CN109920807B - 放射线摄像装置及其驱动方法、放射线摄像系统 - Google Patents

放射线摄像装置及其驱动方法、放射线摄像系统 Download PDF

Info

Publication number
CN109920807B
CN109920807B CN201811438386.9A CN201811438386A CN109920807B CN 109920807 B CN109920807 B CN 109920807B CN 201811438386 A CN201811438386 A CN 201811438386A CN 109920807 B CN109920807 B CN 109920807B
Authority
CN
China
Prior art keywords
pixel
pixel groups
pixels
signals
pixel group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811438386.9A
Other languages
English (en)
Other versions
CN109920807A (zh
Inventor
竹中克郎
岩下贵司
猿田尚志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN109920807A publication Critical patent/CN109920807A/zh
Application granted granted Critical
Publication of CN109920807B publication Critical patent/CN109920807B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/766Addressed sensors, e.g. MOS or CMOS sensors comprising control or output lines used for a plurality of functions, e.g. for pixel output, driving, reset or power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/74Circuitry for scanning or addressing the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array

Abstract

本发明公开一种放射线摄像装置及其驱动方法、放射线摄像系统。像素阵列包括像素,各像素包括转换元件和开关,开关具有控制端子、连接到转换元件的第一主端子以及连接到信号线中的一个的第二主端子。像素阵列包括像素组,各像素组包括排列成构成至少2行×2列图案的像素。在各个像素组的像素中,控制端子连接到不同的驱动线,且第二主端子共同连接到信号线中的一个信号线。在像素组中,第一和第二像素组在列方向上彼此相邻排列。经由信号线中的第一信号线从第一像素组中读取信号。经由信号线中的第二信号线从第二像素组中读取信号。

Description

放射线摄像装置及其驱动方法、放射线摄像系统
技术领域
本发明涉及一种放射线摄像装置、放射线摄像系统以及驱动放射线摄像装置的方法。
背景技术
放射线摄像装置已广泛用于医学图像诊断、非破坏性检查等领域中。在一些情况下,放射线摄像装置以分辨率优先于速度执行摄像,而另一些情况下,放射线摄像装置以速度优先于分辨率执行摄像。例如,在静止图像摄像中,通常分辨率优先于速度,而在运动图像摄像中,通常速度优先于分辨率。
日本特开5694882号公报公开了针对每个像素设置两个切换元件(switchingelement)的放射线摄像装置。该放射线摄像装置针对静止图像摄影和运动图像摄影采用不同的切换元件,以便在静止图像摄影中读出高分辨率信号,而在运动图像摄影中读出低分辨率信号。
如日本特开5694882号公报公开的结构中那样,当通过追加切换元件来实施高分辨率读取和低分辨率读取时,切换元件数量的增加能够导致收益减少或费用增加。另外,切换元件数量的增加会对转换元件的面积施加限制,并使灵敏度降低。
发明内容
本发明提供一种技术,该技术优势在于:在抑制所需开关数量的增加的同时,能够改变读出分辨率。
本发明的第一方面提供一种放射线摄像装置,包括:排列有多个像素以形成多个行和多个列的像素阵列,以及配置为经由多个信号线从像素阵列中读出信号的读出电路,其中,各个像素包括转换元件和开关,所述转换元件配置为将放射线转换成信号,所述开关包括:控制端子、电连接到转换元件的第一主端子以及电连接到所述多个信号线中的一个信号线的第二主端子,像素阵列包括多个像素组,各个像素组包括排列为构成至少为2行×2列图案的像素,属于各个像素组的像素的开关被配置为:使得控制端子电连接到多个不同驱动线,且第二主端子共同电连接到多个信号线中的一个信号线,多个信号线包括第一信号线和第二信号线,并且,多个像素组包括第一像素组和在列方向上与第一像素组相邻排列的第二像素组,经由第一信号线从第一像素组读出信号,以及,经由第二信号线从第二像素组读出信号。
本发明的第二方面提供一种放射线摄像装置,包括:排列有多个像素以形成多个行和多个列的像素阵列、配置为经由多个信号线从像素阵列中读出信号的读出电路,以及配置为驱动像素阵列的驱动电路,其中,各个像素包括配置为将放射线转换成信号的转换元件和开关,所述像素阵列包括多个像素组,各个像素组包括排列为构成至少为2行×2列图案的像素,驱动电路经由多个不同驱动线将驱动信号提供给各像素组的相应像素的开关,经由多个信号线中的一个信号线读出信号,多个信号线包括第一信号线和第二信号线,并且,多个像素组包括第一像素组和第二像素组,以及,在第一模式下,驱动电路将具有不同有效周期的驱动信号经由多个驱动线提供给各个像素组的相应像素的相应开关,以及,在第二模式下,驱动电路将有效周期彼此重叠的驱动信号经由多个驱动线提供给各个像素组的相应像素的开关,从而经由第一信号线从第一像素组读出信号,经由第二信号线从第二像素组读出信号。
本发明的第三方面提供一种放射线摄像系统,包括:本发明第一或第二方面中限定的放射线摄像装置,放射源,以及计算机,其被配置为控制放射线摄像装置。
本发明的第四方面提供一种驱动放射线摄像装置的方法,放射线摄像装置包括:排列有多个像素以形成多个行和多个列的像素阵列、多个信号线、配置为经由多个信号线从像素阵列中读出信号的读出电路以及配置为驱动像素阵列的驱动电路,所述方法包括:经由不同的信号线、从构成形成了像素阵列的一行的像素中的仅一部分以及构成另一行的像素中的仅一部分中同时读出信号的模式。
根据以下参照附图对示例性实施例的详细描述,本发明的其他特征将变得清楚。
附图说明
图1是示出根据第一实施方式的放射线摄像系统的结构的框图。
图2是示出根据第一实施方式的放射线摄像系统的放射线检测面板的结构示例的电路图。
图3是示意性示出像素的断面结构示例的视图。
图4是示出根据第一实施方式的放射线摄像系统的操作的时间图。
图5是示出根据第一实施方式的放射线摄像系统的操作的时间图。
图6是示出根据第二实施方式的放射线摄像系统的放射线检测面板的结构示例的电路图。
图7是示出根据第三实施方式的放射线摄像系统的放射线检测面板的结构示例的电路图。
图8是示出根据第四实施方式的放射线摄像系统的放射线检测面板的结构示例的电路图。
图9是示出根据第四实施方式的放射线摄像系统的操作的时间图。
具体实施方式
以下将参照附图详细描述本发明的示例性实施例。
图1示出了根据本发明第一实施方式的放射线摄像系统200的结构。放射线摄像系统200配置为电拍摄通过放射线形成的光学图像,并获得电放射线图像(即放射线图像数据)。典型的放射线可以包括X线,并可以是α线、β线,γ线等。放射线摄像系统200可以包括诸如放射线摄像装置210、放射线源230、曝光控制器220以及计算机240。
根据来自曝光控制器220的曝光命令(发射命令),放射线源230开始发射放射线。从放射线源230发射的放射线通过物体(未示出)照射放射线发射装置210。根据来自曝光控制器220的停止命令,放射线源230停止发射放射线。放射线摄像装置210包括放射线检测面板212和控制该放射线检测面板的控制器214。
基于从放射线检测面板212处获得的信号,控制器214能够生成用于停止放射线源230发射放射线的停止信号。停止信号被提供给曝光控制器220。响应于该停止信号,曝光控制器220能够向放射线源230发送停止命令。控制器214可以由例如可编程逻辑器件(PLD)(例如现场可编辑门阵列(FPGA))、专用集成电路(ASIC)、通用计算机合并程序,或由其全部组合或部分组合构成。
计算机240控制放射线摄像装置210和曝光控制器220,并接收和处理来自放射线摄像装置210的放射线图像数据。例如,曝光控制器220包括曝光开关,从而当用户打开该曝光开关时,曝光控制器220向放射线源230发送曝光命令,并向控制器240发送指示开始发射放射线的开始通知。收到开始通知后,计算机240对该开始通知作出响应,来通知放射线摄像装置210的控制器214开始发射反射线。
图2示出了放射线检测面板212的结构示例。放射线检测面板212包括像素阵列112。多个像素P(即像素P11至P44)设置在像素阵列112中,从而形成多个行和多个列。各个像素P被配置为检测放射线。放射线检测面板212包括多个信号线Sig,即信号线Sig0至Sig4。放射线检测面板212还包括驱动像素阵列112的驱动电路(行选择电路)114和通过多个信号线Sig从像素阵列112读出信号的读出电路113。为了便于解释,图2示出由4行×4列像素P形成的像素阵列112。实际上,可以排列更多像素P。例如,放射线检测面板212的尺寸为17英寸,可以包括大约3000行×3000列像素P。
像素P分别包括将放射线转换成信号的转换元件(conversion element)S(即转换元件S11至S44)和将转换元件S连接到信号线Sig的开关(switch)T(即开关T11至T44)。注意,在本说明书中,术语“信号”指的是电信号,“连接”指的是电连接。两个构成元件之间的连接(电连接)可以包括例如直接连接该两个构成元件的形式,经过导体连接构成元件的形式,以及经由开关等通过被控制而处于导通状态的其他构成元件来连接构成元件的形式。各转换元件S向相应信号线Sig输出与入射放射线的量对应的信号。转换元件S可以包括例如由设置在玻璃基板等绝缘基底上的非晶硅作为主材料构成的MIS光电二极管。可选择地,转换元件S可以包括PIN光电二极管。转换元件S可以构成为经由闪烁体层将放射线转换为光、然后将光转换为信号的间接型元件。当使用这样的间接型元件时,闪烁体层可由多个像素PIX共享。可选择地,转换元件S可以构成为直接将放射线转换为信号的直接型元件。
各个开关T可以由具有控制端子(门)和第一及第二主端子(源和漏)的薄膜晶体管(TFT)等晶体管构成。转换元件S包括两个电极。转换元件S的一个电极连接至开关T的第一主端子。转换元件S的另一个电极经由通用偏置线BL连接至偏置电源(bias powersupply)。偏置电源生成偏置电压。开关T的控制端子连接至多个驱动线Vg(即驱动线Vg1a、Vg1b…Vg4a及Vg4b)中的一个相应驱动线。开关T的第二主端子连接至多个信号线Sig中的一个相应信号线。
像素阵列112包括多个像素组PG(即像素组PG11、PG12和PG21)。各像素组PG由排列为构成至少2行×2列图案的像素P构成。换言之,各个像素组PG由n×m像素P的集合构成。在此情况下,n表示像素组PG中列方向上像素的数量,其为2以上的自然数,m表示像素组PG中行方向上像素的数量,其为2以上的自然数。在图2所示的情况下,各个像素组PG包括排列为构成2行×2列图案的像素P。多个像素组PG设置为矩阵图案或二维图案。
在图2所示的情况下,像素P11、P12、P21及P22构成一个像素组PG11,像素P13、P14、P23及P24构成一个像素组PG12。此外,像素P32、P33、P42及P43构成一个像素组PG21。注意,像素P31和P41构成的组不满足像素应构成至少2行×2列图案这一条件,因此被作为不完整像素组来处理。同样地,像素P34和P44构成的组不满足像素应构成至少2行×2列图案这一条件,因此被作为不完整像素组来处理。尽管已通过例示包括被排列为构成2行×2列图案的像素P的像素组PG而描述了本实施方式,但本发明并不限于此。例如,各个像素组PG可以包括被排列为构成3行×3列图案的多个像素P,或者更宽泛地,构成至少2行×2列图案。
各像素组PG的像素P的开关T分别连接至与不同控制端子相连接的多个驱动线Vg,并且第二主端子共同连接到多个信号线Sig中用于相应像素组PG的一个信号线Sig。例如,由像素P11、P12、P21及P22构成的像素组PG11的开关T11、T12、T21和T22分别连接到与不同控制端子相连接的驱动线Vg1a、Vg1b、Vg2a及Vg2b。另外,像素组PG11的开关T11、T12、T21和T22的第二主端子共同连接到针对相应像素组PG的一个信号线Sig1。多个像素组PG包括第一像素组PG11和在列方向上与第一像素组PG11相邻设置的第二像素组PG21。经由第一信号线Sig1从第一像素组PG11中读出信号,经由第二信号线Sig2从第二像素组PG21中读出信号。在此情况下,第一像素组PG11和第二像素组PG21设置为在列方向上彼此相邻,从而第一像素组PG11的像素P22与第二像素组PG21的像素P32相邻。
在第一实施方式中,多个驱动线Vg被设置为使得像素阵列112中的各行(由像素P构成)被分配至少两个驱动线Vg。在图2所示的情况下,多个驱动线Vg被设置为使得像素阵列112中的各行(由像素P构成)被分配两个驱动线Vg。
以下将从另一视角描述这样的设置。就是说,在第一实施方式中,一个像素组由这样的像素构成:这些像素的开关的控制端子连接到不同的驱动线,而开关的所有第二主端子连接到同一个信号线。一个像素组由至少2行×2列像素构成,且构成一个像素组的2行×2列像素不包括构成其他像素组的像素。另外,在第一实施方式中,构成一个像素组,从而允许一个虚拟矩形包围该组。此外,在第一实施方式中,连接到不同信号线或相同信号线的相邻像素不属于同一个像素组。除非另有说明,否则上述这点也适用于本说明书中的其他实施方式。
考虑由较大数量的像素组构成像素阵列112的情况。多个像素组PG可以包括连接到第一信号线Sig1的多个第一像素组PG11、PG31…,以及连接到第二信号线Sig2的多个第二像素组PG21、PG41…。所述多个第二像素组PG21、PG41…中的各个像素组在列方向上与所述多个第一像素组PG11、PG31…中的至少一个像素组相邻。具体而言,所述多个第二像素组PG21、PG41…中的各个像素组在列方向上与所述多个第一像素组PG11、PG31…中的一个或两个像素组相邻。在此情况下,像素组PG31可以由像素P51、P52、P61及P62构成。像素组PG41可以由像素P72、P73、P82及P83构成。注意,像素Pxy表示像素排列在第x行和第y列。第一像素组PG11和PG31与第二像素组PG21和PG41可以交替排列。可选择地,第一像素组PG11和PG31与第二像素组PG21和PG41可以沿列方向排列成交错图案。
在第一模式下,驱动电路114经由多个相应驱动线Vg将具有不同有效周期的驱动信号提供给构成像素组PG的多个像素的开关T。这样使得读出电路113能经由一个信号线Sig从构成像素组PG的多个像素P中单独读出信号。
相反地,在第二模式下,驱动电路114经由多个相应驱动线Vg将有效周期彼此重叠的驱动信号提供给构成像素组PG的多个像素的开关T。这样使得读出电路113能够经由一个信号线Sig读出通过对来自构成像素组PG的所述多个像素P的信号进行合成而获得的合成信号(平均信号)。
因此,在本实施方式中,在第二模式下,能够以第一模式下四倍的读出速度从像素阵列112中读出信号。另一方面,在本实施方式中,在第一模式下,能够以第二模式下四倍(二倍×二倍)的分辨率形成图像。因此,第一模式可以适当用作静止图像模式、高分辨率模式等,而第二模式可以适当用作运动图像模式、低分辨率模式、预览模式等。
读出电路113包括多个列放大器CA,从而一个列放大器CA对应一个信号线Sig。各个列放大器CA包括诸如积分放大器105、可变放大器104、采样/保持电路107以及缓冲电路106。积分放大器105放大出现在相应信号线Sig上的信号。积分放大器105可以包括运算放大器以及在运算放大器的反相输入端子和输出端子之间并列连接的积分电容器和重置开关。将基准电位Vref提供给运算放大器的非反相输入端子。打开重置开关将会重置积分电容器,并会将信号的电位重置为基准电位Vref。可通过控制器214所提供的重置脉冲RC来控制重置开关。
可变放大器104以积分放大器105设置的放大率执行放大。采样/保持电路107对来自可变放大器104的信号进行采样/保持。采样/保持电路107可由例如采样开关和采样电容器构成。在缓冲(阻抗转换)时,缓冲电路106将来自采样/保持电路107的信号进行输出。可通过控制器214所提供的采样脉冲来控制采样开关。
读出电路113包括复用器108,该复用器按照预定顺序对来自与多个信号线Sig对应地设置的多个列放大器CA的信号进行选择和输出。复用器108包括例如移位寄存器。移位寄存器根据控制器214提供的时钟信号进行移位操作,并从多个列放大器CA中选择一个信号。读出电路113也可以包括对从复用器108输出的信号执行缓冲(阻抗转换)的缓冲器109,以及将作为模拟信号而从缓冲器109输出的信号转换为数字信号的AD转换器110。从AD转换器110的输出,即放射线图像数据,被提供给计算机240。
将参照图3描述像素P的结构示例。图3示意性示出了一个像素P的截面结构示例。像素P可以形成在玻璃基板等绝缘基板10上。像素P在绝缘基板10上可以包括第一导体层11、第一绝缘层12、第一半导体层13、第一杂质半导体层14以及第二导体层15。第一导体层11可以构成形成开关T的晶体管(例如TFT)的门。第一绝缘层12可以设置为覆盖第一导体层11。第一半导体层13可以设置在第一导体层11中构成门的部分上的第一绝缘层12上。第一杂质半导体层14可以位于第一半导体层13上,以便构成形成开关T的晶体管的两个主端子(源和漏)。第二导体层15可以形成分别连接到构成开关T的晶体管的两个主端子(源和漏)的布线图案。第二导体层15的一部分构成信号线Sig,而第二导体层15的其他部分可以形成用于将转换元件S连接到开关T的布线图案。
像素P也可以包括覆盖第一绝缘层12和第二导体层15的介电夹层(dielectricinterlayer)16。介电夹层16可以配设有用于连接到开关T的第二导体层15的接触插头17。像素P还可以包括设置在介电夹层16上的转换元件S。在图3所示的情况下,转换元件S构成为包括将放射线转换成光的闪烁体层25的间接型转换元件。转换元件S可以包括堆叠在介电夹层16上的第三导体层18、第二绝缘层19、第二半导体层20、第二杂质半导体层21、第四导体层22、保护层23、附着层24以及闪烁体层25。第三导体层18、第二绝缘层19、第二半导体层20、第二杂质半导体层21、第四导体层22、保护层23、附着层24以及闪烁体层25能够形成转换元件S。
第三导体层18和第四导体层22各自构成形成了转换元件S的光电转换元件的下部电极和上部电极。第四导体层22由例如透明材料构成。第三导体层18、第二绝缘层19、第二半导体层20、第二杂质半导体层21及第四导体层22构成MIS传感器来作为光电转换元件。第二杂质半导体层21由例如n-型杂质半导体层构成。闪烁体层25由例如钆基材料或碘化铯(CsI)材料构成。
转换元件S可以构成为直接将入射放射线转换为电信号(电荷)的直接型转换元件。例如,作为各个直接型转换元件S,能够使用这样的转换元件:该转换元件包含非晶硒、砷化镓、磷化镓、碘化铅、碘化汞、CdTe或CdZnTe来作为主要材料。转换元件S不限于MIS型,也可以是例如pn-型或PIN-型光电二极管。
以下将参照图4描述第一模式(该情况下为静止图像模式)下放射线摄像装置210和放射线摄像系统200的操作示例。在该示例中,计算机240控制放射线摄像系统200的操作。在计算机240的控制下,控制器214控制放射线摄像装置210的操作。
在本示例中,首先,控制器214使得驱动电路114和读出电路113执行空读,直到开始从放射线源230发射放射线(换言之,利用放射线对放射线摄像装置210的照射)为止。在空读中,驱动电路114顺次将提供给像素阵列112的多个行中的驱动线Vg1a、Vg1b、Vg2a、Vg2b、Vg3a、Vg3b、Vg4a及Vg4b的驱动信号驱动至有效电平(active level)。这样重置了每个转换元件S中累积的暗电荷。在此情况下,在空读时,有效电平重置脉冲被提供给积分放大器105的重置开关,以便将信号线Sig重置为基准电位Vref。暗电荷是尽管无放射线入射到转换元件S上仍生成的电荷。
在本示例的第一模式(例如,静止图像模式)下,经由一个信号线Sig重置一个像素P。驱动电路114将驱动线Vg1a设置为有效电平,以使开关T11处于导通,并将转换元件S11连接到信号线Sig1,从而将转换元件S11重置为基准电位Vref。另外,在本示例中,使开关T13与开关T11同时处于导通,以将转换元件S13连接到信号线Sig3,从而将转换元件S13重置为基准电位Vref。此外,在该示例中,驱动电路114将驱动线Vg3a与驱动线Vg1a同时设置为有效电平,以使开关T32处于导通,并将转换元件S32连接到信号线Sig2,从而将转换元件S32重置为基准电位Vref。此外,使开关T34与开关T32同时处于导通,以将转换元件S34连接到信号线Sig4,从而将转换元件S34重置为基准电位Vref。这样,在多个驱动线Vg中的两个驱动线Vg被同时驱动至有效电平以重置各个转换元件S中累积的暗电荷的同时,进行空读操作。
基于例如经由计算机240而从曝光控制器220提供的开始通知,控制器214可以识别出开始从放射线源230发射放射线。可选择地,控制器214可以配设有检测电路,用以检测像素阵列112的偏置线BL、信号线Sig等中流动的电流。控制器214可以基于检测电路的输出而识别出开始从放射线源230发射放射线。
在本示例中,根据放射线发射的开始,控制器214控制驱动电路114以使得全部像素P的开关处于非导通。这样就将像素阵列112的全部像素设置为累积状态。另外,根据放射线发射的结束,控制器214结束累积状态,并将状态切换为实际读取状态。控制器214可以基于经由计算机240提供的结束通知而识别出放射线发射的结束。可选择地,在从开始发射放射线以来经过了预定时间时,控制器214确定结束放射线的发射。可选择地,基于用以检测偏置线BL、信号线Sig等中流动的电流的检测电路中的输出,控制器214可以确定放射线发射的结束。
在本示例的实际读取中,控制器214控制驱动电路114和读出电路113执行莱西像素阵列112的信号的读出操作(实际读取)。在实际读取中,驱动电路114将多行像素阵列112中的驱动线Vg1a、Vg1b、Vg2a、Vg2b、Vg3a、Vg3b、Vg4a以及Vg4b驱动为有效电平。在此情况下,驱动电路114控制多个驱动线Vg,从而使得一个像素P驱动一个信号线Sig。换句话说,驱动电路114进行操作,以通过多个相应驱动线Vg将具有不同有效周期的驱动信号提供给构成像素组PG的多个像素P的开关T。
在此情况下,驱动电路114同时将两条驱动线Vg1a和Vg3a驱动为有效电平。该操作使得来自像素P11和P13(转换元件S11和S13)的信号分别输出到信号线Sig1和Sig3,并使得来自像素P32和P34(转换元件S32和S34)的信号分别输出到信号线Sig2和Sig4。然后驱动电路114同时将两条驱动线Vg1b和Vg3b驱动为有效电平。该操作使得来自像素P12和P14(转换元件S12和S14)的信号分别输出到信号线Sig1和Sig3,并使得来自像素P31和P33(转换元件S31和S33)的信号分别输出到信号线Sig0和Sig2。如上文所述,在该情况下,列方向上彼此相邻的像素组(例如,像素组PG11和PG21)中的信号被同时输出到不同的信号线Sig,并且读出电路113读出信号。以上述方式,读出电路113从像素阵列112的全部像素P中读出信号。经由复用器108、缓冲器109及AD转换器110,将读出电路113读出的信号作为放射线图像数据输出到计算机240。
在根据第一实施方式的第一模式下,一行中的全部像素P中仅有一些像素P被连接到一个驱动线Vg,信号被同时读出的像素P被分配为两行。这使得在存在噪音时,也很难从视觉上识别出该噪音。相反,在一行中的全部像素P都连接至一个驱动线Vg的结构中,当出现噪音时,噪音作为在航方向上连续的噪音而出现在图像中。
根据第一模式的驱动方法具有这样的方面:即在一行中的全部像素P中仅有一些像素P被连接到一个驱动线Vg的放射线摄像装置中,通过放射线摄像装置中的不同信号线,同时从不同行中的多个像素中读出信号。可选择地,根据第一模式的驱动方法具有这样的方面:即通过不同的信号线,同时从构成一行的像素中的仅一部分和构成另一行的像素中的仅一部分中读出信号。在此情况下,优选地,一特定行内相邻像素连接到不同的驱动线。另外,优选地,第一模式下被同时读出的信号不彼此相邻。换言之,优选地,同时被读出的信号被设置为:使得没有信号被同时读出的其他像素插入在其间。
接下来将描述偏移图像的获得。即使是在没有放射线照射的状态下,暗电荷仍留在各个转换元件S中。这使得能够在没有放射线照射的状态下,通过累积和实际读取来获得图像,并能够将所获得的图像用作偏移图像。更具体地,通过从在利用放射线照射的状态下利用实际读取而读出像素阵列112中累积的信号从而获得的放射线图像中减去偏移图像,能够获得被除去偏移成分的放射线图像。图4中近右端部分所示的没有放射线照射的“累积”和后续“实际读取”在这里对应于偏移图像的获得示例。
以下将参照图5描述第二模式(该情况下为运动图像模式)下放射线摄像装置210和放射线摄像系统200的操作。在第二模式下,执行多个循序,其中一个循环包括利用放射线照射时的累积以及后续的实际读取。在第二模式(运动图像模式)下,驱动电路114经由多个驱动线Vg将有效周期彼此重叠的驱动信号提供给各像素组PG的相应像素P的开关T的控制端子。
更具体地,驱动电路114经由多个驱动线Vg1a、Vg1b、Vg2a及Vg2b将有效周期彼此重叠的驱动信号提供给像素组PG11的像素P11、P12、P21及P22的开关T的控制端子。此时,驱动电路114也经由多个驱动线Vg1a、Vg1b、Vg2a及Vg2b将有效周期彼此重叠的驱动信号提供给像素组PG12的像素P13、P14、P23及P24的开关T的控制端子。通过该操作,通过将构成像素组PG11的像素P11、P12、P21及P22的转换元件S11、S12、S21及S22中的信号合成而获得的合成信号(平均信号)出现在信号线Sig1中。读出电路113读出合成信号。此外,通过将构成像素组PG12的像素P13、P14、P23及P24的转换元件S13、S14、S23及S24中的信号合成而获得的合成信号(平均信号)出现在信号线Sig3中。读出电路113读出合成信号。
驱动电路114经由多个驱动线Vg3a、Vg3b、Vg4a及Vg4b将有效周期彼此重叠的驱动信号提供给构成像素组PG21的像素P32、P33、P42及P43的开关T的控制端子。此时,驱动电路114也经由多个驱动线Vg3b及Vg4b将有效周期彼此重叠的驱动信号提供给像素P31及P41的开关T的控制端子。另外,驱动电路114也经由多个驱动线Vg3a及Vg4a将有效周期彼此重叠的驱动信号提供给像素P34及P44的开关T的控制端子。利用该操作,通过将构成像素组PG21的像素P32、P33、P42及P43的转换元件S32、S33、S42及S43中的信号合成而获得的合成信号出现在信号线Sig2中。读出电路113读出合成信号。此外,利用该操作,通过将构成不完整像素组的像素P31及P41的转换元件S31及S41中的信号合成而获得的合成信号出现在信号线Sig0中。读出电路113读出合成信号。此外,利用该操作,通过将构成不完整像素组的像素P34及P44的转换元件S34及S44中的信号合成而获得的合成信号出现在信号线Sig4中。读出电路113读出合成信号。
如上文所述,根据第一实施方式,在第二模式下,能够以第一模式下四倍的速度(需要1/4时间)从像素阵列112中读出信号。如上文所述,在第一模式下,可以沿列方向以交错图案排列第一像素组PG11、PG31…和第二像素组PG21、PG41…。就是说,使第一像素组和第二像素组排列成在行方向上彼此移位一个像素。
图6示出了根据本发明第二实施方式的放射线摄像系统200、放射线摄像装置210以及放射线检测面板212中的像素阵列112的结构示例。第二实施方式中未提及的细节可以与第一实施方式一致。在第二实施方式中,第一像素组PG11、PG31、PG51…和第二像素组PG21、PG41、PG61…沿列方向线性排列。此外,在第二实施方式中,多个信号线Sig(即信号线Sig1、Sig2、Sig3…)排列为使得对各个列(像素P的各列)分配一个信号线Sig。
图7示出了根据本发明第三实施方式的放射线摄像系统200、放射线摄像装置210以及放射线检测面板212中的像素阵列112的结构示例。第三实施方式中未提及的细节可以与第一实施方式一致。在第一和第二实施方式中,多个驱动线Vg配置为使得对各行(像素P的各行)分配至少两个驱动线Vg。在第三实施方式中,多个驱动线Vg配置为使得对各行(像素P的各行)分配一个驱动线Vg。
在图7所示的例子中,驱动线Vg3、Vg1、Vg4及Vg2分别连接到构成像素组PG11的像素P11、P12、P21及P22的开关T11、T12、T21及T22的控制端子。
图8示出了根据本发明第四实施方式的放射线摄像系统200、放射线摄像装置210以及放射线检测面板212中的像素阵列112的结构示例。第四实施方式中未提及的细节可以与第一实施方式一致。在第四实施方式中,第一子像素组SPG11、SPG41及SPG51连接到第一信号线Sig1,第二子像素组SPG21及SPG31连接到第二信号线Sig2。像素阵列112的多个子像素组SPG可以包括连接到第一信号线Sig1的多个第一子像素组SPG11、SPG41及SPG51,以及连接到第二信号线Sig2的第二子像素组SPG21及SPG31。
多个第一子像素组可以构成多个第一像素组,所述多个第一像素组中的每个由至少两个第一子像素组构成。例如,第一子像素组SPG41和SPG51构成一个第一像素组,而第一子像素组SPG81和SPG91(未示出)可以构成另一个第一像素组。多个第二子像素组可以构成多个第二像素组,所述多个第二像素组中的每个由至少两个第二子像素组构成。例如,第二子像素组SPG21和SPG构成一个第二像素组,而第二子像素组SPG61和SPG71(未示出)可以构成另一个第二像素组。第一像素组和第二像素组可以在列方向上交替排列。
根据第四实施方式的放射线摄像系统200、放射线摄像装置210以及放射线检测面板212中的像素阵列112可以具有第一子模式和第二子模式作为第二模式的子模式。
在第二模式的第一子模式下,可以从4行×2列像素(8个像素)中生成合成信号(加算信号或平均信号)。如图9中所示,驱动电路114可以将有效电平驱动信号提供给驱动线Vg3a至Vg10b。在此情况下,来自第一子像素组SPG41和SPG51所构成的第一像素组的合成信号被输出给第一信号线Sig1。另外,来自第二子像素组SPG21和SPG31所构成的第二像素组的合成信号被输出给第二信号线Sig2。读出电路113读出这些合成信号。
在该示例中,第一像素组的八个相邻像素(例如,S33、S34、S43、S44、S53、S54、S63及S64)构成第三像素组。利用来自第一像素组的合成信号可以同时读出由构成第三像素组的八个像素中的信号构成的合成信号。将该合成信号与从第一像素组读出的合成信号数位相加也可以生成与4行×4列像素对应的低分辨率图像。
在第二模式的第二子模式下,可以从2行×2列像素(4个像素)中生成合成信号(加算信号或平均信号)。在此情况下,在第一时段中,驱动电路114将有效电平驱动信号提供给驱动线Vg1a至Vg4b。利用该操作,由来自构成子像素组SPG11的像素的信号构成的合成信号被输出给第一信号线Sig1。另外,由来自构成子像素组SPG21的像素的信号构成的合成信号被输出给第二信号线Sig2。读出电路113读出这些合成信号。在第二时段中,驱动电路114将有效电平驱动信号提供给驱动线Vg5a至Vg8b。利用该操作,由来自构成子像素组SPG41的像素的信号构成的合成信号被输出给第一信号线Sig1。另外,由来自构成子像素组SPG31的像素的信号构成的合成信号被输出给第二信号线Sig2。读出电路113读出这些合成信号。
其他实施例
本发明的实施例还可以通过如下的方法来实现,即,通过网络或者各种存储介质将执行上述实施例的功能的软件(程序)提供给系统或装置,该系统或装置的计算机或是中央处理单元(CPU)、微处理单元(MPU)读出并执行程序的方法。
虽然参照示例性实施例描述了本发明,但是应当理解,本发明并不限于所公开的示例性实施例。应当对下列权利要求的范围赋予最宽的解释,以使其涵盖所有这些变型例以及等同的结构及功能。

Claims (19)

1.一种放射线摄像装置,包括:排列有多个像素以形成多个行和多个列的像素阵列,以及配置为经由多个信号线从像素阵列中读出信号的读出电路,
其中,各个像素包括转换元件和开关,所述转换元件配置为将放射线转换成信号,所述开关包括:控制端子、电连接到转换元件的第一主端子以及电连接到所述多个信号线中的一个信号线的第二主端子,
像素阵列包括多个像素组,各个像素组包括排列为构成至少为2行×2列图案的像素,
属于各个像素组的像素的开关被配置为:使得控制端子电连接到多个不同驱动线,且第二主端子共同电连接到多个信号线中的一个信号线,多个信号线包括第一信号线和第二信号线,并且,
多个像素组包括第一像素组和在列方向上与第一像素组相邻排列的第二像素组,经由第一信号线从第一像素组读出信号,以及,经由第二信号线从第二像素组读出信号,
其中,所述读出电路通过经由多条信号线中的一条信号线提供有源周期彼此重叠的驱动信号,读出通过合成来自形成多个像素组中的一个像素组的多个像素的信号而获得的合成信号。
2.根据权利要求1所述的装置,还包括:驱动电路,其被配置为驱动像素阵列,在第一模式下,驱动电路将具有不同有效周期的驱动信号经由多个驱动线提供给各个像素组的像素的开关的控制端子,以及,在第二模式下,驱动电路将有效周期彼此重叠的驱动信号经由多个驱动线提供给各个像素组的像素的开关的控制端子。
3.根据权利要求1所述的装置,其中,多个像素组排列成矩阵图案。
4.根据权利要求1所述的装置,其中,多个驱动线排列为使得对各行分配至少两个驱动线。
5.根据权利要求1所述的装置,其中,多个驱动线排列为使得对各行分配一个驱动线。
6.根据权利要求1所述的装置,其中,多个驱动线排列为使得对各列分配一个驱动线。
7.根据权利要求1所述的装置,其中,多个像素组包括连接到第一信号线的多个第一像素组,以及多个第二像素组,各个第二像素组在列方向上与多个第一像素组中的至少一个像素组相邻排列,并与第二信号线连接,以及
多个第一像素组和多个第二像素组在列方式上交替排列。
8.根据权利要求1所述的装置,其中,多个像素组包括连接到第一信号线的多个第一像素组,以及在列方向上与第一像素组相邻排列、并与第二信号线连接的多个第二像素组,以及
各个第一像素组由多个第一子像素组构成,各个第一子像素包括排列成至少是2行×2列图案的像素,各个第二像素组由多个第二子像素组构成,各个第二子像素组包括排列成至少是2行×2列图案的像素。
9.根据权利要求8所述的装置,其中,构成第一像素组的多个第一子像素组沿列方向线性排列,构成第二像素组的多个第二子像素组沿列方向线性排列。
10.根据权利要求1所述的装置,其中,开关包括薄膜晶体管TFT。
11.根据权利要求1所述的装置,其中,从第一像素组和第二像素组同时读出信号。
12.根据权利要求8所述的装置,还包括:在行方向上与第一像素组相邻的第三像素组,第三像素组由多个第三子像素组构成,各个第三子像素组包括排列成至少是2行×2列图案的像素,并且从第一像素组和第三像素组同时读出信号。
13.一种放射线摄像装置,包括:排列有多个像素以形成多个行和多个列的像素阵列、配置为经由多个信号线从像素阵列中读出信号的读出电路,以及配置为驱动像素阵列的驱动电路,
其中,各个像素包括配置为将放射线转换成信号的转换元件和开关,所述像素阵列包括多个像素组,各个像素组包括排列为构成至少为2行×2列图案的像素,
驱动电路经由多个不同驱动线将驱动信号提供给各像素组的相应像素的开关,经由多个信号线中的一个信号线读出信号,
多个信号线包括第一信号线和第二信号线,并且,
多个像素组包括第一像素组和第二像素组,以及,
在第一模式下,驱动电路将具有不同有效周期的驱动信号经由多个驱动线提供给各个像素组的相应像素的相应开关,以及,在第二模式下,驱动电路将有效周期彼此重叠的驱动信号经由多个驱动线提供给各个像素组的相应像素的开关,从而经由第一信号线从第一像素组读出信号,经由第二信号线从第二像素组读出信号,
其中,所述读出电路通过经由多条信号线中的一条信号线提供有源周期彼此重叠的驱动信号,读出通过合成来自形成多个像素组中的一个像素组的多个像素的信号而获得的合成信号。
14.根据权利要求13所述的装置,其中,多个像素组包括连接到第一信号线的多个第一像素组,以及在列方向上与第一像素组相邻排列、并与第二信号线连接的多个第二像素组,以及
多个第一像素组和多个第二像素组在列方式上交替排列。
15.根据权利要求14所述的装置,其中,多个第一像素组和多个第二像素组沿列方向线性排列。
16.根据权利要求14所述的装置,其中,多个第一像素组和多个第二像素组沿列方向排列成交错图案。
17.根据权利要求13所述的装置,其中,从第一像素组和第二像素组同时读出信号。
18.一种放射线摄像系统,包括:
权利要求1至17的任一个中限定的放射线摄像装置,
放射源,以及
计算机,其被配置为控制放射线摄像装置。
19.一种驱动放射线摄像装置的方法,放射线摄像装置包括:排列有多个像素以形成多个行和多个列的像素阵列、多个信号线、配置为经由多个信号线从像素阵列中读出信号的读出电路以及配置为驱动像素阵列的驱动电路,所述方法包括:
经由不同的信号线、从构成形成了像素阵列的一行的像素中的仅一部分以及构成另一行的像素中的仅一部分中同时读出信号的模式,
其中,所述读出电路通过经由多条信号线中的一条信号线提供有源周期彼此重叠的驱动信号,读出通过合成来自形成多个像素组中的一个像素组的多个像素的信号而获得的合成信号。
CN201811438386.9A 2017-12-13 2018-11-28 放射线摄像装置及其驱动方法、放射线摄像系统 Active CN109920807B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-238919 2017-12-13
JP2017238919A JP7067912B2 (ja) 2017-12-13 2017-12-13 放射線撮像装置および放射線撮像システム

Publications (2)

Publication Number Publication Date
CN109920807A CN109920807A (zh) 2019-06-21
CN109920807B true CN109920807B (zh) 2023-04-18

Family

ID=66696694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811438386.9A Active CN109920807B (zh) 2017-12-13 2018-11-28 放射线摄像装置及其驱动方法、放射线摄像系统

Country Status (3)

Country Link
US (1) US11187816B2 (zh)
JP (1) JP7067912B2 (zh)
CN (1) CN109920807B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6974948B2 (ja) 2017-02-10 2021-12-01 キヤノン株式会社 放射線撮像装置および放射線撮像方法
WO2019012846A1 (ja) 2017-07-10 2019-01-17 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP6934769B2 (ja) 2017-07-28 2021-09-15 キヤノン株式会社 放射線撮像装置および放射線撮像方法
JP6912965B2 (ja) 2017-08-04 2021-08-04 キヤノン株式会社 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の作動方法
JP7038506B2 (ja) 2017-08-25 2022-03-18 キヤノン株式会社 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の作動方法
JP6882135B2 (ja) 2017-10-06 2021-06-02 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP7245001B2 (ja) 2018-05-29 2023-03-23 キヤノン株式会社 放射線撮像装置および撮像システム
JP7093233B2 (ja) 2018-06-07 2022-06-29 キヤノン株式会社 放射線撮影装置、放射線撮影方法およびプログラム
WO2020003744A1 (ja) 2018-06-27 2020-01-02 キヤノン株式会社 放射線撮影装置、放射線撮影方法およびプログラム
JP7378245B2 (ja) 2019-08-29 2023-11-13 キヤノン株式会社 放射線検出装置、その制御方法及び放射線撮像システム
JP7441033B2 (ja) 2019-11-12 2024-02-29 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP7398931B2 (ja) 2019-11-12 2023-12-15 キヤノン株式会社 放射線撮像装置および放射線撮像システム
EP4358532A1 (en) * 2019-11-12 2024-04-24 Canon Kabushiki Kaisha Radiation imaging apparatus and radiation imaging system
SE543756C2 (en) * 2020-06-26 2021-07-13 Direct Conv Ab Sensor unit, radiation detector, method of manufacturing sensor unit, and method of using sensor unit

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509977A (zh) * 2008-02-12 2009-08-19 三星电子株式会社 X射线探测器及其制造方法
CN101610367A (zh) * 2008-06-20 2009-12-23 索尼株式会社 图像处理装置、图像处理方法和制造设备
WO2010125871A1 (en) * 2009-05-01 2010-11-04 Canon Kabushiki Kaisha Imaging apparatus and imaging system, and control method and program for the same
CN102034841A (zh) * 2009-10-06 2011-04-27 佳能株式会社 固态图像传感器和图像感测装置
CN102036020A (zh) * 2009-10-06 2011-04-27 佳能株式会社 固态图像传感器和摄像装置
JP2012100081A (ja) * 2010-11-02 2012-05-24 Konica Minolta Medical & Graphic Inc 放射線画像撮影装置
US9148605B1 (en) * 2014-04-17 2015-09-29 Himax Imaging Limited Sensing devices
CN105030262A (zh) * 2014-05-01 2015-11-11 佳能株式会社 放射线成像装置和放射线成像系统
CN105078487A (zh) * 2014-05-22 2015-11-25 柯尼卡美能达株式会社 放射线图像摄影装置
WO2016171544A1 (en) * 2015-04-22 2016-10-27 Teledyne Dalsa B.V. Shifted binning in x-ray sensors
WO2016189849A1 (en) * 2015-05-26 2016-12-01 Canon Kabushiki Kaisha Radiation imaging apparatus, radiation imaging system, and exposure control method

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4533010B2 (ja) 2003-11-20 2010-08-25 キヤノン株式会社 放射線撮像装置、放射線撮像方法及び放射線撮像システム
US7119341B2 (en) * 2003-12-08 2006-10-10 General Electric Company Split scan line and combined data line x-ray detectors
JP4441294B2 (ja) 2004-03-12 2010-03-31 キヤノン株式会社 放射線撮像装置及びその制御方法
JP4469638B2 (ja) 2004-03-12 2010-05-26 キヤノン株式会社 読み出し装置及び画像撮影装置
JP2005287773A (ja) 2004-03-31 2005-10-20 Canon Inc 画像撮影装置及び画像撮影システム
US7403594B2 (en) 2004-03-31 2008-07-22 Canon Kabushiki Kaisha Radiation imaging apparatus and control method therefor
JP4307322B2 (ja) 2004-05-18 2009-08-05 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP2006068512A (ja) 2004-08-06 2006-03-16 Canon Inc 撮像装置、撮像システム、撮像方法、およびコンピュータプログラム
JP5058517B2 (ja) 2005-06-14 2012-10-24 キヤノン株式会社 放射線撮像装置及びその制御方法並びに放射線撮像システム
JP4965931B2 (ja) 2005-08-17 2012-07-04 キヤノン株式会社 放射線撮像装置、放射線撮像システム、その制御方法、及び制御プログラム
JP4750512B2 (ja) 2005-09-01 2011-08-17 キヤノン株式会社 放射線撮像装置、その制御方法及び放射線撮像システム
JP5317388B2 (ja) 2005-09-30 2013-10-16 キヤノン株式会社 放射線撮像装置、放射線撮像システム及びプログラム
JP4834518B2 (ja) 2005-11-29 2011-12-14 キヤノン株式会社 放射線撮像装置、その制御方法、及びそれを実行させるためのプログラムを記録した記録媒体
JP2007151761A (ja) 2005-12-02 2007-06-21 Canon Inc 放射線撮像装置、システム及び方法、並びにプログラム
JP4989197B2 (ja) 2005-12-13 2012-08-01 キヤノン株式会社 放射線撮像装置、放射線撮像システム、及び補正方法
JP4891096B2 (ja) 2006-01-30 2012-03-07 キヤノン株式会社 放射線撮像装置
JP5043448B2 (ja) 2006-03-10 2012-10-10 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP4850730B2 (ja) 2006-03-16 2012-01-11 キヤノン株式会社 撮像装置、その処理方法及びプログラム
JP4868926B2 (ja) 2006-04-21 2012-02-01 キヤノン株式会社 放射線撮像装置
JP4847202B2 (ja) 2006-04-27 2011-12-28 キヤノン株式会社 撮像装置及び放射線撮像システム
JP4989120B2 (ja) 2006-06-16 2012-08-01 キヤノン株式会社 放射線撮像システム及びその駆動方法
JP5159161B2 (ja) 2006-06-26 2013-03-06 キヤノン株式会社 放射線撮像装置、放射線撮像システム及びその制御方法
JP5038031B2 (ja) 2006-07-11 2012-10-03 キヤノン株式会社 放射線撮影装置、その駆動方法及び放射線撮影システム
JP2008042478A (ja) 2006-08-04 2008-02-21 Canon Inc 撮像装置、放射線撮像装置、及びその駆動方法
JP5300216B2 (ja) 2006-08-29 2013-09-25 キヤノン株式会社 電子カセッテ型放射線検出装置
JP2008212644A (ja) 2007-02-06 2008-09-18 Canon Inc 放射線撮像装置及びその駆動方法、並びに放射線撮像システム
US7869568B2 (en) 2007-03-13 2011-01-11 Canon Kabushiki Kaisha Radiation imaging apparatus, and method and program for controlling radiation imaging apparatus
JP5022758B2 (ja) * 2007-04-12 2012-09-12 キヤノン株式会社 撮像装置、撮像システム及び撮像装置の駆動方法
JP4991459B2 (ja) 2007-09-07 2012-08-01 キヤノン株式会社 撮像装置及び放射線撮像システム
JP5038101B2 (ja) 2007-11-12 2012-10-03 キヤノン株式会社 放射線撮像装置、その駆動方法及びプログラム
JP2009141439A (ja) 2007-12-03 2009-06-25 Canon Inc 放射線撮像装置、その駆動方法及びプログラム
JP5311834B2 (ja) 2008-01-24 2013-10-09 キヤノン株式会社 撮像装置、撮像システム、信号処理方法及びプログラム
JP5274098B2 (ja) 2008-04-30 2013-08-28 キヤノン株式会社 撮像装置、放射線撮像システム、その制御方法及びプログラム
JP2010005212A (ja) 2008-06-27 2010-01-14 Canon Inc 放射線撮像装置、その制御方法及び放射線撮像システム
JP5792923B2 (ja) 2009-04-20 2015-10-14 キヤノン株式会社 放射線撮像装置及び放射線撮像システム、それらの制御方法及びそのプログラム
JP5694882B2 (ja) 2010-11-30 2015-04-01 富士フイルム株式会社 放射線検出素子及び放射線画像撮影装置
JP5814621B2 (ja) 2011-05-24 2015-11-17 キヤノン株式会社 撮像装置及びその制御方法、並びに、撮像システム
JP2013127371A (ja) 2011-12-16 2013-06-27 Canon Inc 放射線検出装置
JP5497874B2 (ja) 2011-12-22 2014-05-21 富士フイルム株式会社 放射線画像検出器、放射線画像撮像装置、及び放射線画像撮像システム
JP2013140036A (ja) 2011-12-28 2013-07-18 Canon Inc 放射線検出装置
JP5950840B2 (ja) 2012-03-16 2016-07-13 キヤノン株式会社 放射線撮像装置及び撮像システム
JP5986526B2 (ja) 2012-04-06 2016-09-06 キヤノン株式会社 放射線撮像装置、その制御方法及び放射線撮像システム
JP6200171B2 (ja) 2012-06-04 2017-09-20 キヤノン株式会社 放射線検出装置及び撮像システム
JP6000680B2 (ja) 2012-06-20 2016-10-05 キヤノン株式会社 放射線検出装置、その製造方法及び撮像システム
JP6071283B2 (ja) 2012-07-04 2017-02-01 キヤノン株式会社 放射線検出装置及びその製造方法
JP2014044200A (ja) 2012-07-31 2014-03-13 Canon Inc 放射線検出装置、その製造方法及び放射線検出システム
JP6162937B2 (ja) 2012-08-31 2017-07-12 キヤノン株式会社 放射線撮像装置、その制御方法および制御プログラム
JP6041669B2 (ja) 2012-12-28 2016-12-14 キヤノン株式会社 撮像装置及び撮像システム
JP5986524B2 (ja) 2013-02-28 2016-09-06 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP5934128B2 (ja) 2013-02-28 2016-06-15 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP6016673B2 (ja) 2013-02-28 2016-10-26 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP2014168205A (ja) 2013-02-28 2014-09-11 Canon Inc 放射線撮像装置、放射線検査装置、信号の補正方法およびプログラム
JP6161346B2 (ja) 2013-03-19 2017-07-12 キヤノン株式会社 撮像システム
US20140361189A1 (en) 2013-06-05 2014-12-11 Canon Kabushiki Kaisha Radiation imaging system
JP6238577B2 (ja) 2013-06-05 2017-11-29 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP2015068653A (ja) 2013-09-26 2015-04-13 キヤノン株式会社 放射線撮像装置、その製造方法及び放射線検査装置
JP6355387B2 (ja) 2014-03-31 2018-07-11 キヤノン株式会社 撮像装置及び撮像システム
JP6305169B2 (ja) * 2014-04-07 2018-04-04 キヤノン株式会社 固体撮像素子、撮像装置及びその制御方法、プログラム、記憶媒体
US9737271B2 (en) 2014-04-09 2017-08-22 Canon Kabushiki Kaisha Radiation imaging apparatus and control method of the same
JP6362421B2 (ja) 2014-05-26 2018-07-25 キヤノン株式会社 放射線撮像装置、その制御方法およびプログラム
JP6494204B2 (ja) 2014-07-17 2019-04-03 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP6385179B2 (ja) 2014-07-18 2018-09-05 キヤノン株式会社 放射線撮像装置及びその駆動方法
KR102082302B1 (ko) * 2014-09-02 2020-02-27 삼성전자주식회사 엑스선 검출 장치 및 엑스선 장치
JP6391388B2 (ja) 2014-09-24 2018-09-19 キヤノン株式会社 放射線撮像装置
JP6671839B2 (ja) 2014-10-07 2020-03-25 キヤノン株式会社 放射線撮像装置及び撮像システム
JP6525579B2 (ja) 2014-12-22 2019-06-05 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP2016178533A (ja) 2015-03-20 2016-10-06 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP6573377B2 (ja) 2015-07-08 2019-09-11 キヤノン株式会社 放射線撮像装置、その制御方法及びプログラム
JP6573378B2 (ja) 2015-07-10 2019-09-11 キヤノン株式会社 放射線撮像装置、その制御方法及びプログラム
JP6643871B2 (ja) 2015-11-13 2020-02-12 キヤノン株式会社 放射線撮像装置およびフォトンカウンティングの方法
JP6643909B2 (ja) 2016-01-27 2020-02-12 キヤノン株式会社 放射線撮像装置、その制御方法及びプログラム
JP6700828B2 (ja) 2016-02-10 2020-05-27 キヤノン株式会社 放射線撮像装置、その駆動方法及び撮像システム
US10416323B2 (en) 2016-03-29 2019-09-17 Canon Kabushiki Kaisha Radiation imaging apparatus, radiation imaging system, and method of operating radiation imaging apparatus
JP6871717B2 (ja) 2016-11-10 2021-05-12 キヤノン株式会社 放射線撮像装置、放射線撮像システムおよび放射線撮像方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509977A (zh) * 2008-02-12 2009-08-19 三星电子株式会社 X射线探测器及其制造方法
CN101610367A (zh) * 2008-06-20 2009-12-23 索尼株式会社 图像处理装置、图像处理方法和制造设备
WO2010125871A1 (en) * 2009-05-01 2010-11-04 Canon Kabushiki Kaisha Imaging apparatus and imaging system, and control method and program for the same
CN102034841A (zh) * 2009-10-06 2011-04-27 佳能株式会社 固态图像传感器和图像感测装置
CN102036020A (zh) * 2009-10-06 2011-04-27 佳能株式会社 固态图像传感器和摄像装置
JP2012100081A (ja) * 2010-11-02 2012-05-24 Konica Minolta Medical & Graphic Inc 放射線画像撮影装置
US9148605B1 (en) * 2014-04-17 2015-09-29 Himax Imaging Limited Sensing devices
CN105030262A (zh) * 2014-05-01 2015-11-11 佳能株式会社 放射线成像装置和放射线成像系统
CN105078487A (zh) * 2014-05-22 2015-11-25 柯尼卡美能达株式会社 放射线图像摄影装置
WO2016171544A1 (en) * 2015-04-22 2016-10-27 Teledyne Dalsa B.V. Shifted binning in x-ray sensors
WO2016189849A1 (en) * 2015-05-26 2016-12-01 Canon Kabushiki Kaisha Radiation imaging apparatus, radiation imaging system, and exposure control method

Also Published As

Publication number Publication date
CN109920807A (zh) 2019-06-21
US20190179036A1 (en) 2019-06-13
US11187816B2 (en) 2021-11-30
JP7067912B2 (ja) 2022-05-16
JP2019106648A (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
CN109920807B (zh) 放射线摄像装置及其驱动方法、放射线摄像系统
CN110869809B (zh) 放射线成像装置和放射线成像系统
JP6491434B2 (ja) 放射線撮像装置及び放射線検出システム
CN110809882B (zh) 放射线成像装置、放射线成像系统、放射线成像装置的控制方法以及非瞬态计算机可读存储介质
JP2016220116A (ja) 放射線撮像装置及び放射線撮像システム
WO2007037121A1 (ja) 放射線像撮像装置および放射線像撮像装置の撮像方法
JP5096946B2 (ja) 固体撮像装置
US11294078B2 (en) Radiation imaging apparatus and radiation imaging system
CN111316133B (zh) 放射线图像捕获装置和放射线图像捕获系统
JP2019141357A (ja) 放射線撮像装置及び放射線撮像システム
US20070158572A1 (en) Method, a system for generating a spatial roadmap for an interventional device and a quality control system for guarding the spatial accuracy thereof
WO2018135293A1 (ja) 放射線撮像装置及び放射線撮像システム
JP7157699B2 (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法および当該方法を実行させるプログラム
JP2017098830A (ja) 放射線撮像装置、放射線撮像システム及び放射線撮像装置の製造方法
US10854663B2 (en) Radiation imaging apparatus and radiation imaging system
JP7319825B2 (ja) 放射線撮像装置および放射線撮像システム
JP5436639B2 (ja) 固体撮像装置
WO2019150731A1 (ja) 画像処理装置、画像処理方法及びプログラム
JP2022087546A (ja) 放射線撮像システム
JP2021052287A (ja) 放射線撮像装置及び放射線撮像システム
JP2019153692A (ja) 放射線撮像装置および放射線撮像システム
JP2018195949A (ja) 放射線撮像装置及び放射線撮像システム
JP2019074368A (ja) 放射線撮像装置および放射線撮像システム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant