CN107750382B - 用于mram的进动自旋电流结构 - Google Patents

用于mram的进动自旋电流结构 Download PDF

Info

Publication number
CN107750382B
CN107750382B CN201680035519.0A CN201680035519A CN107750382B CN 107750382 B CN107750382 B CN 107750382B CN 201680035519 A CN201680035519 A CN 201680035519A CN 107750382 B CN107750382 B CN 107750382B
Authority
CN
China
Prior art keywords
layer
magnetic layer
magnetic
plane
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680035519.0A
Other languages
English (en)
Other versions
CN107750382A (zh
Inventor
M·M·皮纳尔巴锡
M·楚弗拉斯
B·A·考尔达斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Integrated Silicon Solution Cayman Inc
Original Assignee
Spin Storage Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spin Storage Co filed Critical Spin Storage Co
Publication of CN107750382A publication Critical patent/CN107750382A/zh
Application granted granted Critical
Publication of CN107750382B publication Critical patent/CN107750382B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明揭示了一种磁阻随机存取存储器MRAM。MRAM装置具有磁性隧道结堆叠,所述磁性隧道结结构中的自由层的性能显著地改善。所述MRAM装置结合垂直MTJ利用进动自旋电流PSC磁性层,在所述垂直MTJ中,所述PSC磁性层的平面内磁化方向自由旋转。

Description

用于MRAM的进动自旋电流结构
技术领域
本专利文献大体上涉及自旋转移矩磁性随机存取存储器,且更具体地涉及一种磁性隧道结堆叠,所述磁性隧道结结构中的自由层的性能得以改善。
背景技术
磁阻随机存取存储器(“MRAM”)是通过磁性存储元件存储数据的非易失性存储器技术。此类元件是两个铁磁板或电极,其可保持磁场且被例如非磁性金属或绝缘体等非磁性材料分离。一般来说,板中的一个的磁化被钉扎(即,“参考层”),这意味着此层比另一层具有更高的矫顽力且需要更大的磁场或自旋极化电流来改变其磁化定向。第二板通常被称为自由层,且其磁化方向可通过相对于参考层的较小磁场或自旋极化电流而改变。
MRAM装置通过改变自由层的磁化定向来存储信息。具体来说,基于自由层相对于参考层是平行还是反平行对准,可在每一MRAM单元中存储“1”或“0”。由于自旋极化电子穿隧效应,单元的电阻由于这两层的磁场的定向而改变。对于平行及反平行状态,单元的电阻将会不同,且因此单元的电阻可用于区分“1”及“0”。MRAM装置的一个重要特征是它们是非易失性存储装置,这是因为即使在断电的情况下它们也能保持信息。这两个板的横向尺寸可为亚微米的,且对于热波动,磁化方向可能仍然是稳定的。
自旋转移矩或自旋转移切换使用自旋对准(“极化”)电子来改变磁性隧道结中的自由层的磁化定向。一般来说,电子拥有电子所固有的自旋、量子化数量的角动量。电流通常是非极化的,即,其由50%上旋及50%下旋电子组成。通过磁性层的电流以与磁性层(即,极化器)的磁化方向对应的自旋定向使电子极化,因此产生自旋极化电流。如果自旋极化电流流向磁性隧道结装置中的自由层的磁性区域,那么电子将其自旋角动量的部分转移到磁化层,以在自由层的磁化上产生转矩。因此,此自旋转移矩可切换自由层的磁化,实际上,所述自由层的磁化基于自由层相对于参考层是处于平行还是反平行状态来写入“1”或“0”。
图1说明了用于常规MRAM装置的磁性隧道结(“MTJ”)堆叠100。如所示,堆叠100包含一或多个晶种层110,其提供在堆叠100底部处以在上述沉积层中起始期望的晶体生长。另外,MTJ 130沉积在SAF层120的顶部上。MTJ 130包含作为磁性层的参考层132、非磁性穿隧势垒层(即,绝缘体)134以及也作为磁性层的自由层136。应当理解的是,参考层132实际上是SAF层120的部分,但是当在参考层132上形成非磁性穿隧势垒层134及自由层136时,参考层132形成MTJ 130的铁磁板中的一个。如图1中所示,磁性参考层132具有与其平面垂直的磁化方向。同样如图1中所见,自由层136也具有与其平面垂直的磁化方向,但是其方向可变化180度。
SAF层120中的第一磁性层114安置在晶种层110上方。SAF层120还具有安置在第一磁性层114上方的反铁磁耦合层116。另外,非磁性间隔物140安置于MTJ 130的顶部上,且极化器150安置在非磁性间隔物140的顶部上。极化器150是在其平面中具有磁性方向但是与参考层132及自由层136的磁性方向垂直的磁性层。提供极化器150以使施加到MTJ结构100的电子(“自旋对准的电子”)的电流极化。另外,可在极化器150的顶部上提供一或多个封盖层160,以保护MTJ堆叠100下面的层。最后,硬掩模170沉积在封盖层160上方且经提供以使用反应离子蚀刻(RIE)工艺以图案化MTJ结构100的下层。
已经提出了各种机制来辅助磁性隧道结(MTJ)装置中的自由层磁化切换。一个问题是,为了实现平面内MTJ结构的正交自旋转移效应,可能需要大的自旋电流用于切换。对大的切换电流的需求可能会限制此装置的商业适用性。所提出用于减小切换电流的一种方式是降低自由层的磁化。然而,如果自由层的有效磁化显著降低,那么正交效应必须被限制,使得自由层不进入进动模式,进入进动模式将使自由层磁化的结束状态不确定。这界定了平面内OST结构的操作窗口。在平面内装置中,与图1中所示的不同,参考层及自由层的磁化方向位于层的平面内。平面内装置的另一方面是热稳定性要求可能会将MTJ装置的尺寸限制在大约六十纳米或更高。
对于如图1中所示的垂直MTJ结构,进动不是问题。正交极化器在初始状态下作用于自由层磁化,但是当进动持续时,固定正交极化器150仅有助于自由层磁化旋转的一半周期,同时其损害周期的另一半。参考图2到3说明此情况。图2A到2B展示了MTJ的自由层136的切换。如所见,自由层136具有与极化器150的磁化方向垂直的磁化方向200。自由层136的磁化方向200可旋转180度。图2A到2B展示了围绕自由层136的磁化向量的轴的进动。在进动期间,磁性向量200开始围绕其轴线以锥形方式旋转,使得其磁化向量200'从自由层136的垂直轴202偏转。然而在起始进动之前,磁性向量200的分量不在自由层136的平面内,一旦进动开始,磁性向量200'的分量可被发现于平面内且与自由层136正交。当磁性向量200'继续进动(即,切换)时,向量200'的旋转从自由层136的中心进一步延伸,如图2B中所见。
在使用极化器(例如极化器150)的所有现有MTJ装置中,极化器150的磁化方向是固定的,如图1及3中所示。另外参见第6,532,164号美国专利,其说明极化层的磁化方向在存在电流的情况下不能改变。在电流通过MTJ之前,自由层136具有与极化器150的磁化方向垂直的磁化方向200。虽然自由层136的磁化方向200可旋转180度,但是此旋转通常被自由层的固有阻尼能力205阻止,所述阻尼能力205是由指向轴线202的向量205表示(被示为图2A以及图3中的虚线)。轴202与自由层136的平面垂直。此阻尼205具有由阻尼常数界定的值,这维持自由层136的磁化方向。
使电流通过极化器150产生自旋极化电流,从而在磁化向量200上在极化器150的方向上产生自旋转移矩210。来自极化器的此自旋转移矩增加了引起自由层磁化方向切换的主自旋转移矩。在如图1中所示的装置中,当自旋转移矩210开始有助于克服自由层136固有的阻尼205时,如图2A中所示,磁性方向200'开始围绕其轴进动。如图3中所见,自旋转移矩210有助于自由层136的磁化方向围绕与层平面垂直的轴202以锥形方式进动。当自旋极化电流横穿堆叠100时,自由层136的磁化以连续方式进动(即,如图3中所示以连续方式自身导通)并保持振荡,直到自由层136的磁性方向与自旋转矩引起进动之前的磁性方向相反,即,自由层136的磁性方向切换180度。
图3说明了通过极化磁性层150提供的自旋极化电流辅助的MTJ的自由层136的进动。来自极化器150的自旋极化电子提供转矩210,其有助于克服进动215的第一半部中的阻尼205,这是因为由自旋极化电流提供的转矩210与自由层136的固有阻尼205的转矩相反。这被展示在图3的中间部分的右侧。然而,来自极化器150的自旋极化电子实际上损害了进动220的第二半部期间的切换过程。其原因在于,自旋极化电流中的电子自旋仅在其极化方向上施加转矩210。因此,当磁性向量处于与极化电子的自旋相反的进动周期220的一半中时,自旋转移矩210实际上与自由层136的固有阻尼205一起工作,以使旋转更加困难。这被展示在图3的中间部分的左侧。实际上,参考层132的磁化向量(图3中未展示)克服了自由层136的阻尼以及在电子的自旋损害进动的进动周期的一半期间的自旋转移矩210,且因此其是参考层132允许完成进动。
因此,在现有装置中,因为极化器150的磁化方向是固定的,所以一旦进动保持,对于完整的一百八十度进动,这对切换机构没有积极的效果。这是因为当所有向量严格对准时,极化电子将在最大程度上有助于自旋转移矩。
因此,需要一种自旋转矩转移装置,其减少切换所需的电流量,同时还以高速切换并需要减小芯片面积。
发明内容
揭示了一种MRAM装置,其具有磁性隧道结堆叠,所述磁性隧道结结构中的自由层的性能显著地改善,这需要显著较低的切换电流且显著减少了MRAM应用的切换时间。
在一个实施例中,一种磁性装置在第一平面中包含合成反铁磁结构。合成反铁磁结构包含磁性参考层,其具有与所述第一平面垂直的磁化向量且具有固定磁化方向。所述装置还在第二平面中包含非磁性隧道势垒层,其安置在所述磁性参考层上方。自由磁性层位于第三平面中且安置在非磁性隧道势垒层上方。自由磁性层具有与所述第三平面垂直的磁化向量且还具有可从第一磁化方向进动到第二磁化方向的磁化方向。磁性参考层、非磁性隧道势垒层及自由磁性层形成磁性隧道结。所述装置还在第四平面中包含非磁性间隔物,其安置在自由磁性层上方。所述装置在第五平面中包含进动自旋电流磁性层,其与自由磁性层物理地分离且通过非磁性间隔物耦合到自由磁性层。进动自旋电流磁性层具有磁化向量,所述磁化向量在第五平面中具有可在任何磁性方向上自由旋转的磁化分量。所述装置还包含电流源,其引导电流通过进动自旋电流磁性层、非磁性间隔物、自由磁性层、非磁性隧道势垒层及磁性参考层。电流的电子在进动自旋电流磁性层的磁性方向上对准。所述进动自旋电流磁性层的所述磁化方向跟随所述自由磁性层的所述磁化方向的进动,由此使自旋转移矩辅助所述自由磁性层的所述磁化向量的切换。
在另一实施例中,磁性装置的进动自旋电流磁性层具有圆形形状。
在另一实施例中,所述进动自旋电流磁性层的所述磁化向量的所述磁化方向在所述第五平面中。
在另一实施例中,所述进动自旋电流磁性层的所述磁化方向在所述第五平面中具有可在所述第五平面中自由旋转的磁化分量。
在另一实施例中,所述进动自旋电流磁性层包括CoFeB。
在另一实施例中,所述进动自旋电流磁性层与所述自由磁性层磁性耦合。
在另一实施例中,所述进动自旋电流磁性层与所述自由磁性层电耦合。
在另一实施例中,所述进动自旋电流磁性层的进动与所述自由磁性层的进动同步。
在另一实施例中,所述进动自旋电流磁性层具有大于零的旋转频率。
在另一实施例中,磁性装置在第一平面中包含进动自旋电流磁性层。进动自旋电流磁性层具有磁化向量,所述磁化向量在第一平面中具有可在任何磁性方向上自由旋转的磁化分量。所述装置包含非磁性间隔层,其在第二平面中且安置在所述进动自旋电流磁性层上方。自由磁性层位于第三平面中且安置在非磁性间隔层上方。自由磁性层具有与所述第三平面垂直的磁化向量且还具有可从第一磁化方向进动到第二磁化方向的磁化方向。所述装置具有非磁性隧道势垒层,其在第四平面中且安置在所述自由磁性层上方。合成反铁磁结构在第五平面中。合成反铁磁结构包含磁性参考层,其具有与所述第五平面垂直的磁化向量。磁性参考层具有固定的磁化方向。磁性参考层、非磁性隧道势垒层及自由磁性层形成磁性隧道结。所述装置具有电流源,其引导电流通过进动自旋电流磁性层、非磁性间隔物、自由磁性层、非磁性隧道势垒层及磁性参考层。电流的电子在进动自旋电流磁性层的磁性方向上对准。所述进动自旋电流磁性层的所述磁化方向跟随所述自由磁性层的所述磁化方向的进动,由此使自旋转移矩辅助所述自由磁性层的所述磁化向量的切换。
在另一实施例中,磁性装置在第一平面中包含磁性隧道结。磁性隧道结包含自由磁性层及参考磁性层。自由磁性层及参考磁性层通过非磁性穿隧势垒层分离。自由磁性层具有与所述第一平面垂直的磁化向量且可从第一磁化方向进动到第二磁化方向。所述装置还在第二平面中具有非磁性间隔物,其耦合到所述自由磁性层。进动自旋电流磁性层位于第三平面中且通过非磁性间隔物耦合到自由磁性层。进动自旋电流磁性层通过非磁性间隔物与自由磁性层分离。进动自旋电流磁性层具有磁化向量,所述磁化向量在第三平面中具有可在任何磁性方向上自由旋转的磁化分量。在对所述装置施加电流时,进动自旋电流磁性层的磁化方向跟随自由磁性层的磁化方向的进动。这导致自旋转移矩辅助自由磁性层的磁化向量的切换。
附图说明
作为本说明书的部分而包含的附图说明了当前优选的实施例,且与上文给出的一般描述及下面给出的详细描述一起用于解释及教导本文中描述的MTJ装置的原理。
图1说明了用于MRAM装置的常规MTJ堆叠。
图2A及2B说明了MTJ中的自由层的进动。
图3说明了与具有固定磁化方向的极化磁性层一起使用的MTJ中的自由层的进动。
图4说明了与具有自由旋转的磁化方向的进动自旋电流磁性层一起使用的MTJ中的自由层的进动。
图5说明了用于具有进动自旋电流磁性层的MRAM装置的MTJ堆叠。
图6说明了实施例的进动自旋电流磁性层的磁性方向。
图7A到7E是说明具有进动自旋电流磁性层的MTJ装置的性能改善的模拟图。
图8说明了用于具有进动自旋电流磁性层的MRAM装置的MTJ堆叠的替代性实施例。
附图不一定按比例绘制,且出于说明性目的,类似结构或功能的元件在整个附图中通常用相同的附图标记来表示。附图仅旨在促进描述本文中所述的各种实施例;附图没有描述在本文中揭示的教导的每个方面,且不限制权利要求的范围。
具体实施方式
呈现以下描述以使得所属领域的任何技术人员能够为例如MRAM装置等磁性半导体装置创建及使用进动自旋电流结构。本文中揭示的特征及教导中的每一个可单独利用或与其它特征结合使用以实施所揭示的系统及方法。参考附图进一步详细描述了单独且组合地利用此类附加特征及教导中的许多特征及教导的代表性实例。此详细描述仅旨在教导所属领域技术人员用于实践本教导的优选方面的更多细节,而不旨在限制权利要求的范围。因此,在下面的详细描述中揭示的特征的组合对于以最宽泛的意义来实践教导可能不是必需的,而是经教导以仅仅描述本教导的特别代表性实例。
在以下描述中,仅出于解释的目的,阐述了特定术语以提供对本教导的透彻理解。然而,对于所属领域技术人员来说将显而易见的是,不需要此类具体细节来实践本教导。
本专利文献揭示了不使用具有固定磁化方向的极化层的MRAM装置,并参考图3到7进行描述。代替具有固定磁化方向的极化层,本专利文献中描述的MRAM装置结合垂直MTJ利用进动自旋电流(PSC)磁性层350,在所述垂直MTJ中,所述PSC层的平面内磁化分量方向自由旋转。在一个实施例中,PSC磁性层350将随着自由层磁化进动动力学的共振行为而旋转。这将显著改善自旋电流在克服自由层336的固有阻尼方面的影响,这是因为PSC层将通过进动周期的整个轨道运动而不是进动的一半来有助于自旋转矩克服此阻尼。整个一百八十度旋转中的此进动自旋电流效应显著增强了自由层磁化切换。
图4展示了使用具有旋转的磁化向量270的PSC磁性层350而不使用具有带固定磁化方向的磁性向量的极化层150的MRAM装置背后的概念。此实施例中的自由层336类似于先前讨论的自由层136,类似之处在于其具有可借助自旋转移矩克服的固有阻尼特性205。然而,图4中所示的实施例用PSC磁性层350代替极化层150。如在图4的底部所见,通过自旋电流通过自由层336产生的自旋转移矩310的方向随着PSC磁性层350的旋转而改变。如图4的中间所见,自旋转移矩310使自由层336的磁化方向200'围绕与层平面垂直的轴202以锥形方式进动。图4展示了磁性方向200'围绕轴202的旋转的进动。如所讨论,当自旋极化电流横穿装置时,自由层336的磁化以连续方式进动(即,如图4中所示以连续方式自身导通)并保持振荡,直到自由层336的磁性方向与自旋转矩引起进动之前的磁性方向相反,即,自由层136的磁性方向切换180度。进动自旋电流层350及自由层336经磁性地及/或电耦合,使得PSC磁性层350的磁化向量270的磁化方向跟随自由层336的磁性向量的进动自旋。这可在图4中所见。
如图4的右侧所见,自旋极化电子提供转矩310,其有助于克服进动215的第一半部中的阻尼205,因为由自旋极化电流提供的转矩310与自由层336的固有阻尼205的转矩相反。如所讨论,PSC磁性层350的磁化向量270的磁化方向旋转。因此,由PSC磁性层350产生的自旋电流的电子的极化也改变。这意味着施加在自由层336的磁性向量上的转矩310的方向充分改变,这在图4的底部所见。因此,与具有固定极化磁性层150的现有装置不同,自旋极化电流中的电子自旋在进动周期的两个半部中施加转矩310,所述进动周期包含进动周期220的一半,其中具有固定极化磁性层150的装置实际上损害了进动。这在图4的左侧所见。如所见,转矩310在整个进动周期中继续有助于克服自由层136的固有阻尼205。
在实施例中,PSC磁性层350的进动向量270通过与自由层336的磁性向量对准而跟随自由层336的磁性向量的进动旋转。在其它实施例中,PSC磁性层350的进动向量270通过跟随自由层的磁性向量而跟随自由层336的磁性向量的进动旋转,如下文将讨论。自由层的磁化方向由来自参考层132的自旋转矩310切换,其中电流方向界定最终状态。
图5中展示了具有进动自旋电流MTJ结构300的存储器单元。MTJ结构300包含一或多个晶种层310,其提供在堆叠300底部处以在上述沉积层中起始期望的晶体生长。合成反铁磁(SAF)层320安置在晶种层310上方。SAF层320由第一SAF层332、反铁磁耦合层316及第二SAF层314组成。第二SAF层314沉积在晶种层310上方,而反铁磁耦合层316放置在第二SAF层314上方。MTJ 330沉积在反铁磁耦合层316上方。MTJ 330包含第一SAF层332,其充当MTJ的参考层且也是SAF层320的部分。穿隧势垒层(即,绝缘体)334在第一SAF层332上方,而自由层336安置在穿隧势垒层334上方。如图5中所示,第一SAF层332的磁化向量具有优选地与其平面垂直的磁化方向,但是几度的变化在被认为是垂直的范围内。同样如图5中所见,自由层336也具有优选地与其平面垂直的磁化向量,但是其方向可变化180度。非磁性间隔物340安置在MTJ 330上方。PSC磁性层350安置在非磁性间隔物340上方。在一个实施例中,PSC磁性层350具有磁性方向与其平面平行的磁化向量,且与参考层132及自由层136的磁性向量垂直。可在PSC层150的顶部上提供一或多个封盖层370,以保护MTJ堆叠100下面的层。
非磁性间隔物340具有许多性质。举例来说,非磁性间隔物340将自由层336与PSC层350物理地分离。非磁性间隔物340促进强磁性及/或电耦合,使得PSC磁性层350的磁性方向跟随自由层336的进动周期。换句话说,非磁性间隔物340将PSC磁性层350的磁性方向耦合到自由层336的磁性方向。因为非磁性间隔物340优选地具有长自旋扩散长度,所以其将自旋电流从PSC磁性层350有效地传输到自由层336中。非磁性间隔物340还促进了良好的微观结构及高穿隧磁电阻(TMR),并有助于使自由层336的阻尼常数保持为低。
PSC磁性层350具有至少以下性质。首先,在一个实施例中,PSC磁性层350的磁化方向在所述层的平面内,但是与自由层336的磁化方向垂直。在例如图6中所示的其它实施例中,PSC磁性层350的磁化方向可具有水平分量X及垂直分量Z,使得自由层336的平面与PSC磁性层350的磁性方向270之间的角度Θ可为0与小于90度之间的任何角度。
PSC磁性层350优选地具有非常低的矫顽力,且因此用非常软的磁性材料(例如,小于五十(50)奥斯特)制造。PSC磁性层350应当与自由层336具有强磁耦合,使得其磁化方向随着自由层336围绕其轴进动而跟随自由层336的磁性方向。在一个实施例中,PSC磁性层350以与自由层336的进动运动几乎相同的频率自由旋转。通过具有几乎相同频率的磁化旋转(PSC磁性层350磁化方向及自由层336磁化进动),自由层切换时间显著减少,且还加强切换时间的热分布。在实施例中,PSC磁性层350具有大于零的旋转频率。同样地,在实施例中,PSC磁性层350具有圆形(或接近圆形)形状,使得其磁化方向在x-y平面中(即,在磁性膜的平面内)没有形状诱导的各向异性。
图5中所示的MTJ结构中的晶种层310优选地包括Ta、TaN、Cr、Cu、CuN、Ni、Fe或其合金。第二SAF层314优选地包括Co/Ni或Co/Pt多层结构。第一SAF层332优选地包括Co/Ni或Co/Pt多层结构加上由厚度为2到5埃的钽及薄CoFeB层(.5纳米到3纳米)组成的薄非磁性层。反铁磁耦合层316优选地是由厚度在3埃到10埃的范围中的Ru制成。穿隧势垒层334优选地是由例如MgO等绝缘材料制成,其厚度大约为10埃。自由层336优选地由CoFeB沉积在穿隧势垒层334的顶部上而制成。自由层336也可具有Fe、Co、Ni或其合金的层。MTJ 330上方的间隔层340可为任何非磁性材料,例如2到20埃的钌、2到20埃的Ta、2到20埃的TaN、2到20埃的Cu、2到20埃的CuN,或2-20埃的MgO层。
PSC磁性层350优选地是由CoFeB制成。其也可用Co、Fe、Ni磁性层制成,或可用它们的合金制成。磁性合金还可具有硼、钽、铜或其它材料。最后,封盖层370可为提供与PSC层的良好界面的任何材料,例如Ta、TaN、Ru、MgO、Cu等。
现在将描述使用进动自旋电流MTJ结构300写入位的方式。具体来说,例如通过电流源375供应电流,所述电流源375使电流通过进动自旋电流磁性层350、非磁性间隔物340、自由磁性层336、非磁性穿隧势垒层334及参考层332。通过进动自旋电流磁性层350的电流的电子在进动自旋电流磁性层350的磁性方向上自旋极化,因此产生通过非磁性间隔层340、自由磁性层336、穿隧势垒层334及参考磁性层332的自旋极化电流。自旋极化电流在自由磁性层336上施加自旋转移矩,这有助于克服组成自由层336的磁性材料的固有阻尼。这导致自由磁性层336围绕其轴进动,如图4中所示。
一旦自由磁性层336的磁性方向开始进动,PSC磁性层350的磁性方向开始旋转,同样如图4中所见。此旋转是由自由磁性层336与PSC磁性层350之间通过非磁性间隔物340进行的磁性及/或电耦合引起的。PSC磁性层350的磁性方向的旋转引起电流的电子的自旋极化以对应于PSC磁性层350的磁性方向的方式发生改变。因为自旋极化电流的电子的自旋对应于PSC磁性层350的磁性方向,且PSC磁性层350的磁性方向跟随自由磁性层336的进动,所以电子的自旋将自旋转移矩沿着在整个切换周期内改变的方向施加到自由层336。因此,使用PSC磁性层350的装置可为整个切换周期提供自旋转移矩205。
具体来说,本文中描述的利用PSC磁性层350及间隔层340的结构产生进动磁化,其在整个进动周期内向MTJ的自由层336提供自旋电流,且因此显著地增强自由层切换过程,这将导致更快的写入时间。
模拟具有本文中描述的结构的装置的结果见于图7A到7E中。在图7A到7E中,Y轴是在装置300的Z轴上从-1.0到+1.0的磁化。X轴展示了将自由层336的磁化方向切换180度所花费的时间量。在模拟中,将PSC磁性层350的磁化方向的进动频率指定为(ω),而将自由层336的进动频率指定为(ωp)。展示了ω/ωp比为0(图7A)、0.5(图7B)、0.7(图7C)、0.9(图7D)及1.0(图7E)的结果。在所有情况下,倾角为30度,这指示自旋电流效应的效率。
因为图8a中所示的装置的ω/ωp比为0,所以PSC磁性层350不旋转。因此,图7A中所示的结果实际上展示了如图1及3中的装置(即,具有其中磁化方向不旋转的极化层150的装置)的切换时间。相比之下,图7B到7E展示了如图4到6中的装置(即,具有其中磁化方向旋转且因此跟随自由层336的进动的PSC磁性层350的装置)的ω/ωp比的切换时间。在此类实施例中,PSC磁性层350具有大于零的旋转频率。注意,ω/ωp比指示PSC磁性层350的进动向量270跟随自由层336的进动的严格程度。换句话说,当ω/ωp比接近1时,进动PSC磁性层350的进动向量270'与进动自由层336的磁性方向更严格对准。如图7A到7E中所示的模拟中所见,进动PSC磁性层350的进动向量270与进动自由层336的磁性方向越对准,层336的磁化方向的切换时间就越短。因此,在实施例中,进动PSC磁性层350的进动向量270的旋转频率经同步以接近自由层336的旋转频率。图7A展示了例如图1及3中所示的装置的切换时间,其中极化器150的磁化方向是固定的,且因此具有零的旋转频率。此实施例具有最长的切换时间。当PSC磁性层350的进动频率ω与自由层336的进动频率ωp的比增加到0.5时,切换速度增加。如图7C到7E中所见,当PSC磁性层350的进动频率ω与自由层336的进动频率ωp的比增加到0.7、0.9,然后增加到1.0时,切换速度显著增加,因此说明本文中描述的各种实施例提供了显著的改善。
替代实施例展示在图8中。在此实施例中,磁性装置400相对于图5中所示的实施例使其MTJ堆叠倒置。具体来说,磁性装置400包含晶种层470。PSC磁性层450放置在晶种层470上方。非磁性间隔物440被放置在PSC层450上方。非磁性间隔物440具有与上文讨论的非磁性间隔物340相同的性质、构造及特性。PSC磁性层450具有与上文讨论的PSC磁性层350相同的性质、构造及特性。MTJ 430放置在非磁性间隔物440上方。MTJ 430通常是由自由层436(其放置在非磁性间隔物450上方)及参考层432构成。自由层436及参考层432通过由绝缘材料制成的穿隧势垒层434在空间上相互分离。穿隧势垒层434也形成合成反铁磁(SAF)层420的部分。SAF层420是由也作为装置400的参考层的第一SAF层432、反铁磁耦合层416及第二SAF层414构成。反铁磁耦合层416放置在第一SAF层432上方。最后,封盖层410放置在SAF层420上方。电流可由电流源474提供。除了层的排序之外,磁性装置以与关于图5中所示的实施例所描述的方式相同的方式操作。因此,正如图4中所示,PSC磁性层450以一方式旋转使得在自由层436的整个进动周期中以有利的方式施加自旋转移矩310。
如所属领域技术人员将明白,图5及8中所说明的装置300及400的所有层可由薄膜溅射沉积系统形成。薄膜溅射沉积系统可包含必要的物理气相沉积(PVD)室,每一室具有一或多个靶材、氧化室及溅射蚀刻室。通常,溅射沉积工艺涉及具有超高真空的溅射气体(例如,氧气、氩气等),且靶材可由待沉积在衬底上的金属或金属合金制成。因此,当本说明书说明层被放置在另一层上方时,可使用此系统来沉积此层。也可使用其它方法。应当了解的是,制造MTJ堆叠300所必需的其余步骤对于所属领域技术人员来说是众所周知的,且将不在本文中详细描述,以免不必要地使本文中揭示的方面变得模糊。
所属领域技术人员应当了解的是,可制造多个MTJ结构300,并将其作为STT-MRAM装置的相应位单元来提供。换句话说,每一MTJ堆叠300可被实施为用于具有多个位单元的存储器阵列的位单元。
以上描述及附图仅被认为是说明实现本文中描述的特征及优点的特定实施例。可对特定的工艺条件进行修改及替换。因此,本专利文献中的实施例不被认为受到前述描述及附图的限制。

Claims (20)

1.一种磁性装置,其包括:
第一平面中的合成反铁磁结构,所述合成反铁磁结构包含磁性参考层,所述磁性参考层具有与所述第一平面垂直的磁化向量且具有固定磁化方向;
非磁性隧道势垒层,其在第二平面中且安置在所述磁性参考层上方;
自由磁性层,其在第三平面中且安置在所述非磁性隧道势垒层上方,所述自由磁性层具有与所述第三平面垂直的磁化向量且具有当自旋极化电流通过其中时从第一磁化方向进动到第二磁化方向的磁化方向,所述磁性参考层、所述非磁性隧道势垒层及所述自由磁性层形成磁性隧道结;
非磁性间隔物,其在第四平面中且安置在所述自由磁性层上方;
第五平面中的进动自旋电流磁性层,其与所述自由磁性层物理地分离且通过所述非磁性间隔物磁性地及电耦合到所述自由磁性层,所述进动自旋电流磁性层具有磁化向量,所述磁化向量在所述第五平面中具有在任何磁性方向上自由旋转的磁化分量,及
电流源,其引导电流通过所述进动自旋电流磁性层、所述非磁性间隔物、所述自由磁性层、所述非磁性隧道势垒层及所述磁性参考层,其中所述电流的电子在所述进动自旋电流磁性层的所述磁性方向上对准;且
其中在所述进动自旋电流磁性层的所述第五平面中具有所述磁化分量的所述磁化向量跟随所述自由磁性层的所述磁化方向的进动,在所述进动自旋电流磁性层的所述第五平面中所述磁化分量的旋转引起通过其中的电流的电子的自旋极化以对应于所述进动自旋电流磁性层的所述磁化向量的方式发生改变,由此创建所述自旋极化电流,所述自旋极化电流由此使自旋转移矩辅助所述自由磁性层的所述磁化向量的切换,所述自由磁性层存储存储器值。
2.根据权利要求1所述的磁性装置,其中所述进动自旋电流磁性层具有圆形形状。
3.根据权利要求1所述的磁性装置,其中所述进动自旋电流磁性层的所述磁化向量的所述磁化方向在所述第五平面中。
4.根据权利要求1所述的磁性装置,其中所述进动自旋电流磁性层的所述磁化方向在所述第五平面中具有在所述第五平面中自由旋转的磁化分量。
5.根据权利要求1所述的磁性装置,其中所述进动自旋电流磁性层包括CoFeB。
6.根据权利要求1所述的磁性装置,其中在所述进动自旋电流磁性层的所述第五平面中具有所述磁化分量的所述磁化向量的进动与所述自由磁性层的进动同步。
7.根据权利要求1所述的磁性装置,其中在所述进动自旋电流磁性层的所述第五平面中具有所述磁化分量的所述磁化向量具有大于零的旋转频率。
8.一种磁性装置,其包括:
第一平面中的进动自旋电流磁性层,所述进动自旋电流磁性层具有磁化向量,所述磁化向量在所述第一平面中具有可在任何磁性方向上自由旋转的磁化分量;及
非磁性间隔层,其在第二平面中且安置在所述进动自旋电流磁性层上方;
自由磁性层,其在第三平面中且安置在所述非磁性间隔层上方,所述自由磁性层具有与所述第三平面垂直的磁化向量且具有可从第一磁化方向进动到第二磁化方向的磁化方向,所述进动自旋电流磁性层通过所述非磁性间隔物磁性地及电耦合到所述自由磁性层;
非磁性隧道势垒层,其在第四平面中且安置在所述自由磁性层上方;
第五平面中的合成反铁磁结构,所述合成反铁磁结构包含磁性参考层,所述磁性参考层具有与所述第五平面垂直的磁化向量且具有固定磁化方向,所述磁性参考层、所述非磁性隧道势垒层及所述自由磁性层形成磁性隧道结;
电流源,其引导电流通过所述进动自旋电流磁性层、所述非磁性间隔物、所述自由磁性层、所述非磁性隧道势垒层及所述磁性参考层,其中所述电流的电子在所述进动自旋电流磁性层的所述磁性方向上对准,且其中在所述进动自旋电流磁性层的所述第一平面中具有所述磁化分量的所述磁化向量跟随所述自由磁性层的所述磁化方向的进动,在所述进动自旋电流磁性层的所述第一平面中所述磁化分量的旋转引起通过其中的电流的电子的自旋极化以对应于所述进动自旋电流磁性层的所述磁化向量的方式发生改变,由此创建所述自旋极化电流,所述自旋极化电流由此使自旋转移矩辅助所述自由磁性层的所述磁化向量的切换,所述自由磁性层存储存储器值。
9.根据权利要求8所述的磁性装置,其中所述进动自旋电流磁性层具有圆形形状。
10.根据权利要求8所述的磁性装置,其中所述进动自旋电流磁性层的所述磁化向量的所述磁化方向在所述第一平面中。
11.根据权利要求8所述的磁性装置,其中所述进动自旋电流磁性层的所述磁化方向在所述第一平面中具有可在所述第五平面中自由旋转的磁化分量。
12.根据权利要求8所述的磁性装置,其中所述进动自旋电流磁性层包括CoFeB。
13.根据权利要求8所述的磁性装置,其中所述进动自旋电流磁性层的进动与所述自由磁性层的进动同步。
14.根据权利要求8所述的磁性装置,其中所述进动自旋电流磁性层具有大于零的旋转频率。
15.一种磁性装置,其包括:
第一平面中包括自由磁性层及参考磁性层的磁性隧道结,所述自由磁性层及所述参考磁性层由非磁性隧道势垒层分离,所述自由磁性层具有与所述第一平面垂直的磁化向量且具有磁化方向,所述磁化方向可从第一磁化方向进动到第二磁化方向;
第二平面中的非磁性间隔物,其耦合到所述自由磁性层;
第三平面中的进动自旋电流磁性层,其通过所述非磁性间隔物磁性地及电耦合到所述自由磁性层,所述进动自旋电流磁性层与所述自由磁性层通过所述非磁性间隔物分离,所述进动自旋电流磁性层具有磁化向量,所述磁化向量在所述第三平面中具有可在任何磁性方向上自由旋转的磁化分量,其中当对所述装置施加电流时,在所述进动自旋电流磁性层的所述第三平面中具有磁化分量的所述磁化向量旋转且跟随所述自由磁性层的所述磁化方向的进动,其中所述进动自旋电流磁性层的所述第三平面中的所述磁化分量的旋转引起通过其中的电流的电子的自旋极化以对应于所述进动自旋电流磁性层的所述磁化向量的方式发生改变,由此创建所述自旋极化电流,由此使自旋转移矩辅助所述自由磁性层的所述磁化向量的切换,所述自由磁性层存储存储器值。
16.根据权利要求15所述的磁性装置,其中所述进动自旋电流磁性层具有圆形形状。
17.根据权利要求15所述的磁性装置,其中所述进动自旋电流磁性层的所述磁化向量的所述磁化方向在所述第一平面中。
18.根据权利要求15所述的磁性装置,其中所述进动自旋电流磁性层包括CoFeB。
19.根据权利要求15所述的磁性装置,其中所述进动自旋电流磁性层的进动与所述自由磁性层的进动同步。
20.根据权利要求15所述的磁性装置,其中所述进动自旋电流磁性层具有大于零的旋转频率。
CN201680035519.0A 2015-06-16 2016-03-10 用于mram的进动自旋电流结构 Active CN107750382B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562180412P 2015-06-16 2015-06-16
US62/180,412 2015-06-16
US14/814,036 US9853206B2 (en) 2015-06-16 2015-07-30 Precessional spin current structure for MRAM
US14/814,036 2015-07-30
PCT/US2016/021691 WO2016204835A1 (en) 2015-06-16 2016-03-10 Precessional spin current structure for mram

Publications (2)

Publication Number Publication Date
CN107750382A CN107750382A (zh) 2018-03-02
CN107750382B true CN107750382B (zh) 2021-05-25

Family

ID=57546255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680035519.0A Active CN107750382B (zh) 2015-06-16 2016-03-10 用于mram的进动自旋电流结构

Country Status (6)

Country Link
US (3) US9853206B2 (zh)
EP (1) EP3298636B1 (zh)
JP (1) JP6770002B2 (zh)
KR (1) KR102479222B1 (zh)
CN (1) CN107750382B (zh)
WO (1) WO2016204835A1 (zh)

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10468590B2 (en) 2015-04-21 2019-11-05 Spin Memory, Inc. High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
US9728712B2 (en) 2015-04-21 2017-08-08 Spin Transfer Technologies, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US9853206B2 (en) 2015-06-16 2017-12-26 Spin Transfer Technologies, Inc. Precessional spin current structure for MRAM
US9773974B2 (en) 2015-07-30 2017-09-26 Spin Transfer Technologies, Inc. Polishing stop layer(s) for processing arrays of semiconductor elements
US10163479B2 (en) 2015-08-14 2018-12-25 Spin Transfer Technologies, Inc. Method and apparatus for bipolar memory write-verify
US9741926B1 (en) 2016-01-28 2017-08-22 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
KR101874171B1 (ko) * 2016-03-24 2018-08-03 한양대학교 산학협력단 수직자기이방성을 갖는 mtj 구조 및 이를 포함하는 자성소자
US10361361B2 (en) * 2016-04-08 2019-07-23 International Business Machines Corporation Thin reference layer for STT MRAM
US9735185B1 (en) * 2016-06-10 2017-08-15 Essential Products, Inc. Hollowed electronic display
US10437491B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register
US10360964B2 (en) 2016-09-27 2019-07-23 Spin Memory, Inc. Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device
US10366774B2 (en) 2016-09-27 2019-07-30 Spin Memory, Inc. Device with dynamic redundancy registers
US10991410B2 (en) 2016-09-27 2021-04-27 Spin Memory, Inc. Bi-polar write scheme
US10446210B2 (en) 2016-09-27 2019-10-15 Spin Memory, Inc. Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers
US10546625B2 (en) 2016-09-27 2020-01-28 Spin Memory, Inc. Method of optimizing write voltage based on error buffer occupancy
US10818331B2 (en) 2016-09-27 2020-10-27 Spin Memory, Inc. Multi-chip module for MRAM devices with levels of dynamic redundancy registers
US10460781B2 (en) 2016-09-27 2019-10-29 Spin Memory, Inc. Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank
US10437723B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device
US10665777B2 (en) * 2017-02-28 2020-05-26 Spin Memory, Inc. Precessional spin current structure with non-magnetic insertion layer for MRAM
US10672976B2 (en) 2017-02-28 2020-06-02 Spin Memory, Inc. Precessional spin current structure with high in-plane magnetization for MRAM
US10276783B2 (en) * 2017-06-09 2019-04-30 Sandisk Technologies Llc Gate voltage controlled perpendicular spin orbit torque MRAM memory cell
US10032978B1 (en) 2017-06-27 2018-07-24 Spin Transfer Technologies, Inc. MRAM with reduced stray magnetic fields
US10656994B2 (en) 2017-10-24 2020-05-19 Spin Memory, Inc. Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques
US10529439B2 (en) 2017-10-24 2020-01-07 Spin Memory, Inc. On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects
US10481976B2 (en) 2017-10-24 2019-11-19 Spin Memory, Inc. Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers
US10489245B2 (en) 2017-10-24 2019-11-26 Spin Memory, Inc. Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them
US10679685B2 (en) * 2017-12-27 2020-06-09 Spin Memory, Inc. Shared bit line array architecture for magnetoresistive memory
US10891997B2 (en) 2017-12-28 2021-01-12 Spin Memory, Inc. Memory array with horizontal source line and a virtual source line
US10424726B2 (en) 2017-12-28 2019-09-24 Spin Memory, Inc. Process for improving photoresist pillar adhesion during MRAM fabrication
US10395712B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Memory array with horizontal source line and sacrificial bitline per virtual source
US10360962B1 (en) 2017-12-28 2019-07-23 Spin Memory, Inc. Memory array with individually trimmable sense amplifiers
US10395711B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Perpendicular source and bit lines for an MRAM array
US10811594B2 (en) 2017-12-28 2020-10-20 Spin Memory, Inc. Process for hard mask development for MRAM pillar formation using photolithography
US10693056B2 (en) 2017-12-28 2020-06-23 Spin Memory, Inc. Three-dimensional (3D) magnetic memory device comprising a magnetic tunnel junction (MTJ) having a metallic buffer layer
US10541268B2 (en) 2017-12-28 2020-01-21 Spin Memory, Inc. Three-dimensional magnetic memory devices
US10629649B2 (en) 2017-12-29 2020-04-21 Spin Memory, Inc. Method of making a three dimensional perpendicular magnetic tunnel junction with thin-film transistor
US10367136B2 (en) * 2017-12-29 2019-07-30 Spin Memory, Inc. Methods for manufacturing a perpendicular magnetic tunnel junction (p-MTJ) MRAM having a precessional spin current injection (PSC) structure
US10424357B2 (en) 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction (MTJ) memory device having a composite free magnetic layer
US10199083B1 (en) 2017-12-29 2019-02-05 Spin Transfer Technologies, Inc. Three-terminal MRAM with ac write-assist for low read disturb
US10236047B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM
US10360961B1 (en) 2017-12-29 2019-07-23 Spin Memory, Inc. AC current pre-charge write-assist in orthogonal STT-MRAM
US10784439B2 (en) * 2017-12-29 2020-09-22 Spin Memory, Inc. Precessional spin current magnetic tunnel junction devices and methods of manufacture
US10236048B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. AC current write-assist in orthogonal STT-MRAM
US10403343B2 (en) 2017-12-29 2019-09-03 Spin Memory, Inc. Systems and methods utilizing serial configurations of magnetic memory devices
US10886330B2 (en) 2017-12-29 2021-01-05 Spin Memory, Inc. Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch
US10367139B2 (en) 2017-12-29 2019-07-30 Spin Memory, Inc. Methods of manufacturing magnetic tunnel junction devices
US10270027B1 (en) 2017-12-29 2019-04-23 Spin Memory, Inc. Self-generating AC current assist in orthogonal STT-MRAM
US10840439B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Magnetic tunnel junction (MTJ) fabrication methods and systems
US10840436B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture
US10803916B2 (en) 2017-12-29 2020-10-13 Spin Memory, Inc. Methods and systems for writing to magnetic memory devices utilizing alternating current
US10424723B2 (en) 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction devices including an optimization layer
US10355045B1 (en) 2017-12-29 2019-07-16 Spin Memory, Inc. Three dimensional perpendicular magnetic junction with thin-film transistor
US10546624B2 (en) 2017-12-29 2020-01-28 Spin Memory, Inc. Multi-port random access memory
US10347308B1 (en) 2017-12-29 2019-07-09 Spin Memory, Inc. Systems and methods utilizing parallel configurations of magnetic memory devices
US10236439B1 (en) 2017-12-30 2019-03-19 Spin Memory, Inc. Switching and stability control for perpendicular magnetic tunnel junction device
US10141499B1 (en) 2017-12-30 2018-11-27 Spin Transfer Technologies, Inc. Perpendicular magnetic tunnel junction device with offset precessional spin current layer
US10319900B1 (en) 2017-12-30 2019-06-11 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density
US10229724B1 (en) * 2017-12-30 2019-03-12 Spin Memory, Inc. Microwave write-assist in series-interconnected orthogonal STT-MRAM devices
US10339993B1 (en) 2017-12-30 2019-07-02 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching
US10255962B1 (en) 2017-12-30 2019-04-09 Spin Memory, Inc. Microwave write-assist in orthogonal STT-MRAM
US10468588B2 (en) 2018-01-05 2019-11-05 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer
US10319424B1 (en) 2018-01-08 2019-06-11 Spin Memory, Inc. Adjustable current selectors
US10438996B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Methods of fabricating magnetic tunnel junctions integrated with selectors
US10438995B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Devices including magnetic tunnel junctions integrated with selectors
US10192788B1 (en) 2018-01-08 2019-01-29 Spin Transfer Technologies Methods of fabricating dual threshold voltage devices with stacked gates
US10192789B1 (en) 2018-01-08 2019-01-29 Spin Transfer Technologies Methods of fabricating dual threshold voltage devices
US10192787B1 (en) 2018-01-08 2019-01-29 Spin Transfer Technologies Methods of fabricating contacts for cylindrical devices
US10446744B2 (en) 2018-03-08 2019-10-15 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
WO2019172928A1 (en) * 2018-03-09 2019-09-12 Intel Corporation Perpendicular spin transfer torque memory (psttm) devices with enhanced thermal stability and methods to form the same
US11107978B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US11107974B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer
US20190296220A1 (en) 2018-03-23 2019-09-26 Spin Transfer Technologies, Inc. Magnetic Tunnel Junction Devices Including an Annular Free Magnetic Layer and a Planar Reference Magnetic Layer
US10784437B2 (en) 2018-03-23 2020-09-22 Spin Memory, Inc. Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
JP7211252B2 (ja) * 2018-05-16 2023-01-24 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
US11417829B2 (en) 2018-05-18 2022-08-16 Integrated Silicon Solution, (Cayman) Inc. Three dimensional perpendicular magnetic tunnel junction with thin film transistor array
US10411185B1 (en) 2018-05-30 2019-09-10 Spin Memory, Inc. Process for creating a high density magnetic tunnel junction array test platform
US11430943B2 (en) 2018-06-28 2022-08-30 Intel Corporation Magnetic tunnel junction (MTJ) devices with a synthetic antiferromagnet (SAF) structure including a magnetic skyrmion
US11386951B2 (en) 2018-06-28 2022-07-12 Intel Corporation Multi-level magnetic tunnel junction (MTJ) devices including mobile magnetic skyrmions or ferromagnetic domains
US10559338B2 (en) 2018-07-06 2020-02-11 Spin Memory, Inc. Multi-bit cell read-out techniques
US10692569B2 (en) 2018-07-06 2020-06-23 Spin Memory, Inc. Read-out techniques for multi-bit cells
US10593396B2 (en) 2018-07-06 2020-03-17 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10600478B2 (en) 2018-07-06 2020-03-24 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10650875B2 (en) 2018-08-21 2020-05-12 Spin Memory, Inc. System for a wide temperature range nonvolatile memory
US11283010B2 (en) * 2018-09-07 2022-03-22 Integrated Silicon Solution, (Cayman) Inc. Precessional spin current structure for magnetic random access memory with novel capping materials
US10699761B2 (en) 2018-09-18 2020-06-30 Spin Memory, Inc. Word line decoder memory architecture
US11031544B2 (en) 2018-09-27 2021-06-08 Taiwan Semiconductor Manufacturing Co., Ltd. Memory device with superparamagnetic layer
US10692556B2 (en) 2018-09-28 2020-06-23 Spin Memory, Inc. Defect injection structure and mechanism for magnetic memory
US10878870B2 (en) 2018-09-28 2020-12-29 Spin Memory, Inc. Defect propagation structure and mechanism for magnetic memory
US11621293B2 (en) 2018-10-01 2023-04-04 Integrated Silicon Solution, (Cayman) Inc. Multi terminal device stack systems and methods
US10971680B2 (en) 2018-10-01 2021-04-06 Spin Memory, Inc. Multi terminal device stack formation methods
US10580827B1 (en) 2018-11-16 2020-03-03 Spin Memory, Inc. Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching
US10862022B2 (en) 2018-12-06 2020-12-08 Sandisk Technologies Llc Spin-transfer torque MRAM with magnetically coupled assist layers and methods of operating the same
US10811596B2 (en) 2018-12-06 2020-10-20 Sandisk Technologies Llc Spin transfer torque MRAM with a spin torque oscillator stack and methods of making the same
KR102214264B1 (ko) * 2018-12-06 2021-02-09 샌디스크 테크놀로지스 엘엘씨 보조 층들을 갖는 스핀 전달 토크 mram 및 이를 동작시키는 방법들
US10797227B2 (en) 2018-12-06 2020-10-06 Sandisk Technologies Llc Spin-transfer torque MRAM with a negative magnetic anisotropy assist layer and methods of operating the same
US10726892B2 (en) * 2018-12-06 2020-07-28 Sandisk Technologies Llc Metallic magnetic memory devices for cryogenic operation and methods of operating the same
US11107979B2 (en) 2018-12-28 2021-08-31 Spin Memory, Inc. Patterned silicide structures and methods of manufacture
US11094359B2 (en) 2019-01-24 2021-08-17 Spin Memory, Inc. High retention multi-level-series magnetic random-access memory
US11031058B2 (en) 2019-09-03 2021-06-08 Western Digital Technologies, Inc. Spin-transfer torque magnetoresistive memory device with a free layer stack including multiple spacers and methods of making the same
US11682514B2 (en) 2020-08-19 2023-06-20 Globalfoundries U.S. Inc. Memory cell having a free ferromagnetic material layer with a curved, non-planar surface and methods of making such memory cells
US11276446B1 (en) 2020-08-27 2022-03-15 Western Digital Technologies, Inc. Multiferroic-assisted voltage controlled magnetic anisotropy memory device and methods of manufacturing the same
US11264562B1 (en) 2020-08-27 2022-03-01 Western Digital Technologies, Inc. Multiferroic-assisted voltage controlled magnetic anisotropy memory device and methods of manufacturing the same
US11283008B1 (en) * 2020-08-31 2022-03-22 Western Digital Technologies, Inc. Apparatus and methods for magnetic memory devices with magnetic assist layer
US11393516B2 (en) 2020-10-19 2022-07-19 Western Digital Technologies, Inc. SOT-based spin torque oscillators for oscillatory neural networks
KR20220066725A (ko) 2020-11-16 2022-05-24 삼성전자주식회사 자기 메모리 소자
CN112835522A (zh) * 2021-02-02 2021-05-25 致真存储(北京)科技有限公司 基于非易失存储器的视频数据存取装置及方法
US11968907B2 (en) 2022-07-05 2024-04-23 Western Digital Technologies, Inc. Magnetoresistive memory device including a magnetoresistance amplification layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093721A (zh) * 2006-06-22 2007-12-26 株式会社东芝 磁阻元件和磁性存储器
CN101546808A (zh) * 2008-03-25 2009-09-30 株式会社东芝 磁阻效应元件和磁性随机存取存储器

Family Cites Families (296)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US341801A (en) 1886-05-11 Appaeatus foe peepaeing geain foe mashing
US5597437A (en) 1995-01-12 1997-01-28 Procter & Gamble Zero scrap absorbent core formation process
US5541868A (en) 1995-02-21 1996-07-30 The United States Of America As Represented By The Secretary Of The Navy Annular GMR-based memory element
US5654566A (en) 1995-04-21 1997-08-05 Johnson; Mark B. Magnetic spin injected field effect transistor and method of operation
US6140838A (en) 1995-04-21 2000-10-31 Johnson; Mark B. High density and high speed magneto-electronic logic family
US5629549A (en) 1995-04-21 1997-05-13 Johnson; Mark B. Magnetic spin transistor device, logic gate & method of operation
US5896252A (en) 1995-08-11 1999-04-20 Fujitsu Limited Multilayer spin valve magneto-resistive effect magnetic head with free magnetic layer including two sublayers and magnetic disk drive including same
JP3207094B2 (ja) 1995-08-21 2001-09-10 松下電器産業株式会社 磁気抵抗効果素子及びメモリー素子
US5695864A (en) 1995-09-28 1997-12-09 International Business Machines Corporation Electronic device using magnetic components
US6124711A (en) 1996-01-19 2000-09-26 Fujitsu Limited Magnetic sensor using tunnel resistance to detect an external magnetic field
US5640343A (en) 1996-03-18 1997-06-17 International Business Machines Corporation Magnetic memory array using magnetic tunnel junction devices in the memory cells
JP3327375B2 (ja) 1996-04-26 2002-09-24 富士通株式会社 磁気抵抗効果型トランスデューサ、その製造方法及び磁気記録装置
JP3447468B2 (ja) 1996-06-17 2003-09-16 シャープ株式会社 磁気抵抗効果素子及びその製造方法並びにそれを用いた磁気ヘッド
US5732016A (en) 1996-07-02 1998-03-24 Motorola Memory cell structure in a magnetic random access memory and a method for fabricating thereof
US5768069A (en) 1996-11-27 1998-06-16 International Business Machines Corporation Self-biased dual spin valve sensor
JP3557078B2 (ja) 1997-06-27 2004-08-25 株式会社東芝 不揮発性半導体記憶装置
JP4066477B2 (ja) 1997-10-09 2008-03-26 ソニー株式会社 不揮発性ランダムアクセスメモリー装置
US5966323A (en) 1997-12-18 1999-10-12 Motorola, Inc. Low switching field magnetoresistive tunneling junction for high density arrays
US6055179A (en) 1998-05-19 2000-04-25 Canon Kk Memory device utilizing giant magnetoresistance effect
JPH11352867A (ja) 1998-06-05 1999-12-24 Nippon Telegr & Teleph Corp <Ntt> サーバクライアント型学習支援システム,方法,および学習支援プログラムを記録した記録媒体
US6130814A (en) 1998-07-28 2000-10-10 International Business Machines Corporation Current-induced magnetic switching device and memory including the same
US6172902B1 (en) 1998-08-12 2001-01-09 Ecole Polytechnique Federale De Lausanne (Epfl) Non-volatile magnetic random access memory
US6097579A (en) 1998-08-21 2000-08-01 International Business Machines Corporation Tunnel junction head structure without current shunting
US6016269A (en) 1998-09-30 2000-01-18 Motorola, Inc. Quantum random address memory with magnetic readout and/or nano-memory elements
JP3766565B2 (ja) 1999-05-31 2006-04-12 Tdk株式会社 磁気抵抗効果膜および磁気抵抗効果型ヘッド
US6436526B1 (en) 1999-06-17 2002-08-20 Matsushita Electric Industrial Co., Ltd. Magneto-resistance effect element, magneto-resistance effect memory cell, MRAM and method for performing information write to or read from the magneto-resistance effect memory cell
WO2001001396A1 (fr) 1999-06-29 2001-01-04 Fujitsu Limited Tete magnetoresistive et dispositif de reproduction d'informations
US6292389B1 (en) 1999-07-19 2001-09-18 Motorola, Inc. Magnetic element with improved field response and fabricating method thereof
US6134138A (en) 1999-07-30 2000-10-17 Honeywell Inc. Method and apparatus for reading a magnetoresistive memory
JP3793669B2 (ja) 1999-08-26 2006-07-05 株式会社日立グローバルストレージテクノロジーズ 巨大磁気抵抗効果ヘッド、薄膜磁気ヘッドならびに磁気記録再生装置
US6611405B1 (en) 1999-09-16 2003-08-26 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory device
KR100373473B1 (ko) 1999-09-24 2003-02-25 가부시끼가이샤 도시바 자기 저항 효과 소자, 자기 저항 효과 헤드, 자기 재생장치 및 자성 적층체
JP3891540B2 (ja) 1999-10-25 2007-03-14 キヤノン株式会社 磁気抵抗効果メモリ、磁気抵抗効果メモリに記録される情報の記録再生方法、およびmram
US6447935B1 (en) 1999-11-23 2002-09-10 Read-Rite Corporation Method and system for reducing assymetry in a spin valve having a synthetic pinned layer
US6233172B1 (en) 1999-12-17 2001-05-15 Motorola, Inc. Magnetic element with dual magnetic states and fabrication method thereof
US6272036B1 (en) 1999-12-20 2001-08-07 The University Of Chicago Control of magnetic direction in multi-layer ferromagnetic devices by bias voltage
TW504713B (en) 2000-04-28 2002-10-01 Motorola Inc Magnetic element with insulating veils and fabricating method thereof
US6570139B1 (en) 2000-04-28 2003-05-27 The Holmes Group, Inc. Electronic control circuit
US6522137B1 (en) 2000-06-28 2003-02-18 Schlumberger Technology Corporation Two-dimensional magnetic resonance imaging in a borehole
WO2002003067A1 (en) 2000-07-03 2002-01-10 Merck & Co., Inc. Methods for encoding combinatorial libraries
US6493259B1 (en) 2000-08-14 2002-12-10 Micron Technology, Inc. Pulse write techniques for magneto-resistive memories
DE10050076C2 (de) 2000-10-10 2003-09-18 Infineon Technologies Ag Verfahren zur Herstellung einer ferromagnetischen Struktur und ferromagnetisches Bauelement
US6385082B1 (en) 2000-11-08 2002-05-07 International Business Machines Corp. Thermally-assisted magnetic random access memory (MRAM)
FR2817998B1 (fr) 2000-12-07 2003-01-10 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin et a rotation d'aimantation, memoire et procede d'ecriture utilisant ce dispositif
FR2817999B1 (fr) 2000-12-07 2003-01-10 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin et a empilement(s) tri-couche(s) et memoire utilisant ce dispositif
KR100650534B1 (ko) 2000-12-21 2006-11-27 후지쯔 가부시끼가이샤 자기 저항 효과 소자, 자기 헤드 및 이것을 사용하는 자기재생 장치
US6713195B2 (en) 2001-01-05 2004-03-30 Nve Corporation Magnetic devices using nanocomposite materials
JP3576111B2 (ja) 2001-03-12 2004-10-13 株式会社東芝 磁気抵抗効果素子
US6653154B2 (en) 2001-03-15 2003-11-25 Micron Technology, Inc. Method of forming self-aligned, trenchless mangetoresistive random-access memory (MRAM) structure with sidewall containment of MRAM structure
JP2002279618A (ja) 2001-03-19 2002-09-27 Hitachi Ltd 磁気記録媒体
US6744086B2 (en) 2001-05-15 2004-06-01 Nve Corporation Current switched magnetoresistive memory cell
US6566246B1 (en) 2001-05-21 2003-05-20 Novellus Systems, Inc. Deposition of conformal copper seed layers by control of barrier layer morphology
JP2002357489A (ja) 2001-05-31 2002-12-13 Matsushita Electric Ind Co Ltd 応力センサー
US6347049B1 (en) 2001-07-25 2002-02-12 International Business Machines Corporation Low resistance magnetic tunnel junction device with bilayer or multilayer tunnel barrier
US6902807B1 (en) 2002-09-13 2005-06-07 Flex Products, Inc. Alignable diffractive pigment flakes
US6772036B2 (en) 2001-08-30 2004-08-03 Fisher-Rosemount Systems, Inc. Control system using process model
US6777730B2 (en) 2001-08-31 2004-08-17 Nve Corporation Antiparallel magnetoresistive memory cells
US6545906B1 (en) 2001-10-16 2003-04-08 Motorola, Inc. Method of writing to scalable magnetoresistance random access memory element
FR2832542B1 (fr) 2001-11-16 2005-05-06 Commissariat Energie Atomique Dispositif magnetique a jonction tunnel magnetique, memoire et procedes d'ecriture et de lecture utilisant ce dispositif
US6750491B2 (en) 2001-12-20 2004-06-15 Hewlett-Packard Development Company, L.P. Magnetic memory device having soft reference layer
JP3583102B2 (ja) 2001-12-27 2004-10-27 株式会社東芝 磁気スイッチング素子及び磁気メモリ
US6773515B2 (en) 2002-01-16 2004-08-10 Headway Technologies, Inc. FeTa nano-oxide layer as a capping layer for enhancement of giant magnetoresistance in bottom spin valve structures
JP2003281705A (ja) 2002-03-25 2003-10-03 Hitachi Ltd 磁気ヘッド、磁気ヘッドジンバルアッセンブリ、磁気記録再生装置及び磁性メモリ
JP3769241B2 (ja) 2002-03-29 2006-04-19 株式会社東芝 磁気抵抗効果素子及び磁気メモリ
WO2003090290A1 (fr) 2002-04-22 2003-10-30 Matsushita Electric Industrial Co., Ltd. Element a effet de resistance magnetique, tete magnetique en comportant, memoire magnetique, et enregistreur magnetique
JP2003318461A (ja) 2002-04-22 2003-11-07 Matsushita Electric Ind Co Ltd 磁気抵抗効果素子とこれを用いた磁気ヘッドおよび磁気メモリならびに磁気記録装置
US6879512B2 (en) 2002-05-24 2005-04-12 International Business Machines Corporation Nonvolatile memory device utilizing spin-valve-type designs and current pulses
US7005958B2 (en) 2002-06-14 2006-02-28 Honeywell International Inc. Dual axis magnetic sensor
US7095646B2 (en) 2002-07-17 2006-08-22 Freescale Semiconductor, Inc. Multi-state magnetoresistance random access cell with improved memory storage density
US6654278B1 (en) 2002-07-31 2003-11-25 Motorola, Inc. Magnetoresistance random access memory
US6714444B2 (en) 2002-08-06 2004-03-30 Grandis, Inc. Magnetic element utilizing spin transfer and an MRAM device using the magnetic element
US6888742B1 (en) 2002-08-28 2005-05-03 Grandis, Inc. Off-axis pinned layer magnetic element utilizing spin transfer and an MRAM device using the magnetic element
US6785159B2 (en) 2002-08-29 2004-08-31 Micron Technology, Inc. Combination etch stop and in situ resistor in a magnetoresistive memory and methods for fabricating same
US6838740B2 (en) 2002-09-27 2005-01-04 Grandis, Inc. Thermally stable magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6958927B1 (en) 2002-10-09 2005-10-25 Grandis Inc. Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element
US6956257B2 (en) 2002-11-18 2005-10-18 Carnegie Mellon University Magnetic memory element and memory device including same
KR100663857B1 (ko) 2002-12-13 2007-01-02 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 스핀 주입 디바이스 및 이를 사용한 자기 장치, 그리고이들에 사용되는 자성 박막
US6909631B2 (en) 2003-10-02 2005-06-21 Freescale Semiconductor, Inc. MRAM and methods for reading the MRAM
US7190611B2 (en) 2003-01-07 2007-03-13 Grandis, Inc. Spin-transfer multilayer stack containing magnetic layers with resettable magnetization
US6829161B2 (en) 2003-01-10 2004-12-07 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
GB2415304B (en) 2003-02-10 2006-11-15 Massachusetts Inst Technology Magnetic memory elements using 360 degree walls
US6847547B2 (en) 2003-02-28 2005-01-25 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6677165B1 (en) 2003-03-20 2004-01-13 Micron Technology, Inc. Magnetoresistive random access memory (MRAM) cell patterning
JP3546238B1 (ja) 2003-04-23 2004-07-21 学校法人慶應義塾 磁気リングユニット及び磁気メモリ装置
US6933155B2 (en) 2003-05-21 2005-08-23 Grandis, Inc. Methods for providing a sub .15 micron magnetic memory structure
US7006375B2 (en) 2003-06-06 2006-02-28 Seagate Technology Llc Hybrid write mechanism for high speed and high density magnetic random access memory
US7054119B2 (en) 2003-06-18 2006-05-30 Hewlett-Packard Development Company, L.P. Coupled ferromagnetic systems having modified interfaces
US7041598B2 (en) 2003-06-25 2006-05-09 Hewlett-Packard Development Company, L.P. Directional ion etching process for patterning self-aligned via contacts
KR100512180B1 (ko) 2003-07-10 2005-09-02 삼성전자주식회사 자기 랜덤 엑세스 메모리 소자의 자기 터널 접합 및 그의형성방법
JP4142993B2 (ja) 2003-07-23 2008-09-03 株式会社東芝 磁気メモリ装置の製造方法
US7911832B2 (en) 2003-08-19 2011-03-22 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US8755222B2 (en) 2003-08-19 2014-06-17 New York University Bipolar spin-transfer switching
US7573737B2 (en) 2003-08-19 2009-08-11 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US6980469B2 (en) 2003-08-19 2005-12-27 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US7245462B2 (en) 2003-08-21 2007-07-17 Grandis, Inc. Magnetoresistive element having reduced spin transfer induced noise
US7598555B1 (en) 2003-08-22 2009-10-06 International Business Machines Corporation MgO tunnel barriers and method of formation
US6985385B2 (en) 2003-08-26 2006-01-10 Grandis, Inc. Magnetic memory element utilizing spin transfer switching and storing multiple bits
US6984529B2 (en) 2003-09-10 2006-01-10 Infineon Technologies Ag Fabrication process for a magnetic tunnel junction device
US7161829B2 (en) 2003-09-19 2007-01-09 Grandis, Inc. Current confined pass layer for magnetic elements utilizing spin-transfer and an MRAM device using such magnetic elements
US20050128842A1 (en) 2003-11-07 2005-06-16 Alexander Wei Annular magnetic nanostructures
US7009877B1 (en) 2003-11-14 2006-03-07 Grandis, Inc. Three-terminal magnetostatically coupled spin transfer-based MRAM cell
JP2005150482A (ja) 2003-11-18 2005-06-09 Sony Corp 磁気抵抗効果素子及び磁気メモリ装置
US7602000B2 (en) 2003-11-19 2009-10-13 International Business Machines Corporation Spin-current switched magnetic memory element suitable for circuit integration and method of fabricating the memory element
US6969895B2 (en) 2003-12-10 2005-11-29 Headway Technologies, Inc. MRAM cell with flat topography and controlled bit line to free layer distance and method of manufacture
US20050136600A1 (en) 2003-12-22 2005-06-23 Yiming Huai Magnetic elements with ballistic magnetoresistance utilizing spin-transfer and an MRAM device using such magnetic elements
US7619431B2 (en) 2003-12-23 2009-11-17 Nxp B.V. High sensitivity magnetic built-in current sensor
US6936479B2 (en) 2004-01-15 2005-08-30 Hewlett-Packard Development Company, L.P. Method of making toroidal MRAM cells
US7283333B2 (en) 2004-02-11 2007-10-16 Hitachi Global Storage Technologies Netherlands B.V. Self-pinned double tunnel junction head
US7110287B2 (en) 2004-02-13 2006-09-19 Grandis, Inc. Method and system for providing heat assisted switching of a magnetic element utilizing spin transfer
US7203129B2 (en) 2004-02-16 2007-04-10 Taiwan Semiconductor Manufacturing Company, Ltd. Segmented MRAM memory array
US7242045B2 (en) 2004-02-19 2007-07-10 Grandis, Inc. Spin transfer magnetic element having low saturation magnetization free layers
US6967863B2 (en) 2004-02-25 2005-11-22 Grandis, Inc. Perpendicular magnetization magnetic element utilizing spin transfer
US6992359B2 (en) 2004-02-26 2006-01-31 Grandis, Inc. Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
US7233039B2 (en) 2004-04-21 2007-06-19 Grandis, Inc. Spin transfer magnetic elements with spin depolarization layers
US7045368B2 (en) 2004-05-19 2006-05-16 Headway Technologies, Inc. MRAM cell structure and method of fabrication
US7449345B2 (en) 2004-06-15 2008-11-11 Headway Technologies, Inc. Capping structure for enhancing dR/R of the MTJ device
US7098494B2 (en) 2004-06-16 2006-08-29 Grandis, Inc. Re-configurable logic elements using heat assisted magnetic tunneling elements
US7611912B2 (en) 2004-06-30 2009-11-03 Headway Technologies, Inc. Underlayer for high performance magnetic tunneling junction MRAM
US7576956B2 (en) 2004-07-26 2009-08-18 Grandis Inc. Magnetic tunnel junction having diffusion stop layer
US7369427B2 (en) 2004-09-09 2008-05-06 Grandis, Inc. Magnetic elements with spin engineered insertion layers and MRAM devices using the magnetic elements
US7149106B2 (en) 2004-10-22 2006-12-12 Freescale Semiconductor, Inc. Spin-transfer based MRAM using angular-dependent selectivity
JP4682585B2 (ja) 2004-11-01 2011-05-11 ソニー株式会社 記憶素子及びメモリ
JP4575136B2 (ja) 2004-12-20 2010-11-04 株式会社東芝 磁気記録素子、磁気記録装置、および情報の記録方法
JP4693450B2 (ja) 2005-03-22 2011-06-01 株式会社東芝 磁気抵抗効果素子および磁気メモリ
US7376006B2 (en) 2005-05-13 2008-05-20 International Business Machines Corporation Enhanced programming performance in a nonvolatile memory device having a bipolar programmable storage element
US8130474B2 (en) 2005-07-18 2012-03-06 Hitachi Global Storage Technologies Netherlands B.V. CPP-TMR sensor with non-orthogonal free and reference layer magnetization orientation
US20070019337A1 (en) 2005-07-19 2007-01-25 Dmytro Apalkov Magnetic elements having improved switching characteristics and magnetic memory devices using the magnetic elements
FR2888994B1 (fr) 2005-07-21 2007-10-12 Commissariat Energie Atomique Dispositif radiofrequence avec element magnetique et procede de fabrication d'un tel element magnetique
US7224601B2 (en) 2005-08-25 2007-05-29 Grandis Inc. Oscillating-field assisted spin torque switching of a magnetic tunnel junction memory element
FR2892231B1 (fr) 2005-10-14 2008-06-27 Commissariat Energie Atomique Dispositif magnetique a jonction tunnel magnetoresistive et memoire magnetique a acces aleatoire
US20070096229A1 (en) 2005-10-28 2007-05-03 Masatoshi Yoshikawa Magnetoresistive element and magnetic memory device
EP2378597A1 (en) 2005-11-21 2011-10-19 Nanosys, Inc. Nanowire structures comprising carbon
JP4959717B2 (ja) 2005-12-31 2012-06-27 中国科学院物理研究所 磁性メモリセル、磁気ランダムアクセスメモリ、および、そのアクセス記憶方法
US7280389B2 (en) 2006-02-08 2007-10-09 Magic Technologies, Inc. Synthetic anti-ferromagnetic structure with non-magnetic spacer for MRAM applications
SE531384C2 (sv) 2006-02-10 2009-03-17 Vnk Innovation Ab Multipla magnetoresistansanordningar baserade på metalldopad magnesiumoxid
US8084835B2 (en) 2006-10-20 2011-12-27 Avalanche Technology, Inc. Non-uniform switching based non-volatile magnetic based memory
US8535952B2 (en) 2006-02-25 2013-09-17 Avalanche Technology, Inc. Method for manufacturing non-volatile magnetic memory
KR100764738B1 (ko) 2006-04-06 2007-10-09 삼성전자주식회사 향상된 신뢰성을 갖는 상변화 메모리 장치, 그것의 쓰기방법, 그리고 그것을 포함한 시스템
TWI320929B (en) 2006-04-18 2010-02-21 Ind Tech Res Inst Structure and access method for magnetic memory cell structure and circuit of magnetic memory
US7324387B1 (en) 2006-04-18 2008-01-29 Maxim Integrated Products, Inc. Low power high density random access memory flash cells and arrays
US8120949B2 (en) 2006-04-27 2012-02-21 Avalanche Technology, Inc. Low-cost non-volatile flash-RAM memory
JP2008028362A (ja) * 2006-06-22 2008-02-07 Toshiba Corp 磁気抵抗素子及び磁気メモリ
US7643332B2 (en) 2006-06-23 2010-01-05 Infineon Technologies Ag MRAM cell using multiple axes magnetization and method of operation
US7502249B1 (en) 2006-07-17 2009-03-10 Grandis, Inc. Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements
FR2904724B1 (fr) 2006-08-03 2011-03-04 Commissariat Energie Atomique Dispositif magnetique en couches minces a forte polarisation en spin perpendiculaire au plan des couches, jonction tunnel magnetique et vanne de spin mettant en oeuvre un tel dispositif
US7502253B2 (en) 2006-08-28 2009-03-10 Everspin Technologies, Inc. Spin-transfer based MRAM with reduced critical current density
JP2008098365A (ja) 2006-10-11 2008-04-24 Toshiba Corp 磁気ランダムアクセスメモリ及びその製造方法
EP2089888B1 (en) 2006-11-03 2013-12-25 New York University Electronic devices based on current induced magnetization dynamics in single magnetic layers
US7508042B2 (en) 2006-12-22 2009-03-24 Magic Technologies, Inc. Spin transfer MRAM device with magnetic biasing
FR2910716B1 (fr) 2006-12-26 2010-03-26 Commissariat Energie Atomique Dispositif magnetique multicouches, procede pour sa realisation, capteur de champ magnetique, memoire magnetique et porte logique mettant en oeuvre un tel dispositif
US7791845B2 (en) 2006-12-26 2010-09-07 Hitachi Global Storage Technologies Netherlands B.V. Tunneling magnetoresistive sensor having a high iron concentration free layer and an oxides of magnesium barrier layer
JP2008192832A (ja) 2007-02-05 2008-08-21 Hitachi Global Storage Technologies Netherlands Bv 磁気検出素子及びその製造方法
US8542524B2 (en) 2007-02-12 2013-09-24 Avalanche Technology, Inc. Magnetic random access memory (MRAM) manufacturing process for a small magnetic tunnel junction (MTJ) design with a low programming current requirement
US7602033B2 (en) 2007-05-29 2009-10-13 Headway Technologies, Inc. Low resistance tunneling magnetoresistive sensor with composite inner pinned layer
JP4874884B2 (ja) * 2007-07-11 2012-02-15 株式会社東芝 磁気記録素子及び磁気記録装置
US7750421B2 (en) 2007-07-23 2010-07-06 Magic Technologies, Inc. High performance MTJ element for STT-RAM and method for making the same
AU2008219354B2 (en) 2007-09-19 2014-02-13 Viavi Solutions Inc. Anisotropic magnetic flakes
US8008095B2 (en) 2007-10-03 2011-08-30 International Business Machines Corporation Methods for fabricating contacts to pillar structures in integrated circuits
JP5236244B2 (ja) 2007-10-16 2013-07-17 株式会社日立製作所 磁気記録媒体の製造方法
US9812184B2 (en) 2007-10-31 2017-11-07 New York University Current induced spin-momentum transfer stack with dual insulating layers
JP5586473B2 (ja) 2007-12-13 2014-09-10 クロッカス・テクノロジー・ソシエテ・アノニム 熱支援書き込み手順を備える磁気メモリ装置と方法
FR2925725B1 (fr) 2007-12-21 2011-03-25 Commissariat Energie Atomique Procede de modelisation d'une jonction tunnel magnetique a ecriture par courant polarise en spin
US8105948B2 (en) 2008-02-14 2012-01-31 Magic Technologies, Inc. Use of CMP to contact a MTJ structure without forming a via
US7723128B2 (en) 2008-02-18 2010-05-25 Taiwan Semiconductor Manufacturing Company, Ltd. In-situ formed capping layer in MTJ devices
US8802451B2 (en) 2008-02-29 2014-08-12 Avalanche Technology Inc. Method for manufacturing high density non-volatile magnetic memory
US8724260B2 (en) * 2008-11-10 2014-05-13 Hitachi, Ltd. Information recording device having high-frequency field generating multilayer material with a receded section disposed between main and opposing poles
GB2465369B (en) 2008-11-13 2011-01-12 Ingenia Holdings Magnetic data storage device and method
US8120126B2 (en) 2009-03-02 2012-02-21 Qualcomm Incorporated Magnetic tunnel junction device and fabrication
US7916515B2 (en) 2009-03-10 2011-03-29 Seagate Technology Llc Non-volatile memory read/write verify
JP5470602B2 (ja) 2009-04-01 2014-04-16 ルネサスエレクトロニクス株式会社 磁気記憶装置
US7936598B2 (en) 2009-04-28 2011-05-03 Seagate Technology Magnetic stack having assist layer
US8624105B2 (en) 2009-05-01 2014-01-07 Synkera Technologies, Inc. Energy conversion device with support member having pore channels
KR101047050B1 (ko) 2009-05-15 2011-07-06 주식회사 하이닉스반도체 상변화 메모리 장치
US8590139B2 (en) 2009-05-18 2013-11-26 Imec Patterning of and contacting magnetic layers
FR2946183B1 (fr) 2009-05-27 2011-12-23 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin.
US8334213B2 (en) 2009-06-05 2012-12-18 Magic Technologies, Inc. Bottom electrode etching process in MRAM cell
US8320178B2 (en) 2009-07-02 2012-11-27 Actel Corporation Push-pull programmable logic device cell
JP5529648B2 (ja) 2009-08-04 2014-06-25 キヤノンアネルバ株式会社 磁気センサ積層体、その成膜方法、成膜制御プログラムおよび記録媒体
US10446209B2 (en) 2009-08-10 2019-10-15 Samsung Semiconductor Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements
US8169821B1 (en) 2009-10-20 2012-05-01 Avalanche Technology, Inc. Low-crystallization temperature MTJ for spin-transfer torque magnetic random access memory (SSTTMRAM)
US8422285B2 (en) 2009-10-30 2013-04-16 Grandis, Inc. Method and system for providing dual magnetic tunneling junctions usable in spin transfer torque magnetic memories
US8912012B2 (en) 2009-11-25 2014-12-16 Qualcomm Incorporated Magnetic tunnel junction device and fabrication
US8362580B2 (en) 2009-12-08 2013-01-29 Qualcomm Incorporated Spin-transfer switching magnetic element utilizing a composite free layer comprising a superparamagnetic layer
US8199553B2 (en) 2009-12-17 2012-06-12 Hitachi Global Storage Technologies Netherlands B.V. Multilevel frequency addressable field driven MRAM
JP5127861B2 (ja) 2010-03-24 2013-01-23 株式会社東芝 磁気メモリ
US8981502B2 (en) 2010-03-29 2015-03-17 Qualcomm Incorporated Fabricating a magnetic tunnel junction storage element
JP5644198B2 (ja) 2010-06-15 2014-12-24 ソニー株式会社 記憶装置
WO2012003301A2 (en) 2010-06-30 2012-01-05 Sandisk Technologies Inc. Ultrahigh density vertical nand memory device and method of making thereof
US8772886B2 (en) 2010-07-26 2014-07-08 Avalanche Technology, Inc. Spin transfer torque magnetic random access memory (STTMRAM) having graded synthetic free layer
US9070855B2 (en) 2010-12-10 2015-06-30 Avalanche Technology, Inc. Magnetic random access memory having perpendicular enhancement layer
US9082951B2 (en) 2011-02-16 2015-07-14 Avalanche Technology, Inc. Magnetic random access memory with perpendicular enhancement layer
US9396781B2 (en) 2010-12-10 2016-07-19 Avalanche Technology, Inc. Magnetic random access memory having perpendicular composite reference layer
JP5085703B2 (ja) 2010-09-17 2012-11-28 株式会社東芝 磁気記録素子および不揮発性記憶装置
JP5514059B2 (ja) 2010-09-17 2014-06-04 株式会社東芝 磁気抵抗効果素子及び磁気ランダムアクセスメモリ
US20120156390A1 (en) 2010-12-21 2012-06-21 Hitachi Global Storage Technologies Netherlands B.V. Multi-angle hard bias deposition for optimal hard-bias deposition in a magnetic sensor
EP2477227B1 (en) 2011-01-13 2019-03-27 Crocus Technology S.A. Magnetic tunnel junction comprising a polarizing layer
US9196332B2 (en) 2011-02-16 2015-11-24 Avalanche Technology, Inc. Perpendicular magnetic tunnel junction (pMTJ) with in-plane magneto-static switching-enhancing layer
JP5695453B2 (ja) 2011-03-07 2015-04-08 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
JP5285104B2 (ja) 2011-03-17 2013-09-11 株式会社東芝 磁気記録素子及び不揮発性記憶装置
CN102822901B (zh) 2011-03-25 2014-09-24 松下电器产业株式会社 电阻变化型非易失性元件的写入方法及存储装置
JP5417369B2 (ja) 2011-03-25 2014-02-12 株式会社東芝 磁気素子及び不揮発性記憶装置
JP5214765B2 (ja) 2011-03-25 2013-06-19 株式会社東芝 磁気抵抗素子および磁気メモリ
US8592927B2 (en) 2011-05-04 2013-11-26 Magic Technologies, Inc. Multilayers having reduced perpendicular demagnetizing field using moment dilution for spintronic applications
US8508006B2 (en) 2011-05-10 2013-08-13 Magic Technologies, Inc. Co/Ni multilayers with improved out-of-plane anisotropy for magnetic device applications
KR101195041B1 (ko) * 2011-05-12 2012-10-31 고려대학교 산학협력단 자기 공명 세차 현상을 이용한 스핀전달토크 자기 메모리 소자
KR101811315B1 (ko) 2011-05-24 2017-12-27 삼성전자주식회사 자기 기억 소자 및 그 제조 방법
JP2013012546A (ja) 2011-06-28 2013-01-17 Toshiba Corp 不揮発性記憶装置の製造方法
JP5740225B2 (ja) 2011-06-29 2015-06-24 株式会社東芝 抵抗変化メモリの製造方法
JP2013016587A (ja) 2011-07-01 2013-01-24 Toshiba Corp 磁気抵抗効果素子及びその製造方法
US8559215B2 (en) 2011-07-20 2013-10-15 Avalanche Technology, Inc. Perpendicular magnetic random access memory (MRAM) device with a stable reference cell
JP2013048210A (ja) 2011-07-22 2013-03-07 Toshiba Corp 磁気抵抗素子
KR101566863B1 (ko) 2011-08-25 2015-11-06 캐논 아네르바 가부시키가이샤 자기저항 소자의 제조 방법 및 자기저항 필름의 가공 방법
US8704320B2 (en) 2011-09-12 2014-04-22 Qualcomm Incorporated Strain induced reduction of switching current in spin-transfer torque switching devices
JP5734800B2 (ja) 2011-09-21 2015-06-17 株式会社東芝 磁気記憶素子及び不揮発性記憶装置
JP5767925B2 (ja) 2011-09-21 2015-08-26 株式会社東芝 磁気記憶素子及び不揮発性記憶装置
JP5809903B2 (ja) 2011-09-21 2015-11-11 株式会社東芝 不揮発性記憶装置
US9245608B2 (en) 2011-09-22 2016-01-26 Qualcomm Incorporated Thermally tolerant perpendicular magnetic anisotropy coupled elements for spin-transfer torque switching device
US8617408B2 (en) 2011-10-18 2013-12-31 HGST Netherlands B.V. Method for manufacturing a magnetic read sensor with narrow track width using amorphous carbon as a hard mask and localized CMP
US8912614B2 (en) 2011-11-11 2014-12-16 International Business Machines Corporation Magnetic tunnel junction devices having magnetic layers formed on composite, obliquely deposited seed layers
KR20130069097A (ko) 2011-12-16 2013-06-26 에스케이하이닉스 주식회사 반도체 장치의 제조방법
US9236562B2 (en) 2011-12-30 2016-01-12 Intel Corporation Balancing energy barrier between states in perpendicular magnetic tunnel junctions
US8823118B2 (en) 2012-01-05 2014-09-02 Headway Technologies, Inc. Spin torque transfer magnetic tunnel junction fabricated with a composite tunneling barrier layer
US8871365B2 (en) 2012-02-28 2014-10-28 Headway Technologies, Inc. High thermal stability reference structure with out-of-plane aniotropy to magnetic device applications
US8574928B2 (en) 2012-04-10 2013-11-05 Avalanche Technology Inc. MRAM fabrication method with sidewall cleaning
US20130270661A1 (en) 2012-04-16 2013-10-17 Ge Yi Magnetoresistive random access memory cell design
US8852760B2 (en) 2012-04-17 2014-10-07 Headway Technologies, Inc. Free layer with high thermal stability for magnetic device applications by insertion of a boron dusting layer
WO2013168551A1 (ja) 2012-05-09 2013-11-14 株式会社村田製作所 冷却装置、加熱冷却装置
US20130307097A1 (en) 2012-05-15 2013-11-21 Ge Yi Magnetoresistive random access memory cell design
US8456883B1 (en) * 2012-05-29 2013-06-04 Headway Technologies, Inc. Method of spin torque MRAM process integration
US8883520B2 (en) 2012-06-22 2014-11-11 Avalanche Technology, Inc. Redeposition control in MRAM fabrication process
USPP25501P3 (en) 2012-07-03 2015-05-05 Institute Of Experimental Botany As Cr, V.V.I (Ueb) Columnar apple tree named ‘ROSALIE’
US8687415B2 (en) 2012-07-06 2014-04-01 International Business Machines Corporation Domain wall motion in perpendicularly magnetized wires having artificial antiferromagnetically coupled multilayers with engineered interfaces
US9129690B2 (en) 2012-07-20 2015-09-08 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions having improved characteristics
US9214624B2 (en) 2012-07-27 2015-12-15 Qualcomm Incorporated Amorphous spacerlattice spacer for perpendicular MTJs
JP2014032724A (ja) 2012-08-03 2014-02-20 Sharp Corp 半導体記憶装置
US9231191B2 (en) 2012-08-20 2016-01-05 Industrial Technology Research Institute Magnetic tunnel junction device and method of making same
US8860156B2 (en) 2012-09-11 2014-10-14 Headway Technologies, Inc. Minimal thickness synthetic antiferromagnetic (SAF) structure with perpendicular magnetic anisotropy for STT-MRAM
JP5575198B2 (ja) 2012-09-25 2014-08-20 株式会社東芝 磁気抵抗効果素子の製造方法及び磁気抵抗効果素子の製造装置
US20160020011A2 (en) 2012-09-28 2016-01-21 Seagate Technology Llc Methods of forming magnetic materials and articles formed thereby
US9082888B2 (en) 2012-10-17 2015-07-14 New York University Inverted orthogonal spin transfer layer stack
US9082950B2 (en) 2012-10-17 2015-07-14 New York University Increased magnetoresistance in an inverted orthogonal spin transfer layer stack
JP5680045B2 (ja) 2012-11-14 2015-03-04 株式会社東芝 磁気抵抗素子及び磁気メモリ
US9036407B2 (en) 2012-12-07 2015-05-19 The Regents Of The University Of California Voltage-controlled magnetic memory element with canted magnetization
US9070441B2 (en) 2012-12-21 2015-06-30 Sony Corporation Non-volatile memory system with reset verification mechanism and method of operation thereof
US9577653B2 (en) 2013-01-14 2017-02-21 Cornell University Quasi-linear spin torque nano-oscillators
US8737137B1 (en) 2013-01-22 2014-05-27 Freescale Semiconductor, Inc. Flash memory with bias voltage for word line/row driver
US20140252439A1 (en) 2013-03-08 2014-09-11 T3Memory, Inc. Mram having spin hall effect writing and method of making the same
KR102078849B1 (ko) 2013-03-11 2020-02-18 삼성전자 주식회사 자기저항 구조체, 이를 포함하는 자기 메모리 소자 및 자기저항 구조체의 제조 방법
JP6160903B2 (ja) 2013-03-13 2017-07-12 株式会社東芝 磁気記憶素子及び不揮発性記憶装置
US9130155B2 (en) 2013-03-15 2015-09-08 Samsung Electronics Co., Ltd. Magnetic junctions having insertion layers and magnetic memories using the magnetic junctions
US9240546B2 (en) 2013-03-26 2016-01-19 Infineon Technologies Ag Magnetoresistive devices and methods for manufacturing magnetoresistive devices
KR102114285B1 (ko) * 2013-04-09 2020-05-22 에스케이하이닉스 주식회사 반도체 장치 및 이 반도체 장치를 포함하는 마이크로프로세서, 프로세서, 시스템, 데이터 저장 시스템 및 메모리 시스템
US9281468B2 (en) 2013-06-17 2016-03-08 Imec Magnetic memory element
US9203017B2 (en) 2013-08-02 2015-12-01 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions including a package structure usable in spin transfer torque memories
KR102153559B1 (ko) 2013-08-02 2020-09-08 삼성전자주식회사 수직 자기터널접합을 구비하는 자기 기억 소자
JP5649704B1 (ja) 2013-09-18 2015-01-07 株式会社東芝 磁気記録装置
US9691458B2 (en) 2013-10-18 2017-06-27 Cornell University Circuits and devices based on spin hall effect to apply a spin transfer torque with a component perpendicular to the plane of magnetic layers
JP5635666B2 (ja) 2013-10-24 2014-12-03 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
WO2015062174A1 (zh) 2013-11-01 2015-05-07 中国科学院物理研究所 一种用于温度传感器的纳米磁性多层膜及其制造方法
WO2015089304A1 (en) 2013-12-13 2015-06-18 E. I. Du Pont De Nemours And Company System for forming an electroactive layer
US9379314B2 (en) 2013-12-17 2016-06-28 Qualcomm Incorporated Hybrid synthetic antiferromagnetic layer for perpendicular magnetic tunnel junction (MTJ)
US9019754B1 (en) 2013-12-17 2015-04-28 Micron Technology, Inc. State determination in resistance variable memory
JP6106118B2 (ja) 2014-03-13 2017-03-29 株式会社東芝 磁気記憶素子及び不揮発性記憶装置
US20150279904A1 (en) * 2014-04-01 2015-10-01 Spin Transfer Technologies, Inc. Magnetic tunnel junction for mram device
US9269893B2 (en) 2014-04-02 2016-02-23 Qualcomm Incorporated Replacement conductive hard mask for multi-step magnetic tunnel junction (MTJ) etch
SE538342C2 (sv) 2014-04-09 2016-05-24 Nanosc Ab Spinnoscillator-anordning
US9496489B2 (en) 2014-05-21 2016-11-15 Avalanche Technology, Inc. Magnetic random access memory with multilayered seed structure
US10008248B2 (en) 2014-07-17 2018-06-26 Cornell University Circuits and devices based on enhanced spin hall effect for efficient spin transfer torque
US9263667B1 (en) 2014-07-25 2016-02-16 Spin Transfer Technologies, Inc. Method for manufacturing MTJ memory device
US9337412B2 (en) 2014-09-22 2016-05-10 Spin Transfer Technologies, Inc. Magnetic tunnel junction structure for MRAM device
KR102238527B1 (ko) 2014-09-29 2021-04-09 삼성전자주식회사 수직 자기 터널 접합 패턴을 포함하는 자기 기억 소자
US9589616B2 (en) 2014-11-02 2017-03-07 Globalfoundries Singapore Pte. Ltd. Energy efficient three-terminal voltage controlled memory cell
US9634237B2 (en) 2014-12-23 2017-04-25 Qualcomm Incorporated Ultrathin perpendicular pinned layer structure for magnetic tunneling junction devices
KR102204389B1 (ko) 2015-01-06 2021-01-18 삼성전자주식회사 저항성 메모리 장치 및 저항성 메모리 장치의 동작 방법
US9728712B2 (en) 2015-04-21 2017-08-08 Spin Transfer Technologies, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US10468590B2 (en) 2015-04-21 2019-11-05 Spin Memory, Inc. High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
US9853206B2 (en) 2015-06-16 2017-12-26 Spin Transfer Technologies, Inc. Precessional spin current structure for MRAM
US9537088B1 (en) 2015-07-13 2017-01-03 Micron Technology, Inc. Magnetic tunnel junctions
US9773540B2 (en) 2015-07-17 2017-09-26 The Johns Hopkins University Skyrmion based universal memory operated by electric current
US9773974B2 (en) 2015-07-30 2017-09-26 Spin Transfer Technologies, Inc. Polishing stop layer(s) for processing arrays of semiconductor elements
US10163479B2 (en) 2015-08-14 2018-12-25 Spin Transfer Technologies, Inc. Method and apparatus for bipolar memory write-verify
US9825216B2 (en) 2015-10-16 2017-11-21 Samsung Electronics Co., Ltd. Semiconductor memory device
US9741926B1 (en) 2016-01-28 2017-08-22 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
WO2017151735A1 (en) 2016-03-01 2017-09-08 Virginia Commonwealth University Switching skyrmions with vcma/electric field for memory, computing, and information processing
US9680089B1 (en) 2016-05-13 2017-06-13 Micron Technology, Inc. Magnetic tunnel junctions
KR101963482B1 (ko) 2016-10-20 2019-03-28 고려대학교 산학협력단 자기 터널 접합 소자 및 자기 메모리 소자
US10274571B2 (en) 2017-01-18 2019-04-30 Samsung Electronics Co., Ltd. Method and apparatus for measuring exchange stiffness at a patterned device level
US10672976B2 (en) 2017-02-28 2020-06-02 Spin Memory, Inc. Precessional spin current structure with high in-plane magnetization for MRAM
US10665777B2 (en) 2017-02-28 2020-05-26 Spin Memory, Inc. Precessional spin current structure with non-magnetic insertion layer for MRAM
US10032978B1 (en) 2017-06-27 2018-07-24 Spin Transfer Technologies, Inc. MRAM with reduced stray magnetic fields
US10270027B1 (en) 2017-12-29 2019-04-23 Spin Memory, Inc. Self-generating AC current assist in orthogonal STT-MRAM
US10236048B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. AC current write-assist in orthogonal STT-MRAM
US10236047B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM
US10360961B1 (en) 2017-12-29 2019-07-23 Spin Memory, Inc. AC current pre-charge write-assist in orthogonal STT-MRAM
US10229724B1 (en) 2017-12-30 2019-03-12 Spin Memory, Inc. Microwave write-assist in series-interconnected orthogonal STT-MRAM devices
US10236439B1 (en) 2017-12-30 2019-03-19 Spin Memory, Inc. Switching and stability control for perpendicular magnetic tunnel junction device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093721A (zh) * 2006-06-22 2007-12-26 株式会社东芝 磁阻元件和磁性存储器
CN101546808A (zh) * 2008-03-25 2009-09-30 株式会社东芝 磁阻效应元件和磁性随机存取存储器

Also Published As

Publication number Publication date
US10553787B2 (en) 2020-02-04
US20180047894A1 (en) 2018-02-15
EP3298636B1 (en) 2023-07-05
KR20180018779A (ko) 2018-02-21
WO2016204835A1 (en) 2016-12-22
CN107750382A (zh) 2018-03-02
JP6770002B2 (ja) 2020-10-14
EP3298636A1 (en) 2018-03-28
US20160372656A1 (en) 2016-12-22
US20180315920A1 (en) 2018-11-01
EP3298636A4 (en) 2019-02-27
US10026892B2 (en) 2018-07-17
US9853206B2 (en) 2017-12-26
KR102479222B1 (ko) 2022-12-19
JP2018522409A (ja) 2018-08-09

Similar Documents

Publication Publication Date Title
CN107750382B (zh) 用于mram的进动自旋电流结构
US11355699B2 (en) Precessional spin current structure for MRAM
US11271149B2 (en) Precessional spin current structure with nonmagnetic insertion layer for MRAM
US10236047B1 (en) Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM
US10236048B1 (en) AC current write-assist in orthogonal STT-MRAM
US10270027B1 (en) Self-generating AC current assist in orthogonal STT-MRAM
US10229724B1 (en) Microwave write-assist in series-interconnected orthogonal STT-MRAM devices
US10360961B1 (en) AC current pre-charge write-assist in orthogonal STT-MRAM
US10199083B1 (en) Three-terminal MRAM with ac write-assist for low read disturb
US10255962B1 (en) Microwave write-assist in orthogonal STT-MRAM
US10580827B1 (en) Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: California, USA

Applicant after: Spin Storage Co.

Address before: California, USA

Applicant before: SPIN TRANSFER TECHNOLOGIES, Inc.

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210928

Address after: California, USA

Patentee after: Siping Co.,Ltd. (assignment for the benefit of creditors)

Address before: California, USA

Patentee before: Spin Storage Co.

Effective date of registration: 20210928

Address after: Greater Cayman, Cayman Islands

Patentee after: INTEGRATED SILICON SOLUTION, (CAYMAN) Inc.

Address before: California, USA

Patentee before: Siping Co.,Ltd. (assignment for the benefit of creditors)