondere ist vorteilhaft, daß gleichmäßige Nickelschichten mit Druckeigenspannungen bei gleichbleibend hoher Abscheidegeschwindigkeit im Bereich von mindestens 7 bis 14 µm/h, vorzugsweise 9 bis 12 µm/h mit einem Durchsatz von mindestens 14 bis 22 MTO = 70 bis 110 g Ni/l abgeschieden werden.By using the method according to the invention, the quality of the metallizing bath is surprisingly improved and the service life is considerably prolonged. This has the advantage that not only high deposition rates are achieved by the use of the method according to the invention, but also that the nickel layers obtained by the process are uniform and of high quality, have a very good adhesion and are consistently free of pores and cracks. In addition, the metallization of the surface is improved, especially by more complex substrates. In particular, it is advantageous that uniform nickel layers with compressive residual stresses at a consistently high deposition rate in the range of at least 7 to 14 .mu.m / h, preferably 9 to 12 .mu.m / h with a throughput of at least 14 to 22 MTO = 70 to 110 g Ni / l are deposited ,

Überraschenderweise ist unter den gleichen Verfahrensbedingungen eine Abscheidung von hochwertigen Metall-Phosphor-Schichten mit Phosphorgehalten größer 10% möglich. Hieraus ergibt sich der vorteilhafte Einsatz des erfindungsgemäßen Verfahrens in den unterschiedlichsten Bereichen. Beispielsweise eignen sich die erfindungsgemäß abgeschiedenen korrosionsbeständigen Metallschichten zur Beschichtung von Schlüsseln oder Schlössern, Ventilen, Rohrleitungen, etc.. Bedingt durch den hohen Phosphoranteil wird die Schicht unmagnetisch und eignet sich daher hervorragend zur Beschichtung von Steckern und Kontakten sowie Gehäusen für elektronische Geräte etc.. Aufgrund der sehr guten Verschleißfestigkeit werden die durch das erfindungsgemäße Verfahren erzeugten Schichten vorzugsweise im Bereich Maschinenbau zur Beschichtung von Laufflächen, Kupplungen, Pumpengehäusen etc. eingesetzt.Surprisingly, a deposition of high-quality metal-phosphorus layers with phosphorus contents greater than 10% is possible under the same process conditions. This results in the advantageous use of the method according to the invention in a wide variety of areas. For example, the corrosion-resistant metal layers deposited according to the invention are suitable for coating keys or locks, valves, pipelines, etc. Due to the high phosphorus content, the layer becomes non-magnetic and is therefore ideal for coating connectors and contacts as well as housings for electronic devices, etc. Due to the very good wear resistance, the layers produced by the method according to the invention are preferably used in the field of mechanical engineering for coating running surfaces, couplings, pump housings, etc.

Wie bereits voranstehend dargestellt, wird das mit der Erfindung vorgeschlagene Verfahren insbesondere durch die Zusammensetzung des Elektrolyten gekennzeichnet. Es ist mithin in vorteilhafterweise wirtschaftlich und gegenüber den herkömmlichen Verfahren zudem umweltfreundlicher. Der erfindungsgemäße Elektrolyt läßt sich beispielsweise mittels elektrodialytischer Verfahre regenerieren. Bei Verwendung von Metallsalzen deren Anionen flüchtig sind wird die Trennwirkung der Elektrodialyse-Anlage signifikant erhöht. Bei gleicher Salzfracht orthophosphitionenhaltiger aber sulfationenfreier Elektrolyten kann die Anzahl der Elektrolysezellen zur Abtrennung von Ortophosphitionen bei gleicher Trennleistung reduziert werden.As already described above, the method proposed by the invention is characterized in particular by the composition of the electrolyte. It is therefore advantageously in an economical and environmentally friendly compared to the conventional methods. The electrolyte according to the invention can be regenerated, for example, by means of electrodialytic method. When using metal salts whose anions are volatile, the separation effect of the electrodialysis plant is significantly increased. With the same salt load of orthophosphite-containing but sulphation-free electrolytes, the number of electrolysis cells for separating Ortophosphitionen can be reduced at the same separation efficiency.

Zu Beginn des Verfahrens wird der Grundelektrolyt des erfindungsgemäßen Elektrolyten angesetzt. Dieser enthält im wesentlichen folgende Zusammensetzung: 4 - 6 g/l Nickelionen 25 - 60 g/l Reduktionsmittel 25 - 70 g/l Komplexbildner 1 - 25 g/l Beschleunigter 0,1 - 2 mg/l Stabilisator 0 - 3 g/l weitere Bestandteile At the beginning of the process, the base electrolyte of the electrolyte according to the invention is applied. This contains essentially the following composition: 4 - 6 g / l nickel ions 25 - 60 g / l reducing agent 25 - 70 g / l complexing 1 - 25 g / l accelerated 0.1-2 mg / l stabilizer 0-3 g / l other ingredients

Der pH-Bereich eines derartigen Grundelektrolyten liegt zwischen 4,0 und 5,0. Wie bereits vorstehend beschrieben, werden als Metallrezipient Metallsalze eingesetzt, deren Anionen flüchtig sind. Als Metallsalze, deren Anionen flüchtig sind werden ein oder mehrere Salze aus der Gruppe bestehend aus Metallacetaten, Metallformiaten, Metallnitraten, Metalloxalaten, Metallpropionaten, Metallcitraten und Metallascorbinaten, besonders bevorzugt ausschließlich Metallacetat verwendet. Da während der Reaktion der pH-Wert durch die kontinuierliche Bildung von H+-lonen fällt und dieser aufwendig durch alkalische Medien, wie Hydroxid, Carbonat, oder wie üblicherweise bevorzugt durch Ammoniak in Sollbereich gehalten werden muß, liegt ein besonderer Vorteil in der alleinigen Verwendung von Metallsalzen, deren Anionen flüchtig sind und die aus der Gruppe der Acetate, Formiate, Nitrate, Oxalate, Propionate, Citrate und Ascorbinate stammen. Begründet liegt dies darin, daß bei der Abscheidung der Metall-Phosphor-Schichten Anionen der Acetate, Formiate, Nitrat, Oxalate, Propionate, Citrate und Ascorbinate gebildet werden, welche mit den Natriumcarbionen aus dem Natriumhypophosphit zu basischen Natriumsalzen abreagieren. Der erfindungsgemäße Elektrolyt arbeitet somit während des gesamten Abscheideverfahrens in einem pH-Bereich von 4,0 bis 5,2, vorzugsweise 4,3 bis 4,8, ohne daß zusätzlich größere Mengen alkalischer Medien zugesetzt werden müssen. Durch die äußerst vorteilhafte pH-Selbstregulierung kann während des Verfahrens auf eine kontinuierliche pH-Kontrolle sowie alkalische Zusatzstoffe verzichtet werden.The pH range of such a base electrolyte is between 4.0 and 5.0. As already described above, metal salts whose anions are volatile are used as metal receivers. As metal salts whose anions are volatile one or more salts from the group consisting of metal acetates, metal formates, metal nitrates, metal oxalates, metal propionates, metal citrates and Metallascorbinaten, more preferably exclusively metal acetate are used. Since during the reaction, the pH falls through the continuous formation of H + ions and this must be kept consuming by alkaline media, such as hydroxide, carbonate, or as usually preferred by ammonia in target range, a particular advantage in the sole use of metal salts whose anions are volatile and which originate from the group of acetates, formates, nitrates, oxalates, propionates, citrates and ascorbinates. This is due to the fact that during the deposition of the metal-phosphorus layers anions of the acetates, formates, nitrate, oxalates, propionates, citrates and ascorbinates are formed, which react with the sodium carbon ions from the sodium hypophosphite to form basic sodium salts. The electrolyte according to the invention thus operates throughout the deposition process in a pH range of 4.0 to 5.2, preferably 4.3 to 4.8, without having to be additionally added larger amounts of alkaline media. Due to the extremely advantageous pH self-regulation can be dispensed with during the process on a continuous pH control and alkaline additives.

Die Ausgangskonzentration der Metallbasissalze liegt bezogen auf Nickel bei 0,04 bis 0,16 mol/l, vorzugsweise bei 0,048 bis 0,105 mol/l, wobei der Gehalt an Metall zwischen 0,068 bis 0,102 mol/l, vorzugsweise bei 0,085 mol/l liegt.The starting concentration of the metal-base salts is 0.04 to 0.16 mol / l, preferably 0.048 to 0.105 mol / l, based on nickel, the content of metal being between 0.068 and 0.102 mol / l, preferably 0.085 mol / l.

Als Reduktionsmittel wird bevorzugt Natriumhypophosphit mit einer Ausgangskonzentration von 25 bis 65 g/l eingesetzt.The reducing agent used is preferably sodium hypophosphite having a starting concentration of 25 to 65 g / l.

Wie bereits vorstehend erläutert werden als Komplexbildner Carbonsäuren und/oder Polycarbonsäuren, deren Salze und/oder Derivate, vorzugsweise Hydroxy-(Poly)-Carbonsäuren, besonders bevorzugt 2-Hydroxy-Propansäure und/oder Propandisäure verwendet. Durch den Einsatz dieser Verbindungen wird das gelöste Nickel besonders vorteilhaft komplex gebunden, so daß bei kontinuierlicher Zugabe derartiger Komplexbildner die Abscheidegeschwindigkeit in einem entsprechenden Intervall von 7 bis 14 µm/h, vorzugsweise 9 bis 12 µm/h gehalten werden kann. Die Ausgangskonzentration der Komplexbildner im Grundelektrolyten liegt zwischen 25 und 70 g/l, vorzugsweise 30 bis 65 g/l.As already explained above, the complexing agents used are carboxylic acids and / or polycarboxylic acids, their salts and / or derivatives, preferably hydroxy (poly) carboxylic acids, particularly preferably 2-hydroxypropanoic acid and / or propanedioic acid. By using these compounds, the dissolved nickel is particularly advantageously complexed, so that the deposition rate can be maintained in a corresponding interval of 7 to 14 .mu.m / h, preferably 9 to 12 .mu.m / h with continuous addition of such complexing agents. The starting concentration of the complexing agent in the base electrolyte is between 25 and 70 g / l, preferably 30 to 65 g / l.

Die Ausgangskonzentration des Beschleunigers, wobei Saccharin, dessen Salze und/oder Derivate, ganz besonders bevorzugt Natriumsaccharin verwendet wird, liegt bei 2,5 bis 22 g/l. Als Stabilisatoren werden Halogenverbindung und/oder Schwefelverbindung, vorzugsweise Thioharnstoff verwendet. Besonders vorteilhaft jedoch ist der Einsatz von Metallen, vorzugsweise Blei, Wismut, Zink und/oder Zinn, besonders bevorzugt in Form von Salzen, deren Anionen flüchtig sind. Diese Salze stammen vorzugsweise aus der Gruppe bestehend aus Acetaten, Formiaten, Nitraten, Oxalaten, Propionaten, Citraten und Ascorbinaten. Ganz besonders bevorzugt werden die Nitrate der als Stabilisatoren eingesetzten Metalle. Die Ausgangskonzentrationen der Stabilisatoren liegen vorteilhafterweise bei 0,1 bis 2 mg/l, bevorzugt bei 0,3 bis 1 mg/l.The starting concentration of the accelerator, wherein saccharin, its salts and / or derivatives, most preferably sodium saccharin is used, is 2.5 to 22 g / l. Stabilizers used are halogen compound and / or sulfur compound, preferably thiourea. Particularly advantageous, however, is the use of metals, preferably lead, bismuth, zinc and / or tin, particularly preferably in the form of salts whose anions are volatile. These salts are preferably selected from the group consisting of acetates, formates, nitrates, oxalates, propionates, citrates and ascorbinates. Very particular preference is given to the nitrates of the metals used as stabilizers. The starting concentrations of the stabilizers are advantageously from 0.1 to 2 mg / l, preferably from 0.3 to 1 mg / l.

Optional können dem Grundelektrolyten zudem weitere Bestandteile, wie beispielsweise Kaliumjodid in einer Ausgangskonzentration von 0 bis 3 g/l zugegeben werden.Optionally, further constituents, for example potassium iodide, in a starting concentration of 0 to 3 g / l may also be added to the base electrolyte.

In diesem Grundelektrolyten werden unterschiedlichste Substrate eingebracht und galvanisiert. Zur Unterstützung der Lebensdauer sowie der Stabilität des Elektrolyten kann dieser während des Abscheideprozesses mittels Elektrodialyse und/oder lonentauscherharzen regeneriert werden. Ebenso können dem Elektrolyten während des Abscheideprozesses Ergänzerlösungen (wie nachstehend beispielhaft aufgeführt) beigegeben werden. Diese Ergänzerlösungen werden zur Regelung der einzelnen Gehalte der Grundkomponenten besonders zusammengestellt und in unterschiedlichen Mengen dem Elektrolyten zugegeben.In this basic electrolyte a variety of substrates are introduced and galvanized. To support the lifetime and the stability of the electrolyte, it can be regenerated during the deposition process by means of electrodialysis and / or ion exchange resins. Likewise, supplemental solutions (as exemplified below) may be added to the electrolyte during the deposition process. These replenisher solutions are specially designed to control the individual contents of the basic components and added to the electrolyte in different amounts.

Eine erste Ergänzerlösung umfaßt beispielsweise folgende Zusammensetzung: 500 - 580 g/l Reduktionsmittel 5 - 15 g/l Komplexbildner 50 - 150 g/l alkalischer Puffer 11 - 20 g/l Beschleuniger 0 - 3 g/l weitere Bestandteile A first replenisher solution includes, for example, the following composition: 500 - 580 g / l reducing agent 5 - 15 g / l complexing 50-150 g / l alkaline buffer 11-20 g / l accelerator 0-3 g / l other ingredients

Bei der Erstellung und Verwendung der Ergänzerlösung werden vorteilhafterweise die gleichen Stoffe wie im Grundelektrolyten verwendet. Hieraus ergibt sich ein weiterer sehr wichtiger Vorteil des erfindungsgemäßen Verfahrens. Da fortwährend gleiche Stoffe eingesetzt werden und es nahezu keine Verunreinigungen und Ausfällungen gibt, können selbst die Verbindungen aus der Spüle wieder dem Elektrolyten zugeführt werden. Das erfindungsgemäße Verfahren weist somit einen beschlossenen Stoffkreislauf auf, der das Verfahren mithin wirtschaftlicher und umweltbewußter werden läßt. Der Komplexbildnergehalt und der Gehalt an alkalischem Puffer wird so gewählt, daß unter Einbeziehung möglicher Verschleppungsverluste von maximal 40% ein Anstieg auf einen Gesamtgehalt der Komplexbildner im Elektrolyten auf 70 bis 90 g/l erfolgt.When creating and using the replenisher solution, the same substances as in the base electrolyte are advantageously used. This results in another very important advantage of the method according to the invention. Since the same substances are used continuously and there are almost no impurities and precipitations, even the compounds from the sink can be returned to the electrolyte. The inventive method thus has a decided material cycle, which can be the process thus more economical and environmentally conscious. The complexing agent content and the content of alkaline buffer are chosen so that, taking into account possible carry-over losses of not more than 40%, an increase to a total content of the complexing agents in the electrolyte to 70 to 90 g / l.

Gleichzeitig wird der Gehalt des Beschleunigers im Elektrolyt so geregelt, daß beispielsweise im Fall eines Nickelelektrolyten bei der Verwendung von Natriumsaccharinat als Beschleuniger je Gramm abgeschiedenes Nickel zwischen 0,100 und 0,200 g, vorzugsweise 0,150 g ergänzt werden, wobei hierin der Anteil für Verschleppungsverluste mit berücksichtigt ist. Hiermit ist gleichzeitig ein kontinuierlicher Anstieg auf 7,5 - 15 g/l gewährleistet.At the same time the content of the accelerator in the electrolyte is controlled so that, for example, in the case of a nickel electrolyte with the use of sodium saccharinate as accelerator per gram of deposited nickel between 0.100 and 0.200 g, preferably 0.150 g are added, wherein the proportion of carryover losses is taken into account. This ensures at the same time a continuous increase to 7.5 - 15 g / l.

Als zweite Ergänzerlösung kann beispielsweise folgende Zusammensetzung verwendet werden: 10 - 50 g/l Komplexbildner 0,68 - 2,283 mol/l Metallrezipient 1 - 25 g/l Beschleuniger 40 - 80 mg/l Stabilisator As a second replenisher, for example, the following composition can be used: 10 - 50 g / l complexing 0.68 - 2.283 mol / l Metallrezipient 1 - 25 g / l accelerator 40-80 mg / l stabilizer

Hierbei kann der Komplexbildner der zweiten Ergänzerlösung der gleiche wie in der ersten Ergänzerlösung oder je nach Bedarf ein anderer sein. So kann beispielsweise bei einem Gehalt einer Hydroxycarbonsäure, beispielsweise 2-Hydroxy-Propansäure von 60 g/l zusätzlich eine Hydroxycarbonsäure, beispielsweise Propandisäure mit einem Gehalt von 0,5 g/l als zweiter Komplexbildner im Grundelektrolyten eingesetzt werden. Durch Zudosierung mittels Ergänzerlösung wird dann der Gehalt der Propandisäure um 0,005 bis 0,015 g/g abgeschiedenem Nickel erhöht, wobei die Ausschleppungsverluste mit berücksichtigt sind. Durch den kontinuierlichen Anstieg der Propandisäure von 0,5 g/l auf ca. 1,2 g/l bei 16 MTO gleich 80 g Ni/l wird die Abscheidegeschwindigkeit im angegebenen Intervall gehalten.In this case, the complexing agent of the second replenisher solution may be the same as in the first replenisher or, if necessary, another. Thus, for example, in the case of a content of a hydroxycarboxylic acid, for example 2-hydroxypropanoic acid of 60 g / l, a hydroxycarboxylic acid, for example propanedioic acid with a content of 0.5 g / l, can be used as second complexing agent in the base electrolyte. By adding by means of replenisher, the content of propanedioic acid is then increased by 0.005 to 0.015 g / g of deposited nickel, taking into account the carry-over losses. Due to the continuous increase of propanedioic acid from 0.5 g / l to about 1.2 g / l at 16 MTO equal to 80 g Ni / l, the deposition rate is maintained at the specified interval.

Mit einem derartigen Ansatz sowie der dazugehörigen Ergänzerlösung ist bei der Verwendung von Metallsulfat neben den bisher beschriebenen Metallbasissalzen eine Abscheidung von haftfesten Metallschichten mit Druckeigenspannungen bis zu einem Durchsatz von mindestens 14 MTO gewährleistet. Werden allein Metallbasissalze verwendet, deren Anion mindestens ein Kohlenstoffatom besitzen und die vorzugsweise aus der Gruppe der Acetate, Formiate, Oxalate, Propionate, Citrate und Ascorbinate stammen, steigt die Lebensdauer des Elektrolyten überraschenderweise auf bis zu 22 MTO. Die bereits erwähnte Druckeigenspannung ist hierbei eine äußerst wichtige und sehr wünschenswerte Schichteigenschaft. Sie beeinflußt die Biegewechselbeanspruchung positiv und erhöht die Duktilität. So werden z. B. im Falle des Nickels Metallschichten mit einer Duktilität von > 0,5% abgeschieden. Ebenso wirken sich die Druckeigenspannungen positiv auf die Korrosionsbeständigkeit der Metall-Phosphor-Schichten aus.With such an approach, as well as the associated replenisher solution, the use of metal sulfate in addition to the metal base salts described so far, a deposition of adherent metal layers with compressive residual stresses is guaranteed up to a throughput of at least 14 MTO. If only metal-base salts are used whose anion has at least one carbon atom and which preferably originate from the group of acetates, formates, oxalates, propionates, citrates and ascorbinates, the lifetime of the electrolyte surprisingly increases to 22 MTO. The already mentioned compressive residual stress is an extremely important and very desirable layer property. It positively influences the bending cycle stress and increases the ductility. So z. For example, in the case of nickel, metal layers with a ductility of> 0.5% are deposited. Likewise, the residual compressive stresses have a positive effect on the corrosion resistance of the metal-phosphorus layers.

Zusätzlich können dem Elektrolyten sowie den Ergänzerlösungen weitere Komponenten wie beispielsweise zusätzliche Metalle, vorzugsweise Kupfer, und/oder fein disperse Partikel, wie beispielsweise fein disperse Partikel Fluor enthaltender thermo- oder duroplastischer Kunststoff, zugegeben werden, welche in den abgeschiedenen Schichten zusätzliche Härte-, Trockenschmiereffekte und/oder andere Eigenschaften erzielen.In addition, other components such as additional metals, preferably copper, and / or finely disperse particles, such as finely dispersed fluorine-containing thermoset or thermosetting plastic, may be added to the electrolyte as well as the replenisher, which in the deposited layers additional hardness, dry lubricating effects and / or achieve other properties.

Zur detaillierteren Darstellung der Erfindung wird im folgenden eine bevorzugte Ausführungsform des erfindungsgemäßen Elektrolyten beschrieben, auf welchen sich die Erfindung jedoch nicht beschränken läßt.For a more detailed illustration of the invention, a preferred embodiment of the electrolyte according to the invention is described below, to which, however, the invention can not be limited.

Beispiel 1:Example 1:

Zusammensetzungcomposition Elektrolytelectrolyte Ergänzerlösung RASupplementary solution RA Ergänzerlösung SASupplementary solution SA Nickelacetat-4-Hydrat (g/l)Nickel acetate 4-hydrate (g / l) 12,5 - 25,512.5 - 25.5 // 200 - 212200 - 212 Natriumhypophosphit (g/l)Sodium hypophosphite (g / l) 30 - 5030 - 50 515-565515-565 // Hydroxycarbonsäure (g/l)Hydroxycarboxylic acid (g / l) 32 - 5532 - 55 // 25 - 3525 - 35 Hydroxypolycarbonsäure (g/l)Hydroxypolycarboxylic acid (g / l) 0,5 - 50,5 - 5 // // Natriumsaccharin (g/l)Sodium saccharin (g / l) 2,5 - 222.5 - 22 12,5 - 1512.5 - 15 // Kaliumjodid (g/l)Potassium iodide (g / l) 0,1 - 20.1 - 2 1 - 21 - 2 // Bleiacetat (mg/l)Lead acetate (mg / l) 0,3-10.3-1 // 60-6560-65 Ammoniak 25 Gew.% (ml/l)Ammonia 25% by weight (ml / l) 100-150100-150

Ein derartiger Elektrolyt hat einen sich selbst regulierenden pH-Bereich von 4,3 bis 4,8 und ermöglicht Abscheidegeschwindigkeiten von 8 bis 12 µm/h. Die innere Spannung der daraus abgeschiedenen Schichten beträgt dabei -10 bis - 40 N/mm2. Bei der Verwendung der vorstehenden Elektrolytzusammensetzung werden Metall-Phosphor-Schichten mit gleichbleibend guten Eigenschaften, vor allem Druckeigenspannungen bei einem Durchsatz von 22 MTO gleich 110 g Nill abgeschieden.Such an electrolyte has a self-regulating pH range of 4.3 to 4.8 and allows deposition rates of 8 to 12 μm / hr. The internal stress of the layers deposited therefrom is -10 to -40 N / mm 2 . When using the above electrolyte composition metal phosphorus layers with consistently good properties, especially residual compressive stresses at a throughput of 22 MTO equal to 110 g Nill deposited.

Durch Anhebung des pH-Bereiches auf 4,6 - 5,2 werden Schichten mit Druckeigenspannungen von 0 bis - 15 N/mm2 abgeschieden. Die Festlegung eines 2. pH-Intervalls führt zu einer signifikanten Erhöhung der Abscheidegeschwindigkeit auf 12 - 20 µm/h. Der Phosphorgehalt dieser Schichten liegt bei 8 - 10 % P. Durch weitere Anhebung des pH-Bereiches auf 5,5 - 6,2 werden Schichten mit Druckeigenspannungen von -5 bis - 30 N/mm2 abgeschieden. Der Phosphorgehalt dieser Schichten liegt bei 2 - 7% P.By raising the pH range to 4.6 - 5.2 layers with residual compressive stresses of 0 to - 15 N / mm 2 are deposited. The determination of a second pH interval leads to a significant increase in the deposition rate to 12-20 μm / h. The phosphorus content of these layers is 8-10% P. By further raising the pH range to 5.5-6.2, layers with residual compressive stresses of -5 to -30 N / mm 2 are deposited. The phosphorus content of these layers is 2-7% P.

Claims (16)

  1. Electrolyte for electroless deposition of nickel layers with residual compressive stresses, including a metal-base salt, a reducing agent, a complexing agent, an accelerator and a stabilizer,
    characterized in that
    the electrolyte comprises as a metal salt the anions of which are volatile at least one salt from the group consisting of nickel acetate, nickel formate, nickel oxalate, nickel nitrates, nickel propionate, nickel citrate and nickel ascorbinate at an initial concentration of 0.01 to 0.30 mol/l and as a reducing agent sodium hypophosphite, wherein the electrolyte comprises as a complex-ing agent carboxylic acids and/or polycarboxylic acids, salts and/or derivatives thereof, and wherein the electrolyte comprises as an accelerator a sulphur-containing heterocycle selected from saccharin, salts and/or derivatives thereof at a concentration between 2.5 g/I and 22 g/I and as stabilizer halogen compounds, sulphur compounds and/or a metal of the group consisting of lead, bismuth, zinc and tin.
  2. Electrolyte according to claim 1, characterized in that it comprises nickel sulphate as a further metal-base salt.
  3. Electrolyte according to claim 1 or 2, characterized in that it comprises metals and/or finely dispersed particles as a further component.
  4. Electrolyte according to claim 3, wherein it comprises copper as a further component.
  5. Electrolyte according to one or more of claims 1 to 4, characterized in that said complexing agent is present at a total amount of 70 g/l - 90 g/l.
  6. Electrolyte according to any one of the preceding claims, characterized in that it comprises as a stabilizer a metal of the group consisting of lead, bismuth, zinc and tin in the form of a salt the anions of which are volatile.
  7. Electrolyte according to claim 6, characterized in that it comprises as anions at least one anion of the group consisting of acetates, formates, nitrates, oxalates, propionates, citrates and ascorbinates.
  8. Electrolyte according to one or more of claims 1 to 7, characterized in that it comprises potassium iodide as an additional component.
  9. Electrolyte according to one or more of claims 1 to 8, characterized by 0.01 - 0.3 mol/l metal acetate, 30 to 50 g/l sodium hypophosphite-mono-hydrate, 90 to 120 g/l hydroxycarboxylic acid alkaline buffered, 0.5 to 10 g/l hydroxypolycarboxylic acid, 2.5 to 22 g/l saccharinate, 0.1 to 2 g/l potassium iodide, and 0.3 to 1.5 mg/l lead acetate.
  10. Method of electroless deposition of nickel layers with residual compressive stress from an electrolyte according to any one of claims 1 to 9,
    characterized in that
    in the course of the process a first and a second supplement solution are added to the electrolyte, wherein the first supplement solution comprises a reducing agent, an alkaline buffer, a complexing agent and an accelerator and the second supplement solution comprises a nickel-base salt, a complexing agent, an accelerator and a stabilizer, wherein as a reducing agent and as a complexing agent in the first supplement solution the same materials as in the base electrolyte are used, and wherein the complexing agent in the second supplement solution is different from the complexing agent in the first supplement solution.
  11. Method according to claim 10, characterized in that the method is implemented by use of a closed material cycle.
  12. Method according to claim 10 or 11, characterized in that further components of the group consisting of phosphor, additional metals and finely dispersed particles are deposited, too.
  13. Method according to one or more of claims 10 to 12, characterized in that metal phosphor layers with phosphor amounts > 10% are deposited.
  14. Method according to one or more of claims 10 to 12, characterized in that metal phosphor layers with phosphor amounts of 2 - 10% are deposited, wherein the pH-value in the electrolyte is adjusted to a value between pH 4.6 and pH 6.2.
  15. Method according to one or more of claims 10 to 14, characterized in that in the course of the deposition process the total amount of the complexing agent is maintained between 70 g/l and 90 g/l.
  16. Method according to one or more of claims 10 to 15, characterized in that the electrolyte is regenerated by means of electrodialysis and/or ion exchange resins.
EP03013706.1A 2002-10-04 2003-06-17 Process for electroless plating of metals Expired - Lifetime EP1413646B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10246453 2002-10-04
DE10246453A DE10246453A1 (en) 2002-10-04 2002-10-04 Electrolyte used in process for high speed electroless plating with nickel film having residual compressive stress is based on nickel acetate and also contains reducing agent, chelant, accelerator and stabilizer

Publications (4)

Publication Number Publication Date
EP1413646A2 EP1413646A2 (en) 2004-04-28
EP1413646A3 EP1413646A3 (en) 2008-01-16
EP1413646B1 EP1413646B1 (en) 2011-02-16
EP1413646B2 true EP1413646B2 (en) 2014-09-24

Family

ID=32010257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03013706.1A Expired - Lifetime EP1413646B2 (en) 2002-10-04 2003-06-17 Process for electroless plating of metals

Country Status (8)

Country Link
US (1) US7846503B2 (en)
EP (1) EP1413646B2 (en)
JP (1) JP4091518B2 (en)
KR (1) KR101063851B1 (en)
CN (1) CN100366795C (en)
AT (1) ATE498707T1 (en)
DE (2) DE10246453A1 (en)
ES (1) ES2357943T5 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004002778C5 (en) * 2004-01-20 2017-04-20 Enthone Inc. Process for the regeneration of metallization baths
US7410899B2 (en) * 2005-09-20 2008-08-12 Enthone, Inc. Defectivity and process control of electroless deposition in microelectronics applications
US20080041734A1 (en) * 2005-09-22 2008-02-21 Bergelson Alan P Jewelry display apparatus
JP4740724B2 (en) * 2005-12-01 2011-08-03 コーア株式会社 Method for forming resistor and method for forming metal film fixed resistor
CN100412232C (en) * 2006-01-13 2008-08-20 厦门大学 Method for chemical plating nickel-boron alloy on magnesium alloy surface
EP1816237A1 (en) * 2006-02-02 2007-08-08 Enthone, Inc. Process and apparatus for the coating of surfaces of substrate
CN100402699C (en) * 2006-03-15 2008-07-16 厦门大学 Method for chemical plating of nickel-boron alloy on magnesium alloy surface
US8317909B2 (en) * 2007-06-05 2012-11-27 Dfhs, Llc Compositions and processes for deposition of metal ions onto surfaces of conductive substrates
EP2270255A1 (en) 2009-07-03 2011-01-05 Enthone, Inc. Beta-amino acid comprising electrolyte and method for the deposition of a metal layer
ES2714824T3 (en) 2009-07-03 2019-05-30 Macdermid Enthone Inc Electrolyte comprising beta-amino acids and method for the deposition of a metal layer
WO2011008212A1 (en) * 2009-07-16 2011-01-20 Lam Research Corporation Electroless deposition solutions and process control
US20110192316A1 (en) * 2010-02-05 2011-08-11 E-Chem Enterprise Corp. Electroless plating solution for providing solar cell electrode
DE102010062357B4 (en) 2010-12-02 2013-08-14 Innovent E.V. Apparatus and method for producing a magnesium-containing substrate coated with at least one anticorrosion layer
CN102268658A (en) * 2011-07-22 2011-12-07 深圳市精诚达电路有限公司 Chemical nickel-plating solution and chemical nickel-plating process
EP2875168B1 (en) * 2012-07-17 2017-12-20 Coventya, Inc. Electroless nickel coatings and compositions and methods for forming the coatings
EP2845928B1 (en) * 2013-09-05 2019-11-06 MacDermid Enthone Inc. Aqueous electrolyte composition having a reduced airborne emission
US11685999B2 (en) 2014-06-02 2023-06-27 Macdermid Acumen, Inc. Aqueous electroless nickel plating bath and method of using the same
US9708693B2 (en) * 2014-06-03 2017-07-18 Macdermid Acumen, Inc. High phosphorus electroless nickel
US9962522B2 (en) 2014-10-29 2018-05-08 Professional Plating, Inc. Braid plating method for torsional stiffness
US20170051411A1 (en) * 2015-08-20 2017-02-23 Macdermid Acumen, Inc. Electroless Silver Plating Bath and Method of Using the Same
EP3156517B1 (en) 2015-10-13 2018-12-05 MacDermid Enthone Inc. Use of water soluble and air stable phosphaadamantanes as stabilizer in electrolytes for electroless metal deposition
EP3255175A1 (en) 2016-06-07 2017-12-13 MacDermid Enthone Inc. Use of water soluble lanthanide compounds as stabilizer in electrolytes for electroless metal deposition
US10448973B2 (en) 2016-10-14 2019-10-22 Pacesetter, Inc. Catheter-based system for delivery and retrieval of a leadless pacemaker
US10351715B2 (en) * 2017-03-30 2019-07-16 The United States Of America As Represented By The Secretary Of The Navy Synergistic metal polycarboxylate corrosion inhibitors
US10960217B2 (en) 2017-03-31 2021-03-30 Pacesetter, Inc. Catheter-based delivery system for delivering a leadless pacemaker and employing a locking hub
DE102017125954A1 (en) * 2017-11-07 2019-05-09 RIAG Oberflächentechnik AG External electroless process for producing a nickel alloy and corresponding electrolyte
CN110318045A (en) * 2019-06-20 2019-10-11 深圳市宏达秋科技有限公司 A kind of high stability chemical nickel-plating liquid and preparation method thereof
CN110318046A (en) * 2019-06-20 2019-10-11 深圳市宏达秋科技有限公司 A kind of high corrosion-resistant chemical nickel-plating liquid and preparation method thereof
CN117187792A (en) * 2023-08-10 2023-12-08 中山博美新材料科技有限公司 Aluminum alloy high-phosphorus chemical nickel precipitation liquid and use method and application thereof

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2694017A (en) * 1952-09-16 1954-11-09 Gen American Transporation Cor Process of chemical nickel plating of aluminum and its alloys and baths therefor
US3060059A (en) * 1961-05-19 1962-10-23 Goodyear Aircraft Corp Electroless nickel-phosphorous alloy plating bath and method
GB1243134A (en) 1968-07-29 1971-08-18 Texas Instruments Inc Chemical nickel plating bath and process
US3597266A (en) * 1968-09-23 1971-08-03 Enthone Electroless nickel plating
US3597267A (en) * 1969-02-26 1971-08-03 Allied Res Prod Inc Bath and process for chemical metal plating
US3887732A (en) * 1970-10-01 1975-06-03 Gen Am Transport Stress controlled electroless nickel deposits
DE2329429A1 (en) * 1972-06-09 1973-12-20 Imasa CONCENTRATE AND SOLUTION AS WELL AS METHOD FOR ELECTRONIC NICKEL PLATING
US3876434A (en) * 1972-12-07 1975-04-08 Shipley Co Replenishment of electroless nickel solutions
US4152164A (en) * 1976-04-26 1979-05-01 Michael Gulla Electroless nickel plating
US4293089A (en) * 1979-05-08 1981-10-06 The United States Of America As Represented By The United States Department Of Energy Brazing method
JPS5743978A (en) * 1980-08-27 1982-03-12 Suzuki Motor Co Ltd Nickel electroless plating method
US4483711A (en) * 1983-06-17 1984-11-20 Omi International Corporation Aqueous electroless nickel plating bath and process
JPS6421082A (en) * 1987-07-15 1989-01-24 Nippon Chemical Ind Production of powdery plated material
JPH01201484A (en) * 1987-10-06 1989-08-14 Hitachi Ltd Chemical nickel plating liquid and method of using said liquid
JPH01123079A (en) * 1987-11-06 1989-05-16 Minoru Tsuda Amorphous ni-p alloy
JPH01195720A (en) * 1988-01-04 1989-08-07 Nec Corp Semiconductor integrated circuit
GB2231063A (en) 1989-02-27 1990-11-07 Omi International Electroless plating composition containing saccharin
JPH02225776A (en) * 1989-02-27 1990-09-07 Fujita Corp Earthquake-proof wall and structure
ES2027496A6 (en) 1989-10-12 1992-06-01 Enthone Plating aluminium
JPH0693460A (en) * 1991-04-15 1994-04-05 Mitsubishi Gas Chem Co Inc Manufacture of thin film forming base material
JP2962496B2 (en) 1991-08-12 1999-10-12 三井金属鉱業株式会社 Magne-based alloy plating method
JPH0565661A (en) * 1991-09-06 1993-03-19 Kawasaki Kasei Chem Ltd Production of electroless nickel plating film
JPH05156458A (en) * 1991-12-06 1993-06-22 Hitachi Chem Co Ltd Electroless nickel-phosphorus plating solution
JP3192003B2 (en) 1992-10-02 2001-07-23 三井金属鉱業株式会社 High corrosion resistance coating method for magne-based alloy
US5258061A (en) * 1992-11-20 1993-11-02 Monsanto Company Electroless nickel plating baths
JPH08176837A (en) * 1994-12-22 1996-07-09 Hitachi Chem Co Ltd Electroless nickel-phosphorus plating solution
JPH09137277A (en) * 1995-11-10 1997-05-27 Ibiden Co Ltd Electroless plating liquid, electroless plating method and production of printed circuit board
AU3221197A (en) * 1996-06-05 1998-01-05 University Of Toledo, The Electroless plating of a metal layer on an activated substrate
JP2000503354A (en) * 1996-11-14 2000-03-21 アトテク ドイツェラント ゲーエムベーハー Removal of orthophosphite ions from electroless nickel plating bath
US6106927A (en) * 1998-02-03 2000-08-22 Seagate Technology, Inc. Ultra-smooth as-deposited electroless nickel coatings
JP2001049448A (en) * 1999-08-09 2001-02-20 C Uyemura & Co Ltd Electroless nickel plating method
FR2798677B1 (en) * 1999-09-22 2001-12-21 A Richard Ets PROCESS FOR THE PURIFICATION / REGENARATION OF A CHEMICAL NICKELING BATH
JP2001192850A (en) * 2000-01-11 2001-07-17 Ebe Katsuo Surface treating solution for sliding parts, surface treating method for sliding parts and sliding parts
JP2001214279A (en) 2000-01-28 2001-08-07 Kyocera Corp Electroless nickel plating bath
JP3479639B2 (en) * 2000-12-08 2003-12-15 日鉱メタルプレーティング株式会社 Electroless nickel plating solution
JP2002212746A (en) * 2001-01-11 2002-07-31 Okuno Chem Ind Co Ltd Electroless nickel plating method to object to be plated which has blind hole
US6391177B1 (en) * 2001-02-20 2002-05-21 David Crotty High temperature continuous electrodialysis of electroless plating solutions
JP4171604B2 (en) * 2002-03-18 2008-10-22 株式会社大和化成研究所 Electroless plating bath and metal coating obtained using the plating bath

Also Published As

Publication number Publication date
JP2004124261A (en) 2004-04-22
US20040144285A1 (en) 2004-07-29
EP1413646A3 (en) 2008-01-16
KR20040031629A (en) 2004-04-13
DE10246453A1 (en) 2004-04-15
DE50313472D1 (en) 2011-03-31
ES2357943T5 (en) 2015-11-25
ES2357943T3 (en) 2011-05-04
US7846503B2 (en) 2010-12-07
EP1413646A2 (en) 2004-04-28
ATE498707T1 (en) 2011-03-15
CN100366795C (en) 2008-02-06
JP4091518B2 (en) 2008-05-28
KR101063851B1 (en) 2011-09-14
CN1497062A (en) 2004-05-19
EP1413646B1 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
EP1413646B2 (en) Process for electroless plating of metals
DE102010012204B4 (en) Improved process for direct metallization of non-conductive substrates
CH649580A5 (en) BATH AND METHOD FOR ELECTRICALLY DEPOSITING A METAL COPPER COVER ON A WORKPIECE SURFACE.
EP1408141B1 (en) Process and electrolyte for the galvanic deposition of bronze
DE2522939A1 (en) POLYMETALLIC NICKEL ALLOYS CONTAINING NICKEL AND SUITABLE COATING STRIPS
EP1979511B1 (en) Method for coating substrate surfaces
WO2009059915A2 (en) Gold-containing nickel layer
EP3070188A2 (en) Method for coating a press-in pin and press-in pin
DE3320308A1 (en) AQUEOUS BATH FOR ELECTRICALLY DEPOSITING GOLD AND A METHOD FOR ELECTRICALLY DEPOSITING GOLD USING THIS BATH
DE10006128B4 (en) Plating bath for depositing an Sn-Bi alloy and its use
WO2009059917A2 (en) Silver-containing nickel layer
EP1881090B1 (en) Electrolyte composition und process for the deposition of a zinc-nickel alloy layer on a cast iron or steel substrate
AT395023B (en) ALKALINE AQUEOUS BATH FOR GALVANIC DEPOSITION OF ZINC-IRON ALLOYS AND HIGH-CORROSION-RESISTANT ZINC-IRON ALLOY
DE1621352C3 (en) Stabilized alkaline copper bath for the electroless deposition of copper
EP1763594B1 (en) Method for improving solderability of nickel coatings
EP0152601A1 (en) Aqueous alcaline bath for chemically plating copper or nickel
DE4326206C2 (en) Autocatalytic metallization bath for electroless deposition of solder
DE2943399C2 (en) Process and composition for electrodeposition of palladium
EP2588644B1 (en) Tribologically loadable mixed noble metal/metal layers
DE112019006704T5 (en) SOLUTION FOR ELECTRONIC DEPOSITION OF A Ni-Fe ALLOY
EP0161343A1 (en) Stabilized bath for chemical nickel phosphorous, cobalt-phosphorous and nickel-cobalt-phosphorous alloy plating
EP3480338B1 (en) Electroless deposition of nickel-phosphorus alloy and corresponding electrolyte
EP0289838A2 (en) Process for the electroless plating of ternary alloys containing nickel and phosphor
DE843785C (en) Process for the production of hard galvanic silver coatings
EP0168705B1 (en) Bath and process for electroplating hard gold

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20080618

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081015

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 18/36 20060101ALI20100818BHEP

Ipc: C23C 18/16 20060101AFI20100818BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50313472

Country of ref document: DE

Date of ref document: 20110331

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50313472

Country of ref document: DE

Effective date: 20110331

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2357943

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110504

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110517

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110516

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

26 Opposition filed

Opponent name: DR. HESSE GMBH & CIE KG

Effective date: 20111116

Opponent name: COMPAGNIE INTERNATIONALE DE GALVANOPLASTIE - CIGAL

Effective date: 20111116

26 Opposition filed

Opponent name: ATOTECH DEUTSCHLAND GMBH

Effective date: 20111115

Opponent name: DR. HESSE GMBH & CIE KG

Effective date: 20111116

Opponent name: COMPAGNIE INTERNATIONALE DE GALVANOPLASTIE - CIGAL

Effective date: 20111116

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 50313472

Country of ref document: DE

Effective date: 20111116

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

R26 Opposition filed (corrected)

Opponent name: ATOTECH DEUTSCHLAND GMBH

Effective date: 20111115

Opponent name: COMPAGNIE INTERNATIONALE DE GALVANOPLASTIE - CIGAL

Effective date: 20111116

Opponent name: DR. HESSE GMBH & CIE KG

Effective date: 20111116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20120607

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130617

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140618

Year of fee payment: 12

27A Patent maintained in amended form

Effective date: 20140924

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50313472

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50313472

Country of ref document: DE

Effective date: 20140924

REG Reference to a national code

Ref country code: SE

Ref legal event code: NAV

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

REG Reference to a national code

Ref country code: NL

Ref legal event code: NE

Effective date: 20150917

REG Reference to a national code

Ref country code: ES

Ref legal event code: NE2A

Effective date: 20151116

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2357943

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20151125

REG Reference to a national code

Ref country code: NL

Ref legal event code: NG

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: ES

Effective date: 20151116

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: NL

Effective date: 20160219

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160614

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150618

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50313472

Country of ref document: DE

Representative=s name: BRINKMANN & PARTNER PATENTANWAELTE PARTNERSCHA, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50313472

Country of ref document: DE

Representative=s name: RAUSCH WANISCHECK-BERGMANN BRINKMANN PARTNERSC, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170618

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220518

Year of fee payment: 20

Ref country code: GB

Payment date: 20220519

Year of fee payment: 20

Ref country code: FR

Payment date: 20220519

Year of fee payment: 20

Ref country code: DE

Payment date: 20220518

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220526

Year of fee payment: 20

Ref country code: BE

Payment date: 20220523

Year of fee payment: 20

Ref country code: AT

Payment date: 20220519

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50313472

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20230616

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20230617

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230616

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 498707

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230616