CN108349789A - 具有聚合物和金属氧化物混合涂层的玻璃制品 - Google Patents

具有聚合物和金属氧化物混合涂层的玻璃制品 Download PDF

Info

Publication number
CN108349789A
CN108349789A CN201680062617.3A CN201680062617A CN108349789A CN 108349789 A CN108349789 A CN 108349789A CN 201680062617 A CN201680062617 A CN 201680062617A CN 108349789 A CN108349789 A CN 108349789A
Authority
CN
China
Prior art keywords
coating
metal oxide
package
medicament
glass container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680062617.3A
Other languages
English (en)
Inventor
D·亨利
V·C·拉卡里埃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN108349789A publication Critical patent/CN108349789A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/08Coverings or external coatings
    • B65D23/0807Coatings
    • B65D23/0814Coatings characterised by the composition of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/40Details of walls
    • B65D1/42Reinforcing or strengthening parts or members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1468Containers characterised by specific material properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/09Ampoules
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/003General methods for coating; Devices therefor for hollow ware, e.g. containers
    • C03C17/005Coating the outside
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • C03C17/009Mixtures of organic and inorganic materials, e.g. ormosils and ormocers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/256Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/214Al2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/22ZrO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/111Deposition methods from solutions or suspensions by dipping, immersion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Paints Or Removers (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)
  • Medicinal Preparation (AREA)

Abstract

根据一个或多个实施方式,药物包装件可以包括玻璃容器和涂层。玻璃容器可以包含第一表面和与第一表面相对的第二表面。第一表面可以为玻璃容器的外表面。涂层可以位于玻璃容器的第一表面的至少一部分的上方。涂层可以包含一种或多种聚酰亚胺组合物和一种或多种金属氧化物组合物。所述一种或多种聚酰亚胺组合物和所述一种或多种金属氧化物组合物可以在涂层中混合。

Description

具有聚合物和金属氧化物混合涂层的玻璃制品
相关申请的交叉引用
本申请要求2015年10月30日提交的序列号为62/248,827,名称为“GlassArticles With Mixed Polymer And Metal Oxide Low-Friction Coatings”(《具有聚合物和金属氧化物混合低摩擦涂层的玻璃制品》)(代理人案卷号为SP15-310PZ/34116-2055)的美国临时专利申请的优先权,其全文通过引用的方式纳入本文。
背景
技术领域
本说明书一般涉及涂层,更具体而言,涉及施涂于玻璃容器如药物包装件的涂层。
背景技术
历史上,由于玻璃相对于其他材料来说具有气密性、光学清晰度和优异的化学耐久性,因此已将玻璃用作包装药物的优选材料。具体而言,用于药物包装的玻璃需具有足够的化学耐久性而不会影响其中所含药物组合物的稳定性。具有合适的化学耐久性的玻璃包含ASTM标准“类型1B”中的那些玻璃组合物,它们的化学耐久性得到了历史证实。
但是,将玻璃用于这些应用受到玻璃的机械性能的限制。在制药产业中,玻璃破裂是终端用户关心的安全问题,因为破裂的包装件和/或包装件的内容物可能伤害终端用户。此外,非毁灭性的破裂(即,当玻璃裂开却没有破裂时)可能导致内容物丧失其无菌性,这进而可能导致昂贵的产品召回。
具体而言,当包装件与加工设备、处理设备和/或其他包装件接触时,在制造和填充玻璃药物包装件时所使用的高加工速度可能导致包装件表面上机械损坏(例如磨损)。这一机械损坏显著地降低了玻璃药物包装件的强度,导致玻璃中出现裂纹的可能性增加,这可能会破坏包装件中所含药物的无菌性或导致包装件完全失效。
改进玻璃包装件的机械耐久性的一种方法是对玻璃包装件进行热回火和/或化学回火。热回火通过在成形之后的快速冷却期间诱导表面压缩应力来强化玻璃。对于具有平坦几何形状(如窗户)的玻璃制品,厚度大于约2mm的玻璃制品和高热膨胀的玻璃组合物来说,这种技术非常可行。然而,药物玻璃包装件通常具有复杂的几何形状(小瓶、管状、安瓿等)、薄的壁(有时在约1-1.5mm之间),以及由低膨胀玻璃制造,这使玻璃药物包装件不适于通过常规热回火强化。化学回火通过引入表面压缩应力也使玻璃强化。通过将制品浸没到熔融盐浴中引入应力。由于来自玻璃的离子被来自熔融盐的更大的离子替换,因此,在玻璃的表面中诱导了压缩应力。化学回火的优点在于其可在复杂的几何形状、薄的样品上使用,并且对玻璃基材的热膨胀性质相对不那么敏感。
然而,虽然上述回火技术提高了强化玻璃承受钝性冲击的能力,但是这些技术在改进玻璃对在制造、运输和处理期间可能发生的磨损(例如刮擦)的耐受性却不太有效。
因此,需要抗机械损坏得到改进的替代性玻璃制品。
发明内容
根据一个实施方式,药物包装件可以包括玻璃容器和涂层。玻璃容器可以包含第一表面和与第一表面相对的第二表面。第一表面可以为玻璃容器的外表面。涂层可以位于玻璃容器的第一表面的至少一部分的上方。涂层可以包含一种或多种聚酰亚胺组合物和一种或多种金属氧化物组合物。所述一种或多种聚酰亚胺组合物和所述一种或多种金属氧化物组合物在涂层中可以是混合的。
在另一个实施方式中,药物包装件可以通过以下方法生产,所述方法包括:将涂层混合物沉积到玻璃容器的外表面的第一表面上,以及加热涂层混合物以在玻璃容器的外表面上形成涂层。所述涂层混合物可以包含一种或多种金属氧化物前体。所述涂层混合物还可以包含一种或多种聚合物组合物、一种或多种聚合物前体或者既包含一种或多种聚合物组合物又包含一种或多种聚合物前体。所述涂层可以包含一种或多种聚合物组合物和一种或多种金属氧化物组合物。
在另一个实施方式中,药物包装件可以包括玻璃容器和涂层。玻璃容器可以包含第一表面和与第一表面相对的第二表面。第一表面可以为玻璃容器的外表面。涂层可以位于玻璃容器的第一表面的至少一部分的上方。所述涂层可以包含一种或多种聚合物组合物和一种或多种金属氧化物组合物。所述一种或多种聚合物组合物和所述一种或多种金属氧化物组合物在涂层中可以是混合的。所述一种或多种金属氧化物组合物与所述一种或多种聚合物组合物的重量比可以为约20/80至约95/5。聚合物和金属氧化物在涂层中的组合可以占涂层的至少约95重量%。
在以下的具体实施方式中列出了可以用于涂覆玻璃制品的涂层、涂覆的玻璃制品及用于制造该涂覆的玻璃制品的方法和工艺的另外的特征和优点,其中的部分特征和优点对本领域的技术人员而言,根据所作描述就容易看出,或者通过实施包括以下具体实施方式、权利要求书以及附图在内的本文所述的实施方式而被认识。
应理解,前述的一般性描述和下文的具体实施方式都描述了各个实施方式且都旨在提供用于理解所要求保护的主题的性质和特性的总体评述或框架。包括的附图提供了对各个实施方式的进一步理解,附图并入本说明书中并构成说明书的一部分。附图例示了本文所描述的各个实施方式,且与说明书一起用于解释所要求保护的主题的原理和操作。
附图说明
图1根据本文所示及所述的一个或多个实施方式,示意性地描述了具有涂层的玻璃容器的截面图;
图2根据本文所示及所述的一个或多个实施方式,示意性地描述了具有单层涂层的图1的玻璃容器的放大截面图;
图3根据本文所示及所述的一个或多个实施方式,示意性地描述了用于确定两个表面之间的摩擦系数的测试台;
图4根据本文所示及所述的一个或多个实施方式,描述了与涂覆的制品的水平压缩强度相关的数据;
图5根据本文所示及所述的一个或多个实施方式,描述了可以包含在涂层中的一些合适的氟化聚酰亚胺的化学结构;
图6A根据本文所示及所述的一个或多个实施方式,描述了实施例1的样品的COF数据;
图6B根据本文所示及所述的一个或多个实施方式,描述了实施例1的样品的COF数据;
图6C根据本文所示及所述的一个或多个实施方式,描述了实施例1的样品的COF数据;
图6D根据本文所示及所述的一个或多个实施方式,描述了实施例1的样品的COF数据;
图6E根据本文所示及所述的一个或多个实施方式,描述了实施例1的样品的COF数据;
图6F根据本文所示及所述的一个或多个实施方式,描述了实施例1的样品的COF数据;
图6G根据本文所示及所述的一个或多个实施方式,描述了实施例1的样品的COF数据;
图6H根据本文所示及所述的一个或多个实施方式,描述了实施例1的样品的COF数据;
图6I根据本文所示及所述的一个或多个实施方式,描述了实施例1的样品的COF数据;
图6J根据本文所示及所述的一个或多个实施方式,描述了实施例1的样品的COF数据;
图6K根据本文所示及所述的一个或多个实施方式,描述了实施例1的样品的COF数据;
图6L根据本文所示及所述的一个或多个实施方式,描述了实施例1的样品的COF数据;
图6M根据本文所示及所述的一个或多个实施方式,描述了实施例1的样品的COF数据;
图6N根据本文所示及所述的一个或多个实施方式,描述了实施例1的样品的COF数据;
图7A根据本文所示及所述的一个或多个实施方式,描述了实施例4的样品的COF数据;
图7B根据本文所示及所述的一个或多个实施方式,描述了实施例4的样品的COF数据;
图7C根据本文所示及所述的一个或多个实施方式,描述了实施例4的样品的COF数据;
图7D根据本文所示及所述的一个或多个实施方式,描述了实施例4的样品的COF数据;
图7E根据本文所示及所述的一个或多个实施方式,描述了实施例4的样品的COF数据;
图7F根据本文所示及所述的一个或多个实施方式,描述了实施例4的样品的COF数据;
图7G根据本文所示及所述的一个或多个实施方式,描述了实施例4的样品的COF数据;
图7H根据本文所示及所述的一个或多个实施方式,描述了实施例4的样品的COF数据;
图7I根据本文所示及所述的一个或多个实施方式,描述了实施例4的样品的COF数据;
图7J根据本文所示及所述的一个或多个实施方式,描述了实施例4的样品的COF数据;
图7K根据本文所示及所述的一个或多个实施方式,描述了实施例4的样品的COF数据;
图7L根据本文所示及所述的一个或多个实施方式,描述了实施例4的样品的COF数据;
图8根据本文所示及所述的一个或多个实施方式,描述了在进行了COF测试后,实施例1的样品的磨损玻璃表面图;
图9根据本文所示及所述的一个或多个实施方式,描述了在进行了COF测试后,实施例4的样品的磨损玻璃表面图;
图10根据本文所示及所述的一个或多个实施方式,描述了在暴露于去除热原条件及进行了COF测试后,实施例1的样品的磨损玻璃表面图;
图11根据本文所示及所述的一个或多个实施方式,描述了实施例1的样品在暴露于去除热原条件后的COF数据;
图12根据本文所示及所述的一个或多个实施方式,描述了实施例1的其他样品在暴露于去除热原条件后的COF数据;
图13根据本文所示及所述的一个或多个实施方式,描述了实施例1及对比例3的样品涂覆小瓶的光学数据;
图14根据本文所示及所述的一个或多个实施方式,描述了实施例2的样品在暴露于去除热原条件后的COF数据;
图15根据本文所示及所述的一个或多个实施方式,描述了实施例2的样品在暴露于去除热原条件后的COF数据;
图16根据本文所示及所述的一个或多个实施方式,描述了在暴露于去除热原条件及进行了COF测试后,实施例2的样品的磨损玻璃表面图;
图17根据本文所示及所述的一个或多个实施方式,描述了实施例4的样品在暴露于去除热原条件后的COF数据;和
图18根据本文所示及所述的一个或多个实施方式,描述了在暴露于去除热原条件及进行了COF测试后,实施例4的样品的磨损玻璃表面图。
具体实施方式
现将详细参考涂层、具有涂层的玻璃制品及其生产方法的各个实施方式,它们的实例在附图中示意性示出。这种涂覆的玻璃制品可以为适用于各种包装应用的玻璃容器,包括但不限于作为药物包装件。应理解,涂覆的玻璃制品可以指如本公开所述的涂覆的药物包装件。在一些实施方式中,涂层和/或涂覆的药物包装件在初始施涂及固化后暴露于高温(例如在去除热原工艺期间应用的高温)下时,它们是热稳定的。例如,本文所述的涂覆的玻璃制品在进行热处理后可以充分地保留其低的摩擦系数,并且在进行这样的热处理后颜色基本上可以不变黄。这些药物包装件可以包含或者可以不包含药物组合物。在一些实施方式中,涂层可以包含混合层,所述混合层包含一种或多种聚合物(例如聚酰亚胺)和一种或多种金属氧化物(例如二氧化钛、氧化锆或氧化铝)。在一个或多个实施方式中,所述涂层可以为低摩擦涂层。
本文将具体参考附图更详细地描述涂层、具有涂层的玻璃制品及其形成方法的各个实施方式。虽然本文所述的涂层的实施方式被施涂于玻璃容器的外表面,但是应理解,所述涂层可作为涂层用在各种材料上,包括非玻璃材料,以及除容器之外的基材上,包括但不限于玻璃显示面板等。
一般而言,可以将涂层施涂于玻璃制品的表面,所述玻璃制品例如可以用作药物包装件的容器。所述涂层可以向涂覆的玻璃制品提供有利性质,例如摩擦系数减小及抗损坏性提高。摩擦系数减小可以通过减轻对玻璃的摩擦损坏而赋予玻璃制品改进的强度和耐久性。另外,在暴露于高温和其他条件后,例如用于包装药物的包装和预包装步骤期间经历的条件,如去除热原、冻干、高压灭菌等之后,所述涂层可以保持上述改进的强度和耐久性特性。因此,所述涂层和具有该涂层的玻璃制品可以是热稳定的。
图1示意性地描述了涂覆的玻璃制品,尤其是涂覆的玻璃容器100的截面图。涂覆的玻璃容器100包含玻璃主体102和涂层120。玻璃主体102具有玻璃容器壁104,其在外表面108(即第一表面)与内表面110(即第二表面)之间延伸。玻璃容器壁104的内表面110限定了涂覆的玻璃容器100的内部体积106。涂层120位于玻璃主体102的外表面108的至少一部分上。如果例如在基材与位于基材上方的涂层之间存在中间层,则如本文所使用的,涂层可以“位于”基材“上”而不与基材直接接触。在一些实施方式中,涂层120基本上可以位于玻璃主体102的整个外表面108上。在一些实施方式中,例如图1所描述的,涂层120可以在外表面108处粘合于玻璃主体102。涂层120具有外表面122以及在玻璃主体102与涂层120的界面处的接触玻璃主体的表面124。
在一个实施方式中,涂覆的玻璃容器100为药物包装件。例如,玻璃主体102可以为以下形状:小瓶、安瓿、安瓿瓶、瓶、烧瓶、管形瓶、烧杯、桶、玻璃瓶、缸、注射器主体等。涂覆的玻璃容器100可以用于容纳任意组合物,在一个实施方式中,可以用于容纳药物组合物。药物组合物可以包含旨在用于疾病的医学诊断、治愈、治疗或预防的任何化学物质。药物组合物的实例包括但不限于药物(medicines)、药品(drugs)、药剂(medications)、医药(medicaments)、医药剂(remedies)等。药物组合物可以是液体、固体、凝胶、悬浮液、粉末等形式。
现在参考图1和2,在一个实施方式中,涂层120包含单一层状结构,该单一层状结构在本文中有时被称为“单层”结构。例如,涂层120可以具有一种或多种聚合物与一种或多种金属氧化物混合的基本上均匀的组合物。在其他实施方式中,混合物可以是混合的但不完全均匀的。例如,在一个或多个实施方式中,混合物的一种或多种化学成分可以在涂层120的界面(例如与玻璃主体102或外表面122的界面)处聚集。在这样的实施方式中,化学成分的局部浓度在涂层120的不同区域内可以有所不同。然而,应理解,如本文所使用的术语“混合”是指具有至少两种化学组分的至少一些分散体的层,并且包括不完全均匀的层。一般来说,混合层作为涂层混合物中含有的两种或更多种化学成分的混合物沉积。
如本文所使用的,涂层120包括至少含有金属氧化物和聚合物的混合组合物。一般来说,所述聚合物为热稳定的聚合物,当将其暴露于适于去除热原的温度下,例如至少约250℃、至少约260℃、至少约280℃或者甚至是至少约300℃下约30分钟时,所述聚合物不会显著降解或者完全不降解。在一些实施方式中,金属氧化物可以包括TiO2(二氧化钛)、ZrO2(氧化锆)、Al2O3(氧化铝)及其组合中的一种或多种。涂层120可以以涂层混合物施涂于玻璃主体102,所述涂层混合物包含一种或多种金属氧化物前体和一种或多种聚合物或聚合物前体。“涂层混合物”是指施涂于玻璃主体102的含有金属氧化物前体和聚合物(或聚合物前体)的液体溶液。通常,涂层混合物需包括一种或多种有机溶剂以及金属氧化物前体和聚合物(或聚合物前体)。如本文中所使用的,“前体”是指含有某种材料的化学成分,该材料在施涂于并固化涂覆的玻璃容器100后将变成涂层120中的成分。也就是说,前体中的至少一些原子将变成形成的涂层中的原子。例如,金属氧化物前体可以包括金属氧化物的化学组分(即金属原子和氧原子)以及在固化期间可以从混合物中离析出来的有机部分。聚合物前体可以包括在固化时进行部分或完全聚合或以其他方式反应的不完全聚合或非聚合的化学成分。例如,聚酰胺酸被认为是一种聚合物前体,因为其在固化期间酰亚胺化形成聚酰亚胺。如本文中所使用的,“不完全聚合的”前体材料可以以聚合态存在,但是可能需要进一步处理以形成特定的聚合键合,例如进行酰亚胺化。应理解,在各个实施方式中,在涂层混合物中可以包含多于一种金属氧化物前体。另外,在各个实施方式中,在涂层混合物中可以包含多于一种聚合物、聚合物前体或者聚合物和聚合物前体。另外,应理解,各种金属氧化物前体材料可以以低聚物或水解产物存在于涂层混合物中。应理解,对于本文公开的所有金属氧化物前体材料来说,它们的低聚物和水解产物形式被认为是合适的金属氧化物前体。
在一个或多个实施方式中,涂层120的金属氧化物可以包括二氧化钛、氧化锆、氧化铝或其组合。然而,本文还考虑了其他金属氧化物。涂层120的金属氧化物成分可以由金属氧化物前体形成。金属氧化物前体可以具有通式MeXn,其中,Me表示金属元素,例如Ti、Al或Zr,并且每个X表示羟基基团、可水解基团或螯合基团,并且其中每个X可以相同或不同。在一些实施方式中,取决于使用的金属元素,n可以为3或4,或者其他数值。示例性的金属氧化物前体包括钛酸酯、锆酸酯、铝酸酯、锆铝酸酯、它们的水解产物或低聚物以及它们的混合物。
在另一个实施方式中,金属氧化物可以为由含钛金属氧化物前体形成的二氧化钛,其中,金属氧化物前体可以为四原钛酸酯,其一般可以用化学结构Ti(OR)4表示。四原钛酸酯的实例包括原钛酸四乙基酯;原钛酸四甲基酯;原钛酸四异丙基酯[作为TYZOR TPT商购自道夫凯特(Dorf Ketal)(先前为杜邦(DuPont))];原钛酸四戊基酯;原钛酸四辛基酯;原钛酸四十二烷基酯;原钛酸四-2-乙基己基酯;原钛酸四苄基酯;原钛酸四环己基酯;原钛酸四苯基酯;原钛酸四乙氧基乙基酯;钛酸四正丁基酯(作为TYZOR TnBT商购自道夫凯特);四(2-乙基己基)钛酸酯(作为TYZOR TOT商购自道夫凯特);以及原钛酸四-β-萘基酯。
在另一个实施方式中,金属氧化物可以为由含钛金属氧化物前体形成的二氧化钛,其中,金属氧化物前体可以为六配位的螯合钛酸酯。六配位的螯合钛酸酯可以用下文的化学结构#1的通用化学结构表示。六配位的螯合钛酸酯相比于四原钛酸酯来说对其相对化学稳定性可以是有利的。例如,四原钛酸酯可能易于水解。六配位的螯合钛酸酯的实例包括钛乙酰丙酮酸酯(作为TYZOR AA、TYZOR AA-65、TYZOR AA-75和TYZOR AA-105分别商购自道夫凯特);二异氧丙基钛二(乙酰丙酮酸酯)(作为TYZOR-GBA商购自道夫凯特);钛乙酰丙酮酸酯二(戊烷-2,4-二酮酸酯合(dionato)-O,O')二(烷醇合(alkanolato))钛(作为TYZORGBO商购自道夫凯特);二异丙氧基-二乙基乙酰乙酸酯合(bisethylacetoacetato)钛酸酯(作为TYZOR DC商购自道夫凯特);以及(三乙醇胺酸酯合(triethanolaminato))异丙醇钛(IV)(作为TYZOR TE商购自道夫凯特)。
●化学结构#1—通用的钛酸酯螯合物结构
在另一个实施方式中,金属氧化物可以为由含钛金属氧化物前体形成的二氧化钛,其中,金属氧化物前体可以为聚合钛酸酯。聚合钛酸酯可以具有通用的化学结构RO[Ti(OR)2O-]x R,其中R表示选自烷基、芳基、芳烷基和环烷基的烃基,并且x为大于1的整数(例如4、5、6、7或8)。聚合钛酸酯的平均分子量可以为约1kDa至约1.5kDa,也考虑了其他分子量。在一个实施方式中,稳定的聚合钛酸酯可通过使螯合剂(例如乙酰乙酸乙酯)结合到四配位的钛化合物(例如聚合二氧化钛)来制备。
在另一个实施方式中,金属氧化物可以为由含锆金属氧化物前体形成的氧化锆。含锆金属氧化物前体的实例包括乙酰基丙酮酸锆;叔丁醇锆;六氟乙酰基丙酮酸锆;环烷酸锆;丙醇锆;异丙醇锆;锆石铝酸酯;锆酸酯有机金属化合物[例如四(2,2二烯丙氧基甲基)丁基二(双十三烷基)膦基锆酸酯(作为KZ 55商购自Kenrich Petrochemicals(肯瑞奇石油化学品)股份有限公司);新戊基(二烯丙基)氧基三新癸酰基锆酸酯;新戊基(二烯丙基)氧基三(十二烷基)苯-磺酰基锆酸酯;新戊基(二烯丙基)氧基三(二辛基)磷酸酯合锆酸酯;新戊基(二烯丙基)氧基三(二辛基)焦磷酸酯合锆酸酯;新戊基(二烯丙基)氧基三(N-乙二氨基)乙基锆酸酯;新戊基(二烯丙基)氧基三(间氨基)苯基锆酸酯;新戊基(二烯丙基)氧基三甲基丙烯酰基锆酸酯;新戊基(二烯丙基)氧基三丙烯酰基锆酸酯;二新戊基(二烯丙基)氧基二对氨基苯甲酰基锆酸酯;二新戊基(二烯丙基)氧基二(3-巯基)丙酸锆酸酯],它们的水解产物及它们的组合。
在另一个实施方式中,金属氧化物可以为由含铝金属氧化物前体形成的氧化铝。例如,至少一种金属氧化物前体可以为四配位的铝酸酯,例如但不限于二(异丙氧基)铝-乙酰乙酸酯螯合物。
如上所述,在一个或多个实施方式中,涂层120除了金属氧化物外还包括聚合物组分。在一个或多个实施方式中,涂层的聚合物可以为在高温下,例如在至少约250℃、至少约260℃、至少约280℃或者至少约300℃下基本上不降解的任意聚合物或聚合物的组合。如在本文中所使用的,如果一种聚合物没有损失其质量的至少约5%,则该聚合物“基本上不降解”。例如,TGA测试可用于确定聚合物在给定的温度下是否基本上降解。应理解,聚合物在初始固化后的热处理中不应该基本上降解,并且固化处理不构成用于验证涂层或涂层材料(如聚酰亚胺)的热稳定性的热处理。例如,可以包含在涂层120中的聚合物可以包括聚酰亚胺、含氟聚合物、氟化聚酰亚胺和/或聚酰胺-酰亚胺。
在一个实施方式中,聚合物可以为聚酰亚胺,其作为在有机溶液中的部分或完全酰亚胺化的聚酰亚胺存在于涂层混合物中。例如,可以使用一些有机可溶性氟化聚酰亚胺,它们可以酰亚胺化的状态存在于涂层混合物中。聚酰亚胺在某些溶剂中可以是稳定的,所述溶剂例如但不限于N,N-二甲基乙酰胺(DMAc)、N,N-二甲基甲酰胺(DMF)和1-甲基-2-吡咯烷酮(NMP)溶剂或其混合物。
在另一个实施方式中,聚合物可以由聚合物前体形成。例如,一些聚酰亚胺以聚酰亚胺形式在溶液中可能不是结构稳定的,取而代之的是以聚酰胺酸存在于溶液中,聚酰胺酸可以为未环化的聚酰亚胺前体,其可以由例如二胺单体与二酐单体形成。一般来说,聚酰胺酸需进行固化来变成酰亚胺化的化学物质。该固化可以包含在300℃下加热聚酰胺酸约30分钟或更短,或者在高于300℃的温度下,如在至少320℃、340℃、360℃、380℃或400℃下加热。还考虑了更高的固化温度可以与更短的固化时间配对。不囿于理论,认为固化步骤通过羧酸部分与酰胺部分反应形成聚酰亚胺而使聚酰胺酸酰亚胺化。
合适的氟化聚酰亚胺的实例包括以下共聚物:2,2-双(3,4-二羧基苯基)六氟丙烷二酐-共-1,4-苯二胺、2,2-双(3,4-二羧基苯基)六氟丙烷二酐-共-1,3-苯二胺;[简称为6FDA-mPDA/pPDA,作为Avimid N商购自氰特公司(Cytec)];2,2-双(3,4-二羧基苯基)六氟丙烷二酐-共-4,4'-氧基双苯胺(简称为6FDA-ODA,作为Pyralin DI 2566商购自杜邦公司);2,2-双(3,4-二羧基苯基)六氟丙烷二酐-共-1,4-苯二胺、2,2-双(3,4-二羧基苯基)六氟丙烷二酐-共-4,4’-(2,2,2-三氟(1-三氟甲基)亚乙基)双苯胺[简称为6FDA-4,4’-6F(作为Sixef 44商购自赫斯特公司(Hoechst Celanese));2,2-双(3,4-二羧基苯基)六氟丙烷二酐-共-1,4-苯二胺、2,2-双(3,4-二羧基苯基)六氟丙烷二酐-共-3,3’-(2,2,2-三氟(1-三氟甲基)亚乙基)双苯胺(简称为6FDA-3,3’-6F,作为Sixef 33商购自赫斯特公司);2,2-双(3,4-二羧基苯基)六氟丙烷二酐-共-2,3,5,6-四甲基苯二胺(简称为6FDA-Durene,作为Sixef Durene商购自赫斯特公司);和2,2-双(3,4-二羧基苯基)六氟丙烷二酐-共-2,2-双[4-(4-氨基苯氧基)苯基]六氟丙烷(简称为6FDA-4-BDAF,作为LARC-CP1商购自NeXolve)。图5提供了这些氟化聚酰亚胺的化学结构。
在另一个实施方式中,卤代聚酰亚胺硅氧烷可以用作涂层120中的聚合物组分。所述卤代聚酰亚胺硅氧烷可以是卤代的,例如氟化的,并且可以包含硅氧烷部分。合适的卤代聚酰亚胺硅氧烷的实例可在名称为《卤代聚酰亚胺硅氧烷化学组合物及具有卤代聚酰亚胺硅氧烷低摩擦涂层的玻璃制品》(“Halogenated Polyimide Siloxane ChemicalCompositions and Glass Articles with Halogenated Polyimide Siloxane Low-Friction Coatings”)的欧洲专利申请15290254.0中找到,其通过引用的方式全文纳入本文。这些卤代聚酰亚胺硅氧烷可以是有利的,因为它们可以部分或完全酰亚胺化的形式溶于无毒且低沸点溶剂,例如乙酸酯或酮(例如,低沸点溶剂可以包括乙酸乙酯、丙二醇甲醚乙酸酯、甲苯、丙酮、2-丁酮及其混合物)。
可以通过使涂层混合物与玻璃主体102接触来施涂涂层。涂层混合物含有所述至少一种金属氧化物前体和所述至少一种聚合物(或聚合物前体,如聚酰胺酸)。涂层混合物还可以包含溶剂,例如有机溶剂。在一些实施方式中,金属氧化物前体和聚合物(或聚合物前体)的非溶剂部分可以占涂层混合物的约0.5重量%至约10重量%,例如约1重量%、约2重量%或约3重量%。可以改变固体重量百分数以使涂层能够具有不同的厚度。例如,较高重量百分数的涂层混合物可以沉积更厚的涂层120的层。已经发现,在一个或多个实施方式中,固体重量百分数相对较低的涂层混合物适于含有相对较高量的聚合物的涂层实施方式,而固体重量百分数相对较高的涂层混合物适于含有相对较高量的金属氧化物前体的涂层混合物。
再次参考图1和2,如果涂层120包含单一层,则可以在单个沉积步骤中施涂涂层120。可以通过浸没工艺进行沉积,或者替换性地,可以通过喷洒或其他合适的方式施涂涂层120并任选地进行干燥。用于本文所述的涂层120的合适的沉积方法的记载可以在名称为《具有低摩擦涂层的玻璃制品》(Glass Articles with Low-Friction Coatings)的第13/780,740号美国专利申请中找到,其全文通过引用的方式纳入本文。在另外的实施方式中,可以应用多次沉积。例如,可以进行多次的涂层前体沉积然后固化,或者可以在每步的沉积步骤之后固化,以将前体的第二涂层施涂到固化层上。
涂层混合物沉积后,通过被动干燥或通过主动干燥步骤(例如受控的空气流动或高温)释放至少一部分的有机溶剂。然后可以通过暴露于热来固化涂覆的玻璃容器100。如本文所述,“固化”是指将涂层上的材料从前体材料变成中间体或最终材料的任意过程(通常通过加热)。例如,一些实施方式通过加热来利用固化,其将成分从金属氧化物前体中释放出来并形成金属氧化物。如本文所述,固化无需涉及聚合物的交联,或者聚合物的聚合。例如,包含聚酰亚胺和金属氧化物前体的前体组合物可以在加热下固化以从金属氧化物前体中释放出一些质量而形成金属氧化物。该固化可以包含在300℃下加热涂覆的小瓶约30分钟或更短,或者在高于300℃的温度下,如在至少320℃、340℃、360℃、380℃或400℃下加热。固化条件可以取决于所用的前体材料类型。不囿于理论,认为固化步骤释放了金属氧化物前体中的有机成分,从而形成了金属氧化物,例如二氧化钛、氧化铝或氧化锆。另外,固化步骤可以使聚合物前体部分或完全聚合,例如使聚酰胺酸酰亚胺化。此外,固化步骤释放了涂层混合物中的任何剩余溶剂。不囿于理论,认为通过对涂层进行固化使得与合适的聚合物掺混的金属氧化物前体在原位被转化成金属氧化物而不需要预水解反应。
施涂于玻璃主体102的涂层120的厚度可以小于或等于约100μm、小于或等于约10μm、小于或等于约8μm、小于或等于约6μm、小于或等于约4μm、小于或等于约3μm、小于或等于约2μm或者甚至是小于或等于约1μm。在一些实施方式中,涂层120的厚度可以小于或等于约800nm、小于或等于约600nm、小于或等于约400nm 300nm、小于或等于约200nm,或者甚至是小于或等于约100nm厚。在其他实施方式中,涂层120可以小于约90nm厚、小于约80nm厚、小于约70nm厚、小于约60nm厚、小于约50nm,或者甚至是小于约25nm厚。在一些实施方式中,涂层120的厚度可以为至少约10nm、至少约15nm、至少约20nm、至少约25nm、至少约30nm、至少约35nm、至少约40nm或者甚至是至少约45nm。示例性实施方式的厚度可以为约20nm至约50nm、约25nm至约45nm或约30nm至约40nm。不囿于理论,认为相对较薄的涂层(即小于20nm)可能不足以保护玻璃,从而在小瓶与小瓶接触期间导致玻璃表面上起裂缝。另外,这种相对较薄的涂层可能经受不住去除热原工艺。另一方面,相对较厚的涂层(即大于50nm)可能更易于损坏并且在小瓶上具有小瓶的接触时可能在涂层中出现磨损痕迹。应注意,在相对较厚的涂层的情况中,认为磨损痕迹是涂层变形而非玻璃变形。如本文所述,磨损痕迹是通过对涂层磨损留下痕迹或磨痕而造成的可见痕迹。在一些实施方式中,磨损痕迹可以意味着玻璃起裂缝和/或相对较高的摩擦系数(例如0.7或更大)。
在一些实施方式中,涂层120在玻璃主体102的整体上方可以不为均匀的厚度。例如,由于玻璃主体102与一种或多种形成涂层120的涂层溶液接触的过程,涂覆的玻璃容器100在一些区域中可以具有较厚的涂层120。在一些实施方式中,涂层120可以具有不均匀的厚度。例如,涂层厚度可以在涂覆的玻璃容器100的不同区域上变化,这可以有助于在选定区域中进行保护。
在一些实施方式中,涂层中的聚合物(例如聚酰亚胺)与金属氧化物的组合可以占涂层的至少约50重量%、至少约60重量%、至少约70重量%、至少约80重量%、至少约90重量%、至少约95重量%、至少约96重量%、至少约97重量%、至少约98重量%、至少约99重量%、至少约99.5重量%、至少约99.8重量%或者甚至是至少约99.9重量%。在一些实施方式中,如果不存在其他成分,则组合性涂层120可以由金属氧化物和聚合物的组合组成。
在一个或多个实施方式中,在固化之后,所述一种或多种金属氧化物组合物在涂层中的总量可以为约20重量%至约95重量%。例如,所述一种或多种金属氧化物组合物在涂层中的总量可以为约20重量%至约30重量%、约20重量%至约40重量%、约20重量%至约50重量%、约20重量%至约60重量%、约20重量%至约70重量%、约20重量%至约80重量%、约20重量%至约90重量%、约30重量%至约95重量%、约40重量%至约95重量%、约50重量%至约95重量%、约60重量%至约95重量%、约70重量%至约95重量%、约80重量%至约95重量%或约90重量%至约95重量%。
在一个或多个实施方式中,在固化之后,所述一种或多种聚合物组合物在涂层中的总量可以为约5重量%至约80重量%。例如,所述一种或多种聚合物组合物在涂层中的总量可以为约5重量%至约20重量%、约5重量%至约30重量%、约5重量%至约40重量%、约5重量%至约50重量%、约5重量%至约60重量%、约5重量%至约70重量%、约10重量%至约80重量%、约20重量%至约80重量%、约30重量%至约80重量%、约40重量%至约80重量%、约50重量%至约80重量%、约60重量%至约80重量%、约70重量%至约80重量%。
在一个或多个实施方式中,所述一种或多种金属氧化物组合物与所述一种或多种聚合物组合物的重量比可以为至少约20/80、至少约25/75、至少约30/70、至少约35/65、至少约40/60、至少约45/55、至少约50/50、至少约55/45、至少约60/40、至少约65/35、至少约70/30、至少约75/25、至少约80/20、至少约85/15或者甚至是至少约90/10。所述一种或多种金属氧化物组合物与所述一种或多种聚合物组合物的重量比可以为约20/80至约95/5。例如,所述一种或多种金属氧化物组合物与所述一种或多种聚合物组合物的重量比可以为约25/75至约95/5、约30/70至约95/5、约35/65至约95/5、约40/60至约95/5、约45/55至约95/5、约50/50至约95/5、约55/45至约95/5、约60/40至约95/5、约65/35至约95/5、约70/30至约95/5、约75/25至约95/5、约80/20至约95/5、约85/15至约95/5、约90/10至约95/5、约20/80至约90/10、约20/80至约85/15、约20/80至约80/20、约20/80至约75/25、约20/80至约70/30、约20/80至约65/35、约20/80至约60/40、约20/80至约55/45、约20/80至约50/50、约20/80至约45/55、约20/80至约40/60、约20/80至约35/65、约20/80至约30/70、约20/80至约25/75。
应理解,如本文所使用的,第一种类型的“一种或多种”组分与第二种类型(例如聚合物和金属氧化物)的“一种或多种”组分的比值是指第一种类型组分的总量与第二种类型组分的总量的比值。例如,如果在涂层中包含两种不同的金属氧化物与两种不同的聚合物,则所述一种或多种金属氧化物组合物与所述一种或多种聚合物组合物的重量比将等于所述两种金属氧化物的合并重量除以所述两种聚合物的合并重量。该比值可以适用于施涂于玻璃容器(固化前)的或固化后的制品的涂层中的前体组分。
可以施涂涂层120的药物包装件的玻璃容器可以由各种不同的玻璃组合物形成。可以根据具体应用选择玻璃制品的具体组成,以使得玻璃具有所需的一组物理性质。根据一个或多个实施方式,所述玻璃可以为已知表现出化学耐久性和低的热膨胀性的组合物,例如碱性硼硅酸盐玻璃。根据另一个实施方式,其可以由根据ASTM标准E438-92的I型B类玻璃形成。
玻璃容器可以由热膨胀系数在约25x10-7/℃至80x10-7/℃范围内的玻璃组合物形成。例如,在本文所述的一些实施方式中,玻璃主体102由经受得住离子交换强化的碱性硅铝酸盐玻璃组合物形成。这样的组合物一般包含SiO2、Al2O3、至少一种碱土金属氧化物以及一种或多种碱金属氧化物(如Na2O和/或K2O)的组合。在这些实施方式中的一些实施方式中,所述玻璃组合物可以不含硼及包括硼的化合物。在其他一些实施方式中,所述玻璃组合物还可以包含少量的一种或多种另外的氧化物,例如SnO2、ZrO2、ZnO、TiO2、As2O3等。可以添加这些组分作为澄清剂并且/或者进一步增强所述玻璃组合物的化学耐久性。在另一个实施方式中,玻璃表面可以包括含有SnO2、ZrO2、ZnO、TiO2、As2O3等的金属氧化物涂层。
在本文所述的一些实施方式中,玻璃主体102是经过强化的,例如通过离子交换强化,其在本文中被称为“离子交换玻璃”。例如,玻璃主体102的压缩应力可以大于或等于约300MPa,或者甚至大于或等于约350MPa。在一些实施方式中,压缩应力可以在约300MPa至约900MPa的范围内。然而,应理解的是,在一些实施方式中,玻璃中的压缩应力可以小于300MPa或大于900MPa。在一些实施方式中,玻璃主体102的层深度大于或等于20μm。在这些实施方式中的一些实施方式中,层深度可以大于50μm或者甚至是大于或等于75μm。在其他实施方式中,层深度可以大至或者大于100μm。可以在温度保持在约350℃至约500℃下的熔融盐浴中进行离子交换强化。为了获得所需的压缩应力,可以将玻璃容器(未涂覆的)浸没于盐浴中小于约30个小时或者甚至小于约20个小时。例如,在一个实施方式中,在450℃下将玻璃容器浸没于100%KNO3盐浴约8个小时。
在一个具体的示例性实施方式中,玻璃主体102可以由一种可离子交换玻璃组合物形成,该可离子交换玻璃组合物记载于转让给康宁股份有限公司(Corning,Incorporated)的2012年10月25日提交的名称为《具有改进的化学和机械耐久性的玻璃组合物》(Glass Compositions with Improved Chemical and Mechanical Durability)的系列号为13/660894号未决的美国专利申请中。
然而,应理解的是,本文所述的涂覆的玻璃容器100可以由其他玻璃组合物形成,包括但不限于可离子交换的玻璃组合物及不可离子交换的玻璃组合物。例如,在一些实施方式中,玻璃容器可以由1B型玻璃组合物形成,例如由肖特公司(Schott)的1B型硼硅酸盐玻璃形成。
在本文所述的一些实施方式中,玻璃制品可以由符合监管机构基于药物玻璃的耐水解性所描述的药物玻璃标准的玻璃组合物形成,所述监管机构例如USP(美国药典)、EP(欧洲药典)和JP(日本药典)。根据USP 660和EP 7,硼硅酸盐玻璃符合I型标准并且常规用于肠胃外包装。硼硅酸盐玻璃的实例包括但不限于7740、7800及惠顿(Wheaton)180、200和400、肖特Duran、肖特Fiolax、N-51A、格雷斯海姆(Gerrescheimer)GX-51Flint及其他。钠钙玻璃符合III型标准并且在包装随后溶解形成溶液或缓冲液的干燥粉末中是可接受的。III型玻璃还适于包装证明对碱不敏感的液体制剂。III形钠钙玻璃的实例包括惠顿800和900。脱碱钠钙玻璃具有较高水平的氢氧化钠和氧化钙,并且符合II型标准。这些玻璃的抗浸出性比I型玻璃更弱,但是比III型玻璃更强。II型玻璃可用于保质期时保持pH低于7的产品。实例包括经过硫酸铵处理的钠钙玻璃。这些药物玻璃具有不同的化学组合物并且线性热膨胀系数(CTE)在20-85x 10-7/℃的范围内。
当本文所述的涂覆的玻璃制品为玻璃容器时,涂覆的玻璃容器100的玻璃主体102可以采取各种不同的形式。例如,本文所述的玻璃主体可以用于形成涂覆的玻璃容器100,如小瓶、安瓿、药筒、注射器主体和/或用来储存药物组合物的任意其他玻璃容器。另外,在涂覆之前可利用对玻璃容器进行化学强化的能力来进一步改进玻璃容器的机械耐久性。因此,应理解,在至少一个实施方式中,可以在施涂涂层之前对玻璃容器进行离子交换强化。或者,其他强化方法,如第7,201,965号美国专利中所述的热回火、火焰抛光和层压可用于在涂覆之前对玻璃进行强化。
当涂覆的玻璃容器在刚涂覆的条件下时(即施涂涂层之后且未进行除固化(如果适用)之外的任何额外处理)或者在进行了一种或多种加工处理后,例如与在药物填充线上所进行的相似或相同的处理,包括但不限于洗涤、冻干、去除热原、高压灭菌等,可以测量涂覆的玻璃容器的各种性质(即摩擦系数、水平压缩强度、四点弯曲强度)。
去除热原是从一种物质中移除热原的工艺。可通过向样品施加热处理—其中将样品加热到高温一段时间,来对玻璃制品(如药物包装件)进行去除热原。例如,去除热原可以包括将玻璃容器加热到约250℃至约380℃的温度约30秒至约72个小时的时段,包括但不限于20分钟、30分钟、40分钟、1个小时、2个小时、4个小时、8个小时、12个小时、24个小时、48个小时和72个小时。热处理后,将玻璃容器冷却至室温。通常用于制药产业的一种常规去除热原条件为在约250℃的温度下热处理约30分钟。但是,预计如果使用较高的温度则可以缩短热处理的时间。可以将本文所述的涂覆的玻璃容器暴露于高温一段时间。本文所述的高温和加热的时段可足以或者不足以对玻璃容器进行去除热原。然而,应理解的是,本文所述的一些加热温度和时间足以对涂覆的玻璃容器例如本文所述的涂覆的玻璃容器进行去除热原。例如,如本文所述,可以将涂覆的玻璃容器暴露于约250℃、约260℃、约270℃、约280℃、约290℃、约300℃、约310℃、约320℃、约330℃、约340℃、约350℃、约360℃、约370℃、约380℃、约390℃或400℃的温度,暴露30分钟的时段。认为去除热原工艺可以进行除30分钟之外的其他时间,在本公开全文使用30分钟以及去除热原温度以用于对比目的,例如在暴露于限定的去除热原条件后进行的摩擦系数测试。
如本文中所使用的,冻干条件(即冷冻干燥)是指如下工艺,其中用含有蛋白质的液体填充样品,然后在低温(例如-100℃)下冷冻,随后在真空下于某一温度(例如-15℃)下进行水升华一段时间(例如20个小时)。
如在本文中所使用的,高压灭菌条件是指在100℃下对样品进行蒸汽吹扫一段时间(例如10分钟),随后是将样品暴露于121℃环境中的20分钟的停留期,然后在121℃下进行30分钟的热处理。
具有涂层的涂覆的玻璃容器的部分的摩擦系数(μ)可以比由相同的玻璃组合物形成的未涂覆的玻璃容器的表面的摩擦系数更低。摩擦系数(μ)是两个表面之间的摩擦的定量测量,并且是第一和第二表面的机械和化学性质的函数,包括表面粗糙度以及环境条件,例如但不限于,温度和湿度。如本文所使用的,涂覆的玻璃容器100的摩擦系数测量值作为第一玻璃容器(外直径在约16.00mm至约17.00mm之间)的外表面与第二玻璃容器的外表面之间的摩擦系数来报告,所述第二玻璃容器与第一玻璃容器基本上相同,其中,第一和第二玻璃容器具有相同的主体和相同的涂层组成(如果有施涂)并且在制造之前、制造过程中以及制造之后暴露于相同的环境。除非在本文中另外指出,否则摩擦系数是指如本文所述在小瓶上具有小瓶的测试台上测量的用30N的法向载荷测量的最大摩擦系数。然而,应理解的是,在具体的外加载荷下展现出最大摩擦系数的涂覆的玻璃容器在较小载荷下也将表现出相同或更佳(即较低)的最大摩擦系数。例如,如果涂覆的玻璃容器在50N的外加载荷下表现出0.5或更低的最大摩擦系数,则涂覆的玻璃容器在25N的外加载荷下也将表现出0.5或更低的最大摩擦系数。为了测量最大摩擦系数,排除测试开始时或接近开始时的局部极大值,因为在测试开始时或接近开始时的这种极大值表示静摩擦系数。如本文的实施方式中所述,在容器相对于彼此的速度为约0.67mm/s时测量摩擦系数。
在本文所述的实施方式中,使用小瓶上具有小瓶的测试台测量玻璃容器(涂覆及未涂覆)的摩擦系数。图3示意性地示出了测试台200。相同的设备还可以用于测量位于台中的两个玻璃容器之间的摩擦力。小瓶上具有小瓶的测试台200包含以交叉构造布置(即彼此垂直)的第一夹具212和第二夹具222。第一夹具212包括附接到第一基底216的第一固定臂214。第一固定臂214附接到第一玻璃容器210并且使第一玻璃容器210相对于第一夹具212保持静止。类似地,第二夹具222包括附接到第二基底226的第二固定臂224。第二固定臂224附接到第二玻璃容器220并且使其相对于第二夹具222保持静止。第一玻璃容器210位于第一夹具212上并且第二玻璃容器220位于第二夹具222上,使得第一玻璃容器210的纵轴和第二玻璃容器220的纵轴相对于彼此成约90°角并且位于由x-y轴线限定的水平面上。
第一玻璃容器210处于在接触点230处与第二玻璃容器220接触的位置。以垂直于由x-y轴限定的水平面的方向施加法向力。法向力可以由施加在第二夹具222上—其位于静止的第一夹具212上—的静态重物或其他力来施加。例如,重物可以位于第二基底226上并且可以将第一基底216放置在稳定的表面上,从而在接触点230处在第一玻璃容器210与第二玻璃容器220之间产生可测量的力。或者,可以用机械设备[例如UMT(万能机械测试机)机器]施加力。
第一夹具212或第二夹具222可以在与第一玻璃容器210和第二玻璃容器220的纵轴成45°角的方向上相对于另一个移动。例如,可以使第一夹具212保持静止,并且可以移动第二夹具222,以使得第二玻璃容器220在x轴的方向上移动越过第一玻璃容器210。类似的装置记载于RL De Rosa等人在《粘附性杂志》(The Journal of Adhesion),78:113-127,2002中的《用于硅铝酸盐玻璃表面的耐刮擦聚酰亚胺涂层》(Scratch ResistantPolyimide Coatings for Alumino Silicate Glass surfaces)。为了测量摩擦系数,用载荷元件测量使第二夹具222移动所需的力以及施加于第一和第二玻璃容器210、220的法向力,并且计算摩擦系数为摩擦力与法向力的商。在25℃及50%相对湿度的环境中操作所述台。
在本文所述的实施方式中,如利用上述小瓶上具有小瓶的台所确定的,具有涂层的涂覆的玻璃容器的部分相对于类似涂覆的玻璃容器具有小于或等于约0.7的摩擦系数。在其他实施方式中,摩擦系数可以小于或等于约0.6,或者甚至是小于或等于约0.5。在一些实施方式中,具有涂层的涂覆的玻璃容器的部分,其摩擦系数小于或等于约0.4,或者甚至是小于或等于约0.3。摩擦系数小于或等于约0.7的涂覆的玻璃容器一般表现出对摩擦损坏的抗性增强,并因此具有改进的机械性质。例如,常规玻璃容器(不具有涂层)的摩擦系数可以大于0.7。
在本文所述的一些实施方式中,具有涂层的涂覆的玻璃容器的部分的摩擦系数比由相同的玻璃组合物形成的未涂覆的玻璃容器的表面的摩擦系数小至少20%。例如,具有涂层的涂覆的玻璃容器的部分的摩擦系数可以比由相同的玻璃组合物形成的未涂覆的玻璃容器的表面的摩擦系数小至少20%、小至少25%、小至少30%、小至少40%或者甚至是小至少50%。
在一些实施方式中,在将具有涂层的涂覆的玻璃容器的部分暴露于约250℃、约260℃、约270℃、约280℃、约290℃、约300℃、约310℃、约320℃、约330℃、约340℃、约350℃、约360℃、约370℃、约380℃、约390℃或约400℃的温度30分钟的时段后,其摩擦系数可以小于或等于约0.7。在其他实施方式中,在将具有涂层的涂覆的玻璃容器的部分暴露于约250℃、约260℃、约270℃、约280℃、约290℃、约300℃、约310℃、约320℃、约330℃、约340℃、约350℃、约360℃、约370℃、约380℃、约390℃或约400℃的温度30分钟的时段后,其摩擦系数可以小于或等于约0.7(即小于或等于约0.6、小于或等于约0.5、小于或等于约0.4或者甚至是小于或等于约0.3)。在一些实施方式中,在将具有涂层的涂覆的玻璃容器的部分暴露于约250℃(或约260℃)的温度30分钟后,其摩擦系数可以增加不超过约30%。在其他实施方式中,在将具有涂层的涂覆的玻璃容器的部分暴露于约250℃、约260℃、约270℃、约280℃、约290℃、约300℃、约310℃、约320℃、约330℃、约340℃、约350℃、约360℃、约370℃、约380℃、约390℃或约400℃的温度30分钟的时段后,其摩擦系数可以增加不超过约30%(即,约25%、约20%、约15%或者甚至是约10%)。在其他实施方式中,在将具有涂层的涂覆的玻璃容器的部分暴露于约250℃、约260℃、约270℃、约280℃、约290℃、约300℃、约310℃、约320℃、约330℃、约340℃、约350℃、约360℃、约370℃、约380℃、约390℃或约400℃的温度30分钟的时段后,其摩擦系数可以增加不超过约0.5(即约0.45、约0.4、约0.35、约0.3、约0.25、约0.2、约0.15、约0.1或者甚至是约0.05)。在一些实施方式中,在将具有涂层的涂覆的玻璃容器的部分暴露于约250℃、约260℃、约270℃、约280℃、约290℃、约300℃、约310℃、约320℃、约330℃、约340℃、约350℃、约360℃、约370℃、约380℃、约390℃或约400℃的温度30分钟的时段后,其摩擦系数可以完全不增加。
在一些实施方式中,在约70℃的温度下将具有涂层的涂覆的玻璃容器的部分浸没于水浴中10分钟后,其摩擦系数可以小于或等于约0.7。在其他实施方式中,在约70℃的温度下将具有涂层的涂覆的玻璃容器的部分浸没于水浴中5分钟、10分钟、20分钟、30分钟、40分钟、50分钟或者甚至是1个小时后,其摩擦系数可以小于或等于约0.7(即小于或等于约0.6、小于或等于约0.5、小于或等于约0.4或者甚至是小于或等于约0.3)。在一些实施方式中,在约70℃的温度下将具有涂层的涂覆的玻璃容器的部分浸没于水浴中10分钟后,其摩擦系数可以增加不超过约30%。在其他实施方式中,在约70℃的温度下将具有涂层的涂覆的玻璃容器的部分浸没于水浴中5分钟、10分钟、20分钟、30分钟、40分钟、50分钟或者甚至是1个小时后,其摩擦系数可以增加不超过约30%(即,约25%、约20%、约15%或者甚至是约10%)。在一些实施方式中,在约70℃的温度下将具有涂层的涂覆的玻璃容器的部分浸没于水浴中5分钟、10分钟、20分钟、30分钟、40分钟、50分钟或者甚至是1个小时后,其摩擦系数可以完全不增加。
在一些实施方式中,在将具有涂层的涂覆的玻璃容器的部分暴露于冻干条件后,其摩擦系数可以小于或等于约0.7。在其他实施方式中,在将具有涂层的涂覆的玻璃容器的部分暴露于冻干条件后,其摩擦系数可以小于或等于约0.7(即小于或等于约0.6、小于或等于约0.5、小于或等于约0.4或者甚至是小于或等于约0.3)。在一些实施方式中,在将具有涂层的涂覆的玻璃容器的部分暴露于冻干条件后,其摩擦系数可以增加不超过约30%。在其他实施方式中,在将具有涂层的涂覆的玻璃容器的部分暴露于冻干条件后,其摩擦系数可以增加不超过约30%(即约25%、约20%、约15%或者甚至是约10%)。在一些实施方式中,在将具有涂层的涂覆的玻璃容器的部分暴露于冻干条件后,其摩擦系数可以完全不增加。
在一些实施方式中,在将具有涂层的涂覆的玻璃容器的部分暴露于高压灭菌条件后,其摩擦系数可以小于或等于约0.7。在其他实施方式中,在将具有涂层的涂覆的玻璃容器的部分暴露于高压灭菌条件后,其摩擦系数可以小于或等于约0.7(即小于或等于约0.6、小于或等于约0.5、小于或等于约0.4或者甚至是小于或等于约0.3)。在一些实施方式中,在将具有涂层的涂覆的玻璃容器的部分暴露于高压灭菌条件后,其摩擦系数可以增加不超过约30%。在其他实施方式中,在将具有涂层的涂覆的玻璃容器的部分暴露于高压灭菌条件后,其摩擦系数可以增加不超过约30%(即约25%、约20%、约15%或者甚至是约10%)。在一些实施方式中,在将具有涂层的涂覆的玻璃容器的部分暴露于高压灭菌条件后,其摩擦系数可以完全不增加。
本文所述的涂覆的玻璃容器具有水平压缩强度。如本文所述,水平压缩强度通过将涂覆的玻璃容器100水平放置于与玻璃容器的纵轴平行取向的两个平行压板之间进行测量。然后在垂直于玻璃容器的纵轴的方向上利用压板向涂覆的玻璃容器100施加机械载荷。在放入压板之前,将玻璃容器包裹在2英寸的胶带中,并将突出部分切掉或折叠在容器底部周围。然后将容器放置在订在试样周围的索引卡内。用于小瓶压缩的载荷率为0.5英寸/分钟,这意味着各压板以0.5英寸/分钟的速率朝向彼此移动。在25℃±2℃和50%±5%相对湿度下测量水平压缩强度。在一些实施方式中,期望在去除热原后1个小时内(并且不超过24个小时)进行水平压缩测试以模拟药物填充线条件。水平压缩强度是失效时的载荷量度,并且水平压缩强度的测量值可以作为选定法向压缩载荷下的失效概率给出。如本文中所使用的,当玻璃容器在至少50%的样品的水平压缩下破裂时发生失效。因此,对一组样品提供水平压缩。在一些实施方式中,涂覆的玻璃容器的水平压缩强度可以比未涂覆的小瓶大至少10%、20%或30%。
现在参考图1和3,还可对磨损的玻璃容器进行水平压缩强度测量。具体而言,测试台200的操作可能对涂覆的玻璃容器外表面122造成损坏,例如表面刮痕或磨损,这削弱了涂覆的玻璃容器100的强度。然后使玻璃容器进行上述水平压缩程序,其中将容器放置在两个压板之间,并且使刮痕指向平行于压板的外侧。刮痕可以通过由小瓶上具有小瓶的台施加选定的法向压力和刮痕长度来表征。除非另有说明,否则水平压缩程序中磨损的玻璃容器的刮痕通过由30N的法向载荷所产生的20mm的刮痕长度来表征。期望的是,可以使刮痕相对于压板成90o±5°角。
可以在热处理之后评价涂覆的玻璃容器的水平压缩强度。所述热处理可以为暴露于约250℃、约260℃、约270℃、约280℃、约290℃、约300℃、约310℃、约320℃、约330℃、约340℃、约350℃、约360℃、约370℃、约380℃、约390℃或400℃的温度30分钟的时段。在一些实施方式中,在将涂覆的玻璃容器暴露于热处理(例如上述热处理),然后进行上述磨损后,其水平压缩强度下降不超过约20%、30%或者甚至是40%。在一个实施方式中,在将涂覆的玻璃容器暴露于约250℃、约260℃、约270℃、约280℃、约290℃、约300℃、约310℃、约320℃、约330℃、约340℃、约350℃、约360℃、约370℃、约380℃、约390℃或约400℃的温度下30分钟时段的热处理,然后磨损后,其水平压缩强度下降不超过约20%。
将本文所述的涂覆的玻璃制品加热到至少250℃(或260℃、或280℃、或300℃)的温度下30分钟的时段后,其可以是热稳定的。如在本文中所使用的术语“热稳定”意为施涂于玻璃制品的涂层在暴露于高温后在玻璃制品的表面上基本上保持完整,以使得在暴露后,涂覆的玻璃制品的机械性能,具体是摩擦系数和水平压缩强度,如果有影响的话也只有最小的影响。这表明在高温暴露之后,涂层仍然粘附于玻璃表面,并继续保护玻璃制品免受机械损害,例如磨损、冲击等。
在本文所述的实施方式中,如果涂覆的玻璃制品在加热至规定温度并在该温度下保持规定时间后符合摩擦系数标准和水平压缩强度标准,则认为涂覆的玻璃制品是热稳定的。为了确定是否符合摩擦系数标准,使用图3所示的测试台以及30N的外加载荷确定刚收到的条件中的(即,在任何热暴露之前)第一涂覆的玻璃制品的摩擦系数。将第二涂覆的玻璃制品(即具有与第一涂覆的玻璃制品相同的玻璃组成和相同的涂层组成的玻璃制品)热暴露在规定条件下并冷却至室温。随后,使用图3所示的测试台来确定第二玻璃制品的摩擦系数,以30N的外加载荷来磨损涂覆的玻璃制品,从而形成长度为大约20mm的磨损(即“刮痕”)。如果第二涂覆的玻璃制品的摩擦系数小于0.7并且第二玻璃制品的玻璃表面在磨损区域中不具有任何可观察到的损坏,则符合为了确定涂层的热稳定性的摩擦系数标准。如本文所用,术语“可观察到的损坏”是指当用具有LED或卤素灯源的诺马斯基(Nomarski)或微分干涉相衬(DIC)光谱显微镜以100X放大倍数观察时,玻璃制品的磨损区域中的玻璃表面在每0.5cm的磨损区域长度中含有小于六个玻璃裂缝。玻璃裂缝或玻璃起裂缝的标准定义描述于G.D.Quinn的《NIST推荐的实践指南:陶瓷和玻璃的断口分析》(NIST RecommendedPractice Guide:Fractography of Ceramics and Glasses),NIST特殊出版物960-17(2006)。
为了确定是否符合水平压缩强度标准,在30N载荷下在图3所示的测试台中磨损第一涂覆的玻璃制品以形成20mm的刮痕。然后如本文所述对第一涂覆的玻璃制品进行水平压缩测试,并确定第一涂覆的玻璃制品的保留强度。将第二涂覆的玻璃制品(即具有与第一涂覆的玻璃制品相同的玻璃组成和相同的涂层组成的玻璃制品)热暴露在规定条件下并冷却至室温。随后,在30N载荷下,在图3所示的测试台中磨损第二涂覆的玻璃制品。接着如本文所述对第二涂覆的玻璃制品进行水平压缩测试,并确定第二涂覆的玻璃制品的保留强度。如果相对于第一涂覆的玻璃制品,第二涂覆的玻璃制品的保留强度下降不超过约20%(即失效时的载荷下降不超过20%),则符合为了确定涂层热稳定性的水平压缩强度标准。
如果在将涂覆的玻璃容器暴露于至少约250℃(或260℃或280℃)的温度至少约30分钟的时段之后,其符合摩擦系数标准和水平压缩强度标准,则认为涂覆的玻璃容器是热稳定的[即,涂覆的玻璃容器在至少约250℃(或260℃或280℃)的温度下约30分钟的时段内是热稳定的]。也可以在约250℃(或260℃或280℃)至高达约400℃的温度下评估热稳定性。例如,在一些实施方式中,如果在至少约270℃或者甚至是约280℃的温度下保持约30分钟的时段,涂覆的玻璃容器符合标准,则认为其是热稳定的。在其他实施方式中,如果在至少约290℃或者甚至是约300℃的温度下保持约30分钟的时段,涂覆的玻璃容器符合标准,则认为其是热稳定的。在另外的实施方式中,如果在至少约310℃或者甚至是约320℃的温度下保持约30分钟的时段,涂覆的玻璃容器符合标准,则认为其是热稳定的。在其他实施方式中,如果在至少约330℃或者甚至是约340℃的温度下保持约30分钟的时段,涂覆的玻璃容器符合标准,则认为其是热稳定的。在其他实施方式中,如果在至少约350℃或者甚至是约360℃的温度下保持约30分钟的时段,涂覆的玻璃容器符合标准,则认为其是热稳定的。在其他一些实施方式中,如果在至少约370℃或者甚至是约380℃的温度下保持约30分钟的时段,涂覆的玻璃容器符合标准,则认为其是热稳定的。在其他实施方式中,如果在至少约390℃或者甚至是约400℃的温度下保持约30分钟的时段,涂覆的玻璃容器符合标准,则认为其是热稳定的。
本文公开的涂覆的玻璃容器也可以在一温度范围内热稳定,这意味着在所述范围中的每个温度下,涂覆的玻璃容器依据符合摩擦系数标准和水平压缩强度标准是热稳定的。例如,在本文所述的实施方式中,涂覆的玻璃容器在至少约250℃(或260℃或280℃)至小于或等于约400℃的温度之间可以是热稳定的。在一些实施方式中,涂覆的玻璃容器在至少约250℃(或260℃或280℃)至约350℃的范围内可以是热稳定的。在其他一些实施方式中,涂覆的玻璃容器在至少约280℃至小于或等于约350℃之间可以是热稳定的。在其他实施方式中,涂覆的玻璃容器在至少约290℃至约340℃之间可以是热稳定的。在另一个实施方式中,涂覆的玻璃容器在约300℃至约380℃的温度范围内可以是热稳定的。在另一个实施方式中,涂覆的玻璃容器在约320℃至约360℃的温度范围内可以是热稳定的。
本文所述的涂覆的玻璃容器具有四点弯曲强度。为了测量玻璃容器的四点弯曲强度,使用为涂覆的玻璃容器100的前体的玻璃管用于测量。玻璃管的直径与玻璃容器的相同,但是不包含玻璃容器基底或玻璃容器口(即在将玻璃管成形成玻璃容器之前)。然后使玻璃管进行四点弯曲应力测试以诱导机械失效。该测试在50%相对湿度下进行,其中在10mm/分钟的载荷率下,各外部接触元件间隔9″并且各内部接触元件间隔3″。
也可以对涂覆的及磨损的管进行四点弯曲应力测量。操作测试台200可能在管表面上产生磨损,例如表面刮痕,如在测量磨损的小瓶的水平压缩强度中所述,其减弱了管的强度。然后使玻璃管进行四点弯曲应力测试以诱导机械失效。该测试在25℃及50%相对湿度下进行,在10mm/分钟的载荷率下,使用间隔9″的外部探针并且各内部接触元件间隔3″,同时定位管以使得刮痕在测试期间处于拉伸状态。
在一些实施方式中,具有涂层的玻璃管在磨损后的四点弯曲强度比在相同条件下磨损的未涂覆的玻璃管的机械强度显示出平均高至少10%、20%或者甚至50%。
在一些实施方式中,涂覆的玻璃容器100在用30N法向力被相同的玻璃容器磨损之后,涂覆的玻璃容器100的磨损区域的摩擦系数在另一次用30N法向力在相同位置处被相同的玻璃容器磨损之后增加不超过约20%,或完全不增加。在其他实施方式中,涂覆的玻璃容器100在用30N法向力被相同的玻璃容器磨损之后,涂覆的玻璃容器100的磨损区域的摩擦系数在另一次用30N法向力在相同位置处被相同的玻璃容器磨损之后增加不超过约15%或者甚至10%,或完全不增加。然而,没有必要涂覆的玻璃容器100的所有实施方式均显示出这种性质。
可以通过使用分光光度计测量在400-700nm之间的波长范围内的容器的透光率来评估涂覆的容器的透明度和颜色。如下进行测量:使光束垂直于容器壁被引导,以使光束通过涂层两次—第一次是在进入容器时,接着是在离开容器时。在一些实施方式中,对于约400nm至约700nm的波长来说,通过涂覆的玻璃容器的透光率可以大于或等于通过未涂覆的玻璃容器的透光率的约55%(通过容器的两个壁)。如本文所述,可以在热处理之前或热处理之后测量透光率,所述热处理例如本文所述的热处理。例如,对于约400nm至约700nm的每个波长来说,透光率可以大于或等于通过未涂覆的玻璃容器的透光率的约55%。在其他实施方式中,对于约400nm至约700nm的波长来说,通过涂覆的玻璃容器的透光率大于或等于通过未涂覆的玻璃容器的透光率的约55%、约60%、约65%、约70%、约75%、约80%或者甚至是约90%。
如本文所述,可以在环境处理(例如本文所述的热处理)之前或环境处理之后测量透光率。例如,在约250℃、约260℃、约270℃、约280℃、约290℃、约300℃、约310℃、约320℃、约330℃、约340℃、约350℃、约360℃、约370℃、约380℃、约390℃或400℃下热处理30分钟的时段后,或者在暴露于冻干条件后,或者在暴露于高压灭菌条件后,对于约400nm至约700nm的波长来说,通过涂覆的玻璃容器的透光率大于或等于通过未涂覆的玻璃容器的透光率的约55%、约60%、约65%、约70%、约75%、约80%或者甚至是约90%。
由暴露于热处理引起的变黄可以根据CEI 1931颜色空间通过x和y坐标来测量,如图13所示,并用本文提供的实施例论述。在去除热原条件之后x和y坐标的变化可以证明涂覆的玻璃制品变黄。
在一些实施方式中,当以任意角度观察时,涂覆的玻璃容器100可以被视为对于人裸眼是无色和透明的。在其他一些实施方式中,当例如涂层120包含彩色的聚合物时,涂层120可以具有可觉察的色彩。
在一些实施方式中,涂覆的玻璃容器100可以具有能够接收粘性标签的涂层120。也就是说,涂覆的玻璃容器100可以在涂覆表面上接受粘性标签以使粘性标签牢固地附着。然而,附着粘性标签的能力不是本文所述的涂覆的玻璃容器100的所有实施方式的要求。
实施例
通过以下实施例进一步阐述具有涂层的玻璃容器的各个实施方式。这些实施例本质上是说明性的,并且不应被理解为限制本公开的主题。
实施例1
在玻璃小瓶的外表面上用包含二异丙氧基二乙酰丙酮酸酯与6FDA-4-BDAF聚酰亚胺的涂层混合物涂覆玻璃小瓶以形成包含TiO2和聚酰亚胺的固体涂层。二异丙氧基钛二乙酰丙酮酸酯与6FDA-4-BDAF聚酰亚胺的重量比在不同的样品中有所不同。
首先,由名称为《具有改进的化学和机械耐久性的玻璃组合物》(GlassCompositions with Improved Chemical and Mechanical Durability)的第13/660,394号美国专利申请的表1中的“组合物E”的玻璃组合物形成玻璃小瓶。随后,在施涂涂层之前,如第13/660,394号美国专利申请中所述对玻璃小瓶进行离子交换强化。小瓶的外直径为约16.00mm。
为了制备涂层混合物,在塑料容器中称重TYZOR AA(二异丙氧基钛二乙酰丙酮酸酯在IPA中的75重量%溶液,以编号325252商购自西格玛奥德里奇(SIGMA ALDRICH))和LARC-CP1(6FDA-4-BDAF聚酰亚胺,以编号LARC-CP1商购自NEXOLVE)部分,并且通过加入高达100mL的丙二醇甲醚乙酸酯(作为DOWANOLTMPMA溶剂以编号484431商购自西格玛奥德里奇)来形成溶液。封闭容器并且搅拌直到6FDA-4-BDAF聚酰亚胺完全溶解。
用去离子水洗涤待涂覆的小瓶,用氮气吹干并且最后通过暴露于氧等离子体15秒来清洁,随后进行涂覆。接着,用上述TYZOR AA和LARC-CP1聚酰亚胺混合物的溶液浸涂小瓶。取出速度固定在60cm/分钟以获得约30nm至40nm的干燥涂层厚度。随后,通过将涂覆的小瓶放置到360℃的预热炉中15分钟进行固化。
包含在涂层混合物中的TYZOR AA与LARC-CP1聚酰亚胺的比值对于各样品是不同的。在涂层混合物中,固体(TYZOR AA和LARC-CP1聚酰亚胺)的重量百分数为1重量%、2重量%或3重量%,其中,TYZOR AA与LARC-CP1的比值较低的样品具有1重量%涂层混合物,而TYZOR AA与LARC-CP1的比值较高的样品具有3重量%涂层混合物。例如,在2重量%涂层混合物的情况下,为了使TYZOR AA与LARC-CP1聚酰亚胺形成90/10重量比,合并2.4g的TYZORAA和0.2g的LARC-CP1聚酰亚胺,然后加入丙二醇甲醚乙酸酯以制备100mL溶液。应注意,在本实施例中,加入2.4g的TYZOR AA是因为其含有在IPA中的75重量%的二异丙氧基钛二乙酰丙酮酸酯(使得TYZOR AA的实际固体组分为1.8g)。因此,加入的固体(非溶剂)的总重量为2.0g。对于具有3重量%固体的98/2样品,在100mL涂层混合物中包含3.92g的TYZOR AA和0.06g的LARC-CPI。对于具有1重量%固体的50/50样品,在100mL涂层混合物中包含0.66g的TYZOR AA和.5g的LARC-CPI。制备TYZOR AA与LARC-CP1聚酰亚胺的重量比为0/100、10/90、20/80、30/70、50/50、60/40、70/30、80/20、90/10、95/5、97/3、98/2、99/1、99.5/0.5和100/0的涂覆的小瓶样品。基于TYZOR AA和LARC-CP1聚酰亚胺在涂层混合物中的重量,并且考虑固化期间分解并排出的TYZOR AA中的二异丙氧基二乙酰丙酮酸酯的部分(对涂层中剩余的TiO2无贡献的TYZOR AA的部分),确定涂层中的TiO2重量分数。例如,假设二异丙氧基二乙酰丙酮酸酯的完全转换是被转换成TiO2(二异丙氧基二乙酰丙酮酸酯前体反应物与TiO2产物之间为1:1摩尔比)。对于每个样品,使用无定形二氧化钛及LARC-CP1聚酰亚胺的密度—它们分别为3.75g/cm3和1.54g/cm3,由重量分数计算TiO2体积分数。例如,90/10样品具有含有66.4重量%TiO2和44.8体积%TiO2的涂层。实施例1中制备的每个样品的TiO2重量分数和TiO2体积分数示于表1。
通过与本公开所述的方法一致的工艺,使用30N的载荷利用图3的测试台,对根据实施例1制备的每个样品测试COF。对刚固化的样品、320℃热处理5个小时后的样品以及335℃热处理16个小时后的样品进行COF测试。在所有的实施例中,320℃热处理5个小时后或335℃热处理16个小时表示通过加热去除热原的一个实施方式。表1示出了在固化后或所述的去除热原条件后,实施例1的每个涂覆的小瓶样品的平均COF和最大COF。应理解,去除热原的小瓶在去除热原之前也经历了固化。另外,在表1中,标记为“无”的去除热原条件对应于刚固化的涂覆的小瓶。此外,在COF测试后,视觉上检查样品以确定玻璃是否得到了充分的保护。标记为“玻璃保护”的表1中的列是指是否存在可见的玻璃裂缝、可见的磨损痕记或两种都存在。在所有的实施例中,“否”表示具有可见的玻璃裂缝、磨损痕迹或两种都有,而“是”表示不具有可见的玻璃裂缝以及不具有可见的磨损痕迹。
另外,图6A-6N示出了实施例1的各个样品的COF数据。图6A-6N中的每个附图描述了在测试中测量的摩擦系数,并且还示出了在COF测试后磨损的玻璃小瓶的图像。具体而言,图6A-6N中的每个附图(以及描述了摩擦系数测试的所有其他类似的图,即图7A-7L、11、12、14、15和17)在y轴上描述了摩擦系数并且在x轴上描述了20mm拖动长度内的测量点(即,x轴因而为长度测量)。如可见到的,玻璃裂缝和可见的损坏有时是COF增加造成的。表2列出了对应于图6A-6N的实施例1的样品。图6A-6N示出了如下所述的无去除热原的COF测试(在固化后进行COF测试)的COF数据。
表1
表2
从收集的数据可见,TYZOR AA与LARC-CP1的重量比为0/100、10/90、20/80、30/70、50/50、99/1和99.5/0.5的样品未充分地保护玻璃。此外,100/0(纯TiO2)的COF显著大于1。
90/10样品在小瓶与小瓶接触测试中表现出低的摩擦系数(COF<0.50)和良好的玻璃保护,不论是否施加去除热原条件(320℃下5个小时或者335℃下16个小时)。图8的右侧图像示出了在COF测试后处于刚固化状态的90/10磨损的涂覆小瓶。图10的左侧图像分别示出了刚固化的、加热到320℃保持5个小时后的以及加热到335℃保持16个小时后的90/10磨损的涂覆小瓶。另外,图11示出了刚固化的(503)、加热到320℃保持5个小时后的(501)以及加热到335℃保持16个小时后的(502)90/10样品的COF数据。另外,将90/10涂层施涂到硅晶片上,并且如通过椭圆光度法所确定的,其表现出1.73的折射率。该折射率很好地切合在涂层中形成TiO2的假说。
固化后,用比值为90/10的涂层涂覆的小瓶具有不可见的颜色或雾度(无光散射)。图13示出了未涂覆的小瓶(510)、用90/10涂层涂覆并经高压灭菌的小瓶(513)、用90/10涂覆并暴露于300℃下12个小时的小瓶(515)、用90/10涂覆并暴露于335℃下16个小时的小瓶(512)以及用90/10涂覆并暴露于320℃下5个小时的小瓶(514)的国际照明委员会(CIE)的X和Y色度坐标。McAdams椭圆显示甚至是在去除热原条件后,相对于未涂覆的小瓶的色差对于人眼来说是可忽略的或完全不可检测到的。
另外,如下所述,98/2样品表现出COF为约0.3或更小。这表明存在于金属氧化物/聚酰亚胺混合材料中的极少量聚酰亚胺聚合物赋予了低摩擦系数和有效的玻璃保护。
即使是在刚固化状态下,50/50样品也显示出多个裂缝。该对比例表明当使用过低的金属氧化物分数时,玻璃表面未得到良好的保护。图8的左侧图像示出了在COF测试后处于刚固化状态的50/50磨损的涂覆小瓶。另外,图12示出了刚固化的(507)、加热到320℃保持5个小时后的(508)以及加热到335℃保持16个小时后的(506)50/50样品的COF数据。
另外,图4描述了如实施例1所述制备的涂覆的小瓶的水平压缩强度结果。具体来说,图4示出了显示了固化的样品(右侧,标记为“固化”)和去除热原的样品(左侧,标记为“CTS”)的峰值载荷(x轴)和失效百分数。图4所示的样品具有90/10的TYZOR AA与LARC-CP1(作为在乙酸正丙酯中的2重量%溶液)的比值。固化条件为到360℃下保持15分钟,去除热原条件为320℃下保持5个小时。不对图4中的经过固化(且未去除热原)的样品进行刮擦,而对去除热原的样品如本文所述在30N载荷下进行刮擦。如图4所示,相对于未刮擦、未去除热原的样品,在经过刮擦和去除热原的样品中检测到水平压缩强度变化很小或无变化,这表明在可以与药物填充线中的条件相似的热处理和磨损过程中存在良好的玻璃保护。
实施例2
在玻璃小瓶的外表面上用包含锆(IV)二丁醇(双-2,4-戊二酮酸酯)金属氧化物前体与6FDA-4-BDAF聚酰亚胺的涂层混合物涂覆玻璃小瓶以形成包含ZrO2和6FDA-4-BDAF聚酰亚胺的固体涂层。锆(IV)二丁醇(双-2,4-戊二酮酸酯)与6FDA-4-BDAF聚酰亚胺的重量比在不同的样品中有所不同。
首先,由名称为《具有改进的化学和机械耐久性的玻璃组合物》的第13/660,394号美国专利申请的表1中的“组合物E”的玻璃组合物形成玻璃小瓶。随后,在施涂涂层之前,如第13/660,394号美国专利申请中所述对玻璃小瓶进行离子交换强化。小瓶的外直径为约16.00mm。
为了制备涂层混合物,称重锆(IV)二丁醇(双-2,4-戊二酮酸酯)溶液(在丁醇/甲苯混合物中的25重量%溶液,以编号771600商购自西格玛奥德里奇)和LARC-CP1(6FDA-4-BDAF聚酰亚胺,以编号LARC-CP1商购自NEXOLVE)部分,并且通过加入高达100mL的丙二醇甲醚乙酸酯(作为DOWANOLTMPMA溶剂以编号484431商购自西格玛奥德里奇)来形成溶液。封闭容器并且搅拌直到LARC-CP1聚酰亚胺完全溶解。
用去离子水洗涤待涂覆的小瓶,用氮气吹干并且最后通过暴露于氧等离子体15秒来清洁,随后进行涂覆。接着,用上述锆(IV)二丁醇(双-2,4-戊二酮酸酯)和LARC-CP1聚酰亚胺混合物的溶液浸涂小瓶。取出速度固定在10cm/分钟以获得约30nm至40nm的干燥涂层厚度。随后,通过将涂覆的小瓶放置到360℃的预热炉中15分钟进行固化。
改变包含在涂层混合物中的锆(IV)二丁醇(双-2,4-戊二酮酸酯)溶液与LARC-CP1聚酰亚胺的量,其中,涂层混合物中的固体(锆(IV)二丁醇(双-2,4-戊二酮酸酯)和LARC-CP1聚酰亚胺)的重量百分数为1重量%或2重量%,其中,锆(IV)二丁醇(双-2,4-戊二酮酸酯)与LARC-CP1聚酰亚胺的比值较低的样品具有1重量%涂层混合物,而更高比值具有2重量%涂层混合物。例如,在2重量%固体的情况下,为了使锆(IV)二丁醇(双-2,4-戊二酮酸酯)与LARC-CP1聚酰亚胺形成50/50重量比,合并4g的锆(IV)二丁醇(双-2,4-戊二酮酸酯)溶液(25重量%)和1g的LARC-CP1聚酰亚胺,然后加入丙二醇甲醚乙酸酯以制备100mL溶液。因此,加入的固体(非溶剂)的总重量为2.0g。对于具有70/30样品,在100mL涂层混合物中包含5.6g的锆(IV)二丁醇(双-2,4-戊二酮酸酯)溶液和0.6g的LARC-CPI。制备锆(IV)二丁醇(双-2,4-戊二酮酸酯)与LARC-CP1聚酰亚胺的重量比为0/100、30/70、40/60、50/50、60/40、70/30、80/20、90/10和100/0的涂覆的小瓶样品。基于锆(IV)二丁醇(双-2,4-戊二酮酸酯)和LARC-CP1聚酰亚胺在涂层混合物中的重量,并且考虑固化期间分解并排出的锆(IV)二丁醇(双-2,4-戊二酮酸酯)的部分(对涂层中剩余的ZrO2无贡献的锆(IV)二丁醇(双-2,4-戊二酮酸酯)的部分),确定涂层中的ZrO2重量分数。例如,假设反应以锆(IV)二丁醇(双-2,4-戊二酮酸酯)反应物与ZrO2产物为1:1摩尔比进行。对于每个样品,使用无定形ZrO2及LARC-CP1聚酰亚胺的密度—它们分别为4.85g/cm3和1.54g/cm3,由重量分数计算ZrO2体积分数。例如,50/50样品具有含有22重量%ZrO2和8.2体积%ZrO2的涂层。实施例2中制备的每个样品的ZrO2重量分数和ZrO2体积分数示于表3。
通过与本公开所述的方法一致的工艺,使用30N的载荷利用图3的测试台,对根据实施例2制备的每个样品测试COF。对刚固化的样品、320℃热处理5个小时后的样品以及335℃热处理16个小时后的样品进行COF测试。表3示出了在固化后或所述的去除热原条件后,实施例2的每个涂覆的小瓶样品的平均COF和最大COF。应理解,去除热原的小瓶在去除热原之前也经历了固化。另外,在表3中,标记为“无”的去除热原条件对应于刚固化的涂覆的小瓶。此外,在COF测试后,视觉上检查样品以确定玻璃是否得到了充分的保护。标记为“玻璃保护”的表3中的列是指是否存在可见的玻璃裂缝、可见的磨损痕记或两种都存在。
表3
用50/50涂层混合物涂覆的小瓶具有不可见的颜色或雾度。涂层表现出低的摩擦系数(COF<0.50)和优良的玻璃保护,无论是否施加了去除热原条件。图14示出了刚固化的(532)、加热到320℃保持5个小时后的(530)以及加热到335℃保持16个小时后的(531)50/50样品的COF数据。图16的左侧图像示出了刚固化的、加热到320℃保持5个小时后的以及加热到335℃保持16个小时后的50/50磨损的涂覆小瓶。
用所述70/30涂层涂覆的小瓶在暴露于335℃下16个小时之后并进行了COF测试后具有可见的刮痕。图15示出了刚固化的(542)、加热到320℃保持5个小时后的(541)以及加热到335℃保持16个小时后的(540)50/50样品的COF数据。图16的右侧图像示出了刚固化的、加热到320℃保持5个小时后的以及加热到335℃保持16个小时后的70/30磨损的涂覆小瓶。
实施例3
在玻璃小瓶的外表面上用包含丁醇钛(IV)聚合物与6FDA-4-BDAF聚酰亚胺的涂层混合物涂覆玻璃小瓶以形成包含TiO2和6FDA-4-BDAF聚酰亚胺的固体涂层。丁醇钛(IV)聚合物与6FDA-4-BDAF聚酰亚胺的重量比为90/10。涂层含有67.5重量%和46.3体积%的TiO2
首先,由名称为《具有改进的化学和机械耐久性的玻璃组合物》的第13/660,394号美国专利申请的表1中的“组合物E”的玻璃组合物形成玻璃小瓶。随后,在施涂涂层之前,如第13/660,394号美国专利申请中所述对玻璃小瓶进行离子交换强化。小瓶的外直径为约16.00mm。
为了制备涂层混合物,在塑料容器中称重丁醇钛(IV)聚合物(100重量%,以编号510718商购自西格玛奥德里奇)和0.2g的LARC-CP1(6FDA-4-BDAF聚酰亚胺,以编号LARC-CP1商购自NEXOLVE),并且通过加入高达100mL的丙二醇甲醚乙酸酯(作为DOWANOLTMPMA溶剂以编号484431商购自西格玛奥德里奇)来形成涂层混合物。封闭容器并且搅拌直到LARC-CP1聚酰亚胺完全溶解。
用去离子水洗涤待涂覆的小瓶,用氮气吹干并且最后通过暴露于氧等离子体15秒来清洁,随后进行涂覆。接着,用上述丁醇钛(IV)聚合物和LARC-CP1聚酰亚胺混合物的溶液浸涂小瓶。取出速度固定在60cm/分钟以获得约30nm至40nm的干燥涂层厚度。随后,通过将涂覆的小瓶放置到360℃的预热炉中15分钟进行固化。
通过与本公开所述的方法一致的工艺,使用30N的载荷利用图3的测试台,对实施例3的经过涂覆的小瓶测试COF。对刚固化的样品、320℃热处理5个小时后的样品以及335℃热处理16个小时后的样品进行COF测试。
实施例3的经过涂覆的小瓶在360℃下固化15分钟后的COF平均值/最大值为0.27/0.28,在320℃下去除热原5个小时后的COF平均值/最大值为0.28/0.29,以及在335℃下去除热原16个小时后的COF平均值/最大值为0.25/0.26。该实施例说明了聚合钛酸酯可用于实践本文所述的方法。
实施例4
在玻璃小瓶的外表面上用包含二(异丙氧基)铝合乙酰乙酸酯螯合物与6FDA-4-BDAF聚酰亚胺的涂层混合物涂覆玻璃小瓶以形成包含Al2O3和聚酰亚胺的固体涂层。二(异丙氧基)铝合乙酰乙酸酯螯合物与6FDA-4-BDAF聚酰亚胺的重量比在不同的样品中有所不同。该实施例说明了四配位的铝酸酯可以用于实践本文所述的方法。
首先,由名称为《具有改进的化学和机械耐久性的玻璃组合物》的第13/660,394号美国专利申请的表1中的“组合物E”的玻璃组合物形成玻璃小瓶。随后,在施涂涂层之前,如第13/660,394号美国专利申请中所述对玻璃小瓶进行离子交换强化。小瓶的外直径为约16.00mm。
为了制备涂层混合物,在塑料容器中称重二(异丙氧基)铝合乙酰乙酸酯螯合物(以编号89350商购自阿法埃莎(ALFA AESAR))和LARC-CP1(6FDA-4-BDAF聚酰亚胺,以编号LARC-CP1商购自NEXOLVE)部分,并且通过加入高达100mL的丙二醇甲醚乙酸酯(作为DOWANOLTMPMA溶剂以编号484431商购自西格玛奥德里奇)来形成溶液。封闭容器并且搅拌直到6FDA-4-BDAF聚酰亚胺完全溶解。
用去离子水洗涤待涂覆的小瓶,用氮气吹干并且最后通过暴露于氧等离子体15秒来清洁,随后进行涂覆。接着,用上述二(异丙氧基)铝合乙酰乙酸酯螯合物和LARC-CP1聚酰亚胺混合物的溶液浸涂小瓶。取出速度固定在60cm/分钟以获得约30nm至40nm的干燥涂层厚度。随后,通过将涂覆的小瓶放置到360℃的预热炉中15分钟进行固化。
包含在涂层混合物中的二(异丙氧基)铝合乙酰乙酸酯螯合物与LARC-CP1聚酰亚胺的比值对于各样品是不同的。在涂层混合物中,固体(二(异丙氧基)铝合乙酰乙酸酯螯合物和LARC-CP1聚酰亚胺)的重量百分数为1重量%、3重量%、4重量%或5重量%,其中,二(异丙氧基)铝合乙酰乙酸酯螯合物与LARC-CP1的比值较低的样品具有1重量%涂层混合物,而二(异丙氧基)铝合乙酰乙酸酯螯合物与LARC-CP1的比值较高的样品具有较高的重量%涂层混合物。例如,在3重量%涂层混合物的情况下,为了使二(异丙氧基)铝合乙酰乙酸酯螯合物与LARC-CP1聚酰亚胺形成95/5重量比,合并2.85g的二(异丙氧基)铝合乙酰乙酸酯螯合物和0.15g的LARC-CP1聚酰亚胺,然后加入丙二醇甲醚乙酸酯以制备100mL溶液。制备二(异丙氧基)铝合乙酰乙酸酯螯合物与LARC-CP1聚酰亚胺的重量比为0/100、10/90、20/80、30/70、50/50、60/40、70/30、80/20、90/10、95/5、97/3、98/2、99/1、99.5/0.5和100/0的涂覆的小瓶样品。基于二(异丙氧基)铝合乙酰乙酸酯螯合物和LARC-CP1聚酰亚胺在涂层混合物中的重量,并且考虑固化期间分解并排出的二(异丙氧基)铝合乙酰乙酸酯螯合物的部分(对涂层中剩余的Al2O3没有贡献的二(异丙氧基)铝合乙酰乙酸酯螯合物的部分),确定涂层中的Al2O3重量分数。例如,假设二(异丙氧基)铝合乙酰乙酸酯螯合物反应物与Al2O3产物的摩尔比为2:1。对于每个样品,使用无定形氧化铝及LARC-CP1聚酰亚胺的密度,由重量分数计算Al2O3体积分数。
通过与本公开所述的方法一致的工艺,使用30N的载荷利用图3的测试台,对根据实施例4制备的每个样品测试COF。对刚固化的样品、320℃热处理5个小时后的样品以及335℃热处理16个小时后的样品进行COF测试。表4示出了在固化后或所述的去除热原条件后,实施例4的每个涂覆的小瓶样品的平均COF和最大COF。应理解,去除热原的小瓶在去除热原之前也经历了固化。另外,在表4中,标记为“无”的去除热原条件对应于刚固化的涂覆的小瓶。此外,在COF测试后,视觉上检查样品以确定玻璃是否得到了充分的保护。标记为“玻璃保护”的表4中的列是指是否存在可见的玻璃裂缝、可见的磨损痕记或两种都存在。
另外,图7A-7L示出了实施例4的各个样品的COF数据。图7A-7L中的每个附图示出了在测试中测量的摩擦系数,并且还示出了在COF测试后磨损的玻璃小瓶的图像。如可见到的,玻璃裂缝和可见的损坏有时是COF增加造成的。表5列出了对应于图7A-7L的实施例4的样品。图7A-7L示出了无去除热原的COF测试(在固化后进行COF测试)的COF数据。
表4
表5
从收集的数据可见,二(异丙氧基)铝与LARC-CP1的重量比为0/100、30/70、50/50、99/1、99.5/0.5和100/0的样品未充分地保护玻璃。此外,99/1和100/0(纯Al2O3)的在去除热原后的COF显著大于1。
95/5样品在小瓶与小瓶接触测试中表现出低的摩擦系数(COF<0.50)和良好的玻璃保护,不论是否施加去除热原条件(320℃下5个小时或者335℃下16个小时)。图9的右侧图像示出了在COF测试后处于刚固化状态的95/5磨损的涂覆小瓶。图18的图像示出了刚固化的、加热到320℃保持5个小时后的以及加热到335℃保持16个小时后的95/5磨损的涂覆小瓶。另外,图17示出了刚固化的(552)、加热到320℃保持5个小时后的(551)以及加热到335℃保持16个小时后的(550)95/5样品的COF数据。
对比例1
在玻璃小瓶的外表面上用包含三仲丁醇铝与6FDA-4-BDAF聚酰亚胺的涂层混合物涂覆玻璃小瓶以形成包含Al2O3和聚酰亚胺的固体涂层。三仲丁醇铝与6FDA-4-BDAF聚酰亚胺的重量比为90/10。涂层含有78.8重量%和59.5体积%的Al2O3
首先,由名称为《具有改进的化学和机械耐久性的玻璃组合物》的第13/660,394号美国专利申请的表1中的“组合物E”的玻璃组合物形成玻璃小瓶。随后,在施涂涂层之前,如第13/660,394号美国专利申请中所述对玻璃小瓶进行离子交换强化。小瓶的外直径为约16.00。
为了制备涂层混合物,在塑料容器中称重三仲丁醇铝(97重量%,以编号201073商购自西格玛奥德里奇)和0.2g的LARC-CP1(6FDA-4-BDAF聚酰亚胺,以编号LARC-CP1商购自NEXOLVE),并且通过加入高达100mL的丙二醇甲醚乙酸酯(作为DOWANOLTMPMA溶剂以编号484431商购自西格玛奥德里奇)来形成涂层混合物。封闭容器并且搅拌直到LARC-CP1聚酰亚胺完全溶解。
用去离子水洗涤待涂覆的小瓶,用氮气吹干并且最后通过暴露于氧等离子体15秒来清洁,随后进行涂覆。接着,用上述三仲丁醇铝和LARC-CP1聚酰亚胺混合物的溶液浸涂小瓶。取出速度固定在60cm/分钟以获得约30nm至40nm的干燥涂层厚度。随后,通过将涂覆的小瓶放置到360℃的预热炉中15分钟进行固化。
通过与本公开所述的方法一致的工艺,使用30N的载荷利用图3的测试台,对对比例1的经过涂覆的小瓶测试COF。对刚固化的样品、320℃热处理5个小时后的样品以及335℃热处理16个小时后的样品进行COF测试。对比例1的经过涂覆的小瓶在360℃下固化15分钟后的COF平均值/最大值为0.41/0.45,在320℃下去除热原5个小时后的COF平均值/最大值为0.49/0.54,以及在335℃下去除热原16个小时后的COF平均值/最大值为0.51/0.65。然而,即使在固化步骤后(刚固化的)在小瓶与小瓶接触测试中涂层表现出相对较低的摩擦系数(COF<0.50),其也显示出对抗刮擦的较差的玻璃保护并且在玻璃基材中检测到了一些裂缝。在320℃下去除热原5个小时后以及在335℃下去除热原16个小时后观察到了更多损坏。
对比例2
在玻璃小瓶的外表面上用包含原硅酸四乙酯(TEOS)与6FDA-4-BDAF聚酰亚胺的涂层混合物涂覆玻璃小瓶以形成包含SiO2和聚酰亚胺的固体涂层。TEOS与6FDA-4-BDAF聚酰亚胺的重量比为50/50。涂层含有22.38重量%和14.35体积%的SiO2
首先,由名称为《具有改进的化学和机械耐久性的玻璃组合物》的第13/660,394号美国专利申请的表1中的“组合物E”的玻璃组合物形成玻璃小瓶。随后,在施涂涂层之前,如第13/660,394号美国专利申请中所述对玻璃小瓶进行离子交换强化。小瓶的外直径为约16.00mm。
为了制备涂层混合物,在塑料容器中称重0.5g的TEOS(100重量%,以编号333859商购自西格玛奥德里奇)和0.5g的LARC-CP1(6FDA-4-BDAF聚酰亚胺,以编号LARC-CP1商购自NEXOLVE),并且通过加入高达100mL的丙二醇甲醚乙酸酯(作为DOWANOLTMPMA溶剂以编号484431商购自西格玛奥德里奇)来形成涂层混合物。封闭容器并且搅拌直到LARC-CP1聚酰亚胺完全溶解。
用去离子水洗涤待涂覆的小瓶,用氮气吹干并且最后通过暴露于氧等离子体15秒来清洁,随后进行涂覆。接着,用上述TEOS和LARC-CP1聚酰亚胺混合物的溶液浸涂小瓶。取出速度固定在10cm/分钟以获得约30nm至40nm的干燥涂层厚度。随后,通过将涂覆的小瓶放置到360℃的预热炉中15分钟进行固化。
通过与本公开所述的方法一致的工艺,使用30N的载荷利用图3的测试台,对对比例2的经过涂覆的小瓶测试COF。对刚固化的样品、320℃热处理5个小时后的样品以及335℃热处理16个小时后的样品进行COF测试。对比例2的经过涂覆的小瓶在360℃下固化15分钟后的COF平均值/最大值为0.30/0.43,在320℃下去除热原5个小时后的COF平均值/最大值大于1,以及在335℃下去除热原16个小时后的COF平均值/最大值大于1。在固化后以及在去除热原条件后,于COF测试后在玻璃中检测到许多裂缝。
对比例3
用甲醇稀释23.5重量%的氨基丙基硅倍半氧烷水溶液(以编号AB127715商购自ABCR)获得2重量/体积%硅倍半氧烷溶液,用该硅倍半氧烷溶液涂覆如前述实施例所述的玻璃小瓶(干净的并且用如上所述方式制备)。用该硅倍半氧烷溶液浸涂小瓶,其中取出速度为80cm/分钟并且在150℃下干燥8分钟。如Fadeev等人的美国公开2013/0171456所述,在硅倍半氧烷涂层上方施涂第二涂层PMDA-ODA(作为Kapton聚酰亚胺商购自西格玛奥德里奇)。具体地,通过向10g PMDA-ODA聚酰胺酸溶液[12.0重量%±0.5重量%(80%NMP/20%二甲苯)中加入1.16g的三乙胺,将聚酰胺酸转换成其聚酰胺酸盐。剧烈搅拌后,加入28.84g的甲醇以形成3重量%溶液。在涂覆了硅倍半氧烷后,使用喷洒方法用在甲醇中的0.5%PMDA-ODA聚酰胺酸盐涂覆小瓶。在360℃下固化涂覆的小瓶15分钟并且通过暴露于在320℃下加热5个小时和335℃下16个小时来去除热原。在小瓶上具有小瓶的台中,在30N法向载荷下对未去除热原的(刚固化的)样品和去除热原的样品进行刮擦。小瓶在小瓶与小瓶的接触测试中表现出低的摩擦系数并且具有优良的玻璃保护,但是表现出黄颜色。图13示出了未涂覆的小瓶(511)、用对比例3的涂层涂覆的刚固化的小瓶(518)、用对比例3的涂层涂覆并暴露于300℃下12个小时的小瓶(516)、用对比例3的涂层涂覆并暴露于335℃下16个小时的小瓶(517)以及用对比例3的涂层涂覆并暴露于320℃下5个小时的小瓶(519)的CIE XYZ颜色坐标。McAdams椭圆显示甚至是在去除热原条件之前,相对于未涂覆的小瓶的色差对于人眼来说是可检测到的。
现应理解,本文所述的具有低摩擦涂层的玻璃容器由于施涂了低摩擦涂层而表现出抗机械损坏得到改进,并因此使玻璃容器具有增强的机械耐久性。该性质使玻璃容器非常适用于各种应用,包括,但不限于药物包装材料。
对本领域的技术人员显而易见的是,可以对本文所述的实施方式进行各种修改和变动而不偏离要求保护的主题的精神和范围。因此,本说明书旨在涵盖本文所述的各个实施方式的修改和变化形式,条件是这些修改和变化形式落入所附权利要求及其等同内容的范围之内。

Claims (30)

1.一种药物包装件,包括:
玻璃容器,所述玻璃容器包含第一表面和与第一表面相对的第二表面,其中,第一表面为玻璃容器的外表面;和
涂层,其位于玻璃容器的第一表面的至少一部分的上方,所述涂层包含:
一种或多种聚酰亚胺组合物;和
一种或多种金属氧化物组合物;
其中,所述一种或多种聚酰亚胺组合物和所述一种或多种金属氧化物组合物在涂层中是混合的。
2.如权利要求1所述的药物包装件,其中,所述一种或多种金属氧化物组合物与所述一种或多种聚酰亚胺组合物的重量比为约20/80至约95/5。
3.如权利要求1所述的药物包装件,其中,所述一种或多种金属氧化物组合物在涂层中的总量为约20重量%至约95重量%。
4.如权利要求1所述的药物包装件,其中,所述一种或多种聚酰亚胺组合物在涂层中的总量为约5重量%至约80重量%。
5.如权利要求1所述的药物包装件,其中,涂层中聚酰亚胺和金属氧化物的组合占涂层的至少约50重量%。
6.如权利要求1所述的药物包装件,其中,所述一种或多种金属氧化物组合物中的至少一种为氧化锆、氧化铝或二氧化钛。
7.如权利要求1所述的药物包装件,其中,涂层的厚度为100nm或更小。
8.如权利要求1所述的药物包装件,其中,所述一种或多种聚酰亚胺组合物是氟化的。
9.如权利要求1所述的药物包装件,其中,涂层与玻璃容器的第一表面的至少一部分粘结。
10.如权利要求1所述的药物包装件,其中,具有涂层的玻璃容器的第一表面的部分具有小于或等于约0.7的摩擦系数。
11.如权利要求10所述的药物包装件,其中,具有涂层的玻璃容器的第一表面的部分在至少约250℃的温度下热处理30分钟后,仍然保持小于或等于约0.7的摩擦系数。
12.如权利要求1所述的药物包装件,其中,对于约400nm至约700nm中的每个波长,通过所述药物包装件的透光率大于或等于通过未涂覆的药物包装件的透光率的约55%。
13.如权利要求12所述的药物包装件,其中,在至少约250℃的温度下热处理30分钟后,所述药物包装件仍然保持对于约400nm至约700nm中的每个波长,通过所述药物包装件的透光率大于或等于通过未涂覆的药物包装件的透光率的约55%。
14.如权利要求1所述的药物包装件,其中,所述一种或多种金属氧化物组合物与所述一种或多种聚酰亚胺组合物的重量比为90:10或更大。
15.如权利要求1所述的药物包装件,其中,所述一种或多种金属氧化物组合物与所述一种或多种聚酰亚胺组合物的重量比为约35/65或更大。
16.如权利要求1所述的药物包装件,其中,所述一种或多种金属氧化物组合物与所述一种或多种聚酰亚胺组合物的重量比为约50/50或更大。
17.如权利要求1所述的药物包装件,其中,所述一种或多种金属氧化物组合物与所述一种或多种聚酰亚胺组合物的重量比为约75/25或更大。
18.如权利要求1所述的药物包装件,其中,涂层中聚酰亚胺和金属氧化物的组合占涂层的至少约90重量%。
19.如权利要求1所述的药物包装件,其中,涂层中聚酰亚胺和金属氧化物的组合占涂层的至少约95重量%。
20.如权利要求1所述的药物包装件,其中,涂层中聚酰亚胺和金属氧化物的组合占涂层的至少约99重量%。
21.一种生产药物包装件的方法,所述方法包括:
将涂层混合物沉积到玻璃容器的外表面的第一表面上,所述涂层混合物包含:
一种或多种金属氧化物前体;和
一种或多种聚合物组合物、一种或多种聚合物前体、或者一种或多种聚合物组合物和一种或多种聚合物前体;以及
加热涂层混合物以在玻璃容器的外表面上形成涂层,所述涂层包含:
一种或多种聚合物组合物;和
一种或多种金属氧化物组合物。
22.如权利要求21所述的方法,其中,至少一种金属氧化物前体选自钛酸酯、锆酸酯、锆铝酸酯、铝酸酯、或者它们的水解产物或低聚物。
23.如权利要求21所述的方法,其中,至少一种金属氧化物前体选自四原钛酸酯、六配位螯合的钛酸酯、聚合钛酸酯、或者它们的水解产物或低聚物。
24.如权利要求21所述的方法,其中,至少一种金属氧化物前体为四原钛酸酯或者它们的水解产物或低聚物,其选自:原钛酸四乙基酯;原钛酸四甲基酯;原钛酸四异丙基酯;原钛酸四戊基酯;原钛酸四辛基酯;原钛酸四十二烷基酯;原钛酸四-2-乙基己基酯;原钛酸四苄基酯;原钛酸四环己基酯;原钛酸四苯基酯;原钛酸四乙氧基乙基酯;钛酸四正丁基酯;四(2-乙基己基)钛酸酯;原钛酸四-β-萘基酯;或者它们的水解产物或低聚物。
25.如权利要求21所述的方法,其中,至少一种金属氧化物前体为六配位的螯合钛酸酯或者其水解产物或低聚物,其选自:钛乙酰丙酮酸酯;二异丙氧基钛二(乙酰丙酮酸酯);钛乙酰丙酮酸酯二(戊烷-2,4-二酮酸酯合-O,O')二(烷醇合)钛;二异丙氧基-二乙基乙酰乙酸酯合钛酸酯;(三乙醇胺酸酯合)异丙醇钛(IV);或者它们的水解产物或低聚物。
26.如权利要求21所述的方法,其中,至少一种金属氧化物前体为含锆金属氧化物前体。
27.如权利要求26所述的方法,其中,所述含锆金属氧化物前体选自:乙酰基丙酮酸锆;叔丁醇锆;六氟乙酰基丙酮酸锆;环烷酸锆;丙醇锆;异丙醇锆;锆石铝酸酯;四(2,2二烯丙氧基甲基)丁基二(双十三烷基)膦基锆酸酯;新戊基(二烯丙基)氧基三新癸酰基锆酸酯;新戊基(二烯丙基)氧基三(十二烷基)苯-磺酰基锆酸酯;新戊基(二烯丙基)氧基三(二辛基)磷酸酯合锆酸酯;新戊基(二烯丙基)氧基三(二辛基)焦磷酸酯合锆酸酯;新戊基(二烯丙基)氧基三(N-乙二氨基)乙基锆酸酯;新戊基(二烯丙基)氧基三(间氨基)苯基锆酸酯;新戊基(二烯丙基)氧基三甲基丙烯酰基锆酸酯;新戊基(二烯丙基)氧基三丙烯酰基锆酸酯;二新戊基(二烯丙基)氧基二对氨基苯甲酰基锆酸酯;二新戊基(二烯丙基)氧基二(3-巯基)丙酸锆酸酯;或者它们的水解产物或低聚物。
28.如权利要求21所述的方法,其中,至少一种金属氧化物前体为四配位的铝酸酯金属氧化物前体。
29.一种药物包装件,包括:
玻璃容器,所述玻璃容器包含第一表面和与第一表面相对的第二表面,其中,第一表面为玻璃容器的外表面;和
涂层,其位于玻璃容器的第一表面的至少一部分的上方,所述涂层包含:
一种或多种聚合物组合物;和
一种或多种金属氧化物组合物;
其中,所述一种或多种聚合物组合物和所述一种或多种金属氧化物组合物在涂层中是混合的;
其中,所述一种或多种金属氧化物组合物与所述一种或多种聚合物组合物的重量比为约20/80至约95/5;并且
其中,涂层中聚合物和金属氧化物的组合占涂层的至少约95重量%。
30.如权利要求29所述的药物包装件,其中,所述一种或多种聚合物组合物中的一种或多种是聚酰亚胺。
CN201680062617.3A 2015-10-30 2016-10-28 具有聚合物和金属氧化物混合涂层的玻璃制品 Pending CN108349789A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562248827P 2015-10-30 2015-10-30
US62/248,827 2015-10-30
PCT/US2016/059446 WO2017075435A1 (en) 2015-10-30 2016-10-28 Glass articles with mixed polymer and metal oxide coatings

Publications (1)

Publication Number Publication Date
CN108349789A true CN108349789A (zh) 2018-07-31

Family

ID=57346053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680062617.3A Pending CN108349789A (zh) 2015-10-30 2016-10-28 具有聚合物和金属氧化物混合涂层的玻璃制品

Country Status (13)

Country Link
US (4) US20170121058A1 (zh)
EP (2) EP3368491B1 (zh)
JP (1) JP6993964B2 (zh)
KR (1) KR102658016B1 (zh)
CN (1) CN108349789A (zh)
AU (1) AU2016343719B2 (zh)
BR (1) BR112018008744B1 (zh)
CA (1) CA3001514A1 (zh)
MX (1) MX2018005349A (zh)
RU (1) RU2729081C2 (zh)
SG (1) SG11201803373UA (zh)
TW (2) TWI825443B (zh)
WO (1) WO2017075435A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115175857A (zh) * 2019-08-09 2022-10-11 康宁股份有限公司 具有包含聚氰脲酸酯的涂层的药物包装件
CN115160831A (zh) * 2022-06-22 2022-10-11 合肥旭阳铝颜料有限公司 一种具有镜面效果的水性铝颜料及其制备方法和应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11091389B2 (en) * 2018-08-31 2021-08-17 Corning Incorporated Methods for making coated glass articles such as coated glass containers
US11724963B2 (en) 2019-05-01 2023-08-15 Corning Incorporated Pharmaceutical packages with coatings comprising polysilazane
WO2021173321A1 (en) * 2020-02-25 2021-09-02 Corning Incorporated High efficiency pharmaceutical filling line
JP2023531898A (ja) * 2020-06-17 2023-07-26 コーニング インコーポレイテッド ガラス物品を被覆する方法
CN116075288A (zh) * 2020-09-04 2023-05-05 康宁股份有限公司 阻挡紫外光的经涂覆的药物包装

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130101596A1 (en) * 2011-10-25 2013-04-25 Steven Edward DeMartino Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
CN104271346A (zh) * 2012-02-28 2015-01-07 康宁股份有限公司 具有低摩擦涂层的玻璃制品
CN104508008A (zh) * 2012-08-01 2015-04-08 东丽株式会社 聚酰胺酸树脂组合物、使用了该组合物的聚酰亚胺膜及其制造方法
CN104520248A (zh) * 2012-06-28 2015-04-15 康宁股份有限公司 具有耐热涂层的抗脱层玻璃容器
CN104968626A (zh) * 2012-11-30 2015-10-07 康宁股份有限公司 具有抗脱层性与改善的强度的玻璃容器

Family Cites Families (296)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB702292A (en) 1950-09-13 1954-01-13 Pfizer & Co C Improvements in or relating to liquid containers
NL85087C (zh) 1951-10-09
GB720778A (en) 1952-03-04 1954-12-29 Bayer Ag A process of rendering materials hydrophobic
NL231998A (zh) 1957-10-18
BE618740A (zh) 1962-03-23
US3287311A (en) 1963-01-03 1966-11-22 Du Pont Polyimide containing tio2, articles, and process of making
US3323889A (en) 1963-04-16 1967-06-06 Owens Illinois Inc Method for increasing scratch resistance of a glass surface with a pyrolyzing treatment and a coating of an olefin polymer
US3441432A (en) 1965-08-19 1969-04-29 Owens Illinois Inc Method of rendering glass surfaces abrasion and scratch resistant
US3900329A (en) 1965-12-07 1975-08-19 Owens Illinois Inc Glass compositions
US3844754A (en) 1966-02-23 1974-10-29 Owens Illinois Inc Process of ion exchange of glass
FR93015E (fr) 1966-04-19 1969-01-31 Ball Brothers Co Inc Procédé et appareil pour déposer un enduit sous forme de vapeur sur des objects en verre.
FR2033431A5 (en) 1969-02-24 1970-12-04 Autolubrification Aps Coating glass with fluorocarbons
US3577256A (en) 1969-06-26 1971-05-04 Owens Illinois Inc Scratch and abrasion resistant coatings for glass
US3674690A (en) 1969-07-08 1972-07-04 Us Air Force Air drying silicone resin bonded dry film lubricant
GB1267855A (en) 1969-08-08 1972-03-22 Owens Illinois Inc Method of coating glass surface and products produced thereby
DE1954314A1 (de) 1969-10-29 1971-05-06 Basf Ag Verfahren zur Herstellung stickstoffhaltiger,thermostabiler Kondensationsprodukte
US3607186A (en) 1970-04-08 1971-09-21 Corning Glass Works Method and apparatus for forming hollow articles from sheet glass
US3801361A (en) 1971-09-17 1974-04-02 Owens Illinois Inc Coated glass surface
US3772061A (en) 1971-10-14 1973-11-13 Liberty Glass Co Containers and methods of preparing
US4065317A (en) 1971-10-28 1977-12-27 Nippon Electric Glass Company, Ltd. Novel glass compositions
US3811921A (en) 1971-12-09 1974-05-21 Owens Illinois Inc Method of coating glass surface and products produced thereby
SU504719A1 (ru) 1972-06-01 1976-02-28 Ленинградский Филиал Всесоюзного Научно-Исследовательского Института Медицинского Приборостения Способ обработки изделий
US3878960A (en) 1972-06-12 1975-04-22 Platmanufaktur Ab Glass container with a shrunk-on plastic protective cover
US4093759A (en) 1972-12-23 1978-06-06 Toyo Ink Manufacturing Co., Ltd. Glass container coated with polyurethane
US3791809A (en) 1973-01-12 1974-02-12 Owens Illinois Inc Method of strengthening glass articles using powdered salts for ion exchange
US4030904A (en) 1973-09-10 1977-06-21 United Glass, Ltd. Surface coating of glass containers while annealing
US4238041A (en) 1973-12-07 1980-12-09 Bodelind Bo T Glass container with a fixed plastic protective layer
GB1436658A (en) 1974-04-18 1976-05-19 Ici Ltd Treatment of glass containers
US4056651A (en) 1975-03-18 1977-11-01 United Technologies Corporation Moisture and heat resistant coating for glass fibers
US4086373A (en) 1975-04-02 1978-04-25 Owens-Illinois, Inc. Protective polymeric coating for glass substrate
US4065589A (en) 1975-06-09 1977-12-27 Owens-Illinois, Inc. Polymeric coating for protection of glass substrate
DE2611170C3 (de) 1975-06-19 1978-08-31 Owens-Illinois, Inc., Toledo, Ohio (V.St.A.) Verfahren zum Herstellen eines polymeren Schutzüberzugs auf einer Glasoberfläche, der Glasbruchstücke festhält, sowie Glasbehälter
US4056208A (en) 1976-08-11 1977-11-01 George Wyatt Prejean Caustic-resistant polymer coatings for glass
US4130677A (en) 1977-10-21 1978-12-19 E. I. Du Pont De Nemours And Company Process for applying to glass an organic coating having controlled bond strength
US4264658A (en) 1978-07-10 1981-04-28 Owens-Illinois, Inc. Three-component polymeric coating for glass substrate
US4215165A (en) 1978-07-17 1980-07-29 Chemische Werke Huls Aktiengesellschaft Method for coating of glass surfaces
US4214886A (en) 1979-04-05 1980-07-29 Corning Glass Works Forming laminated sheet glass
JPS56819A (en) 1979-05-17 1981-01-07 Mitui Toatsu Chem Inc Thermosetting polyurethane resin and coating agent
JPS5663845A (en) 1979-10-26 1981-05-30 Nippon Kogaku Kk <Nikon> Inorganic substance product having surface layer rendered hydrophilic and its manufacture
US4431692A (en) 1980-02-15 1984-02-14 Owens-Illinois, Inc. Process for making glass surfaces abrasion-resistant and article produced thereby
SU990700A1 (ru) 1980-03-03 1983-01-23 Белорусский технологический институт им.С.М.Кирова Стекло дл химико-лабораторных изделий
JPS56155044A (en) 1981-03-25 1981-12-01 Ishizuka Glass Ltd Glass bottle coated with protecting film
RO83460B1 (ro) 1981-11-17 1984-03-30 Institutul De Chimie STICLE DE AMBALAJ CU îNALTA REZISTENTA LA ACIZI
SU1046211A1 (ru) * 1982-06-22 1983-10-07 Государственный Научно-Исследовательский Ордена Трудового Красного Знамени Институт Стекла Раствор дл обработки стеклоизделий перед ионообменным упрочнением
FR2561234A1 (fr) 1984-03-16 1985-09-20 Bouvet Vernis Procede de traitement de recipients en verre avec un vernis protecteur et vernis de protection mis en oeuvre
US4654235A (en) 1984-04-13 1987-03-31 Chemical Fabrics Corporation Novel wear resistant fluoropolymer-containing flexible composites and method for preparation thereof
JPS6147932A (ja) 1984-08-15 1986-03-08 Nissan Chem Ind Ltd 液晶表示素子
US4603061A (en) 1984-08-23 1986-07-29 The United States Of America As Represented By The National Aeronautics And Space Administration Process for preparing highly optically transparent/colorless aromatic polyimide film
US4595548A (en) 1984-08-23 1986-06-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Process for preparing essentially colorless polyimide film containing phenoxy-linked diamines
EP0176062A3 (en) 1984-09-27 1987-07-15 Dow Corning Corporation Silane bonding agents for high temperature applications and method therefor
US4696994A (en) 1984-12-14 1987-09-29 Ube Industries, Ltd. Transparent aromatic polyimide
US4680373A (en) 1984-12-31 1987-07-14 General Electric Company Process for the production of a random copolymer containing repeating polyimide units and repeating polyetherimide units
US4558110A (en) 1985-02-01 1985-12-10 General Electric Company Crystalline silicone-imide copolymers
JPS60254022A (ja) 1985-03-05 1985-12-14 Sharp Corp 液晶表示素子
US4620985A (en) 1985-03-22 1986-11-04 The D. L. Auld Company Circumferential groove coating method for protecting a glass bottle
US4767414A (en) 1985-05-16 1988-08-30 Becton, Dickinson And Company Ionizing plasma lubricant method
JPS6247623A (ja) 1985-08-27 1987-03-02 Toshiba Corp 液晶表示装置
JPH0768347B2 (ja) 1985-09-25 1995-07-26 株式会社日立製作所 有機ケイ素末端ポリイミド前駆体とポリイミドの製造方法
JPS62140257A (ja) 1985-12-13 1987-06-23 Mitsubishi Chem Ind Ltd 光デイスク用基板
JPH0637609B2 (ja) 1986-01-24 1994-05-18 マサチユ−セツツ インスチチユ−ト オブ テクノロジ− 接着促進剤
JPS62231222A (ja) 1986-03-31 1987-10-09 Nitto Electric Ind Co Ltd 液晶配向膜形成用溶液
US4749614A (en) 1986-04-10 1988-06-07 International Business Machines Corporation Process for coating fibers, use thereof, and product
JPS63236731A (ja) 1987-03-24 1988-10-03 Hidetoshi Tsuchida ガラス材料表面にリン脂質化合物を導入する方法
FR2613846B1 (fr) 1987-04-10 1990-10-26 Commissariat Energie Atomique Dispositif d'affichage a cristal liquide smectique ferroelectrique bistable
JP2632696B2 (ja) 1987-04-28 1997-07-23 大日本インキ化学工業株式会社 ガラス容器の力学的強度の向上方法
US4842889A (en) 1987-08-03 1989-06-27 Becton, Dickinson And Company Method for preparing lubricated surfaces
US4860906A (en) 1987-09-14 1989-08-29 Bloomfield Industries, Inc. Glass container with safety coating
JPS6479269A (en) 1987-09-21 1989-03-24 Sekisui Chemical Co Ltd Coated metallic object
FR2625450B1 (fr) 1988-01-05 1992-05-07 Corning Glass Works Article muni d'un revetement anti-adherent presentant une adhesion audit substrat et une durabilite ameliorees, sa fabrication et composition mise en oeuvre
JPH0749482B2 (ja) 1988-02-26 1995-05-31 チッソ株式会社 低吸湿性かつ高接着性のシリコン含有ポリイミド及びその前駆体の製造方法
JPH01279058A (ja) 1988-04-20 1989-11-09 Moon Star Co 高分子被覆保護膜を有するガラス瓶
US4988288A (en) 1988-05-13 1991-01-29 Despatch Industries, Inc. Material heating oven
US5024922A (en) 1988-11-07 1991-06-18 Moss Mary G Positive working polyamic acid/imide and diazoquinone photoresist with high temperature pre-bake
DE68928268T2 (de) 1988-11-07 1998-03-19 Brandt Mfg Systems Inc Verfahren zum anbringen eines etiketts auf einen behälter
US5049421A (en) 1989-01-30 1991-09-17 Dresser Industries, Inc. Transducer glass bonding technique
JP2601717B2 (ja) 1989-02-27 1997-04-16 ハニー化成株式会社 ガラス積層体
US4923960A (en) 1989-02-27 1990-05-08 Hoechst Celanese Corp. Polyamide-imide polymers having fluorine-containing linking groups
US4931539A (en) 1989-03-06 1990-06-05 E. I. Du Pont De Nemours And Company Highly-soluble, amorphous siloxane polyimides
US5281690A (en) 1989-03-30 1994-01-25 Brewer Science, Inc. Base-soluble polyimide release layers for use in microlithographic processing
US5036145A (en) 1989-07-10 1991-07-30 Armstrong World Industries, Inc. Alkoxysilane and alkoxysilane terminated polyamic or polyimide lacquer composition
US5124618A (en) 1989-11-16 1992-06-23 Matsushita Electronics Corporation Shatter-proof fluorescent lamp
US5108819A (en) 1990-02-14 1992-04-28 Eli Lilly And Company Thin film electrical component
DE69113291T3 (de) 1990-02-20 1999-08-26 Ishizuka Glass Verfahren und Vorrichtung zum Herstellen von Glascontainern.
US5137751A (en) 1990-03-09 1992-08-11 Amoco Corporation Process for making thick multilayers of polyimide
US5024993A (en) 1990-05-02 1991-06-18 Microelectronics & Computer Technology Corporation Superconducting-semiconducting circuits, devices and systems
US5427862A (en) 1990-05-08 1995-06-27 Amoco Corporation Photocurable polyimide coated glass fiber
US5206337A (en) 1990-05-10 1993-04-27 Sumitomo Bakelite Company Limited Solvent-soluble polyimidesiloxane oligomer and process for producing the same
US5002359A (en) 1990-05-22 1991-03-26 W. L. Gore & Associates, Inc. Buffered insulated optical waveguide fiber cable
US5252703A (en) 1990-06-01 1993-10-12 Ube Industries, Ltd. Polyimidosiloxane resin and composition thereof and method of applying same
DK146790D0 (da) 1990-06-15 1990-06-15 Meadox Surgimed As Fremgangsmaade til fremstilling af en ved befrugtning friktionsnedsaettende belaegning samt medicinsk instrument med en friktionsnedsaettende belaegning
US6013333A (en) 1990-08-30 2000-01-11 Elf Atochem North America, Inc. Method for strengthening a brittle oxide substrate
JPH04156402A (ja) 1990-10-19 1992-05-28 Dainippon Printing Co Ltd カラーフィルター
US5114757A (en) 1990-10-26 1992-05-19 Linde Harold G Enhancement of polyimide adhesion on reactive metals
GB2252333B (en) 1991-01-29 1995-07-19 Spectra Physics Scanning Syst Improved scanner window
GB9111261D0 (en) 1991-05-24 1991-07-17 Univ Sheffield A method of strenghthening glass
DE69215448T3 (de) 1991-07-22 2010-06-10 Daikyo Gomu Seiko, Ltd. Behälter für hygienische Artikel
US5310862A (en) 1991-08-20 1994-05-10 Toray Industries, Inc. Photosensitive polyimide precursor compositions and process for preparing same
DE4128634A1 (de) 1991-08-29 1993-03-04 Mueller Klaus Peter Dr Ing Mittel zur bruchsicherungsbeschichtung und zur waschfesten sicherung von etiketten und aufschriften von mehrfach verwendbaren hohlglaesern
DE4130414A1 (de) 1991-09-10 1993-04-29 Zentralinstitut Fuer Anorganis Polymerbeschichtetes calciumhaltiges silicatglas
US5232783A (en) 1991-09-10 1993-08-03 General Electric Company Abrasion resistant coatings for glass articles
US5306537A (en) 1991-12-20 1994-04-26 The Standard Products Company Wear resistant coating for glass run channel
GB2265021B (en) 1992-03-10 1996-02-14 Nippon Steel Chemical Co Photosensitive materials and their use in forming protective layers for printed circuit and process for preparation of printed circuit
US6391459B1 (en) 1992-04-20 2002-05-21 Dsm N.V. Radiation curable oligomers containing alkoxylated fluorinated polyols
US5482768A (en) 1993-05-14 1996-01-09 Asahi Glass Company Ltd. Surface-treated substrate and process for its production
TW283163B (zh) 1993-08-19 1996-08-11 Nissan Chemical Ind Ltd
SE9303357L (sv) 1993-10-12 1995-04-13 Plm Ab Sätt att framställa en glasartikel med skyddande överdrag av polymermaterial
JP3342758B2 (ja) 1993-11-26 2002-11-11 鬼怒川ゴム工業株式会社 ゴム成形品の滑面構造
RU2071492C1 (ru) 1994-02-09 1997-01-10 Андрейчикова Галина Емельяновна Композиция для покрытия
JP2871440B2 (ja) 1994-02-15 1999-03-17 日本板硝子株式会社 化学強化ガラスの製造方法
US5488092A (en) 1994-04-26 1996-01-30 Gencorp Inc. Low VOC, primerless, polyurethane compostions
EP0773203B1 (en) 1994-05-17 2000-01-19 Asahi Chemical Company, Limited Glazing layer forming composition for hot coating of oven refractory and method of forming glazing layer
JP2974576B2 (ja) 1994-05-25 1999-11-10 リンテック株式会社 易滑性ハードコートフイルム及びその製造方法
JPH08337654A (ja) 1995-06-14 1996-12-24 Matsushita Electric Ind Co Ltd 化学吸着膜の製造方法及びこれに用いる化学吸着液
WO1997005916A1 (fr) 1995-08-09 1997-02-20 Tetsuro Higashikawa Seringue, assemblage d'etancheite et procede correspondant et curseur pour seringue
DE19536708C1 (de) 1995-09-30 1996-10-31 Jenaer Glaswerk Gmbh Zirkon- und lithiumoxidhaltiges Borosilicatglas hoher chemischer Beständigkeit und geringer Viskosität und dessen Verwendung
US5938919A (en) 1995-12-22 1999-08-17 Phenomenex Fused silica capillary columns protected by flexible shielding
IL116815A0 (en) 1996-01-18 1996-05-14 Hadasit Med Res Service Carpule for an interligamentary syringe
US5888591A (en) 1996-05-06 1999-03-30 Massachusetts Institute Of Technology Chemical vapor deposition of fluorocarbon polymer thin films
US6214429B1 (en) 1996-09-04 2001-04-10 Hoya Corporation Disc substrates for information recording discs and magnetic discs
US6083763A (en) 1996-12-31 2000-07-04 Genometrix Inc. Multiplexed molecular analysis apparatus and method
DE29702816U1 (de) 1997-02-18 1997-04-10 Schott Glaswerke Sterilisierbarer Glasbehälter für medizinische Zwecke, insbesondere zur Aufbewahrung pharmazeutischer oder diagnostischer Produkte
US5908542A (en) 1997-07-02 1999-06-01 Gould Electronics Inc. Metal foil with improved bonding to substrates and method for making the foil
WO1999019771A1 (fr) 1997-10-13 1999-04-22 Pi R & D Co., Ltd. Composition de polyimide photosensible positive
US6346315B1 (en) 1997-10-20 2002-02-12 Henry Sawatsky House wares and decorative process therefor
JPH11171593A (ja) 1997-12-11 1999-06-29 Shin Etsu Chem Co Ltd ガラス容器用擦り傷遮蔽剤及びガラス容器
US6048911A (en) 1997-12-12 2000-04-11 Borden Chemical, Inc. Coated optical fibers
US6358519B1 (en) 1998-02-16 2002-03-19 Ruth S. Waterman Germ-resistant communication and data transfer/entry products
US6482509B2 (en) 1998-03-06 2002-11-19 Novo Nordisk A/S Coating system providing low friction
WO1999046128A1 (en) 1998-03-10 1999-09-16 Diamonex, Incorporated Highly wear-resistant thermal print heads with silicon-doped diamond-like carbon protective coatings
EP1061974A1 (en) 1998-03-13 2000-12-27 Becton, Dickinson and Company Method for manufacturing, filling and packaging medical containers
US6171652B1 (en) 1998-05-26 2001-01-09 Brij P. Singh Method for modifying surfaces with ultra thin films
JP2000007372A (ja) 1998-06-19 2000-01-11 Asahi Techno Glass Corp 化学強化用ガラス及び磁気記録媒体用ガラス基板
DE19861220B4 (de) 1998-07-11 2006-08-17 Schott Ag Kunststoff-Behälter für medizinische Zwecke
US6986868B2 (en) 1998-11-20 2006-01-17 Coloplast A/S Method for sterilizing a medical device having a hydrophilic coating
US6232428B1 (en) 1999-01-19 2001-05-15 I.S.T. Corporation Essentially colorless, transparent polyimide coatings and films
JP2000219621A (ja) 1999-01-28 2000-08-08 Taiyo Yakuhin Kogyo Kk 硫酸塩含有化合物を含む液状医薬製剤
JP3657453B2 (ja) 1999-02-04 2005-06-08 日本板硝子株式会社 情報処理記録媒体
DE19906240A1 (de) 1999-02-15 2000-08-17 Schott Glas Hochzirkoniumoxidhaltiges Glas und dessen Verwendungen
DE19921303C1 (de) 1999-05-07 2000-10-12 Schott Glas Glasbehälter für medizinische Zwecke
JP4253403B2 (ja) 1999-07-23 2009-04-15 オリンパス株式会社 球面測定装置
DE19940706A1 (de) 1999-08-27 2001-03-08 Schott Glas Verschließbarer Glasbehälter mit einem umspritzten Kunststoffüberzug und Verfahren zu seiner Herstellung
JP2001072441A (ja) 1999-08-31 2001-03-21 Mihara Ryoju Engineering Kk 着色ガラス瓶の製造方法及び着色ガラス瓶
JP2001131485A (ja) 1999-10-29 2001-05-15 Sumitomo Osaka Cement Co Ltd 透明導電性膜形成用塗料及び透明導電性膜
JP2001180969A (ja) 1999-12-28 2001-07-03 Central Glass Co Ltd リチウム含有高ヤング率ガラスおよびガラス物品
JP2001192239A (ja) 1999-12-28 2001-07-17 Asahi Techno Glass Corp 強化ガラスの製造方法、強化ガラスおよびガラス基板
US6930063B2 (en) 2000-01-19 2005-08-16 Saint-Gobain Performance Plastics Corporation Non-curling reinforced composite membranes with differing opposed faces, methods for producing and their use in varied applications
US6277950B1 (en) 2000-01-26 2001-08-21 National Science Council Organic-soluble aromatic polyimides, organic solutions and preparation thereof
FR2806076B1 (fr) 2000-03-08 2002-09-20 Saint Gobain Vitrage Substrat transparent revetu d'une couche polymere
US6797396B1 (en) 2000-06-09 2004-09-28 3M Innovative Properties Company Wrinkle resistant infrared reflecting film and non-planar laminate articles made therefrom
JP2002003241A (ja) 2000-06-19 2002-01-09 Central Glass Co Ltd プレス成形用ガラスおよび情報記録媒体用基板ガラス
DE10036832C1 (de) 2000-07-28 2001-12-13 Schott Glas Verfahren und Vorrichtung zum Aufbringen einer hitzefixierten Gleitmittelschicht auf die Innenwandung von zylindrischen Behältern für medizinische Zwecke
ES2231540T3 (es) 2000-08-18 2005-05-16 Norton Healthcare Limited Dispositivo de pulverizacion medica.
EP1193185A1 (en) 2000-10-02 2002-04-03 Heineken Technical Services B.V. Glass container with improved coating
US6472068B1 (en) 2000-10-26 2002-10-29 Sandia Corporation Glass rupture disk
US6444783B1 (en) 2000-12-21 2002-09-03 E. I. Du Pont De Nemours And Company Melt-processible semicrystalline block copolyimides
JP2001229526A (ja) 2001-01-04 2001-08-24 Nippon Sheet Glass Co Ltd 化学強化用ガラス組成物からなる磁気ディスク基板および磁気ディスク媒体。
JP2001236634A (ja) 2001-01-04 2001-08-31 Nippon Sheet Glass Co Ltd 化学強化用ガラス組成物からなる磁気ディスク基板および磁気ディスク媒体。
KR100905142B1 (ko) 2001-01-15 2009-06-29 쓰리엠 이노베이티브 프로퍼티즈 컴파니 가시 파장 영역에서의 높고 평활한 투과율을 가진 다층적외선 반사 필름 및 그로부터 제조된 라미네이트 제품
JP2004536693A (ja) 2001-04-19 2004-12-09 ゼネラル・エレクトリック・カンパニイ スピンコート媒体
CN2483332Y (zh) 2001-05-29 2002-03-27 简济廉 套膜防爆玻璃瓶
JP3995902B2 (ja) 2001-05-31 2007-10-24 Hoya株式会社 情報記録媒体用ガラス基板及びそれを用いた磁気情報記録媒体
CN1247673C (zh) * 2001-06-01 2006-03-29 陶氏环球技术公司 耐火声学泡沫
GB0117879D0 (en) 2001-07-21 2001-09-12 Common Services Agency Storage of liquid compositions
US6737105B2 (en) 2001-07-27 2004-05-18 Vtec Technologies, Inc. Multilayered hydrophobic coating and method of manufacturing the same
JP2003053259A (ja) 2001-08-20 2003-02-25 Nippon Paint Co Ltd ガラス容器の塗装方法
KR100850658B1 (ko) 2001-11-05 2008-08-07 아사히 가라스 가부시키가이샤 글라스 세라믹 조성물
GB0127942D0 (en) 2001-11-21 2002-01-16 Weston Medical Ltd Needleless injector drug capsule and a method for filing thereof
JP2002249340A (ja) 2001-11-30 2002-09-06 Hoya Corp 半導体パッケージ用カバーガラス
JP4251552B2 (ja) 2001-12-28 2009-04-08 日本板硝子株式会社 ガラス板、光電変換装置用ガラス板およびガラス板の製造方法
JP4464626B2 (ja) 2002-05-17 2010-05-19 日本山村硝子株式会社 ガラス表面処理用コーティング組成物及びガラス製品
DE10332176B4 (de) 2002-07-24 2007-04-05 Schott Ag Verfahren zur Verminderung der Kontamination mit Alkaliverbindungen der Innenoberfläche von aus Glasrohr hergestellte Hohlkörpern aus Glas und Behälter, sowie dessen Verwendung für medizinische Zwecke
US7215473B2 (en) 2002-08-17 2007-05-08 3M Innovative Properties Company Enhanced heat mirror films
DE10238930C1 (de) 2002-08-24 2003-11-20 Schott Glas Borosilicatglas und seine Verwendungen
JP2004099638A (ja) 2002-09-04 2004-04-02 Shin Etsu Chem Co Ltd イミドシリコーン樹脂およびその製造方法
DE60332491D1 (de) 2003-01-10 2010-06-17 Mitsubishi Rayon Co Polymer mit mehrschichtstruktur und harzzusammensetzung zusammen mit einem acrylharzfilmmaterial, acrylharzlaminatfilm, lichthärtbaren acrylharzfilm oder -folie, laminatfilm oder -folie und mittels deren laminierung gewonnene laminatform
TWI296569B (en) 2003-08-27 2008-05-11 Mitsui Chemicals Inc Polyimide metal laminated matter
PL1680373T3 (pl) 2003-10-29 2018-07-31 Saint-Gobain Glass France Szkło hartowane do izolacji termicznej
US7348373B2 (en) * 2004-01-09 2008-03-25 E.I. Du Pont De Nemours And Company Polyimide compositions having resistance to water sorption, and methods relating thereto
JP4483331B2 (ja) 2004-02-17 2010-06-16 チッソ株式会社 シルセスキオキサン骨格を有するジアミン及びそれを用いた重合体
DE102004008772A1 (de) * 2004-02-23 2005-09-08 Institut für Neue Materialien Gemeinnützige GmbH Abriebbeständige und alkalibeständige Beschichtungen oder Formkörper mit Niedrigenergieoberfläche
JP2006100379A (ja) 2004-09-28 2006-04-13 Kaneka Corp ヒートシンク
US7470999B2 (en) 2004-09-29 2008-12-30 Nippon Electric Glass Co., Ltd. Glass for semiconductor encapsulation and outer tube for semiconductor encapsulation, and semiconductor electronic parts
FR2876626B1 (fr) 2004-10-19 2007-01-05 Arkema Sa Utilisation d'un polymere fluore pour proteger la surface d' un materiau inorganique contre la corrosion
US20060099360A1 (en) 2004-11-05 2006-05-11 Pepsico, Inc. Dip, spray, and flow coating process for forming coated articles
US7201965B2 (en) 2004-12-13 2007-04-10 Corning Incorporated Glass laminate substrate having enhanced impact and static loading resistance
FR2879619B1 (fr) 2004-12-16 2007-07-13 Arkema Sa Composition adhesive a base de copolymeres ethyleniques, utilisable pour extrusion-couchage et extrusion-lamination sur divers supports
JP2006291049A (ja) 2005-04-12 2006-10-26 Mitsui Chemicals Inc 水分散型ガラス瓶保護コート剤用組成物
US20060233675A1 (en) 2005-04-13 2006-10-19 Stein Israel M Glass test tube having protective outer shield
US7871554B2 (en) 2005-04-14 2011-01-18 Mitsubishi Gas Chemical Company, Inc. Process for producing polyimide film
CN101171040A (zh) 2005-05-02 2008-04-30 科洛普拉斯特公司 具有亲水涂层的医疗器件的灭菌方法
ES2515093T3 (es) 2005-06-10 2014-10-29 Arkema Inc. Revestimiento de enmascarado de rayado para recipientes de vidrio
US7781493B2 (en) 2005-06-20 2010-08-24 Dow Global Technologies Inc. Protective coating for window glass
EP1922154A4 (en) 2005-07-07 2013-07-31 Arkema Inc METHOD FOR REINFORCING A SPROUTS OXIDE SUBSTRATE WITH A WEATHERPROOF COATING
EP1910078A4 (en) * 2005-08-02 2012-06-06 Nexolve Corp HETEROPOLYMERIC COMPOSITIONS OF POLYIMIDE POLYMER
US20070082135A1 (en) 2005-10-06 2007-04-12 Vincent Lee Coating glass containers and labels
FR2893022B1 (fr) 2005-11-10 2007-12-21 Saint Gobain Emballage Sa Procede de renforcement d'articles en verre creux
JP2007137713A (ja) 2005-11-17 2007-06-07 Fujifilm Corp 表面防曇かつ防汚性強化ガラス及びその製造方法
US20070116907A1 (en) 2005-11-18 2007-05-24 Landon Shayne J Insulated glass unit possessing room temperature-cured siloxane sealant composition of reduced gas permeability
US20090176108A1 (en) 2005-12-16 2009-07-09 Konica Minolta Business Technologies, Inc. Transparent member and reading glass
US8025915B2 (en) 2006-01-11 2011-09-27 Schott Ag Method of preparing a macromolecule deterrent surface on a pharmaceutical package
US20080221263A1 (en) 2006-08-31 2008-09-11 Subbareddy Kanagasabapathy Coating compositions for producing transparent super-hydrophobic surfaces
US20090048537A1 (en) 2006-01-31 2009-02-19 Angiotech Biocoatings Corp. Lubricious coatings
US20070178256A1 (en) 2006-02-01 2007-08-02 Landon Shayne J Insulated glass unit with sealant composition having reduced permeability to gas
US7897061B2 (en) * 2006-02-01 2011-03-01 Cabot Microelectronics Corporation Compositions and methods for CMP of phase change alloys
US7569653B2 (en) 2006-02-01 2009-08-04 Momentive Performance Materials Inc. Sealant composition having reduced permeability to gas
EP1889654A1 (en) 2006-02-03 2008-02-20 Wockhardt Limited Silicone oil-in-water emulsions-formulation, production and use
US8110242B2 (en) 2006-03-24 2012-02-07 Zimmer, Inc. Methods of preparing hydrogel coatings
KR100630309B1 (ko) 2006-04-13 2006-10-02 (주)한국나노글라스 핸드폰 표시창용 박판 강화유리의 제조방법 및 그에 의해제조된 핸드폰 표시창용 박판 강화유리
KR101384029B1 (ko) * 2006-05-01 2014-04-09 나노팩, 인크. 필름 및 구조물용 배리어 코팅
US20070293388A1 (en) 2006-06-20 2007-12-20 General Electric Company Glass articles and method for making thereof
US8568867B2 (en) * 2006-06-26 2013-10-29 Sabic Innovative Plastics Ip B.V. Polyimide solvent cast films having a low coefficient of thermal expansion and method of manufacture thereof
FR2903417B1 (fr) 2006-07-07 2012-11-09 Arkema France Activateur d'adhesion destine a etre applique sur un substrat en polymere thermoplastique elastomere ou en pa et procede de traitement de surface et d'assemblage par collage correspondant
CN101466774B (zh) 2006-07-18 2012-07-04 三菱瓦斯化学株式会社 聚酰亚胺树脂
ES2431669T3 (es) 2006-09-15 2013-11-27 Becton, Dickinson & Company Componentes médicos que tienen superficies recubiertas que presentan baja fricción y métodos para reducir la adherencia
US20080069970A1 (en) 2006-09-15 2008-03-20 Becton, Dickinson And Company Medical Components Having Coated Surfaces Exhibiting Low Friction and Methods of Reducing Sticktion
WO2008050500A1 (fr) 2006-09-29 2008-05-02 Nippon Electric Glass Co., Ltd. Plaque protectrice pour dispositif d'affichage d'équipement portable
US20080114096A1 (en) 2006-11-09 2008-05-15 Hydromer, Inc. Lubricious biopolymeric network compositions and methods of making same
CN100421018C (zh) 2006-11-17 2008-09-24 北京京东方光电科技有限公司 一种tft lcd阵列基板结构及其制造方法
KR101167483B1 (ko) * 2006-12-15 2012-07-27 코오롱인더스트리 주식회사 무색투명한 폴리이미드 수지와 이를 이용한 액정 배향막 및필름
JP2008195602A (ja) 2007-01-16 2008-08-28 Nippon Electric Glass Co Ltd 強化ガラス基板の製造方法及び強化ガラス基板
JP5808069B2 (ja) 2007-02-16 2015-11-10 日本電気硝子株式会社 太陽電池用ガラス基板
US8129011B2 (en) * 2007-04-25 2012-03-06 Nexolve Corporation Polymer seaming with diffusion welds
ES2435200T3 (es) 2007-06-15 2013-12-16 Mayaterials, Inc. Silsesquioxanos multifuncionales para nuevas aplicaciones de recubrimiento
JP5467490B2 (ja) 2007-08-03 2014-04-09 日本電気硝子株式会社 強化ガラス基板の製造方法及び強化ガラス基板
TWI435902B (zh) * 2007-08-20 2014-05-01 Kolon Inc 聚亞醯胺膜
JP5586466B2 (ja) 2007-08-22 2014-09-10 データレース リミテッド レーザー感受性被覆組成物
US7785517B2 (en) * 2007-08-24 2010-08-31 Nexolve Corporation Methods for reducing or eliminating defects in polymer workpieces
KR101225842B1 (ko) * 2007-08-27 2013-01-23 코오롱인더스트리 주식회사 무색투명한 폴리이미드 필름
EP2031124A1 (en) 2007-08-27 2009-03-04 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Coating having low friction characteristics
US8017698B2 (en) 2007-09-07 2011-09-13 Nexolve Corporation Solar panel with polymeric cover
US8048938B2 (en) 2007-09-07 2011-11-01 Nexolve Corporation Reflective film for thermal control
EP2433978B1 (en) 2007-09-07 2016-07-27 NeXolve Corporation Polyimide polymer with oligomeric silsesquioxane
US8309627B2 (en) 2007-09-07 2012-11-13 Nexolve Corporation Polymeric coating for the protection of objects
US8053492B2 (en) 2007-09-07 2011-11-08 Nexolve Corporation Polymeric coating for protecting objects
JP5743125B2 (ja) 2007-09-27 2015-07-01 日本電気硝子株式会社 強化ガラス及び強化ガラス基板
TWI349013B (en) 2007-10-03 2011-09-21 Univ Nat Taiwan Polyimide-titania hybrid materials and method of preparing thin films
JP2009108181A (ja) 2007-10-30 2009-05-21 Sumitomo Chemical Co Ltd 重合体組成物、フィルム及び容器
FR2924432B1 (fr) 2007-11-30 2010-10-22 Cray Valley Sa Dispersion aqueuse de polymere structuree en coeur/ecorce, son procede de preparation et son application dans les revetements
US8048471B2 (en) 2007-12-21 2011-11-01 Innovatech, Llc Marked precoated medical device and method of manufacturing same
US10023776B2 (en) 2007-12-21 2018-07-17 Saint-Gobain Performance Plastics Corporation Preparation of a self-bonding thermoplastic elastomer using an in situ adhesion promoter
JP2009175600A (ja) 2008-01-28 2009-08-06 Funai Electric Co Ltd 液晶パネル及び液晶表示装置
KR20100125279A (ko) 2008-02-05 2010-11-30 코닝 인코포레이티드 전자장치의 커버 플레이트용 손상 저항 유리 제품
US7566632B1 (en) 2008-02-06 2009-07-28 International Business Machines Corporation Lock and key structure for three-dimensional chip connection and process thereof
US8121452B2 (en) 2008-02-20 2012-02-21 Hitachi Cable, Ltd. Method for fabricating a hollow fiber
JP2009204780A (ja) 2008-02-27 2009-09-10 Mitsubishi Electric Corp 液晶パネルとその製造方法
JP5243064B2 (ja) 2008-03-03 2013-07-24 テルモ株式会社 医療用容器
DE102008016436A1 (de) 2008-03-31 2009-10-01 Ems-Patent Ag Polyamidformmasse für lackfreie, zähe Gehäuse mit Hochglanz-Oberfläche
WO2010005715A2 (en) 2008-06-16 2010-01-14 The Texas A & M University System Glass hardening methods and compositions
FR2932807B1 (fr) 2008-06-20 2011-12-30 Arkema France Polyamide, composition comprenant un tel polyamide et leurs utilisations.
JP5867953B2 (ja) 2008-06-27 2016-02-24 日本電気硝子株式会社 強化ガラスおよび強化用ガラス
US8324304B2 (en) 2008-07-30 2012-12-04 E I Du Pont De Nemours And Company Polyimide resins for high temperature wear applications
JP5614607B2 (ja) 2008-08-04 2014-10-29 日本電気硝子株式会社 強化ガラスおよびその製造方法
JP2010168270A (ja) 2008-12-26 2010-08-05 Hoya Corp ガラス基材及びその製造方法
JP5622069B2 (ja) 2009-01-21 2014-11-12 日本電気硝子株式会社 強化ガラス、強化用ガラス及び強化ガラスの製造方法
US8535761B2 (en) 2009-02-13 2013-09-17 Mayaterials, Inc. Silsesquioxane derived hard, hydrophobic and thermally stable thin films and coatings for tailorable protective and multi-structured surfaces and interfaces
CN201390409Y (zh) 2009-02-27 2010-01-27 金治平 一种玻璃容器
CA2749354A1 (en) 2009-03-30 2010-10-14 F. Hoffmann-La Roche Ag A method for avoiding glass fogging
US8444186B2 (en) 2009-04-20 2013-05-21 S & B Technical Products, Inc. Seal and restraint system for plastic pipe with low friction coating
CN201404453Y (zh) 2009-04-29 2010-02-17 山东省药用玻璃股份有限公司 新型轻量化药用玻璃瓶
US20120097159A1 (en) 2009-05-06 2012-04-26 Suresh Iyer Medicinal inhalation devices and components thereof
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
JP5739877B2 (ja) 2009-05-27 2015-06-24 エーティーエムアイ ビーヴィービーエー 使い捨て膜
JP4807602B2 (ja) 2009-05-29 2011-11-02 Dic株式会社 熱硬化性樹脂組成物およびその硬化物
US8283270B2 (en) 2009-06-12 2012-10-09 Schott Ag Boron-poor neutral glass with titanium and zirconium oxides
KR20120095347A (ko) 2009-06-30 2012-08-28 소지쯔 코포레이션 Pmda, dade, bpda 및 9,9-비스(4-아미노페닐)플루오렌 성분을 함유하는 유기 용매에 가용인 폴리이미드 조성물 및 그 제조 방법
US8148487B2 (en) 2009-08-19 2012-04-03 Ppg Industries Ohio, Inc. Polysiloxane coating with hybrid copolymer
CN101717189B (zh) 2009-08-28 2011-06-08 武汉力诺太阳能集团股份有限公司 高耐化学性硼硅玻璃及用途
EP2298825A1 (de) 2009-09-17 2011-03-23 Bayer MaterialScience AG Hydrophile Polyurethanharnstoffdispersionen
TWI466949B (zh) 2009-10-15 2015-01-01 Ind Tech Res Inst 聚醯胺酸樹脂組成物、由其製備之聚醯亞胺薄膜及積層材料
CN102092940A (zh) 2009-12-11 2011-06-15 肖特公开股份有限公司 用于触摸屏的铝硅酸盐玻璃
EP2336093A1 (en) 2009-12-14 2011-06-22 Arkema Vlissingen B.V. Process for scratch masking of glass containers
JP2011132061A (ja) 2009-12-24 2011-07-07 Asahi Glass Co Ltd 情報記録媒体用ガラス基板および磁気ディスク
US20130211344A1 (en) 2009-12-31 2013-08-15 Nestor Rodriguez Medical components having coated surfaces exhibiting low friction and/or low gas/liquid permeability
EP2521699A1 (en) 2010-01-07 2012-11-14 Corning Incorporated Impact-damage-resistant glass sheet
CN102167507B (zh) 2010-02-26 2016-03-16 肖特玻璃科技(苏州)有限公司 用于3d紧密模压的薄锂铝硅玻璃
CN102167509A (zh) 2010-02-26 2011-08-31 肖特玻璃科技(苏州)有限公司 能进行后续切割的化学钢化玻璃
CN201694531U (zh) 2010-03-11 2011-01-05 黄灿荣 玻璃瓶防破保护贴膜
CN101831175A (zh) 2010-04-01 2010-09-15 辽宁科技大学 一种无色透明的聚酰亚胺纳米复合材料膜及其制备方法
CA2797271C (en) 2010-04-28 2021-05-25 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of alanyl trna synthetases
JP2011236100A (ja) 2010-05-13 2011-11-24 Hitachi Displays Ltd ガラス基板用化学研磨液、及びそれを用いたガラス基板の研磨方法
CN102892722B (zh) 2010-05-19 2015-01-21 旭硝子株式会社 化学强化用玻璃及显示装置用玻璃板
US8802603B2 (en) 2010-06-17 2014-08-12 Becton, Dickinson And Company Medical components having coated surfaces exhibiting low friction and low reactivity
CN102336910B (zh) 2010-07-14 2015-04-08 株式会社Lg化学 可低温固化的聚酰亚胺树脂及其制备方法
FR2963328B1 (fr) 2010-07-30 2013-11-29 Disposable Lab Article de conditionnement jetable
US20120052302A1 (en) 2010-08-24 2012-03-01 Matusick Joseph M Method of strengthening edge of glass article
JP5255611B2 (ja) 2010-09-17 2013-08-07 Hoya株式会社 ディスプレイ用ガラス基板及びその製造方法並びにこれを用いたディスプレイ
JP2013545504A (ja) 2010-10-06 2013-12-26 アラーガン、インコーポレイテッド ボツリヌス毒素の貯蔵およびその後の取り扱いのためのシステム
CN202006114U (zh) 2010-12-03 2011-10-12 成都威邦科技有限公司 不易摔坏的玻璃试管
DE102011050872A1 (de) * 2011-06-06 2012-12-06 Inomat Gmbh Semitransparentes Beschichtungsmaterial
US10737973B2 (en) 2012-02-28 2020-08-11 Corning Incorporated Pharmaceutical glass coating for achieving particle reduction
CN111533441A (zh) 2012-06-07 2020-08-14 康宁股份有限公司 抗脱层的玻璃容器
EP2690124B1 (en) * 2012-07-27 2015-09-16 Samsung Electronics Co., Ltd Composition Comprising Polyimide Block Copolymer And Inorganic Particles, Method Of Preparing The Same, Article Including The Same, And Display Device Including The Article
US10117806B2 (en) * 2012-11-30 2018-11-06 Corning Incorporated Strengthened glass containers resistant to delamination and damage
WO2014107235A1 (en) * 2013-01-04 2014-07-10 Steven Leary Improved apparatus and method for insertion of gaskets
WO2015027236A1 (en) * 2013-08-23 2015-02-26 Flexcon Company, Inc. High temperature label composites and methods of labeling high temperature materials
EP3978742B1 (en) 2019-05-24 2024-05-01 Yamaha Hatsudoki Kabushiki Kaisha Straddled vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130101596A1 (en) * 2011-10-25 2013-04-25 Steven Edward DeMartino Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
CN104271346A (zh) * 2012-02-28 2015-01-07 康宁股份有限公司 具有低摩擦涂层的玻璃制品
CN104520248A (zh) * 2012-06-28 2015-04-15 康宁股份有限公司 具有耐热涂层的抗脱层玻璃容器
CN104508008A (zh) * 2012-08-01 2015-04-08 东丽株式会社 聚酰胺酸树脂组合物、使用了该组合物的聚酰亚胺膜及其制造方法
CN104968626A (zh) * 2012-11-30 2015-10-07 康宁股份有限公司 具有抗脱层性与改善的强度的玻璃容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林启昭: "《高分子复合材料及其应用》", 30 April 1998, 中国铁道出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115175857A (zh) * 2019-08-09 2022-10-11 康宁股份有限公司 具有包含聚氰脲酸酯的涂层的药物包装件
CN115160831A (zh) * 2022-06-22 2022-10-11 合肥旭阳铝颜料有限公司 一种具有镜面效果的水性铝颜料及其制备方法和应用
CN115160831B (zh) * 2022-06-22 2023-11-28 合肥旭阳铝颜料有限公司 一种具有镜面效果的水性铝颜料及其制备方法和应用

Also Published As

Publication number Publication date
TW202146355A (zh) 2021-12-16
BR112018008744A8 (pt) 2019-02-26
EP3368491A1 (en) 2018-09-05
BR112018008744B1 (pt) 2022-09-06
US20210300625A1 (en) 2021-09-30
US20170121058A1 (en) 2017-05-04
TW201720778A (zh) 2017-06-16
AU2016343719B2 (en) 2021-03-04
RU2018118562A3 (zh) 2020-03-19
TWI734711B (zh) 2021-08-01
KR102658016B1 (ko) 2024-04-16
AU2016343719A1 (en) 2018-04-26
BR112018008744A2 (pt) 2018-10-30
EP4008695A1 (en) 2022-06-08
EP3368491B1 (en) 2022-04-13
JP6993964B2 (ja) 2022-01-14
RU2018118562A (ru) 2019-12-02
US20230391505A1 (en) 2023-12-07
KR20180075547A (ko) 2018-07-04
JP2018535175A (ja) 2018-11-29
SG11201803373UA (en) 2018-05-30
US11772846B2 (en) 2023-10-03
TWI825443B (zh) 2023-12-11
CA3001514A1 (en) 2017-05-04
MX2018005349A (es) 2018-05-17
US20230391506A1 (en) 2023-12-07
WO2017075435A1 (en) 2017-05-04
RU2729081C2 (ru) 2020-08-04

Similar Documents

Publication Publication Date Title
CN108349789A (zh) 具有聚合物和金属氧化物混合涂层的玻璃制品
JP7217317B2 (ja) 向上した強度および向上した損傷耐久性を有するガラス製容器
CN112839912B (zh) 用于制造诸如经涂覆的玻璃容器之类的经涂覆的玻璃制品的方法
CN108137392A (zh) 卤代聚酰亚胺硅氧烷化学组合物及具有卤代聚酰亚胺硅氧烷低摩擦涂层的玻璃制品
TW202317498A (zh) 具有附著力促進區域之塗覆玻璃製品
US11724963B2 (en) Pharmaceutical packages with coatings comprising polysilazane
CN115175857A (zh) 具有包含聚氰脲酸酯的涂层的药物包装件
CA3001514C (en) Glass articles with mixed polymer and metal oxide coatings
CN116075288A (zh) 阻挡紫外光的经涂覆的药物包装
KR20240069782A (ko) 접착 촉진 영역을 갖는 코팅된 유리 물품

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination