JP2962496B2 - Magne-based alloy plating method - Google Patents

Magne-based alloy plating method

Info

Publication number
JP2962496B2
JP2962496B2 JP20180291A JP20180291A JP2962496B2 JP 2962496 B2 JP2962496 B2 JP 2962496B2 JP 20180291 A JP20180291 A JP 20180291A JP 20180291 A JP20180291 A JP 20180291A JP 2962496 B2 JP2962496 B2 JP 2962496B2
Authority
JP
Japan
Prior art keywords
plating
magne
film
based alloy
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20180291A
Other languages
Japanese (ja)
Other versions
JPH0544048A (en
Inventor
宗治 大原
光夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP20180291A priority Critical patent/JP2962496B2/en
Publication of JPH0544048A publication Critical patent/JPH0544048A/en
Application granted granted Critical
Publication of JP2962496B2 publication Critical patent/JP2962496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はマグネシウム合金(マグ
ネ基合金)のめっき方法に関し、特に、密着性が良好で
且つ耐食性が良好な無電解ニッケルめっきを直接施すこ
とにより寸法精度の良いめっき膜を得るように工夫した
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for plating a magnesium alloy (magne-base alloy), and more particularly, to a plating film having good dimensional accuracy by directly applying electroless nickel plating having good adhesion and good corrosion resistance. It is devised to obtain.

【0002】[0002]

【従来の技術】マグネシウムは非常に卑な金属であり、
めっき前処理を行った場合にも化学的活性度が強くすぐ
に酸化皮膜を生成するため取扱いが大変に困難である。
このようなマグネシウム合金へのめっき処理方法の一例
を次に示す。先づ表面の脱脂を行った後、リン酸,クロ
ム酸等で酸洗浄を行った後、酸性あるいはアルカリ性の
活性化処理をし、次いでZn含浸コーティング,Cuめ
っきをした後、所望のニッケル,カドミウム,すず,ク
ローム,銀等のめっきを施すようにしている。
2. Description of the Related Art Magnesium is a very noble metal,
Even when the plating pretreatment is performed, the chemical activity is high and an oxide film is immediately formed, so that handling is very difficult.
An example of a plating method for such a magnesium alloy is described below. After the surface is first degreased, acid cleaning is performed with phosphoric acid, chromic acid, or the like, acid or alkaline activation treatment is performed, and then Zn impregnated coating and Cu plating are performed. , Tin, chrome, silver, etc.

【0003】またその他のめっき処理方法としては、前
処理としてフッ化物を用いるダウ法,硫酸で酸洗した後
ピロリン酸で処理をしジンケート処理をするノルスク法
及びWCM法等を挙げることができる。さらにマグネシ
ウム合金に直接めっきをする方法としては化学エッチン
グし、フッ化物により前処理した後、ニッケルめっきを
施すものがある(特開昭61−67770号公報参
照)。
[0003] Other plating methods include a Dow method using fluoride as a pretreatment, a Norsk method and a WCM method in which acid treatment is performed with sulfuric acid followed by treatment with pyrophosphoric acid and zincate treatment. Further, as a method of directly plating a magnesium alloy, there is a method of chemically etching, pretreating with a fluoride, and then performing nickel plating (see JP-A-61-67770).

【0004】[0004]

【発明が解決しようとする課題】従来例に係るめっき処
理方法においては酸洗の前処理を実施するため、素材表
面のエッチングが著しく表面が粗面化すると共に寸法精
度の確保が困難である。また活性化にフッ化物を使用す
るためフッ化マグネシウム(MgF2 )の皮膜が生成し
後工程でめっき皮膜の密着を阻害する。さらにめっき下
地としてシアン化銅めっきを用いる必要があるため、公
害対策及び安全衛生上の問題を有する。まためっき前の
酸洗においてフッ酸を用いるため、厚いMgF2 皮膜が
生成し、次工程の無電解めっき皮膜の置換析出を妨害す
るため密着不良となる。またこの方法ではめっき皮膜の
耐食性が悪いことが知られている。ダウ法においては前
処理の酸洗において表面が粗面化するとともにフッ化物
系の前処理であり、MgF2 が生成してジンケート皮膜
がポーラスとなりやすい。ノルスク法やWCM法はいず
れも蓚酸で酸洗を実施した後ピロりん酸塩系で処理しジ
ンケートを実施する方法であり、ピロりん酸処理の後で
マグネシウム表面が不均一に酸化されめっきの密着が悪
くなる。さらに両方法ともシアン銅めっきが必要であり
公害対策及び安全衛生上の問題を有する。さらにこれら
の方法では下地銅めっきの厚さが薄い場合はピンホール
の存在を防ぎきれないため、耐食性の確保が困難であ
る。また銅めっきを厚くすることによって耐食性の向上
は計れるが寸法精度が著しく悪くなる。特開昭61−6
7770号公報に示す方法は前処理浴にフッ化物を用い
るためMgF2皮膜が生成し、その上に直接無電解ニッ
ケルめっきを施すため皮膜の密着が良くない。また皮膜
に割れが発生しやすく耐食性も不十分である。
In the plating method according to the prior art, since the pretreatment for pickling is performed, the surface of the raw material is significantly etched and the surface is roughened, and it is difficult to secure dimensional accuracy. Further, since fluoride is used for the activation, a film of magnesium fluoride (MgF 2 ) is formed, and the adhesion of the plating film is hindered in a later step. Further, since it is necessary to use copper cyanide plating as a plating base, there are problems in pollution control and health and safety. Further, since hydrofluoric acid is used in the pickling before plating, a thick MgF 2 film is generated, and the subsequent deposition of the electroless plating film is disturbed, resulting in poor adhesion. Further, it is known that the plating film has poor corrosion resistance in this method. In the Dow method, the surface is roughened in the pretreatment pickling, and the pretreatment is based on fluoride. MgF 2 is generated, and the zincate film tends to be porous. In both the Norsk method and the WCM method, pickling with oxalic acid is performed, followed by treatment with a pyrophosphate system to perform zincate. After pyrophosphoric acid treatment, the magnesium surface is oxidized unevenly, and the plating adheres. Gets worse. Further, both methods require cyan copper plating and have problems in pollution control and health and safety. Furthermore, in these methods, when the thickness of the underlying copper plating is small, the existence of pinholes cannot be prevented, so that it is difficult to ensure corrosion resistance. The corrosion resistance can be improved by increasing the thickness of the copper plating, but the dimensional accuracy is remarkably deteriorated. JP-A-61-6
In the method disclosed in Japanese Patent No. 7770, since a fluoride is used for a pretreatment bath, an MgF 2 film is formed, and electroless nickel plating is directly performed thereon, so that adhesion of the film is not good. In addition, the coating is apt to crack, and the corrosion resistance is insufficient.

【0005】本発明は以上述べた事情に鑑み、マグネシ
ウム合金の裏面を粗面化することなく且つフッ化マグネ
シウムを生成させることなくエッチングし、ジンケート
処理の後直接無電解ニッケルめっきを実施することによ
り密着性の良好で耐食性の著しく向上した寸法精度の良
好なマグネ基合金のめっき方法を提供することを目的と
する。
[0005] In view of the circumstances described above, the present invention provides a method of etching a magnesium alloy without roughening the back surface thereof and without generating magnesium fluoride, and directly performing electroless nickel plating after zincate treatment. An object of the present invention is to provide a method of plating a magne-based alloy having good adhesion and remarkably improved corrosion resistance and good dimensional accuracy.

【0006】[0006]

【課題を解決するための手段】前記目的を達成する本発
明に係るマグネ基合金のめっき方法は、マグネ基合金の
表面に無電解ニッケルめっきを施すに際し、有機酸ニッ
ケル塩,次亜リン酸塩,ピロリン酸塩,リン酸及びアン
モニアの他、ベンゼンスルフィン酸ナトリウム,サッカ
リンナトリウム及びアリルスルホン酸ナトリウムの群か
ら選ばれる少くとも一種を含有する無電解ニッケルめっ
き液に浸漬することを特徴とする。
In order to achieve the above object, a method of plating a magne-based alloy according to the present invention is characterized in that, when electroless nickel plating is performed on the surface of a magne-based alloy, an organic acid nickel salt and a hypophosphite are used. Immersion in an electroless nickel plating solution containing at least one member selected from the group consisting of sodium benzenesulfinate, sodium saccharin and sodium allylsulfonate, in addition to sodium, pyrophosphate, phosphoric acid and ammonia.

【0007】すなわち、本発明に係る製造方法によるニ
ッケルめっき被覆マグネ基合金は、マグネシウム合金上
に直接ニッケルめっきを施してあるので、密着性が良好
であると共に耐食性が良好なものとなる。
That is, the nickel-plated magne-based alloy produced by the production method according to the present invention has good adhesion and good corrosion resistance because nickel plating is applied directly on the magnesium alloy.

【0008】以下、本発明の内容を詳細に説明する。こ
こで本発明でマグネ基合金とは、JISに規定されてい
るMC1〜MC8を対象とした合金を云う。本発明に係
るマグネ基合金のめっき処理方法に係る前処理方法及び
引き続いて行うめっき処理方法の好適なフローチャート
を図1に示す。同図に示すようにマグネ基合金の表面を
研磨した後、その表面を脱脂し、次いでピロリン酸塩を
主成分とする前処理液で弱アルカリ洗浄を行う。次い
で、水洗をした後、アルカリ処理をし、水洗を行う。次
に下地としてZn被覆処理(ジンケート処理)をした
後、Niめっき処理を行いマグネ基合金にニッケルめっ
きを施したNiめっき品を得る。
Hereinafter, the contents of the present invention will be described in detail. Here, the magne-based alloy in the present invention refers to an alloy for MC1 to MC8 specified in JIS. FIG. 1 shows a preferred flowchart of the pretreatment method and the subsequent plating method according to the method of plating a magne-based alloy according to the present invention. As shown in the figure, the surface of the magne-based alloy is polished, the surface is degreased, and then a weak alkaline cleaning is performed with a pretreatment liquid containing pyrophosphate as a main component. Next, after washing with water, an alkali treatment is performed, followed by washing with water. Next, after a Zn coating treatment (zincate treatment) is performed as a base, a Ni plating treatment is performed to obtain a Ni plating product in which a magne-based alloy is nickel-plated.

【0009】以下、この処理工程について順を追って説
明する。マグネシウム合金を通常の前処理方法として表
面研磨及び脱脂を行う。これらの処理は従来行われてい
る方法がそのまま利用でき、表面研磨はエメリー研磨,
パフ研磨,ブラスト処理等が用いられる。脱脂は有機溶
剤による方法,アルカリ脱脂,陰極電解脱脂等が使用可
能であり表面状態に応じて組み合わして使用される。
Hereinafter, this processing step will be described step by step. Surface polishing and degreasing are performed using a magnesium alloy as a normal pretreatment method. For these treatments, the conventional methods can be used as they are.
Puff polishing, blasting or the like is used. Degreasing can be performed by a method using an organic solvent, alkali degreasing, cathodic electrolytic degreasing, or the like, and is used in combination according to the surface condition.

【0010】脱脂の後化学エッチングを行う。この化学
エッチングに際してはピロりん酸塩を主成分とし、少量
の界面活性剤を含むものである。その塩としてはナトリ
ウム塩,カリウム塩,アンモニウム塩が好ましい。ピロ
りん酸塩の濃度は10〜50g/L、より好ましくは3
0g/Lとするのがよい。これはピロりん酸塩はマグネ
シウム合金中のマグネシウムと表面のマグネシウム酸化
物を優先的に溶解させる作用を持ち、10g/L以下で
はその作用が発揮されず50g/L以上では溶解量が多
くなり表面が粗くなり、共に好ましくないからである。
界面活性剤はアルカリ中で作用する一般に市販されてい
るものが使用可能である。また、その添加量は0.01〜
0.1重量%程度とするのが好ましい。処理温度は25〜
60℃、より好ましくは40〜50℃の範囲とするのが
よく、処理時間は1〜5分、より好ましくは2〜3分と
するのがよい。上記温度範囲とするのは、25℃以下で
はその溶解力が低く60℃以上では溶解量が多くなりそ
の制御が困難となり、共に好ましくないからである。
尚、この浴への硫酸塩,硝酸塩,塩化物等の添加はエッ
チング作用を促進し表面状態を悪くするため好ましくな
い。
After degreasing, chemical etching is performed. In this chemical etching, pyrophosphate is used as a main component and a small amount of a surfactant is contained. As the salt, a sodium salt, a potassium salt, and an ammonium salt are preferable. The concentration of pyrophosphate is 10 to 50 g / L, more preferably 3 to 50 g / L.
It is preferably 0 g / L. This is because pyrophosphate has the effect of preferentially dissolving magnesium in the magnesium alloy and magnesium oxide on the surface, and its effect is not exhibited at 10 g / L or less, and the amount of dissolution increases at 50 g / L or more and the surface dissolves. Is coarse, which is not preferable.
As the surfactant, a commercially available surfactant that operates in an alkali can be used. The amount of addition is 0.01 to
It is preferred to be about 0.1% by weight. Processing temperature is 25 ~
The temperature is preferably in the range of 60 ° C, more preferably 40 to 50 ° C, and the treatment time is preferably 1 to 5 minutes, more preferably 2 to 3 minutes. The reason for setting the above temperature range is that if the temperature is 25 ° C. or lower, the dissolving power is low, and if the temperature is 60 ° C. or higher, the amount of dissolution increases, and it becomes difficult to control the dissolution.
The addition of sulfates, nitrates, chlorides, etc. to this bath is not preferred because it promotes the etching action and deteriorates the surface condition.

【0011】エッチング処理後水洗した素材をアルカリ
溶液で処理する。このアルカリ溶液として水酸化ナトリ
ウム,水酸化カリウム等のアルカリ金属の水酸化物が使
用される。その濃度は10〜100g/L、より好まし
くは30〜60g/Lの範囲とするのがよい。これは、
アルカリ濃度が10g/L以下では亜鉛アルミニウム成
分への反応が十分ではなく、100g/L以上でもその
反応が促進されることが無い上に取扱い上の問題が多く
なるので共に好ましくないからである。処理温度は30
〜80℃とし、好ましくは40〜60℃とするのがよ
い。これは、温度が30℃以下ではアルカリ反応が弱
く、80℃以上では反応が過剰となり好ましくないから
である。処理時間は1〜10分より好ましくは3〜5分
とするのがよい。アルカリ溶液で処理する場合にはマグ
ネシウムは全く溶出することなく、合金中のアルミニウ
ム,亜鉛成分が優先的に溶出するとともに表面に酸化物
水酸化物となって皮膜を形成する。この状態ではマグネ
シウムはほとんどの金属の状態に保たれていることがE
SCA分析の結果確認されている。また亜鉛アルミニウ
ムの酸化物水酸化物は合金中の存在形態に対応して網目
状に生成する。
After the etching, the material washed with water is treated with an alkaline solution. As the alkaline solution, a hydroxide of an alkali metal such as sodium hydroxide or potassium hydroxide is used. The concentration is preferably in the range of 10 to 100 g / L, more preferably 30 to 60 g / L. this is,
If the alkali concentration is 10 g / L or less, the reaction with the zinc aluminum component is not sufficient, and if the alkali concentration is 100 g / L or more, the reaction is not accelerated and handling problems increase, which are both undesirable. Processing temperature is 30
The temperature is preferably from 80 to 80C, more preferably from 40 to 60C. This is because if the temperature is 30 ° C. or lower, the alkali reaction is weak, and if the temperature is 80 ° C. or higher, the reaction becomes excessive, which is not preferable. The treatment time is preferably 1 to 10 minutes, more preferably 3 to 5 minutes. When treated with an alkaline solution, magnesium is not eluted at all, and the aluminum and zinc components in the alloy are eluted preferentially and oxide hydroxide is formed on the surface to form a film. In this state, magnesium is maintained in the state of most metals, E
It has been confirmed as a result of SCA analysis. In addition, zinc aluminum oxide hydroxide is formed in a mesh shape corresponding to the form of existence in the alloy.

【0012】アルカリ処理をした後水洗し亜鉛被覆処理
を行う。このジンケート処理は、例えば硫酸亜鉛(Zn
SO4 )、ピロリン酸ソーダ(Na22 7 )又はピロ
リン酸カリウム(K4 2 7 )、フッ化カリウム(K
F)又はフッ化リチウム(LiF)又はフッ化ナトリウ
ム(NaF)、炭酸ソーダ(Na2CO3 )等からなる浸
漬液を用いて行う。
After the alkali treatment, the substrate is washed with water and zinc-coated. In this zincate treatment, for example, zinc sulfate (Zn
SO 4 ), sodium pyrophosphate (Na 2 P 2 O 7 ) or potassium pyrophosphate (K 4 P 2 O 7 ), potassium fluoride (K
F) or lithium fluoride (LiF), sodium fluoride (NaF), or an immersion liquid made of sodium carbonate (Na 2 CO 3 ).

【0013】このジンケート処理の後、十分に水洗を実
施した後にニッケルめっきを施す。このニッケルめっき
処理は、本発明者らが開発したもので、先に特願平2−
87537号(平成2年4月3日出願)として出願し
た。上記出願に係るニッケルめっき浴を用いることによ
って、ジンケート皮膜上に密着性の良い緻密でクラック
の発生のない耐食性の良好な皮膜を得る事が可能とな
る。ここで通常の市販されている酸性の無電解めっき浴
を用いてめっきを行うと、ジンケート皮膜がポーラスで
あるため、下地のマグネシウム合金と急激に反応を起こ
して非常に密着の悪い置換ニッケル皮膜が生成してしま
い外観も耐食性も著しく悪い皮膜しか得られない。無電
解ニッケルめっきは特願平2−87537に示した条件
で実施する(詳しくは後述する)。めっき時間は所望す
る皮膜の厚さに応じて調整することが可能である。
[0013] After the zincate treatment, washing with water is performed sufficiently, and then nickel plating is performed. This nickel plating process was developed by the present inventors, and was previously described in Japanese Patent Application No. Hei.
87537 (filed on April 3, 1990). By using the nickel plating bath according to the above-mentioned application, it becomes possible to obtain a dense and good crack-free corrosion-resistant film having good adhesion on a zincate film. Here, when plating is performed using an ordinary commercially available acidic electroless plating bath, the zincate film is porous, so that it rapidly reacts with the underlying magnesium alloy to form a substituted nickel film having extremely poor adhesion. Only a film having extremely poor appearance and corrosion resistance can be obtained. The electroless nickel plating is performed under the conditions shown in Japanese Patent Application No. 2-87537 (the details will be described later). The plating time can be adjusted according to the desired film thickness.

【0014】めっきの終了後は十分に水洗を実施したの
ちに乾燥して製品となる。本発明によるめっき皮膜を下
地としてさらに電気めっき等の表面処理を実施すること
も可能である。
After the plating is completed, the product is thoroughly washed with water and then dried to obtain a product. It is also possible to further perform surface treatment such as electroplating using the plating film according to the present invention as a base.

【0015】次に上記出願に係るめっき処理方法を説明
する。前述した前処理を施した後無電解ニッケルめっき
を施すが、マグネ基合金に、直接、良好で緻密な被覆膜
を形成するために有機酸ニッケル塩を含むめっき液を用
いる。また、かかる無電解ニッケルめっき液は、有機酸
ニッケル塩の他、還元剤の次亜リン酸塩と、添加剤とし
てのアンモニア,ピロリン酸塩及びリン酸とを含有する
が、さらにクラック防止のために、ベンゼンスルフィン
酸ナトリウム,サッカリンナトリウム及びアリルスルホ
ン酸ナトリウムの群から選ばれる少なくとも一種を含有
している。
Next, a plating method according to the above application will be described. After the above-described pretreatment, electroless nickel plating is performed, and a plating solution containing an organic acid nickel salt is used to directly form a good and dense coating film on the magne-based alloy. The electroless nickel plating solution contains a hypophosphite as a reducing agent and ammonia, pyrophosphate and phosphoric acid as additives in addition to a nickel salt of an organic acid. Contains at least one member selected from the group consisting of sodium benzenesulfinate, sodium saccharin and sodium allylsulfonate.

【0016】通常の無電解ニッケルめっき液は、ニッケ
ル塩として硫酸ニッケル,塩化ニッケル等が用いられる
が、これらは亜鉛被覆皮膜からめっき浴中への亜鉛溶出
の触媒として作用するため好ましくない。本発明では有
機酸ニッケル塩を用いているので亜鉛の溶出が極力低減
できる。ここで、有機酸ニッケル塩とは、ギ酸ニッケ
ル,酢酸ニッケル,乳酸ニッケル,クエン酸ニッケル等
を挙げることができる。無電解ニッケルめっき液中のN
i含有量は、通常、0.05mol/l〜0.2mol/lが好適で
ある。これは、0.05mol/l未満ではめっき寿命が短く
て実用的でなく、0.2mol/lをこえると浴中で過剰のN
iが析出して浴の自己分解等の原因となり、共に好まし
くないからである。
As a normal electroless nickel plating solution, nickel sulfate, nickel chloride or the like is used as a nickel salt, but these are not preferable because they act as a catalyst for elution of zinc from the zinc coating film into the plating bath. In the present invention, the use of the organic acid nickel salt minimizes the elution of zinc. Here, examples of the organic acid nickel salt include nickel formate, nickel acetate, nickel lactate, nickel citrate and the like. N in electroless nickel plating solution
Usually, the i content is preferably 0.05 mol / l to 0.2 mol / l. This is because the plating life is short if the amount is less than 0.05 mol / l, and it is not practical.
This is because i precipitates and causes self-decomposition of the bath and the like, which is not preferable.

【0017】一方、無電解ニッケルめっき液に含有され
る還元剤としての次亜リン酸塩としては、次亜リン酸,
次亜リン酸ナトリウム,次亜リン酸カリウムなどが使用
可能であり、その濃度はNiの含有量に対してモル比で
0.7〜3倍の範囲とすればよい。これは次亜リン酸塩の
Niに対するモル比が0.7倍未満では還元剤によるNi
の析出効率は低くなるので、頻繁に還元剤を添加する必
要があり、実用的でなく、一方、3倍をこえると還元力
が強くなりすぎて浴中でNiが析出して自己分解するこ
とになり、共に好ましくない。
On the other hand, hypophosphite as a reducing agent contained in the electroless nickel plating solution includes hypophosphorous acid,
Sodium hypophosphite, potassium hypophosphite, etc. can be used, and the concentration is a molar ratio with respect to the Ni content.
The range may be 0.7 to 3 times. This is because if the molar ratio of hypophosphite to Ni is less than 0.7 times, Ni
It is not practical to add a reducing agent frequently because the deposition efficiency of the solution becomes low, and it is not practical. On the other hand, if it exceeds 3 times, the reducing power becomes too strong and Ni precipitates in the bath and self-decomposes. And both are not preferred.

【0018】また、無電解ニッケルめっき液に添加する
アンモニア及びピロリン酸塩は、ニッケルと弱い錯体を
形成させてニッケルの安定化を図り、亜鉛基合金上への
密着性のよい緻密な被膜を形成するためのものである。
ここで、アンモニア及びピロリン酸塩の濃度の好適範囲
はそれぞれ0.05〜0.3mol/lの範囲で且つニッケル塩
のモル数と同等以上の範囲である。アンモニアあるいは
ピロリン酸塩がこの範囲より少ないと、浴の安定性が低
いために浴分解が生じ易く且つ析出被膜の密着性もよく
なく好ましくない。一方、上記範囲より多いとアンモニ
アは浴加熱の際に蒸気となって放散し易いため環境が悪
くなり、又亜鉛基合金からの亜鉛の溶出量も多くなり、
浴の寿命を短くし、好ましくない。
Ammonia and pyrophosphate added to the electroless nickel plating solution form a weak complex with nickel to stabilize nickel and form a dense film with good adhesion on a zinc-based alloy. It is for doing.
Here, the preferred ranges of the concentrations of ammonia and pyrophosphate are in the range of 0.05 to 0.3 mol / l, respectively, and at least equal to the number of moles of the nickel salt. If the amount of ammonia or pyrophosphate is less than this range, bath stability is low and bath decomposition is likely to occur, and the adhesion of the deposited film is not good, which is not preferable. On the other hand, if the amount is more than the above range, the environment becomes worse because ammonia is easily vaporized and released during bath heating, and the amount of zinc eluted from the zinc-based alloy also increases,
It shortens the life of the bath and is not preferred.

【0019】また、無電解めっき液には、アンモニア及
びピロリン酸塩と共にリン酸を添加している。このリン
酸は、析出するNiの結晶を微細化するように働くもの
で、めっき被膜の緻密化を図り、硬度の上昇さらには耐
摩耗性及び耐食性を向上するものである。また、リン酸
は、中性域において溶出したZnと結合して不溶性のリ
ン酸亜鉛として沈殿するため、浴中に溶出した亜鉛の影
響を大幅に減少することができる。なお、リン酸の添加
量は0.01〜0.1mol/lと極微量でよい。0.01mol/l
未満では溶出した亜鉛への対応力が小さく、一方、0.1
mol/lをこえると酸としての作用が強くなり、共に好ま
しくない。
Further, phosphoric acid is added to the electroless plating solution together with ammonia and pyrophosphate. This phosphoric acid works to make the precipitated Ni crystals finer, and serves to increase the density of the plating film, increase the hardness, and further improve the wear resistance and corrosion resistance. Further, since phosphoric acid binds to Zn eluted in the neutral region and precipitates as insoluble zinc phosphate, the effect of zinc eluted in the bath can be significantly reduced. The addition amount of phosphoric acid may be as small as 0.01 to 0.1 mol / l. 0.01mol / l
If it is less than 1, the ability to respond to the eluted zinc is small, while it is less than 0.1.
If it exceeds mol / l, the action as an acid becomes strong, and both are not preferred.

【0020】さらに、本発明でクラック防止のために用
いるベンゼンスルフィン酸ナトリウム,サッカリンナト
リウム又はアリルスルホン酸ナトリウムは、皮膜中の応
力を低減してクラックを防止すると考えられるが、0.1
〜10g/lの範囲で用いるのがよい。これは、0.1g
/l未満では皮膜のクラック防止効果が顕著ではなく、
また、10g/lをこえて用いてもクラック防止効果の
著しい向上は見られず経済的に不利だからである。な
お、これらの添加剤は二種以上混合して用いてもよい。
Further, sodium benzenesulfinate, sodium saccharin or sodium allylsulfonate used for preventing cracking in the present invention is thought to reduce the stress in the film to prevent cracking.
It is good to use in the range of 10 to 10 g / l. This is 0.1g
If it is less than / l, the effect of preventing cracking of the film is not remarkable,
Further, even if it is used in excess of 10 g / l, no remarkable improvement in the crack preventing effect is observed, which is economically disadvantageous. These additives may be used as a mixture of two or more kinds.

【0021】以上述べたような要素で構成された無電解
ニッケルめっき浴でマグネ基合金を処理する際の条件
は、pHが8.0〜10、温度が55〜65℃が最適で
ある。pHは水酸化カリウムあるいは水酸化ナトリウム
で調整すればよいが、pH8未満では浴から水酸化ニッ
ケルの沈殿が生成する一方、pH10をこえるとアルカ
リ度が高くて亜鉛の溶解度が急激に増加するため、共に
好ましくない。また、浴温度を55℃未満とすると次亜
リン酸塩の還元力が弱いため、めっきスピードが遅すぎ
て好ましくなく、65℃以上では浴中のアンモニアの飛
散量が多くなり、浴バランスを維持することが困難とな
って好ましくない。
The optimum conditions for treating the magne-based alloy in the electroless nickel plating bath composed of the elements described above are a pH of 8.0 to 10 and a temperature of 55 to 65 ° C. The pH may be adjusted with potassium hydroxide or sodium hydroxide, but if the pH is less than 8, nickel hydroxide precipitates from the bath, whereas if the pH exceeds 10, the alkalinity is high and the solubility of zinc increases rapidly. Both are not preferred. When the bath temperature is lower than 55 ° C., the reducing power of hypophosphite is weak, so that the plating speed is too slow, which is not preferable. When the bath temperature is 65 ° C. or higher, the amount of ammonia scattered in the bath increases, and the bath balance is maintained. It is not preferable because it becomes difficult to do so.

【0022】以上説明した無電解ニッケルめっき浴で処
理することにより、マグネ基合金に直接、緻密で密着性
がよく且つクラックが発生せず、耐久性及び耐食性の良
好なニッケル被膜を形成することができる。このような
方法により形成されたニッケル被膜はHv≧500と通
常の酸性無電解Niめっき皮膜以上の硬度を有するもの
であり、又、このニッケル被膜を塩水噴霧試験に供した
ところ、10μの厚さで24時間経過した後も白錆の発
生はみられなかった。
By performing the treatment in the electroless nickel plating bath described above, it is possible to directly form a nickel coating having high density, good adhesion, no cracks, and excellent durability and corrosion resistance on the magne-based alloy. it can. The nickel coating formed by such a method has Hv ≧ 500 and has a hardness higher than that of a normal acidic electroless Ni plating coating. When this nickel coating is subjected to a salt spray test, it has a thickness of 10 μm. No generation of white rust was observed even after 24 hours.

【0023】[0023]

【実施例】以下、本発明の好適な実施例を説明する。 実施例1〜4 JIS−MC2(AZ−91C)金型鋳造品に、下記
「表1」,「表2」に示す方法でめっきを実施した。め
っき皮膜の評価結果を同じく「表1」,「表2」に示
す。耐食性は塩水噴霧試験により評価した。密着性はJ
ISゴバンメ試験に準じてナイフで5×5の升目を切り
込みテープを上から張り付けた後剥離させ皮膜の残存率
で評価した。 実施例5 JIS−MC3(AZ−92A)砂型鋳造品に下記「表
2」に示す方法でめっきを実施しその皮膜特性の評価結
果を同じく「表2」に示す。 実施例6,7 JIS−MC6(ZK51A)砂型鋳物品に「表3」に
示す方法でめっきを実施しその皮膜特性の評価結果を同
じく「表3」に示す。 比較例1 JIS−MC2金型鋳造品に下記「表3」に示すように
日本カンゼン社製「S−770」(商品名)を用いてめ
っきを実施して同様に皮膜評価結果を「表3」に示す。 実施例8〜11 JIS−MC2金型鋳造品に下記「表4」,「表5」に
示す種々のめっき浴組成物を用いてNiめっきを施し、
同様に皮膜評価を「表4」,「表5」に示す。「表1」
〜「表5」に示すように、「表2」に示す比較例1に比
べ、いずれも良好なNiめっきを施すことができた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. Examples 1-4 Plating was carried out on a JIS-MC2 (AZ-91C) mold casting by the methods shown in Tables 1 and 2 below. The evaluation results of the plating films are also shown in Tables 1 and 2. The corrosion resistance was evaluated by a salt spray test. Adhesion is J
According to the IS Gobanme test, a 5 × 5 square was cut with a knife, a tape was applied from above, and the tape was peeled off. Example 5 Plating was carried out on a JIS-MC3 (AZ-92A) sand mold product by the method shown in the following "Table 2", and the evaluation results of the film properties are also shown in "Table 2". Examples 6 and 7 Plating was performed on a JIS-MC6 (ZK51A) sand-cast article by the method shown in Table 3 and the evaluation results of the film properties are also shown in Table 3. Comparative Example 1 Plating was carried out on a JIS-MC2 mold casting using "S-770" (trade name) manufactured by Nippon Kanzen Co., Ltd. as shown in the following "Table 3", and the film evaluation results were similarly determined in "Table 3". " Examples 8 to 11 A JIS-MC2 mold casting was subjected to Ni plating using various plating bath compositions shown in Tables 4 and 5 below.
Similarly, the film evaluation is shown in "Table 4" and "Table 5". "Table 1"
As shown in Table 5 below, better Ni plating could be performed in each case than in Comparative Example 1 shown in Table 2.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【表6】 [Table 6]

【0030】[0030]

【発明の効果】以下実施例と共に述べたように、本発明
においてはマグネシウム合金をフッ化物を使用する事無
くアルカリ溶液で前処理することによりジンケート処理
において非常に密着性の良好な皮膜が得られさらに本発
明者らが開発した無電解ニッケルめっき浴を使用するこ
とによりシアン銅めっきを使用することなく緻密で割れ
の無いめっき皮膜を直接マグネシウム合金上に生成させ
ることが可能となったものである。本発明の効果はマグ
ネシウム合金上に直接無電解ニッケルめっきを実施する
ことにより密着性が良好でかつ耐食性のよい被膜を寸法
精度よくかつ公害や安全衛生上の問題無くめっきできる
ことにある。
As described in connection with the following embodiments, in the present invention, a pre-treatment of a magnesium alloy with an alkali solution without using a fluoride can provide a film having very good adhesion in zincate treatment. Furthermore, by using the electroless nickel plating bath developed by the present inventors, a dense and crack-free plating film can be directly formed on a magnesium alloy without using cyan copper plating. . An effect of the present invention is that a coating having good adhesion and good corrosion resistance can be plated with good dimensional accuracy and without pollution and safety and health problems by directly performing electroless nickel plating on a magnesium alloy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】マグネ基合金のめっき処理工程図である。FIG. 1 is a process chart of a plating process of a magne-based alloy.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マグネ基合金の表面に無電解ニッケルめ
っきを施すに際し、有機酸ニッケル塩,次亜リン酸塩,
ピロリン酸塩,リン酸及びアンモニアの他、ベンゼンス
ルフィン酸ナトリウム,サッカリンナトリウム及びアリ
ルスルホン酸ナトリウムの群から選ばれる少くとも一種
を含有する無電解ニッケルめっき液に浸漬することを特
徴とするマグネ基合金のめっき方法。
1. An electroless nickel plating method for applying electroless nickel plating to the surface of a magne-based alloy, comprising: an organic acid nickel salt, hypophosphite,
A magne-based alloy characterized by being immersed in an electroless nickel plating solution containing at least one selected from the group consisting of sodium benzenesulfinate, sodium saccharin and sodium allylsulfonate, in addition to pyrophosphate, phosphoric acid and ammonia. Plating method.
【請求項2】 請求項1記載のマグネ基合金のめっき方
法において、ピロリン酸を主成分とする浴で前処理する
ことを特徴とするマグネ基合金のめっき方法。
2. The method of plating a magne-based alloy according to claim 1, wherein the pre-treatment is performed in a bath containing pyrophosphoric acid as a main component.
JP20180291A 1991-08-12 1991-08-12 Magne-based alloy plating method Expired - Lifetime JP2962496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20180291A JP2962496B2 (en) 1991-08-12 1991-08-12 Magne-based alloy plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20180291A JP2962496B2 (en) 1991-08-12 1991-08-12 Magne-based alloy plating method

Publications (2)

Publication Number Publication Date
JPH0544048A JPH0544048A (en) 1993-02-23
JP2962496B2 true JP2962496B2 (en) 1999-10-12

Family

ID=16447170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20180291A Expired - Lifetime JP2962496B2 (en) 1991-08-12 1991-08-12 Magne-based alloy plating method

Country Status (1)

Country Link
JP (1) JP2962496B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598163B2 (en) * 1996-02-20 2004-12-08 ソニー株式会社 Metal surface treatment method
KR100431125B1 (en) * 2001-11-16 2004-05-12 주식회사 에이치 제이 텍 Double electroless nikel plating method by pre-treatment process of magnesium and magnesium alloy
KR100453994B1 (en) * 2002-03-14 2004-10-26 주식회사 에이치 제이 텍 Two layer non-electrolysis nickel coating method by dynamic etching of magnesium and magnesium alloy
DE10246453A1 (en) 2002-10-04 2004-04-15 Enthone Inc., West Haven Electrolyte used in process for high speed electroless plating with nickel film having residual compressive stress is based on nickel acetate and also contains reducing agent, chelant, accelerator and stabilizer
EP3299493B1 (en) * 2015-10-01 2019-12-25 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Coating structure, impeller, compressor, metal part manufacturing method, impeller manufacturing method, and compressor manufacturing method

Also Published As

Publication number Publication date
JPH0544048A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
US4346128A (en) Tank process for plating aluminum substrates including porous aluminum castings
US2745799A (en) Processes for coating aluminum and alloys thereof
US4840820A (en) Electroless nickel plating of aluminum
US4567066A (en) Electroless nickel plating of aluminum
IL34111A (en) Conditioning aluminous surfaces for the reception of electroless nickel plating
EP0497302B1 (en) Process for direct zinc electroplating of aluminum strip
US3726771A (en) Process for chemical nickel plating of aluminum and its alloys
US4061802A (en) Plating process and bath
US2654701A (en) Plating aluminum
Barker Electroless deposition of metals
US4670312A (en) Method for preparing aluminum for plating
JP3192003B2 (en) High corrosion resistance coating method for magne-based alloy
US2526544A (en) Method of producing a metallic coating on magnesium and its alloys
JP2962496B2 (en) Magne-based alloy plating method
US4349390A (en) Method for the electrolytical metal coating of magnesium articles
JPH03236476A (en) Manufacture of aluminium memory disk finished by flat and smooth metal plating
JP3673445B2 (en) Zinc replacement solution
US4196061A (en) Direct nickel-plating of aluminum
US3284323A (en) Electroplating of aluminum and its alloys
JPH0730458B2 (en) Blackening treatment method for zinc or zinc-based plating material
US3505181A (en) Treatment of titanium surfaces
CA1153978A (en) Coating aluminium alloy with cyanide-borate before electroplating with bronze
US2871172A (en) Electro-plating of metals
US4668348A (en) Method for forming adherent, bright, smooth and hard chromium electrodeposits on ferrous metal substrates from high energy efficient chromium baths
EP0235173A1 (en) Process for forming adherent chromium electrodeposits from a high energy efficient bath

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13