WO2019181494A1 - 放射線撮像装置および放射線撮像システム - Google Patents

放射線撮像装置および放射線撮像システム Download PDF

Info

Publication number
WO2019181494A1
WO2019181494A1 PCT/JP2019/008776 JP2019008776W WO2019181494A1 WO 2019181494 A1 WO2019181494 A1 WO 2019181494A1 JP 2019008776 W JP2019008776 W JP 2019008776W WO 2019181494 A1 WO2019181494 A1 WO 2019181494A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signal line
radiation
conversion element
period
Prior art date
Application number
PCT/JP2019/008776
Other languages
English (en)
French (fr)
Inventor
亮介 三浦
渡辺 実
健太郎 藤吉
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019019071A external-priority patent/JP7190360B2/ja
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2019181494A1 publication Critical patent/WO2019181494A1/ja
Priority to US16/989,118 priority Critical patent/US11294078B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20181Stacked detectors, e.g. for measuring energy and positional information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/767Horizontal readout lines, multiplexers or registers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays

Definitions

  • the present invention relates to a radiation imaging apparatus and a radiation imaging system.
  • a radiation imaging apparatus in which pixels in which a conversion element that converts radiation into electric charge and a switching element such as a thin film transistor (TFT) are combined are arranged in a two-dimensional array. It has been studied to incorporate a function for detecting irradiation information in this radiation detection apparatus. For example, it is a function for detecting the start of radiation irradiation, the irradiation amount, and the integrated irradiation amount. This function enables automatic exposure control (AEC) in which the integrated irradiation amount is monitored, and when the integrated irradiation amount reaches an appropriate amount, the detection device controls the radiation source and terminates the irradiation.
  • AEC automatic exposure control
  • a signal line for reading a signal from a detection element for detecting the start of radiation irradiation and measuring the irradiation dose and the integrated irradiation amount is also wired near the pixel for acquiring a radiographic image. For this reason, a non-negligible capacitance is formed between the signal line and the captured image acquisition pixel. Even if it is desired to grasp only the information from the radiation detection element due to this capacity, the signal from the pixel is transmitted to the signal line through the capacity (crosstalk), and it is difficult to accurately measure the radiation dose. .
  • characteristics such as leakage current and dark current change when the temperature changes. Further, when the temperature changes, an offset level characteristic generated when the thin film transistor or the photoelectric conversion element is driven changes.
  • Patent Document 1 the influence of crosstalk is reduced based on the difference between the signal from the detection element that appears in the first period when the switch is not conductive and the signal from the detection element that appears in the second period when the switch is conductive.
  • One aspect of the present invention provides a technique that is advantageous in reducing the effects of crosstalk and offset components on signals from elements that detect radiation.
  • a radiation imaging apparatus of the present invention includes at least one first conversion element that converts radiation into an electrical signal and a first switch that connects an output of the first conversion element to a first signal line.
  • At least one second detection element including a first detection element; a second conversion element that converts radiation into an electrical signal; and a second switch that connects an output of the second conversion element to a second signal line;
  • a read unit that reads signals appearing on one signal line and the second signal line, a reset unit that resets the potentials of the first signal line and the second signal line, and a signal read by the read unit
  • An imaging device having a signal processing circuit, wherein the sensitivity of the first conversion element with respect to radiation and the sensitivity of the second conversion element with respect to radiation are set to be different from each other, and the reading unit includes the first signal line.
  • the reset unit resets the voltages of the first signal line and the second signal line, and then the first switch and the second switch are not conducted.
  • a first period including an operation of reading out signals appearing on the first signal line and the second signal line in a state
  • the reset unit resets the voltages of the first signal line and the second signal line.
  • a second period including an operation in which signals appearing on the first signal line and the second signal line are read after the first switch and the second switch are turned on, respectively.
  • the signal processing circuit compensates for a signal read from the first signal line in the second period based on a signal read from the second signal line in the first period and the second period. Characterized in that it.
  • FIG. 6 is a cross-sectional view taken along the line A-A ′ of FIG. 5.
  • FIG. 6 is a sectional view taken along line B-B ′ of FIG. 5.
  • the top view which shows the structure of the pixel of the radiation imaging device of FIG. The top view which shows the structure of the pixel of the radiation imaging device of FIG.
  • the radiation according to the present invention includes ⁇ -rays, ⁇ -rays, ⁇ -rays, and the like, which are beams formed by particles (including photons) emitted by radiation decay, such as X-rays having the same or higher energy, such as X It can also include rays, particle rays, and cosmic rays.
  • FIG. 1 shows a configuration of a radiation imaging apparatus 200 of the present embodiment.
  • the radiation imaging apparatus 200 includes a plurality of pixels arranged in the imaging region IR so as to constitute a plurality of rows and a plurality of columns.
  • An element 301 is arranged.
  • the imaging pixel 101 includes an imaging element 102 that converts radiation into an electrical signal, and a connection switch 103 disposed between the column signal line 106 and the imaging element 102.
  • the first detection element 121 includes a first conversion element 122 that converts radiation into an electrical signal, and a first switch 123 that is disposed between the first signal line 125 and the first conversion element 122.
  • the second detection element 301 includes a second conversion element 302 that converts radiation into an electrical signal, and a second switch 303 disposed between the second signal line 305 and the second conversion element 302.
  • the first detection element 121 and the second detection element 301 can be arranged in the same column as a part of the plurality of imaging pixels 101. Further, the second detection elements 301 can be arranged in the vicinity of the same column as the first detection elements 121.
  • the imaging element 102, the first conversion element 122, and the second conversion element 302 can be configured with a scintillator that converts radiation into light and a photoelectric conversion element that converts light into an electrical signal.
  • the scintillator is generally formed in a sheet shape so as to cover the imaging region IR and can be shared by a plurality of pixels.
  • the imaging element 102, the first conversion element 122, and the second conversion element 302 can be configured by conversion elements that directly convert radiation into electrical signals.
  • connection switch 103, the first switch 123, and the second switch 303 may be formed of thin film transistors (TFTs) made of a semiconductor such as amorphous silicon or polycrystalline silicon.
  • TFTs thin film transistors
  • the radiation imaging apparatus 200 includes a plurality of column signal lines 106 and a plurality of drive lines 104.
  • Each column signal line 106 corresponds to one of a plurality of columns in the imaging region IR.
  • Each drive line 104 corresponds to one of a plurality of rows in the imaging region IR.
  • Each drive line 104 is driven by a row selection unit 221.
  • the drive line 104 is connected to the control electrode of the connection switch 103. When the drive line 104 is driven to a high level, the connection switch 103 becomes conductive.
  • the first electrode of the image sensor 102 is connected to the first main electrode of the connection switch 103, and the second electrode of the image sensor 102 is connected to the bias line 108.
  • one bias line 108 extends in the column direction, and is connected in common to the second electrodes of the plurality of imaging elements 102 arranged in the column direction.
  • the bias line 108 is supplied with a bias voltage Vs from the power supply circuit 226.
  • the second main electrode of the connection switch 103 of the plurality of imaging pixels 101 constituting one column is connected to one column signal line 106.
  • a control electrode of the connection switch 103 of the plurality of imaging pixels 101 configuring one row is connected to one drive line 104.
  • the plurality of column signal lines 106 are connected to the reading unit 130.
  • the reading unit 130 can include a plurality of detection units 132, a multiplexer 134, and an analog-digital converter (hereinafter referred to as an AD converter) 136.
  • Each of the plurality of column signal lines 106 is connected to a corresponding detection unit 132 among the plurality of detection units 132 of the reading unit 130.
  • one column signal line 106 corresponds to one detection unit 132.
  • the detection unit 132 can include a differential amplifier.
  • the multiplexer 134 selects a plurality of detection units 132 in a predetermined order, and supplies signals from the selected detection units 132 to the AD converter 136.
  • the AD converter 136 converts the supplied signal into a digital signal and outputs the digital signal.
  • the first electrode of the first conversion element 122 of the first detection element 121 is connected to the first main electrode of the first switch 123, and the second electrode of the first conversion element 122 is connected to the bias line 108.
  • the second main electrode of the first switch 123 is connected to the first signal line 125.
  • the control electrode of the first switch 123 is electrically connected to the drive line 124.
  • the radiation imaging apparatus 200 can include a plurality of first signal lines 125.
  • One or more first detection elements 121 can be connected to one first signal line 125.
  • the drive line 124 is driven by the drive unit 241.
  • One or more first detection elements 121 can be connected to one drive line 124. When the drive line 124 is driven to a high level by the drive unit 241, the first switch 123 becomes conductive.
  • the first electrode of the second conversion element 302 of the second detection element 301 is connected to the first main electrode of the second switch 303, and the second electrode of the second conversion element 302 is connected to the bias line 108.
  • the second main electrode of the second switch 303 is connected to the second signal line 305.
  • the control electrode of the second switch 303 is electrically connected to the drive line 124.
  • the radiation imaging apparatus 200 can include a plurality of second signal lines 305.
  • One or more second detection elements 301 can be connected to one second signal line 305.
  • the drive line 124 is driven by the drive unit 241.
  • One or more second detection elements 301 can be connected to one drive line 124. When the drive line 124 is driven to a high level by the drive unit 241, the second switch 303 becomes conductive.
  • the first signal line 125 and the second signal line 305 are connected to the reading unit 140.
  • the reading unit 140 can include a plurality of detection units 142 and 143, a multiplexer 144, and an AD converter 146.
  • the plurality of first signal lines 125 are connected to the corresponding detection units 142 among the plurality of detection units 142 of the reading unit 140, and the plurality of second signal lines 305 are corresponding detections among the plurality of detection units 143 of the reading unit 140.
  • the unit 143 may be connected.
  • one first signal line 125 or second signal line 305 corresponds to one detection unit 142 or 143.
  • the detection units 142 and 143 can include a differential amplifier.
  • the multiplexer 144 selects the plurality of detection units 142 and 143 in a predetermined order, and supplies a signal from the selected detection unit 142 or 143 to the AD converter 146.
  • the AD converter 146 converts the supplied signal into a digital signal and outputs the digital signal.
  • the output of the AD converter 146 of the reading unit 140 is supplied to the signal processing circuit 224 and processed by the signal processing circuit 224.
  • the signal processing circuit 224 generates and outputs information related to radiation irradiation to the radiation imaging apparatus 200 based on the output of the AD converter 146 of the reading unit 140.
  • the signal processing circuit 224 can detect the start of radiation irradiation on the radiation imaging apparatus 200 and can calculate the radiation dose and / or the integrated dose.
  • the control unit 225 controls the row selection unit 221, the drive unit 241, and the reading unit 130 based on information from the signal processing circuit 224. Based on information from the signal processing circuit 224, the control unit 225 can output a signal for controlling the start and end of radiation irradiation to the outside.
  • the control unit 225 controls the start and end of charge accumulation corresponding to the radiation applied to the imaging pixel 101.
  • FIG. 2 illustrates the configuration of a radiation imaging system including the radiation imaging apparatus 200.
  • the radiation imaging system includes a controller 1002, an interface 1003, a radiation source interface 1004, and a radiation source 1005.
  • the controller 1002 includes an irradiation dose A, an irradiation time B (ms), a tube current C (mA) of a radiation source, a tube voltage D (kV), a radiation detection region (ROI) that is a region where radiation should be monitored, and the like. Can be entered.
  • the explosion switch attached to the radiation source 1005 is operated, radiation is emitted from the radiation source 1005.
  • the control unit 225 stops exposure to the radiation source interface 1004 via the interface 1003.
  • a signal can be sent.
  • the radiation source interface 1004 causes the radiation source 1005 to stop emitting radiation.
  • the dose A ′ can be determined by the control unit 225 based on the dose A, the radiation irradiation intensity, the communication delay between the units, the processing delay, and the like.
  • the radiation source 1005 stops the irradiation of radiation regardless of the presence or absence of the explosion stop signal.
  • the signal from the imaging pixel 101 and the signals from the first detection element 121 and the second detection element 301 are read out by separate reading units 130 and 140, but are illustrated in FIG. 3. As described above, the signal may be read by the common reading unit 140.
  • the drive lines and signal lines of the imaging pixel 101, the first detection element 121, and the second detection element 301 are separate, but may be the same.
  • FIG. 4 illustrates the operation of the radiation imaging apparatus 200 of the present embodiment.
  • signals applied to the drive line 104 that drives the imaging pixel 101 are Vg1 to Vgn
  • signals applied to the drive line 124 that drives the first detection element 121 and the second detection element 301 are Vd1 to Vgn. Let it be Vdn.
  • the connection switch 103, the first switch 123, and the second switch 303 are in a conductive state when the signal supplied to the control electrode is at a high level, and are in a non-conductive state when the signal supplied to the control electrode is at a low level. It becomes.
  • the period T1 is a period for waiting for the start of radiation irradiation. Specifically, the period from the time when the radiation imaging apparatus 200 is turned on and the radiation image can be captured until the radiation switch of the radiation source 1005 is operated and radiation irradiation is detected is a period T1. is there.
  • the signals Vd1 to Vdn are fixed to a high level, and the first switch 123 of the first detection element 121 is fixed to a conductive state.
  • the signal read by the reading unit 140 from the first detection element 121 is processed by the signal processing circuit 224, and the start of radiation irradiation is detected.
  • the process proceeds to a period T2.
  • in order to remove the dark current generated in the image sensor 102 it is desirable to periodically reset each image sensor 102 to a constant potential.
  • the voltages Vg1 to Vgn of the respective drive lines 104 are sequentially set to the high level, and the image sensor 102 is electrically connected to the column signal line 106 fixed at a constant voltage. This prevents charges due to dark current from being accumulated in the image sensor 102 for a long time.
  • the length of the period T1 varies greatly depending on the imaging method and conditions, but may be several seconds to several minutes.
  • the period T2 is a period during which radiation is applied.
  • the period T2 is a period from when the start of radiation irradiation is detected until the radiation exposure amount reaches a predetermined dose. It can be said that the period T2 is a period during which the radiation dose is monitored.
  • the signals Vd1 to Vdn are intermittently set to the high level, and the first switch 123 of the first detection element 121 is intermittently turned on.
  • the second switch 303 of the second detection element 301 connected to the drive line 124 is intermittently made conductive.
  • Signals read by the reading unit 140 from the first detection element 121 and the second detection element 301 via the first signal line 125 and the second signal line 305 are processed by the signal processing circuit 224, and the dose is detected. .
  • the signals Vg1 to Vgn applied to the drive lines 104 are set to a low level.
  • the generated charges are accumulated in the imaging element 102 of the imaging pixel 101.
  • the length of the period T2 varies greatly depending on the photographing method, conditions, etc., but can be about 1 msec to several hundreds msec.
  • the control unit 225 shifts the operation of the radiation imaging apparatus 200 to the period T3 when the integrated value of the signal read from the first detection element 121 arranged in the radiation detection region (ROI) reaches the dose A ′. At this time, the control unit 225 sends an exposure stop signal to the radiation source interface 1004 via the interface 1003.
  • the period T3 is a period for reading out signals accumulated in the imaging pixels 101 by radiation after the radiation irradiation is completed.
  • the signals Vd1 to Vdn are set to the low level.
  • the first signal line 125 and the second signal line 305 are preferably connected to a fixed potential in order to prevent the first signal line 125 and the second signal line 305 from floating.
  • Vg1 to Vgn are sequentially set to the high level in order to scan a plurality of rows.
  • the signal accumulated in the imaging pixel 101 is read by the reading unit 140 in FIG. 3 (reading unit 130 in FIG. 1).
  • the timing at which Vg1 to Vgn is applied is adjusted so that the accumulation time in each imaging pixel 101 is constant. That is, the row to which the high level is first applied in the period T3 is determined according to the row to which the high level is last applied for resetting in the period T1.
  • the high level is sequentially applied from the row corresponding to Vg2 in the period T3.
  • the first signal line 125 to which the first conversion element 122 that is the conversion element of the first detection element 121 is connected is provided separately from the column signal line 106 for reading a signal from the imaging pixel 101.
  • the image pickup pixel 101 is not connected because it is a signal line. Therefore, the influence of parasitic capacitance and the like on the first signal line 125 can be reduced. Thereby, irradiation of radiation can be monitored with high responsiveness.
  • the configuration capable of detecting radiation for each first detection element 121 or for each radiation detection region (ROI) including at least one first detection element 121 realizes more appropriate dose control and exposure control. Contribute to.
  • FIG. 5 is a plan view showing the configuration of the imaging pixel 101, the first detection element 121, and the second detection element 301 in the radiation imaging apparatus 200 of the present embodiment.
  • the plan view is equivalent to orthographic projection onto a plane parallel to the imaging region IR of the radiation imaging apparatus 200.
  • 6A is a cross-sectional view taken along line A-A ′ in FIG. 5
  • FIG. 6B is a cross-sectional view taken along line B-B ′ in FIG. 5.
  • the first detection element 121 includes a first conversion element 122 and a first switch 123.
  • the first conversion element 122 may be a photoelectric conversion element that converts the light converted from the radiation by a scintillator (not shown) into electric charge and accumulates it.
  • the first conversion element 122 may be configured to directly convert radiation into electric charges.
  • the first switch 123 includes a TFT (thin film transistor) that outputs an electrical signal corresponding to the charge accumulated in the first conversion element 122.
  • the first conversion element 122 may be a PIN photodiode 154.
  • the first conversion element 122 is connected to the first signal line 125 via the first switch 123.
  • the first conversion element 122 may be disposed on a first switch 123 disposed on an insulating support substrate 100 such as a glass substrate with an interlayer insulating layer 129 interposed therebetween.
  • the first conversion element 122 may include a first electrode 151, a PIN photodiode 154, and a second electrode 157.
  • a protective film 158 On the first conversion element 122, a protective film 158, a second interlayer insulating layer 159, a bias line 108, and a protective film 160 are arranged in this order. A flattening film and a scintillator (not shown) are disposed on the protective film 160.
  • the second electrode 157 is connected to the bias line 108 through a contact hole.
  • light-transmitting ITO or the like is used, and the light converted by the scintillator can be transmitted.
  • the second detection element 301 includes a second conversion element 302 and a second switch 303, and the configuration is the same as that of the first detection element 121 illustrated in FIG. 6A. Is done.
  • the second detection element 301 includes a shielding member 304 between a scintillator (not shown) disposed in the upper part of the imaging region and the second conversion element 302.
  • the second detection element 301 and the second conversion element 302 are entirely covered with the shielding member 304. That is, the sensitivity to incident radiation is significantly reduced.
  • the shielding member 304 may be a light shielding member that does not transmit light when the second conversion element 302 is a photoelectric conversion element like the first conversion element 122.
  • the imaging pixel 101 includes an imaging element 102 and a connection switch 103. Similar to the first conversion element 122, the imaging element 102 may be a photoelectric conversion element that converts light accumulated from radiation by a scintillator (not shown) into electric charge and accumulates it. However, the image sensor 102 may be configured to convert radiation directly into electric charges.
  • the connection switch 103 includes a TFT (thin film transistor) that outputs an electrical signal corresponding to the charge accumulated in the image sensor 102.
  • the image sensor 102 can be a PIN photodiode 154.
  • the image sensor 102 is connected to the column signal line 106 via the connection switch 103.
  • the image sensor 102 can be disposed on a connection switch 103 disposed on an insulating support substrate 100 such as a glass substrate with an interlayer insulating layer 129 interposed therebetween.
  • the image sensor 102 can be composed of a first electrode 151, a PIN photodiode 154, and a second electrode 157.
  • the imaging element 102 and the first conversion element 122 may be configured by a MIS type sensor.
  • FIG. 7 is an equivalent circuit diagram showing a circuit configuration of the radiation imaging apparatus 200 in the present embodiment, and shows a modification of the circuit configuration shown in FIGS.
  • the difference from the equivalent circuit diagrams shown in FIGS. 1 and 2 is that, instead of the first detection element 121 and the second detection element 301, a first detection element and an imaging pixel, and a second detection element and an imaging pixel are respectively provided. This is that the paired pixels 121a and 301a are arranged. Other points may be the same as those of the radiation imaging apparatus 200 shown in FIGS.
  • an imaging conversion element also in a region where a conversion element for detecting radiation is disposed, it is possible to suppress pixel loss and facilitate image correction.
  • FIG. 8A is a plan view of the pixel 121a
  • FIG. 8B is a plan view of the pixel 301a.
  • the upper half of the pixel 121 a has a configuration equivalent to that of the imaging pixel 101, and includes a conversion element 102 a having a smaller area than the imaging element 102 of the imaging pixel 101.
  • the lower side of the pixel 121 a has a configuration equivalent to that of the first detection element 121, and includes a conversion element 122 a having a smaller area than the first conversion element 122 of the first detection element 121.
  • the upper half of the pixel 301 a has a configuration equivalent to that of the imaging pixel 101, and includes a conversion element 102 a having a smaller area than the imaging element 102 of the imaging pixel 101.
  • the lower side of the pixel 301 a has a configuration equivalent to that of the second detection element 301, and includes a conversion element 302 a having a smaller area than the second conversion element 302 of the second detection element 301.
  • a shielding member 304a against radiation is provided between a scintillator (not shown) disposed on the upper portion of the pixel 301a and the conversion element 302a.
  • the conversion element 302a is entirely covered by the shielding member 304a.
  • the area of the conversion element 102a is about 1 ⁇ 2 of the area of the imaging element 102 of the imaging pixel 101. However, it is possible to obtain an output equivalent to that of the imaging pixel 101 by image processing such as offset correction and gain correction. Become.
  • the conversion element 302a and the switch 303 arranged in the pixel 301a may have the same structure as the conversion element 122a and the first switch 123 arranged in the pixel 121a.
  • a light-shielding member can be used as the shielding member.
  • FIG. 9 shows a configuration example of the reading unit 140 that reads a signal from the first detection element 121.
  • the detection unit 142 of the reading unit 140 includes an amplifier circuit, a storage capacitor HC, and a sampling switch SW.
  • the amplifier circuit functions as a differential amplifier DA having a first input terminal, a second input terminal, and an output terminal, and a feedback capacitor Cf and a reset unit provided in parallel between the first input terminal and the output terminal. And a reset switch RS.
  • a first signal line 125 is connected to the first input terminal, and a reference potential REF (fixed potential) is supplied to the second input terminal.
  • the sampling switch SW is disposed between the output terminal of the differential amplifier DA and the holding capacitor HC.
  • the potential of the first electrode 151 of the first conversion element 122 of the first detection element 121 is set to the potential VA.
  • the potential of the output terminal of the differential amplifier DA (amplifier circuit) is set to the potential VB. 10 and FIG. 11, “radiation” indicates the dose of the irradiated radiation, and “drive signal” indicates the level of the signal applied to the drive line 124.
  • FIG. 10 The case where there is no change in the dose generated from the radiation source will be described with reference to FIG. 10 as a comparative example.
  • the potential of the first electrode 151 of the imaging pixel 101 varies. Accordingly, the potential of the first electrode affects the first signal line 125 via the parasitic capacitance between the first electrode 151 and the first signal line 125 to which the first detection element is connected (crosstalk). ), The potential of the first signal line 125 changes.
  • the potential VB at the output terminal of the differential amplifier DA also varies due to the variation in potential appearing on the first signal line. In FIG.
  • a “crosstalk component” indicated by the potential VB indicates a change in VB corresponding to a potential change in the first signal line 125 due to the crosstalk.
  • the “radiation component” that appears in the potential VB when the drive signal is set to the high level changes the potential of the first signal line 125 caused by the conduction of the first switch 123 (the charge accumulated in the first conversion element 122).
  • the change in VB corresponding to (corresponding) is shown. Therefore, the signal accumulated in the storage capacitor HC by setting the sampling signal SH to the high level and turning on the sampling switch SW becomes a signal including “crosstalk component” and “radiation component”.
  • FIG. 11 shows, as an example, a case where the radiation dose changes (when the radiation source rises).
  • VA1 is the potential of the first electrode 151 of the first detection element 121
  • VB1 is the potential of the output terminal of the differential amplifier DA to which the first detection element is connected.
  • the detection unit 143 is also connected to the second signal line 305 to which the second switch 303 of the second detection element 301 is connected.
  • the detection unit 143 connected to the second signal line 305 has the same circuit configuration as the detection unit 142 connected to the first signal line 125 shown in FIG.
  • the potential of the first electrode 151 of the second detection element 301 is VA2
  • the potential of the output terminal of the differential amplifier DA of the detection unit 143 to which the second signal line 305 is connected is VB2.
  • the reset signal ⁇ R and the sampling signal SH are applied to the detection unit 142 and the detection unit 143 simultaneously. First, at time t0, the reset signal ⁇ R is set to the high level, and the reset switch RS is turned on. As a result, the output potentials VB1 and VB2 of the differential amplifier DA are simultaneously reset to the reference potential REF.
  • the potential of the first signal line 125 and the second signal line 305 changes due to crosstalk from the moment (time t1) when the reset signal ⁇ R is set to the low level and the reset switch RS becomes non-conductive.
  • the output potentials VB1 and VB2 of the differential amplifier DA begin to change due to crosstalk.
  • sampling is performed on the storage capacitor HC by changing the sampling signal SH from the low level to the high level and then from the high level to the low level ( ⁇ time t2).
  • signals C1 and C1 'corresponding to crosstalk components appearing on the first signal line 125 and the second signal line 305 are simultaneously held in the holding capacitors HC included in the detection unit 142 and the detection unit 143, respectively.
  • the signals C1 and C1 ' are output via the multiplexer 144 and the AD converter 146.
  • the reset signal ⁇ R is set to the high level, and the reset switch RS is turned on.
  • the output potentials VB1 and VB2 of the differential amplifier DA are simultaneously reset to the reference potential REF.
  • the reset signal ⁇ R is set to the low level and the reset switch RS is turned off, the output potentials VB1 and VB2 of the differential amplifier DA start to change again due to crosstalk.
  • VB1 changes according to the amount of electric charge accumulated in the first conversion element 122.
  • the second conversion element 302 is shielded by the shielding member 304 and the sensitivity to radiation is set to be extremely low, the second conversion element 302 hardly accumulates charges due to radiation irradiation. Therefore, VB2 includes only the crosstalk component. Even when the first switch 123 and the second switch 303 are in a conductive state, radiation continues to hit, so the potentials of the output potentials VB1 and VB2 continue to change due to crosstalk.
  • the sampling signal SH is changed from the low level to the high level, and further from the high level to the low level, thereby sampling each holding capacitor HC of the detection unit 142 and the detection unit 143 ( ⁇ time t7). Accordingly, the detection unit 142 of the first detection element holds the signal S corresponding to the crosstalk component C2 and the radiation component in the holding capacitor HC. On the other hand, in the detection unit 143 of the second detection element, since the sensitivity of the second detection element to radiation is extremely low, only the crosstalk component C2 'is held in the holding capacitor HC. Each signal is output via the multiplexer 144 and the AD converter 146.
  • the crosstalk component C1 and the crosstalk component C2 are reset by turning on the reset switch RS during the period of time t3 to t4 to reset the potential of the first signal line 125 to the reference potential REF. Can be made close to. Further, by making the period TT1 and the period TT2 in FIG. 11 equal, the difference between the crosstalk component C1 and the crosstalk component C2 can be reduced. Therefore, the signal processing circuit 224 calculates the difference between the signal (S + C2) and the signal C1, thereby reducing the influence of the crosstalk component.
  • the change rate of the crosstalk component over time t7 is calculated. This rate of change is used for correction when the difference between the signal (S + C2) read from the first detection element 121 via the first signal line 125 and the signal C1 is calculated. Since the change of each crosstalk component with respect to the signals from the first detection element 121 and the second detection element 301 is generated by the irradiation of the same radiation, the rate of change is equal even if the positions are different. Therefore, by using the change rate of the crosstalk component obtained from the signal from the second detection element 301, the value of the crosstalk component for the first detection element 121 at time t7 can be accurately estimated. The estimated crosstalk component can reduce the influence of the crosstalk component and detect the radiation component S more accurately.
  • the method of making the sensitivity different is not limited to providing the light shielding portion.
  • the bias voltage applied to the first conversion element and the bias voltage applied to the second conversion element may be set to different voltages so that the sensitivity of the first conversion element and the sensitivity of the second conversion element are different.
  • the sensitivity of the second conversion element may be adjusted to be lower by lowering the bias voltage applied to the first conversion element.
  • different sensitivities may be used by making the size (area) of the first conversion element region different from the size of the second conversion element region. In this case, the sensitivity of the first conversion element is made higher than the sensitivity of the second conversion element by making the area for detecting the radiation of the first conversion element larger than the area for detecting the radiation of the second conversion element. can do.
  • first detection element and the second detection element a plurality of first detection elements 121 are arranged in the region of interest of the image, and the second detection element 301 connected to the same drive line as the first detection elements is irradiated with radiation. It arrange
  • the second detection element 301 is connected to the same drive line as the first detection element 121. Since the second signal line 305 to which the second detection element 301 is connected is disposed in the region irradiated with radiation, the second signal line 305 is affected by crosstalk from surrounding pixels.
  • the second detection element 301 When the first detection element is located in the region of interest of the image, if the second detection element 301 is disposed in the vicinity of the first detection element 121, a location where the image information in the region of interest cannot be obtained is second detected. It will increase by the number of elements 301. When there are many places where image information cannot be obtained in the region of interest, there is a possibility that image information important for diagnosis cannot be obtained with sufficient accuracy. However, the number of places where the image information of the region of interest cannot be obtained can be reduced by arranging the second detector in the periphery of the imaging region away from the first detector outside the region of interest.
  • FIG. 13 Another arrangement example of the first detection element 121 and the second detection element 301 will be described with reference to FIG.
  • a plurality of first detection elements 121 are arranged in a region where pixels are arranged, and a plurality of second detection elements 301 are arranged in the vicinity of the first detection elements 121.
  • a plurality of second detection elements 301 by arranging a plurality of second detection elements 301 and simultaneously reading a plurality of signals including crosstalk components from the second detection elements 301, it is possible to reduce noise at the time of acquiring the crosstalk components.
  • the detection accuracy of the component change rate is improved. Therefore, the correction accuracy of the crosstalk component is improved in the first detection element, and the detection accuracy of the radiation component can be improved.
  • FIG. 14 shows that the offset component fluctuates with time in addition to FIG.
  • the offset component is a component based on the leakage current, dark current, offset level, and the like of each detection element.
  • the dark current characteristics and the like are equivalent, and the magnitude of the offset fluctuation component is about the same ⁇ (D2-D1) ⁇ (D2′ ⁇ D1 ′) ⁇ .
  • the radiation dose to each detection element is the same, and the crosstalk component is about the same ⁇ (C2 ⁇ C1) ⁇ (C2′ ⁇ C1 ′) ⁇ . Therefore, in the correction according to the present embodiment, the correction accuracy improves as the first detection element 121 and the second detection element 301 are arranged closer to each other. As an example this time, an example of correcting the difference between the output signals of different periods of each detection element and the difference between the output signals of the first detection element 121 and the second detection element 301 is shown, but even if the order is different, The result after correction remains unchanged.
  • FIG. 15 shows a change in radiation dose, a driving method, and output signals of the first detection element and the second detection element.
  • Signals 01 to 03 indicate initial reading from the start of radiation irradiation.
  • reading is performed with the drive signal not set to high level and the switch is not turned on, and after the drive signal is set to high level and the switch is turned on.
  • Reading for performing SH is alternately performed. Thereafter (reading of signal 04 to signal 07) is also driven in the same manner.
  • Talk component is calculated each time and corrected to stop acquisition. Since the change rate of the crosstalk component of the signal after the signal 08 is very small, the crosstalk component is reduced by using the information of the crosstalk component obtained by the reading of A4 to A7. Since it is no longer necessary to acquire the crosstalk component, after that (reading after the signal 08), the drive signal is set to the high level and the switch is turned on and then switched to only the reading that performs SH, and correction is performed by the crosstalk component before switching. I do. With such a driving method, the sampling interval of the radiation component can be shortened, and the time resolution of the exposure stop determination in AEC can be improved.
  • X-rays 6060 generated by an X-ray tube 6050 serving as a radiation source pass through a chest 6062 of a patient or subject 6061 and enter a radiation imaging apparatus 6040 typified by the radiation imaging apparatus 200 described above.
  • This incident X-ray includes information inside the body of the subject 6061.
  • the scintillator emits light in response to the incidence of X-rays, and this is photoelectrically converted by a photoelectric conversion element to obtain electrical information.
  • This information is digitally converted and image-processed by an image processor 6070 serving as a signal processing unit, and can be observed on a display 6080 serving as display means in a control room.
  • this information can be transferred to a remote place by transmission processing means such as a telephone line 6090, and can be displayed on a display 6081 serving as a display means such as a doctor room in another place or stored in a recording means such as an optical disk. It is also possible for a doctor to make a diagnosis. Moreover, it can also record on the film 6110 used as a recording medium by the film processor 6100 used as a recording means.
  • the present invention supplies a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program This process can be realized. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • a circuit for example, ASIC

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

放射線を電気信号に変換する第1・第2変換素子とそれらの出力をそれぞれ第1・第2信号線に接続する第1・第2スイッチを含む第1・第2検出素子と、前記各信号線の信号の読出部、前記各信号線の電位のリセット部、前記信号の信号処理回路とを有する放射線撮像装置で、放射線に対する前記第1・第2変換素子の各感度は異なり、前記読出部が、前記各信号線から信号を読み出す期間は、前記リセット部により前記各信号線の電圧がリセットされ、その後に前記第1・第2スイッチが導通しない状態で前記各信号線の信号が読み出される第1期間、前記リセット部により前記各信号線の電圧がリセットされ、その後に前記第1・第2スイッチが導通した後に前記各信号線の信号が読み出される第2期間を含み、前記信号処理回路は、前記第1・第2期間に前記第2信号線からの読出信号に基づき前記第2期間に前記第1信号線からの読出信号を補正する。

Description

放射線撮像装置および放射線撮像システム
 本発明は、放射線撮像装置および放射線撮像システムに関する。
 放射線を電荷に変換する変換素子と薄膜トランジスタ(TFT)などのスイッチ素子とを組み合わせた画素が2次元アレイ状に配置された放射線撮像装置がある。この放射線検出装置に照射情報を検出する機能を内蔵させることが検討されている。例えば、放射線の照射の開始、照射量や積算照射量を検出する機能である。この機能により、積算照射量を監視し、積算照射量が適正量に達した時点で検出装置が放射線源を制御し照射を終了させる自動露出制御(AEC)が可能となる。
 放射線の照射開始の検出、照射量や積算照射量の測定をするための検出素子からの信号を読み出すための信号線は放射線の撮影画像取得用の画素近傍にも配線される。このため、信号線と撮影画像取得用の画素との間で無視できない容量が形成される。この容量により、放射線検出素子からの情報だけを把握したくても、画素からの信号が容量を介して信号線に伝達されてしまい(クロストーク)、放射線量を正確に測定することが難しかった。また、放射線検出素子に薄膜トランジスタや光電変換素子を用いた場合、温度が変化すると例えばリーク電流やダーク電流といった特性が変化する。また、温度が変化すると、薄膜トランジスタや光電変換素子を駆動させたときに発生するオフセットレベル特性などが変化する。
 特許文献1には、スイッチが導通しない第1期間に現れる検出素子からの信号と、スイッチが導通する第2期間に現れる検出素子からの信号との差分に基づいて、クロストークによる影響を低減する技術が開示されている。
特開2015-213221号公報
 しかしながら、放射線の照射の開始されたときなど、放射線の強度やリーク電流やダーク電流といったオフセット成分の特性等が時間的に変化する場合がある。この場合は第1期間と第2期間とで、第1期間の信号に含まれるクロストーク成分やオフセット成分と、第2期間の信号に含まれるクロストーク成分やオフセット成分とに相違が生じる。したがって特許文献1に記載されたように差分を演算するだけではクロストークやオフセット成分の影響を低減するのには不十分であることが分かった。
本発明の1つの側面は、放射線を検出する素子からの信号に対するクロストークやオフセット成分による影響を低減するのに有利な技術を提供する。
 上記課題に鑑みて、本発明の放射線撮像装置は、放射線を電気信号に変換する第1変換素子と前記第1変換素子の出力を第1信号線に接続する第1スイッチとを含む少なくとも1つの第1検出素子と、放射線を電気信号に変換する第2変換素子と前記第2変換素子の出力を第2信号線に接続する第2スイッチとを含む少なくとも1つの第2検出素子と、前記第1信号線及び前記第2信号線に現れる信号を読み出す読出部と、前記第1信号線及び前記第2信号線の電位をリセットするリセット部と、前記読出部により読み出された信号を処理する信号処理回路と、を有する撮像装置であって、放射線に対する前記第1変換素子の感度と放射線に対する前記第2変換素子の感度とは異なるように設定され、前記読出部が、前記第1信号線および前記第2信号線から信号を読み出す期間は、前記リセット部によって前記第1信号線及び前記第2信号線の電圧がリセットされる動作と、その後に前記第1スイッチ及び前記第2スイッチが導通しない状態で前記第1信号線及び前記第2信号線に現れる信号がそれぞれ読み出される動作と、を含む第1期間と、前記リセット部によって前記第1信号線及び前記第2信号線の電圧がリセットされる動作と、その後に前記第1スイッチ及び前記第2スイッチが導通した後に前記第1信号線及び前記第2信号線に現れる信号がそれぞれ読み出される動作と、を含む第2期間と、を含み、前記信号処理回路は、前記第1期間および前記第2期間に前記第2信号線から読み出された信号に基づいて前記第2期間に前記第1信号線から読み出された信号を補正することを特徴とする。
 本発明により、放射線を検出する素子からの信号に対するクロストークやオフセット成分による影響を低減するのに有利な技術を提供することができる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
本発明の第1実施形態の放射線撮像装置の構成を示す図。 放射線撮像装置を含む放射線撮像システムの構成例を示す図。 本発明の第1実施形態の放射線撮像装置の別の構成を示す図。 本発明の第1実施形態の放射線撮像装置の動作を示す図。 本発明の第1実施形態の放射線撮像装置における撮像画素、第1検出素子および第2検出素子の構成を示す平面図。 図5のA-A’線に沿った断面図。 図5のB-B’線に沿った断面図。 本発明の第1実施形態の放射線撮像装置の別の構成を示す図。 図7の放射線撮像装置の画素の構成を示す平面図。 図7の放射線撮像装置の画素の構成を示す平面図。 本発明の第1実施形態の放射線撮像装置の構成を示す図。 比較例を示す図。 本発明の第1実施形態に係る放射線撮像装置の動作を示す図。 検出素子の配置例を示す図。 検出素子の配置例を示す図。 本発明の第2実施形態に係る放射線撮像装置の動作を示す図。 本発明の第3実施形態の放射線撮像装置の動作を示す図。 放射線検知システムの構成例を示す図。
 以下、本発明に係る放射線撮像装置の具体的な実施形態を、添付図面を参照して説明する。なお、以下の説明および図面において、複数の図面に渡って共通の構成については共通の符号を付している。そのため、複数の図面を相互に参照して共通する構成を説明し、共通の符号を付した構成については適宜説明を省略する。なお、本発明における放射線には、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギーを有するビーム、例えばX線や粒子線、宇宙線なども含みうる。
(第1実施形態)
 図1には、本実施形態の放射線撮像装置200の構成が示されている。放射線撮像装置200は、複数の行および複数の列を構成するように撮像領域IRに配列された複数の画素を有する。撮像領域IRには、放射線画像の取得のための複数の撮像画素101と、放射線の照射の情報を生成するための第1検出素子121と、放射線の照射の情報を補正するための第2検出素子301とが配置されている。撮像画素101は、放射線を電気信号に変換する撮像素子102と、列信号線106と撮像素子102との間に配置された接続スイッチ103とを含む。第1検出素子121は、放射線を電気信号に変換する第1変換素子122と、第1信号線125と第1変換素子122との間に配置された第1スイッチ123とを含む。第2検出素子301は、放射線を電気信号に変換する第2変換素子302と、第2信号線305と第2変換素子302との間に配置された第2スイッチ303とを含む。第1検出素子121と第2検出素子301は、複数の撮像画素101の一部と同一の列に配置されうる。また、第2検出素子301は、第1検出素子121と同一の列の近傍に配置されうる。
 撮像素子102、第1変換素子122および第2変換素子302は、放射線を光に変換するシンチレータおよび光を電気信号に変換する光電変換素子とで構成されうる。シンチレータは、一般的には、撮像領域IRを覆うようにシート状に形成され、複数の画素によって共有されうる。あるいは、撮像素子102、第1変換素子122および第2変換素子302は、放射線を直接電気信号に変換する変換素子で構成されうる。
 接続スイッチ103、第1スイッチ123および第2スイッチ303は、非晶質シリコンまたは多結晶シリコンなどの半導体で構成された薄膜トランジスタ(TFT)で構成されうる。
 放射線撮像装置200は、複数の列信号線106および複数の駆動線104を有する。各列信号線106は、撮像領域IRにおける複数の列のうちの1つに対応する。各駆動線104は、撮像領域IRにおける複数の行のうちの1つに対応する。各駆動線104は行選択部221によって駆動される。駆動線104は接続スイッチ103の制御電極に接続されており、駆動線104がハイレベルに駆動されると接続スイッチ103は導通する。
 撮像素子102の第1電極は、接続スイッチ103の第1主電極に接続され、撮像素子102の第2電極は、バイアス線108に接続される。ここで、1つのバイアス線108は、列方向に延びていて、列方向に配列された複数の撮像素子102の第2電極に共通に接続される。バイアス線108は、電源回路226からバイアス電圧Vsを供給される。1つの列を構成する複数の撮像画素101の接続スイッチ103の第2主電極は、1つの列信号線106に接続される。1つの行を構成する複数の撮像画素101の接続スイッチ103の制御電極は、1つの駆動線104に接続される。
 複数の列信号線106は、読出部130に接続される。ここで、読出部130は、複数の検知部132と、マルチプレクサ134と、アナログデジタル変換器(以下、AD変換器)136とを含みうる。複数の列信号線106のそれぞれは、読出部130の複数の検知部132のうち対応する検知部132に接続される。ここで、1つの列信号線106は、1つの検知部132に対応する。検知部132は、差動増幅器を含むことができる。マルチプレクサ134は、複数の検知部132を所定の順番で選択し、選択した検知部132からの信号をAD変換器136に供給する。AD変換器136は、供給された信号をデジタル信号に変換して出力する。
 第1検出素子121の第1変換素子122の第1電極は、第1スイッチ123の第1主電極に接続され、第1変換素子122の第2電極は、バイアス線108に接続される。第1スイッチ123の第2主電極は、第1信号線125に接続される。第1スイッチ123の制御電極は、駆動線124に電気的に接続される。放射線撮像装置200は、複数の第1信号線125を有しうる。1つの第1信号線125には、1または複数の第1検出素子121が接続されうる。駆動線124は、駆動部241によって駆動される。1つの駆動線124には、1または複数の第1検出素子121が接続されうる。駆動線124が駆動部241によりハイレベルに駆動されると、第1スイッチ123が導通する。
 第2検出素子301の第2変換素子302の第1電極は、第2スイッチ303の第1主電極に接続され、第2変換素子302の第2電極は、バイアス線108に接続される。第2スイッチ303の第2主電極は、第2信号線305に接続される。第2スイッチ303の制御電極は、駆動線124に電気的に接続される。放射線撮像装置200は、複数の第2信号線305を有しうる。1つの第2信号線305には、1または複数の第2検出素子301が接続されうる。駆動線124は、駆動部241によって駆動される。1つの駆動線124には、1または複数の第2検出素子301が接続されうる。駆動線124が駆動部241によってハイレベルに駆動されると、第2スイッチ303が導通する。
 第1信号線125および第2信号線305は、読出部140に接続される。ここで、読出部140は、複数の検知部142、143と、マルチプレクサ144と、AD変換器146とを含みうる。複数の第1信号線125は読出部140の複数の検知部142のうち対応する検知部142に接続され、複数の第2信号線305は読出部140の複数の検知部143のうち対応する検知部143に接続されうる。ここで、1つの第1信号線125又は第2信号線305は、1つの検知部142又は143に対応する。検知部142および143は、差動増幅器を含むことができる。マルチプレクサ144は、複数の検知部142および143を所定の順番で選択し、選択した検知部142又は143からの信号をAD変換器146に供給する。AD変換器146は、供給された信号をデジタル信号に変換して出力する。
 読出部140のAD変換器146の出力は、信号処理回路224に供給され、信号処理回路224によって処理される。信号処理回路224は、読出部140のAD変換器146の出力に基づいて、放射線撮像装置200に対する放射線の照射に関する情報を生成し出力する。具体的には、信号処理回路224は、放射線撮像装置200に対する放射線の照射の開始を検知したり、放射線の照射量および/または積算照射量を演算しうる。また制御部225は、信号処理回路224からの情報に基づいて、行選択部221、駆動部241および読出部130を制御する。制御部225は、信号処理回路224からの情報に基づいて、放射線の照射の開始および終了を制御する信号を外部へ出力しうる。制御部225は、撮像画素101に照射された放射線に対応する電荷の蓄積の開始と終了とを制御する。
 図2には、放射線撮像装置200を含む放射線撮像システムの構成が例示されている。放射線撮像システムは、放射線撮像装置200の他、コントローラ1002、インターフェース1003、放射線源インターフェース1004、放射線源1005を備えている。
 コントローラ1002には、照射する線量A、照射時間B(ms)、放射線源の管電流C(mA)、管電圧D(kV)、放射線をモニターすべき領域である放射線検知領域(ROI)などが入力されうる。放射線源1005に付属された爆射スイッチが操作されると、放射線源1005から放射線が放射される。制御部225は、放射線検知領域(ROI)に配置された第1検出素子121から読み出された信号の積分値が線量A’に達したら、インターフェース1003を介して放射線源インターフェース1004に曝射停止信号を送ることができる。これに応答して、放射線源インターフェース1004は、放射線源1005に放射線の放射を停止させる。ここで、線量A’は、線量A、放射線照射強度、各ユニット間の通信ディレイ、処理ディレイ等に基づいて、制御部225によって決定されうる。また、放射線の照射時間が照射時間Bに達した場合は、放射線源1005は、爆射停止信号の有無にかかわらず、放射線の照射を停止する。
 本実施形態では、第1検出素子121と第2検出素子301が配置された箇所の画像情報を読み出すことができない。しかし、第1検出素子121と第2検出素子301の周囲の撮像画素101の出力を用いて補間処理を行うことで、第1検出素子121と第2検出素子301が配置された箇所の画像情報を得ることができる。
 図1に示された構成例では、撮像画素101からの信号と第1検出素子121および第2検出素子301からの信号とが別個の読出部130、140によって読み出されるが、図3に例示されるように、共通の読出部140によって信号が読み出されてもよい。また、図1では、撮像画素101と第1検出素子121および第2検出素子301の駆動線と信号線は別個としているが、同一であってもよい。
 図4には、本実施形態の放射線撮像装置200の動作が例示されている。以下の説明において、撮像画素101を駆動する駆動線104に印加される信号をVg1~Vgnとし、第1検出素子121および第2検出素子301を駆動する駆動線124に印加される信号をVd1~Vdnとする。接続スイッチ103、第1スイッチ123、第2スイッチ303は、制御電極に供給される信号がハイレベルであるときに導通状態となり、制御電極に供給される信号がローレベルであるときに非導通状態となる。
 期間T1は、放射線の照射の開始を待つ期間である。具体的には、放射線撮像装置200の電源が投入され、放射線画像の撮像が可能な状態となってから放射線源1005の曝射スイッチが操作され、放射線の照射が検知されるまでが期間T1である。
 期間T1では、信号Vd1~Vdnがハイレベルに固定され、第1検出素子121の第1スイッチ123が導通状態に固定される。第1検出素子121から読出部140によって読み出された信号は、信号処理回路224で処理され、放射線の照射の開始が検知される。放射線の照射の開始が検知されると、期間T2に移行する。期間T1では、撮像素子102において発生するダーク電流を除去するために、それぞれの撮像素子102を定期的に定電位にリセットすることが望ましい。この例では、期間T1のリセット時には各駆動線104の電圧Vg1~Vgnが順次にハイレベルにされ、撮像素子102は、定電圧に固定された列信号線106に電気的に接続される。これによって、ダーク電流による電荷が撮像素子102に長時間にわたって蓄積されることが防止される。期間T1の長さは、撮影手法・条件等により大きく異なるが、数sec~数minでありうる。
 期間T2は、放射線が照射されている期間である。一例として、期間T2は、放射線の照射の開始が検知されてから放射線の曝射量が所定の線量となるまでの期間である。期間T2は、放射線の照射量をモニターする期間であるとも言える。期間T2では、信号Vd1~Vdnが断続的にハイレベルにされ、第1検出素子121の第1スイッチ123が断続的に導通状態にされる。同時に、駆動線124に接続される第2検出素子301の第2スイッチ303も断続的に導通状態にされる。第1検出素子121と第2検出素子301から第1信号線125及び第2信号線305を介して読出部140によって読み出された信号は、信号処理回路224で処理され、線量が検知される。期間T2では、各駆動線104に印加される信号Vg1~Vgnがローレベルにされる。これにより、撮像画素101の撮像素子102では、発生した電荷が蓄積される。期間T2の長さは、撮影手法・条件等により大きく異なるが、1msec~数百msec程度でありうる。
 制御部225は、放射線検知領域(ROI)に配置された第1検出素子121から読み出された信号の積分値が線量A’に到達したら放射線撮像装置200の動作を期間T3に移行させる。また、このとき、制御部225は、インターフェース1003を介して放射線源インターフェース1004に曝射停止信号を送る。
 期間T3は、放射線の照射が終了した後に、放射線により撮像画素101に蓄積された信号を読み出す期間である。期間T3では、信号Vd1~Vdnがローレベルにされる。期間T3では、第1信号線125および第2信号線305がフローティングになることを防ぐために、第1信号線125および第2信号線305とを固定電位に接続するとよい。
 期間T3では、複数の行を走査するために、Vg1~Vgnが順次にハイレベルにされる。撮像画素101に蓄積された信号は、図3の読出部140(図1の読出部130)によって読み出される。本実施形態ではVg1~Vgnの印加されるタイミングは、各撮像画素101における蓄積時間が一定となるように調整されている。つまり、期間T1においてリセットのために最後にハイレベルが印加された行に応じて、期間T3で最初にハイレベルが印加される行が決定される。図4では、期間T1において最後にハイレベルが印加された行がVg1に対応する行であるので、期間T3では、Vg2に対応する行から順にハイレベルが印加される。
 本実施形態では、第1検出素子121の変換素子である第1変換素子122が接続された第1信号線125は、撮像画素101から信号を読み出すための列信号線106とは別個に設けられた信号線であるので、撮像画素101が接続されていない。したがって、第1信号線125に対する寄生容量などの影響を小さくすることができる。これにより、放射線の照射を高い応答性でモニターすることができる。
 また、本実施形態では、第1検出素子121に第1スイッチ123を設けることによって、第1信号線125の本数を少なくしながら第1検出素子121ごとに放射線の照射を検知することができる。ここで、第1検出素子121ごと、あるいは、少なくとも1つの第1検出素子121を含む放射線検知領域(ROI)ごとに放射線を検知することができる構成は、より適切な線量制御および露出制御の実現に寄与する。
 図5は、本実施形態の放射線撮像装置200における撮像画素101、第1検出素子121および第2検出素子301の構成を示す平面図である。ここで、平面図は、放射線撮像装置200の撮像領域IRに平行な面への正投影と等価である。図6Aは、図5のA-A’線に沿った断面図、図6Bは、図5のB-B’線に沿った断面図である。
 図5および図6Aに例示されるように、第1検出素子121は、第1変換素子122と、第1スイッチ123とを含む。第1変換素子122は、本実施形態では、不図示のシンチレータによって放射線から変換された光を電荷に変換し蓄積する光電変換素子でありうる。ただし、第1変換素子122は、放射線を直接電荷に変換するように構成されてもよい。第1スイッチ123は、第1変換素子122に蓄積された電荷に応じた電気信号を出力するTFT(薄膜トランジスタ)を含む。第1変換素子122は、PIN型のフォトダイオード154でありうる。第1変換素子122は、第1スイッチ123を介して、第1信号線125と接続される。第1変換素子122は、ガラス基板等の絶縁性の支持基板100の上に配置された第1スイッチ123の上に層間絶縁層129を挟んで配置されうる。第1変換素子122は、第1電極151、PINフォトダイオード154、第2電極157で構成されうる。
 第1変換素子122の上には、保護膜158、第2層間絶縁層159、バイアス線108、保護膜160が順に配置されている。保護膜160の上には、不図示の平坦化膜およびシンチレータが配置されている。第2電極157は、コンタクトホールを介してバイアス線108に接続されている。第2電極157には、光透過性を有するITOなどが用いられ、シンチレータで放射線から変換された光が透過可能な構成となっている。
 図5に例示されるように、第2検出素子301は、第2変換素子302と、第2スイッチ303とを含み、その構成は、図6Aに例示される第1検出素子121と同様に構成される。第2検出素子301は、第1検出素子121の構成に加えて、撮像領域の上部に配されたシンチレータ(不図示)と第2変換素子302との間に遮蔽部材304を有する。本実施形態において、第2検出素子301および第2変換素子302は、全体が遮蔽部材304に覆われる。すなわち、入射した放射線に対する感度が著しく低くなる。遮蔽部材304は、第2変換素子302が第1変換素子122と同様に光電変換素子である場合は光を通さない遮光部材でありうる。
 図5および図6Bに例示されるように、撮像画素101は、撮像素子102と、接続スイッチ103とを含む。撮像素子102は、第1変換素子122と同様に、不図示のシンチレータによって放射線から変換された光を電荷に変換し蓄積する光電変換素子でありうる。ただし、撮像素子102は、放射線を直接電荷に変換するように構成されてもよい。接続スイッチ103は、撮像素子102に蓄積された電荷に応じた電気信号を出力するTFT(薄膜トランジスタ)を含む。撮像素子102は、PIN型のフォトダイオード154でありうる。撮像素子102は、接続スイッチ103を介して、列信号線106と接続される。撮像素子102は、ガラス基板等の絶縁性の支持基板100の上に配置された接続スイッチ103の上に層間絶縁層129を挟んで配置されうる。撮像素子102は、第1電極151、PINフォトダイオード154、第2電極157で構成されうる。撮像素子102、第1変換素子122は、MIS型のセンサによって構成されてもよい。
 図7は本実施形態における放射線撮像装置200の回路構成を示す等価回路図で、図1、3に示した回路構成の変形例を示したものである。図1、2に示した等価回路図と異なる点は、第1検出素子121、第2検出素子301に代えて、第1検出素子と撮像画素と、第2検出素子と撮像画素とを、それぞれ対にした画素121a、301aを配したことである。これ以外の点は、図1、3に示した放射線撮像装置200と同じであってよい。放射線を検出するための変換素子を配置した領域にも撮像用の変換素子を配置することによって、画素の欠落を抑制し、画像の補正を容易にすることが可能となる。
 図8Aは画素121a、図8Bは画素301aの平面図を示す。画素121aの上側半分は撮像画素101と同等の構成を有し、撮像画素101の撮像素子102よりも面積の小さい変換素子102aを有する。画素121aの下側は第1検出素子121と同等の構成を有し、第1検出素子121の第1変換素子122よりも面積の小さい変換素子122aを有する。画素301aの上側半分は撮像画素101と同等の構成を有し、撮像画素101の撮像素子102よりも面積の小さい変換素子102aを有する。画素301aの下側は第2検出素子301と同等の構成を有し、第2検出素子301の第2変換素子302よりも面積の小さい変換素子302aを有する。また、画素301aの上部に配されたシンチレータ(不図示)と変換素子302aとの間に放射線に対する遮蔽部材304aを有する。変換素子302aは、全体が遮蔽部材304aに覆われる。変換素子102aの面積は、撮像画素101の撮像素子102の約1/2程度の面積になるが、オフセット補正やゲイン補正などの画像処理によって、撮像画素101と同等の出力を得ることが可能となる。また画素301aに配置される変換素子302aおよびスイッチ303は、画素121aに配置される変換素子122aおよび第1スイッチ123と同一の構造を有してよい。シンチレータおよび変換素子302aに光電変換素子を用いることにより放射線を検出する場合は遮蔽部材として遮光性がある部材を使うことができる。
 読出部140の構成および動作について図9~図11を参照して説明する。図9には、第1検出素子121から信号を読みだす読出部140の構成例が示されている。
 読出部140の検知部142は、増幅回路と、保持容量HCと、サンプリングスイッチSWとを含む。増幅回路は、第1入力端子、第2入力端子および出力端子を有する差動増幅器DAと、該第1入力端子と該出力端子との間に並列に設けられた帰還容量Cfおよびリセット部として機能するリセットスイッチRSとを含む。該第1入力端子には、第1信号線125が接続され、該第2入力端子には基準電位REF(固定電位)が供給される。サンプリングスイッチSWは、差動増幅器DAの出力端子と保持容量HCとの間に配置されている。第1検出素子121の第1変換素子122の第1電極151の電位を電位VAとする。差動増幅器DA(増幅回路)の出力端子の電位を電位VBとする。なお、図10、図11中の「放射線」は照射される放射線の線量を示し、「駆動信号」は、駆動線124に印加される信号のレベルを示す。
 放射線源より発生する線量に変化がない場合を比較例として、図10により説明をする。放射線の照射中(図4における期間T2)は、撮像画素101の第1電極151の電位が変動する。これに伴って、第1電極151と第1検出素子が接続される第1信号線125との間の寄生容量を介して、第1電極の電位が第1信号線125へ影響する(クロストーク)ことによって、第1信号線125の電位が変化する。第1信号線に現れる電位の変動により差動増幅器DAの出力端子の電位VBも変動する。図10において、電位VBに示す「クロストーク成分」は、クロストークによる第1信号線125の電位変化に対応するVBの変化を示している。また、駆動信号をハイレベルにしたときに電位VBに現れる「放射線成分」は、第1スイッチ123を導通することによる第1信号線125の電位変化(第1変換素子122に蓄積された電荷に相当する)に対応するVBの変化を示している。したがって、サンプリング信号SHをハイレベルにしてサンプリングスイッチSWを導通させることによって保持容量HCに蓄積される信号は、「クロストーク成分」および「放射線成分」を含んだ信号になる。
 以下、期間T2において本実施形態に基づく放射線源により発生する線量が変化する場合のクロストークの影響を低減するための動作を図11により説明する。図11の「放射線」に示すように放射線源より発生する放射線の線量は、時々刻々変化する。図11は例示として、放射線の線量が変化する場合(放射線源の立ち上がり時)を示している。VA1は、第1検出素子121の第1電極151の電位、VB1は、第1検出素子が接続される差動増幅器DAの出力端子の電位である。第2検出素子301の第2スイッチ303が接続されている第2信号線305にも検知部143が接続されている。第2信号線305が接続されている検知部143も図9に示す第1信号線125が接続されている検知部142と同様の回路構成である。ここで、第2検出素子301の第1電極151の電位をVA2とし、第2信号線305が接続される検知部143の差動増幅器DAの出力端子の電位をVB2とする。リセット信号ΦR、サンプリング信号SHは検知部142および検知部143に同時に印加される。まず、時刻t0でリセット信号ΦRがハイレベルにされ、リセットスイッチRSが導通状態にされる。これによって、差動増幅器DAの出力電位VB1、VB2が同時に参照電位REFにリセットされる。リセット信号ΦRがローレベルにされてリセットスイッチRSが非導通状態になった瞬間(時刻t1)から、第1信号線125および第2信号線305の電位がクロストークにより変化する。この変化に応じて差動増幅器DAの出力電位VB1、VB2がクロストークによって変化し始める。
 次に、サンプリング信号SHをローレベルからハイレベルにし、更にハイレベルからローレベルにすることによって保持容量HCにサンプリングを行う(~時刻t2)。これによって、第1信号線125と第2信号線305とに現れるクロストーク成分に相当する信号C1、C1’が同時に検知部142および検知部143が有するそれぞれの保持容量HCにそれぞれ保持される。信号C1、C1’は、マルチプレクサ144およびAD変換器146を介して出力される。
 次に、時刻t3でリセット信号ΦRがハイレベルにされ、リセットスイッチRSが導通状態にされる。これによって、差動増幅器DAの出力電位VB1、VB2が同時に参照電位REFにリセットされる。リセット信号ΦRがローレベルにされてリセットスイッチRSが非導通状態になった瞬間(時刻t4)から、差動増幅器DAの出力電位VB1、VB2が再びクロストークによって変化し始める。
 次に、時刻t5~t6において、駆動線124の電位(駆動信号)をハイレベルにすることによって、第1スイッチ123と第2スイッチ303を同時に導通状態とする。このとき、第1変換素子122に蓄積されていた電荷の量に応じてVB1が変化する。一方、第2変換素子302は遮蔽部材304によって遮蔽されており、放射線に対する感度が著しく低く設定されるため、第2変換素子302には放射線の照射による電荷はほとんど蓄積しない。そのため、VB2にはクロストーク成分のみが含まれる。第1スイッチ123と第2スイッチ303が導通状態となっている状態でも、放射線は当り続けているので、出力電位VB1、VB2の電位は、クロストークによって変化し続ける。
 次に、サンプリング信号SHをローレベルからハイレベルにし、更にハイレベルからローレベルにすることによって検知部142および検知部143のそれぞれの保持容量HCにサンプリングを行う(~時刻t7)。これによって、第1検出素子の検知部142ではクロストーク成分C2および放射線成分に相当する信号Sが保持容量HCに保持される。一方、第2検出素子の検知部143では、第2検出素子の放射線に対する感度が著しく低いため、クロストーク成分C2’のみが保持容量HCに保持される。各信号は、マルチプレクサ144およびAD変換器146を介して出力される。
 放射線の線量が変化しない場合は、時刻t3~t4の期間にリセットスイッチRSを導通させて、第1信号線125の電位を基準電位REFにリセットすることによって、クロストーク成分C1とクロストーク成分C2を近い値にすることができる。また、図11における期間TT1と期間TT2とを等しくすることによって、クロストーク成分C1とクロストーク成分C2との差を小さくすることができる。よって、信号処理回路224が信号(S+C2)と信号C1との差分を演算することによって、クロストーク成分の影響を低減することができる。
 しかし、図11に示されるように、照射される放射線の線量が変化する場合、単位時間当たりの画素に蓄積される電荷量が変化し、単位時間当たりのクロストーク成分による影響の蓄積量も変化する。そのため、時刻t7において得られるクロストーク成分C2と、時刻t2において得られるクロストーク成分C1の値が異なってしまう。この場合、信号(S+C2)と信号C1との差分を演算しても、クロストーク成分を十分に低減することができず、放射線成分を正確に検出することができない。そこで、クロストーク成分の影響を十分に低減するために、第2検出素子301から第2信号線305を介して読み出された、クロストーク成分である信号C1’とC2’とから時刻t2から時刻t7にかけてのクロストーク成分の変化率を算出する。この変化率を第1検出素子121から第1信号線125を介して読み出された信号(S+C2)と信号C1との差分の演算をするときの補正に用いる。第1検出素子121と第2検出素子301からの信号に対するそれぞれのクロストーク成分の変化は、同一の放射線の照射により発生するため、配置されている位置が違ってもその変化率は等しくなる。そのため、第2検出素子301からの信号より得られるクロストーク成分の変化率を用いることで、時刻t7における第1検出素子121に対するクロストーク成分の値を正確に見積もることができる。見積もったクロストーク成分によりクロストーク成分の影響を低減し、放射線成分Sをより正確に検出することができる。第2検出素子301からの信号より得られるクロストーク成分の変化率(C2’/C1’)を補正値として用いて、以下のような演算(式1)でクロストーク成分の影響を低減することができる。補正された検出信号Sは次のようにして求めることができる。
 検出信号S=S+C2-C1*(C2’/C1’)・・・式1
 以上のようにクロストーク成分を補正により除去し、補正された検出信号Sに基づいて放射線の照射量に関する情報を高い精度で生成することができる。特に、放射線の照射の開始の検知、放射線の積算照射量(線量)の検知などの場合では、短時間で信号を読み出す必要があることから、小さい信号値を扱う必要がある。また、放射線の積算照射量(線量)の検知では、放射線の照射量が時間的に変化することによりクロストーク成分の補正誤差が積算されてしまい、放射線量の検知精度に大きな影響を与えてしまう。そのため、本発明のように精度を高めてクロストーク成分を除去する意義は非常に大きい。このように補正により求めた信号を用いて照射量の生成を行うことにより、照射量の精確性を向上できる。
 以上では、第2変換素子に遮光部材を設けることにより、放射線に対する第1変換素子と第2変換素子との感度を異なる感度にする実施形態を説明した。しかし、感度を異なるようにする方法は遮光部分を設けることには限らない。第1変換素子に印加されるバイアス電圧と第2変換素子に印加されるバイアス電圧を互いに異なる電圧に設定し、第1変換素子の感度と第2変換素子の感度を異なるようにしてもよい。この場合、第1変換素子に印加されるバイアス電圧よりも低くすることにより第2変換素子の感度を低くなるように調整してもよい。または、第1変換素子の領域の大きさ(面積)と第2変換素子の領域の大きさと互いに異なるようにして、異なる感度にしてもよい。この場合は、第1変換素子の放射線を検出するための領域を第2変換素子の放射線を検出するための領域より大きくすることにより、第1変換素子の感度を第2変換素子の感度より高くすることができる。
 次に第1検出素子と第2検出素子との配置例について説明する。図12に示す例では、画像の関心領域部に複数の第1検出素子121が配置され、第1検出素子と同一の駆動線に接続された第2検出素子301が、放射線が照射される領域内の第1検出素子から離れた位置に配置されている。第2検出素子301は、第1検出素子121と同一の駆動線に接続される。第2検出素子301が接続されている第2信号線305が、放射線が照射される領域内に配置されているので、第2信号線305は周辺の画素からのクロストークの影響を受ける。
 画像の関心領域部に第1検出素子が位置する場合、第1検出素子121の近傍に第2検出素子301を配置してしまうと、関心領域部における画像情報を得られない場所が第2検出素子301の数だけ増加してしまう。関心領域部に画像情報が得られない場所の数が多い場合、診断において重要な画像情報が十分な精度で得られないおそれがある。しかし、関心領域部の外の第1検出素子から離れた撮像領域の周辺部に第2検出素子を配置することで、関心領域部の画像情報を得られない場所の数を減らすことができる。
 第1検出素子121および第2検出素子301の別の配置例を図13により説明する。図13に示すように複数個の第1検出素子121が画素の配置された領域に配置され、第1検出素子121の近傍に複数個の第2検出素子301が配置されている。このように第2検出素子301を複数個配置し、第2検出素子301からのクロストーク成分を含む信号を複数同時に読み出すことで、クロストーク成分取得時のノイズを低減することができ、クロストーク成分の変化率の検出精度が向上する。そのため、第1検出素子においてクロストーク成分の補正精度が向上し、放射線成分の検出精度を向上させることができる。
(第2実施形態)
 次にオフセット成分が時間的に変動する場合の補正について説明する。本実施形態においても、第1実施形態と同様に第1検出素子121と第2検出素子301とが配置されているとする。第1検出素子121と第2検出素子301とが近傍に配置されている場合、ダーク電流などによるオフセット成分の大きさはほぼ同じ大きさになる。そこでこの性質を利用して、第1検出素子121および第2検出素子301の出力信号の差分によって信号を補正することにより、検出精度を向上させることができる。図14では、図11に加えて、オフセット成分が時間的に変動していることを示している。ここで、オフセット成分は、各検出素子のリーク電流やダーク電流やオフセットレベル等に基づく成分である。このような場合、クロストーク成分のみでなく、オフセット成分の変動であるオフセット変動成分も検出精度を悪化させる原因となる。そこで、各検出素子の異なる期間の出力信号の差分と、第1検出素子121と第2検出素子301の出力信号の差分を組み合わせて補正を行う。まず、各検出素子の期間TT1と期間TT2の出力信号の差分によりクロストーク成分を低減する。次に、第1検出素子121と第2検出素子301の出力信号の差分により、オフセット変動成分を低減する。具体的には、以下のような演算(式2)を行い補正された検出信号Sを得る。
 検出信号S={(S+C2+D2)-(C1+D1)}-{(C2’+D2’)-(C1’+D1’)}
 =S+{(C2-C1)-(C2’-C1’)}
+{(D2-D1)-(D2’-D1’)}・・・式2
 第1検出素子121と第2検出素子301が近傍に配置される場合、ダーク電流特性などが同等となり、オフセット変動成分の大きさが同程度{(D2-D1)≒(D2’-D1’)}となる。また、各検出素子への放射線の照射量も同等となり、クロストーク成分も同程度{(C2-C1)≒(C2’-C1’)}となる。そのため、本実施形態による補正は第1検出素子121と第2検出素子301が近傍に配置されるほど、補正精度は向上する。今回は一例として、各検出素子の異なる期間の出力信号の差分、第1検出素子121と第2検出素子301の出力信号の差分の順に補正する例を示したが、順番が異なっていても、補正後の結果は変わらない。
(第3実施形態)
 次に放射線量を検出する際の時間分解能を向上させる駆動について図15を参照して説明する。図15には放射線の照射量変化と、駆動方法および第1検出素子、第2検出素子の出力信号が示されている。信号01~信号03は放射線の照射開始からの初期の読み出しを示す。放射線の照射量変化がある時には、第1実施形態と同様に、駆動信号をハイレベルにせずスイッチを導通しない状態でSHを行う読み出しと、駆動信号をハイレベルにしてスイッチを導通させた後でSHを行う読み出しを交互に行う。その後(信号04~信号07の読み出し)も同様に駆動させるが、第2検出素子からの信号O4~O7でクロストーク成分の変化が所定の閾値以下の微小な値であると判断した場合、クロストーク成分を毎回計算し、補正して取得するのを止める。信号08以降の信号は、クロストーク成分の変化率が微小であるから、A4~A7の読み出しで得られたクロストーク成分の情報を用いて、クロストーク成分の低減を行う。クロストーク成分を取得する必要がなくなるため、以降(信号08以降の読み出し)は駆動信号をハイレベルにしてスイッチを導通させた後でSHを行う読み出しのみに切り換え、切り換え前のクロストーク成分により補正を行う。このような駆動方法で、放射線成分のサンプリング間隔を短くすることができ、AECにおける曝射停止判定の時間分解能を向上させることができる。
(第4実施形態)
 以下、図16を参照しながら放射線撮像装置200を放射線検知システムに応用した例を説明する。放射線源であるX線チューブ6050で発生したX線6060は、患者あるいは被験者6061の胸部6062を透過し、前述の放射線撮像装置200に代表される放射線撮像装置6040に入射する。この入射したX線には被験者6061の体内部の情報が含まれている。X線の入射に対応してシンチレータは発光し、これを光電変換素子で光電変換して、電気的情報を得る。この情報はデジタルに変換され信号処理部となるイメージプロセッサ6070により画像処理され制御室の表示手段となるディスプレイ6080で観察できる。
 また、この情報は電話回線6090等の伝送処理手段により遠隔地へ転送でき、別の場所のドクタールームなど表示手段となるディスプレイ6081に表示もしくは光ディスク等の記録手段に保存することができ、遠隔地の医師が診断することも可能である。また記録手段となるフィルムプロセッサ6100により記録媒体となるフィルム6110に記録することもできる。
 (その他の実施形態)
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
 本願は、2018年3月19日提出の日本国特許出願特願2018-051518及び2019年2月5日提出の日本国特許出願特願2019-019071を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。

Claims (11)

  1. 放射線を電気信号に変換する第1変換素子と前記第1変換素子の出力を第1信号線に接続する第1スイッチとを含む少なくとも1つの第1検出素子と、
    放射線を電気信号に変換する第2変換素子と前記第2変換素子の出力を第2信号線に接続する第2スイッチとを含む少なくとも1つの第2検出素子と、
    前記第1信号線及び前記第2信号線に現れる信号を読み出す読出部と、
    前記第1信号線及び前記第2信号線の電位をリセットするリセット部と、
    前記読出部により読み出された信号を処理する信号処理回路と、を有する撮像装置であって、
    放射線に対する前記第1変換素子の感度と放射線に対する前記第2変換素子の感度とは異なるように設定され、
    前記読出部が、前記第1信号線および前記第2信号線から信号を読み出す期間は、
    前記リセット部によって前記第1信号線及び前記第2信号線の電圧がリセットされる動作と、その後に前記第1スイッチ及び前記第2スイッチが導通しない状態で前記第1信号線及び前記第2信号線に現れる信号がそれぞれ読み出される動作と、を含む第1期間と、前記リセット部によって前記第1信号線及び前記第2信号線の電圧がリセットされる動作と、その後に前記第1スイッチ及び前記第2スイッチが導通した後に前記第1信号線及び前記第2信号線に現れる信号がそれぞれ読み出される動作と、を含む第2期間と、を含み、
    前記信号処理回路は、前記第1期間および前記第2期間に前記第2信号線から読み出された信号に基づいて前記第2期間に前記第1信号線から読み出された信号を補正することを特徴とする放射線撮像装置。
  2. 前記信号処理回路は、前記第1期間および前記第2期間に読み出された前記第2信号線に現れた信号の大きさの比を演算し、前記第1期間に前記第1信号線に現れた信号と前記大きさの比に基づいて前記第2期間に前記第1信号線に現れた信号を補正することを特徴とする請求項1に記載の放射線撮像装置。
  3. 前記信号処理回路は、前記第1期間および前記第2期間に読み出された前記第1信号線に現れた信号および前記第2信号線に現れた信号の差分を演算して、前記第1信号線に現れた信号を補正することを特徴とする請求項1に記載の放射線撮像装置。
  4. 前記大きさの比が所定の閾値以下のとき、前記読出部は前記第1期間および前記第2期間における動作を止め、前記第1信号線の電圧がリセットされる動作と、その後に、前記第1スイッチを導通した後に前記第1信号線に現れた信号を読み出す動作を開始することを特徴とする請求項2に記載の放射線撮像装置。
  5. 前記放射線撮像装置は、放射線を光に変換するシンチレータを有し、
    前記第1変換素子及び前記第2変換素子は、該光を電気信号に変換する光電変換素子を含むことを特徴とする請求項1乃至4のいずれか1項に記載の放射線撮像装置。
  6. 前記シンチレータと前記第2変換素子との間に遮光部材が配置されていることを特徴とする請求項5に記載の放射線撮像装置。
  7. 前記第1変換素子の放射線を検出するための領域の大きさと前記第2変換素子の放射線を検出するための領域の大きさとは互いに異なることを特徴とする請求項1乃至6のいずれか1項に記載の放射線撮像装置。
  8. 前記第1変換素子に印加されるバイアス電圧と前記第2変換素子に印加されるバイアス電圧とは互いに異なる電圧であることを特徴とする請求項1乃至7のいずれか1項に記載の放射線撮像装置。
  9. 前記第1検出素子および前記第2検出素子が配置される撮像領域において、
    前記第2検出素子は、前記撮像領域の周辺部に配置されていることを特徴とする請求項1乃至8のいずれか1項に記載の放射線撮像装置。
  10. 前記第1検出素子および前記第2検出素子が配置される撮像領域において、
    前記第2検出素子が複数個配置されていることを特徴とする請求項1乃至9のいずれか1項に記載の放射線撮像装置。
  11. 請求項1乃至10のいずれか1項に記載の放射線撮像装置と、
    前記放射線撮像装置からの信号を処理する信号処理部と、を備えることを特徴とする放射線撮像システム。
PCT/JP2019/008776 2018-03-19 2019-03-06 放射線撮像装置および放射線撮像システム WO2019181494A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/989,118 US11294078B2 (en) 2018-03-19 2020-08-10 Radiation imaging apparatus and radiation imaging system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-051518 2018-03-19
JP2018051518 2018-03-19
JP2019019071A JP7190360B2 (ja) 2018-03-19 2019-02-05 放射線撮像装置および放射線撮像システム
JP2019-019071 2019-02-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/989,118 Continuation US11294078B2 (en) 2018-03-19 2020-08-10 Radiation imaging apparatus and radiation imaging system

Publications (1)

Publication Number Publication Date
WO2019181494A1 true WO2019181494A1 (ja) 2019-09-26

Family

ID=67986127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008776 WO2019181494A1 (ja) 2018-03-19 2019-03-06 放射線撮像装置および放射線撮像システム

Country Status (2)

Country Link
US (1) US11294078B2 (ja)
WO (1) WO2019181494A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7157699B2 (ja) 2019-05-29 2022-10-20 キヤノン株式会社 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法および当該方法を実行させるプログラム
JP7410678B2 (ja) 2019-09-19 2024-01-10 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP7397635B2 (ja) 2019-11-22 2023-12-13 キヤノン株式会社 放射線検出装置、放射線検出システム、制御方法及びプログラム
JP2022022844A (ja) 2020-07-08 2022-02-07 キヤノン株式会社 放射線撮像装置
JP7449260B2 (ja) 2021-04-15 2024-03-13 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP2022164433A (ja) 2021-04-16 2022-10-27 キヤノン株式会社 放射線撮像装置および放射線撮像システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185471A (ja) * 1986-02-10 1987-08-13 Hitachi Ltd 固体撮像素子
JP2015213221A (ja) * 2014-05-01 2015-11-26 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP2016082255A (ja) * 2014-10-09 2016-05-16 キヤノン株式会社 撮像装置及び放射線撮像システム
JP2016220116A (ja) * 2015-05-22 2016-12-22 キヤノン株式会社 放射線撮像装置及び放射線撮像システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185471A (ja) * 1986-02-10 1987-08-13 Hitachi Ltd 固体撮像素子
JP2015213221A (ja) * 2014-05-01 2015-11-26 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP2016082255A (ja) * 2014-10-09 2016-05-16 キヤノン株式会社 撮像装置及び放射線撮像システム
JP2016220116A (ja) * 2015-05-22 2016-12-22 キヤノン株式会社 放射線撮像装置及び放射線撮像システム

Also Published As

Publication number Publication date
US11294078B2 (en) 2022-04-05
US20200371259A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP6585910B2 (ja) 放射線撮像装置および放射線撮像システム
JP6555909B2 (ja) 放射線撮像装置及び放射線撮像システム
JP6339853B2 (ja) 放射線撮像装置および放射線撮像システム
WO2019181494A1 (ja) 放射線撮像装置および放射線撮像システム
CN110574361B (zh) 放射线摄像设备、放射线摄像系统、控制方法和存储介质
WO2017183264A1 (ja) 放射線撮像装置、放射線撮像システム、及び、放射線撮像装置の制御方法
JP6929104B2 (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法及びプログラム
JP2018191152A (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法及びプログラム
CN111214250B (zh) 放射线成像装置和放射线成像系统
WO2018135293A1 (ja) 放射線撮像装置及び放射線撮像システム
WO2020241062A1 (ja) 放射線撮像装置および放射線撮像システム
JP2020089714A (ja) 放射線撮像装置及び放射線撮像システム
JP6808458B2 (ja) 放射線撮像装置および放射線撮像システム
US9912881B2 (en) Apparatus, system, and method of controlling apparatus
JP7190360B2 (ja) 放射線撮像装置および放射線撮像システム
JP6456127B2 (ja) 放射線撮像装置および放射線撮像システム
JP6494387B2 (ja) 放射線撮像装置及び放射線撮像システム
JP6618251B2 (ja) 放射線撮像装置および放射線撮像システム
JP6929327B2 (ja) 放射線撮像装置及び放射線撮像システム
JP6436754B2 (ja) 放射線撮像装置および放射線撮像システム
JP6555893B2 (ja) 放射線撮像装置および放射線撮像システム
JP2018195949A (ja) 放射線撮像装置及び放射線撮像システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771051

Country of ref document: EP

Kind code of ref document: A1