JP7038506B2 - 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の作動方法 - Google Patents

放射線撮像装置、放射線撮像システムおよび放射線撮像装置の作動方法 Download PDF

Info

Publication number
JP7038506B2
JP7038506B2 JP2017162693A JP2017162693A JP7038506B2 JP 7038506 B2 JP7038506 B2 JP 7038506B2 JP 2017162693 A JP2017162693 A JP 2017162693A JP 2017162693 A JP2017162693 A JP 2017162693A JP 7038506 B2 JP7038506 B2 JP 7038506B2
Authority
JP
Japan
Prior art keywords
radiation
image
image signal
signal
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017162693A
Other languages
English (en)
Other versions
JP2019037581A5 (ja
JP2019037581A (ja
Inventor
聡太 鳥居
晃介 照井
明 佃
貴司 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017162693A priority Critical patent/JP7038506B2/ja
Priority to PCT/JP2018/025492 priority patent/WO2019039109A1/ja
Priority to EP18847549.5A priority patent/EP3673805A4/en
Publication of JP2019037581A publication Critical patent/JP2019037581A/ja
Priority to US16/745,807 priority patent/US11360034B2/en
Publication of JP2019037581A5 publication Critical patent/JP2019037581A5/ja
Application granted granted Critical
Publication of JP7038506B2 publication Critical patent/JP7038506B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • H04N5/3205Transforming X-rays using subtraction imaging techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration by the use of more than one image, e.g. averaging, subtraction
    • G06T5/70
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/59Control of the dynamic range by controlling the amount of charge storable in the pixel, e.g. modification of the charge conversion ratio of the floating node capacitance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/424Imaging energy substraction image processing (dual energy processing)
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20182Noise reduction or smoothing in the temporal domain; Spatio-temporal filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20224Image subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing

Description

本発明は、放射線撮像装置および放射線撮像システムに関する。
医療画像診断や非破壊検査において、半導体材料によって構成される平面検出器(フラットパネルディテクタ:FPD)を用いた放射線撮像装置が広く使用されている。FPDを用いた撮影方法のひとつに、エネルギ成分が異なる放射線を用いてエネルギサブトラクション画像を取得する方法が知られている。複数の放射線画像を撮像する時間間隔は、静止画撮像用の放射線撮像装置では数秒以上、通常の動画用の放射線撮像装置では100ミリ秒程度であり、高速の動画用の放射線撮像装置でも10ミリ秒程度である。この時間間隔において被写体が動くと、その動きによってアーチファクトが生じてしまう。したがって、心臓などのように動きが速い被写体のエネルギサブトラクション画像を得ることは難しい。特許文献1には、動きが速い被写体のエネルギサブトラクション画像を得るために、先の撮像の信号をサンプルホールドノードに転送し、次の撮像の信号を蓄積する間に先の信号をサンプルホールドノードから読み出すことが示されている。特許文献1のX線撮影のシステムは、先の撮像の信号の読み出しと、次の撮像の信号の蓄積とを並列に行うことによって、2つの撮像の間隔を短くし、動きが速い被写体のエネルギサブトラクション画像を取得する。
特表2009-504221号公報
エネルギサブトラクション画像に含まれるノイズは、高エネルギの放射線で撮像した放射線画像と低エネルギの放射線で撮像した放射線画像とのそれぞれのノイズ量に依存する。エネルギサブトラクション画像の画質を向上するためには、高エネルギ画像と低エネルギ画像とのそれぞれの画像に含まれるノイズ量を考慮する必要がある。特許文献1には、それぞれの撮像で得られる信号に含まれるノイズ量について言及していない。
本発明は、放射線撮像装置において、エネルギサブトラクション画像の画質の向上に有利な技術を提供することを目的とする。
上記課題に鑑みて、本発明の実施形態に係る放射線撮像装置は、アレイ状に複数の行および複数の列を構成するように配された複数の画素を含む撮像部と、制御部と、を含む放射線撮像装置であって、複数の画素のそれぞれは、入射する放射線に応じた画像用信号を生成するための変換部および変換部で生成された画像用信号を保持するためのサンプルホールド回路を備え、制御部は、撮像部に1つのエネルギサブトラクション画像を生成するための第1の撮像および第1の撮像の後に行われる第2の撮像を行わせ、被写体の厚さを含む情報を用いて決定された放射線の照射条件を用いて、第1の撮像において複数の画素のそれぞれのサンプルホールド回路が第1の画像用信号をサンプリングするタイミングを制御し、第1の画像用信号のうち所定の領域の画像用信号に基づいて決定した第1の画像用信号に含まれるノイズ量と、被写体の厚さを含む情報を用いて決定された放射線の照射条件と、を用いて、第2の撮像において複数の画素のそれぞれのサンプルホールド回路が第2の画像用信号をサンプリングするタイミングを制御することを特徴とする。
上記手段によって、放射線撮像装置において、エネルギサブトラクション画像の画質の向上に有利な技術を提供する。
本発明の実施形態に係る放射線撮像装置を用いた放射線撮像システムの構成例を示す図。 図1の放射線撮像装置の構成例を示す図。 図1の放射線撮像装置の画素の構成例を示す図。 図1の放射線撮像システムの動作例を示す図。 図1の放射線撮像システムにおいて、エネルギサブトラクション画像を撮像する際の放射線の照射条件の例を示す図。 高エネルギ画像と低エネルギ画像とのノイズと、エネルギサブトラクション画像のノイズと、の関係を示す図。 図1の放射線撮像装置を用いたエネルギサブトラクション画像の撮像のフローを示す図。 放射線の波形例を示す図。 図1の放射線撮像装置を用いたエネルギサブトラクション画像の撮像のフローを示す図。 図1の放射線撮像システムの動作例を示す図。 画像用信号を高エネルギ画像用信号と低エネルギ画像用信号とに振り分ける概略を示す図。
以下、本発明に係る放射線撮像装置の具体的な実施形態を、添付図面を参照して説明する。以下の説明及び図面において、複数の図面に渡って共通の構成については共通の符号を付している。そのため、複数の図面を相互に参照して共通する構成を説明し、共通の符号を付した構成については適宜説明を省略する。また、本発明における放射線には、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギを有するビーム、例えばX線や粒子線、宇宙線なども含みうる。
第1の実施形態
図1~6を参照して、本発明の実施形態による放射線撮像装置の構成および動作について説明する。図1は、本発明の第1の実施形態における放射線撮像装置100を用いた放射線撮像システム101の構成例を示す図である。本実施形態において、放射線撮像装置100を用いた放射線撮像システム101は、エネルギサブトラクション法によって放射線画像を得るためのシステムである。エネルギサブトラクション法は、被写体に異なるエネルギを有する放射線を用いた複数回の撮像によって得られた複数の放射線画像を処理することによって、新たな放射線画像(例えば、骨画像および軟部組織画像)を得る方法である。放射線撮像システム101は、放射線撮像装置100に入射する放射線から変換される光学像を電気的に撮像し、放射線画像を生成するための電気的な信号(画像用信号)を得るように構成される。
放射線撮像システム101は、放射線撮像装置100、放射線を照射するための放射線源400、放射線源400を制御する曝射制御部300、曝射制御部300(放射線源400)および放射線撮像装置100を制御するシステム制御部350を含む。
システム制御部350は、コンピュータ(プロセッサ)と、該コンピュータに提供するプログラムを格納したメモリとによって構成されうる。また、システム制御部350は、放射線撮像装置100から供給される信号を処理する信号処理部352を含む。信号処理部352は、システム制御部350のメモリに格納されたプログラムの一部によって構成されうる。また、信号処理部352は、システム制御部350から独立して配され、コンピュータ(プロセッサ)と、該コンピュータに提供するプログラムを格納したメモリとによって構成されてもよい。システム制御部350の全部または一部は、デジタルシグナルプロセッサ(DSP)、または、プログラマブルロジックアレイ(PLA)によって構成されてもよい。システム制御部350および信号処理部352は、その動作を記述したファイルに基づいて論理合成ツールによって設計され製造されてもよい。また、システム制御部350は、放射線撮像システム101のユーザインタフェースとして機能してもよい。この場合、システム制御部350は、例えば、ユーザが放射線画像を取得するための撮像の条件を入力するための入力部や、入力した情報を確認するためのディスプレイなどの表示部を含みうる。
曝射制御部300は、放射線源400による放射線の照射を制御する。曝射制御部300は、例えば、曝射スイッチを有し、曝射スイッチがユーザによってオンされることに応じて放射線源400に放射線を放射させるとともに、放射線が放射されるタイミングを示す情報をシステム制御部350に通知してもよい。また、曝射制御部300は、システム制御部350からの指令に応じて放射線源400に放射線を放射させてもよい。
放射線源400は、放射線のエネルギ(波長)を変更する機能を有する。放射線源400は、曝射制御部300の制御に従って、例えば、管電圧(放射線源400の陰極と陽極との間に印加する電圧)を変更することによって、放射線のエネルギを変更しうる。放射線源400は、互いに異なる複数のエネルギ値を有する放射線を放射することができる。
放射線撮像装置100は、複数の画素を含む画素アレイ110を備える。複数の画素のそれぞれは、入射する放射線を電気信号(例えば、電荷)に変換する変換部と、変換部をリセットするリセット部と、変換部で生成された画像用信号を保持するためのサンプルホールド回路と、を含む。それぞれの画素は、放射線を直接に電気信号に変換するように構成されてもよいし、放射線を可視光などの光に変換した後に、変換された光を電気信号に変換するように構成されてもよい。後者においては、放射線を光に変換するためのシンチレータが利用されうる。シンチレータは、画素アレイ110を構成する複数の画素によって共有されうる。
図1に示される構成例において、放射線撮像装置100とシステム制御部350とは、互いに独立した形で配されているが、システム制御部350の機能の全部または一部が、放射線撮像装置100に組み込まれていてもよい。また、放射線撮像装置100の機能の一部が、システム制御部350に組み込まれていてもよい。
図2は、放射線撮像装置100の構成例を示す。放射線撮像装置100は、撮像部111と撮像部111を制御するための制御部130とを含む。撮像部111は、複数の画素112を有する画素アレイ110、行選択回路120、読出回路140、列選択回路150、増幅部160、AD変換器170を含む。
画素アレイ110において、複数の画素112は、アレイ状に複数の行および複数の列を構成するように配される。図2に示す構成において、画素アレイ110には、8行×8列の画素112で構成されているが、実際には、より多くの画素112が配されうる。一例において、画素アレイ110は、17インチの寸法を有し、約3000行×約3000列の画素112を有しうる。
行選択回路120は、複数の画素112の配された画素アレイ110のうち信号を出力する行を選択する。行選択回路120は、行制御信号線122を駆動することによって行を選択する。読出回路140は、画素アレイ110の複数の行のうち行選択回路120によって選択された行の画素112から信号を読み出す。読出回路140は、画素アレイ110の複数の列信号線114に出力される複数列分の信号を読み出す。それぞれの列の列信号線114は、例えば、画素112で検出された複数の画像用信号を伝達する複数の信号線を含みうる。列信号線114に含まれる複数の信号線には、例えば、画素112で検出された放射線に応じた画像用信号、画素112の熱雑音などのノイズレベルが、それぞれ出力されうる。読出回路140は、列信号線114に出力された画像用信号とノイズレベルとをそれぞれ読み出すように構成されうる。列選択回路150は、読出回路140によって画素アレイ110の選択された行の画素112から読み出された複数列分の信号を所定の順に選択する。増幅部160は、列選択回路150によって選択された信号を増幅する。ここで、読出回路140が画素112から画像用信号およびノイズレベルの対を読み出す場合、増幅部160は、対をなす画像用信号とノイズレベルとの差分を増幅する差動増幅器として構成されてもよいし、それらを個別に増幅するように構成されてもよい。AD変換器170は、増幅部160から出力される信号OUTをAD変換し、画像用信号としてデジタル信号DOUTを出力する。制御部130は、行選択回路120、読出回路140、列選択回路150および増幅部160を制御し、撮像部111の画素アレイ110に配された画素112で生成される画像用信号を放射線撮像装置100から出力させる。
図3は、画素アレイ110に配される1つの画素112の構成例を示す。画素112は、変換素子210、リセットスイッチ220、増幅回路230、感度変更部240、クランプ回路260、サンプルホールド回路270、280、290、出力回路310を含む。
変換素子210は、入射する放射線を電気信号(画像用信号)に変換する変換部として機能する。変換素子210は、例えば、複数の画素で共有される放射線を光に変換するシンチレータと、変換された光を電気信号に変換する光電変換素子と、で構成されうる。変換素子210は、放射線から変換された電気信号(電荷)、即ち放射線に応じた電気信号を蓄積する電荷蓄積部を有し、電荷蓄積部は、増幅回路230の入力端子に接続されている。
増幅回路230は、トランジスタ235、236、電流源237を含む。トランジスタ235は、トランジスタ236を介して電流源237に接続されている。トランジスタ235および電流源237によってソースフォロア回路が構成される。トランジスタ236は、イネーブル信号ENが活性化されることによってオンし、トランジスタ235および電流源237によって構成されるソースフォロア回路を動作状態にするイネーブルスイッチである。変換素子210の電荷蓄積部およびトランジスタ235のゲートは、電荷蓄積部に蓄積された電荷を電圧に変換する電荷電圧変換部CVCとして機能する。即ち、電荷電圧変換部CVCには、電荷蓄積部に蓄積された電荷Qと電荷電圧変換部CVCが有する容量値Cとによって定まる電圧V(=Q/C)が現れる。電荷電圧変換部CVCは、リセットスイッチ220を介してリセット電位VRESに接続されている。リセット信号PRESが活性化されるとリセットスイッチ220がオンして、電荷電圧変換部CVCの電位がリセット電位VRESにリセットされる。リセットスイッチ220は、変換素子210の電荷蓄積部に接続された第1主電極(ドレイン)と、リセット電位VRESが与えられる第2主電極(ソース)と、制御電極(ゲート)とを有するトランジスタを含みうる。該トランジスタは、該制御電極にオン電圧が与えられることによって該第1主電極と該第2主電極とを導通させて変換素子210の電荷蓄積部をリセットする。
クランプ回路260は、クランプ容量261、トランジスタ262、263、264、電流源265を含む。クランプ回路260は、リセットされた電荷電圧変換部CVCの電位に応じて増幅回路230から出力されるリセットノイズレベルをクランプ容量261によってクランプする。クランプ回路260は、変換素子210で変換された電荷(電気信号)に応じて増幅回路230から出力される画像用信号からリセットノイズレベルをキャンセルするための回路である。リセットノイズレベルは、電荷電圧変換部CVCのリセット時のkTCノイズを含む。クランプ動作は、クランプ信号PCLを活性化することによってトランジスタ262をオンさせた後に、クランプ信号PCLを非活性化することによってトランジスタ262をオフさせることによってなされる。クランプ容量261の出力側は、トランジスタ263のゲートに接続されている。トランジスタ263のソースは、トランジスタ264を介して電流源265に接続されている。トランジスタ263と電流源265とによってソースフォロア回路が構成されている。トランジスタ264は、そのゲートに供給されるイネーブル信号EN0が活性化されることによってオンして、トランジスタ263と電流源265とによって構成されるソースフォロア回路を動作状態にするイネーブルスイッチである。
出力回路310は、トランジスタ311、313、315、行選択スイッチ312、314、316を含む。トランジスタ311、313、315は、それぞれ、列信号線114の信号線321、322、323に接続された不図示の電流源とともにソースフォロア回路を構成する。
変換素子210で発生した電荷に応じてクランプ回路260から出力される画像用信号は、サンプルホールド回路280によって保持(サンプルホールド)されうる。サンプルホールド回路280は、スイッチ281および容量282を含む。スイッチ281は、サンプルホールド信号TS1が活性化されることによってオンする。クランプ回路260から出力される画像用信号は、サンプルホールド信号TS1が活性化されることによって、スイッチ281を介して容量282に書き込まれる。図3に示される構成では、画素112は、画像用信号を書き込むための追加のサンプルホールド回路290を含みうる。サンプルホールド回路290には、サンプルホールド回路280がサンプリングした画像用信号とは別の画像用信号がサンプリングされてもよい。変換素子210で発生した電荷に応じてクランプ回路260から出力される画像用信号は、サンプルホールド回路290によってサンプルホールドされうる。サンプルホールド回路290は、スイッチ291および容量292を含む。スイッチ291は、サンプルホールド信号TS2が活性化されることによってオンする。クランプ回路260から出力される画像用信号は、サンプルホールド信号TS2が活性化されることによって、スイッチ291を介して容量292に書き込まれる。画素112は、画像用信号を書き込むためのさらに追加のサンプルホールド回路を有してもよい。つまり、画素112は、画像用信号を書き込むために、任意の個数のサンプルホールド回路を有していてもよい。リセットスイッチ220によって電荷電圧変換部CVCの電位がリセットされ、トランジスタ262がオンした状態では、クランプ回路260からは、クランプ回路260の熱雑音などのノイズレベル(オフセット成分)が出力される。クランプ回路260のノイズレベルは、サンプルホールド回路270によってサンプルホールドされうる。サンプルホールド回路270は、スイッチ271および容量272を含む。スイッチ271は、サンプルホールド信号TNが活性化されることによってオンする。クランプ回路260から出力されるノイズレベルは、サンプルホールド信号TNが活性化されることによって、スイッチ271を介して容量272に書き込まれる。また、本実施形態では、サンプルホールド回路270は、変換素子210で発生した電荷に応じてクランプ回路260から出力される信号である放射線信号を保持するためにも使用されてもよい。行選択信号VSTが活性化されると、サンプルホールド回路270、280、290に保持されている信号に応じた信号が、列信号線114を構成する信号線321、322、323にそれぞれ出力される。具体的には、サンプルホールド回路270によって保持されている信号(ノイズレベルまたは画像用信号)に応じた信号Nが、トランジスタ311および行選択スイッチ312を介して信号線321に出力される。また、サンプルホールド回路280によって保持されている画像用信号に応じた信号S1が、トランジスタ313および行選択スイッチ314を介して信号線322に出力される。また、サンプルホールド回路290によって保持されている画像用信号に応じた信号S2が、トランジスタ315および行選択スイッチ316を介して列信号線323に出力される。
画素112は、複数の画素112の間で信号を加算するための加算スイッチ301、302、303を含んでいてもよい。複数の画素112の間で信号を加算する加算モード時は、加算モード信号ADDN、ADDS1、ADDS2が活性化される。加算モード信号ADDNの活性化により複数の画素112の容量272同士が接続され、信号が平均化される。加算モード信号ADDS1の活性化により複数の画素112の容量282同士が接続され、信号が平均化される。加算モード信号ADDS2の活性化により複数の画素112の容量2872同士が接続され、信号が平均化される。
さらに、画素112は、感度変更部240を含みうる。感度変更部240は、スイッチ241、242、容量243、244、トランジスタ245、246を含む。変更信号WIDEが活性化されると、スイッチ241がオンし、電荷電圧変換部CVCの容量値に容量243の容量値が付加される。これによって、画素112の感度が低下する。変更信号WIDEが活性化される場合には、イネーブル信号ENWが活性化されてもよい。さらに、変更信号WIDE2も活性化されると、スイッチ242もオンし、電荷電圧変換部CVCの容量値に容量244の容量値が付加される。これによって画素112の感度がさらに低下する。画素112の感度を低下させる機能を追加することによって、ダイナミックレンジを広げることができる。感度変更部240に配される容量の数は、1つであってもよいし、3つ以上であってもよい。放射線撮像装置100に要求されるダイナミックレンジに応じて、適宜設定すればよい。
上述のリセット信号PRES、イネーブル信号EN、クランプ信号PCL、イネーブル信号EN0、サンプルホールド信号TN、TS1、TS2、行選択信号VSTは、制御部130の制御によって行選択回路120から出力される制御信号である。これらの制御信号は、図2に示されるように、行選択回路120から、行制御信号線122を介して、画素112の対応するトランジスタやスイッチに入力される。
次いで、本実施形態の放射線撮像装置100を用いた放射線撮像システム101の動作について、図4を用いて説明する。図4において、横軸は時間を示す。「放射線エネルギ」は、放射線源400から放射され、放射線撮像装置100に照射される放射線の波形を示す。「PRES」は、リセット信号RPESを示す。「TS1」は、サンプルホールド信号TS1を示す。「DOUT」は、AD変換器170の出力を示す。
放射線源400からの放射線の放射および放射線撮像装置100の動作の同期は、システム制御部350によって制御される。放射線撮像装置100における動作制御は、制御部130によってなされる。
まず、システム制御部350に対するユーザの操作に応じて、放射線源400の管電圧、管電流といった放射線のエネルギ値や放射線の照射時間などの放射線画像を撮像する際の放射線の照射条件が設定される。次いで、リセット信号PRESが活性化される期間にクランプ信号PCLも所定期間にわたって活性化されて、クランプ回路260にノイズレベルがクランプされる。また、リセット信号PRESが所定期間にわたって活性化されることによって変換素子210がリセットされる。
次いで、システム制御部350からの制御によって放射線源400は、互いに異なるエネルギ値を有する放射線511および放射線512を照射する。本実施形態において、システム制御部350の制御によって放射線源400は、まず、低エネルギのエネルギ値を有する放射線511を照射し、次いで、放射線511よりも高エネルギのエネルギ値を有する放射線512を照射する。しかしながら、照射する放射線のエネルギの順番は、これに限られることはなく、先に高エネルギのエネルギ値を有する放射線を放射線源400が照射してもよい。また、放射線511と放射線512とは時間的に連続して照射されてもよいし、互いの放射線511、512の照射の間に時間間隔があってもよい。放射線511、512の照射条件は、例えば、図5に示すような照射条件のテーブルが、システム制御部350に配された記憶部354に保存され、ユーザが被写体に応じて適宜選択してもよい。また、放射線撮像装置100が被写体の厚さを測定するためのカメラやゲージなどを備えていてもよい。この場合、制御部130が、検出された被写体の厚さなどの情報に応じて、テーブルから放射線511、512の照射条件を選択してもよい。また例えば、放射線の照射条件を選択するために、低線量で事前に被写体の撮像を行い、透過線量から被写体厚などを推定し、制御部130が、推定される被写体厚などに応じて、テーブルから放射線511、512の照射条件を選択してもよい。本実施形態において、2回の放射線の照射が行われるが、これに限られることはない。図8に示すように、1回の放射線801の照射の間に放射線の立ち上がり、立ち下がりを利用して、1回目のサンプルホールド信号TS1の動作前後で放射線800による撮像、放射線802による撮像が行なわれてもよい。
放射線源400からの放射線の照射に応じて、制御部130は、撮像部111に1つのエネルギサブトラクション画像を生成するための1回目の撮像および1回目の撮像の後に行われる2回目の撮像を行わせる。まず、放射線511の照射後、放射線512の照射の前に、制御部130からのサンプルホールド信号TS1に従って、サンプルホールド回路280は、放射線511の照射によって画素112で生成される画像用信号をサンプリングする。その後、リセット信号PRESが所定期間にわたって活性化されることによって変換素子210がリセットされる。
次いで、放射線512の照射による2回目の撮像が行われる。この間、制御部130は、サンプルホールド回路280に保持された1回目の撮像で取得した放射線512の照射による画像用信号を、放射線512の照射による2回目の撮像を行う間に読出回路140に読み出させる。その後、放射線511の照射による画像用信号は、列選択回路150、増幅部160、AD変換器170を経て画像用信号513として出力される。放射線512の照射による画像用信号がサンプルホールド回路280から読出回路140に読み出された後、サンプルホールド信号TS1に従って、サンプルホールド回路280は、放射線512の照射によって画素112で生成される画像用信号をサンプリングする。放射線512の照射によって生成された画像用信号は、放射線511の照射によって生成された画像用信号と同様に処理され、AD変換器170から画像用信号514として出力される。このように、1回目の撮像の信号の読み出しと、2回目の撮像の信号の蓄積とを並列に行うことによって、放射線撮像装置100は、2つの撮像の間隔を短くできる。このため、動きが速い被写体のエネルギサブトラクション画像の取得など、サンプルホールド回路280を設けることによって、放射線撮像装置100の性能を向上することが可能となる。
システム制御部350の信号処理部352は、画像用信号513および画像用信号514をエネルギサブトラクション法に従って処理することによって、サブトラクション画像を取得する。ここで、エネルギサブトラクション法としては、種々の方法を採用することができる。例えば、低エネルギの放射線(放射線511)による放射線画像と高エネルギの放射線(放射線512)による放射線画像との差分を演算することによって骨画像と軟部組織画像とを得ることができる。また、低エネルギの放射線による放射線画像と高エネルギの放射線による放射線画像に基づいて非線形連立方程式を解くことによって骨画像と軟部組織画像とを生成してもよい。また、低エネルギの放射線による放射線画像と高エネルギの放射線による放射線画像とに基づいて造影剤画像と軟部組織画像とを得ることもできる。また低エネルギの放射線による放射線画像と高エネルギの放射線による放射線画像とに基づいて電子密度画像と実効原子番号画像とを得ることもできる。
次に、図5に示す放射線の照射条件のテーブルの作成方法について詳細に説明する。図5に示すように、放射線の照射条件は、例えば、2回の撮像を行う際に照射される放射線のエネルギ値を設定するための管電圧、管電流の値および放射線を照射する照射時間を含む。ここで、高エネルギ画像と低エネルギ画像との四則演算後のエネルギサブトラクション画像のノイズ量は、以下に示される式(1)、式(2)、式(3)で算出することが可能である。ここで、Mは高エネルギ画像の画素値、εは高エネルギ画像のノイズ値、Mは低エネルギ画像の画素値、εは低エネルギ画像のノイズ値である。
Figure 0007038506000001
Figure 0007038506000002
Figure 0007038506000003
本明細書において、エネルギサブトラクション処理の代表的な処理として、ボーンサプレッション処理を行う場合について説明する。ボーンサプレッション処理は、低エネルギ画像と高エネルギ画像とを用いて、得られた放射線画像から骨部を除去する画像処理である。ボーンサプレッション処理において、一般的に、式(4)を用いて画像処理されることが多い。ここで、Mcorはエネルギサブトラクション画像の画素値、εcorはエネルギサブトラクション画像のノイズ値、Iは放射線の照射線量、αは高エネルギ画像と低エネルギ画像との重みづけするための補正係数(定数)である。
Figure 0007038506000004
エネルギサブトラクション画像のノイズ値εcorは、式(4)に式(1)を適用することによって式(5)のように表される。
Figure 0007038506000005
相加相乗平均の関係式(式(6))から、式(5)においてエネサブ画像のノイズ値εcorを最小にするには、式(7)を満たさなければならない。
Figure 0007038506000006
Figure 0007038506000007
つまり、次に示す式(8)を満たす必要がある。
Figure 0007038506000008
Figure 0007038506000009
式(9)には、放射線粒子の到達個数がポアソン分布に従うことから、放射線画像のノイズは透過線量の二乗根に比例することが示される。ここで、被写体の被曝線量を増加させずにエネルギサブトラクション画像のノイズのみを低減させることを考えると、式(7)、式(9)を用いて放射線の照射条件を求めることが可能となる。しかしながら、被写体の厚みや物質ごとに高エネルギ画像、低エネルギ画像のそれぞれのノイズ量であるノイズ値ε、εは異なる。このため、必ずしも理想的な放射線の照射条件で撮像が行えるとは限らない。そこで、例えばε/(α×ε)が、1/3~3の範囲に入るように、放射線の照射条件のテーブルを作成する。図6は、低エネルギ画像のノイズ量と高エネルギ画像のノイズ量とに対するエネルギサブトラクション画像のノイズ量の推移を示したグラフである。図6から分かるように、ε/(α×ε)が、1/3~3の範囲に入るように設定できれば、最適なエネルギサブトラクション画像のノイズ量から10%程度以下のノイズ量の増加に抑えることが可能である。このように、画像用信号のノイズ量が、四則演算における誤差伝播の関係式(式(1)、式(2)、式(3))に基づいて決定される。
ユーザのシステム制御部350への入力などによって放射線の照射条件が設定され、制御部130に照射条件が送信される。制御部130は、この予め設定された放射線の照射条件に応じて、1回目の撮像によって取得される画像用信号に含まれるノイズ量と2回目の撮像によって取得される画像用信号に含まれるノイズ量との差が小さくなるように、サンプルホールド回路280を制御する。具体的には、制御部130は、1回目の撮像において、放射線511の照射によって生成される画像用信号が取得できるように、サンプルホールド回路280が画像用信号をサンプリングするタイミングをサンプルホールド信号TS1によって制御する。制御部130は、同様に、制御部130は、2回目の撮像において、放射線512の照射によって生成される画像用信号が取得できるように、サンプルホールド回路280が画像用信号をサンプリングするタイミングをサンプルホールド信号TS1によって制御する。
図8に示すように、1回の放射線の照射の間の放射線の立ち上がり、立ち下がりを利用して、1回目のサンプルホールド信号TS1の動作前後で放射線800を用いた撮像、放射線802を用いた撮像を行う場合も同様である。この場合、放射線の照射条件は、放射線のエネルギ値を設定するための管電圧、管電流の値、放射線を照射する照射時間および放射線のエネルギの時間変化の情報を含む。放射線のエネルギの波形の時間変化の情報は、放射線の複数のエネルギ値などの条件に応じて記憶部354などに記憶しておき、エネルギ値の設定がされるとともに、記憶部354から読み出されてもよい。ユーザのシステム制御部350への入力などによって放射線の照射条件が設定され、制御部130に照射条件が送信される。制御部130は、予め設定された放射線の照射条件に応じて、1回目の撮像によって取得される画像用信号に含まれるノイズ量と2回目の撮像によって取得される画像用信号に含まれるノイズ量との差が小さくなるように、サンプルホールド回路280を制御する。制御部130は、予め設定された照射条件に応じて、ノイズ量の差が小さくなるように、サンプルホールド信号TS1、リセット信号PRESを用いてサンプルホールド回路280が画像用信号をサンプリングするタイミングを制御する。具体的には、制御部130は、放射線801の照射中、サンプルホールド信号TS1を用いて放射線800のタイミングで、サンプルホールド回路280に、1つ目の画像用信号をサンプリングさせる。次いで、制御部130は、リセット信号PRESを用いて変換素子210をリセットする。さらに、制御部130は、サンプルホールド信号TS1を用いて放射線802のタイミングで、サンプルホールド回路280に、2つ目の画像用信号をサンプリングさせる。例えば、補正係数が適用された低エネルギの放射線の画像用信号のノイズ量が、高エネルギの画像用信号のノイズ量の1/3倍以上かつ3倍以下になるタイミングで画像用信号をサンプリングするように、制御部130はサンプルホールド回路280を制御する。
本実施形態では、低エネルギ画像と高エネルギ画像とを差分処理するなどして、骨画像と軟部組織画像とを分離するなどの処理を行う形態を説明した。しかしながら、本発明はこのような形態に限定されない。例えば、低エネルギ画像と高エネルギ画像とを用いて、非線形連立方程式を解くなどして、骨画像と軟部組織画像とを分離する場合や、電子密度画像と実効原子番号画像とに分離するなどの場合にも適用できる。また、本実施形態では、放射線のエネルギ値を放射線源400の管電圧、管電流を変更することで変化させているが、これに限られることはない。例えば、放射線源400の管電圧や管電流を変更せずに、ビームハードニングフィルターなどの挿入の有無によって、それぞれ異なるエネルギの放射線による画像を取得してもよい。
本実施形態において、2つの異なるエネルギの放射線を用いた撮像で生成される画像用信号において含まれるノイズ量に応じて、サンプルホールド回路280が画像用信号をサンプリングするように、制御部130が放射線撮像装置100の制御を行う。これによって、エネルギサブトラクション画像のノイズを抑制し、良好な画質のエネルギサブトラクション画像を取得することが可能となる。また、本実施形態は、放射線を照射する条件のテーブルを記憶部354に保持するだけで、被ばく線量を増やすことなく、サブトラクション画像のノイズを低減することが可能である。照射条件のテーブルを保持する以外、放射線撮像システム101に特別な構成を追加する必要がないため、システム構築が容易となる利点がある。
第2の実施形態
図7を参照して、本発明の実施形態による放射線撮像装置の構成および動作について説明する。図7は、本発明の第2の実施形態における放射線撮像装置100用いた被写体の撮像からエネルギサブトラクション画像を表示するまでの処理のフロー図である。放射線撮像装置100や放射線撮像システム101の構成は、上述の第1の実施形態と同様であってもよいため、ここでは説明を省略する。
まず、ステップS701において、システム制御部350に対するユーザの操作に応じて、放射線源400の管電圧、管電流といった放射線のエネルギ値や放射線の照射時間、照射される放射線の波形の時間変化などの撮像時の放射線の照射条件が設定される。放射線撮像装置100が記憶部354を備える場合、ユーザは、被写体に応じて記憶部354に記憶された放射線の照射条件から適当な条件を選んでもよい。1回の放射線の照射の場合、放射線源400の特性に応じた放射線のエネルギ値や波形の時間変化、および、放射線の照射される照射時間などの条件が記憶部354から読み出され設定される。また、2回の放射線の照射の場合、上述のような照射条件のテーブルから適当な条件が記憶部354から読み出され設定される。また、放射線撮像装置100が被写体の厚さを測定するためのカメラやゲージなどを備えていてもよい。この場合、制御部130が、検出された被写体の厚さなどの情報に応じて、記憶部354に記憶された放射線の照射条件から適当な条件を選んでもよい。また例えば、放射線の照射条件を選択するために、低線量で事前に被写体の撮像を行い、透過線量から被写体厚などを推定し、制御部130が、推定される被写体厚などから適当な放射線の照射条件を決定してもよい。放射線の照射条件が設定されると、設定された照射条件に応じて、制御部130は、1回目の撮像において、サンプルホールド回路280に画像用信号をサンプリングさせるタイミングを決定する。また、このとき、制御部130は、2回目の撮像において、サンプルホールド回路280に画像用信号をサンプリングさせるタイミングを仮決定してもよい。
ステップS701で、放射線の照射条件の設定を行った後、ステップS702において、1回目の放射線画像の撮像が行なわれる。生成された画像用信号は、信号処理部352に出力される。ステップS703において、制御部130は、ステップS702で取得し信号処理部352に出力された1回目の撮像によって取得した放射線画像の画像用信号に含まれるとノイズ量を解析する。ノイズ量の解析を行う関心領域は、撮像部111のうち所定の領域の画像用信号を解析してもよい。制御部130は、領域抽出技術などを用いて撮像部111のうち任意の部分の画像用信号を選択してもよい。例えば、制御部130は、骨の厚さが厚い腰椎などの透過線量が少ない領域を所定の領域として選択してもよい。また例えば、撮像部111の視野内に適当なフィルタなどを配し、ユーザがフィルタの配された場所を所定の領域として選択してもよい。また、視野内にフィルタなどが配される場合、制御部130がフィルタの配された場所を、透過線量が少ない領域として認識し、所定の領域として選択してもよい。制御部130は、高エネルギ画像の画像用信号のうち所定の領域の画像用信号の標準偏差(ノイズ)を求めるなどの処理を行うことによって、1回目に撮像された放射線画像の画像用信号に含まれるノイズ量を決定する。
次に、ステップS704において、制御部130は、ステップS703の1回目の撮像によって取得した放射線画像に含まれるノイズ量の解析結果から決定したノイズ量を基に、2回目の撮像条件、具体的には画像用信号をサンプリングするタイミングを決定する。ステップS701において2回目の撮像のサンプリングのタイミングを仮決定していた場合、決定したノイズ量に応じて、サンプリングのタイミングを修正してもよい。2回目の撮像での画像用信号のサンプリングのタイミングは、エネルギサブトラクション画像のノイズを最小にするように、上述の第1の実施形態で説明した方法で求める。このように、本実施形態においても、四則演算における誤差伝播の関係式(式(1)、式(2)、式(3))に基づいて決定されるノイズ量に基づいて、制御部130がサンプルホールド回路280によって画像用信号をサンプリングするタイミングが決定される。
2回目の撮像におけるサンプリングするタイミングを決定した後、ステップS705において、制御部130は、撮像部111を制御し、2回目の撮像を行う。このとき、所望の透過線量になると放射線の照射を停止させるAEC(Auto Exposure Control)機能や、フォトタイマーなどを用いて放射線の照射される線量を制御しても良い。この場合、ユーザなどによって予め設定された領域の透過線量が所望の線量となったとき、制御部130は、システム制御部350に放射線源400からの放射線の照射を停止するための信号を出力してもよい。この信号に応じて、システム制御部350は、放射線の照射が停止するように放射線源400を制御する。
ステップS706において、撮像部111から出力された2つの撮像によって取得された画像用信号を用いて、信号処理部352はエネルギサブトラクション処理を行う。エネルギサブトラクション処理されたエネルギサブトラクション画像は、ステップS707において、信号処理部352から出力され、ディスプレイなどの表示装置(不図示)に表示される。このとき、エネルギサブトラクション画像だけでなく、それぞれ異なる放射線のエネルギ値で撮像された放射線画像なども信号処理部352から出力され、表示装置において表示されてもよい。
本実施形態において、1回目の撮像で生成される画像用信号において含まれるノイズ量を決定する。その後、ノイズ量に応じて、2回目の撮像における画像用信号をサンプルホールド回路によってサンプリングするタイミングの設定が行われる。これによって、上述の第1の実施形態よりもエネルギサブトラクション画像に含まれるノイズを抑制し、良好な画質のエネルギサブトラクション画像を取得することが可能となる。しかしながら、信号処理部352で1回目に撮像された放射線画像の解析を行う必要があり、放射線撮像システム101の構成が、第1の実施形態と比較して複雑になりうる。また、本実施形態において、制御部130と信号処理部352との間の通信が上述の第1の実施形態よりも増加しうる。このため、信号処理部352のうち放射線画像のノイズ量の解析を行う機能部分を、例えば、放射線撮像装置100内または制御部130内に配してもよい。
また、上述の第1の実施形態および本実施形態において、2つの放射線画像からエネルギサブトラクション画像を生成する例を示したが、3回以上の撮像を行い、3つ以上の放射線画像からエネルギサブトラクション画像を生成してもよい。この場合も、上述したように生成されるエネルギサブトラクション画像のノイズ量が小さくなるように、制御部130が、それぞれの撮像における画像用信号のサンプリングのタイミングを制御すればよい。
第3の実施形態
図8~11を参照して、本発明の実施形態による放射線撮像装置の構成および動作について説明する。上述の2つの実施形態において、制御部130は、取得される2つの画像用信号のノイズ量が小さくなるようにサンプルホールド回路280が画像用信号をサンプリングするタイミングを制御した。本実施形態において、サンプルホールド回路280を用いることによって、1回の放射線の照射中に複数回の撮像を行い、取得した複数の画像用信号からノイズ量の少ないエネルギサブトラクション画像を生成する方法について説明する。放射線撮像装置100や放射線撮像システム101の構成は、上述の第1および第2の実施形態と同様であってもよいため、ここでは説明を省略する。
図8に示すように、1回の放射線801の照射の間の放射線の立ち上がり、立ち下がりを利用して、サンプルホールド信号TS1およびリセット信号PRESの動作前後で異なるエネルギの放射線の照射として1回の放射線の照射中に複数回の撮像を行う場合を考える。図8に示すように、サンプルホールド信号TS1のタイミングによって、それぞれの撮像において照射される放射線の線量とエネルギ値が変化する。一般的に、サブトラクション画像は、2つの放射線画像のエネルギ差が大きい方がノイズ量は少なくなる。
図8の上側のように1回の放射線801の照射を、放射線800と放射線802の照射の組み合わせになるように、制御部130がサンプリングするタイミングを制御する場合を考える。この場合、放射線800のように立ち上がり波形すべてを用いて放射線画像を生成するための画像用信号を取得すると、線量を稼ぐことができるが、放射線802によって取得した画像用信号から生成される放射線画像とのエネルギ差が小さくなる。
一方、図8の下側のように1回の放射線801の照射を、放射線804と放射線806の照射の組み合わせになるように、制御部130がサンプリングするように制御する場合を考える。この場合、放射線804のように立ち上がり波形の途中で放射線画像を生成するための画像用信号を取得すると、放射線806によって取得された画像用信号から生成される放射線画像とのエネルギ差を稼ぐことができる。しかしながら、放射線804の放射線の線量が少なくなり、エネルギサブトラクション画像のノイズ量が増加しうる。そのため、2つの放射線画像のエネルギ差とそれぞれの画像用信号に含まれるノイズ量とを適切に調節する必要がある。2つの放射線画像のエネルギ差とノイズ量との調節方法について、図9を用いて詳細に説明する。
図9は、本発明の第3の実施形態における放射線撮像装置100用いた被写体の撮像からエネルギサブトラクション画像を表示するまでの処理のフロー図である。ステップS901において、撮像条件の設定を行う。撮像条件は、上述の各実施形態と同様に、放射線のエネルギ値や放射線の照射時間、放射線のエネルギの波形の時間変化などの情報を含みうる。また、撮像条件は、1回の放射線の照射の間に撮像を行う回数を含む。
撮像条件の設定が行われた後、ステップS902において、設定された条件に従って、放射線源400は放射線を照射する。また、図10に示すように、放射線撮像装置100の制御部130は、撮像部111に、1回の放射線の照射中に複数回の撮像を行わせる。制御部130は、複数回の撮像のそれぞれにおいてサンプルホールド回路270、280、290がサンプリングした複数の画像用信号を、読出回路140に読み出させる。放射線撮像装置100はサンプルホールド回路270、280、290を有する。このため、先の撮像の信号の読み出しと、次の撮像の信号の蓄積とを並列に行うことによって、放射線撮像装置100は、2つの撮像の間隔を短くできる。さらに、放射線撮像装置100は複数のサンプルホールド回路270、280、290を備えるため、1回の放射線の照射の間に、より短い間隔で、多くの画像用信号を取得することが可能となる。
複数回の撮像によって生成され、読出回路140によって読み出された画像用信号は、信号処理部352に転送される。図10に示される構成では、1回の放射線の照射の間に14回の撮像を行い14個の画像用信号を取得しているが、取得される画像用信号の数はこれに限られることはない。取得される画像用信号の数は、13以下であってもよいし、15以上であってもよい。また、撮像を行う間隔は等間隔でなくてもよく、任意のタイミングで制御部130からの制御によってサンプルホールド回路270、280、290は画像用信号をサンプリングできる。
次いで、ステップS903において、図11に示すように、取得した放射線画像を信号処理部352はエネルギの情報に基づいてソートする。例えば、放射線のエネルギの情報として、複数の画像用信号のそれぞれの放射線のエネルギが高い部分と低い部分との差の順に応じて、複数の画像用信号をソートしてもよい。この場合、被写体が人体であれば、骨部分と脂肪部分との透過率の違いを用いてもよい。また、例えば、放射線のエネルギの情報として、複数の画像用信号のそれぞれの放射線のエネルギが高い部分のエネルギ値の順に応じて、複数の画像用信号をソートしてもよい。ここで、エネルギが高い部分のエネルギ値とは、得られた画像用信号のうち最もエネルギが高い部分に対応する画素の画素値であってもよい。また、例えば、エネルギが高い部分のエネルギ値とは、得られた画像用信号のうちエネルギが高い部分20%に対応する画素の画素値の平均値であってもよい。
1枚目に撮像された画像用信号は、放射線の立ち上がり部分で構成されるため低エネルギ画像の画像用信号となりうる。一方、放射線の立ち上がり後に撮像された画像用信号は、高エネルギ画像の画像用信号となりうる。さらに、最後に撮像された画像用信号は、放射線の立ち下がり部分で構成されるため低エネルギ画像の画像用信号となりうる。
次いで、ステップS904において、信号処理部352は、ソートされた複数の画像用信号を、低エネルギ画像に用いる画像用信号と高エネルギ画像に用いる画像用信号とに振り分ける。振り分けられた画像用信号は、それぞれ低エネルギ画像用の画像用信号および高エネルギ用の画像信号として合成される。低エネルギ画像用の画像用信号および高エネルギ用の画像信号は、複数の画像用信号のうち低エネルギ画像用の画像用信号および高エネルギ用の画像信号として合成される信号をそれぞれ平均化または加重平均化することによって生成される。
ソートされた複数の画像用信号を振り分ける際、信号処理部352は、任意のエネルギ値をしきい値として2つに振り分けられてもよい。また、信号処理部352は、後の工程において得られるエネルギサブトラクション画像を考慮し、それぞれの画像用信号に含まれるノイズ量に応じて振り分けられてもよい。例えば、合成された低エネルギ画像用の画像用信号および高エネルギ用の画像信号にそれぞれ含まれるノイズ量の差が、所定の範囲内にあるように振り分けてもよい。例えば、上述のように、誤差伝播の関係式に基づいて、合成された低エネルギ画像用の画像用信号に含まれるノイズ量が、高エネルギ画像用の画像信号に含まれるノイズ量の1/3倍以上かつ3倍以下になるように、複数の画像用信号を振り分けてもよい。このとき、ノイズ量の差が所定の範囲内にある、複数の合成された低エネルギ画像用の画像用信号および高エネルギ用の画像信号の組み合わせが生成されてもよい。以下では、複数の組み合わせがある場合について説明する。
画像用信号の合成を行った後、ステップS905において、合成された低エネルギ画像用の画像用信号および高エネルギ用の画像信号を用いて、それぞれの組み合わせに応じたエネルギサブトラクション画像を生成する。次いで、ステップS906において、信号処理部352は、生成されたエネルギサブトラクション画像の所定の部分の画素値の標準偏差などを用いて、それぞれのエネルギサブトラクション画像に含まれるノイズ量を解析する。例えば、信号処理部352が、透過線量が少ない領域を所定の領域として選択してもよい。第2の実施形態において説明した場合と同様の方法を用いて、信号処理部352はノイズ量の解析を行うことができる。解析値は、後で参照できるように、記憶部354に保存する。
次いで、ステップS907において、信号処理部352は、得られた低エネルギ画像用の画像用信号および高エネルギ用の画像信号のすべての組み合わせにおいてエネルギサブトラクション画像の生成が実施されたか判定する。未実施の場合は、ステップS904に戻り、未実施の組み合わせパターンで合成画像を作成する。すべての組み合わせでエネルギサブトラクション画像の生成が実施されている場合、ステップS908に移行する。ただし、施行する組み合わせは任意であり、必ずしもすべての組み合わせにおいて、エネルギサブトラクション画像の生成を行う必要はない。
次いで、ステップS908において、複数の組み合わせから生成されたエネルギサブトラクション画像のうち含まれるノイズ量の最も小さいエネルギサブトラクション画像を信号処理部352は出力する。出力されたエネルギサブトラクション画像は、ディスプレイなどの表示装置(不図示)に表示される。
本実施形態において、実際に出力されるエネルギサブトラクション画像に含まれるノイズ量を最小化するように、複数の画像用信号を合成する組み合わせを信号処理部352が決定する。そのため、確実にノイズが低減されたエネルギサブトラクション画像を取得することが可能となる。しかしながら、本実施形態は、信号処理部352で多くの画像処理を行うため、撮像からサブトラクション画像の表示までに時間がかかりうる。また、本実施形態において、多くの撮像を行い、複数の画像用信号を信号処理部352に出力する必要があるため、放射線撮像装置100内に信号処理部352が配されていてもよい。また、本実施形態において、複数回の撮像の間にリセット動作を行った場合、リセット動作期間は画像用信号の生成に寄与しない無効曝射となる。このため、リセット動作を行わずにサンプルホールド回路270、280、290が生成された信号を複数回サンプリングし、それぞれの信号の差分を、画像用信号として用いてもよい。
以上、本発明に係る実施形態を示したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、本発明の要旨を逸脱しない範囲で、上述した実施形態は適宜変更、組み合わせが可能である。
100:放射線撮像装置、111:撮像部、112:画素、130:制御部、270,280,290:サンプルホールド回路

Claims (13)

  1. アレイ状に複数の行および複数の列を構成するように配された複数の画素を含む撮像部と、制御部と、を含む放射線撮像装置であって、
    前記複数の画素のそれぞれは、入射する放射線に応じた画像用信号を生成するための変換部および前記変換部で生成された画像用信号を保持するためのサンプルホールド回路を備え、
    前記制御部は、
    前記撮像部に1つのエネルギサブトラクション画像を生成するための第1の撮像および前記第1の撮像の後に行われる第2の撮像を行わせ、
    被写体の厚さを含む情報を用いて決定された放射線の照射条件を用いて、前記第1の撮像において前記複数の画素のそれぞれの前記サンプルホールド回路が第1の画像用信号をサンプリングするタイミングを制御し、
    前記第1の画像用信号のうち所定の領域の画像用信号に基づいて決定した前記第1の画像用信号に含まれるノイズ量と、被写体の厚さを含む情報を用いて決定された前記放射線の照射条件と、を用いて、前記第2の撮像において前記複数の画素のそれぞれの前記サンプルホールド回路が第2の画像用信号をサンプリングするタイミングを制御することを特徴とする放射線撮像装置。
  2. 前記放射線の照射条件が、前記第1の撮像および前記第2の撮像における放射線のエネルギ値および放射線の照射時間を含むことを特徴とする請求項1に記載の放射線撮像装置。
  3. 前記第1の撮像および前記第2の撮像が、1回の放射線の照射の間に行われることを特徴とする請求項1または2に記載の放射線撮像装置。
  4. 前記放射線の照射条件が、放射線のエネルギの時間変化を含むことを特徴とする請求項1乃至3の何れか1項に記載の放射線撮像装置。
  5. 前記放射線撮像装置は読出回路をさらに含み、
    前記制御部は、前記複数の画素のそれぞれの前記サンプルホールド回路に保持された前記第1の画像用信号を前記第2の撮像を行う間に前記読出回路に読み出させることを特徴とする請求項1乃至4の何れか1項に記載の放射線撮像装置。
  6. 前記制御部は、前記第1の画像用信号のうち所定の領域の画像用信号の標準偏差に基づいて前記第1の画像用信号に含まれるノイズ量を決定することを特徴とする請求項1乃至5の何れか1項に記載の放射線撮像装置。
  7. 前記制御部は、前記第1の画像用信号のうち透過線量が少ない領域の画像用信号を前記所定の領域の画像用信号として用いることを特徴とする請求項1乃至6の何れか1項に記載の放射線撮像装置。
  8. 前記第1の画像用信号および前記第2の画像用信号を前記複数の画素のそれぞれの前記サンプルホールド回路がサンプリングするタイミングが、所定の関係式に基づいて決定されることを特徴とする請求項1乃至7の何れか1項に記載の放射線撮像装置。
  9. 前記放射線撮像装置は、信号処理部をさらに含み、
    前記信号処理部は、エネルギサブトラクション画像を生成する際に前記第2の画像用信号に補正係数を適用し、
    前記制御部は、補正係数が適用された前記第2の画像用信号のノイズ量が前記第1の画像用信号のノイズ量の1/3倍以上かつ3倍以下になるタイミングで、前記複数の画素のそれぞれの前記サンプルホールド回路が前記第1の画像用信号および前記第2の画像用信号をサンプリングするように制御することを特徴とする請求項1乃至8の何れか1項に記載の放射線撮像装置。
  10. 前記第1の撮像が、前記第2の撮像よりも高エネルギの放射線を用いて行われることを特徴とする請求項1乃至9の何れか1項に記載の放射線撮像装置。
  11. 被写体の厚さを含む情報が、被写体の物質に関する情報をさらに含むことを特徴とする請求項1乃至10の何れか1項に記載の放射線撮像装置。
  12. 請求項1乃至11の何れか1項に記載の放射線撮像装置と、
    放射線を照射するための放射線源と、
    を含む放射線撮像システム。
  13. アレイ状に複数の行および複数の列を構成するように配された複数の画素を含む撮像部と、制御部と、を含み、
    前記複数の画素のそれぞれは、入射する放射線に応じた画像用信号を生成するための変換部および前記変換部で生成された画像用信号を保持するためのサンプルホールド回路を備え、
    前記撮像部が、1つのエネルギサブトラクション画像を生成するための第1の撮像および前記第1の撮像の後に行われる第2の撮像を行う工程を含む放射線撮像装置の作動方法であって、
    前記制御部は、
    被写体の厚さを含む情報を用いて決定された放射線の照射条件を用いて、前記第1の撮像において前記複数の画素のそれぞれの前記サンプルホールド回路が第1の画像用信号をサンプリングするタイミングを制御し、
    前記第1の画像用信号のうち所定の領域の画像用信号に基づいて決定した前記第1の画像用信号に含まれるノイズ量と、被写体の厚さを含む情報を用いて決定された前記放射線の照射条件と、を用いて、前記第2の撮像において前記複数の画素のそれぞれの前記サンプルホールド回路が第2の画像用信号をサンプリングするタイミングを制御することを特徴とする放射線撮像装置の作動方法。
JP2017162693A 2017-08-25 2017-08-25 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の作動方法 Active JP7038506B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017162693A JP7038506B2 (ja) 2017-08-25 2017-08-25 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の作動方法
PCT/JP2018/025492 WO2019039109A1 (ja) 2017-08-25 2018-07-05 放射線撮像装置および放射線撮像システム
EP18847549.5A EP3673805A4 (en) 2017-08-25 2018-07-05 RADIATION IMAGING DEVICE AND RADIATION IMAGING SYSTEM
US16/745,807 US11360034B2 (en) 2017-08-25 2020-01-17 Radiation imaging apparatus and radiation imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017162693A JP7038506B2 (ja) 2017-08-25 2017-08-25 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の作動方法

Publications (3)

Publication Number Publication Date
JP2019037581A JP2019037581A (ja) 2019-03-14
JP2019037581A5 JP2019037581A5 (ja) 2020-08-27
JP7038506B2 true JP7038506B2 (ja) 2022-03-18

Family

ID=65438789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017162693A Active JP7038506B2 (ja) 2017-08-25 2017-08-25 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の作動方法

Country Status (4)

Country Link
US (1) US11360034B2 (ja)
EP (1) EP3673805A4 (ja)
JP (1) JP7038506B2 (ja)
WO (1) WO2019039109A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6912965B2 (ja) * 2017-08-04 2021-08-04 キヤノン株式会社 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の作動方法
JP6882135B2 (ja) 2017-10-06 2021-06-02 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP7245001B2 (ja) 2018-05-29 2023-03-23 キヤノン株式会社 放射線撮像装置および撮像システム
JP7093233B2 (ja) 2018-06-07 2022-06-29 キヤノン株式会社 放射線撮影装置、放射線撮影方法およびプログラム
WO2020003744A1 (ja) 2018-06-27 2020-01-02 キヤノン株式会社 放射線撮影装置、放射線撮影方法およびプログラム
JP7169853B2 (ja) * 2018-11-09 2022-11-11 キヤノン株式会社 画像処理装置、放射線撮影装置、および画像処理方法
JP7378245B2 (ja) 2019-08-29 2023-11-13 キヤノン株式会社 放射線検出装置、その制御方法及び放射線撮像システム
JP7366799B2 (ja) * 2020-02-25 2023-10-23 株式会社日立産機システム 給液式スクリュー圧縮機

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148886A (ja) 2006-12-18 2008-07-03 Ge Medical Systems Global Technology Co Llc X線断層撮影装置
JP2008279153A (ja) 2007-05-14 2008-11-20 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2009082174A (ja) 2007-09-27 2009-04-23 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2009131464A (ja) 2007-11-30 2009-06-18 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2010284350A (ja) 2009-06-12 2010-12-24 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2011078103A (ja) 2010-10-22 2011-04-14 Canon Inc 撮像装置、その駆動方法、放射線撮像装置及びそれを用いた放射線撮像システム
JP2011152280A (ja) 2010-01-27 2011-08-11 Canon Inc 放射線撮影装置、その制御方法及びプログラム
JP2017073756A (ja) 2015-10-09 2017-04-13 キヤノン株式会社 放射線撮像装置および放射線撮像装置の制御方法

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349142A (ja) * 1986-08-19 1988-03-01 株式会社東芝 X線ct装置
JP4794223B2 (ja) * 2005-06-24 2011-10-19 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置
KR20080042806A (ko) 2005-08-09 2008-05-15 코닌클리케 필립스 일렉트로닉스 엔.브이. 이중 에너지 다이내믹 x-선 이미징을 위한 시스템 및 방법
JP2010075555A (ja) * 2008-09-26 2010-04-08 Toshiba Corp X線画像診断装置
JP5422171B2 (ja) * 2008-10-01 2014-02-19 株式会社東芝 X線画像診断装置
JP5814621B2 (ja) 2011-05-24 2015-11-17 キヤノン株式会社 撮像装置及びその制御方法、並びに、撮像システム
JP2013005896A (ja) * 2011-06-23 2013-01-10 Ge Medical Systems Global Technology Co Llc X線ct装置
JP5950840B2 (ja) 2012-03-16 2016-07-13 キヤノン株式会社 放射線撮像装置及び撮像システム
JP5986526B2 (ja) 2012-04-06 2016-09-06 キヤノン株式会社 放射線撮像装置、その制御方法及び放射線撮像システム
JP5914404B2 (ja) * 2012-04-12 2016-05-11 富士フイルム株式会社 X線露出制御装置、x線画像検出装置及びx線画像撮影システム
JP6162937B2 (ja) 2012-08-31 2017-07-12 キヤノン株式会社 放射線撮像装置、その制御方法および制御プログラム
JP5859934B2 (ja) * 2012-09-04 2016-02-16 富士フイルム株式会社 放射線撮影システム並びにその作動方法、および放射線画像検出装置並びにその作動プログラム
JP6041669B2 (ja) 2012-12-28 2016-12-14 キヤノン株式会社 撮像装置及び撮像システム
JP2014168205A (ja) 2013-02-28 2014-09-11 Canon Inc 放射線撮像装置、放射線検査装置、信号の補正方法およびプログラム
JP5934128B2 (ja) 2013-02-28 2016-06-15 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP5986524B2 (ja) 2013-02-28 2016-09-06 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP6016673B2 (ja) 2013-02-28 2016-10-26 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP6161346B2 (ja) 2013-03-19 2017-07-12 キヤノン株式会社 撮像システム
US20140361189A1 (en) 2013-06-05 2014-12-11 Canon Kabushiki Kaisha Radiation imaging system
JP6238577B2 (ja) 2013-06-05 2017-11-29 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP6140008B2 (ja) * 2013-07-01 2017-05-31 キヤノン株式会社 放射線撮像装置及び放射線検査装置
JP6376783B2 (ja) 2014-03-12 2018-08-22 キヤノン株式会社 乳房断層撮影装置および制御方法
JP6355387B2 (ja) 2014-03-31 2018-07-11 キヤノン株式会社 撮像装置及び撮像システム
US9737271B2 (en) 2014-04-09 2017-08-22 Canon Kabushiki Kaisha Radiation imaging apparatus and control method of the same
JP6362421B2 (ja) 2014-05-26 2018-07-25 キヤノン株式会社 放射線撮像装置、その制御方法およびプログラム
JP6494204B2 (ja) 2014-07-17 2019-04-03 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP6385179B2 (ja) 2014-07-18 2018-09-05 キヤノン株式会社 放射線撮像装置及びその駆動方法
JP6391388B2 (ja) 2014-09-24 2018-09-19 キヤノン株式会社 放射線撮像装置
JP6525579B2 (ja) 2014-12-22 2019-06-05 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP2016178533A (ja) 2015-03-20 2016-10-06 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP6573377B2 (ja) 2015-07-08 2019-09-11 キヤノン株式会社 放射線撮像装置、その制御方法及びプログラム
JP6573378B2 (ja) 2015-07-10 2019-09-11 キヤノン株式会社 放射線撮像装置、その制御方法及びプログラム
JP6643871B2 (ja) 2015-11-13 2020-02-12 キヤノン株式会社 放射線撮像装置およびフォトンカウンティングの方法
JP6643909B2 (ja) 2016-01-27 2020-02-12 キヤノン株式会社 放射線撮像装置、その制御方法及びプログラム
JP6700828B2 (ja) 2016-02-10 2020-05-27 キヤノン株式会社 放射線撮像装置、その駆動方法及び撮像システム
JP2017162693A (ja) 2016-03-10 2017-09-14 Tdk株式会社 リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
JP6871717B2 (ja) 2016-11-10 2021-05-12 キヤノン株式会社 放射線撮像装置、放射線撮像システムおよび放射線撮像方法
JP2018110794A (ja) 2017-01-13 2018-07-19 キヤノン株式会社 情報処理装置、放射線撮像装置、情報処理方法およびプログラム
JP6974948B2 (ja) 2017-02-10 2021-12-01 キヤノン株式会社 放射線撮像装置および放射線撮像方法
CN110869809B (zh) 2017-07-10 2023-07-25 佳能株式会社 放射线成像装置和放射线成像系统
JP7067912B2 (ja) 2017-12-13 2022-05-16 キヤノン株式会社 放射線撮像装置および放射線撮像システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148886A (ja) 2006-12-18 2008-07-03 Ge Medical Systems Global Technology Co Llc X線断層撮影装置
JP2008279153A (ja) 2007-05-14 2008-11-20 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2009082174A (ja) 2007-09-27 2009-04-23 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2009131464A (ja) 2007-11-30 2009-06-18 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2010284350A (ja) 2009-06-12 2010-12-24 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2011152280A (ja) 2010-01-27 2011-08-11 Canon Inc 放射線撮影装置、その制御方法及びプログラム
JP2011078103A (ja) 2010-10-22 2011-04-14 Canon Inc 撮像装置、その駆動方法、放射線撮像装置及びそれを用いた放射線撮像システム
JP2017073756A (ja) 2015-10-09 2017-04-13 キヤノン株式会社 放射線撮像装置および放射線撮像装置の制御方法

Also Published As

Publication number Publication date
EP3673805A1 (en) 2020-07-01
US20200150059A1 (en) 2020-05-14
WO2019039109A1 (ja) 2019-02-28
US11360034B2 (en) 2022-06-14
EP3673805A4 (en) 2021-04-14
JP2019037581A (ja) 2019-03-14

Similar Documents

Publication Publication Date Title
JP7038506B2 (ja) 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の作動方法
JP7108738B2 (ja) 放射線撮像装置、放射線撮像システムおよび放射線撮像方法
WO2018147217A1 (ja) 放射線撮像装置および放射線撮像方法
JP7085043B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP6934769B2 (ja) 放射線撮像装置および放射線撮像方法
JP2019068953A (ja) 画像処理装置、画像処理方法及びプログラム
US11933743B2 (en) Radiation imaging system, imaging control apparatus, and method
WO2021015082A1 (ja) 放射線撮像装置および画像取得方法
JP7300045B2 (ja) 放射線撮像装置、放射線撮像システムおよび放射線撮像方法
US20230360185A1 (en) Image processing apparatus, image processing method, and non-transitory computer-readable storage medium
JP7242266B2 (ja) 放射線撮像装置および放射線撮像装置の制御方法
US20220167935A1 (en) Image processing apparatus, radiation imaging system, image processing method, and non-transitory computer-readable storage medium
JP2023172296A (ja) 情報処理装置、情報処理方法およびプログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200707

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211214

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220308

R151 Written notification of patent or utility model registration

Ref document number: 7038506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151