EP0424474B2 - Verfahren zum betrieb eines kaltdampfprozesses unter trans- oder überkritischen bedingungen - Google Patents

Verfahren zum betrieb eines kaltdampfprozesses unter trans- oder überkritischen bedingungen Download PDF

Info

Publication number
EP0424474B2
EP0424474B2 EP89910211A EP89910211A EP0424474B2 EP 0424474 B2 EP0424474 B2 EP 0424474B2 EP 89910211 A EP89910211 A EP 89910211A EP 89910211 A EP89910211 A EP 89910211A EP 0424474 B2 EP0424474 B2 EP 0424474B2
Authority
EP
European Patent Office
Prior art keywords
refrigerant
pressure
evaporator
liquid
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89910211A
Other languages
English (en)
French (fr)
Other versions
EP0424474B1 (de
EP0424474A1 (de
Inventor
Gustav Lorentzen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SINVENT A/S TE TRONDHEIM, NOORWEGEN.
Original Assignee
Sinvent AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19891609&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0424474(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sinvent AS filed Critical Sinvent AS
Publication of EP0424474A1 publication Critical patent/EP0424474A1/de
Publication of EP0424474B1 publication Critical patent/EP0424474B1/de
Application granted granted Critical
Publication of EP0424474B2 publication Critical patent/EP0424474B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0415Refrigeration circuit bypassing means for the receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Definitions

  • the invention relates to a method of operating a vapour compression cycle ; in particular, the invention relates to a method of operating a vapour compression cycle as e.g. employed in refrigerators, air-conditioning units and heat pumps, using a refrigerant operating in a dosed circuit under supercritical high-side conditions.
  • a conventional vapour compression cycle device for refrigeration, air-conditioning or heat pump purposes is shown in principle in Fig. 1.
  • the device consists of a compressor (1), a condensing heat exchanger (2), a throttling valve (3) and a evaporating heat exchanger (4). These components are connected in a closed flow circuit, in which a refrigerant is circulated.
  • the operating principle of a vapour compression cycle device is as follows: The pressure and temperature of the refrigerant vapour is increased by the compressor (1), before it enters the condenser (2) where it is cooled and condensed, giving off heat to a secondary coolant, The high-pressure liquid is then throttled to the evaporator pressure and temperature by means of the expansion valve (3). In the evaporator (4), the refrigerant boils and absorbs heat from its surroundings. The vapour at the evaporator outlet is drawn into the compressor, completing the cycle.
  • refrigerants as for instance R-12, CF 2 Cl 2
  • refrigerant A number of different substances or mixtures of substances may be used as a refrigerant.
  • the choice of refrigerant is among others influenced by the condensation temperature, as the critical temperature of the fluid sets the upper limit for the condensation to occur. In order to maintain a reasonable efficiency, it is normally desirable to use a refrigerant with critical temperature at least 20-30K above the condensation temperature. Near-critical temperatures are normally avoided in design and operation of conventional systems.
  • US-A-4205532 discloses a heatpump or refrigeration apparatus, where the refrigerant on the high pressure side is at supercritical pressure. However, no regulation of the pressure is disclosed.
  • Capacity control of the conventional vapour compression cycle device is achieved mainly by regulating the mass flow of refrigerant passing through the evaporator. This is done e.g. by controlling the compressor capacity, throttling or bypassing. These methods involve more complicated flow circuit and components, need for additional equipment and accesories, reduced part-load efficiency and other complications.
  • a common type of liquid regulation device is a thermostatic expansion valve, which is controlled by the superheat at the evaporator outlet, Proper valve operation under varying operating conditions is achieved by using a considerable part of the evaporator to superheat the refrigerant, resulting in a low heat transfer coefficient.
  • thermodynamic losses occur due to large temperature differences when giving off heat to a secondary coolant with large temperature increase, as in heat pump applications or when the avalable secondary coolant flow is small.
  • Another object of the present invention is to provide a vapour compression cycle avoiding use of CFC refrigerants, and at the same time offering possibility to apply several attractive refrigerants with respect to safety, environmental hazards and price.
  • Further object of the present invention is to provide a new method of capacity control, which involves operation at mainly constant refrigerant mass flow rate and simple capacity modulation by valve operation.
  • Still another object of the present invention is to provide a cycle rejecting heat at gilding temperature, reducing heat-exchange losses in applications where secondary coolant flow is small or when the secondary coolant is to be heated to a relatively high temperature.
  • the vapour compression cycle operates normally at trans-critical conditions (i.e. super-critical high-side pressure, sub-critical low-side pressure) where the thermodynamic properties in the super-critical state are utilized to control the refrigerating and heating capacity of the device.
  • the present invention involves the regulation of specific enthalpy at evaporator inlet by deliberate use of the pressure before throttling for capacity control. Capacity is controlled by varying the refrigerant enthalpy difference in the evaporator, by changing the specific enthalpy of the refrigerant before throttling, In the supercritical state this can be done by varying the pressure and temperature independently. According to the present invention this modulation of specific enthalpy is done by varying the pressure before throttling, The refrigerant is cooled down as far as it is feasible by means of the avalable cooling medium, and the pressure regulated to give the required enthalpy.
  • Fig. 1 is a schematic representation of a conventional (sub-critical) vapour compression cycle device.
  • Fig. 2 is a schematic representation of a trans-critical vapour compression cycle device for use in connection with with a preferred embodiment of the invention.
  • This embodiment includes a volume as an integral part of the evaporator system, holding refrigerant in the liquid state.
  • Fig. 3 is a schematic representation of a trans-critical vapour compression cycle device. This embodiment includes an intermediate pressure receiver connected directly into the flow circuit between two valves.
  • Fig. 4 is schematic representation of a trans-critical vapour compression cycle device. This embodiment includes a special receiver to hold refrigerant as liquid or in the super-critical state.
  • Fig. 5 is a graph illustrating the relationship of pressure versus enthalpy of the trans-critical vapour compression cycle device of Fig. 2, 3 or 4, at different operating conditions.
  • Fig. 6 is a collection of graphs illustrating the control of refrigerating capacity by the method of pressure control in accordance with the present invention. The results shown are measured in a laboratory demonstration system built according to a preferred embodiment of the invention.
  • Fig. 7 is test results showing the relationship of temperature versus entropy of the trans-critical vapour compression cycle device of Fig. 2, operating at different highside pressures, employing carbon dioxide as refrigerant.
  • a trans-critical vapour compression cycle for use in the present invention includes a refrigerant, of which critical temperature is between the temperature of the heat inlet and the mean temperature of heat submittal, and a closed working fluid circuit where the refrigerant is circulated.
  • Suitable working fluids may be by the way of examples: ethyten (C 2 H 4 ), diborane (B 2 H 6 ), carbon dioxide (CO 2 ), ethane (C 2 H 6 ) and nitrogen oxide (N 2 O).
  • the dosed working fluid circuit consists of a refrigerant flow loop with an integrated storage segment
  • Fig. 2 shows a preferred embodiment of the invention where the storage segment is an integral part of the evaporator system.
  • the flow circuit includes a compressor 10 connected in series to a heat exchanger 11, a counterflow heat exchanger 12 and a throttling valve 13.
  • the throttling valve can be replaced by an optional expansion device.
  • An evaporating heat exchanger 14, a liquid separator/receiver 16 and the low-pressure side of the counterflow heat exchanger 12 are connected in flow communication intermediate the throttling valve 13 and the inlet 19 of the compressor 10.
  • the liquid receiver 16 is connected to the evaporator outlet 15, and the gas phase outlet of the receiver 16 is connected to the counterflow heat exchanger 12.
  • the counterflow heat exchanger 12 is not absolutely necessary for the functioning of the device but improves its efficiency, in particular its rate of response to a capacity increase requirement It also serves to return oil to the compressor.
  • a liquid phase line from the receiver (16) (shown with broken line in Fig. 2) is connected to the suction line either before the counterflow heat exchanger (12) at 17 or after it at 18, or anywhere between these points.
  • the liquid flow i.e. refrigerant and oil, is controlled by a suitable conventional liquid flow restricting device (not shown in the figure). By allowing some excess liquid refrigerant to enter the vapour line, a liquid surplus at the evaporator outlet is obtained.
  • the storage segment of the working fluid circuit includes a receiver 22 integrated in the flow circuit between a valve 21 and the throttling valve 13.
  • the other components 10-14 of the flow circuit are identical to the components of the previous embodiment, although the heat exchanger 12 can be omitted without any great consequence.
  • the pressure in the receiver 22 is kept intermediate the high-side and low-side pressures of the flow circuit
  • the storage segment of the working fluid circuit includes a special receiver 25, where the pressure is kept between the high-side pressure and the low-side pressure of the flow circuit,
  • the storage segment further consists of the valves 23 and 24 which are connected to the high pressure and low pressure part of the flow circuit respectively.
  • the refrigerant is compressed to a suitable supercritical pressure in the compressor 10, the compressor outlet 20 is shown as state “a” in Fig. 5.
  • the refrigerant is circulated through the heat exchanger 11 where it is cooled to state "b", giving off heat to a suitable cooling agent e.g. cooling air or water.
  • a suitable cooling agent e.g. cooling air or water.
  • the refrigerant can be further cooled to state “c" in the counterflow heat exchanger 12, before throttling to state "d".
  • a two-phase gas/liquid mixture is formed, shown as state “d” in Fig. 3.
  • the refrigerant absorbs heat in the evaporator 14 by evaporation of the liquid phase.
  • the refrigerant vapour can be superheated in the counterflow heat exchanger 12 to state “f” before it enters the compressor inlet 19, making the cycle complete.
  • the evaporator outlet condition "e” will be in the two-phase region due to the liquid surplus at the evaporator outlet.
  • Modulation of the trans-critical cycle device capacity is accomplished by varying the refrigerant state at the evaporator inlet, i.e. point "d” in Fig. 5.
  • the refrigerating capacity per unit of refrigerant mass flow corresponds to the enthalpy difference between state "d” and state "e”. This enthalpy difference is found as a horizontal distance in the enthalpy-pressure diagram, Fig. 5.
  • Throttling is a constant enthalpy process, thus the enthalpy in point “d” is equal to the enthalpy in point "c".
  • the refrigerating capacity (in kW) at constant refrigerant mass flow can be controlled by varying the enthalpy at point "c".
  • the high-pressure single-phase refrigerant vapour is not condensed but reduced in temperature in the heat exchanger 11.
  • the terminal temperature of the refrigerant in the heat exchanger (point "b") will be some degrees above the entering cooling air or water temperature, if counterflow is used.
  • the high-pressure vapour can then be cooled a few degrees lower, to point "c", in the counterflow heat exchanger 12.
  • the result is, however, that at constant cooling air or water inlet temperature, the temperature at point "c" will be mainly constant, independent of the pressure level in the high side.
  • modulation of device capacity is accomplished by varying the pressure in the highside, while the temperature in point "c" is mainly constant.
  • the curvature of the isotherms near the critical point result in a variation of enthalpy with pressure, as shown in Fig. 5.
  • the figure shows a reference cycle (a-b-c-d-e-f), a cycle with reduced capacity due to reduced high side pressure (a'-b'-c'-d'-e-f) and a cycle with increased capacity due to higher pressure in the high side (a"-b"-c"-d"-e-f).
  • the evaporator pressure is assumed to be constant.
  • the pressure in the high-pressure side is independent of temperature, because it is filed with a single phase fluid.
  • the refrigerant mass in the high side is increased by temporarily reducing the opening of the throttling valve 13. Due to the incidentally reduced refrigerant flow to the evaporator, the excess liquid fraction at the evaporator outlet (15) will be reduced.
  • the liquid refrigerant flow from the receiver 16 into the suction line is however constant Consequently, the balance between the liquid flow entering and leaving the receiver 16 is shifted, resulting in a net reduction in receiver liquid content and a corresponding accumulation of refrigerant in the high pressure side of the flow circuit.
  • Opening of the throttling valve 13 will increase the excess liquid fraction at the evaporator outlet 15, because the evaporated amount of refrigerant is mainly constant The difference between this liquid flow entering the receiver and the liquid flow from the receiver into the suction line, will accumulate. The result is a net transport of refrigerant charge from the high side to the low side of the flow circuit, with the reduction in the high side charge stored in liquid state in the receiver. By reducing the high-side charge and thereby pressure, the capacity of the device is reduced, until balance is found.
  • the refrigerant mass in the high side can be increased by simultaneously shutting the valve 21 and modulating the throttling valve 13 to provide the evaporator with sufficient liquid flow. This will reduce the refrigerant flow from the high side into the receiver through valve 21, while refrigerant mass is transferred from the low side to the high side by the compressor.
  • Reduction of high-side charge is obtained by opening the valve 21 while keeping the flow through the throttling valve 13 mainly constant. This will transfer mass from the highside of the flow circuit to the receiver 22.
  • the refrigerant mass in the high side can be increased by opening the valve 24 and simultaneously reducing the flow through the throttling valve 13.
  • refrigerant charge is accumulated in the high-pressure side due to reduced flow through the throttling valve 13.
  • Sufficient liquid flow to the evaporator is obtained by opening the valve 24.
  • a reduction in the high side charge can be accomplished by opening the valve 23 to transfer some refrigerant charge from the high side to the receiver. Capacity control of the device is thus accomplished by modulation of the valves 23 and 24, and simultaneously operating the throttling valve 13.
  • the preferred embodiment as indicated in fig. 2 has the advantage of simplicity, with capacity control by operation of one valve only. Furthermore, the trans-critical vapour compression cycle device built according to this embodiment has a certain self-regulating capability by adapting to changes in cooling load through changes in liquid content in the receiver 16, involving changes in highside charge and thus cooling capacity. In addition, the operation with liquid surplus at evaporator outlet gives favourable heat transfer characteristics.
  • the device of figure 3 has the advantage of simplified valve operation.
  • Valve 21 only regulates the pressure in the high side of the device, and the thrittling valve 13 only assures that the evaporator is fed sufficiently.
  • a conventional thermostatic valve can thus be used for throttling. Oil return to the compressor is easily achieved by allowing the refrigerant to flow through the receiver.
  • This embodiment however does not offer the capacity control function at high-side pressures below the critical pressure.
  • the volume of the receiver 22 must be relatively large since it is only operating between the discharge pressure and the liquid line pressure.
  • the device figure 4 has the advantage of operating as a conventional vapour compression cycle device, when it is running at stable conditions.
  • the valves 23 and 24, connecting the receiver 25 to the flow circuit, are activated only during capacity control. This embodiment requires use of three different valves during periods of capacity change.
  • Trans-critical vapour compression cycle devices built according to the described embodiments can be applied in several areas.
  • the technology is well suitable in small and medium-sized stationary and mobile air-conditioning units, small and medium-sized refrigerators/freezers and in smaller heat pump units.
  • One of the most promising applications is in automotive air-conditioning, where the present need for a new, non-CFC, lightweight and efficient alternative to R12-systems is urgent.
  • the laboratory test device uses water as heat source, i.e. the water is refrigerated by heat exchange with boiling CO 2 in the evaporator 14. Water is also used as cooling agent, being heated by CO 2 in the heat exchanger 11.
  • the test device includes a 61 ccm reciprocating compressor (10) and a receiver (16) with total volume of 4 liters.
  • the system also includes a counterflow heat exchanger (12) and liquid line connection from the receiver to point 17, as indicated in Fig. 2.
  • the throttling valve 13 is operated manually.
  • This example shows how control of refrigerating capacity is obtained by varying the position of the throttling valve 13, thereby varying the pressure in the high-side of the flow circuit.
  • the specific refrigerant enthalpy at the evaporator inlet is controlled, resulting in modulation of refrigerating capacity at constant mass flow.
  • the water inlet temperature to the evaporator 14 is kept constant at 20°C, and the water inlet temperature to the heat exchanger 11 is kept constant at 35°C. Water circulation is constant both in the evaporator 14 and the heat exchanger 11.
  • the compressor is running at constant speed.
  • Fig. 6 shows the variation of refrigerating capacity (Q), compressor shaft work (W), highside pressure (p H ), CO 2 mass flow (m), CO 2 temperature at evaporator outlet (t e ), CO 2 temperature at the outlet of heat exchanger 11 (t b ) and liquid level in the receiver (h) when the throttling valve 13 is operated as indicated at the top of the figure.
  • the adjustment of throttling valve position is the only manipulation.
  • capacity (Q) is easily controlled by operating the throttling valve (13). It is further clear from the figure that at stable conditions, the circulating mass flow of CO 2 (m) is mainly constant and independent of the cooling capacity. The CO 2 temperature at the outlet of heat exchanger 11 (t b ) is also mainly constant. The graphs show that the variation of capacity is a result of varying high side pressure (p H ) only.
  • the transient period during capacity increase is not involving any significant superheating at the evaporator outlet, i.e. only small fluctuations in t e .
  • Table 1 shows results from tests run at different water inlet temperature to heat exchanger 11 (t w ).
  • the water inlet temperature to the evaporator is kept constant at 20°C, and the compressor is running at constant speed.
  • the cooling capacity can be kept mainly constant when the ambient temperature is rising, by increasing the high side pressure.
  • the refrigerant mass flow is mainly constant, as shown.
  • Increased high-side pressures involve a reduction in receiver liquid content, as indicated by the liquid level readings.
  • Table 1 Inlet temperature (t w ) 35.1 45.9 57.3 °C Refrigerating capacity (Q) 2.4 2.2 2.2 kW High side pressure (p H ) 84.9 94.3 114.1 bar
  • Mass flow 0.026 0.024 0.020 kg/s Liquid level (h) 171 166 115 mm
  • Fig. 8 is a graphic representation of trans critical cycles in the entropy/temperature diagram. The cycles shown in the diagram are based on measurements on the laboratory test device, during operation at five different high-side pressures. The evaporator pressure is kept constant. refrigerant is CO 2 .
  • the diagram gives a good impression of the capacity control principle, indicating the changes in specific enthalpy (h) at evaporator inlet caused by variation of the high-side pressure (p).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Claims (3)

  1. Verfahren zum Betreiben eines Dampfkompressionskreises mit einem Kompressor (10), einem Kühler (11), einer Drosseleinrichtung (13) und einem Verdampfer (14), die seriell miteinander verbunden sind, um einen integralen geschlossenen Kreis zu bilden, der mit überkritischem Druck auf der Hochdruckseite des Kreises arbeitet, wobei der Druck auf der Hochdruckseite durch Veränderung der jeweiligen Kältemittelfüllung auf der Hochdruckseite des Kreises durch Veränderung des Inhalts eines in dem Kreis angeordneten Kältemittel-Pufferbehälters reguliert wird, wobei der Druck durch Verringern des Inhalts erhöht wird, und umgekehrt, wodurch die spezifische Kapazität des Kreises beeinflußt wird, und wobei die Regulierung des überkritschen Drucks durch Veränderung des Flüssigkeitsinhalts eines Niederdruckkältemittelbehälters (16) ausgeführt wird, der zwischen dem Verdampfer (14) und dem Kompressor (10) liegt, und zwar unter Verwendung nur der Drosseleinrichtung (13) als Steuereinrichtung.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Zustand des Verdampferauslasses als eine Zwei-Phasen-Mischung von Dampf und Flüssigkeit gehalten wird, und zwar unter Schaffung eines Flüssigkeitsüberschusses an dem Niederdruckeinlaß eines zusätzlichen Wärmetauschers (12), wo das Niederdruckkältemittel durch Wärme von dem Hochdruckkältemittel vor dem Einlaß in den Kompressor Verdampfung und Überhitzung unterworfen wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Kältemittel Kohlendioxid ist.
EP89910211A 1989-01-09 1989-09-06 Verfahren zum betrieb eines kaltdampfprozesses unter trans- oder überkritischen bedingungen Expired - Lifetime EP0424474B2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO890076A NO890076D0 (no) 1989-01-09 1989-01-09 Luftkondisjonering.
NO890076 1989-01-09
PCT/NO1989/000089 WO1990007683A1 (en) 1989-01-09 1989-09-06 Trans-critical vapour compression cycle device

Publications (3)

Publication Number Publication Date
EP0424474A1 EP0424474A1 (de) 1991-05-02
EP0424474B1 EP0424474B1 (de) 1993-08-04
EP0424474B2 true EP0424474B2 (de) 1997-11-19

Family

ID=19891609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89910211A Expired - Lifetime EP0424474B2 (de) 1989-01-09 1989-09-06 Verfahren zum betrieb eines kaltdampfprozesses unter trans- oder überkritischen bedingungen

Country Status (10)

Country Link
EP (1) EP0424474B2 (de)
JP (1) JPH0718602B2 (de)
KR (1) KR0126550B1 (de)
DE (2) DE68908181T3 (de)
DK (1) DK167985B1 (de)
NO (2) NO890076D0 (de)
PL (1) PL285966A1 (de)
RU (1) RU2039914C1 (de)
UA (1) UA27758C2 (de)
WO (1) WO1990007683A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10306394A1 (de) * 2003-02-15 2004-08-26 Volkswagen Ag Kältemittelkreislauf mit einem geregelten Taumelscheibenkompressor
US6923011B2 (en) 2003-09-02 2005-08-02 Tecumseh Products Company Multi-stage vapor compression system with intermediate pressure vessel
DE102004015297A1 (de) * 2004-03-29 2005-11-03 Andreas Bangheri Vorrichtung und Verfahren zur zyklischen Dampfkompression

Families Citing this family (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245836A (en) * 1989-01-09 1993-09-21 Sinvent As Method and device for high side pressure regulation in transcritical vapor compression cycle
AU669473B2 (en) * 1991-09-16 1996-06-13 Sinvent As Method of high-side pressure regulation in transcritical vapor compression cycle device
NO915127D0 (no) * 1991-12-27 1991-12-27 Sinvent As Kompresjonsanordning med variabelt volum
NO175830C (no) * 1992-12-11 1994-12-14 Sinvent As Kompresjonskjölesystem
DE4411281B4 (de) * 1994-03-31 2004-07-22 Daimlerchrysler Ag Kraftfahrzeug mit einer Klimaanlage
DE4415326C1 (de) * 1994-05-02 1995-06-08 Buse Gase Gmbh & Co Verfahren und Vorrichtung zum Kühlen von Gasen und Gasgemischen mit CO¶2¶
DE4432272C2 (de) * 1994-09-09 1997-05-15 Daimler Benz Ag Verfahren zum Betreiben einer Kälteerzeugungsanlage für das Klimatisieren von Fahrzeugen und eine Kälteerzeugungsanlage zur Durchführung desselben
CH690189A5 (de) * 1995-03-10 2000-05-31 Daimler Benz Ag Verfahren zur Regelung der Leistung einer Anlage für die Kühlung des Fahrgastraumes eines Kraftfahrzeuges.
CH689826A5 (de) * 1995-05-10 1999-12-15 Daimler Benz Ag Fahrzeug-Klimaanlage.
JPH0949662A (ja) * 1995-08-09 1997-02-18 Aisin Seiki Co Ltd 圧縮式空調機
US5921756A (en) * 1995-12-04 1999-07-13 Denso Corporation Swash plate compressor including double-headed pistons having piston sections with different cross-sectional areas
DE59604923D1 (de) * 1996-01-26 2000-05-11 Konvekta Ag Kompressionskälteanlage
EP0837291B1 (de) * 1996-08-22 2005-01-12 Denso Corporation Kälteanlage des Dampfkompressionstyps
JP3508465B2 (ja) 1997-05-09 2004-03-22 株式会社デンソー 熱交換器
JPH1137579A (ja) * 1997-07-11 1999-02-12 Zexel Corp 冷凍装置
DE69831534T2 (de) * 1997-07-18 2006-06-29 Denso Corp., Kariya Drucksteuerventil für Kälteanlage
JPH1163686A (ja) * 1997-08-12 1999-03-05 Zexel Corp 冷却サイクル
JP3365273B2 (ja) * 1997-09-25 2003-01-08 株式会社デンソー 冷凍サイクル
US6206652B1 (en) 1998-08-25 2001-03-27 Copeland Corporation Compressor capacity modulation
US6105386A (en) * 1997-11-06 2000-08-22 Denso Corporation Supercritical refrigerating apparatus
JPH11193967A (ja) * 1997-12-26 1999-07-21 Zexel:Kk 冷凍サイクル
JPH11211250A (ja) 1998-01-21 1999-08-06 Denso Corp 超臨界冷凍サイクル
DE19806654A1 (de) * 1998-02-18 1999-08-19 Obrist Engineering Gmbh Klimaanlage für Fahrzeuge
DE19813220C2 (de) * 1998-03-26 2002-12-12 Univ Dresden Tech Kolbenexpansionsmaschine und Verfahren zur Einbindung dieser Maschine in einen transkritischen Kompressionskälteprozeß
DE19813673B4 (de) 1998-03-27 2004-01-29 Daimlerchrysler Ag Verfahren und Vorrichtung zum Heizen und Kühlen eines Nutzraumes eines Kraftfahrzeuges
JP3861451B2 (ja) 1998-04-20 2006-12-20 株式会社デンソー 超臨界冷凍サイクル
DE19829335C2 (de) * 1998-07-01 2000-06-08 Kki Klima-, Kaelte- Und Industrieanlagen Schmitt Kg Kälteanlage
DE19832479A1 (de) * 1998-07-20 2000-01-27 Behr Gmbh & Co Mit CO¶2¶ betreibbare Klimaanlage
DE19832480A1 (de) * 1998-07-20 2000-01-27 Behr Gmbh & Co Mit CO¶2¶ betreibbare Klimaanlage für ein Fahrzeug
EP1120612A4 (de) 1998-10-08 2002-09-25 Zexel Valeo Climate Contr Corp Kältekreislauf
EP1124099A4 (de) 1998-10-19 2002-09-25 Zexel Valeo Climate Contr Corp Kältekreislauf
DE19850914A1 (de) * 1998-11-05 2000-05-18 Messer Griesheim Gmbh Klimaanlage und Verfahren zur Steuerung einer Klimaanlage
JP3227651B2 (ja) * 1998-11-18 2001-11-12 株式会社デンソー 給湯器
DE19918617C2 (de) * 1999-04-23 2002-01-17 Valeo Klimatechnik Gmbh Gaskühler für einen überkritischen CO¶2¶-Hochdruck-Kältemittelkreislauf einer Kraftfahrzeugklimaanlage
JP2000320910A (ja) * 1999-05-11 2000-11-24 Bosch Automotive Systems Corp 冷凍サイクルの制御方法及びこの方法を用いた冷凍サイクル
JP4043144B2 (ja) 1999-06-08 2008-02-06 三菱重工業株式会社 スクロール圧縮機
JP2000352389A (ja) 1999-06-08 2000-12-19 Mitsubishi Heavy Ind Ltd スクロール圧縮機
JP2001055988A (ja) 1999-06-08 2001-02-27 Mitsubishi Heavy Ind Ltd スクロール圧縮機
JP2000346472A (ja) 1999-06-08 2000-12-15 Mitsubishi Heavy Ind Ltd 超臨界蒸気圧縮サイクル
WO2001006183A1 (fr) * 1999-07-16 2001-01-25 Zexel Valeo Climate Control Corporation Cycle frigorifique
DE19935731A1 (de) * 1999-07-29 2001-02-15 Daimler Chrysler Ag Verfahren zum Betreiben einer unter- und transkritisch betriebenen Fahrzeugkälteanlage
JP3389539B2 (ja) 1999-08-31 2003-03-24 三洋電機株式会社 内部中間圧型2段圧縮式ロータリコンプレッサ
JP2001108315A (ja) * 1999-10-06 2001-04-20 Zexel Valeo Climate Control Corp 冷凍サイクル
JP2001174076A (ja) * 1999-10-08 2001-06-29 Zexel Valeo Climate Control Corp 冷凍サイクル
JP2002048421A (ja) 2000-08-01 2002-02-15 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2002130849A (ja) 2000-10-30 2002-05-09 Calsonic Kansei Corp 冷房サイクルおよびその制御方法
US6457325B1 (en) * 2000-10-31 2002-10-01 Modine Manufacturing Company Refrigeration system with phase separation
US6385980B1 (en) * 2000-11-15 2002-05-14 Carrier Corporation High pressure regulation in economized vapor compression cycles
JP3510587B2 (ja) * 2000-12-06 2004-03-29 三菱重工業株式会社 空調装置用冷却サイクルおよび冷却サイクル用潤滑油
US6523365B2 (en) * 2000-12-29 2003-02-25 Visteon Global Technologies, Inc. Accumulator with internal heat exchanger
DE10137999A1 (de) * 2001-08-02 2003-02-13 Bayerische Motoren Werke Ag Kälteanlage, Wärmetauscher hierfür sowie Kältemittel-Kreisprozess
DE10140630A1 (de) * 2001-08-18 2003-02-27 Bayerische Motoren Werke Ag Kälteanlage für ein Kraftfahrzeug sowie Kältemittel-Kreisprozess
US7076964B2 (en) * 2001-10-03 2006-07-18 Denso Corporation Super-critical refrigerant cycle system and water heater using the same
JP3956674B2 (ja) * 2001-11-13 2007-08-08 ダイキン工業株式会社 冷媒回路
US6568199B1 (en) * 2002-01-22 2003-05-27 Carrier Corporation Method for optimizing coefficient of performance in a transcritical vapor compression system
CN1610809A (zh) 2002-03-28 2005-04-27 松下电器产业株式会社 制冷循环装置
JP2003294338A (ja) * 2002-03-29 2003-10-15 Japan Climate Systems Corp 熱交換器
JP4522641B2 (ja) * 2002-05-13 2010-08-11 株式会社デンソー 蒸気圧縮式冷凍機
DE20208337U1 (de) * 2002-05-28 2003-10-16 Thermo King Deutschland Gmbh Anordnung zum Klimatisieren eines Fahrzeugs
DE10223712C1 (de) * 2002-05-28 2003-10-30 Thermo King Deutschland Gmbh Anordnung zum Klimatisieren eines Fahrzeugs
TWI301188B (en) 2002-08-30 2008-09-21 Sanyo Electric Co Refrigeant cycling device and compressor using the same
JP4286064B2 (ja) * 2003-05-30 2009-06-24 三洋電機株式会社 冷却装置
JP4179927B2 (ja) 2003-06-04 2008-11-12 三洋電機株式会社 冷却装置の冷媒封入量設定方法
DE10332505B3 (de) * 2003-07-17 2005-01-13 Daimlerchrysler Ag Klimaanlage
DE10338388B3 (de) * 2003-08-21 2005-04-21 Daimlerchrysler Ag Verfahren zur Regelung einer Klimaanlage
US6959557B2 (en) 2003-09-02 2005-11-01 Tecumseh Products Company Apparatus for the storage and controlled delivery of fluids
US6813895B2 (en) * 2003-09-05 2004-11-09 Carrier Corporation Supercritical pressure regulation of vapor compression system by regulation of adaptive control
JP2005098635A (ja) * 2003-09-26 2005-04-14 Zexel Valeo Climate Control Corp 冷凍サイクル
US7010927B2 (en) * 2003-11-07 2006-03-14 Carrier Corporation Refrigerant system with controlled refrigerant charge amount
US7096679B2 (en) 2003-12-23 2006-08-29 Tecumseh Products Company Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device
KR20050072299A (ko) * 2004-01-06 2005-07-11 삼성전자주식회사 냉난방 공기조화시스템
US7131294B2 (en) 2004-01-13 2006-11-07 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube
JP2005214444A (ja) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd 冷凍装置
JP2005226913A (ja) * 2004-02-12 2005-08-25 Sanyo Electric Co Ltd 遷臨界冷媒サイクル装置
JP2005226918A (ja) * 2004-02-12 2005-08-25 Sanyo Electric Co Ltd 太陽電池駆動冷媒サイクル装置、給湯器、温蔵庫、冷却貯蔵庫、飲料供給装置及び空気調和機
JP2005226927A (ja) * 2004-02-13 2005-08-25 Sanyo Electric Co Ltd 冷媒サイクル装置
DE102004008210A1 (de) * 2004-02-19 2005-09-01 Valeo Klimasysteme Gmbh Kraftfahrzeugklimaanlage
DE102004014812B3 (de) 2004-03-24 2005-08-11 Adam Opel Ag Fahrzeug-Klimmaanlage
JP2009052880A (ja) * 2004-03-29 2009-03-12 Mitsubishi Electric Corp ヒートポンプ給湯機
JP4613526B2 (ja) * 2004-06-23 2011-01-19 株式会社デンソー 超臨界式ヒートポンプサイクル装置
NL1026728C2 (nl) * 2004-07-26 2006-01-31 Antonie Bonte Verbetering van koelsystemen.
JP4670329B2 (ja) 2004-11-29 2011-04-13 三菱電機株式会社 冷凍空調装置、冷凍空調装置の運転制御方法、冷凍空調装置の冷媒量制御方法
DE102005022513A1 (de) * 2005-05-11 2006-11-16 Behr Gmbh & Co. Kg Kältemittelleitungen für Klimageräte
JP2007085685A (ja) * 2005-09-26 2007-04-05 Sanyo Electric Co Ltd ソーラー発電を用いたco2サイクル駆動装置
JP4591355B2 (ja) * 2006-01-13 2010-12-01 株式会社日立プラントテクノロジー 除湿空調システム
WO2007080979A1 (ja) * 2006-01-13 2007-07-19 Hitachi Plant Technologies, Ltd. 除湿空調システム
JP4848211B2 (ja) * 2006-06-08 2011-12-28 株式会社日立プラントテクノロジー 除湿空調システム
JP2007187407A (ja) * 2006-01-16 2007-07-26 Mitsubishi Electric Corp 冷凍サイクル装置及び冷凍サイクル装置の運転方法
DE102006005035B3 (de) 2006-02-03 2007-09-27 Airbus Deutschland Gmbh Kühlsystem
JP2007263433A (ja) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd 冷媒サイクル装置及び冷媒サイクル装置用熱交換器
CN101460790A (zh) 2006-06-01 2009-06-17 开利公司 调节受控膨胀阀的系统与方法
DE102007043162B4 (de) * 2006-09-14 2021-02-25 Konvekta Ag Klimaanlage mit automatischer Kältemittelverlagerung
JP5040256B2 (ja) * 2006-10-19 2012-10-03 パナソニック株式会社 冷凍サイクル装置およびその制御方法
WO2008066530A2 (en) * 2006-11-30 2008-06-05 Carrier Corporation Refrigerant charge storage
DE102007027524A1 (de) * 2007-06-15 2008-12-18 Bayerische Motoren Werke Aktiengesellschaft Hybridfahrzeug
NO327832B1 (no) * 2007-06-29 2009-10-05 Sinvent As Dampkompresjons-kjolesystem med lukket krets samt fremgangsmate for drift av systemet.
US8157538B2 (en) 2007-07-23 2012-04-17 Emerson Climate Technologies, Inc. Capacity modulation system for compressor and method
DE202007011617U1 (de) 2007-08-20 2009-01-08 Thermo King Deutschland Gmbh Anordnung zum Klimatisieren eines Fahrzeugs
DE102007039195B4 (de) * 2007-08-20 2015-03-26 Ingersoll-Rand Klimasysteme Deutschland Gmbh Anordnung zum Klimatisieren eines Fahrzeugs
JP2009139037A (ja) * 2007-12-07 2009-06-25 Mitsubishi Heavy Ind Ltd 冷媒回路
JP2011521194A (ja) * 2008-05-14 2011-07-21 キャリア コーポレイション 冷媒蒸気圧縮システムにおける充填管理
DK2318782T3 (en) * 2008-07-07 2019-04-23 Carrier Corp COOLING CIRCUIT
NO331155B1 (no) 2008-12-02 2011-10-24 Varmepumpen As Varmepumpe/luftkondisjoneringsapparat med sekvensiell drift
US8308455B2 (en) 2009-01-27 2012-11-13 Emerson Climate Technologies, Inc. Unloader system and method for a compressor
WO2010120343A2 (en) * 2009-04-01 2010-10-21 Thar Geothermal, Inc. Geothermal energy system
JP2010261670A (ja) * 2009-05-08 2010-11-18 Mitsubishi Electric Corp 冷凍装置
EP2339265B1 (de) 2009-12-25 2018-03-28 Sanyo Electric Co., Ltd. Kühlvorrichtung
JP2011133208A (ja) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd 冷凍装置
JP5484890B2 (ja) * 2009-12-25 2014-05-07 三洋電機株式会社 冷凍装置
JP2011133206A (ja) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd 冷凍装置
JP5496645B2 (ja) * 2009-12-25 2014-05-21 三洋電機株式会社 冷凍装置
DK2339266T3 (en) 2009-12-25 2018-05-28 Sanyo Electric Co Cooling device
JP5484889B2 (ja) * 2009-12-25 2014-05-07 三洋電機株式会社 冷凍装置
DK2627876T3 (en) 2010-10-14 2015-06-15 Energreen Heat Recovery As A method and system for utilizing a power source of relatively low temperature
DE102011052776B4 (de) * 2011-04-27 2016-12-29 Dürr Thermea Gmbh Überkritische Wärmepumpe
JP6174314B2 (ja) * 2012-12-14 2017-08-02 シャープ株式会社 冷凍システム装置
JP6087611B2 (ja) * 2012-12-14 2017-03-01 シャープ株式会社 冷凍サイクル及びこれを備えた空気調和機
FR3005154B1 (fr) * 2013-04-26 2015-05-15 Commissariat Energie Atomique Four a chauffage par induction electromagnetique, utilisation du four pour la fusion d'un melange de metal(ux) et d'oxyde(s) representatif d'un corium
WO2015022958A1 (ja) 2013-08-14 2015-02-19 セントラル硝子株式会社 熱伝達方法及び高温ヒートポンプ装置
JP6388260B2 (ja) * 2014-05-14 2018-09-12 パナソニックIpマネジメント株式会社 冷凍装置
JP6555584B2 (ja) 2015-09-11 2019-08-07 パナソニックIpマネジメント株式会社 冷凍装置
JP6814974B2 (ja) 2015-09-11 2021-01-20 パナソニックIpマネジメント株式会社 冷凍装置
FR3044748B1 (fr) * 2015-12-03 2019-07-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Four a creuset froid a chauffage par deux inducteurs electromagnetiques, utilisation du four pour la fusion d'un melange de metal(ux) et d'oxyde(s) representatif d'un corium
WO2017138420A1 (ja) * 2016-02-08 2017-08-17 パナソニックIpマネジメント株式会社 冷凍装置
JP6653463B2 (ja) * 2016-02-08 2020-02-26 パナソニックIpマネジメント株式会社 冷凍装置
EP3431896B1 (de) * 2016-03-17 2019-11-06 Mitsubishi Electric Corporation Warmwasserzuführer für wärmepumpe
WO2018163345A1 (ja) * 2017-03-09 2018-09-13 三菱電機株式会社 ヒートポンプ給湯装置
DE102017118425A1 (de) 2017-08-13 2019-02-14 Konvekta Aktiengesellschaft Kreislaufsystem für ein Fahrzeug und Verfahren dazu
DE102017118424A1 (de) 2017-08-13 2019-02-14 Konvekta Aktiengesellschaft Kreislaufsystem für ein Brennstoffzellen-Fahrzeug
JP2019207088A (ja) * 2018-05-30 2019-12-05 株式会社前川製作所 ヒートポンプシステム
CN109163917B (zh) * 2018-07-19 2020-03-31 西安交通大学 一种跨临界co2热泵加速寿命实验系统及方法
JP2022083749A (ja) 2020-11-25 2022-06-06 パナソニックIpマネジメント株式会社 冷凍装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE278095C (de) *
US1408453A (en) * 1921-01-24 1922-03-07 Justus C Goosmann Refrigerating apparatus
US3400555A (en) * 1966-05-02 1968-09-10 American Gas Ass Refrigeration system employing heat actuated compressor
JPS49128344A (de) * 1973-04-11 1974-12-09
US3844131A (en) * 1973-05-22 1974-10-29 Dunham Bush Inc Refrigeration system with head pressure control
US3872682A (en) * 1974-03-18 1975-03-25 Northfield Freezing Systems In Closed system refrigeration or heat exchange
GB1544804A (en) * 1977-05-02 1979-04-25 Commercial Refrigeration Ltd Apparatus for and methods of transferring heat between bodies of fluid or other substance
US4224801A (en) * 1978-11-13 1980-09-30 Lewis Tyree Jr Stored cryogenic refrigeration
JPS5582270A (en) * 1978-12-15 1980-06-20 Nippon Denso Co Refrigerating plant
JPS5828906B2 (ja) * 1980-09-05 1983-06-18 株式会社デンソー 冷凍装置
JPS58120056A (ja) * 1982-01-09 1983-07-16 三菱電機株式会社 冷凍装置
KR860002704A (ko) * 1984-09-06 1986-04-28 야마시다 도시히꼬 열펌프장치
JPH0718602A (ja) * 1993-06-29 1995-01-20 Sekisui Chem Co Ltd 埋込栓

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10306394A1 (de) * 2003-02-15 2004-08-26 Volkswagen Ag Kältemittelkreislauf mit einem geregelten Taumelscheibenkompressor
US6923011B2 (en) 2003-09-02 2005-08-02 Tecumseh Products Company Multi-stage vapor compression system with intermediate pressure vessel
DE102004015297A1 (de) * 2004-03-29 2005-11-03 Andreas Bangheri Vorrichtung und Verfahren zur zyklischen Dampfkompression

Also Published As

Publication number Publication date
EP0424474B1 (de) 1993-08-04
DK214690A (da) 1990-11-06
KR0126550B1 (ko) 1998-04-03
RU2039914C1 (ru) 1995-07-20
KR910700437A (ko) 1991-03-15
DE68908181T2 (de) 1994-04-14
DK214690D0 (da) 1990-09-07
PL285966A1 (en) 1991-03-25
JPH0718602B2 (ja) 1995-03-06
NO903903L (no) 1990-09-07
NO171810C (no) 1993-05-05
JPH03503206A (ja) 1991-07-18
EP0424474A1 (de) 1991-05-02
DK167985B1 (da) 1994-01-10
WO1990007683A1 (en) 1990-07-12
NO171810B (no) 1993-01-25
DE68908181D1 (de) 1993-09-09
DE68908181T4 (de) 1995-06-14
NO903903D0 (no) 1990-09-07
DE68908181T3 (de) 1998-06-18
UA27758C2 (uk) 2000-10-16
NO890076D0 (no) 1989-01-09

Similar Documents

Publication Publication Date Title
EP0424474B2 (de) Verfahren zum betrieb eines kaltdampfprozesses unter trans- oder überkritischen bedingungen
US5245836A (en) Method and device for high side pressure regulation in transcritical vapor compression cycle
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
DK2147264T3 (en) Refrigerant vapor compression system
KR100360006B1 (ko) 초 임계 증기 압축 장치
US8671703B2 (en) Refrigerant vapor compression system with flash tank economizer
US9951974B2 (en) Flash tank economizer cycle control
JP3838008B2 (ja) 冷凍サイクル装置
WO2008019689A2 (en) A transcritical refrigeration system with a booster
JP2000508753A (ja) 予冷却蒸気―液体冷凍サイクル
CZ288012B6 (cs) Zařízení a způsob pro řízení tlaku ve vysokotlaké části v zařízení s odpařovacím tlakovým cyklem
JPH11193967A (ja) 冷凍サイクル
US6161391A (en) Environmental test chamber fast cool down system and method therefor
US3952533A (en) Multiple valve refrigeration system
CA2018250C (en) Trans-critical vapour compression cycle device
JPH1038393A (ja) 冷媒循環式熱移動装置
JP3480205B2 (ja) 空気調和機
JP3084920B2 (ja) ヒートポンプ給湯機
JP3356601B2 (ja) 非共沸冷媒使用のヒートポンプ装置
KR20230150445A (ko) 냉동싸이클 시스템의 수액기 냉매액 온도저감방법
CN115585567A (zh) 低温制冷循环两级预冷的复叠制冷系统及控制方法
JPH1038394A (ja) 冷媒循環式熱移動装置
CZ287444B6 (cs) Způsob regulování výkonu parního kompresorového okruhu
JPH0248823B2 (ja) Hiitohonpu
JPS62268959A (ja) ヒ−トポンプ給湯機

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL SE

17Q First examination report despatched

Effective date: 19910624

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LORENTZEN, GUSTAV

Owner name: SINVENT A/S

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 68908181

Country of ref document: DE

Date of ref document: 19930909

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVE

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

NLS Nl: assignments of ep-patents

Owner name: SINVENT A/S TE TRONDHEIM, NOORWEGEN.

26 Opposition filed

Opponent name: HAGENUK FAHRZEUGKLIMA GMBH

Effective date: 19940430

26 Opposition filed

Opponent name: HAGENUK FAHRZEUGKLIMA GMBH

Effective date: 19940430

Opponent name: HI-TEC ELECTRONIK VERTRIEBS GMBH

Effective date: 19940504

NLR1 Nl: opposition has been filed with the epo

Opponent name: HAGENUK FAHRZEUGKLIMA GMBH.

Opponent name: HI-TEC ELEKTRONIK VERTRIEBS GMBH

EAL Se: european patent in force in sweden

Ref document number: 89910211.5

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19971119

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB IT NL SE

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

NLR2 Nl: decision of opposition
ET3 Fr: translation filed ** decision concerning opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060903

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080926

Year of fee payment: 20

Ref country code: FR

Payment date: 20080915

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080910

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080919

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080908

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20090905

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090905