WO2007037121A1 - 放射線像撮像装置および放射線像撮像装置の撮像方法 - Google Patents

放射線像撮像装置および放射線像撮像装置の撮像方法 Download PDF

Info

Publication number
WO2007037121A1
WO2007037121A1 PCT/JP2006/318111 JP2006318111W WO2007037121A1 WO 2007037121 A1 WO2007037121 A1 WO 2007037121A1 JP 2006318111 W JP2006318111 W JP 2006318111W WO 2007037121 A1 WO2007037121 A1 WO 2007037121A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection elements
radiation
charge
detection
imaging
Prior art date
Application number
PCT/JP2006/318111
Other languages
English (en)
French (fr)
Inventor
Satoshi Masuda
Naoki Masazumi
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Priority to JP2007537572A priority Critical patent/JPWO2007037121A1/ja
Publication of WO2007037121A1 publication Critical patent/WO2007037121A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2921Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras
    • G01T1/2928Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras using solid state detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/30Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from X-rays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays

Definitions

  • Radiation image capturing apparatus and imaging method of radiation image capturing apparatus are provided.
  • the present invention relates to a radiographic imaging device that detects radiation used as medical diagnostic equipment, non-destructive testing equipment, and the like as electric charges, and in particular, converts incident radiation into electric charges, depending on the radiation dose.
  • a radiograph including an X-ray tube 904 that emits X-rays and an FPD 903 that converts received X-rays into electric charges is provided in an imaging room 901 for imaging a subject 900.
  • An imaging device is provided in the separate room 902.
  • a computer 905 for viewing, storing, and processing the acquired images is installed in the separate room 902.
  • the FP D903 senses the X-rays transmitted through the test specimen 900, and converts the sensed X-ray signal into electric charges.
  • This electric charge is sent as digital data to the computer 905 wirelessly or by wire, and a user standing by in the separate room 902 can instantly check the image data.
  • a medical facility can output image data from a printer 906 connected to the computer 905 and a PACS (Picture Archiving and Communication System) system 907 is installed, it can be connected to the PACS server.
  • PACS Picture Archiving and Communication System
  • X-ray imaging data of the specimen 900 can be viewed from a remote location. Can be viewed.
  • PACS is a communication system for storing and transmitting medical images that has been introduced in recent years, and recently, there is a configuration that can search and transmit medical images between facilities, not just within the facility.
  • the FPD described above has a configuration as shown in a schematic block diagram of FIG.
  • the FPD 903 shown in FIG. 18 includes a large number of switching elements and charge storage elements arranged in a matrix on a glass substrate 913 having the size of the sensor receiving surface, and these constitute a panel 912.
  • a detection element 914 is configured by the pair of switching elements 915 and charge storage elements 916.
  • a thin film transistor (TFT) composed of amorphous silicon (aSi) or the like is used.
  • an X-ray conversion layer 911 for converting X-rays into electric charges is provided on the upper surface of the panel 912.
  • the charges converted by the X-ray conversion layer 911 are stored in the charge storage element 916.
  • the switching element 915 of the detection element designated by the gate line 917 arranged vertically and horizontally is controlled to be in an on state, so that the charge output through the switching element 915 is read out through the charge transfer line 918.
  • Amorphous selenium 921 has a property of generating a certain amount of electrons and holes according to the intensity of the detected X-rays, whereby X-rays are directly converted into electric charges.
  • a DC bias voltage of about 3000 V is applied to the amorphous selenium 921, and charges move to the detection element electrode according to the polarity of the applied bias and are stored in the charge storage element 916. Then, switching control is performed by the switching element 915 so that the accumulated charge is read out to the subsequent circuit.
  • a phosphor 925 and a photoelectric conversion element 926 are used as the X-ray conversion layer 911.
  • the photoelectric conversion element 926 is applied with a DC bias of about 5 to: LOV.
  • the phosphor 925 has a property of generating a certain amount of light according to the intensity of the detected X-ray, and the photoelectric conversion element 926 receives the generated light. By emitting light, a certain amount of charge is generated according to the amount of light received, the generated charge is stored in the charge storage element 916, and switching control is performed by the switching element 915 so that the stored charge is reduced. This is a configuration that is read out to the subsequent circuit.
  • the photodiode in the case where a photodiode is used as the photoelectric conversion element 926, the photodiode usually serves as the charge storage element 916.
  • the phenomenon that incident X-rays are converted into visible light is called scintillation, and the phosphor 925 provided to generate this scintillation is also called a scintillator.
  • the radiographic imaging device including the FPD configured as described above minimizes the amount of X-ray exposure to the subject 900 and sufficiently stores the charge in the charge storage element 916 in order to obtain a high-quality image.
  • X-ray irradiation needs to be performed. Therefore, an X-ray photo timer function is provided to stop X-ray irradiation when measuring the transmitted X-ray dose during X-ray irradiation and confirming the accumulated X-ray irradiation amount necessary to form a good image (patented).
  • Reference 1 In the radiation imaging apparatus described in Patent Document 1, a non-destructive read operation that performs output in a state where the electric charge accumulated in the photoelectric conversion element is accumulated can be held even after signal output. It is supposed to be possible. Therefore, it is said that X-ray irradiation can be stopped by confirming the transmitted X-ray dose based on the signal obtained from the accumulated charge.
  • Patent Document 1 Japanese Patent No. 3548507
  • the present invention realizes a phototimer function by a part of a detection element that performs an imaging operation, and allows the output of the detection element to be used as image data.
  • An object is to provide an imaging device.
  • a plurality of charge transfer lines connected to the switch of the detection element and arranged for each column in a matrix arrangement
  • An output circuit that temporarily holds the charge from the charge transfer line and outputs an electrical signal corresponding to the charge
  • the conversion elements of all the detection elements including the first detection element perform the conversion operation at the same time, and the switch of the first detection element is turned on during the irradiation period through the charge transfer line.
  • a control means for controlling the output circuit to store the electric charge generated by the conversion element of the first detection element and periodically read out an electric signal corresponding to the accumulated electric charge according to the irradiation period.
  • control unit measures the radiation dose based on a value obtained by averaging the signal values of the electrical signals from the plurality of first detection elements.
  • control unit measures a radiation dose based on a maximum value of a signal value of the electrical signal from the plurality of first detection elements.
  • Radiographic imaging device [0016] 5. The radiographic image imaging according to any one of 1 to 4, wherein image data based on incident radiation is output from all the detection elements including the first detection element. apparatus.
  • the output circuit comprises:
  • a charge holding unit connected to each of the charge transfer lines and holding charge from the detection element
  • a reset unit for resetting the charge holding unit
  • the control unit Before the radiation irradiation, the control unit performs the reset of the charge holding unit by the reset unit and the reset of the conversion element by turning on all the switches of the detection elements. 6.
  • the radiographic image capturing apparatus according to any one of items 1 to 5.
  • the control unit performs the selection of the first detection element by confirming an imaging range for a subject by irradiating weak radiation or visible light before imaging.
  • the control unit irradiates weak radiation or visible light before imaging, thereby confirming the imaging range for the subject and setting the radiation irradiation range.
  • the radiographic imaging apparatus according to any one of 1 to 10.
  • the output circuit comprises:
  • An operational amplifier in which an inverting input terminal is connected to the charge transfer line and a reference voltage is applied to a non-inverting input terminal;
  • the radiation image capturing apparatus includes:
  • a plurality of detection elements arranged in a matrix having a conversion element that converts incident radiation into an electrical signal and generates a charge corresponding to the amount of radiation, and a switch connected to the conversion element
  • a plurality of charge transfer lines connected to the switch of the detection element and arranged for each column in a matrix arrangement
  • An output circuit that temporarily holds the charge from the charge transfer line and outputs an electrical signal corresponding to the charge
  • An imaging method for a radiation image capturing apparatus in a radiation image capturing apparatus comprising: the plurality of detection elements; and a control unit that controls the plurality of charge transfer lines and the output circuit, and includes at least one of the plurality of detection elements. Select one detection element as the first detection element for measuring the radiation dose to be irradiated,
  • the conversion elements of all the detection elements including the first detection element simultaneously perform the conversion operation, and during this irradiation period, the switch of the first detection element is turned on and the output circuit is turned on. The charge generated by the conversion element of the first detection element is accumulated,
  • An imaging method for a radiographic imaging device wherein an electrical signal corresponding to an electric charge accumulated according to an irradiation period is periodically read out.
  • Imaging of the radiation image capturing apparatus according to any one of 15 to 20, further including a step of stopping radiation irradiation of the radiation source based on a signal value of the electrical signal.
  • the first detection element for measuring the radiation dose is selected from the detection elements for performing radiation imaging, and the charge obtained by performing the conversion operation with the first detection element. Is held in the output circuit, so that it is not necessary to amplify the electric charge of the detecting element.
  • the phototimer function can be realized without providing a special output circuit, and the device configuration can be simplified.
  • the output of the first detection element can also be used as image data, resolution is not deteriorated.
  • FIG. 1 is a block diagram showing an internal configuration of a radiation image capturing apparatus in each embodiment of the present invention.
  • FIG. 2 is a schematic block diagram showing an internal configuration of an FPD in the radiation image capturing apparatus according to the first embodiment.
  • FIG. 3 is a circuit diagram showing a configuration of detection elements and output circuits in the FPD of FIG. 2. [4] It is a layout diagram when one detection element is viewed from above.
  • FIG. 5 is a cross-sectional view taken along line AB of the detection element in FIG.
  • FIG. 6 is a timing chart showing the relationship between each signal and output image data in the first example of the imaging operation of the FPD in FIG. 2.
  • FIG. 6 is a timing chart showing the relationship between each signal and output image data in the first example of the imaging operation of the FPD in FIG. 2.
  • FIG. 7 is a diagram showing the relationship between the rows of detector elements for X-ray dose measurement and the order of each row for outputting image data in the FPD that performs the operation according to the operation example of FIG.
  • FIG. 8 is a timing chart showing the relationship between each signal and output image data in the second example of the imaging operation of the FPD shown in FIG.
  • FIG. 9 is a diagram showing the relationship between the rows of detector elements for X-ray dose measurement and the order of each row for outputting image data in the FPD that performs the operation according to the operation example of FIG.
  • FIG. 10 is a timing chart showing the relationship between each signal and output image data in the third example of the imaging operation of the FPD shown in FIG. 2.
  • FIG. 11 is a diagram showing the relationship between the rows of detector elements for X-ray dose measurement and the order of each row for outputting image data in the FPD that performs the operation according to the operation example of FIG.
  • ⁇ 12 A diagram showing a state when the position and size of the subject are confirmed by irradiating visible light.
  • ⁇ 13 A schematic block diagram showing the internal configuration of the FPD in the radiographic imaging device of the second embodiment.
  • FIG. 14 is a diagram showing the relationship between the rows of detector elements for X-ray dose measurement and the order of each row for outputting image data in the FPD of FIG.
  • FIG. 15 is a diagram showing the relationship between the rows of detector elements for X-ray dose measurement and the order of each row for outputting image data in the FPD of the third embodiment.
  • FIG. 16 is a timing chart showing the relationship between each signal and output image data in the imaging operation of the FPD of the third embodiment.
  • FIG. 17 is a conceptual diagram of an X-ray imaging system using FPD.
  • FIG. 18 is a conceptual block diagram showing a configuration of an FPD.
  • FIG. 1 is a block diagram showing the internal configuration of the radiation image capturing apparatus.
  • the radiation image capturing apparatus 101 shown in FIG. 1 processes FPD1 into which X-rays emitted from an X-ray tube 100 serving as an external radiation source are incident, and image data based on the X-rays incident on the FPD1.
  • the signal processing unit 2, the memory unit 3 that stores the image data processed by the signal processing unit 2, and the image data held in the memory unit 3 is given to the external computer 102 and output to the input / output interface (IZF ) 4 and the control unit 5 given the image data processed by the signal processing unit 2 to control the operation of the radiation image capturing apparatus 101 and control the operation of the FPD1, the signal processing unit 2, and the input / output IZF4, Prepare.
  • the radiation image capturing apparatus 101 when X-rays are emitted from the X-ray tube 100, the incident X-rays are converted into electric charges in the FPD 1. This charge is held until imaging is completed and output to the signal processing unit 2.
  • some detection elements of FPD1 are used as sensors for X-ray dose detection.
  • the electric charge generated by the detection element for X-ray detection is held inside the FPD (specifically, the output circuit) at the time of imaging, and the electric signal value corresponding to the electric charge is periodically sent to the signal processing unit. Is output.
  • the signal processing unit 2 confirms the X-ray dose emitted based on the electric signal value output from the detection element.
  • the control unit when a signal representing the emitted X-ray dose is given to the control unit, it is confirmed whether the X-ray dose emitted by this signal is greater than or equal to a predetermined index value. If it is confirmed, the X-ray tube 100 is instructed to stop emitting X-rays. Thereafter, when the electric signal values acquired by all the detection elements of the FPD 1 are output as image data and given to the signal processing unit 2, the memory unit 3 is used for arithmetic processing. The calculated image data is stored in the memory unit 3 and Are output to the computer 102 from the input / output IZF4.
  • FIG. 2 is a schematic block diagram showing the internal configuration of the FPD in the radiation image capturing apparatus of the present embodiment.
  • the FPD 1 includes a photodiode PD and a thin film transistor T, and includes a sensor unit 11 having detection elements Gl to Gmn arranged on a matrix, and each of the sensor unit 11 when data is output.
  • Vertical scanning circuit 12 that scans the detection elements Gl 1 to Gmn in the vertical direction
  • an output circuit group 13 that holds charges output from the detection elements Gl 1 to Gmn of the sensor unit 11 for each row
  • an output circuit group Multiplexer 14 that converts the electric charge held in 13 into a serial electric signal for each column
  • AZD conversion circuit 15 that converts the electric signal supplied from multiplexer 14 into image data that becomes digital data
  • vertical scanning circuit 12 and output
  • a timing generator 16 for designating operation timings of the circuit group 13, the multiplexer 14, and the AZD conversion circuit 15.
  • This FPD 1 detects the bias line 17 for applying the DC voltage VDD to each of the detection elements Gl 1 to Gmn and the signals ⁇ Vl to ⁇ Vm given to the respective rows from the vertical scanning circuit 12 for detecting each row in the sensor unit 11.
  • the row selection lines 18-1 to 18-m provided for each row to give to the elements and the charges of the detection element force in the sensor unit 11 are provided for each column to output to the output circuit group 13 for each column.
  • Signal lines for exchanging signals are also connected between the timing generator 16 and the vertical scanning circuit 12, the multiplexer 14, and the AZD conversion circuit 15, and between the multiplexer 14 and the AZD conversion circuit 15.
  • the detailed description is abbreviate
  • the output circuit group 13 includes output circuits 13-1 to 13-n connected to the charge transfer lines 19-1 to 19-n in each column.
  • This output circuit 13-1 to 13-n and detection element Gl l The configuration of Gmn will be described in detail with reference to the drawings. In the following, the configuration of the detection element Gab of a row and b column will be described as a representative. That is, FIG. 3 shows a circuit configuration of the detection element Gab and the output circuit 13-.
  • the detection element Gab is connected to the bias line 17 so that the direct current voltage VDD is applied to the force sword, and the drain electrode is connected to the anode of the photodiode 30.
  • a TFT 31 having a source electrode connected to the charge transfer line 19-b.
  • the gate electrode of the TFT 31 is connected to the row selection line 18-a, and the signal ⁇ Va from the vertical scanning circuit 12 is given.
  • the photodiode 30 is the conversion element of the present invention
  • the TFT 31 is the switch of the present invention.
  • the output circuit 13-b includes a so-called charge sensing amplifier including an operational amplifier and a capacitor.
  • the inverting input terminal is connected to the charge transfer line 19—b and the reference voltage VREF is applied to the non-inverting input terminal, and between the inverting input terminal and the output terminal of the operational amplifier 32.
  • a capacitor 33 and a reset unit 34 connected in parallel.
  • the output terminal of the operational amplifier 32 is connected to the input side of the multiplexer 14, and ONZOFF of the reset unit 34 is controlled by a signal 0 RST given from the timing generator 16 through the reset line 20.
  • the charge sensing amplifier configured as described above is a readout circuit having an integration function by holding the electric charge in the capacitor 33. Even if the electric signal corresponding to the electric charge is read out, the electric charge is not charged unless the capacitor 33 is reset. When held, it has! / ⁇ ⁇ characteristics.
  • the capacitor 33 is a charge holding part of the present invention.
  • the detection elements Gl 1 to Gmn and the output circuits 13-1 to 13-n are configured, the detection elements Gl 1 to Gmn and the output circuits 13-1 to 13-n are reset.
  • a high signal 0 RST is given from the timing generator 16 to turn on the reset units 34 of the output circuits 13-1 to 13-n, and at the same time the signals ⁇ Vl to ⁇ from the vertical scanning circuit 12 Given Vm, TFT 31 of each of detection elements Gl 1 to Gmn is turned on.
  • the reset unit 34 since the reset unit 34 is turned on, the output terminal and the inverting input terminal of the operational amplifier 32 are connected, and the charge accumulated in the capacitor 33 is discharged.
  • TFT31 When TFT31 is ON Therefore, the anode power of the photodiode 30 is electrically connected to the output terminal of the operational amplifier 34 via the TFT 31 and the reset unit 34, and the charge accumulated in the anode of the photodiode 30 is discharged. Therefore, the anode of the photodiode 30 and the capacitor 33 are reset.
  • the signal ⁇ RST is set low and the reset unit 34 is turned OFF.
  • the detection element Gab force X is a detection element that outputs data for measuring the X-ray dose
  • the signal ⁇ ⁇ & is set high and the TFT 31 is set to ⁇ ⁇ .
  • the photoelectric charge obtained by photoelectric conversion of the photodiode 30 also flows into the capacitor 33 due to the anode force of the photodiode 30, and is thus accumulated in the capacitor 33.
  • the operational amplifier 32 is based on the charge accumulated in the capacitor 33.
  • the voltage value of the output terminal changes.
  • the voltage value at the output terminal of the operational amplifier 32 is supplied to the multiplexer 14.
  • the signal ⁇ ⁇ & is set low and the TFT 31 is turned OFF.
  • the photoelectric charge obtained by photoelectric conversion of the photodiode 30 is accumulated in the anode of the photodiode 30.
  • the signal of the detection element Gab is read, the signal ⁇ Va is set high and the TFT 31 is turned on, so that the charge accumulated in the anode of the photodiode 30 is accumulated in the capacitor 33 and the output terminal of the operational amplifier 32 The voltage value at the output terminal of the operational amplifier 32 is given to the multiplexer 14.
  • the detection element Gab is configured as shown in the top view of FIG. 4 and the cross-sectional view of FIG. First, the positional relationship between the photodiode 30 and the TFT 31 will be described with reference to the top view of FIG.
  • a photodiode 30 is formed in a region surrounded by the signal wiring 19 that becomes the charge transfer lines 19—l to 19-n vertically arranged and the gate wiring 18 that becomes the row selection lines 18—l to 18-m horizontally arranged.
  • a photodiode 30 is formed.
  • the photodiode 30 is arranged in a T shape with two corners on one signal wiring 19 side cut off. Then, in the region surrounded by the signal wiring 19 and the cut corners of the photodiodes 30 adjacent in the vertical direction in FIG. TFT 31 is formed so that is disposed on the gate wiring 18.
  • a transparent electrode film 40 such as an ITO film made of indium oxalate is formed on the surface of the photodiode 30, and the TFT 31
  • a bias line 17 is routed vertically in a region between the signal line 9 and the signal line 9.
  • the bias line 17 is wired on the surface of the transparent electrode film 40, and is electrically connected to the photodiode 30 by being connected to the transparent electrode film 40 through a contact 41.
  • the source region 43 serving as the source electrode of the TFT 31 is electrically connected to the signal wiring 19 and the contact 42.
  • the drain region 44 serving as the drain electrode is electrically connected to the photodiode 30 in the stacked portion, and a channel region 45 is formed between the source region 43 and the drain region 44.
  • the photodiode 30 and TFT 31 formed in this way have a laminated structure as shown in the cross-sectional view of FIG. 1
  • a laminated structure of the photodiode 30 and the TFT 31 constituting the detection element will be described with reference to a cross-sectional view of FIG.
  • FIG. 5 is a cross-sectional view taken along line A-B in FIG.
  • a gate electrode layer 51 is formed on the surface of the gate wiring 18 so as to be electrically connected to the gate wiring 18 wired on the surface of the glass substrate 50, and this gate electrode
  • An insulating layer 52 covering the surface of the layer 51 and the glass substrate 50 is formed.
  • a channel layer 53 to be a channel region 45 is formed immediately above the gate electrode layer 51. Etching is stopped on the surface excluding a part of the channel layer 53 and the surface of the insulating film 52.
  • Layer 54 is formed.
  • the etching stop layer 54 on the side close to the signal wiring 19 is formed from the edge of the channel layer 53 to the signal wiring 19, the source electrode layer 55 is formed on the surface thereof, and the etching stop layer on the side far from the signal wiring 19. 54 is formed from the edge of the channel layer 53 to the region where the photodiode 30 is formed, and the drain electrode layer 56 is formed on the surface thereof.
  • a contact 42 is formed on the surface of the source electrode layer 55, and is electrically connected to the signal wiring 19 through the contact 42. In this way, TFT 31 is formed.
  • the p-type is formed on the surface of the drain electrode layer 56.
  • the amorphous silicon layer 57, the i-type amorphous silicon layer 58, and the n-type amorphous silicon layer 59 are sequentially stacked to form a photodiode 30 that becomes a pin-type photodiode.
  • a transparent electrode film 40 that transmits light and has low resistance is formed, and a contact 41 is formed on a part of the surface of the transparent electrode film 40. Electrically connected to bias line 17 through contact 41.
  • the interlayer insulating film 60 By forming the interlayer insulating film 60 on the surface of the photodiode 30 and the TFT 31 formed in this way, electrical connection of each layer constituting the photodiode 30 and the TFT 31 is prohibited. Then, a bias line 17 and a signal wiring 19 are wired on the surface of the interlayer insulating film 60.
  • a protective film layer 61 for flattening irregularities due to the laminated film formed on the upper surface of the glass substrate 50 is laminated on the surface of the interlayer insulating film 60 on which the bias line 17 and the signal wiring 19 are wired. Is done.
  • This protective film layer 61 serves to flatten the laminated portion on the upper side of the glass substrate 50, and also serves to protect the photodiode 30 and the TFT 31 constituting the detection element Gab.
  • the spin coating technique is used. It is formed by applying photosensitive polyimide or acrylic resin. Then, for example, cesium iodide (Csl) is deposited on the surface of the protective film layer 61 to form the scintillator layer 62.
  • the scintillator layer 62 has a function of converting incident radiation into visible light.
  • FPD1 that is an indirect conversion method can be configured.
  • an FPD that is an indirect conversion method will be described as an example, but an FPD that is a direct conversion method may be used.
  • FIG. 6 is a timing chart showing the relationship between each signal in the FPD 1 and output image data.
  • FIG. 7 is a diagram showing the relationship between the rows of detector elements for X-ray dose measurement and the order of each row for outputting image data. As shown in FIG. 7, it is assumed that the image data force X based on the charges from the detection elements Gsl to Gsn in the s-th row is used for X-ray dose measurement.
  • the vertical scanning circuit 12 is used to reset the anode of the photodiode 30 of each of the detection elements Gl 1 to Gmn and the capacitor 33 of each of the output circuits 13 -l to 13 -n.
  • the signals ⁇ Vl to ⁇ Vm from the signal and the signal ⁇ RST from the timing generator 16 are simultaneously high (timing A).
  • a high signal ⁇ to ⁇ is applied to the gate electrode of the TFT 31 of each of the detection elements Gl 1 to Gmn to turn it ON, and the reset unit 34 of each of the output circuits 131 to 13-n becomes high. Turns on when signal ⁇ RST is applied. Accordingly, the reset operation of the anode of the photodiode 30 of each of the detection elements Gl 1 to Gmn and the capacitor 33 of each of the output circuits 13-1 to 13-n starts.
  • X-ray irradiation is started in response to the operation of X. Specifically, the X-ray control signal ⁇ X, which becomes a high pulse signal from the control unit 5, is given to the X-ray tube 100 0 wirelessly or by wire, X-ray irradiation starts from the X-ray tube 100 (timing C).
  • the detection elements Gl 1 to Gmn are irradiated with X-rays, so that the photoelectric conversion operation is performed by the photodiode 30 and incident. Photoelectric charge is generated according to the X-ray dose. Then, the detection element Gsl to Gsn to which the signal (V) is given is output from the output circuit 13-1 to 13-n via the charge transfer lines 19-1 to 19-n when the TFT31 is turned on. Therefore, the photoelectric charges generated in the photodiodes 30 of the detection elements Gsl to Gsn are accumulated in the capacitors 33 of the output circuits 13-1 to 13-n, respectively.
  • the detection elements Gl l to G (s l) n, 0 (5 + 1) 1 to 011111 to which the low signals ⁇ Vl to Vs-1 and ⁇ Vs + 1 to ⁇ Vm are applied are exactly what? Since Ding 31 is 0 ?? and is electrically disconnected from output circuit 13—l to 13—n, detection elements G 11 to G (S—l) n, G (S + l) l Photocharge is accumulated at the anode of each of the photodiodes 30 to Gmn.
  • the timing generator 16 drives the multiplexer 14 and the AZD conversion circuit 15 at every predetermined interval T. Therefore, every predetermined interval T, the output circuit Charges appearing at the operational amplifiers 32 of 13-l to 13-n are input to the multiplexer 14, converted into serial charges for each detection element, and then converted into image data as digital data by the AZD conversion circuit 15. That is, a charge having a voltage value corresponding to the amount of charge stored in the capacitor 33 of the output circuit 13-1 to 13-n is given to the multiplexer 14, and the output circuit 13-1 1, 13-2,. , 13-n are output in the order of n to the AZD conversion circuit 15 and converted to image data as digital data.
  • This image data is data in which the respective image data of the detection elements Gsl to Gsn representing the X-ray dose incident on the detection elements Gsl to Gsn are serially arranged. Then, when the image data of each of the detection elements Gs 1 to Gsn is output to the signal processing unit 2, an effective output value representing the emitted X-ray dose is obtained by performing an averaging process of the image data. . Then, the acquired effective output value is given to the control unit 5, and it is confirmed whether or not it is a predetermined index value or more.
  • the control unit 5 applies X-rays to the X-ray tube 100. Instructs to stop radiation. At this time, the control unit 5 instructs the timing generator 16 of the FPD 1 to switch from the X-ray dose measurement operation to the signal reading operation.
  • the TFT 31 of each of the detection elements Gsl to Gsn is turned off and the photoelectric charge is accumulated in the capacitor 33, and then the multiplexer 14 and the AZD conversion circuit 15 are turned on by the timing generator 16 to detect The image data of each of the elements Gsl to Gsn is output to the signal processing unit 2.
  • the pulse signal ⁇ RST that goes high is applied from the timing generator 16 to the output circuits 13-l to 13-n via the reset line 20, so that the capacitors 33 of the output circuits 13-1 to 13-n are connected.
  • Reset timing F
  • the pulse signal ⁇ Vs + 1 which becomes noisy, is detected from the vertical scanning circuit 12 through the row selection signal 18— (s + 1) and the detection elements G (s + 1) 1 to G (s + 1)
  • the TFT 31 is turned on and the photocharge accumulated in the photodiode 30 is transferred to the charge transfer line 19— 1 to 19 — Derived for each n (timing G).
  • each of the capacitors 33 in the output circuits 1 3-1 to 13-n has a photocharge stored in each photodiode 30 in the detection elements G (s + 1) l to G (s + l) n. Is accumulated.
  • this signal ⁇ Vs + 1 becomes low, the multiplexer 14 and the AZD conversion circuit 15 are turned ON, and the image data of each of the detection elements G (s + 1) 1 to G (s + 1) n is output to the signal processing unit 2 ( Timing H).
  • the signal ⁇ RST from the timing generator 16 and the signal ⁇ Vs +3 to ⁇ Vm from the vertical scanning circuit 12 are alternately output as pulse signals that become high, as shown in FIG. , S + 3rd to m-th row detection elements G (s + 3) l to Gmn operate for each row and detect The image data of the output elements 0 (3 + 3) 1 to 011111 are output to the signal processing unit 2.
  • the signal ⁇ RST from the timing generator 16 and the signals ⁇ Vl to ⁇ Vs-1 from the vertical scanning circuit 12 become high pulses.
  • the detection elements G11 to G (S 1) n in the first row to the s-l row operate for each row, and the detection elements Gl 1 to G (S 1) n image data is output to the signal processor 2.
  • FIG. 8 is a timing chart showing the relationship between each signal in the FPD 1 and output image data.
  • FIG. 9 is a diagram showing the relationship between the rows of detector elements for X-ray dose measurement and the order of each row for outputting image data.
  • the signals () RST, ⁇ Vl to ⁇ Vm are simultaneously set to high, and the photodiode 30 and the output circuit 13-1 to the detection elements Gl 1 to Gmn
  • signals other than the signal () Vs are set to low, and the X-ray control signal ⁇ X is given to the X-ray tube 100 from the control unit 5, X-ray irradiation starts (timing A to C).
  • the multiplexer 14 and the AZD conversion circuit 15 are driven at every predetermined interval T, and X incident on each of the detection elements Gs 1 to Gsn.
  • Image data representing the dose is output to the signal processing unit 2, and the control unit 5 confirms whether the effective output value based on the image data of each of the detection elements Gsl to Gsn is greater than or equal to a predetermined index value.
  • the X-ray dose is confirmed by the image data of each of the detection elements Gsl to Gsn at the time of X-ray irradiation, and the effective output value based on the image data of each of the detection elements Gsl to Gsn is predetermined.
  • the control unit 5 confirms that the index value is equal to or greater than the X-ray tube 100
  • the X-ray control signal ⁇ X is given to the X-ray tube 100 from the control unit 5 as in the first example. Is stopped, the signal ⁇ Vs applied to the detection elements Gsl to Gsn is set to low (timing D, E), and the image data of each of the detection elements Gsl to Gsn is output to the signal processing unit 2.
  • a pulse signal ⁇ RST that goes high is applied from the timing generator 16 to the output circuits 13-l to 13-n via the reset line 20, whereby the capacitors 33 of the output circuits 13-1 to 13-n are connected.
  • a pulse signal ⁇ VI that goes high is applied from the vertical scanning circuit 12 to the detection elements Gl 1 to Gln via the row selection signal 18-1 (timing G). From this, in the detection elements Gl 1 to Gln, the TFT 31 is turned on and the photocharges accumulated in the photodiode 30 are led out to the charge transfer lines 19-l to 19-n, respectively, and output circuits 13-l to 13- n Accumulate in each capacitor 33. After making this signal ⁇ VI low, the multiplexer 14 and the AZD conversion circuit 15 are turned ON, and the image data of each of the detection elements G11 to GIn is output to the signal processing unit 2 (timing H).
  • the signal ⁇ RST from the timing generator 16 and the signals ⁇ V2 to ⁇ Vs ⁇ 1 from the vertical scanning circuit 12 are alternately output as pulse signals that become high, as shown in FIG.
  • the detection elements G21 to G (s-1) n in the second row to s—first row operate for each row, and the image data of the detection elements 021 to 0 (3-1) 11 is transferred to the signal processing unit 2. It is output to.
  • the signal ⁇ RST from the timing generator 16 and the vertical scanning circuit 12 Signals ⁇ Vs + 1 to ⁇ Vm and 1S are alternately output as pulse signals that become high, and as shown in Fig. 9, the detection elements G (s + 1) l to Gmn on the 3rd to 1st to 111th rows
  • the image data of detection elements G (s + 1) l to Gmn is output to the signal processing unit 2 every time.
  • FIG. 10 is a timing chart showing the relationship between each signal in the FPD 1 and output image data.
  • FIG. 11 is a diagram showing the relationship between the rows of detector elements for X-ray dose measurement and the order of each row for outputting image data.
  • the signals () RST, ⁇ Vl to ⁇ Vm are simultaneously set to high, and the photodiode 30 and the output circuit 13-1 to the detection elements Gl 1 to Gmn
  • signals other than the signal () Vs are set to low, and the X-ray control signal ⁇ X is given to the X-ray tube 100 from the control unit 5, X-ray irradiation starts (timing A to C).
  • the multiplexer 14 and the AZD conversion circuit 15 are driven at every predetermined interval T, and X incident on each of the detection elements Gs 1 to Gsn.
  • Image data representing the dose is output to the signal processing unit 2, and the control unit 5 confirms whether the effective output value based on the image data of each of the detection elements Gsl to Gsn is greater than or equal to a predetermined index value.
  • the X-ray dose is confirmed by the image data of each of the detection elements Gsl to Gsn at the time of X-ray irradiation, and the effective output value by the image data of each of the detection elements Gsl to Gsn is greater than or equal to a predetermined index value.
  • the control unit 5 confirms, as in the first example, the X-ray control signal ⁇ X is given from the control unit 5 to the X-ray tube 100, and the X-ray irradiation by the X-ray tube 100 is stopped (timing D). ).
  • the signal ⁇ Vs given to the detection elements Gsl to Gsn is set to low.
  • a pulse signal ⁇ RST that goes high is applied from the timing generator 16 to the output circuits 13-l to 13-n via the reset line 20, thereby causing the capacitors 33 of the output circuits 13-1 to 13-n to After reset (timing F), the pulse signal ⁇ VI that becomes NO, i is applied from the vertical scanning circuit 12 to the detection elements Gl 1 to Gln via the row selection signal 18-1 (timing G). As a result, the image data of each of the detection elements Gl 1 to Gln is output to the signal processing unit 2 (timing H).
  • the signal ⁇ RST from the timing generator 16 and the vertical scanning circuit The signals ⁇ V2 to ⁇ Vs—1 from No. 12 are alternately output as high-level pulse signals.
  • the detection elements G21 to G (s-1 ) n operates for each row, and the image data of the detection elements 021 to 0 (3-1) 11 is output to the signal processing unit 2.
  • the signal ⁇ RST from the timing generator 16 and the vertical scanning circuit 12 Signals ⁇ Vs + 1 to ⁇ Vm and force High are alternately output as pulse signals, and as shown in Fig. 11, the detection elements G (s + 1) l to Gmn in the 3 + 1st row to the 111th row are The image data of the detection elements G (s + 1) l to Gmn is output to the signal processing unit 2.
  • the second example when the X-ray dose radiated from the image data of each of the detection elements Gsl to Gsn in the s-th row is measured and the X-ray dose exceeds a predetermined index value, the second example Unlike the above, without reading the image data of the detection elements Gsl to Gsn in the s-th row, the detection elements Gll to G (s-l) n are sequentially performed from the first row to the s-l row. The image data is read out line by line until the eyes.
  • the detection elements G (s + 1) l to Gmn are Read image data line by line from line s + 1 to line m in order.
  • the image data is read in order from the detection elements Gll to Gln in the first row after the X-ray dose is measured by the detection elements Gsl to Gsn in the s row.
  • the image data of detection elements Gll to G (s-l) n, G (s + 1) 1 to Gmn other than the detection elements Gsl to Gsn in the s-th row is output.
  • the detection elements Gll to G (s ⁇ l) n, G (s + 1) are sequentially arranged from the image data of the detection elements G (s + 1) 1 to G (s + l) n in the s + 1st row. ) 1 to G mn image data may be output.
  • the read operation for each row for the detection elements G (s + 1) 1 to Gmn and the read operation for each row for the detection elements 011 to 0 (3-1) 11 Will be performed.
  • the image data of the detection elements Gsl to Gsn for the s-th line for X-ray dose measurement without reading the image data is detected by the signal processing unit 2 in the adjacent s-1, Perform interpolation processing based on the image data of the detection elements G (s-l) l to G (s-l) n and G (s + l) l to G (s + l) n for each s + 1st row Therefore, it may be generated.
  • the detection elements Gsl to Gsn in the s-th row for X-ray dose measurement are also included.
  • the image data of the detection elements Gsl to Gsn in the s-th row for X-ray dose measurement may be discarded.
  • the detection elements G (s—1) 1 to G (s—1) n, G in the adjacent s—1, s + first row (s + 1) 1 to G (s + 1) It may be generated by performing an interpolation process based on n image data.
  • the detection elements Gsl to Gsn on the s-th line for measuring the X-ray dose may be fixed. It is also possible to switch to a different line for each shooting. When switching to a different line for each imaging, set the optimal line according to the subject and specify that the X-ray dose is measured by the detector in the set line.
  • the detection elements Gsl to Gsn in the s-th row for measuring the X-ray dose when switching the detection elements Gsl to Gsn in the s-th row for measuring the X-ray dose, a weak X-ray or visible light is irradiated in a state where the subject is fixed in front of the FPD1, and the FPD1 By checking the position and size of the subject with respect to the imaging area, the detection elements Gsl to Gsn in the s-th line for measuring the X-ray dose may be set.
  • the detection elements Gsl to Gsn in the s-th row that are optimal for measuring the X-ray dose are set.
  • the detection that constitutes the sensor unit 11 by the shadow 200 projected on the surface of the FP D1 is performed.
  • the position and size of the subject with respect to the elements Gl 1 to G mn are confirmed.
  • the surface of the FPD 1 is provided with a rough mark indicating the position of each row of the detection elements G 11 to Gmn of the sensor unit 11, and the sensor unit 11 depends on the relationship between this mark and the shadow 200.
  • the position and size of the subject with respect to the detection elements Gl 1 to Gmn are confirmed. Based on the position and size of the subject relative to the detection elements G1 l to Gmn of the confirmed sensor unit 11, it is optimal for measuring the X-ray dose. Set the detection elements Gsl to Gsn in the sth row.
  • the X-ray irradiation range may be set.
  • all the detection elements Gsl to Gsn in the s-th row described above are used as detection elements for measuring the X-ray dose, but all the detection elements for one row are detected for X-ray dose measurement. It is possible to use a plurality of detection elements among the detection elements Gsl to Gsn in the s-th row.
  • the signal processing unit 2 obtains an effective output value representing the emitted X-ray dose by performing an averaging process on the image data of the detection elements Gsl to Gsn in the s-th row. The maximum output value of the image data of the detection elements Gsl to Gsn may be detected, and this maximum output value may be used as the effective output value representing the emitted X-ray dose.
  • FIG. 13 is a schematic block diagram showing the internal configuration of the FPD in the radiation image capturing apparatus of the present embodiment.
  • the configuration of the detection element and output circuit included in the FPD shown in FIG. 13 is the same as that shown in FIG. 3, as in the first embodiment.
  • the FPDla in the radiation image capturing apparatus of the present embodiment includes a sensor unit l lx including m rows and n columns of detection elements Gxl l to Gxmn, and m rows and n columns of detection elements Gyl l ⁇ Gymn, and an output circuit group 13x by an output circuit 13x—l to 13x—n that holds charges output from the respective detection elements Gxl l to Gxmn of the sensor unit 11 for each row, and a sensor An output circuit group 13y by an output circuit 13y—l-13y—n, a vertical scanning circuit 12, a multiplexer 14, and the like.
  • An AZD conversion circuit 15 and a timing generator 16 are provided.
  • the detection elements Gxl l to Gxmn are arranged so that the detection elements in the l to n columns of the sensor unit l lx and the detection elements in the l to n columns of the sensor unit l ly are arranged in the same column. , Gyl l to Gymn.
  • the FPDla has a DC voltage V applied to each of the detection elements Gxl l to Gxmn and Gvl l to Gymn.
  • Sensor section l lx, l ly for supplying DD ⁇ bias signal 17 and vertical scanning circuit 12 for each row ⁇ VI to ⁇ Vm to each row detection element in sensor section l lx, l ly
  • In order to output the electric charge from the detection element in each of the row selection lines 18-l to 18-m provided for each same row and the sensor portions l lx, l ly to the output circuit groups 13x, 13y for each column Charge transfer lines 19x—l to 19x—n, 1 9y—l to 19y—n provided for each column, and all detector elements and output circuit groups 13x, 13y of the sensor units l lx, l ly from the timing generator 16
  • a reset signal ⁇ i) for resetting, and a reset line 20 for supplying RST to the output circuit groups 13x and 13y.
  • the detection elements Gxkl to Gxkn and Gykl to Gykn are connected to the row selection line 18—k (k is an integer of l ⁇ k ⁇ m) ⁇ Vk is given by vertical traverse circuit 12.
  • the signal ⁇ Vk is given and the image data of the detection elements Gxkl to Gxkn, Gykl to Gykn is output, the photocharges accumulated in the detection elements Gxkl to Gxkn and Gykl to Gykn are output to the output circuit 13x.
  • L to 13x—n, 13y—l to 13y—n are accumulated in each.
  • Output circuit 13x—l to 13x—n, 13y—l to 13y—n After each charge is applied to multiplexer 14, the charge is applied to AZD conversion circuit 15 for each detection element, and digital The data is output to the signal processing unit 2 as image data.
  • Signal lines for exchanging signals are also connected between the timing generator 16 and the vertical scanning circuit 12, the multiplexer 14, and the AZD conversion circuit 15, and between the multiplexer 14 and the AZD conversion circuit 15. However, detailed description thereof is omitted.
  • the first By performing the same operation as the first to third examples in this embodiment, it is possible to perform the imaging operation in which the X-ray dose measurement is performed.
  • the relationship between the signals ⁇ RST and ⁇ Vl to ⁇ Vn is as shown in the timing chart of FIG. 6 as in the first embodiment. Therefore, the relationship between the rows of detector elements for X-ray dose measurement and the order of each row for outputting image data is shown in FIG.
  • the X-ray dose is measured by the image data of the detection elements Gxsl to Gxsn and Gysl to Gysn in the s-th row of each of the sensor parts l lx and l ly, and exceeds a predetermined index value.
  • the sensor elements l lx and l ly have read the image data of the detection elements Gxsl to Gxmn and Gysl to Gymn in the s-th to m-th lines, respectively, the s-th line power Done every time.
  • the image data of the detection elements Gxml to Gxmn and Gyml to Gymn in the m-th row of each of the sensor units l lx and l ly is output, the first row to s of each of the sensor units l lx and l ly are then output.
  • the reading operation of the image data of the detection elements Gxl l to Gx (sl) n and Gyl l to Gy (sl) n on the -l line is performed for each line in order of the first line.
  • the signal processing unit 2 When operating in this way, when the X-ray dose is measured by outputting the image data of the detection elements Gxsl to Gxsn, Gysl to Gysn in the s-th row, the signal processing unit 2 An effective output value representing the X-ray dose emitted is obtained by performing an averaging process on the image data of the detector elements Gxs 1 to Gxsn and Gys 1 to Gysn in the row.
  • the effective output value representing the emitted X-ray dose may be the maximum value of the image data of the detection elements Gxsl to Gxsn and Gysl to Gysn in the s line.
  • the sensor unit is divided into two sensor units l lx and l ly, and two rows of X dose measurement detection elements Gxsl to Gxsn and Gysl to Gysn are provided.
  • Output circuit 13x—l to 13x—n, 13y—l to 13y—n Charge transfer lines connected to each of 19x — l to 19x—n, 19y—l to 19y—n It does not matter if they are arranged alternately.
  • the detection element for measuring X-ray dose for two rows is not limited, and three or more X-row detection elements (X is an integer of 3 or more) may be provided. At this time, an X group of output circuits consisting of n output circuits connected to each of the detection elements for X dose measurement for X rows is installed.
  • each of the adjacent detection elements Gx (s—l) l to Gx (s—l) n, Gx (s + 1) in the adjacent s—l, s + 1 row l ⁇ Gx (s + 1) By performing interpolation processing based on n image data, detection element Gxsl ⁇ Gxsn image data is generated, and each adjacent detection element of s—l, 3+ 1st row 0 (3-1) 1 to 0 (3-1) 11, Gy (s + 1) l to Gy (s + l)
  • the image of the detection elements Gysl to G ysn It doesn't matter if the data is generated.
  • images of all detection elements Gxl l to Gxmn, Gyl l to Gymn including the detection elements Gxsl to Gxsn and Gysl to Gysn in the s-th row for X-dose measurement may be discarded.
  • adjacent detection elements 0 5-1) 1 to 0 (5-1) 11, 0 (5— 1) 1 to 07 (5-1)! 1 and 5 + 1st row, each detection element 0 (5+ 1) 1 to 0 (5 + 1) 11, Gy (s + l) l to Gy (s + l) It may be generated by performing interpolation processing based on n image data.
  • FIG. 15 is a diagram showing the relationship between the rows of detector elements for X-ray dose measurement in the radiation image capturing apparatus of the present embodiment and the order of each row for outputting image data.
  • the configuration of the FPD in the radiation image capturing apparatus of the present embodiment and the configuration of the detection element and output circuit included in the FPD are as shown in FIGS. It becomes composition.
  • the detection elements for X-ray dose measurement at the time of X-ray irradiation are connected only by the detection elements Gsl to Gsn in the s-th row.
  • the detector elements Gtl to Gtn in the row are also used as detector elements for X-ray dose measurement. That is, X-ray dose measurement at the time of X-ray irradiation is performed by image data from the detection elements Gsl to Gsn and Gtl to Gtn in the 1S s row and t row, respectively, and the output circuits 13-1 to 13-n Charges for two detection elements are held in the capacitor 33, and image data obtained by adding image data for two detection elements is output to the signal processing unit 2.
  • the imaging operation in the FPD 1 of the radiation image capturing apparatus of the present embodiment is an operation according to the timing chart of FIG.
  • This imaging operation is similar to the third example of the first embodiment. That is, first, after resetting the photodiodes 30 of the detection elements Gl 1 to Gmn and the capacitors 33 of the output circuits 13-1 to 13-n with the signals ⁇ RST and ⁇ Vl to ⁇ Vn as noise (timing A) The signals other than the signals ⁇ Vs and ⁇ Vt are set to low, and the TFTs 31 of the detection elements other than the detection elements Gsl to Gsn and Gtl to Gtn are turned OFF (timing: B). After that, the X-ray control signal ⁇ ⁇ ⁇ is given to the X-ray tube 100 from the control unit 5, and the X-ray tube 100 X Radiation starts (timing c).
  • the multiplexer 14 and the AZD conversion circuit 15 are driven at every predetermined interval T, and the s-th and t-th rows are driven.
  • Image data representing the X-ray dose incident on each of the detection elements Gsl to Gsn and Gtl to Gtn is output to the signal processing unit 2, and the control unit 5 effectively outputs the image data of the detection elements Gsl to Gsn and Gtl to Gtn. It is confirmed whether or not the value is equal to or greater than a predetermined index value.
  • the capacitors 33 of each of the output circuits 13-l to 13-n store charges for two detection elements, and the charges for two detection elements are output.
  • the output circuits 13-1 to 13-n There is a possibility that the output value of each 13-n will be saturated. Therefore, it is preferable to lower the gain of each of the output circuits 13-1 to 13-n as compared with the first and second embodiments.
  • the X-ray dose is confirmed by the image data of each of the detection elements Gsl to Gsn during X-ray irradiation, and the effective output value based on the image data of each of the detection elements Gsl to Gsn and Gtl to Gtn is a predetermined index value.
  • the control unit 5 confirms that the above is true, the X-ray control signal ⁇ X is given from the control unit 5 to the X-ray tube 100, and X-ray irradiation by the X-ray tube 100 is stopped (timing D).
  • the signal processing unit 2 obtains an effective output value representing the emitted X-ray dose by performing an averaging process on the image data of the detection elements Gsl to Gsn and Gtl to Gtn in the s and t rows.
  • the effective output value representing the emitted X-ray dose may be the maximum value in the image data for two detector elements in each row.
  • the signal ⁇ Vs given to the detection elements Gsl to Gsn and Gtl to Gtn is set to low.
  • the pulse signal ⁇ RST that goes high is applied from the timing generator 16 to the output circuits 13-l to 13-n via the reset line 20, thereby causing the capacitors 33 of the output circuits 13-1 to 13-n to After reset (timing F), the pulse signal ⁇ VI that becomes NO, i is applied from the vertical scanning circuit 12 to the detection elements Gl 1 to Gln via the row selection signal 18-1 (timing G). As a result, the image data of each of the detection elements Gl 1 to Gln is output to the signal processing unit 2 (timing H).
  • the signal ⁇ RST from the timing generator 16 and the signals ⁇ V2 to ⁇ Vs-1 from the vertical scanning circuit 12 are alternately output as pulse signals that become high, as shown in FIG.
  • the detection elements G21 to G (s—l) n in the second row to s—first row operate for each row, and The image data of the output elements 021 to 0 (3-1) 11 is output to the signal processing unit 2.
  • the signal ⁇ RST from the timing generator 16 and the signal ⁇ from the vertical scanning circuit 12 are output.
  • Vs + 1 to ⁇ Vt- 1 and force are alternately output as pulse signals that become high, as shown in Fig. 15, 3+ 1st row to 1; 1st row detection element G (s + 1) 1 to G ( t—1) n operates for each row, and image data of the detection elements G (s + 1) 1 to G (tl) n is output to the signal processing unit 2.
  • the signal ⁇ RST from the timing generator 16 and the signal from the vertical scanning circuit 12 ⁇ Vt + 1 to ⁇ Vm are alternately output as a pulse signal that goes high, and as shown in Fig. 15, detection elements G (t + 1) 1 to Gmn in the rows t + 1 to m are In operation, the image data of the detection elements G (t + 1) 1 to Gmn is output to the signal processing unit 2.
  • the X-ray dose emitted from the image data of the two detection elements of each of the detection elements Gsl to Gsn and Gtl to Gtn in the s-th row and the t-th row is measured.
  • the image data of the detection elements Gsl to Gsn and Gtl to Gtn are not read out.
  • the image data is read out line by line up to the sl line.
  • the image data is read out row by row up to t- 1st row in order of the power of s + 1st row, and then detected.
  • image data is read out row by row from the t + 1 first row to the mth row in order.
  • the first row is sequentially accessed.
  • Force detection element to output image data Image data is output in order of s + 1 line or t + 1 line force to detection elements other than Gsl to Gsn and Gtl to Gtn It does not matter.
  • the X-ray dose radiated from the image data of each of the detection elements Gsl to Gsn and Gtl to Gtn is measured.
  • the signal processing unit 2 detects each of the detection elements G in the adjacent s-l and s + first rows.
  • G (s- 1) 1 to G (s-l) n G (s + 1) 1 to G (s + 1) Generated by performing interpolation processing based on n image data and for X-dose measurement
  • the detection elements G (t— 1) 1 to G (t— 1) in the adjacent t 1, t + 1st row are processed in the signal processing unit 2.
  • G (t + 1) 1 to G (t + 1) n may be generated by performing an interpolation process based on n image data.
  • the position of the detection element for measuring the X-ray dose is as follows. It may be fixed, or it may be switched to another line for each shooting. When switching to a different line for each imaging, the optimal line is set according to the subject, and the X-ray dose is measured by the detector in the set line.
  • the detection elements Gsl to Gsn in the s-th line for measuring the X-ray dose when switching the detection elements Gsl to Gsn in the s-th line for measuring the X-ray dose, a weak X-ray or visible light is irradiated in a state in which the subject is fixed in front of the FPD1, and the FPD1 By checking the position and size of the subject with respect to the imaging area, the detection elements Gsl to Gsn in the s-th line for measuring the X-ray dose may be set.
  • each detection element is reset only once for all detection elements. However, it is assumed that reset is performed multiple times for each row. It doesn't matter. That is, the signals ⁇ Vl to ⁇ Vn may be sequentially set to high while the signal ⁇ RST is in the noisy state.
  • the radiographic image capturing apparatus of the present invention is suitable for image analysis apparatuses such as medical diagnostic equipment and non-destructive testing equipment that take specimens with radiation and perform analysis using the acquired images. Can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Toxicology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 本発明は、撮像動作を行う検出素子の一部によりフォトタイマー機能を実現するとともにその検出素子出力も画像データとして使用可能とするパッシブ方式の放射線像撮像装置を提供する。放射線照射時において、全検出素子G11~G1nのフォトダイオードにおいて、光電変換動作が行われる。このとき、放射線計測を行うために使用する検出素子のTFTをONとすることで、出力回路群13の各出力回路と接続して、放射線計測を行うために使用する検出素子で光電変換動作して得られた電荷を出力回路に保持する。この出力回路に保持した電荷を、所定間隔毎に出力して、放射線量が所定の指標値以上となったか否かを確認する。

Description

明 細 書
放射線像撮像装置および放射線像撮像装置の撮像方法
技術分野
[0001] 本発明は、医療診断機器、非破壊検査機器等に用いられる放射線を電荷として検 出する放射線像撮像装置に関するもので、特に、入射された放射線を電荷に変換し 、放射線量に応じた電荷を発生する変換素子の出力を増幅せずに直接出力するパ ッシブ方式による放射線像撮像装置および放射線像撮像装置の撮像方法に関する 背景技術
[0002] 近年、医療画像診断や非破壊検査等の放射線により取得した画像を利用する領 域では、フィルムレス化とネットワーク化に伴い、取得画像のデジタルィ匕が急速に進 められており、この実現方法の一つとして被検体を透過した放射線を直接検出しデ ジタル情報として扱うことのできるフラットパネルディテクター(Flat Panel Detecto r:FPD)を利用した撮影方法が提案されている。この FPDは、光源である X線がレン ズで集光されないため、被検体を等倍で読み取る必要があり、大面積で構成されるこ ととなる。図 17に、 FPDを利用した放射線撮影システムの一例を示す。
[0003] 図 17に示すように、被検体 900を撮影するための撮影室 901には、 X線を放射す る X線管 904と、受信した X線を電荷に変換する FPD903を備える放射線像撮像装 置が備えられている。又、別室 902には取得した画像を閲覧、保存、加工するための コンピュータ 905が設置されている。そして、 X線管 904から X線が放射されると、 FP D903が披験体 900を透過した X線を感知して、感知した X線信号を電荷に変換す る。この電荷がデジタルデータとして無線もしくは有線でコンピュータ 905に送られ、 別室 902に待機する利用者が撮像データを瞬時に確認できる。
[0004] 又、このコンピュータ 905に接続されたプリンター 906から撮像データを出力するこ とができるとともに、 PACS (Picture Archiving andCommunication System) システム 907が導入された医療施設であれば、この PACSのサーバに当該撮像デー タをアップロードすることによって、披験体 900の X線撮像データを離れた場所から閲 覧することができる。尚、 PACSは近年導入されている医療画像の保存 '伝送'検索 の通信システムであり、最近では施設内だけでなぐ施設間で医療画像の伝送'検索 ができる構成のものも存在する。
[0005] ところで、上述の FPDは、図 18の概略的なブロック図に示すような構成となる。この 図 18に示す FPD903は、センサ受像面の大きさのガラス基板 913にマトリクス状に 多数のスイッチング素子及び電荷蓄積素子を備えており、これらが集合してパネル 9 12を構成している。そして、この内の一組のスイッチング素子 915及び電荷蓄積素子 916とによって、検出素子 914が構成される。尚、このスイッチング素子としてァモル ファスシリコン (a Si)等で構成される薄膜トランジスタ(Thin Film Trasistor:TF T)が用いられている。
[0006] 又、パネル 912の上面には、 X線を電荷に変換する X線変換層 911が設けられて いる。この X線変換層 911によって変換された電荷が、電荷蓄積素子 916に蓄積さ れる。縦横に配置されるゲートライン 917によって指定された検出素子のスイッチング 素子 915がオン状態に制御されることで、このスイッチング素子 915を介して出力さ れる電荷が電荷転送ライン 918を通じて読み出される。尚、図 18中の X線変換層 91 1を構成する構成要素によって、検知された X線を電荷に変換する過程の異なる直 接変換方式と間接変換方式の 2種類が存在する。
[0007] 直接変換方式では、図 19 (a)のように、 X線変換層 911としてアモルファスセレン (a
Se) 921力禾 IJ用される。このアモルファスセレン 921は、感知した X線の強弱に応じ て一定量の電子と正孔を生成する性質を有しており、これによつて X線が直接電荷に 変換される。又、このアモルファスセレン 921には 3000V程度の直流バイアス電圧が 印加されており、この印加されるバイアスの極性に従って電荷が検出素子電極に移 動して、電荷蓄積素子 916に蓄積される。そして、スイッチング素子 915によってスィ ツチング制御されることでこの蓄積された電荷が後段回路に読み出される。
[0008] 一方、間接変換方式では、図 19 (b)のように、 X線変換層 911として、蛍光体 925 及び光電変換素子 926が利用される。この光電変換素子 926には、 5〜: LOV程度の 直流バイアスが印加されている。又、蛍光体 925は、感知した X線の強弱に応じて一 定量の光を生成する性質を有しており、この生成された光を光電変換素子 926が受 光することで、受光した光量に応じて一定量の電荷が生成され、この生成された電荷 が電荷蓄積素子 916に蓄積されて、スイッチング素子 915によってスイッチング制御 されることでこの蓄積された電荷が後段回路に読み出される構成である。このとき、光 電変換素子 926としてフォトダイオードを用いる場合は、通常、フォトダイオードが電 荷蓄積素子 916を兼ねる。尚、入射された X線が可視光に変換される現象をシンチ レーシヨンと呼び、このシンチレーシヨンを発生させるために設けられる蛍光体 925は シンチレータとも呼ばれる。
[0009] このような構成の FPDを備える放射線像撮像装置は、被検体 900に対する X線の 被爆量を最小限に抑えるとともに、良質な画像を得るために電荷蓄積素子 916での 蓄電量を十分とするように、 X線の照射が行われる必要がある。そのため、 X線照射 時の透過 X線量を測定し、良質な画像を形成するために必要な積算 X線照射量を確 認すると、 X線照射を停止させる X線フォトタイマー機能が備えられる(特許文献 1参 照)。この特許文献 1に記載の放射線撮像装置では、光電変換素子に蓄積された電 荷を蓄積したままの状態で出力を行う非破壊読み出し動作を行うことで、信号出力後 も電荷を保持することができるとされている。そのため、この蓄積された電荷より得ら れる信号に基づいて透過 X線量を確認して X線照射を停止させることができるとされ ている。
特許文献 1:特許第 3548507号公報
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、特許文献 1に記載の構成では、非破壊読み出し動作を行うために、 ソースフォロワ回路のように増幅動作を行う素子又は回路を、各検出素子の出力部 に設けたアクティブ方式となっている。そのため、この増幅動作を行うために設置され る素子の特性にバラツキが各検出素子にある場合、各検出素子の出力特性にもバラ ツキが生じて、固定パターンノイズ (FPN)として現れる。この FPNは撮像エリアが大 きくなるにつれ大きくなる傾向があり、大面積撮像が必要な放射線像撮像装置には 不向きである。又、 TFTは閾値電圧がシフトするなどの問題があり、アナログ的特性 が安定して ヽな 、ため、 TFTを用いて広撮像エリアに必要な画素数のアクティブ方 式のセンサを実現することは極めて困難である。
[0011] このような問題を鑑みて、本発明は、撮像動作を行う検出素子の一部によりフォトタ イマ一機能を実現するとともにその検出素子出力も画像データとして使用可能とする ノッシブ方式の放射線像撮像装置を提供することを目的とする。
課題を解決するための手段
[0012] 1.放射線源から入射した放射線を電気信号に変換し放射線量に応じた電荷を発 生する変換素子と該変換素子に接続されたスィッチを有し、マトリクス状に配置され た複数の検出素子と、
前記検出素子の前記スィッチと接続されており、マトリクス配置における列毎に配置さ れた複数の電荷転送ラインと、
該電荷転送ラインからの電荷を一時的に保持して、電荷に対応した電気信号を出力 する出力回路と、
前記複数の検出素子の中から少なくとも一つの検出素子を、照射される放射線量を 測定するための第 1検出素子として選択し、
放射線の照射期間、前記第 1検出素子を含む前記検出素子全ての前記変換素子で 同時に変換動作を行い、且つ、この照射期間に、前記第 1検出素子のスィッチを ON 状態として前記電荷転送ラインを通して、前記出力回路に前記第 1検出素子の変換 素子で発生した電荷を蓄積させ、照射期間に応じて蓄積された電荷に相当する電気 信号を定期的に読み出すように制御する制御手段を有することを特徴とする放射線 像撮像装置。
[0013] 2.前記制御部が、複数の検出素子を前記第 1検出素子として選択することを特徴 とする前記 1に記載の放射線像撮像装置。
[0014] 3.前記制御部が、前記複数の第 1検出素子からの前記電気信号の信号値を加算 平均した値に基づ 、て、放射線量の測定を行うことを特徴とする前記 2に記載の放射 線像撮像装置。
[0015] 4.前記制御部が、前記複数の第 1検出素子からの前記電気信号の信号値の最大 値に基づ 、て、放射線量の測定を行うことを特徴とする前記 2に記載の放射線像撮 像装置。 [0016] 5.前記第 1検出素子を含む前記検出素子全てから、入射された放射線に基づく画 像データを出力することを特徴とする前記 1乃至 4のいずれか 1項に記載の放射線像 撮像装置。
[0017] 6.前記出力回路が、
前記電荷転送ラインそれぞれと接続されて前記検出素子からの電荷を保持する電荷 保持部と、
前記電荷保持部をリセットするリセット部と、
を備え、
放射線照射前に、前記制御部が、前記リセット部による前記電荷保持部のリセットと、 前記検出素子全ての前記スィッチを ONとすることによる前記変換素子のリセットとを 行うことを特徴とする前記 1乃至 5のいずれか 1項に記載の放射線像撮像装置。
[0018] 7.前記複数の第 1検出素子が、マトリクス配置の複数行にわたって配置される複数 の検出素子であることを特徴とする前記 1乃至 6のいずれかに記載の放射線像撮像 装置。
[0019] 8.前記出力回路が、各行それぞれに対して設けられた複数の出力回路力 なるこ とを特徴とする前記 7に記載の放射線像撮像装置。
[0020] 9.前記制御部が、前記第 1検出素子を、撮影を行う度に選択することを特徴とする 前記 1乃至 8のいずれか 1項に記載の放射線像撮像装置。
[0021] 10.前記制御部が、撮影前に微弱な放射線又は可視光を照射することで、被検体 に対する撮影範囲を確認して、前記第 1検出素子の選択を行うことを特徴とする前記
9に記載の放射線像撮像装置。
[0022] 11.前記制御部が撮影前に微弱な放射線又は可視光を照射することで、被検体 に対する撮影範囲を確認して、放射線の照射範囲を設定することを特徴とする前記
1乃至 10のいずれか 1項に記載の放射線像撮像装置。
[0023] 12.前記出力回路が、
前記電荷転送ラインに反転入力端子が接続され、非反転入力端子に基準電圧が与 えられるオペアンプと、
該オペアンプの反転入力端子と出力端子との間に接続された容量素子と、 を備えることを特徴とする前記 1乃至 11のいずれカゝ 1項に記載の放射線像撮像装置
[0024] 13.前記出力回路が電荷量を電圧に変換する電荷'電圧変換部を有することを特 徴とする前記 1乃至 12のいずれか 1項に記載の放射線像撮像装置。
[0025] 14.前記制御手段は前記電気信号の信号値に基づいて前記放射線源の放射線 照射を停止させることを特徴とする前記 1乃至 13のいずれか 1項に記載の放射線像 撮像装置。
[0026] 15.入射された放射線を電気信号に変換し放射線量に応じた電荷を発生する変 換素子と該変換素子に接続されたスィッチを有し、マトリクス状に配置された複数の 検出素子と、
前記検出素子の前記スィッチと接続されており、マトリクス配置における列毎に配置さ れた複数の電荷転送ラインと、
該電荷転送ラインからの電荷を一時的に保持して、電荷に対応した電気信号を出力 する出力回路と、
前記複数の検出素子、前記複数の電荷転送ラインと前記出力回路とを制御する制 御部とを有する放射線像撮像装置における放射線像撮像装置の撮像方法であって 前記複数の検出素子の中から少なくとも一つの検出素子を、照射される放射線量を 測定するための第 1検出素子として選択し、
放射線の照射期間、前記第 1検出素子を含む前記検出素子全ての前記変換素子で 同時に変換動作を行い、且つ、この照射期間に、前記第 1検出素子のスィッチを ON 状態として前記出力回路に前記第 1検出素子の変換素子が発生した電荷を蓄積さ せ、
照射期間に応じて蓄積された電荷に相当する電気信号を定期的に読み出すことを 特徴とする放射線像撮像装置の撮像方法。
[0027] 16.複数の検出素子を前記第 1検出素子として選択することを特徴とする前記 15 に記載の放射線像撮像装置の撮像方法。
[0028] 17.前記複数の第 1検出素子からの前記電気信号の信号値を加算平均した値に 基づいて、放射線量の測定を行うことを特徴とする前記 16に記載の放射線像撮像装 置の撮像方法。
[0029] 18.前記複数の第 1検出素子からの前記電気信号の信号値の最大値に基づいて 、放射線量の測定を行うことを特徴とする前記 16に記載の放射線像撮像装置の撮 像方法。
[0030] 19.前記第 1検出素子を含む前記検出素子全てから、入射された放射線に基づく 画像データを出力することを特徴とする前記 15乃至 18のいずれか 1項に記載の放 射線像撮像装置の撮像方法。
[0031] 20.前記第 1検出素子を、撮影を行う度に選択することを特徴とする前記 15乃至 1
8のいずれか 1項に記載の放射線像撮像装置の撮像方法。
[0032] 21.前記電気信号の信号値に基づいて、前記放射線源の放射線照射を停止する 工程を含むことを特徴とする前記 15乃至 20のいずれか 1項に記載の放射線像撮像 装置の撮像方法。
発明の効果
[0033] 本発明によると、放射線量を測定するための第 1検出素子を、放射線撮像を行うた めの検出素子から選択し、この第 1検出素子で変換動作を行うことで得られた電荷を 出力回路に保持することで、検出素子力もの電荷を増幅する必要がない構成とする ことができる。そのため、ソースフォロワ回路のような増幅動作を行う素子又は回路を 必要とせず、固定パターンノイズの発生を防ぐことができる。又、特別な出力回路を 別途設けることなくフォトタイマー機能を実現することができ、装置構成を簡素化する ことができる。更に、第 1検出素子の出力も画像データとして利用できるため、解像度 の劣化を招くことがない。
図面の簡単な説明
[0034] [図 1]本発明の各実施形態における放射線像撮像装置の内部構成を示すブロック図 である。
[図 2]第 1の実施形態の放射線像撮像装置における FPDの内部構成を示す概略ブ ロック図である。
[図 3]図 2の FPDにおける検出素子や出力回路の構成を示す回路図である。 圆 4]一検出素子を上面から見たときのレイアウト図である。
[図 5]図 4の検出素子の A— Bで切断した断面図である。
[図 6]図 2の FPDの撮像動作の第 1例における各信号と出力される画像データの関 係を示すタイミングチャートである。
[図 7]図 6の動作例による動作を行う FPDにおける、 X線量計測のための検出素子の 並ぶ行と、画像データを出力する行毎の順番との関係を示す図である。
[図 8]図 2に記載の FPDの撮像動作の第 2例における各信号と出力される画像デー タの関係を示すタイミングチャートである。
[図 9]図 8の動作例による動作を行う FPDにおける、 X線量計測のための検出素子の 並ぶ行と、画像データを出力する行毎の順番との関係を示す図である。
[図 10]図 2に記載の FPDの撮像動作の第 3例における各信号と出力される画像デー タの関係を示すタイミングチャートである。
[図 11]図 10の動作例による動作を行う FPDにおける、 X線量計測のための検出素子 の並ぶ行と、画像データを出力する行毎の順番との関係を示す図である。
圆 12]可視光を照射して被検体の位置と大きさを確認するときの状態を示す図である 圆 13]第 2の実施形態の放射線像撮像装置における FPDの内部構成を示す概略ブ ロック図である。
[図 14]図 13の FPDにおける、 X線量計測のための検出素子の並ぶ行と、画像データ を出力する行毎の順番との関係を示す図である。
[図 15]第 3の実施形態の FPDにおける、 X線量計測のための検出素子の並ぶ行と、 画像データを出力する行毎の順番との関係を示す図である。
[図 16]第 3の実施形態の FPDの撮像動作における各信号と出力される画像データの 関係を示すタイミングチャートである。
[図 17]FPDによる X線撮影システムの概念図である。
[図 18]FPDの構成を示す概念ブロック図である。
圆 19]直接変換方式と間接変換方式を比較するためのブロック図である。
符号の説明 、 la FPD
信号処理部
メモリ部
入出力 IZF
制御部
00 X線管
01 放射線像撮像装置02 コンピュータ
1 センサ部
2 垂直走査回路
3 出力回路群
3 一 1〜13— n 出力回路
マノレチプレクサ
5 AZD変換回路
タイミングジェネレータ7 ノィァスライン
- — 1〜18— m 行選択ライン - - l〜19—n 電荷転送ライン リセットライン
フォトダイオード
1 TFT
オペアンプ
キャパシタ
リセット部
透明電極膜
, 42 コンタクト
ソース領域
ドレイン領域 45 チャネル領域
発明を実施するための最良の形態
[0036] 本発明を図示の実施の形態に基づいて説明するが、本発明は該実施の形態に限 られない。
<放射線像撮像装置の構成 >
まず、本発明の各実施形態で共通となる放射線像撮像装置の構成について、図面 を参照して説明する。図 1は、放射線像撮像装置の内部構成を示すブロック図である
[0037] 図 1に示す放射線像撮像装置 101は、外部の放射線源となる X線管 100より放射さ れる X線が入射される FPD1と、 FPD1に入射された X線に基づく画像データを処理 する信号処理部 2と、信号処理部 2で処理された画像データを記憶するメモリ部 3と、 メモリ部 3で保持された画像データが与えられて外部のコンピュータ 102に出力する 入出力インターフェース (IZF) 4と、信号処理部 2で処理された画像データが与えら れて放射線像撮像装置 101の動作を制御するとともに FPD1及び信号処理部 2及び 入出力 IZF4の動作制御を行う制御部 5と、備える。
[0038] このような構成の放射線像撮像装置 101によると、 X線管 100より X線が放射される と、 FPD1において、入射される X線を電荷に変換する。この電荷は、撮影が終了し て、信号処理部 2に出力されるまで保持される。この放射線像撮像装置 101では、 F PD1の一部の検出素子を X線量検出用のセンサとして使用する。この X線検出用の 検出素子が発生した電荷は、撮影時において、 FPD内部(具体的には出力回路)に 保持された状態で、その電荷に対応する電気信号値を信号処理部に定期的に出力 される。信号処理部 2において、この検出素子から出力される電気信号値に基づい て放射される X線量を確認する。そして、放射された X線量を表す信号が制御部 5〖こ 与えられると、この信号により放射された X線量が所定の指標値以上となった力否か が確認され、所定の指標値以上であることを確認すると、 X線管 100に対して X線の 放射を停止するように指示する。その後、 FPD1の全検出素子で取得された電気信 号値が画像データとして出力されて、信号処理部 2に与えられると、メモリ部 3を用い て演算処理を行う。この演算処理された画像データは、メモリ部 3に格納されるととも に、入出力 IZF4よりコンピュータ 102に出力される。
[0039] 以下の各実施形態における放射線像撮像装置は、図 1の構成を共通の構成として 備えている。よって、以下の各実施形態では、その放射線像撮像装置の FPDの構成 及び動作にっ 、て説明する。
《第 1の実施形態》
本発明の第 1の実施形態について、図面を参照して説明する。図 2は、本実施形態 の放射線像撮像装置における FPDの内部構成を示す概略ブロック図である。
[0040] FPD1は、図 2に示すように、フォトダイオード PDと薄膜トランジスタ Tを備え、そして マトリクス上に配置された検出素子 Gl l〜Gmnを有するセンサ部 11と、データ出力 時にセンサ部 11の各検出素子 Gl l〜Gmnを垂直方向に走査する垂直走査回路 1 2と、センサ部 11の各検出素子 Gl l〜Gmnから出力される電荷を行毎に保持する 出力回路群 13と、出力回路群 13で保持された電荷を列毎のシリアルな電気信号に 変換するマルチプレクサ 14と、マルチプレクサ 14から与えられる電気信号をデジタ ルデータとなる画像データに変換する AZD変換回路 15と、垂直走査回路 12、出力 回路群 13、マルチプレクサ 14、及び AZD変換回路 15それぞれの動作タイミングを 指定するタイミングジェネレータ 16と、を備える。
[0041] この FPD1は、検出素子 Gl l〜Gmnそれぞれに直流電圧 VDDを印加するバイァ スライン 17と、垂直走査回路 12から各行毎に与える信号 φ Vl〜 φ Vmをセンサ部 1 1における各行の検出素子に与えるために行毎に設けられた行選択ライン 18— 1〜 18— mと、センサ部 11における検出素子力もの電荷を列毎に出力回路群 13に出力 するために列毎に設けられた電荷転送ライン 19— l〜19—nと、タイミングジエネレ ータ 16よりセンサ部 11の出力回路群 13をリセットするリセット信号 <i) RSTを出力回 路群 13に与えるリセットライン 20と、を備える。尚、タイミングジェネレータ 16と、垂直 走査回路 12、マルチプレクサ 14、及び AZD変換回路 15との間や、マルチプレクサ 14と AZD変換回路 15との間にも、信号をやりとりするための信号ラインが接続され るが、その詳細な説明は省略する。
[0042] 又、出力回路群 13には、各列の電荷転送ライン 19— l〜19—nと接続された出力 回路 13— 1〜13— nを備える。この出力回路 13— 1〜13— n及び検出素子 Gl l〜 Gmnの構成について、図面を参照して詳細に説明する。尚、以下では、 a行 b列の検 出素子 Gabを代表して、その構成について説明する。即ち、図 3には、検出素子 Gab と出力回路 13— の回路構成を示す。
[0043] 検出素子 Gabは、図 3に示すように、バイアスライン 17と接続されて直流電圧 VDD が力ソードに印加されるフォトダイオード 30と、フォトダイオード 30のアノードにドレイ ン電極が接続されるとともに電荷転送ライン 19— bにソース電極が接続された TFT3 1と、を備える。そして、 TFT31のゲート電極は、行選択ライン 18— aが接続され、垂 直走査回路 12からの信号 φ Vaが与えられる。フォトダイオード 30は本発明の変換 素子、 TFT31は本発明のスィッチである。
[0044] 出力回路 13— bは、オペアンプとキャパシタとにより構成されるいわゆるチャージセ ンシングアンプを備えている。詳しくは、電荷転送ライン 19— bに反転入力端子が接 続されるとともに非反転入力端子に基準電圧 VREFが印加されるオペアンプ 32と、ォ ぺアンプ 32の反転入力端子と出力端子との間に並列に接続されたキャパシタ 33及 びリセット部 34と、を備える。そして、オペアンプ 32の出力端子がマルチプレクサ 14 の入力側に接続されるとともに、タイミングジェネレータ 16からリセットライン 20を通じ て与えられる信号 0 RSTによって、リセット部 34の ONZOFFが制御される。このよう に構成されるチャージセンシングアンプは、電荷をキャパシタ 33に保持することで積 分機能を具備した読み出し回路であり、キャパシタ 33がリセットされない限り、電荷に 対応した電気信号を読み出しても電荷は保持されると!/ヽぅ特性を備える。キャパシタ 3 3は本発明の電荷保持部である。
[0045] このように、検出素子 Gl l〜Gmn及び出力回路 13— 1〜13— nが構成されるとき 、検出素子 Gl l〜Gmn及び出力回路 13— 1〜13— nのリセット動作を行う場合、タ イミングジェネレータ 16からハイとなる信号 0 RSTが与えられて、出力回路 13— 1〜 13— nそれぞれのリセット部 34が ONとされると同時に、垂直走査回路 12から信号 φ Vl〜 φ Vmが与えられて、検出素子 Gl l〜Gmnそれぞれの TFT31が ONとされる
[0046] このとき、リセット部 34が ONとなるため、オペアンプ 32の出力端子と反転入力端子 とが接続されて、キャパシタ 33に蓄積された電荷が放電される。又、 TFT31が ONと なるため、フォトダイオード 30のアノード力 TFT31とリセット部 34を介してオペアン プ 34の出力端子と電気的に接続され、フォトダイオード 30のアノードに蓄積された電 荷が放電される。よって、フォトダイオード 30のアノード及びキャパシタ 33がリセットさ れる。
[0047] そして、 X線が放射されて撮像動作が行われるときは、信号 φ RSTがローとされて、 リセット部 34が OFFとされる。このとき、検出素子 Gab力 X線量を計測するためのデ ータを出力する検出素子とされている場合、信号 φ ν&がハイとされて、 TFT31が Ο Νとされる。これにより、フォトダイオード 30が光電変換されて得られた光電荷がフォト ダイオード 30のアノード力もキャパシタ 33に流れ込むため、キャパシタ 33に蓄積され る。このとき、オペアンプ 32の反転入力端子の電圧が、オペアンプ 32の非反転入力 端子に印加された電圧 VREFと略等しい値で一定となるため、キャパシタ 33に蓄積さ れた電荷に基づいて、オペアンプ 32の出力端子の電圧値が変更する。このオペアン プ 32の出力端子の電圧値がマルチプレクサ 14に与えられる。
[0048] 一方、検出素子 Gab力 X線量計測のための検出素子でなぐ通常の撮像動作を 行う検出素子である場合、信号 φ ν&がローとされて、 TFT31が OFFとされる。これ により、フォトダイオード 30が光電変換されて得られた光電荷がフォトダイオード 30の アノードに蓄積されることとなる。そして、検出素子 Gabの信号読み出し時において、 信号 φ Vaがハイとされて TFT31が ONとされることで、フォトダイオード 30のアノード に蓄積された電荷がキャパシタ 33に蓄積され、オペアンプ 32の出力端子の電圧値 が変更し、このオペアンプ 32の出力端子の電圧値がマルチプレクサ 14に与えられる
[0049] 又、検出素子 Gabは、図 4の上面図及び図 5の断面図に示されるような構成とされ る。まず、フォトダイオード 30及び TFT31との配置関係について、図 4の上面図を参 照して説明する。縦に配線された電荷転送ライン 19— l〜19—nとなる信号配線 19 と、横に配線された行選択ライン 18— l〜18—mとなるゲート配線 18とによって囲ま れた領域に、フォトダイオード 30が形成される。このフォトダイオード 30は、一方の信 号配線 19側の 2隅が削られた T字形状に配置される。そして、図 4中の上下に隣接し たフォトダイオード 30の削られた隅と信号配線 19で囲まれた領域に、そのゲート電極 がゲート配線 18上に配置されるように TFT31が形成される。
[0050] このように、フォトダイオード 30及び TFT31が形成されると、フォトダイオード 30の 表面に、インジゥムースズ酸ィ匕物で構成される ITO膜のような透明電極膜 40が形成 され、そして、 TFT31と信号線 9との間の領域を縦にバイアスライン 17が配線される 。このバイアスライン 17は透明電極膜 40の表面上に配線され、コンタクト 41で透明電 極膜 40と接続されることでフォトダイオード 30と電気的に接続される。
[0051] 又、 TFT31のソース電極となるソース領域 43が信号配線 19とコンタクト 42で電気 的に接続される。更に、 TFT31は、そのドレイン電極となるドレイン領域 44がフォトダ ィオード 30と積層部分で電気的に接続され、ソース領域 43とドレイン領域 44との間 にチャネル領域 45が形成され、このチャネル領域 45がゲート配線 18の真上に設置 される。即ち、その積層構造においてチャネル領域 45の下に形成されるゲート電極 となるゲート領域が、ゲート配線 18の表面上に形成される。
[0052] このように形成されるフォトダイオード 30及び TFT31は、図 5の断面図のような積層 構造となる。 1検出素子を構成するフォトダイオード 30及び TFT31の積層構造につ いて、図 5の断面図を参照して説明する。尚、図 5は、図 4中のライン A— Bで切断し たときの断面図である。
[0053] 図 5に示すように、ガラス基板 50表面上に配線されるゲート配線 18と電気的に接続 されるように、ゲート配線 18の表面上にゲート電極層 51が形成され、このゲート電極 層 51及びガラス基板 50の表面を覆う絶縁層 52が形成される。又、絶縁層 52の表面 には、ゲート電極層 51の真上にチャネル領域 45となるチャネル層 53が形成され、チ ャネル層 53の一部を除く表面と絶縁膜 52の表面とにエッチングストップ層 54が形成 される。そして、信号配線 19に近い側のエッチングストップ層 54は、チャネル層 53の 縁から信号配線 19まで形成され、その表面にソース電極層 55が形成され、信号配 線 19と遠い側のエッチングストップ層 54は、チャネル層 53の縁からフォトダイオード 3 0を形成する領域まで形成され、その表面にドレイン電極層 56が形成される。又、ソ ース電極層 55の表面にコンタクト 42が形成され、このコンタクト 42を通じて信号配線 19と電気的に接続される。このようにして、 TFT31が形成される。
[0054] 一方、フォトダイオード 30を形成する領域では、ドレイン電極層 56の表面上に、 p型 アモルファスシリコン層 57と i型アモルファスシリコン層 58と n型アモルファスシリコン 層 59とが、順番に積層されて、 pin型フォトダイオードとなるフォトダイオード 30が形 成される。又、 n型アモルファスシリコン層 59の表面上には、光を透過させるとともに 低抵抗となる透明電極膜 40が形成され、この透明電極膜 40の表面の一部にコンタ タト 41が形成され、このコンタクト 41を通じてバイアスライン 17と電気的に接続される 。このように形成されるフォトダイオード 30及び TFT31の表面に、層間絶縁膜 60を 形成することで、フォトダイオード 30及び TFT31を構成する各層の電気的な接続を 禁止する。そして、この層間絶縁膜 60の表面に、バイアスライン 17及び信号配線 19 を配線する。
[0055] 又、バイアスライン 17及び信号配線 19が配線された層間絶縁膜 60の表面上には 、ガラス基板 50上面に形成される積層膜による凹凸を平坦化させるための保護膜層 61が積層される。この保護膜層 61は、ガラス基板 50上部の積層部分の平坦ィ匕を行 うとともに、検出素子 Gabを構成するフォトダイオード 30及び TFT31を保護する役目 も備えており、例えばスピンコート技術を用いて感光性のポリイミドゃアクリル系榭脂 等を塗布することで形成される。そして、この保護膜層 61の表面上には例えばヨウ化 セシウム(Csl)が蒸着されてシンチレータ層 62が形成される。このシンチレータ層 62 は、入射された放射線を可視光に変換する機能を備える。このようにすることで、間 接変換方式となる FPD1を構成することができる。尚、本例では、間接変換方式とな る FPDを例に挙げて説明するが、直接変換方式となる FPDを用いても構わない。
[0056] (l) FPDにおける撮像動作の第 1例
上述のように構成される FPD1による撮像動作の第 1例にっ 、て、図面を参照して 説明する。図 6は、 FPD1における各信号と出力される画像データの関係を示すタイ ミングチャートである。又、図 7は、 X線量計測のための検出素子の並ぶ行と、画像デ ータを出力する行毎の順番との関係を示す図である。尚、図 7に示すように、 s行目の 検出素子 Gsl〜Gsnからの電荷に基づく画像データ力 X線量計測に使用されるも のとする。
[0057] まず、検出素子 Gl l〜Gmnそれぞれのフォトダイオード 30のアノード及び出力回 路 13— l〜13—nそれぞれのキャパシタ 33をリセットするために、垂直走査回路 12 からの信号 φ Vl〜 φ Vmとタイミングジェネレータ 16からの信号 φ RSTを同時にハ ィとする(タイミング A)。これにより、検出素子 Gl l〜Gmnそれぞれの TFT31のゲー ト電極にハイとなる信号 φνΐ〜φνπιが与えられて ONとなるとともに、出力回路 13 1〜13—nそれぞれのリセット部 34にハイとなる信号 φ RSTが与えられて ONとな る。これにより、検出素子 Gl l〜Gmnそれぞれのフォトダイオード 30のアノード及び 出力回路 13— 1〜 13— nそれぞれのキャパシタ 33のリセット動作が開始する。
[0058] そして、所定時間経過して、検出素子 Gl l〜Gmnそれぞれのフォトダイオード 30 のアノード及び出力回路 13— l〜13—nそれぞれのキャパシタ 33のリセットが十分 な状態になると、 X線計測用の検出素子 Gsl〜Gsnに与える信号 φ Vs以外の信号 Vl~ Vs- l, () Vs+ l〜(i) Vmをローとするとともに、出力回路 13— 1〜13— nに与える信号 φ RSTをローとする(タイミングお。尚、信号 φ Vsは、ハイのままとし、 検出素子 Gsl〜Gsn内の TFT31が ONのままとされる。この時刻以降、撮像可能状 態となる。その後、オペレータの操作を受けて X線照射を開始する。具体的には、制 御部 5からハイのパルス信号となる X線制御信号 φ Xが無線もしくは有線で X線管 10 0に与えられることで、 X線管 100より X線照射が開始する(タイミング C)。
[0059] このようにして、 X線管 100からの X線照射が行われると、検出素子 Gl l〜Gmnに X線が照射されるため、フォトダイオード 30によって光電変換動作が行われて入射さ れた X線量に応じた光電荷が生成される。そして、ノ、ィとなる信号 () Vsが与えられる 検出素子 Gsl〜Gsnは、 TFT31が ONとされて電荷転送ライン 19— 1〜19— nを介 して出力回路 13— 1〜13— nと電気的に接続されるため、検出素子 Gsl〜Gsnそれ ぞれのフォトダイオード 30で発生した光電荷が、出力回路 13— 1〜 13— nそれぞれ のキャパシタ 33に蓄積される。又、ローとなる信号 φ Vl〜Vs— 1, φ Vs+ 1〜 φ Vm が与えられる検出素子 Gl l〜G (s l) n、 0 (5 + 1) 1〜011111は、丁?丁31が0??と されて出力回路 13— l〜13—nと電気的に切断された状態であるため、検出素子 G 11〜G (S— l) n、 G (S + l) l〜Gmnそれぞれのフォトダイオード 30のアノードに光 電荷が蓄積される。
[0060] この X線照射時において、所定の間隔 T毎に、タイミングジェネレータ 16がマルチ プレクサ 14及び AZD変換回路 15を駆動させる。よって、所定間隔 T毎に出力回路 13— l〜13—nのオペアンプ 32に現れる電荷がマルチプレクサ 14に入力され、検 出素子毎のシリアルな電荷に変換された後、 AZD変換回路 15でデジタルデータと なる画像データに変換される。即ち、出力回路 13— 1〜13— nのキャパシタ 33に蓄 積された電荷量に応じた電圧値となる電荷がマルチプレクサ 14に与えられ、出力回 路 13— 1, 13- 2, · ··, 13— nの順番に電荷が AZD変換回路 15に出力されて、デ ジタルデータである画像データに変換される。
[0061] この画像データは、検出素子 Gsl〜Gsnそれぞれに入射された X線量を表す検出 素子 Gsl〜Gsnそれぞれの画像データがシリアルに並んだデータである。そして、こ の検出素子 Gs 1〜Gsnそれぞれの画像データが信号処理部 2に出力されると、画像 データの加算平均化処理を行うことによって、放射される X線量を表す実効出力値を 取得する。そして、取得した実効出力値が制御部 5に与えられ、所定の指標値以上と なったカゝ否かが確認される。
[0062] このようにして、検出素子 Gsl〜Gsnそれぞれに入射された X線量を表す画像デー タが出力されるが、出力回路 13— 1〜13— nのキャパシタ 33及び検出素子 Gsl〜G snそれぞれのフォトダイオード 30がリセットされることがなぐ電荷が蓄積されたままで ある。そのため、所定間隔 T毎にマルチプレクサ 14を駆動させるたびに、タイミング C で X線放射が開始されて力ゝらの X線量を表す光電荷による電荷がマルチプレクサ 14 に与えられることとなる。よって、時間間隔 T毎に、タイミング Cで X線放射が開始され て力もの X線量を、信号処理部 2で確認することができる。
[0063] そして、マルチプレクサ 14及び AZD変換回路 15が所定間隔 T毎に複数回動作し ている間に、制御部 5において、検出素子 Gsl〜Gsnそれぞれの画像データによる 実効出力値が所定の指標値以上となることが確認される。よって、 X線放射が開始さ れてカゝらの X線量が画像出力するのに十分な X線量であることが確認されるため、制 御部 5が、 X線管 100に対して X線の放射を停止するように指示する。このとき、制御 部 5は、 FPD1のタイミングジェネレータ 16に対して、 X線量の測定動作から信号読 み出し動作に切り換えるように指示する。
[0064] そして、制御部 5からノ、ィのパルス信号となる X線制御信号 φ Xが X線管 100に与 えられることで、 X線管 100より X線照射が停止した後(タイミング D)、 FPD1の検出 素子 Gl l〜Gmnで撮像されて得られた画像データの読み出しが開始する。この FP D1の画像データの読み出す行の順番が、図 7に示す順番となる。まず、垂直走査回 路 12から行選択信号 18— sを介して検出素子 Gsl〜Gsnに与えられる信号 φ ν3が ローとする(タイミング E)。このようにして、検出素子 Gsl〜Gsnそれぞれの TFT31を OFFとするとともに、キャパシタ 33に光電荷を蓄積させた状態とした後、タイミングジ エネレータ 16によってマルチプレクサ 14及び AZD変換回路 15を ONとし、検出素 子 Gsl〜Gsnそれぞれの画像データを信号処理部 2に出力する。
[0065] その後、ハイとなるパルス信号 φ RSTをタイミングジェネレータ 16からリセットライン 20を介して出力回路 13— l〜13—nに与えることにより、出力回路 13— 1〜13— n のキャパシタ 33をリセットする(タイミング F)。そして、信号 0 RSTをローとした後、ノヽ ィとなるパルス信号 φ Vs+ 1を垂直走査回路 12から行選択信号 18— (s+ 1)を介し て検出素子 G (s+ 1) 1〜G (s + 1) nに与えることで、検出素子 G (s+ 1) 1〜G (s + 1 ) nにおいて、 TFT31を ONとしてフォトダイオード 30に蓄積された光電荷を電荷転 送ライン 19— 1〜19— nそれぞれに導出する (タイミング G)。これにより、出力回路 1 3— 1〜13— nそれぞれのキャパシタ 33には、検出素子 G (s+ 1) l〜G (s + l) nそ れぞれのフォトダイオード 30に蓄積された光電荷が蓄積される。この信号 φ Vs+ 1が ローとなると、マルチプレクサ 14及び AZD変換回路 15を ONとし、検出素子 G (s + 1) 1〜G (s+ 1) nそれぞれの画像データを信号処理部 2に出力する(タイミング H)。
[0066] このようにして s + 1行目の検出素子 G (s + 1) 1〜G (s+ 1) nそれぞれの画像デー タが出力されると、ハイとなる信号 φ RST, φ Vs + 2が順番に、タイミングジエネレー タ 16及び垂直走査回路 12から出力されることで、出力回路 13— l〜13—nそれぞ れのキャパシタ 33がリセットされた後、検出素子 G (s + 2) 1〜G (s + 2) nそれぞれの フォトダイオード 30に蓄積された光電荷が出力回路 13— 1〜 13— nそれぞれのキヤ パシタ 33に蓄積される。そして、 s + 2行目の検出素子 G (s + 2) l〜G (s + 2) nそれ ぞれの画像データが信号処理部 2に出力される。
[0067] その後、同様にして、タイミングジェネレータ 16からの信号 φ RSTと垂直走査回路 12からの信号 φ Vs + 3〜 φ Vmと力 ハイとなるパルス信号として交互に出力され、 図 7のように、 s + 3行目〜m行目の検出素子 G (s + 3) l〜Gmnが行毎に動作し、検 出素子0 (3 + 3) 1〜011111の画像データが信号処理部2に出カされる。そして、 m行 目の検出素子 Gml〜Gmnの画像データが出力されると、タイミングジェネレータ 16 からの信号 φ RSTと垂直走査回路 12からの信号 φ Vl〜 φ Vs— 1とが、ハイとなる パルス信号として交互に出力され、図 7のように、 1行目〜 s—l行目の検出素子 G11 〜G (S 1) nが行毎に動作し、検出素子 Gl 1〜G (S 1) nの画像データが信号処 理部 2に出力される。
[0068] このように、本例では、 s行目の検出素子 Gsl〜Gsnそれぞれの画像データにより 放射される X線量が測定され、 X線量が所定の指標値以上となったとき、まず、検出 素子 Gsl〜Gmnに対して、 s行目から順番に m行目まで行毎に画像データの読み出 し動作を行う。そして、 m行目の検出素子 Gml〜Gmnの画像データの読み出しを行 つた後、検出素子 G11〜G (S l) nに対して、 1行目から順番に s—l行目まで行毎 に画像データの読み出し動作を行う。
[0069] (2) FPDにおける撮像動作の第 2例
上述のように構成される FPD1による撮像動作の第 2例にっ 、て、図面を参照して 説明する。図 8は、 FPD1における各信号と出力される画像データの関係を示すタイ ミングチャートである。又、図 9は、 X線量計測のための検出素子の並ぶ行と、画像デ ータを出力する行毎の順番との関係を示す図である。
[0070] 本例においても、上述の第 1例と同様、まず、信号 () RST, φ Vl〜 φ Vmを同時に ハイとして、検出素子 Gl l〜Gmnのフォトダイオード 30と出力回路 13— 1〜13— n のキャパシタ 33をリセットした後、信号 () Vs以外の信号をローとするとともに、制御部 5より X線制御信号 φ Xが X線管 100に与えられて、 X線管 100による X線照射が開 始される(タイミング A〜C)。そして、 X線管 100からの X線照射が行われている間、 所定の間隔 T毎に、マルチプレクサ 14及び AZD変換回路 15を駆動させて、検出素 子 Gs 1〜Gsnそれぞれに入射された X線量を表す画像データを信号処理部 2に出 力し、制御部 5において、検出素子 Gsl〜Gsnそれぞれの画像データによる実効出 力値が所定の指標値以上である力否かが確認される。
[0071] このように、 X線照射時に検出素子 Gsl〜Gsnそれぞれの画像データにより X線量 が確認され、検出素子 Gsl〜Gsnそれぞれの画像データによる実効出力値が所定 の指標値以上となることを制御部 5が確認すると、第 1例と同様、制御部 5より X線制 御信号 φ Xが X線管 100に与えられて、 X線管 100による X線照射が停止された後、 検出素子 Gsl〜Gsnに与えられる信号 φ Vsをローとし (タイミング D, E)、検出素子 Gsl〜Gsnそれぞれの画像データを信号処理部 2に出力する。
[0072] その後、ハイとなるパルス信号 φ RSTをタイミングジェネレータ 16からリセットライン 20を介して出力回路 13— l〜13—nに与えることにより、出力回路 13— 1〜13— n のキャパシタ 33をリセットすると (タイミング F)、第 1例と異なり、ハイとなるパルス信号 φ VIを垂直走査回路 12から行選択信号 18— 1を介して検出素子 Gl l〜Glnに与 える(タイミング G)。これ〖こより、検出素子 Gl l〜Glnにおいて、 TFT31を ONとして フォトダイオード 30に蓄積された光電荷を電荷転送ライン 19— l〜19—nそれぞれ に導出して、出力回路 13— l〜13—nそれぞれのキャパシタ 33に蓄積する。この信 号 φ VIをローとした後、マルチプレクサ 14及び AZD変換回路 15を ONとし、検出 素子 G 11〜G Inそれぞれの画像データを信号処理部 2に出力する(タイミング H)。
[0073] その後、同様にして、タイミングジェネレータ 16からの信号 φ RSTと垂直走査回路 12からの信号 φ V2〜 φ Vs— 1とが、ハイとなるパルス信号として交互に出力され、 図 9のように、 2行目〜s— 1行目の検出素子 G21〜G (s- 1) nが行毎に動作し、検 出素子021〜0 (3—1) 11の画像データが信号処理部2に出カされる。そして、 s—l 行目の検出素子 G (s- 1) 1〜G (s— l) nの画像データが出力されると、タイミングジ エネレータ 16からの信号 φ RSTと垂直走査回路 12からの信号 φ Vs + 1〜 φ Vmと 1S ハイとなるパルス信号として交互に出力され、図 9のように、 3+ 1行目〜111行目の 検出素子 G (s + 1) l〜Gmnが行毎に動作し、検出素子 G (s+ 1) l〜Gmnの画像デ ータが信号処理部 2に出力される。
[0074] このように、本例では、 s行目の検出素子 Gsl〜Gsnそれぞれの画像データにより 放射される X線量が測定され、 X線量が所定の指標値以上となったとき、まず、 s行目 の検出素子 Gsl〜Gsn画像データの読み出し動作を行った後、検出素子 Gl 1〜G ( s— l) nに対して、 1行目から順番に s— 1行目まで行毎に画像データの読み出し動 作を行う。そして、 3—1行目の検出素子0 (3—1) 1〜0 (3—1) 11の画像データの読 み出しを行った後、検出素子0 (3 + 1) 1〜011111に対して、 s+ 1行目から順番に m行 まで行毎に画像データの読み出し動作を行う。
[0075] (3) FPDにおける撮像動作の第 3例
上述のように構成される FPD1による撮像動作の第 3例にっ 、て、図面を参照して 説明する。図 10は、 FPD1における各信号と出力される画像データの関係を示すタ イミングチャートである。又、図 11は、 X線量計測のための検出素子の並ぶ行と、画 像データを出力する行毎の順番との関係を示す図である。
[0076] 本例においても、上述の第 2例と同様、まず、信号 () RST, φ Vl〜 φ Vmを同時に ハイとして、検出素子 Gl l〜Gmnのフォトダイオード 30と出力回路 13— 1〜13— n のキャパシタ 33をリセットした後、信号 () Vs以外の信号をローとするとともに、制御部 5より X線制御信号 φ Xが X線管 100に与えられて、 X線管 100による X線照射が開 始される(タイミング A〜C)。そして、 X線管 100からの X線照射が行われている間、 所定の間隔 T毎に、マルチプレクサ 14及び AZD変換回路 15を駆動させて、検出素 子 Gs 1〜Gsnそれぞれに入射された X線量を表す画像データを信号処理部 2に出 力し、制御部 5において、検出素子 Gsl〜Gsnそれぞれの画像データによる実効出 力値が所定の指標値以上である力否かが確認される。
[0077] このように、 X線照射時に検出素子 Gsl〜Gsnそれぞれの画像データにより X線量 が確認され、検出素子 Gsl〜Gsnそれぞれの画像データによる実効出力値が所定 の指標値以上となることを制御部 5が確認すると、第 1例と同様、制御部 5より X線制 御信号 φ Xが X線管 100に与えられて、 X線管 100による X線照射が停止される(タイ ミング D)。このとき、第 2例と異なり、この X線照射の停止と同時に、検出素子 Gsl〜 Gsnに与えられる信号 φ Vsをローとする。
[0078] その後、ハイとなるパルス信号 φ RSTをタイミングジェネレータ 16からリセットライン 20を介して出力回路 13— l〜13—nに与えることにより、出力回路 13— 1〜13— n のキャパシタ 33をリセットした後(タイミング F)、ノ、ィとなるパルス信号 φ VIを垂直走 查回路 12から行選択信号 18— 1を介して検出素子 Gl l〜Glnに与える(タイミング G)。これにより、検出素子 Gl l〜Glnそれぞれの画像データを信号処理部 2に出力 する(タイミング H)。
[0079] その後、同様にして、タイミングジェネレータ 16からの信号 φ RSTと垂直走査回路 12からの信号 φ V2〜 φ Vs— 1とが、ハイとなるパルス信号として交互に出力され、 図 11のように、 2行目〜s— 1行目の検出素子 G21〜G (s-1) nが行毎に動作し、検 出素子021〜0(3—1)11の画像データが信号処理部2に出カされる。そして、 s—l 行目の検出素子 G (s-1) 1〜G (S-1) nの画像データが出力されると、タイミングジ エネレータ 16からの信号 φ RSTと垂直走査回路 12からの信号 φ Vs + 1〜 φ Vmと 力 ハイとなるパルス信号として交互に出力され、図 11のように、 3+1行目〜111行目 の検出素子 G (s+ 1) l〜Gmnが行毎に動作し、検出素子 G (s+ 1) l〜Gmnの画像 データが信号処理部 2に出力される。
[0080] このように、本例では、 s行目の検出素子 Gsl〜Gsnそれぞれの画像データにより 放射される X線量が測定され、 X線量が所定の指標値以上となったとき、第 2例と異 なり、 s行目の検出素子 Gsl〜Gsnの画像データの読み出し動作を行うことなぐまず 、検出素子 Gll〜G(s— l)nに対して、 1行目から順番に s—l行目まで行毎に画像 データの読み出し動作を行う。そして、 s— 1行目の検出素子 G(s— l)l〜G(s— 1) nの画像データの読み出しを行った後、検出素子 G(s + 1) l〜Gmnに対して、 s+1 行目から順番に m行目まで行毎に画像データの読み出し動作を行う。
[0081] 尚、本例においては、第 2例のように、画像データの読み出しが、 s行目の検出素子 Gsl〜Gsnによる X線量の測定後、 1行目の検出素子 Gll〜Glnより順番に、 s行目 の検出素子 Gsl〜Gsn以外の検出素子 Gll〜G(s— l)n, G(s+1) l〜Gmnの画 像データを出力するものとしたが、第 1例と同様に、 s + 1行目の検出素子 G (s + 1) 1 〜G(s + l)nの画像データより順番に、検出素子 Gll〜G(s— l)n、 G(s+1)1〜G mnの画像データを出力するものとしても構わない。このとき、検出素子 G(s + 1) 1〜 Gmnに対して 1行毎の読み出し動作を行った後、又、検出素子011〜0(3— 1)11に 対して 1行毎の読み出し動作を行うこととなる。
[0082] 又、本例において、画像データの読み出しを行うことのない X線量測定用の s行目 の検出素子 Gsl〜Gsnの画像データについては、信号処理部 2において、隣接する s-1, s + 1行目それぞれの検出素子 G(s— l)l〜G(s— l)n, G(s+l)l〜G(s + l)nの画像データに基づく補間処理を行うことで、生成されるものとしても構わない。
[0083] 更に、第 1例及び第 2例のように、 X線量測定用の s行目の検出素子 Gsl〜Gsnも 含む全検出素子 Gl l〜Gmnの画像データを読み出す場合、 X線量測定用の s行目 の検出素子 Gsl〜Gsnの画像データについて破棄するものとしても構わない。このと き、 s行目の検出素子 Gsl〜Gsnの画像データについて、隣接する s— 1, s + 1行目 それぞれの検出素子 G (s— 1) 1〜G (s— 1) n, G (s+ 1) 1〜G (s + 1) nの画像デー タに基づく補間処理を行うことで、生成されるものとしても構わない。
[0084] 尚、放射線像撮像装置 101にお ヽて、 FPD1が撮影動作を行うとき、 X線量を測定 するための s行目の検出素子 Gsl〜Gsnについて、固定されるものとしても構わない し、撮影毎に別の行に切り換えるものとしても構わない。撮影毎に別の行に切り換え る場合、被検体に応じて、最適となる行を設定し、設定した行の検出素子によって X 線量を測定するように指定する。
[0085] 又、 X線量を測定するための s行目の検出素子 Gsl〜Gsnを切り換えるとき、被検 体を FPD1の前に固定した状態で微弱な X線又は可視光を照射し、 FPD1における 撮影エリアに対する被検体の位置と大きさを確認することで、 X線量を測定するため の s行目の検出素子 Gsl〜Gsnを設定するようにしても構わな 、。
[0086] 即ち、微弱な X線やフォトダイオード 30に対して感度を有する可視光を照射して被 検体の位置と大きさを確認する場合は、実際に 1フレームの画像を FPD1により撮影 する。そして、撮影して得られた画像データの値が所定値以下となる検出素子が連 続する位置を被検体が配置された位置として認識し、センサ部 11を構成する検出素 子 Gl l〜Gmnに対する被検体の位置と大きさを確認する。そして、確認したセンサ 部 11の検出素子 Gl l〜Gmnに対する被検体の位置と大きさに基づ 、て、 X線量を 測定するために最適となる s行目の検出素子 Gsl〜Gsnを設定する。
[0087] 又、可視光を照射して被検体の位置と大きさを確認する場合は、図 12のように、 FP D1の表面上に投影される影 200により、センサ部 11を構成する検出素子 Gl 1〜G mnに対する被検体の位置と大きさを確認する。このとき、 FPD1の表面には、センサ 部 11の検出素子 G 11〜Gmnの各行の位置を表す大まかな目安となる印が記されて おり、この印と影 200との関係によって、センサ部 11の検出素子 Gl l〜Gmnに対す る被検体の位置と大きさが確認される。そして、確認したセンサ部 11の検出素子 G1 l〜Gmnに対する被検体の位置と大きさに基づいて、 X線量を測定するために最適 となる s行目の検出素子 Gsl〜Gsnを設定する。
[0088] このように、被検体を FPD1の前に固定した状態で微弱な X線又は可視光を照射し 、 FPD1における撮影エリアに対する被検体の位置と大きさを確認する場合、確認し た被検体の位置と大きさにより、 X線を照射する範囲を設定するものとしても構わない
[0089] 又、上述の s行目の検出素子 Gsl〜Gsn全てを、 X線量を測定するための検出素 子として用いるものとしたが、 1行分の検出素子全てを X線量測定用の検出素子とす る必要はなぐ s行目の検出素子 Gsl〜Gsnの内の複数検出素子を使用するものとし ても構わない。更に、信号処理部 2において、 s行目の検出素子 Gsl〜Gsnの画像 データの加算平均化処理を行うことによって、放射される X線量を表す実効出力値を 取得するものとした力 s行目の検出素子 Gsl〜Gsnの画像データの最大出力値を 検出し、この最大出力値を放射される X線量を表す実効出力値とするものとしても構 わない。
《第 2の実施形態》
本発明の第 2の実施形態について、図面を参照して説明する。図 13は、本実施形 態の放射線像撮像装置における FPDの内部構成を示す概略ブロック図である。尚、 図 13に示す FPDの備える検出素子及び出力回路の構成については、第 1の実施 形態と同様、図 3のような構成となる。
[0090] 本実施形態の放射線像撮像装置における FPDlaは、図 13に示すように、 m行 n列 の検出素子 Gxl l〜Gxmnを備えるセンサ部 l lxと、 m行 n列の検出素子 Gyl l〜G ymnを備えるセンサ部 l lyと、センサ部 11の各検出素子 Gxl l〜Gxmnから出力さ れる電荷を行毎に保持する出力回路 13x— l〜13x— nによる出力回路群 13xと、セ ンサ部 11の各検出素子 Gyl l〜Gymnから出力される電荷を行毎に保持する出力 回路 13y— l〜13y— nによる出力回路群 13yと、垂直走査回路 12と、マルチプレク サ 14と、 AZD変換回路 15と、タイミングジェネレータ 16と、を備える。このとき、セン サ部 l lxの l〜n列の各検出素子と、センサ部 l lyの l〜n列の各検出素子とが、同 一列に配置されるように、検出素子 Gxl l〜Gxmn, Gyl l〜Gymnが構成される。
[0091] この FPDlaは、検出素子 Gxl l〜Gxmn, Gvl l〜Gymnそれぞれに直流電圧 V DDを印加するバイアスライン 17と、垂直走査回路 12から各行毎に与える信号 φ VI 〜 φ Vmをセンサ部 l lx, l lyそれぞれにおける各行の検出素子に与えるためにセ ンサ部 l lx, l lyの同一行毎に設けられた行選択ライン 18— l〜18—mと、センサ 部 l lx, l lyそれぞれにおける検出素子からの電荷を列毎に出力回路群 13x, 13y それぞれに出力するために列毎に設けられた電荷転送ライン 19x— l〜19x— n, 1 9y— l〜19y— nと、タイミングジェネレータ 16よりセンサ部 l lx, l lyの全検出素子 及び出力回路群 13x, 13yをリセットするリセット信号 <i) RSTを出力回路群 13x, 13y に与えるリセットライン 20と、を備える。
[0092] このように各ラインが配線されるとき、行選択ライン 18— k (kは、 l≤k≤mの整数) に対して、検出素子 Gxkl〜Gxkn, Gykl〜Gyknが接続され、信号 φ Vkが垂直走 查回路 12より与えられる。信号 φ Vkが与えられて、検出素子 Gxkl〜Gxkn, Gykl 〜Gyknの画像データが出力されるとき、検出素子 Gxkl〜Gxkn, Gykl〜Gyknそ れぞれで蓄積された光電荷が、出力回路 13x— l〜13x— n, 13y— l〜13y— nそ れぞれに蓄積される。そして、出力回路 13x— l〜13x— n, 13y— l〜13y— nそれ ぞれの電荷がマルチプレクサ 14に与えられた後、 1検出素子毎に電荷が AZD変換 回路 15に与えられて、デジタルデータとなる画像データとして信号処理部 2に出力さ れる。尚、タイミングジェネレータ 16と、垂直走査回路 12、マルチプレクサ 14、及び A ZD変換回路 15との間や、マルチプレクサ 14と AZD変換回路 15との間にも、信号 をやりとりするための信号ラインが接続されるが、その詳細な説明は省略する。
[0093] この FPDlaにおいて、センサ部 l lx, l lyそれぞれの s行目の検出素子 Gxsl〜G xsn, Gysl〜Gysnを、 X線照射時の X線量測定用の検出素子とするとき、第 1の実 施形態における第 1〜第 3例と同様の動作を行うことで、 X線量測定を行った撮影動 作を行うことができる。このとき、例えば、第 1例のように動作させるとき、第 1の実施形 態と同様、信号 φ RST, φ Vl〜 φ Vnの関係が、図 6のタイミングチャートのような状 態になる。よって、 X線量計測のための検出素子の並ぶ行と、画像データを出力する 行毎の順番との関係が図 14に示すようになる。
[0094] 即ち、図 14に示すように、センサ部 l lx, l lyそれぞれの s行目の検出素子 Gxsl 〜Gxsn, Gysl〜Gysnの画像データにより X線量が測定され、所定の指標値以上と なったことが確認されると、センサ部 l lx, l lyそれぞれの s行目〜 m行目の検出素 子 Gxsl〜Gxmn, Gysl〜Gymnの画像データの読み出し動作が s行目力 順番に 1行毎に行われる。そして、センサ部 l lx, l lyそれぞれの m行目の検出素子 Gxml 〜Gxmn, Gyml〜Gymnの画像データが出力されると、次に、センサ部 l lx, l ly それぞれの 1行目〜 s—l行目の検出素子 Gxl l〜Gx (s— l) n, Gyl l〜Gy(s—l) nの画像データの読み出し動作が 1行目力 順番に 1行毎に行われる。
[0095] このように動作するとき、 s行目の検出素子 Gxsl〜Gxsn, Gysl〜Gysnの画像デ ータが出力されて X線量の測定が行われているとき、信号処理部 2では、 s行目の検 出素子 Gxs 1〜Gxsn, Gys 1〜Gysnの画像データの加算平均化処理を行うことによ つて、放射される X線量を表す実効出力値を取得する。この放射される X線量を表す 実効出力値については、 s行目の検出素子 Gxsl〜Gxsn, Gysl〜Gysnの画像デ ータの最大値としても構わな 、。
[0096] 尚、本実施形態においては、センサ部をセンサ部 l lx, l lyに 2分割し、 2行分の X 線量測定用の検出素子 Gxsl〜Gxsn, Gysl〜Gysnを設けるものとした力 出力回 路 13x— l〜13x— n, 13y— l〜13y— nそれぞれに接続される電荷転送ライン 19x — l〜19x— n, 19y— l〜19y— nと接続される検出素子の行が交互に配置されるも のとしても構わない。又、 2行分の X線量測定用の検出素子に限らず、 3行以上の X 行分 (Xは、 3以上の整数)の X線量測定用の検出素子が設けられるものとしても構わ ない。このとき、 X行分の X線量測定用の検出素子それぞれと接続される n個の出力 回路による出力回路群を X群設置する。
[0097] 又、本実施形態において、第 3例のように、 X線量測定用の s行目の検出素子 Gxsl 〜Gxsn, Gysl〜Gysnの画像データの読み出しを行うことのない動作を行う場合、 第 1の実施形態と同様、信号処理部 2において、隣接する s— l, s + 1行目それぞれ の検出素子 Gx (s—l) l〜Gx (s—l) n, Gx (s+ 1) l〜Gx (s + 1) nの画像データに 基づく補間処理を行うことで、検出素子 Gxsl〜Gxsnの画像データが生成され、又、 隣接する s— l, 3+ 1行目それぞれの検出素子0 (3— 1) 1〜0 (3— 1) 11, Gy(s + 1) l〜Gy(s+ l) nの画像データに基づく補間処理を行うことで、検出素子 Gysl〜G ysnの画像データが生成されるものとしても構わな 、。 [0098] 更に、第 1例及び第 2例のように、 X線量測定用の s行目の検出素子 Gxsl〜Gxsn , Gysl〜Gysnも含む全検出素子 Gxl l〜Gxmn, Gyl l〜Gymnの画像データを 読み出す場合において、 X線量測定用の s行目の検出素子 Gxsl〜Gxsn, Gysl〜 Gysnの画像データについて破棄するものとしても構わない。このとき、 s行目の検出 素子 Gxsl〜Gxsn, Gysl〜Gysnそれぞれの画像データについて、隣接する s—l の検出素子0 (5—1) 1〜0 (5—1) 11, 0 (5—1) 1〜07 (5—1) !1と5 + 1行目それ ぞれの検出素子0 (5+ 1) 1〜0 (5 + 1) 11, Gy(s+ l) l〜Gy(s + l) nの画像デー タに基づく補間処理を行うことで、生成されるものとしても構わない。
《第 3の実施形態》
本発明の第 3の実施形態について、図面を参照して説明する。図 15は、本実施形 態の放射線像撮像装置における X線量計測のための検出素子の並ぶ行と、画像デ ータを出力する行毎の順番との関係を示す図である。尚、本実施形態の放射線像撮 像装置における FPDの構成、及び、おの FPDの備える検出素子及び出力回路の構 成については、第 1の実施形態と同様、図 2及び図 3のような構成となる。
[0099] 本実施形態では、図 15に示すように、第 1の実施形態と異なり、 X線照射時の X線 量測定用の検出素子を s行目の検出素子 Gsl〜Gsnだけでなぐ t行目の検出素子 Gtl〜Gtnも X線量測定用の検出素子とする。即ち、 X線照射時における X線量測定 1S s行目及び t行目それぞれの検出素子 Gsl〜Gsn, Gtl〜Gtnからの画像データ によって行われ、出力回路 13— 1〜13— nそれぞれには、 2検出素子分の電荷がキ ャパシタ 33に保持されることとなり、信号処理部 2には、 2検出素子分の画像データ が加算された画像データが出力される。
[0100] よって、本実施形態の放射線像撮像装置の FPD1における撮像動作が、図 16のタ イミングチャートに従った動作となる。尚、この撮像動作は、第 1の実施形態の第 3例 と類似した動作となる。即ち、まず、信号 φ RST, φ Vl〜 φ Vnをノヽィとして、検出素 子 Gl l〜Gmnのフォトダイオード 30及び出力回路 13— 1〜13— nのキャパシタ 33 をリセットした後(タイミング A)、信号 φ Vs, φ Vt以外の信号をローとして、検出素子 Gsl〜Gsn, Gtl〜Gtn以外の検出素子の TFT31を OFFとする(タイミング: B)。そ の後、制御部 5より X線制御信号 φ Χが X線管 100に与えられて、 X線管 100による X 線照射が開始される (タイミング c)。
[0101] そして、 X線管 100からの X線照射が行われている間、所定の間隔 T毎に、マルチ プレクサ 14及び AZD変換回路 15を駆動させて、 s行目及び t行目それぞれの検出 素子 Gsl〜Gsn, Gtl〜Gtnそれぞれに入射された X線量を表す画像データを信号 処理部 2に出力し、制御部 5において、検出素子 Gsl〜Gsn, Gtl〜Gtnそれぞれ の画像データによる実効出力値が所定の指標値以上であるか否かが確認される。尚 、出力回路 13— l〜13—nそれぞれのキャパシタ 33には、 2検出素子分の電荷が蓄 積されることとなり、 2検出素子分の電荷が出力されるため、出力回路 13— 1〜13— nそれぞれ力もの出力値が飽和する可能性がある。そのため、出力回路 13— 1〜13 —nそれぞれのゲインを、第 1及び第 2の実施形態と比べて下げることが好ましい。
[0102] このように、 X線照射時に検出素子 Gsl〜Gsnそれぞれの画像データにより X線量 が確認され、検出素子 Gsl〜Gsn, Gtl〜Gtnそれぞれの画像データによる実効出 力値が所定の指標値以上となることを制御部 5が確認すると、制御部 5より X線制御 信号 φ Xが X線管 100に与えられて、 X線管 100による X線照射が停止される(タイミ ング D)。このとき、信号処理部 2では、 s, t行目の検出素子 Gsl〜Gsn, Gtl〜Gtn の画像データの加算平均化処理を行うことによって、放射される X線量を表す実効出 力値を取得する。この放射される X線量を表す実効出力値については、各列の 2検 出素子分の画像データにおける最大値としても構わない。又、この X線照射の停止と 同時に、検出素子 Gsl〜Gsn, Gtl〜Gtnに与えられる信号 φ Vsをローとする。
[0103] その後、ハイとなるパルス信号 φ RSTをタイミングジェネレータ 16からリセットライン 20を介して出力回路 13— l〜13—nに与えることにより、出力回路 13— 1〜13— n のキャパシタ 33をリセットした後(タイミング F)、ノ、ィとなるパルス信号 φ VIを垂直走 查回路 12から行選択信号 18— 1を介して検出素子 Gl l〜Glnに与える(タイミング G)。これにより、検出素子 Gl l〜Glnそれぞれの画像データを信号処理部 2に出力 する(タイミング H)。
[0104] その後、同様にして、タイミングジェネレータ 16からの信号 φ RSTと垂直走査回路 12からの信号 φ V2〜 φ Vs— 1とが、ハイとなるパルス信号として交互に出力され、 図 15のように、 2行目〜s— 1行目の検出素子 G21〜G (s— l) nが行毎に動作し、検 出素子021〜0 (3—1) 11の画像データが信号処理部2に出カされる。そして、 s—l 行目の検出素子 G (s— 1) 1〜G (s l) nの画像データが出力されると、タイミングジ エネレータ 16からの信号 φ RSTと垂直走査回路 12からの信号 φ Vs + 1〜 φ Vt- 1 と力 ハイとなるパルス信号として交互に出力され、図 15のように、 3+ 1行目〜1; 1 行目の検出素子 G (s+ 1) 1〜G (t— 1) nが行毎に動作し、検出素子 G (s + 1) 1〜G (t l) nの画像データが信号処理部 2に出力される。又、 t 1行目の検出素子 G (t - 1) l〜G (t—l) nの画像データが出力されると、タイミングジェネレータ 16からの信 号 φ RSTと垂直走査回路 12からの信号 φ Vt+ 1〜 φ Vmとが、ハイとなるパルス信 号として交互に出力され、図 15のように、 t+ 1行目〜m行目の検出素子 G (t+ 1) 1 〜Gmnが行毎に動作し、検出素子 G (t+ 1) l〜Gmnの画像データが信号処理部 2 に出力される。
[0105] このように、本実施形態では、 s行目及び t行目の検出素子 Gsl〜Gsn, Gtl〜Gtn それぞれの 2検出素子分ずつの画像データにより放射される X線量が測定され、 X線 量が所定の指標値以上となったとき、検出素子 Gsl〜Gsn, Gtl〜Gtnの画像デー タの読み出し動作を行うことなぐまず、検出素子 Gl l〜G (s— l) nに対して、 1行目 力も順番に s l行目まで行毎に画像データの読み出し動作を行う。そして、検出素 子 G (s + 1) 1〜G (t- 1) nに対して、 s+ 1行目力 順番に t— 1行目まで行毎に画像 データの読み出し動作を行った後、検出素子0 + 1) 1〜011111に対して、 t+ 1行目 から順番に m行目まで行毎に画像データの読み出し動作を行う。
[0106] 尚、本実施形態において、検出素子 Gsl〜Gsn, Gtl〜Gtnそれぞれの 2検出素 子分ずつの画像データにより放射される X線量が測定された後、 1行目カゝら順番に画 像データの出力が行われるものとした力 検出素子 Gsl〜Gsn, Gtl〜Gtn以外の 検出素子に対して、 s + 1行目又は t+ 1行目力 順番に画像データの出力が行われ るものとしても構わない。又、第 1の実施形態の第 1例及び第 2例の動作のように、検 出素子 Gsl〜Gsn, Gtl〜Gtnそれぞれの 2検出素子分ずつの画像データにより放 射される X線量が測定された後、検出素子 Gl l〜Gmn全ての画像データを出力し た後、検出素子 Gsl〜Gsn, Gtl〜Gtnの画像データを破棄するものとしても構わな い。 [0107] 又、本例において、 X線量測定用の s行目の検出素子 Gsl〜Gsnの画像データに ついては、信号処理部 2において、隣接する s—l, s+ 1行目それぞれの検出素子 G (s— 1) 1〜G (s- l) n, G (s + 1) 1〜G (s+ 1) nの画像データに基づく補間処理を 行うことで、生成されるとともに、 X線量測定用の t行目の検出素子 Gtl〜Gtnの画像 データについては、信号処理部 2において、隣接する t 1, t+ 1行目それぞれの検 出素子 G (t— 1) 1〜G (t— 1) n, G (t+ 1) 1〜G (t+ 1) nの画像データに基づく補間 処理を行うことで、生成されるものとしても構わない。
[0108] 更に、第 2及び第 3の実施形態の放射線像撮像装置において、第 1の実施形態と 同様、 FPDが撮影動作を行うとき、 X線量を測定するための検出素子の位置につい て、固定されるものとしても構わないし、撮影毎に別の行に切り換えるものとしても構 わない。撮影毎に別の行に切り換える場合、被検体に応じて、最適となる行を設定し 、設定した行の検出素子によって X線量を測定するように指定する。
[0109] 又、 X線量を測定するための s行目の検出素子 Gsl〜Gsnを切り換えるとき、被検 体を FPD1の前に固定した状態で微弱な X線又は可視光を照射し、 FPD1における 撮影エリアに対する被検体の位置と大きさを確認することで、 X線量を測定するため の s行目の検出素子 Gsl〜Gsnを設定するようにしても構わな 、。
[0110] 又、第 1〜第 3の実施形態の放射線像撮像装置において、各検出素子のリセットを 全検出素子同時に一度だけ行うものとしたが、行毎に複数回のリセットを行うものとし ても構わない。即ち、信号 φ RSTをノヽィとしている間に、信号 φ Vl〜 φ Vnを順番に ハイとするものとしても構わな 、。
[0111] なお、本発明の放射線像撮像装置は、放射線によって披検物を撮影し、取得され た画像を用いて分析を行う医療診断機器、非破壊検査機器等の画像分析装置に好 適に利用され得る。

Claims

請求の範囲
[1] 放射線源から入射した放射線を電気信号に変換し放射線量に応じた電荷を発生す る変換素子と該変換素子に接続されたスィッチを有し、マトリクス状に配置された複 数の検出素子と、
前記検出素子の前記スィッチと接続されており、マトリクス配置における列毎に配置さ れた複数の電荷転送ラインと、
該電荷転送ラインからの電荷を一時的に保持して、電荷に対応した電気信号を出力 する出力回路と、
前記複数の検出素子の中から少なくとも一つの検出素子を、照射される放射線量を 測定するための第 1検出素子として選択し、
放射線の照射期間、前記第 1検出素子を含む前記検出素子全ての前記変換素子で 同時に変換動作を行い、且つ、この照射期間に、前記第 1検出素子のスィッチを ON 状態として前記電荷転送ラインを通して、前記出力回路に前記第 1検出素子の変換 素子で発生した電荷を蓄積させ、照射期間に応じて蓄積された電荷に相当する電気 信号を定期的に読み出すように制御する制御手段を有することを特徴とする放射線 像撮像装置。
[2] 前記制御部が、複数の検出素子を前記第 1検出素子として選択することを特徴とす る請求の範囲第 1項に記載の放射線像撮像装置。
[3] 前記制御部が、前記複数の第 1検出素子からの前記電気信号の信号値を加算平均 した値に基づ 、て、放射線量の測定を行うことを特徴とする請求の範囲第 2項に記載 の放射線像撮像装置。
[4] 前記制御部が、前記複数の第 1検出素子からの前記電気信号の信号値の最大値に 基づ 、て、放射線量の測定を行うことを特徴とする請求の範囲第 2項に記載の放射 線像撮像装置。
[5] 前記第 1検出素子を含む前記検出素子全てから、入射された放射線に基づく画像 データを出力することを特徴とする請求の範囲第 1項乃至第 4項のいずれか 1項に記 載の放射線像撮像装置。
[6] 前記出力回路が、 前記電荷転送ラインそれぞれと接続されて前記検出素子からの電荷を保持する電荷 保持部と、
前記電荷保持部をリセットするリセット部と、
を備え、
放射線照射前に、前記制御部が、前記リセット部による前記電荷保持部のリセットと、 前記検出素子全ての前記スィッチを ONとすることによる前記変換素子のリセットとを 行うことを特徴とする請求の範囲第 1項乃至第 5項のいずれ力 1項に記載の放射線 像撮像装置。
[7] 前記複数の第 1検出素子が、マトリクス配置の複数行にわたって配置される複数の検 出素子であることを特徴とする請求の範囲第 1項乃至第 6項のいずれ力 1項に記載 の放射線像撮像装置。
[8] 前記出力回路が、各行それぞれに対して設けられた複数の出力回路力 なることを 特徴とする請求の範囲第 7項に記載の放射線像撮像装置。
[9] 前記制御部が、前記第 1検出素子を、撮影を行う度に選択することを特徴とする請求 の範囲第 1項乃至第 8項のいずれか 1項に記載の放射線像撮像装置。
[10] 前記制御部が、撮影前に微弱な放射線又は可視光を照射することで、被検体に対 する撮影範囲を確認して、前記第 1検出素子の選択を行うことを特徴とする請求の範 囲第 9項に記載の放射線像撮像装置。
[11] 前記制御部が撮影前に微弱な放射線又は可視光を照射することで、被検体に対す る撮影範囲を確認して、放射線の照射範囲を設定することを特徴とする請求の範囲 第 1項乃至第 10項のいずれか 1項に記載の放射線像撮像装置。
[12] 前記出力回路が、
前記電荷転送ラインに反転入力端子が接続され、非反転入力端子に基準電圧が与 えられるオペアンプと、
該オペアンプの反転入力端子と出力端子との間に接続された容量素子と、 を備えることを特徴とする請求の範囲第 1項乃至第 11項のいずれか 1項に記載の放 射線像撮像装置。
[13] 前記出力回路が、電荷量を電圧に変換する電荷'電圧変換部を有することを特徴と する請求の範囲第 1項乃至第 12項のいずれか 1項に記載の放射線像撮像装置。
[14] 前記制御手段、は前記電気信号の信号値に基づ!ヽて前記放射線源の放射線照射 を停止させることを特徴とする請求の範囲第 1項乃至第 13項のいずれか 1項に記載 の放射線像撮像装置。
[15] 入射された放射線を電気信号に変換し放射線量に応じた電荷を発生する変換素子 と該変換素子に接続されたスィッチを有し、マトリクス状に配置された複数の検出素 子と、
前記検出素子の前記スィッチと接続されており、マトリクス配置における列毎に配置さ れた複数の電荷転送ラインと、
該電荷転送ラインからの電荷を一時的に保持して、電荷に対応した電気信号を出力 する出力回路と、
前記複数の検出素子、前記複数の電荷転送ラインと前記出力回路とを制御する制 御部とを有する放射線像撮像装置における放射線像撮像装置の撮像方法であって 前記複数の検出素子の中から少なくとも一つの検出素子を、照射される放射線量を 測定するための第 1検出素子として選択し、
放射線の照射期間、前記第 1検出素子を含む前記検出素子全ての前記変換素子で 同時に変換動作を行い、且つ、この照射期間に、前記第 1検出素子のスィッチを ON 状態として前記出力回路に前記第 1検出素子の変換素子が発生した電荷を蓄積さ せ、
照射期間に応じて蓄積された電荷に相当する電気信号を定期的に読み出すことを 特徴とする放射線像撮像装置の撮像方法。
[16] 複数の検出素子を前記第 1検出素子として選択することを特徴とする請求の範囲第
15項に記載の放射線像撮像装置の撮像方法。
[17] 前記複数の第 1検出素子からの前記電気信号の信号値を加算平均した値に基づい て、放射線量の測定を行うことを特徴とする請求の範囲第 16項に記載の放射線像撮 像装置の撮像方法。
[18] 前記複数の第 1検出素子からの前記電気信号の信号値の最大値に基づいて、放射 線量の測定を行うことを特徴とする請求の範囲第 16項に記載の放射線像撮像装置 の撮像方法。
[19] 前記第 1検出素子を含む前記検出素子全てから、入射された放射線に基づく画像 データを出力することを特徴とする請求の範囲第 15項乃至第 18項のいずれ力 1項 に記載の放射線像撮像装置の撮像方法。
[20] 前記第 1検出素子を、撮影を行う度に選択することを特徴とする請求の範囲第 15項 乃至第 18項のいずれか 1項に記載の放射線像撮像装置の撮像方法。
[21] 前記電気信号の信号値に基づ!ヽて、前記放射線源の放射線照射を停止する工程を 含むことを特徴とする請求の範囲第 15項乃至第 20項のいずれか 1項に記載の放射 線像撮像装置の撮像方法。
PCT/JP2006/318111 2005-09-29 2006-09-13 放射線像撮像装置および放射線像撮像装置の撮像方法 WO2007037121A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007537572A JPWO2007037121A1 (ja) 2005-09-29 2006-09-13 放射線像撮像装置および放射線像撮像装置の撮像方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005284407 2005-09-29
JP2005-284407 2005-09-29

Publications (1)

Publication Number Publication Date
WO2007037121A1 true WO2007037121A1 (ja) 2007-04-05

Family

ID=37899551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318111 WO2007037121A1 (ja) 2005-09-29 2006-09-13 放射線像撮像装置および放射線像撮像装置の撮像方法

Country Status (3)

Country Link
US (1) US20070210257A1 (ja)
JP (1) JPWO2007037121A1 (ja)
WO (1) WO2007037121A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249891A (ja) * 2010-05-24 2011-12-08 Konica Minolta Medical & Graphic Inc 放射線画像撮影装置および放射線画像処理装置
WO2012056950A1 (ja) * 2010-10-26 2012-05-03 富士フイルム株式会社 放射線検出器および放射線画像撮影装置
JP2012247354A (ja) * 2011-05-30 2012-12-13 Fujifilm Corp 放射線画像検出装置及び放射線画像検出方法
TWI497723B (zh) * 2007-06-11 2015-08-21 Samsung Display Co Ltd 用於x光偵測器之薄膜電晶體陣列基板及具有薄膜電晶體陣列基板之x光偵測器
WO2016111192A1 (ja) * 2015-01-05 2016-07-14 シャープ株式会社 撮像パネル及びx線撮像装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8102435B2 (en) * 2007-09-18 2012-01-24 Stmicroelectronics S.R.L. Method for acquiring a digital image with a large dynamic range with a sensor of lesser dynamic range
JP4743269B2 (ja) * 2008-04-23 2011-08-10 エプソンイメージングデバイス株式会社 固体撮像装置
TWI424574B (zh) * 2009-07-28 2014-01-21 Prime View Int Co Ltd 數位x光探測面板及其製作方法
CN105786268B (zh) 2010-02-19 2019-03-12 株式会社半导体能源研究所 显示设备及其驱动方法
TWI496277B (zh) * 2012-12-03 2015-08-11 Innocom Tech Shenzhen Co Ltd X光偵測裝置
CN104124277B (zh) * 2013-04-24 2018-02-09 北京京东方光电科技有限公司 一种薄膜晶体管及其制作方法和阵列基板
US9941324B2 (en) * 2015-04-28 2018-04-10 Nlt Technologies, Ltd. Semiconductor device, method of manufacturing semiconductor device, photodiode array, and imaging apparatus
CN105097895B (zh) * 2015-06-25 2018-09-21 京东方科技集团股份有限公司 薄膜晶体管、阵列基板及显示装置
CN109037250B (zh) * 2017-06-12 2021-11-05 上海耕岩智能科技有限公司 一种影像侦测显示装置、器件及其制备方法
CN112713155A (zh) * 2019-10-25 2021-04-27 群创光电股份有限公司 电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201750A (ja) * 1997-01-17 1998-08-04 Canon Inc 放射線撮影装置
JP2000100597A (ja) * 1998-09-25 2000-04-07 Toshiba Iyo System Engineering Kk 放射線画像撮像装置
JP2003529425A (ja) * 2000-03-30 2003-10-07 ゼネラル・エレクトリック・カンパニイ マトリックス・アドレス式イメージング・パネル内の局所容量性結合を使用した自動照射制御のための方法及び装置
JP2004251892A (ja) * 2003-01-27 2004-09-09 Canon Inc 放射線撮像装置及び放射線撮像システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6502984B2 (en) * 1997-01-17 2003-01-07 Canon Kabushiki Kaisha Radiographic apparatus
JP3548507B2 (ja) * 2000-08-01 2004-07-28 キヤノン株式会社 放射線撮像装置
CN1517069B (zh) * 2003-01-27 2012-03-28 佳能株式会社 放射线摄像装置和放射线摄像系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201750A (ja) * 1997-01-17 1998-08-04 Canon Inc 放射線撮影装置
JP2000100597A (ja) * 1998-09-25 2000-04-07 Toshiba Iyo System Engineering Kk 放射線画像撮像装置
JP2003529425A (ja) * 2000-03-30 2003-10-07 ゼネラル・エレクトリック・カンパニイ マトリックス・アドレス式イメージング・パネル内の局所容量性結合を使用した自動照射制御のための方法及び装置
JP2004251892A (ja) * 2003-01-27 2004-09-09 Canon Inc 放射線撮像装置及び放射線撮像システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497723B (zh) * 2007-06-11 2015-08-21 Samsung Display Co Ltd 用於x光偵測器之薄膜電晶體陣列基板及具有薄膜電晶體陣列基板之x光偵測器
JP2011249891A (ja) * 2010-05-24 2011-12-08 Konica Minolta Medical & Graphic Inc 放射線画像撮影装置および放射線画像処理装置
WO2012056950A1 (ja) * 2010-10-26 2012-05-03 富士フイルム株式会社 放射線検出器および放射線画像撮影装置
JP2012247354A (ja) * 2011-05-30 2012-12-13 Fujifilm Corp 放射線画像検出装置及び放射線画像検出方法
WO2016111192A1 (ja) * 2015-01-05 2016-07-14 シャープ株式会社 撮像パネル及びx線撮像装置

Also Published As

Publication number Publication date
JPWO2007037121A1 (ja) 2009-04-02
US20070210257A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
WO2007037121A1 (ja) 放射線像撮像装置および放射線像撮像装置の撮像方法
US10634800B2 (en) Radiation imaging apparatus and radiation detection system
US10473801B2 (en) Radiation imaging apparatus, radiation imaging system, method of controlling radiation imaging apparatus, and non-transitory computer-readable storage medium
CN109920807B (zh) 放射线摄像装置及其驱动方法、放射线摄像系统
JP6570315B2 (ja) 放射線撮像装置及び放射線撮像システム
US8809795B2 (en) Imaging apparatus, radiation imaging system, controlling method of imaging apparatus, and recording medium recording control program of imaging apparatus
JP6929104B2 (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法及びプログラム
US8680471B2 (en) Imaging apparatus, imaging system, method of controlling the apparatus and the system, and program
US11693131B2 (en) Radiation imaging apparatus and radiation imaging system
US8178846B2 (en) Light or radiation image pickup apparatus
JP2014049983A (ja) 放射線撮像装置、その制御方法及びプログラム
CN104160695A (zh) 放射线图像拍摄装置、放射线图像拍摄系统、放射线图像拍摄装置的控制方法、以及放射线图像拍摄装置的控制程序
WO2019181494A1 (ja) 放射線撮像装置および放射線撮像システム
JP2019141357A (ja) 放射線撮像装置及び放射線撮像システム
WO2018135293A1 (ja) 放射線撮像装置及び放射線撮像システム
JPWO2006112320A1 (ja) X線平面検出器及びx線画像診断装置
JP2004080749A (ja) 放射線撮像装置及び放射線撮像方法
JP7190360B2 (ja) 放射線撮像装置および放射線撮像システム
JP6494387B2 (ja) 放射線撮像装置及び放射線撮像システム
JP2020182667A (ja) 放射線撮像装置及びその制御方法
JP2019146039A (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法およびプログラム
JP2018195949A (ja) 放射線撮像装置及び放射線撮像システム
JP6929327B2 (ja) 放射線撮像装置及び放射線撮像システム
WO2015087610A1 (ja) 放射線撮像装置及び放射線撮像システム
JP2019141345A (ja) 放射線撮像装置の制御装置、放射線撮像システム、および、放射線撮像システムの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007537572

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810076

Country of ref document: EP

Kind code of ref document: A1