WO2015062174A1 - 一种用于温度传感器的纳米磁性多层膜及其制造方法 - Google Patents

一种用于温度传感器的纳米磁性多层膜及其制造方法 Download PDF

Info

Publication number
WO2015062174A1
WO2015062174A1 PCT/CN2014/071166 CN2014071166W WO2015062174A1 WO 2015062174 A1 WO2015062174 A1 WO 2015062174A1 CN 2014071166 W CN2014071166 W CN 2014071166W WO 2015062174 A1 WO2015062174 A1 WO 2015062174A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic
ferromagnetic
multilayer film
antiferromagnetic
Prior art date
Application number
PCT/CN2014/071166
Other languages
English (en)
French (fr)
Inventor
韩秀峰
袁忠辉
刘盼
于国强
丰家峰
张殿琳
Original Assignee
中国科学院物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院物理研究所 filed Critical 中国科学院物理研究所
Priority to CN201480000687.7A priority Critical patent/CN105122489B/zh
Priority to JP2016526771A priority patent/JP6105817B2/ja
Publication of WO2015062174A1 publication Critical patent/WO2015062174A1/zh
Priority to US15/046,911 priority patent/US9484527B2/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/36Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/36Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils
    • G01K7/38Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils the variations of temperature influencing the magnetic permeability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details

Definitions

  • the present invention relates to a nanomagnetic multilayer film for a magnetic tunnel junction ( ⁇ ) based temperature sensor and a method of fabricating the same.
  • the core component of the present invention is a magnetic tunnel junction device having a core structure in which a sandwich structure of an insulating barrier layer is sandwiched between two layers of ferromagnetic material. Under the action of external magnetic field or pinning, the magnetic moments of the two ferromagnetic layers can be in parallel or anti-parallel state, and the resistance of the magnetic tunnel junctions in the two states is very different, so-called tunneling magnetoresistance (TMR) effect. .
  • TMR tunneling magnetoresistance
  • Magnetic tunnel junctions have found application in magnetic field sensors and magnetic random memories. In addition, the phenomenon that the antiparallel resistance changes linearly with temperature is observed in the magnetic tunnel junction. This phenomenon can be used to fabricate a temperature sensor.
  • thermocouples There are many kinds of temperature sensors available, including thermocouples, thermistors, platinum resistors, semiconductor temperature sensors, etc. Temperature sensors have been widely used in personal life and industrial fields, and are an important type of sensor. Existing temperature sensors have their own shortcomings. Thermocouple temperature sensors are not suitable for integration due to their large size and need cold junction temperature compensation circuits. Resistive temperature sensors such as platinum resistors have self-heating problems and are precious metals, which are costly and applicable. The range is small; the linearity of the thermistor is very poor, the measurement accuracy is not high, and the measurement range is narrow.
  • the TMR temperature sensor with magnetic tunnel junction as the component almost avoids the main disadvantages of other types of temperature sensors (such as cold spot compensation, self-heating, low sensitivity, large volume, etc.), and combines the following advantages: (1) High precision; (2) High stability; (3) High sensitivity; (4) Low load, low power consumption, low heat capacity, high efficiency and energy saving; (5) Integration; (6) Mass production, low price; ) miniaturization; (8) long life; (9) digital; (10) environmentally friendly, non-polluting, etc.
  • the present invention provides a junction temperature based on magnetic tunneling.
  • the magnetic nano-multilayer film is divided into three categories: the first type is prepared by an artificial annealing process using an artificial ferromagnetic or antiferromagnetic and pinning structure; the second type is prepared by a double pinning structure by a secondary annealing process; Prepared using a vertical magnetic layer.
  • the three types of structures and different preparation processes are designed to make the upper and lower ferromagnetic layers of the tunnel junctions in an anti-parallel state, thereby achieving a linear change in tunnel junction resistance with temperature.
  • the invention provides a temperature sensor based on a first type of magnetic tunnel junction, which is formed on a magnetic multilayer film by a conventional semiconductor fabrication process to form a micron-sized sensor device.
  • the nano magnetic multilayer film as shown in FIG. 1 includes, from bottom to top, in order:
  • BPL bottom composite magnetic layer
  • Spacer intermediate barrier layer
  • TPL top composite magnetic layer
  • CAP cap layer
  • the bottom composite magnetic layer and the top composite magnetic layer may be an indirect pinning, direct pinning structure, an artificial antiferromagnetic structure or an artificial ferromagnetic structure, the indirect pinning structure including an antiferromagnetic layer (AFM) I Magnetic layer (FM1) / non-magnetic metal layer (NM) / second ferromagnetic layer (FM2); the direct pinning structure is an antiferromagnetic layer (AFM) / ferromagnetic layer (FM); the artificial antiferromagnetic structure And the artificial ferromagnetic structure comprises a first ferromagnetic metal layer (FM1) / a non-magnetic metal layer (NM) / a second ferromagnetic metal layer (FM2), and the first second ferromagnetism is realized according to different thicknesses of the intermediate non-magnetic metal layer Antiferromagnetic coupling or ferromagnetic coupling of layers.
  • AFM antiferromagnetic layer
  • FM1 antiferromagnetic layer
  • NM non
  • ferromagnetic materials with high spin polarization ratio are selected for ferromagnetic layer, Co-Fe and Co-Fe-B are preferred, thickness is l ⁇ 10nm, and intermetallic intercalation is non-magnetic metal layer NM, generally adopting Cu, Cr, V , Nb, Mo, Ru, Pd, Ta, W, Pt, Ag, Au or its alloy, thickness 0.05 ⁇ 5 nm, antiferromagnetic layer selected lr-Mn, FeMn or Pt-Mn, thickness 2 ⁇ 30nm .
  • the intermediate barrier layer is generally made of AI0 X , MgO, Mg!_ x Al x 0 AIN, Ta 2 0 5 , ZnO, Hf0 2 , Ti0 2 , Alq 3 , LB organic composite film, GaAs, AlGaAs, InAs, etc.
  • MgO, AI0 X , MgAlO, AIN and Alq 3 , LB organic composite films are preferred, and the thickness is generally 0.5 to: L0 nm.
  • the cover layer is a metal material having a large electrical resistance which is not easily oxidized, and is preferably Ta, Ru, Cu, Au, Pt, etc., and has a thickness of 2 to 10 nm for protecting the material from oxidation.
  • the seed layer is a metal material having a large electrical resistance, preferably Ta, Ru, Cr, Pt, and has a thickness of 3 to 10 nm.
  • the substrate is a Si substrate or a Si-SiO 2 substrate and has a thickness of 0.3 to 1 mm.
  • the present invention provides a method for preparing the above-mentioned first type magnetic nano-multilayer film, which comprises the following 1) Select the substrate;
  • step 2) The product obtained in step 2) is vacuum annealed under a magnetic field, and the annealing temperature is higher than the Bloch temperature T B of the antiferromagnetic layer ;
  • step 2 three methods can be used: 1.
  • the top composite magnetic layer is deposited by an indirect pinning structure, that is, an antiferromagnetic layer (AFM)/first ferromagnetic layer (FM1) is sequentially deposited from bottom to top.
  • /Non-magnetic metal layer (NM) / second ferromagnetic layer (FM2) optimize the thickness of the non-magnetic layer, so that FM1 and FM2 form ferromagnetic coupling.
  • the bottom composite magnetic layer adopts an indirect pinning structure, but the thickness of the NM layer is changed to form an antiferromagnetic coupling between FM1 and FM2. 2.
  • the top composite magnetic layer is directly pinned, that is, an antiferromagnetic layer (AFM) is deposited from bottom to top. ) / Ferromagnetic layer (FM).
  • the bottom composite magnetic layer adopts an indirect pinning structure, that is, an antiferromagnetic layer (AFM) / a first ferromagnetic layer (FM1) / a non-magnetic metal layer (NM) / a second ferromagnetic layer (FM2) are sequentially deposited from bottom to top. Optimize the thickness of the non-magnetic layer, so that FM1 and FM2 form antiferromagnetic coupling; 3.
  • the top composite magnetic layer adopts artificial ferromagnetic structure, that is, the first ferromagnetic layer (FM1) / non-magnetic metal layer (NM) is deposited from bottom to top. /Second ferromagnetic layer (FM2), the thickness of the NM layer is optimized such that FM1 and FM2 form ferromagnetic coupling, and the bottom composite magnetic layer uses an artificial antiferromagnetic layer.
  • FM1 and FM2 form antiferromagnetic coupling.
  • the purpose of the above method is to make the magnetic moment between the upper and lower ferromagnetic layers in an anti-parallel state, and the tunnel junction resistance changes linearly with temperature after the necessary tunnel junction is prepared by micromachining.
  • the second type of magnetic nano-multilayer film in the invention is realized by the following technical solutions:
  • the invention provides a temperature sensor based on a second type of magnetic tunnel junction, which is formed on a magnetic multilayer film by a conventional semiconductor fabrication process to form a micron-sized sensor device.
  • the nano magnetic multilayer film as shown in FIG. 2 includes, from bottom to top, in order:
  • BPL bottom pinning layer
  • Spacer intermediate barrier layer
  • TPL top pinning layer
  • CAP cover layer
  • the bottom pinning layer and the top pinning layer may be an indirect pinning, direct pinning structure including an antiferromagnetic layer (AFM) / a non-magnetic metal layer (NM) / a ferromagnetic layer (FM)
  • the direct pinning structure is an antiferromagnetic layer (AFM) / ferromagnetic layer (FM).
  • the ferromagnetic material in which the ferromagnetic layer is selected to have a high spin polarizability is preferably Co-Fe, Co-Fe-B, and has a thickness of 1 to 10 nm, and the intermediate metal intercalation layer It is an ultra-thin non-magnetic metal layer NM, generally made of Cu, Cr, V, Nb, Mo, Ru, Pd, Ta, W, Pt, Ag, Au or its alloy, thickness 0.05 ⁇ 5 nm, antiferromagnetic layer selection lr-Mn, FeMn, or Pt-Mn, having a thickness of 2 ⁇ 30nm o the intermediate barrier layer is generally used AlOx, MgO, Mgl-xAlxO, AIN, Ta205, ZnO, Hf02, Ti02, Alq3, LB organic composite film, For materials made of GaAs, AlGaAs, InAs, etc., MgO, AlOx, MgAlO, AIN and Alq3,
  • the cover layer is a metal material having a large electrical resistance which is not easily oxidized, and is preferably Ta, Ru, Cu, Au, Pt, etc., and has a thickness of 2 to 10 nm for protecting the material from oxidation.
  • the seed layer is a metal material having a large electrical resistance, preferably Ta, Ru, Cr, Pt, and has a thickness of 3 to 10 nm.
  • the substrate is a Si substrate or a Si-SiO 2 substrate and has a thickness of 0.3 to 1 mm.
  • the invention provides a preparation method of the above-mentioned second type magnetic nano-multilayer film, which comprises the following steps:
  • step 2) subjecting the product obtained in step 2) to a first vacuum annealing in a magnetic field, the first annealing temperature being greater than the blocking temperature T B1 of the antiferromagnetic layer in the bottom pinning layer (the blocking temperature is an FM/AFM exchange bias) The temperature at which the effect disappears, wherein the blocking temperature is also called the Bloch temperature;
  • step 4) subjecting the product obtained in step 3) to a second vacuum annealing in a magnetic field, the second annealing temperature being lower than the blocking temperature T B1 of the antiferromagnetic layer in the bottom pinning layer and larger than the reverse in the top pinning layer
  • the blocking temperature T B2 of the ferromagnetic layer, the magnetic fields of the first annealing and the second annealing are opposite in direction.
  • the step of growing the bottom pinning layer in the step 2) comprises:
  • An antiferromagnetic layer (AFM) / a non-magnetic metal layer (NM) / a second ferromagnetic layer (FM), or an antiferromagnetic layer (AFM) / ferromagnetic layer (FM) is deposited in this order from bottom to top.
  • the third type of magnetic nano-multilayer film in the invention is realized by the following technical solutions:
  • the present invention provides a vertical magnetic tunnel junction based temperature sensor which is formed on a magnetic multilayer film by a conventional semiconductor fabrication process to form a micron-sized sensor device.
  • the nano magnetic multilayer film includes, from bottom to top, in order: a substrate 1 and a seed layer (SL) thereon, a bottom first magnetic layer (FM1 (1)), a bottom non-magnetic metal layer (Li 1), a bottom second magnetic layer (FM1 (2)), a middle potential Spacer, top first magnetic layer (FM2 (1)), top non-magnetic metal layer (NM1), top second magnetic layer (FM2 (2)), cover layer (CAP).
  • the bottom second ferromagnetic layer and the top second ferromagnetic layer may be made of a ferromagnetic material with a high spin polarizability, preferably Co, Co-Fe, Co-Fe-B, and a thickness of 0.4 to 2 nm.
  • the magnetic moment is such that it is perpendicular to the film surface.
  • the bottom first magnetic layer and the top second magnetic layer may be selected from a multilayer film structure having perpendicular anisotropy, and [Co/Pt] n , [Co/Pd] n , [Fe/Pt] n, etc. are preferred.
  • the period n is 2 ⁇ 30.
  • the coercive force of the first magnetic layer at the bottom needs to be different from the coercive force of the second magnetic layer at the top, and a multilayer film of different materials or different thicknesses can be used at the bottom and the top to achieve a difference in coercive force.
  • the intermediate barrier layer is generally made of materials such as AI0 X , MgO, Mg ⁇ AI.O ⁇ AIN, Ta 2 0 5 , ZnO, Hf0 2 , Ti0 2 , Alq 3 , LB organic composite film, GaAs, AlGaAs, InAs, and the like.
  • the MgO, AI0 X , MgAlO, AIN and Alq 3 , LB organic composite films have a thickness of generally 0.5 to: L0 nm.
  • the cover layer is a metal material having a large electrical resistance which is not easily oxidized, and is preferably Ta, Ru, Cu, Au, Pt, etc., and has a thickness of 2 to 10 nm for protecting the material from oxidation.
  • the seed layer is a metal material having a large electrical resistance, preferably Ta, Ru, Cr, Pt, and has a thickness of 3 to 10 nm.
  • the substrate is a Si substrate or a Si-SiO 2 substrate and has a thickness of 0.3 to 1 mm.
  • the invention provides a preparation method of the above-mentioned third type magnetic nano-multilayer film, which comprises the following steps:
  • step 2) The product obtained in step 2) is first vacuum annealed under a magnetic field, and the magnetic field is applied perpendicular to the film surface, and the magnetic field should be larger than the coercive force H cl of the bottom magnetic multilayer film.
  • step 4) subjecting the product obtained in step 3) to a second vacuum annealing in a magnetic field, the magnetic field is perpendicular to the film surface but opposite to the direction of the magnetic field applied by the first annealing, and the magnetic field should be smaller than the coercive force of the bottom magnetic multilayer film. However, it is larger than the coercive force H C2 of the top magnetic multilayer film.
  • the beneficial effects of the invention are: using a parallel tunneling resistance of the magnetic tunnel junction to realize the temperature sensor,
  • the utility model has the advantages of small volume, low power consumption, excellent linearity and low cost, and can realize a temperature sensor with high precision, good integration and low power consumption.
  • FIG. 1 is a schematic structural view of a first type of magnetic nano-multilayer film according to the present invention.
  • FIG. 2 is a schematic structural view of a second type of magnetic nano-multilayer film according to the present invention.
  • FIG. 3 is a schematic view of a structure 1 to 6 magnetic multilayer film structure A of the present invention and a magnetic moment thereof;
  • FIG. 4 is a schematic view of a structure 7 to 11 magnetic multilayer film structure B of the present invention and a magnetic moment thereof;
  • FIG. 12 to 16 magnetic multilayer film structure C schematic diagram and its magnetic moment diagram;
  • FIG. 6 is a schematic diagram of a magnetic multilayer film structure D of Example 17 of the present invention and its magnetic moment;
  • FIG. 7 is a diagram showing the resistance of the magnetic multilayer film structure D of the present invention. Temperature measured curve;
  • FIG. 8 is a schematic view of a structure 18 to 23 magnetic multilayer film structure of the present invention and a magnetic moment thereof;
  • FIG. 9 is a schematic view of a structure of a magnetic multilayer film F of the example 24 to 28 of the present invention and a magnetic moment thereof;
  • Fig. 11 is a schematic view of the structure H of the magnetic multilayer film of the example 34 ⁇ 39 of the present invention and its magnetic moment diagram.
  • the invention provides an in-plane magnetic nano-multilayer film for a temperature sensor and a manufacturing method thereof.
  • the multilayer film structure is divided into three categories:
  • the first type of structure comprises, in order from bottom to top, a substrate, a bottom layer and a bottom composite magnetic layer.
  • the second type from bottom to top includes: substrate, bottom layer, bottom pinning layer, intermediate barrier a layer, a top pinning layer and a cover layer, wherein the top pinning layer and the bottom pinning layer are directly pinned or indirectly pinned, and the purpose is to make the magnetic moments of the bottom and top composite magnetic layers anti-parallel To achieve a linear change in tunnel junction resistance with temperature;
  • the third type of magnetic nano-multilayer film structure from bottom to top includes: substrate, bottom layer, bottom magnetic multilayer a bottom magnetic layer, an intermediate barrier layer, a top magnetic layer, a top magnetic multilayer film, and a cover layer, wherein the magnetic multilayer film
  • the manufacturing method for manufacturing the magnetic nano-multilayer film of the sensor provided by the invention comprises the first type of magnetic nano-multilayer film structure adopting a one-time annealing process
  • the fire temperature is greater than the bottom and top antiferromagnetic layer blocking temperatures
  • the second type of magnetic nanomultilayer film structure uses a double annealing process, the annealing temperatures are different, and the magnetic fields are opposite in annealing, thereby realizing the magnetic properties of the bottom and top pinning layers.
  • the moment direction is anti-parallel in the absence of a magnetic field
  • the third type of magnetic nano-multilayer film structure adopts a two-annealing process, and the applied magnetic field is perpendicular to the film surface during the annealing process.
  • a magnetic tunnel junction temperature sensor having a linear output can be fabricated by the three types of magnetic multilayer films.
  • the intermediate barrier layer in the magnetic nano-multilayer film structure for the temperature sensor can be replaced with a non-magnetic metal material, so that it can be used as a temperature sensor based on the giant magnetoresistance effect (GMR effect).
  • GMR effect giant magnetoresistance effect
  • a magnetic nano-multilayer film according to an embodiment of the present invention, which includes, in order from bottom to top, a substrate 1 (abbreviated as SUB), a seed layer 2 (abbreviated as SL), a bottom composite magnetic layer 3, and a middle potential.
  • a barrier layer 4 abbreviated as S P ace
  • CAP cover layer 6
  • the substrate 1 is a Si substrate, a SiC, a glass substrate or a Si-SiO 2 substrate, or an organic flexible substrate or the like, and has a thickness of 0.3 to 1 mm.
  • the seed layer (also referred to as the bottom layer) 2 is a non-magnetic metal layer (including a single layer or a plurality of layers) which is relatively good in conductivity and tightly bonded to the substrate, and the material thereof is preferably Ta, Ru, Cr, Au, Ag, Pt, Pd. , Cu, CuN, etc., may also be a composite layer of a metal and an antiferromagnetic layer, and may have a thickness of 3 to 50 nm.
  • the intermediate barrier layer 104 is insulated with a barrier layer, and the barrier layer is generally made of AlO x , MgO, M gl _ x Zn x O,
  • the thickness is generally 0.5 ⁇ : L0nm o
  • the cover layer 6 is a metal layer (including a single layer or a multilayer composite metal film) which is not easily oxidized and has good conductivity, and the material thereof is preferably Ta, Cu, Al, Ru, Au, Ag, Pt, etc., and has a thickness of 2 ⁇ 40 nm, used to protect the core structure from oxidation and corrosion.
  • the structures of the bottom composite magnetic layer 3 and the top composite magnetic layer 5 may each be a direct pinning structure, an indirect pinning structure or a single layer ferromagnetic layer.
  • Direct pinning means that the antiferromagnetic material layer AFM is directly in contact with the ferromagnetic layer FM (abbreviated as AFM/FM), and “indirect pinning” is inserted between the antiferromagnetic material layer AFM and the ferromagnetic layer FM.
  • a thin layer of non-magnetic metal layer NM (abbreviated as FM/NM/AFM), or a composite layer NM/FM (abbreviated as FM3/NM/FM3 ⁇ 4/AFM).
  • the antiferromagnetic layer AFM includes an alloy material having antiferromagnetic properties, preferably Pt-Mn, lr-Mn, Fe-Mn, and Ni-Mn, and having a thickness of 3 ⁇ 30 nm ; or an antiferromagnetic oxide, preferably CoO, NiO, having a thickness of 5 to 50 nm.
  • the ferromagnetic layer FM uses a ferromagnetic metal having a relatively high spin polarization ratio, preferably Co, Fe, Ni; or an alloy thin film of these ferromagnetic metals, preferably Co-Fe, Co-Fe-B, NiFeCr or Ni-Fe (such as: Ni 81 Fe 19 ) and other ferromagnetic alloys, thickness 1 ⁇ 20 nm ; or dilute magnetic semiconductor materials such as GaMnAs, Ga-Mn-N, or such as Co-Mn-Si, Co-Fe-AU Co- Fe-Si, Co-Mn-Ak Co-Fe-AI-Si, Co-Mn-Ge, Co-Mn-Ga, Co-Mn-Ge-Ga, La 1-x Sr x MnO 3 , La 1-x A semimetal material such as Ca x Mn0 3 (where 0 ⁇ X ⁇ 1) has a thickness of 2.0 to 50 nm.
  • the ultra-thin non-magnetic metal layer NM interposed between the ferromagnetic layer FM and the antiferromagnetic layer AFM is generally Cu, Cr, V, Nb, Mo, Ru, Pd, Ta, W, Pt, Ag, Au or an alloy thereof. Manufactured to a thickness of 0.1 to 5 nm.
  • examples of the magnetic nanomultilayer film structure of the present invention include, but are not limited to:
  • Structure A In the multilayer film of structure A, as the thickness of NM1 increases, FM1(1)/NM3/FM1(2) can be coupled by antiferromagnetic coupling to ferromagnetic coupling, and the coupling strength varies with the intermediate non-magnetic metal layer. The thickness increases and decreases.
  • Structure B SL/FM1(1)/NMVFM1(2)/Space/FM2(1)/NM3 ⁇ 4/FM2(2)/CAP, in the multilayer film of structure B, as the thickness of NM1 increases, FM/ The NM/FM can be coupled by antiferromagnetic coupling to ferromagnetic coupling, and the coupling strength decreases as the thickness of the intermediate non-magnetic metal layer increases.
  • the top artificial antiferromagnetic layer and the bottom antiferromagnetic layer of the structure B achieve an antiparallel state by optimizing the thickness of the intermediate nonmagnetic metal layer to achieve a magnetic moment of the ferromagnetic layer on both sides of the intermediate barrier layer.
  • Structure C SL/AFM]/FMVSpace/ FM2(1)/ NM2/ FM2(2)/AFM3 ⁇ 4/CAP ; (in this formula (1) and (2) indicate that two FM2 layers may be the same material having different thicknesses)
  • Structure D SL/FMVAFMVFM2(1)/NMVFM2(2)/Space/FM3/CAP, in which FM2(1) and FM1(2) form an antiferromagnetic coupling and are pinned by AFM1.
  • step 2) The product obtained in step 2) is vacuum annealed under a magnetic field, and the annealing temperature is higher than the Bloch temperature T B of the antiferromagnetic layer ;
  • step 2 three methods can be used: 1.
  • the top composite magnetic layer is deposited by an indirect pinning structure, that is, an antiferromagnetic layer (AFM)/first ferromagnetic layer (FM1) is sequentially deposited from bottom to top.
  • /Non-magnetic metal layer (NM) / second ferromagnetic layer (FM2) optimize the thickness of the non-magnetic layer, so that FM1 and FM2 form ferromagnetic coupling.
  • the bottom composite magnetic layer adopts an indirect pinning structure, but the thickness of the NM layer is changed to form an antiferromagnetic coupling between FM1 and FM2. 2.
  • the top composite magnetic layer is directly pinned, that is, an antiferromagnetic layer (AFM) is deposited from bottom to top. ) / Ferromagnetic layer (FM).
  • the bottom composite magnetic layer adopts an indirect pinning structure, that is, an antiferromagnetic layer (AFM) / a first ferromagnetic layer (FM1 ) / a nonmagnetic metal layer ( NM ) / a second ferromagnetic layer ( FM 2 ) are sequentially deposited from bottom to top.
  • AFM antiferromagnetic layer
  • FM1 first ferromagnetic layer
  • NM nonmagnetic metal layer
  • FM 2 second ferromagnetic layer
  • the top composite magnetic layer adopts artificial ferromagnetic structure, that is, the first ferromagnetic layer (FM1)/nonmagnetic metal layer (NM) is deposited from bottom to top. /Second ferromagnetic layer (FM2), the thickness of the NM layer is optimized so that FM1 and FM2 form ferromagnetic coupling, and the bottom composite magnetic layer uses an artificial antiferromagnetic layer.
  • FM1 and FM2 form antiferromagnetic coupling.
  • the purpose of the above method is to make the magnetic moment between the upper and lower ferromagnetic layers in an anti-parallel state, and the tunnel junction resistance changes linearly with temperature after the necessary tunnel junction is prepared by micromachining.
  • the deposition rate was 0.1nm / s, the argon gas pressure of 0.07 Pa, and is deposited on the seed layer IrMn thickness of 15nm as a first SL antiferromagnetic Layer AFM1; 3) In the magnetron sputtering apparatus in a vacuum better than 2x10- 6 Pa, the deposition rate of 0.06nm / s, the argon gas pressure of 0.07 Pa, and is deposited on the first antiferromagnetic layer having a thickness of 2.5 nm to AF1 CoFeB First ferromagnetic layer FM1(1);
  • the deposition rate was 0.1nm / s, the argon gas pressure of 0.07 Pa, and the non-magnetic thin 1.5 nm is deposited on the second ferromagnetic layer FM2
  • the metal layer Ru serves as the NM1 layer.
  • the deposition rate was 0.1nm / s, the argon gas pressure of 0.07 Pa, and the deposition of 15 nm IrMn antiferromagnetic layer as a second layer on NM AFM2.
  • the deposition rate was 0.1nm / s, the argon gas pressure of 0.07 Pa, and Ta is deposited on the second antiferromagnetic layer AFM2 (5nm) / Ru (5nm) as a cover layer CAP.
  • step 12) The film obtained in step 11) is placed in a vacuum magnetic field annealing furnace with a vacuum of 2 x 10 - 4 Pa (where the magnetic field is along a certain direction of the film surface), and maintained at a temperature of 265 ° C for 1 hour, and then The temperature is lowered to obtain the desired nanomagnetic multilayer film, and the structure is shown in FIG.
  • the magnetic nano-multilayer film structure can be used as a core detection unit of the TMR temperature sensor.
  • Examples 2 to 6 were prepared in the same manner as in Example 1, except that the material of the magnetic nano-multilayer film of Examples 2 to 6 was of a structure of A:
  • Thickness 3 3 3 4 2.5 Composition MgO ⁇ MgO ⁇ MgZnO
  • Examples 7 to 11 were prepared in the same manner as in Example 1, except that the annealing process was performed by one annealing, and the annealing temperature was 350 degrees.
  • the magnetic nano-multilayer film of Examples 7 to 11 was the structure B: FIG.
  • the composition and thickness of each layer are shown in Table 2 below.
  • Thickness 3 3 3 4 2.5 Composition MgO ⁇ MgO ⁇ MgZnO
  • Examples 12 to 16 were prepared in a similar manner to Example 1, except that the magnetic nano-multilayer film of Examples 12 to 16 was the structure C, g ⁇ : SUB/SL/AFMVFM]/Space/FM2(1)/NM2/ FM2(2)/AFM3 ⁇ 4/CAP, as shown in Fig. 5, the composition and thickness of each layer are shown in Table 3 below.
  • Example 17 was prepared in a similar manner to Example 1, except that the magnetic nano-multilayer film of Example 17 was Structure D:
  • Example 17 The specific structural composition and thickness of Example 17 are shown in Figure 6 and are listed below:
  • FIG. 2 shows a magnetic nano-multilayer film according to an embodiment of the present invention, which includes, in order from bottom to top, a substrate 1 (abbreviated as SU B), a seed layer 2 (abbreviated as SL), a bottom pinning layer 3, and a middle potential. a barrier layer 4 (abbreviated as S P ace), a top pinning layer 5 and a cover layer 6 (abbreviated as CAP), wherein under certain conditions, the direction of the magnetic moment of the top pinning layer 5 and the direction of the magnetic moment of the bottom pinning layer 3 In an anti-parallel state.
  • a substrate 1 abbreviated as SU B
  • SL seed layer 2
  • a bottom pinning layer 3 a middle potential
  • a barrier layer 4 abbreviated as S P ace
  • CAP cover layer 6
  • the substrate 1 is a Si substrate, a SiC, a glass substrate or a Si-SiO 2 substrate, or an organic flexible substrate or the like, and has a thickness of 0.3 to 1 mm.
  • the seed layer (also referred to as the bottom layer) 2 is a non-magnetic metal layer (including a single layer or a plurality of layers) which is relatively good in conductivity and tightly bonded to the substrate, and the material thereof is preferably Ta, Ru, Cr, Au, Ag, Pt, Pd. , Cu, CuN, etc., may also be a composite layer of a metal and an antiferromagnetic layer, and may have a thickness of 3 to 50 nm.
  • the intermediate barrier layer 104 is insulated with a barrier layer.
  • the barrier layer is generally made of AlO x , MgO, M gl _ x Zn x O, AIN, Ta 2 0 5 , ZnO, Hf0 2 , Ti0 2 , Alq 3 , LB organic composite.
  • AlO x , MgO, M gl _ x Zn x O, AIN, Ta 2 0 5 , ZnO, Hf0 2 , Ti0 2 , Alq 3 , LB organic composite For thin film, GaAs, AlGaAs, In As, etc., MgO, AlO x , MgZnO, AIN and Alq 3 , LB organic composite films are preferred, and the thickness is generally 0.5 ⁇ : L0nm o
  • the cover layer 6 is a metal layer (including a single layer or a multilayer composite metal film) which is not easily oxidized and has good conductivity, and the material thereof is preferably Ta, Cu, Al, Ru, Au, Ag, Pt, etc., and has a thickness of 2 ⁇ 40 nm, used to protect the core structure from oxidation and corrosion.
  • the structure of the bottom pinning layer 3 and the top pinning layer 5 may be a direct pinning structure or an indirect pinning Structure.
  • Direct pinning means that the antiferromagnetic material layer AFM is directly in contact with the ferromagnetic layer FM (abbreviated as AFM/FM), and "indirect pinning” is inserted between the antiferromagnetic material layer AFM and the ferromagnetic layer FM.
  • a thin layer of non-magnetic metal layer NM abbreviated as FM/NM/AFM
  • a composite layer NM/FM abbreviated as FM3/NM/FM3 ⁇ 4/AFM.
  • the antiferromagnetic layer AFM includes an alloy material having antiferromagnetic properties, preferably Pt-Mn, Ir-Mn, Fe-Mn, and Ni-Mn, and having a thickness of 3 ⁇ 30 nm; or an antiferromagnetic oxide, preferably CoO, NiO, having a thickness of 5 to 50 nm.
  • the ferromagnetic layer FM uses a ferromagnetic metal having a relatively high spin polarization ratio, preferably Co, Fe, Ni; or an alloy thin film of these ferromagnetic metals, preferably Co-Fe, Co-Fe-B, NiFeCr or Ni-Fe (such as: Ni 81 Fe 19 ) and other ferromagnetic alloys, thickness l ⁇ 20 nm; or dilute magnetic semiconductor materials such as GaMnAs, Ga-Mn-N, or such as Co-Mn-Si, Co-Fe-AI, Co -Fe-Si, Co-Mn-AU Co-Fe-AI-Si Co-Mn-Ge, Co-Mn-Ga, Co-Mn-Ge-Ga, La 1-x Sr x MnO 3 , La 1-x A semimetal material such as Ca x Mn0 3 (where 0 ⁇ X ⁇ 1) has a thickness of 2.0 to 50 nm.
  • the ultra-thin non-magnetic metal layer NM interposed between the ferromagnetic layer FM and the antiferromagnetic layer AFM is generally Cu, Cr, V, Nb, Mo, Ru, Pd, Ta, W, Pt, Ag, Au or an alloy thereof. Manufactured to a thickness of 0.1 to 5 nm.
  • examples of the magnetic nanomultilayer film structure of the present invention include, but are not limited to:
  • Structure E SL/AFMVNMVFMVSpace/ FM3 ⁇ 4/NM3 ⁇ 4/AFM3 ⁇ 4/CAP;
  • Structure F SL/AFMVFMVSpace/FM3 ⁇ 4/ NM3 ⁇ 4/AFM3 ⁇ 4/CAP ;
  • Structure G SL/AFMVFMVSpace/FM3 ⁇ 4/AFM3 ⁇ 4/CAP;
  • the blocking temperature of the top antiferromagnetic layer should be lower than the Bloch temperature of the bottom antiferromagnetic layer, that is, if the top and bottom antiferromagnetic layers are of the same antiferromagnetic material, the bottom antiferromagnetic layer
  • the thickness is generally greater than the thickness of the top antiferromagnetic layer, which will facilitate the later field annealing process, or the top and bottom antiferromagnetic layers use different antiferromagnetic materials, then the bottom antiferromagnetic layer material should have a high blocking temperature.
  • Bloch temperature such as Pt-Mn and Ir-Mn.
  • a method of fabricating the above magnetic nanomultilayer film according to an embodiment of the present invention includes the following steps: 1) selecting the substrate 1, sequentially growing the underlayer 2, the bottom pinning layer 3, the intermediate barrier layer 4, the top pinning layer 5 and the capping layer 6 on the substrate by a conventional method such as magnetron sputtering, laser pulse deposition or the like;
  • step 2) the first step of annealing the product obtained in step 1) in a magnetic field, the first annealing temperature " ⁇ is greater than the blocking temperature T B1 of the antiferromagnetic layer of the bottom pinned layer;
  • the second annealing temperature of 2 is at the Bloch temperature T B1 of the antiferromagnetic layer of the bottom pinned layer and the antiferromagnetic layer of the top pinned layer
  • the blocking temperature of the layer is between T B2 , where the magnetic fields of the two annealings are opposite in direction.
  • the deposition rate was 0.1nm / s, the argon gas pressure of 0.07 Pa, and is deposited on the seed layer IrMn thickness of 15nm as a first SL antiferromagnetic Layer AF1;
  • the deposition rate was 0.1nm / s, the argon gas pressure of 0.07 Pa, and ultrathin nonmagnetic 0.08 nm is deposited on the second ferromagnetic layer FM2
  • the metal layer Ru serves as an NM layer.
  • the deposition rate was 0.1nm / s, the argon gas pressure of 0.07 Pa, and ultrathin nonmagnetic 0.04 nm is deposited on the second ferromagnetic layer FM2
  • the metal layer Ru serves as an NM layer.
  • a magnetron sputtering apparatus in a vacuum better than 2x10- 6 Pa the deposition rate was 0.1nm / s, the argon gas pressure of 0.07 Pa, and the deposition of 6.5 nm IrMn antiferromagnetic layer as a second layer on NM AFM2.
  • the deposition rate was 0.1nm / s, the argon gas pressure of 0.07 Pa, and deposition of Ta (5nm) on the second antiferromagnetic layer AFM2 / Ru (5nm) as a cover layer CAP.
  • step 8) The film obtained in step 8) is placed in a vacuum magnetic field annealing furnace with a vacuum of 2 x 10 - 4 Pa (where the magnetic field is along a certain direction of the film surface), and maintained at a temperature of 265 ° C for 1 hour, then Cool down
  • step 11 The film obtained in step 9) is placed in a vacuum magnetic field annealing furnace with a vacuum of 2 x 10 - 4 Pa (where the direction of the magnetic field is opposite to the direction of the first magnetic field, still in the plane of the film), at a temperature of 200 The temperature was maintained for 15 minutes at ° C, and then the temperature was lowered to obtain the desired nanomagnetic multilayer film, and the structure is shown in FIG.
  • the magnetic nanomultilayer film structure can be used as a core detection unit of a TMR temperature sensor.
  • Examples 19-23 were prepared as in Example 18, except for the composition and thickness of each layer (as shown in Table 4 below).
  • the two annealing temperatures were based on two antiferromagnetic layers in the bottom pinned layer and the top pinned layer. The Bloch temperature is properly determined.
  • Example 19 to 23 of the magnetic nano-multilayer film is a structure E, BP:
  • Thickness 7 7 12 12 7 Composition Ta/Ru Cu Ru Cu Ag
  • Examples 24 to 28 were prepared in the same manner as in Example 18 except that the magnetic nano-multilayer films of Examples 24 to 28 were structures F, BP:
  • table 5 Ingredients S Bu SiO. S Bu SiO. S Bu SiO. S Bu SiO.
  • Composition AIO MgO MgO AIO. MgAIO
  • Examples 29 to 33 were prepared in the same manner as in Example 18 except that the magnetic nano-multilayer films of Examples 29 to 33 were structures G, g ⁇ SUB/SL/AFM]/FM:i/Space/FM3 ⁇ 4/AFM3 ⁇ 4/ CAP, as shown in Figure 10.
  • the composition and thickness of each layer are shown in Table 6 below.
  • FIG. 11 is a magnetic nano-multilayer film according to Embodiment 3 of the present invention, and has the following structure: SL/FM1(1)/NMVFM1(2)/Space/FM2(1)/NM3 ⁇ 4/FM2(2)/CAP, From bottom to top, it includes: substrate 1 (abbreviated as SUB), seed layer (abbreviated as SL), bottom first ferromagnetic layer (FM1(1)), bottom non-magnetic metal layer (NM1), bottom second ferromagnet Layer (FM1(2)), intermediate barrier layer (referred to as 3 ⁇ 4 Space), top first ferromagnetic layer (FM2(1)), top non-magnetic metal layer (country 2), top second ferromagnetic layer (FM2 ( 2)), and a cover layer (abbreviated as CAP), by adjusting the thickness of the non-magnetic metal layer, a ferromagnetic coupling or an antiferromagnetic coupling is formed between the two ferromagnetic metal layer, a ferromagnetic coupling or an antiferromagne
  • the material, the thickness and the growth condition of the two layers of the ferromagnetic layer and the magnetic multilayer film are optimized such that the direction of the magnetic moment is perpendicular to the film surface.
  • the substrate 1 is a Si substrate, a SiC, a glass substrate or a Si-SiO 2 substrate, or an organic flexible substrate or the like, and has a thickness of 0.3 to 1 mm.
  • the seed layer (also referred to as the bottom layer) 2 is a non-magnetic metal layer (including a single layer or a plurality of layers) which is relatively good in conductivity and tightly bonded to the substrate, and the material thereof is preferably Ta, Ru, Cr, Au, Ag, Pt, Pd. , Cu, CuN, etc., may have a thickness of 3 to 50 nm.
  • the intermediate barrier layer 4 is an insulating barrier layer, and the barrier layer is generally made of AlO x , MgO, M gl _ x Zn x O, AIN, Ta 2 0 5 , ZnO, Hf0 2 , Ti0 2 , Alq 3 , LB organic
  • GaAs, AlGaAs, In As, etc., MgO, AlO x , MgZnO, AIN and Alq 3 , LB organic composite films are preferred, and the thickness is generally 0.5 ⁇ : L0nm o
  • the cover layer 6 is a metal layer (including a single layer or a multilayer composite metal film) which is not easily oxidized and has good conductivity, and the material thereof is preferably Ta, Cu, Al, Ru, Au, Ag, Pt, etc., and has a thickness of 2 ⁇ 40 nm, used to protect the core structure from oxidation and corrosion.
  • the structure of the bottom magnetic layer 3 and the top magnetic layer 5 is a single-layer magnetic layer, and the material of the single magnetic layer is preferably Co, Fe, Co-Fe-B, Co-Fe, etc., and the thickness is 0.4 ⁇ 2 nm, ensuring two layers of ferromagnetic The magnetic moment of the layer is perpendicular to the film surface.
  • the material of the bottom non-magnetic metal layer and the top non-magnetic metal layer is preferably a metal material such as Cu, Ru, Ag, etc., and has a thickness of 0 to 1 nm, and different thicknesses can form ferromagnetic coupling and antiferromagnetic relationship between the two ferromagnetic layers. coupling.
  • the bottom magnetic multilayer film and the top magnetic multilayer film may be selected from a multilayer film structure having perpendicular anisotropy.
  • the perpendicular magnetic multilayer film is preferably [Co (0.01 ⁇ 2 nm)/Pt (0.01 ⁇ 2 nm)] n , [Co(0.01 ⁇ 2nm)/Pd(0.01 ⁇ 2nm)] n , [Co(0.01 ⁇ 2nm)/Ni(0.01 ⁇ 2nm)] n , [Fe(0.01 ⁇ 2nm)/Pt(0.1 ⁇ 2nm)] n [CoFe(0.01 ⁇ 2nm)/Pd(0.01 ⁇ 2nm)] n multilayer film, etc., period n is 2 ⁇ 20.
  • the coercive force of the bottom magnetic multilayer film needs to be greater than the coercive force of the top magnetic multilayer film, and a multilayer film of different materials or different thicknesses can be used at the bottom and the top to achieve a difference in coercive force.
  • the invention provides a preparation method of the above magnetic nano-multilayer film, and the method comprises the following steps:
  • step 2) The product obtained in step 2) is first vacuum annealed under a magnetic field, and the magnetic field is applied perpendicular to the film surface, and the magnetic field should be larger than the coercive force H cl of the first magnetic layer at the bottom.
  • step 4) subjecting the product obtained in step 3) to a second vacuum annealing in a magnetic field, the magnetic field being perpendicular to the film surface but opposite to the direction of the magnetic field applied by the first annealing, the magnetic field should be smaller than the coercivity of the first magnetic layer at the bottom, But greater than the coercivity H C2 of the top first magnetic layer.
  • the bottom first magnetic layer and the top first magnetic layer have a difference in coercive force, ferromagnetic coupling and antiferromagnetic coupling can be achieved between the bottom two magnetic layers and the top two magnetic layers, and after two annealings, The magnetic moments of the upper and lower ferromagnetic layers (ie, FM1 and FM2) are arranged in anti-parallel.
  • the deposition rate was 0.1nm / s, the argon gas pressure of 0.07 Pa, and deposition of 1.5 nm at the bottom of the first ferromagnetic layer FM1 (1)
  • the ultra-thin non-magnetic metal layer Ru serves as the NM1 layer.
  • the deposition rate was 0.1nm / s, the argon gas pressure of 0.07 Pa, and the deposition of 1.5 nm over the second ferromagnetic layer FM2 (1)
  • a thin non-magnetic metal layer Ru is used as the NM2 layer.
  • step 6) The film obtained in step 6) is placed in a vacuum magnetic field annealing furnace with a vacuum of 2 x 10 - 4 Pa for the first annealing (where the magnetic field is along the vertical film surface), and the magnetic field is larger than the first magnetic layer at the bottom. Resilience, kept at a temperature of 350 ° C for 1 hour, and then cooled;
  • step 7) The film obtained in step 7) is subjected to a second annealing in a vacuum magnetic field annealing furnace having a vacuum of 2 x 10 - 4 Pa (where the magnetic field is in the direction perpendicular to the film surface and opposite to the direction of the first annealing magnetic field), the second magnetic field is greater than the top of the multilayer film coercive force H C2 of the first magnetic layer at the bottom but less than the coercivity H C2 is, for 1 hour at a temperature of 350 ° C under conditions and then cooled.
  • the magnetic nanomultilayer film structure can be used as a core detection unit of a TMR temperature sensor.
  • Examples 35 to 39 were prepared in a similar manner to the preparation of Example 34, except for the thickness and material of each layer. As shown in Table 7:
  • the magnetic nanomultilayer film structure can be used as a core detection for TMR temperature sensors.
  • the temperature sensor is realized by the anti-parallel resistance of the magnetic tunnel junction, which has the advantages of small volume, low power consumption, excellent linearity and low cost, and can realize a temperature sensor with high precision, good integration and low power consumption.

Abstract

一种用于温度传感器的面内磁性纳米多层膜及其制造方法,该多层膜分为三类:第一类结构由下至上依次包括:基片(1)、底层(2)、底部复合磁性层(3)、中间势垒层(4)、顶部复合磁性层(5)和覆盖层(6),其中顶部复合磁性层(5)和底部复合磁性层(3)采用直接钉扎或间接钉扎结构;第二类由下至上依次包括:基片、底层、底部钉扎层、中间势垒层、顶部钉扎层和覆盖层,顶部钉扎层和底部钉扎层的采用直接钉扎或间接钉扎结构;第三类磁性纳米多层膜结构由下至上依次包括:基片、底层、底部磁性多层膜、底部磁性层、中间势垒层、顶部磁性层、顶部磁性多层膜和覆盖层,磁性多层膜其磁矩垂直于膜面,底部和顶部多层膜矫顽力不一样,通过退火处理使上下两层铁磁层磁矩处于反平行排列。

Description

一种用于温度传感器的纳米磁性多层膜及其制造方法 技术领域
本发明涉及用于基于磁性隧道结 (ΜΌ ) 的温度传感器的纳米磁性多层膜 及其制造方法。 背景技术
本发明的核心元件是磁性隧道结 (ΜΌ)器件, 其核心结构为在两层铁磁性材 料中间夹一层绝缘势垒层的三明治结构。在外磁场或钉扎作用下, 两层铁磁层 磁矩可处于平行或反平行状态,而且两种状态下磁性隧道结的电阻有很大的差 别, 即所谓的隧穿磁电阻 (TMR)效应。 磁性隧道结已经在磁场传感器和磁性随 机存储器中得到应用。另外,在磁性隧道结中还观测到反平行态电阻随温度呈 线性变化的现象, 这种现象可以用来制作温度传感器。
现有的温度传感器有很多种, 包括热偶、 热敏电阻、 铂电阻、 半导体温度 传感器等,温度传感器已经广泛应用于个人生活和工业领域, 是一类重要的传 感器。现有温度传感器有其各自的缺点, 热偶温度传感器由于体积大、 需要冷 端温度补偿电路, 不利于集成; 电阻式温度传感器如铂电阻存在自热问题, 而 且属于贵金属, 成本较高, 应用范围较小; 热敏电阻的线性度很差, 测量精度 不高, 测量范围狭窄。
以磁性隧道结为元件的 TMR温度传感器, 几乎避开了现今其他类型温度 传感器的主要缺点 (如冷点补偿、 自热、 灵敏度低、 体积大等:), 同时集合了如 下优点: (1) 高精度; (2) 高稳定性; (3) 高灵敏度; (4) 低载荷、 低功耗、 低 热容量、 高效节能; (5) 可集成化; (6) 批量生产、 价格低廉; (7) 小型化; (8) 长寿命; (9) 可数字化; (10) 环保无污染, 等等。 因此, 更加适合用于航 空航天飞行器和探测器、卫星、宇航服和太空舱及试验舱的温度检测和监控系 统、 地面船舶、 移动式车辆、 个人便携式通信和温度检测及监控系统、 机器人 系统、工业自动化系统、汽车和民用等多类产品等,具有非常广泛的应用领域。 发明内容
为了克服现有温度传感器的缺点, 本发明提供一种用于基于磁性隧道结温 度传感器的磁性纳米多层膜及其制作方法。该磁性纳米多层膜分为三类:第一 类采用人工铁磁或反铁磁和钉扎结构利用一次退火工艺制备;第二类采用双钉 扎结构利用二次退火工艺制备; 第三类采用垂直磁性层制备。三类结构和不同 制备工艺旨在使隧道结的上下铁磁层处于反平行状态,从而实现隧道结电阻随 温度呈线性变化。
本发明中第一类磁性纳米多层膜是通过如下技术方案实现的:
本发明提供的基于第一类磁性隧道结的温度传感器, 其为在磁性多层膜上 经过常规半导体制备工艺, 形成微米级别的传感器器件。所述纳米磁性多层膜 如图 1所示, 由下往上依次包括:
一基片 1 及其上的种子层 (SL)2, 底部复合磁性层 (BPL)3, 中间势垒层 (Spacer)4, 顶部复合磁性层 (TPL)5, 覆盖层 (CAP)6。
所述底部复合磁性层和顶部复合磁性层可以用间接钉扎、 直接钉扎结构、 人工反铁磁结构或人工铁磁结构, 该间接钉扎结构包括反铁磁性层 (AFM ) I 第一铁磁性层 (FM1 ) /非磁性金属层 (NM ) /第二铁磁性层 (FM2 ) ; 该直接 钉扎结构为反铁磁性层(AFM ) /铁磁性层(FM ); 该人工反铁磁结构和人工铁 磁结构包括第一铁磁性金属层(FM1 ) /非磁性金属层(NM ) /第二铁磁性金属 层 (FM2 ) , 根据中间非磁性金属层的不同厚度实现第一第二铁磁性层的反铁 磁耦合或铁磁耦合。 其中铁磁层选择高自旋极化率的铁磁材料, 优先选择 Co-Fe、 Co-Fe-B, 厚度为 l~10nm, 中间金属插层为非磁性金属层 NM, 一般采 用 Cu、 Cr、 V、 Nb、 Mo、 Ru、 Pd、 Ta、 W、 Pt、 Ag、 Au或其合金制作, 厚度 为 0.05〜5 nm, 反铁磁层选用 lr-Mn、 FeMn或 Pt-Mn, 厚度为 2~30nm。
所述中间势垒层一般采用 AI0X、 MgO、 Mg!_xAlx0 AIN、 Ta205、 ZnO、 Hf02、 Ti02、 Alq3、 LB有机复合薄膜、 GaAs、 AlGaAs、 InAs等材料制作, 优选 MgO、 AI0X、 MgAlO、 AIN和 Alq3、 LB有机复合薄膜, 厚度一般在为 0.5〜: L0nm。
所述的覆盖层为不易氧化的具有较大电阻的金属材料, 优选 Ta、 Ru、 Cu、 Au、 Pt等, 厚度为 2~10nm, 用于保护材料不被氧化。
所述种子层为电阻较大的金属材料, 优选 Ta、 Ru、 Cr、 Pt, 厚度为 3~10nm。 所述基片为 Si衬底或 Si-Si02衬底, 厚度为 0.3~lmm。
本发明提供一种上述第一类磁性纳米多层膜的制备方法, 该方法包括以下 1) 选取基底;
2)在该基底上由下至上依次沉积底层、 底部复合磁性层、 中间势垒层、 顶 部复合磁性层和覆盖层;
3) 将歩骤 2) 所得产物在磁场下真空退火, 退火温度高于反铁磁性层的 布洛赫温度 TB;
在上述方法中歩骤 2中, 可以采用三种方式: 1、 沉积顶部复合磁性层采 用间接钉扎结构,即由下至上依次沉积反铁磁性层 ( AFM )/第一铁磁性层( FM1 ) /非磁性金属层 (NM) /第二铁磁性层 (FM2), 优化非磁性层厚度, 使得 FM1 和 FM2形成铁磁耦合。 底部复合磁性层采用间接钉扎结构, 但是改变 NM层 厚度使得 FM1和 FM2之间形成反铁磁耦合; 2、 顶部复合磁性层采用直接钉 扎, 即由下至上依次沉积反铁磁性层(AFM) /铁磁性层(FM)。底部复合磁性 层采用间接钉扎结构, 即由下至上依次沉积反铁磁性层 (AFM) /第一铁磁性 层 (FM1) /非磁性金属层 (NM) /第二铁磁性层 (FM2), 优化非磁性层厚度, 使得 FM1和 FM2形成反铁磁耦合; 3、 顶部复合磁性层采用人工铁磁结构, 即由下至上依次沉积第一铁磁性层(FM1) /非磁性金属层(NM) /第二铁磁性 层(FM2), 优化 NM层厚度使得 FM1和 FM2形成铁磁耦合, 底部复合磁性层 采用人工反铁磁层,通过改变 NM层的厚度使得 FM1和 FM2形成反铁磁耦合。 上述做法的目的在于使得上下铁磁层之间的磁矩呈反平行态,在经过微加工制 备所需隧道结后, 使得隧道结电阻随温度呈线性变化。 本发明中第二类磁性纳米多层膜是通过如下技术方案实现的:
本发明提供的基于第二类磁性隧道结的温度传感器, 其为在磁性多层膜上 经过常规半导体制备工艺, 形成微米级别的传感器器件。所述纳米磁性多层膜 如图 2所示, 由下往上依次包括:
一片基 1及其上的种子层 (SL)2, 底部钉扎层 (BPL)3, 中间势垒层 (Spacer)4, 顶部钉扎层 (TPL)5, 覆盖层 (CAP)6。
所述底部钉扎层和顶部钉扎层可以用间接钉扎、 直接钉扎结构, 该间接钉 扎结构包括反铁磁性层 (AFM) /非磁性金属层 (NM) /铁磁性层 (FM); 该直 接钉扎结构为反铁磁性层(AFM) /铁磁性层(FM)。其中铁磁层选择高自旋极 化率的铁磁材料, 优先选择 Co-Fe、 Co-Fe-B, 厚度为 l~10nm, 中间金属插层 为超薄非磁性金属层 NM, 一般采用 Cu、 Cr、 V、 Nb、 Mo、 Ru、 Pd、 Ta、 W、 Pt、 Ag、 Au或其合金制作, 厚度为 0.05〜5 nm, 反铁磁层选用 lr-Mn、 FeMn 或 Pt-Mn, 厚度为 2~30nm o 所述中间势垒层一般采用 AlOx、 MgO、 Mgl-xAlxO、 AIN、 Ta205、 ZnO、 Hf02、 Ti02、 Alq3、 LB有机复合薄膜、 GaAs、 AlGaAs、 InAs等材料制作, 优选 MgO、 AlOx、 MgAlO、 AIN禾口 Alq3、 LB有机复合薄膜, 厚度一般在为 0.5〜: L0nm。
所述的覆盖层为不易氧化的具有较大电阻的金属材料, 优选 Ta、 Ru、 Cu、 Au、 Pt等, 厚度为 2~10nm, 用于保护材料不被氧化。
所述种子层为电阻较大的金属材料, 优选 Ta、 Ru、 Cr、 Pt, 厚度为 3~10nm。 所述片基为 Si衬底或 Si-Si02衬底, 厚度为 0.3~lmm。
本发明提供一种上述第二类磁性纳米多层膜的制备方法, 该方法包括以下 歩骤:
1 ) 选取基底;
2 )在该基底上由下至上依次沉积底层、 底部钉扎层、 中间势垒层、 顶部钉 扎层和覆盖层;
3 )将歩骤 2 )所得产物在磁场下第一次真空退火, 该第一退火温度大于所 述底部钉扎层中反铁磁性层的阻塞温度 TB1 (阻塞温度是 FM/AFM交换偏置效 应消失的温度), 其中, 阻塞温度也称为布洛赫温度;
4)将歩骤 3 )所得产物在磁场下第二次真空退火, 其第二退火温度小于所 述底部钉扎层中反铁磁性层的阻塞温度 TB1且大于所述顶部钉扎层中反铁磁性 层的阻塞温度 TB2, 所述第一次退火及第二次退火的磁场方向相反。
在上述方法中, 所述歩骤 2 ) 中生长底部钉扎层的歩骤包括:
由下至上依次沉积反铁磁性层 (AFM ) /非磁性金属层 (NM ) /第二铁磁 性层 (FM ) , 或者沉积反铁磁性层 (AFM ) /铁磁性层 (FM )。 本发明中第三类磁性纳米多层膜是通过如下技术方案实现的:
本发明提供的基于垂直磁性隧道结的温度传感器, 其为在磁性多层膜上经 过常规半导体制备工艺, 形成微米级别的传感器器件。 所述纳米磁性多层膜, 由下往上依次包括: 一基片 1及其上的种子层 (SL),底部第一磁性层 (FM1 (1) ),底部非磁性金 属层(丽 1), 底部第二磁性层(FM1 (2) ), 中间势垒层 (Spacer) , 顶部第一磁性 层(FM2 (1) ), 顶部非磁性金属层 (NM1), 顶部第二磁性层(FM2 (2) ), 覆盖层 (CAP)。
所述底部第二铁磁性层和顶部第二铁磁性层可以用选择高自旋极化率的铁 磁材料, 优先选择 Co、 Co-Fe、 Co-Fe-B, 厚度为 0.4~2nm, 该厚度选择在于使 其磁矩处于垂直于膜面方向。
所述底部第一磁性层和顶部第二磁性层可以选用具有垂直各向异性的多层 膜结构, 优先选择 [Co/Pt]n、 [Co/Pd]n、 [Fe/Pt]n等, 周期 n为 2~30。 底部第一 磁性层的矫顽力需与顶部第二磁性层的矫顽力不同,可以在底部和顶部使用不 同材料或不同厚度的多层膜, 从而实现矫顽力的差别。
所述中间势垒层一般采用 AI0X、 MgO、 Mg^AI.O^ AIN、 Ta205、 ZnO、 Hf02、 Ti02、 Alq3、 LB有机复合薄膜、 GaAs、 AlGaAs、 InAs等材料制作, 优选 MgO、 AI0X、 MgAlO、 AIN和 Alq3、 LB有机复合薄膜, 厚度一般在为 0.5〜: L0nm。
所述的覆盖层为不易氧化的具有较大电阻的金属材料, 优选 Ta、 Ru、 Cu、 Au、 Pt等, 厚度为 2~10nm, 用于保护材料不被氧化。
所述种子层为电阻较大的金属材料, 优选 Ta、 Ru、 Cr、 Pt, 厚度为 3~10nm。 所述基片为 Si衬底或 Si-Si02衬底, 厚度为 0.3~lmm。
本发明提供一种上述第三类磁性纳米多层膜的制备方法, 该方法包括以下 歩骤:
1 ) 选取基底;
2 ) 在该基底上由下至上依次沉积底层、 底部第一磁性层、 底部非磁性金 属层、底部第二磁性层、 中间势垒层、 顶部第一磁性层、 顶部非磁性金属层、 顶部第二磁性层和覆盖层;
3 )将歩骤 2 )所得产物在磁场下第一次真空退火,磁场沿垂直于膜面施加, 磁场应该大于底部磁性多层膜的矫顽力 Hcl
4)将歩骤 3 )所得产物在磁场下第二次真空退火, 磁场沿垂直于膜面但与 第一次退火所加磁场方向相反, 磁场应该小于底部磁性多层膜的矫顽力 Η , 但大于顶部磁性多层膜的矫顽力 HC2
本发明的有益效果是: 利用磁性隧道结的反平行态电阻实现温度传感器, 其优点在于体积小、功耗低、线性度优、成本低, 可以实现精度高、集成度好、 低功耗的温度传感器。 附图说明
图 1为本发明涉及的第一类磁性纳米多层膜的结构示意图;
图 2为本发明涉及的第二类磁性纳米多层膜的结构示意图;
图 3为本发明示例 1~6磁性多层膜结构 A示意图及其磁矩示意图; 图 4为本发明示例 7~11磁性多层膜结构 B示意图及其磁矩示意图; 图 5为本发明示例 12~16磁性多层膜结构 C示意图及其磁矩示意图; 图 6为本发明示例 17磁性多层膜结构 D示意图及其磁矩示意图; 图 7为本发明磁性多层膜结构 D的电阻和温度实测曲线;
图 8为本发明示例 18~23磁性多层膜结构 E示意图及其磁矩示意图; 图 9为本发明示例 24~28磁性多层膜结构 F示意图及其磁矩示意图; 图 10为本发明示例 29~33磁性多层膜结构 G示意图及其磁矩示意图; 图 11为本发明示例 34~39磁性多层膜结构 H示意图及其磁矩示意图。 具体实施方式
本发明提供一种用于温度传感器的面内磁性纳米多层膜及其制造方法,该 多层膜结构分为三类: 第一类结构由下至上依次包括: 基片、 底层、 底部复 合磁性层、 中间势垒层、 顶部复合磁性层和覆盖层, 其中所述顶部复合磁性 层和底部复合磁性层的采用直接钉扎或间接钉扎结构、人工铁磁结构或人工 反铁磁结构, 其目的在于使底部和顶部复合磁性层的磁矩呈反平行排列, 以 实现隧道结电阻随温度呈线性变化; 第二类由下至上依次包括: 基片、底层、 底部钉扎层、 中间势垒层、 顶部钉扎层和覆盖层, 其中所述顶部钉扎层和底 部钉扎层的采用直接钉扎或间接钉扎结构,其目的在于使底部和顶部复合磁 性层的磁矩呈反平行排列, 以实现隧道结电阻随温度呈线性变化; 第三类磁 性纳米多层膜结构由下至上依次包括: 基片、 底层、 底部磁性多层膜、 底部 磁性层、 中间势垒层、 顶部磁性层、 顶部磁性多层膜和覆盖层, 所述磁性多 层膜其磁矩垂直于膜面, 底部和顶部多层膜矫顽力不一样, 通过退火处理使 上下两层铁磁层磁矩处于反平行排列。本发明所提供的制造该传感器磁性纳 米多层膜的制造方法包括第一类磁性纳米多层膜结构采用一次退火工艺,退 火温度大于底部和顶部反铁磁层阻塞温度;第二类磁性纳米多层膜结构采用 两次退火工艺, 两次退火温度不同且退火时磁场方向相反, 从而实现底部和 顶部钉扎层的磁矩方向在无磁场下呈反平行排列;第三类磁性纳米多层膜结 构采用两次退火工艺, 退火过程中所加磁场垂直于膜面。通过该三类磁性多 层膜可以制作具有线性输出的磁性隧道结温度传感器。所述用于温度传感器 的磁性纳米多层膜结构中的中间势垒层均可以换成非磁性金属材料,从而可 以作为基于巨磁电阻效应(GMR效应)的温度传感器。
以下申请人的专利申请所公开的内容均属于本申请专利公开的内容: 申请号: 201110278414. 7, 发明名称: 纳米多层膜、场效应管、传感器、 随机存储器及制备方法; 申请号: 201110290855. 9, 发明名称: 纳米多层膜、 场效应管、 传感器、 随机存储器及制备方法; 申请号: 201 110290063. 1, 发 明名称: 纳米多层膜、 场效应管、 传感器、 随机存储器及制备方法; 实施例一
图 1示出根据本发明一实施例的磁性纳米多层膜, 其由下至上依次包括: 基片 1 (简称为 SUB)、 种子层 2 (简称为 SL)、 底部复合磁性层 3、 中间势垒 层 4 (简称为 SPace)、 顶部复合磁性层 5和覆盖层 6 (简称为 CAP ) , 其中一定 条件下,顶部覆盖层 5的磁矩方向与底部复合磁性层 3的磁矩方向呈反平行态。 以下对各个层进行详细说明。
基片 1为 Si衬底、 SiC、 玻璃衬底或 Si-Si02衬底, 或者有机柔性衬底等, 厚度为 0.3〜l mm。
种子层(也称底层) 2是导电性比较好且和衬底结合较紧密的非磁性金属 层(包括单层或者多层), 其材料优选 Ta、 Ru、 Cr、 Au、 Ag、 Pt、 Pd、 Cu、 CuN 等, 也可以是金属和反铁磁层的复合层, 厚度可为 3〜50 nm。
中间势垒层 104绝缘势垒层, 该势垒层一般采用 AlOx、 MgO、 Mgl_xZnxO,
AIN、 Ta205、 ZnO、 Hf02、 Ti02、 Alq3、 LB有机复合薄膜、 GaAs、 AlGaAs、 In As 等材料制作, 优选 MgO、 AlOx、 MgZnO、 AIN和 Alq3、 LB有机复合薄膜, 厚度 一般在为 0.5〜: L0nm o
覆盖层 6为不易被氧化且导电性比较好的的金属层(包括单层或者多层复 合金属薄膜), 其材料优选 Ta、 Cu、 Al、 Ru、 Au、 Ag、 Pt等, 厚度为 2〜40 nm, 用于保护核心结构不被氧化和腐蚀。 底部复合磁性层 3和顶部复合磁性层 5的结构均可以是直接钉扎结构、间 接钉扎结构或者单层铁磁性层。 "直接钉扎"是指反铁磁材料层 AFM直接和铁 磁性层 FM接触 (简写为 AFM/FM) , "间接钉扎"是指在反铁磁材料层 AFM和 铁磁性层 FM之间插入一层很薄的非磁性金属层 NM (简写为 FM/NM/AFM ) , 或者在二者之间插入复合层 NM/FM (简写为 FM3/NM/FM¾/AFM )。通过在 AFM 和 FM之间加入插入层可以减小二者(即直接交换偏置) 的钉扎效果, 并且通 过调节该插入层的厚度可以有效调控间接交换偏置的钉扎效果。
在上述底部复合磁性层 3和顶部钉扎磁性层 5中, 反铁磁性层 AFM包括 具有反铁磁性的合金材料, 优选 Pt-Mn、 lr-Mn、 Fe-Mn和 Ni-Mn, 厚度为 3〜 30nm ; 或具有反铁磁性的氧化物, 优选 CoO、 NiO, 厚度为 5〜50nm。 铁磁性 层 FM采用自旋极化率比较高的铁磁性金属, 优选 Co、 Fe、 Ni ; 或者这些铁磁 性金属的合金薄膜, 优选 Co-Fe、 Co-Fe-B、 NiFeCr或 Ni-Fe (如: Ni81Fe19 ) 等 铁磁性合金, 厚度为 1〜20 nm ; 或者是诸如 GaMnAs,Ga-Mn-N等稀磁半导体 材料, 或诸如 Co-Mn-Si、 Co-Fe-AU Co-Fe-Si、 Co-Mn-Ak Co-Fe-AI-Si、 Co-Mn-Ge、 Co-Mn-Ga、 Co-Mn-Ge-Ga、 La1-xSrxMn03、 La1-xCaxMn03(其中 0<X<1)等半金属材 料, 厚度为 2.0〜50 nm。 插在铁磁性层 FM和反铁磁层 AFM之间的超薄非磁 性金属层 NM一般采用 Cu、 Cr、 V、 Nb、 Mo、 Ru、 Pd、 Ta、 W、 Pt、 Ag、 Au 或其合金制作, 厚度为 0.1〜5 nm。
因此, 本发明的磁性纳米多层膜结构的例子包括但不限于:
结构 A: 结构 A的多层膜中, 随着 NM1厚度的增加, FM1(1)/NM3/FM1(2)可以由反铁磁 性耦合到铁磁性耦合变化,并且耦合强度随中间非磁性金属层的厚度增加而减 弱。
结构 B: SL/FM1(1)/NMVFM1(2)/Space/FM2(1)/NM¾/FM2(2)/CAP ,在该结构 B 的多层膜中, 随着 NM1厚度的增加, FM/NM/FM可以由反铁磁性耦合到铁磁 性耦合变化, 并且耦合强度随中间非磁性金属层的厚度增加而减弱。所述结构 B 的顶部人工反铁磁层和底部反铁磁层通过优化中间非磁性金属层的厚度实 现中间势垒层两边的铁磁性层磁矩处于反平行态。
结构 C: SL/AFM]/FMVSpace/ FM2(1)/ NM2/ FM2(2)/AFM¾/CAP; (此式中的 (1)和 (2)表示两个 FM2层可以是具有不同的厚度的同一材料)
结构 D: SL/FMVAFMVFM2(1)/NMVFM2(2)/Space/FM3/CAP, 在该结构中, FM2(1)和 FM1(2)形成反铁磁性耦合, 被 AFM1钉扎。
根据本发明一实施例制造上述磁性纳米多层膜的方法,包括以下歩骤:
1 ) 选取基底;
2 )在该基底上由下至上依次沉积底层、 底部复合磁性层、 中间势垒层、 顶 部复合磁性层和覆盖层;
3 ) 将歩骤 2 ) 所得产物在磁场下真空退火, 退火温度高于反铁磁性层的 布洛赫温度 TB ;
在上述方法中歩骤 2中, 可以采用三种方式: 1、 沉积顶部复合磁性层采 用间接钉扎结构,即由下至上依次沉积反铁磁性层 ( AFM )/第一铁磁性层( FM1 ) /非磁性金属层 (NM ) /第二铁磁性层 (FM2 ) , 优化非磁性层厚度, 使得 FM1 和 FM2形成铁磁耦合。 底部复合磁性层采用间接钉扎结构, 但是改变 NM层 厚度使得 FM1和 FM2之间形成反铁磁耦合; 2、 顶部复合磁性层采用直接钉 扎, 即由下至上依次沉积反铁磁性层(AFM ) /铁磁性层(FM )。底部复合磁性 层采用间接钉扎结构, 即由下至上依次沉积反铁磁性层 (AFM ) /第一铁磁性 层 (FM1 ) /非磁性金属层 (NM ) /第二铁磁性层 (FM2 ) , 优化非磁性层厚度, 使得 FM1和 FM2形成反铁磁耦合; 3、 顶部复合磁性层采用人工铁磁结构, 即由下至上依次沉积第一铁磁性层(FM1 ) /非磁性金属层(NM ) /第二铁磁性 层(FM2 ) , 优化 NM层厚度使得 FM1和 FM2形成铁磁耦合, 底部复合磁性层 采用人工反铁磁层,通过改变 NM层的厚度使得 FM1和 FM2形成反铁磁耦合。 上述做法的目的在于使得上下铁磁层之间的磁矩呈反平行态,在经过微加工制 备所需隧道结后, 使得隧道结电阻随温度呈线性变化。
示例 1:
1 )选择一个厚度为 1 mm 的 Si-Si02衬底作为基片 SUB,并在磁控溅射设备 上以真空优于 2x10— 6Pa,沉积速率为 0.1 nm/s,沉积时氩气压为 0.07Pa的条件, 在该基片上沉积 Ta(5nm)/Ru(20nm)/Ta(5nm) 的种子层 SL;
2 ) 在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.1nm/s, 氩气压 为 0.07 Pa的条件, 在种子层 SL上沉积 IrMn 厚度为 15nm的第一反铁磁层 AFM1; 3 )在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.06nm/s, 氩气压 为 0.07 Pa的条件, 在第一反铁磁层 AF1上沉积厚度为 2.5 nm的 CoFeB的第 一铁磁性层 FM1(1);
4) 在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.1nm/s, 氩气压 为 0.07 Pa的条件, 在第二铁磁性层 FM2上沉积 1.5 nm的超薄非磁性金属层 Ru作为 NM1层。
5 )在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.06nm/s, 氩气压 为 0.07 Pa的条件, 在中间层 Space上沉积 3nm的 Co-Fe-B作为第二铁磁性层 FM1(2);
6 )在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.07nm/s, 氩气压 为 0.07 Pa的条件, 在第一铁磁性层 FM1上沉积厚度为 1.0 nm的 MgO作为中 间层 Space;
7 )在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.06nm/s, 氩气压 为 0.07 Pa的条件, 在中间层 Space上沉积 3nm的 Co-Fe-B作为第二铁磁性层 FM2(1);
8 ) 在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.1nm/s, 氩气压 为 0.07 Pa的条件, 在第二铁磁性层 FM2上沉积 1.1 nm的非磁性金属层 Ru作 为國 2层。
9 )在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.06nm/s, 氩气压 为 0.07 Pa的条件, 在中间层 Space上沉积 3nm的 Co-Fe-B作为第二铁磁性层 FM2(2);
10 )在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.1nm/s, 氩气压 为 0.07 Pa的条件, 在 NM层上沉积 15 nm 的 IrMn作为第二反铁磁层 AFM2。
11 )在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.1nm/s, 氩气压 为 0.07 Pa的条件, 在第二反铁磁性层 AFM2上沉积 Ta(5nm)/Ru(5nm) 作为覆 盖层 CAP。
12 )将歩骤 11 )所得薄膜放在真空度为 2x10— 4Pa的真空带磁场的退火炉中 (其中磁场沿膜面某一方向), 在温度为 265°C条件下保持 1小时, 然后降温, 即得到所需的纳米磁性多层膜, 结构如图 2示。
该磁性纳米多层膜结构经过后期微加工工艺, 制备成直径是 D=10 m的实 圆形结构。该磁性纳米多层膜结构可用作 TMR温度传感器的核心检测单元。 示例 2〜6:
按与示例 1类似的方法制备示例 2〜6, 不同之处在于示例 2〜6的磁性纳 多层膜的材料, 其结构为 A即:
3示, 各层的成分和厚度如下表 1所示。
表 1 示例 2 3 4 5 6 成分 S卜 SiC¾ S卜 SiC½ S卜 SiC½ S卜 SiC½ S卜 SiC½
SUB
厚度 1mm 1mm 1mm 1mm 1mm 成分 Ta/Ru/Ta Ru Ru/Cu/Ru Ta Ta/Ru/Ta
SL
厚度 5P.Q/5 5 5P.Q/5 30 5P.Q/5 成分 PtMn IrMn PtMn PtMn IrMn
AFM1
厚度 15 15 15 15 15 成分 CoFe CoFe CoFe CoFe CoFe
FM1(1)
厚度 3 3 2.5 0.5 0.6 成分 Ru Ru Ru Ru Cu
NM1
厚度 0.9 0.9 1 1.1 0.5 成分 CoFe Co CoFeB CoFe Co
FM2(1)
厚度 3 3 3 4 2.5 成分 MgO ΑΙΟχ MgO ΑΙΟχ MgZnO
Space
厚度 2.8 nm 2.0 nm 1.5 nm 1.0 nm 2.0 nm
FM2(1) 成分 CoFe Co CoFeB CoFe CoFeB 厚度 4.0 nm 3 4.0 nm 4.0 nm 3 成分 Ru Ru Ru Ru Cu
NM2
厚度 0.85 1.2 0.8 0.9 0.8 成分 CoFe CoFe CoFe CoFe CoFe
FM2(2)
厚度 2.5 3 3.5 3.5 3 成分 PtMn IrMn IrMn IrMn IrMn
AFM2
厚度 15 15 15 15 15 成分 Ta/Ru Cu Ru Cu Ag
CAP
厚度 ^5 20 10 20 5
(除已标注外, 列表中其余的厚度单位均为纳米)
示例 7〜11:
按与示例 1类似的方法制备示例 7〜11, 不同之处在于, 其退火工艺采用 一次退火, 其退火温度为 350度, 示例 7~11的磁性纳米多层膜为结构 B即: 图 4示, 各层的成分和厚度如下表 2所示。
表 2
Figure imgf000014_0001
厚度 3 3 2.5 0.5 0.6 成分 Ru Ru Ru Ru Cu
NM1
厚度 0.9 0.9 1 1.1 0.5 成分 CoFe Co CoFeB CoFe Co
FM2(1)
厚度 3 3 3 4 2.5 成分 MgO ΑΙΟχ MgO ΑΙΟχ MgZnO
Space
厚度 2.8 nm 2.0 nm 1.5 nm 1.0 nm 2.0 nm 成分 CoFe Co CoFeB CoFe CoFeB
FM2(1)
厚度 4.0 nm 3 4.0 nm 4.0 nm 3 成分 Ru Ru Ru Ru Cu
NM2
厚度 0.85 1.2 0.8 0.9 0.8 成分 CoFe CoFe CoFe CoFe CoFe
FM2(2)
厚度 2.5 3 3.5 3.5 3 成分 Ta/Ru Cu Ru Cu Ag
CAP
厚度 ^5 20 10 20 5
(除已标注外, 列表中其余的厚度单位均为纳米)
示例 12〜丄 6:
按与示例 1类似的方法制备示例 12〜16, 不同之处在于示例 12〜16的磁 性纳米多层膜为结构 C , g卩 : SUB/SL/AFMVFM]/Space/FM2(1)/NM2 /FM2(2)/AFM¾/CAP, 如图 5示, 各层的成分和厚度如下表 3所示。
Figure imgf000015_0001
成分 S卜 SiO. S卜 SiO. S卜 SiO. S卜 SiO.
SUB
lmm lmm lmm lmm 成分 Ta/Ru/Ta Ru Ru/Cu/Ru Ta
SL
5P.0/S 5P.0/S 30 成分 PtMn IrMn PtMn PtMn
AFMl
15 15 15 15 成分 CoFe Co CoFeB CoFe
FM1
10 20 成分 MgO AIO. MgO AIO.
Space
1.8 nm l.Q nm L.5 nm L.O nm 成分 GaMnAs GaMnN CoMnSi Lao.5Cao.5MO;
FM2(1)
4.0 nm .0 nm 50 nm 成分 Ru Ru Ru Ru
NM2
0.85 0.8 0.9 成分 CoFe CoFe CoFe CoFe
FM2(2)
3.i 3.5 成分 PtMn IrMn IrMn IrMn
AFM2
15 15 15 15 成分 Ta/Ru Cu Ru Cu
CAP
^5 20 10 20
(除已标注外, 列表中其余的厚度单位均为纳米 按与示例 1类似的方法制备示例 17, 不同之处在于, 示例 17的磁性纳米 多层膜为结构 D即:
SL/FMVAFMVFM2(l)/NMVFM2(2)/Space/FM3/CAP o
示例 17的具体结构成分和厚度如图 6所示, 列出如下:
Ta(5)/Ru(30)/Ta(5)/Ni81Fe19(5)/lr22Mn78(10)/Co9oFe10(2.5)/Ru(0.85)/Co4oFe4oB2 o(3)/MgO(2.5)/Co4oFe4oB2o(2)/Ta(5)/Ru(5nm) o
将该多层膜结构图形化成微米级的隧道结后,其平行态和反平行态电阻随 温度变化的实测曲线如图 7所示; 从图中可见, 反平行态电阻随温度变化呈线 性关系。 实施例二:
图 2示根据本发明一实施例的磁性纳米多层膜, 其由下至上依次包括: 基 片 1 (简称为 SU B)、 种子层 2 (简称为 SL)、 底部钉扎层 3、 中间势垒层 4 (简 称为 SPace)、 顶部钉扎层 5和覆盖层 6 (简称为 CAP ) , 其中一定条件下, 顶 部钉扎层 5的磁矩方向与底部钉扎层 3的磁矩方向呈反平行态。以下对各个层 进行详细说明。
基片 1为 Si衬底、 SiC、 玻璃衬底或 Si-Si02衬底, 或者有机柔性衬底等, 厚度为 0.3〜l mm。
种子层(也称底层) 2是导电性比较好且和衬底结合较紧密的非磁性金属 层(包括单层或者多层), 其材料优选 Ta、 Ru、 Cr、 Au、 Ag、 Pt、 Pd、 Cu、 CuN 等, 也可以是金属和反铁磁层的复合层, 厚度可为 3〜50 nm。
中间势垒层 104绝缘势垒层, 该势垒层一般采用 AlOx、 MgO、 Mgl_xZnxO, AIN、 Ta205、 ZnO、 Hf02、 Ti02、 Alq3、 LB有机复合薄膜、 GaAs、 AlGaAs、 In As 等材料制作, 优选 MgO、 AlOx、 MgZnO、 AIN和 Alq3、 LB有机复合薄膜, 厚度 一般在为 0.5〜: L0nm o
覆盖层 6为不易被氧化且导电性比较好的的金属层(包括单层或者多层复 合金属薄膜), 其材料优选 Ta、 Cu、 Al、 Ru、 Au、 Ag、 Pt等, 厚度为 2〜40 nm, 用于保护核心结构不被氧化和腐蚀。
底部钉扎层 3和顶部钉扎层 5的结构均可以是直接钉扎结构或者间接钉扎 结构。 "直接钉扎"是指反铁磁材料层 AFM直接和铁磁性层 FM接触 (简写为 AFM/FM) , "间接钉扎"是指在反铁磁材料层 AFM和铁磁性层 FM之间插入一 层很薄的非磁性金属层 NM (简写为 FM/NM/AFM ) , 或者在二者之间插入复合 层 NM/FM (简写为 FM3/NM/FM¾/AFM )。 通过在 AFM和 FM之间加入插入层 可以减小二者(即直接交换偏置)的钉扎效果, 并且通过调节该插入层的厚度 可以有效调控间接交换偏置的钉扎效果。
在上述底部钉扎层 3和顶部钉扎磁性层 5中, 反铁磁性层 AFM包括具有 反铁磁性的合金材料, 优选 Pt-Mn、 Ir-Mn , Fe-Mn和 Ni-Mn, 厚度为 3〜30nm ; 或具有反铁磁性的氧化物, 优选 CoO、 NiO, 厚度为 5〜50nm。 铁磁性层 FM 采用自旋极化率比较高的铁磁性金属, 优选 Co、 Fe、 Ni; 或者这些铁磁性金 属的合金薄膜, 优选 Co-Fe、 Co-Fe-B、 NiFeCr或 Ni-Fe (如: Ni81Fe19 ) 等铁磁 性合金, 厚度为 l〜20 nm ; 或者是诸如 GaMnAs,Ga-Mn-N等稀磁半导体材料, 或诸如 Co-Mn-Si、 Co-Fe-AI、 Co-Fe-Si、 Co-Mn-AU Co-Fe-AI-Si Co-Mn-Ge、 Co-Mn-Ga、 Co-Mn-Ge-Ga、 La1-xSrxMn03、 La1-xCaxMn03(其中 0<X<1)等半金属材 料, 厚度为 2.0〜50 nm。 插在铁磁性层 FM和反铁磁层 AFM之间的超薄非磁 性金属层 NM一般采用 Cu、 Cr、 V、 Nb、 Mo、 Ru、 Pd、 Ta、 W、 Pt、 Ag、 Au 或其合金制作, 厚度为 0.1〜5 nm。
因此, 本发明的磁性纳米多层膜结构的例子包括但不限于:
结构 E : SL/AFMVNMVFMVSpace/ FM¾/NM¾/AFM¾/CAP;
结构 F: SL/AFMVFMVSpace/FM¾/ NM¾/AFM¾/CAP;
结构 G : SL/AFMVFMVSpace/FM¾/AFM¾/CAP ;
所述顶部反铁磁性层的阻塞温度应低于底部反铁磁性层的布洛赫温度, 即 如果顶部和底部反铁磁性层所使用的是同一种反铁磁材料,那么底部反铁磁层 厚度一般要大于顶部反铁磁层的厚度,这将有利于后期带场退火工艺, 或者顶 部和底部反铁磁性层使用不同的反铁磁材料,那么底部反铁磁层材料的阻塞温 度应高于顶部反铁磁层布洛赫温度, 如用 Pt-Mn和 Ir-Mn这两种材料。 这样优 选的目的是为了在后续的退火工艺中实现上下铁磁层形成反平行态,获得反平 行态电阻随温度线性变化的特性。 根据本发明一实施例制造上述磁性纳米多层膜的方法,包括以下歩骤: 1 )选取基底 1, 通过常规方法例如磁控溅射、 激光脉冲沉积等在该基底上 依次生长底层 2、 底部钉扎层 3、 中间势垒层 4、 顶部钉扎层 5和覆盖层 6;
2 )将歩骤 1 )所得产物在磁场下第一次退火, 其第一退火温度 "^大于底部 钉扎层的反铁磁性层的阻塞温度 TB1
3 )将歩骤 2 )所得产物在磁场下第二次退火, 其第二退火温度了2在底部钉 扎层的反铁磁性层的布洛赫温度 TB1和顶部钉扎层的反铁磁性层的阻塞温度 TB2之间, 其中两次退火的磁场方向相反。
下面给出根据上述本发明实施例的制造方法来制造磁性纳米多层膜的示 例。
示例 18:
1 )选择一个厚度为 1 mm 的 Si-Si02衬底作为基片 SUB ,并在磁控溅射设备 上以真空优于 2x10— 6Pa,沉积速率为 0.1 nm/s ,沉积时氩气压为 0.07Pa的条件, 在该基片上沉积 Ta(5nm)/Ru(20nm)/Ta(5nm) 的种子层 SL;
2 ) 在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.1nm/s, 氩气压 为 0.07 Pa的条件,在种子层 SL上沉积 IrMn 厚度为 15nm的第一反铁磁层 AF1 ;
3 ) 在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.1nm/s, 氩气压 为 0.07 Pa的条件, 在第二铁磁性层 FM2上沉积 0.08 nm的超薄非磁性金属层 Ru作为 NM层。
4)在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.06nm/s, 氩气压 为 0.07 Pa的条件, 在第一反铁磁层 AF1上沉积厚度为 2.5 nm的 CoFeB的第 一铁磁性层 FM1;
5 )在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.07nm/s, 氩气压 为 0.07 Pa的条件, 在第一铁磁性层 FM1上沉积厚度为 1.0 nm的 MgO作为中 间层 Space;
6 )在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.06nm/s, 氩气压 为 0.07 Pa的条件, 在中间层 Space上沉积 3nm的 Co-Fe-B作为第二铁磁性层 FM2;
7 ) 在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.1nm/s, 氩气压 为 0.07 Pa的条件, 在第二铁磁性层 FM2上沉积 0.04 nm的超薄非磁性金属层 Ru作为 NM层。 8) 在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.1nm/s, 氩气压 为 0.07 Pa的条件, 在 NM层上沉积 6.5 nm 的 IrMn作为第二反铁磁层 AFM2。
9) 在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.1nm/s, 氩气压 为 0.07 Pa的条件, 在第二反铁磁性层 AFM2上沉积 Ta(5nm)/Ru(5nm) 作为覆 盖层 CAP。
10 ) 将歩骤 8 ) 所得薄膜放在真空度为 2x10— 4Pa的真空带磁场的退火炉中 (其中磁场沿膜面某一方向), 在温度为 265°C条件下保持 1小时, 然后降温;
11 ) 将歩骤 9 ) 所得薄膜放在真空度为 2x10— 4Pa的真空带磁场的退火炉中 (其中磁场方向与第一次磁场的方向相反, 仍在膜面内), 在温度为 200°C条 件下保持 15分钟, 然后降温, 即得到所需的纳米磁性多层膜, 结构如图 7示。
该磁性纳米多层膜结构经过后期微加工工艺, 制备成直径是 D=10 m的实 心圆形结构。该磁性纳米多层膜结构可用作 TMR温度传感器的核心检测单元。
示例 19~23:
按照示例 18的方法制备示例 19~23, 不同之处在于各层的成分和厚度(如 下表 4所示), 两次退火温度根据底部钉扎层和顶部钉扎层中两种反铁磁性层 的布洛赫温度来适当确定。
示例 19〜23的磁性纳米多层膜为结构 E, BP:
SUB/SL/AFMVNMVFMVSpace/FM¾/NM¾/AFM¾/CAP,如图 8示,各层的成分 和厚度如下表 5所示。
表 4
Figure imgf000020_0001
NM1 成分 Cu Ru Ru Ru Cu 厚度 0.5 0.2 1 1.1 0.5
FM1 成分 CoFe Co CoFeB CoFe Co 厚度 3 3 3 4 2.5 成分 MgO ΑΙΟχ MgO ΑΙΟχ MgAIO
Space
厚度 2.8 nm 2.0 nm 1.5 nm 1.0 nm 2.0 nm
FM2 成分 CoFe Co CoFeB CoFe CoFeB 厚度 4.0 nm 3 4.0 nm 4.0 nm 3
NM2 成分 Ru Ru Ru Ru Cu 厚度 0.85 1.2 0.8 0.9 0.8 成分 PtMn IrMn IrMn IrMn IrMn
AFM2
厚度 7 7 12 12 7 成分 Ta/Ru Cu Ru Cu Ag
CAP
厚度 ^5 20 10 20 5
(除已标注外, 列表中其余的厚度单位均为纳米)
示例 24〜28:
按与示例 18类似的方法制备示例 24〜28,不同之处在于示例 24〜28的磁 性纳米多层膜为结构 F, BP:
SU B/SL/AFMVFMVSpace/FM¾/NM /AFM¾/CAP , 如图 9示, 各层的成分和厚 度如下表 5所示。
表 5
Figure imgf000021_0001
成分 S卜 SiO. S卜 SiO. S卜 SiO. S卜 SiO. S卜 SiO.
SUB
lmm lmm lmm lmm lmm 成分 Ta/Ru/Ta Ru Ru/Cu/Ru Ta Ta/Ru/Ta
SL
5P.0/S lOy O/10 30 5/20/5 成分 PtMn IrMn PtMn CoO IrMn
AFM1
15 30 10 15 成分 CoFe Co CoFeB CoFe Co
FM1
成分 AIO. MgO MgO AIO. MgAIO
Space
L.O nm l.Q nm L.5 nm 0.5 nm l.Q nm 成分 CoFe Co CoFeB CoFe CoFeB
FM2
4.0 nm 4.0 nm 4.0 nm 成分 Ru Ta Cr Ru Cu
NM
0.85 0.9 0.8 成分 PtMn IrMn IrMn CoO IrMn
AFM2
12 成分 Ta/Ru Cu Ru Cu Ag
CAP
5/5 40 10 20
(除已标注外列表中其余的厚度单位均为纳米)
示例 29〜33:
按与示例 18类似的方法制备示例 29〜33,不同之处在于示例 29〜33的磁 性纳米多层膜为结构 G, g卩 SUB/SL/AFM]/FM:i/Space/FM¾/AFM¾/ CAP, 如图 10 各层的成分和厚度如下表 6所示。
表 6
Figure imgf000023_0001
(除已标注外, 列表中其余的厚度单位均为纳米 实施例三 图 11 是本发明实施例三的磁性纳米多层膜, 结构如下: SL/FM1(1)/NMVFM1(2)/Space/FM2(1)/NM¾/FM2(2)/CAP ,其由下至上依次包括: 基片 1 (简称为 SUB)、 种子层 (简称为 SL) , 底部第一铁磁性层 (FM1(1) )、 底部非磁性金属层 (NM1 ) , 底部第二铁磁性层(FM1(2) ), 中间势垒层 (简称 ¾ Space ), 顶部第一铁磁性层(FM2(1) ), 顶部非磁性金属层 (國2 ), 顶部第 二铁磁性层 (FM2(2)), 和覆盖层 (简称为 CAP ) , 通过调节非磁性金属层的厚 度,使得两层铁磁性层之间形成铁磁耦合或反铁磁耦合。本发明实施例二通过 优化两层铁磁层和磁性多层膜的材料、厚度和生长条件, 使其磁矩方向垂直于 膜面。 以下对各个层进行详细说明。
基片 1为 Si衬底、 SiC、 玻璃衬底或 Si-Si02衬底, 或者有机柔性衬底等, 厚度为 0.3〜l mm。
种子层(也称底层) 2是导电性比较好且和衬底结合较紧密的非磁性金属 层(包括单层或者多层), 其材料优选 Ta、 Ru、 Cr、 Au、 Ag、 Pt、 Pd、 Cu、 CuN 等, 厚度可为 3〜50 nm。
中间势垒层 4是绝缘势垒层, 该势垒层一般采用 AlOx、 MgO、 Mgl_xZnxO, AIN、 Ta205、 ZnO、 Hf02、 Ti02、 Alq3、 LB有机复合薄膜、 GaAs、 AlGaAs、 In As 等材料制作, 优选 MgO、 AlOx、 MgZnO、 AIN和 Alq3、 LB有机复合薄膜, 厚度 一般在为 0.5〜: L0nm o
覆盖层 6为不易被氧化且导电性比较好的的金属层(包括单层或者多层复 合金属薄膜), 其材料优选 Ta、 Cu、 Al、 Ru、 Au、 Ag、 Pt等, 厚度为 2〜40 nm, 用于保护核心结构不被氧化和腐蚀。
底部磁性层 3和顶部磁性层 5的结构是单层磁性层,单磁性层其材料优选 Co、 Fe、 Co-Fe-B, Co-Fe等材料, 厚度为 0.4~2nm, 保证两层铁磁层的磁矩垂 直于膜面。
底部非磁性金属层和顶部非磁性金属层的材料优选 Cu、 Ru、 Ag等金属材 料,其厚度为 0~lnm,不同的厚度可以实现两层铁磁层之间形成铁磁耦合和反 铁磁耦合。
所述底部磁性多层膜和顶部磁性多层膜可以选用具有垂直各向异性的多层 膜结构, 优先选择垂直磁性多层膜优选 [Co(0.01~2nm)/Pt(0.01~2nm)]n、 [Co(0.01~2nm)/Pd(0.01~2nm)]n 、 [Co(0.01~2nm)/Ni(0.01~2nm)]n 、 [Fe(0.01~2nm)/Pt(0.1~2nm)]n、 [CoFe(0.01~2nm)/Pd(0.01~2nm)]n多层膜等, 周期 n为 2~20。底部磁性多层膜的矫顽力需大于顶部磁性多层膜的矫顽力,可以在 底部和顶部使用不同材料或不同厚度的多层膜, 从而实现矫顽力的差别。
本发明提供一种上述磁性纳米多层膜的制备方法, 该方法包括以下歩骤:
1 ) 选取基底;
2 )在该基底上由下至上依次沉积底层、底部第一铁磁性层、底部非磁性金 属层, 底部第二铁磁性层, 中间势垒层、 顶部第一铁磁性层, 顶部非磁性金属 层, 顶部第二铁磁性层, 和覆盖层;
3 )将歩骤 2 )所得产物在磁场下第一次真空退火,磁场沿垂直于膜面施加, 磁场应该大于底部第一磁性层的矫顽力 Hcl
4)将歩骤 3 )所得产物在磁场下第二次真空退火, 磁场沿垂直于膜面但与 第一次退火所加磁场方向相反, 磁场应该小于底部第一磁性层的矫顽力 Η , 但大于顶部第一磁性层的矫顽力 HC2
由于底部第一磁性层和顶部第一磁性层存在矫顽力的差别, 底部两层磁性 层和顶部两层磁性层之间可以实现铁磁耦合和反铁磁耦合, 经过两次退火后, 可以实现上下铁磁层磁矩 (即 FM1和 FM2)呈反平行排列。
下面给出根据上述本发明实施例的制造方法来制造磁性纳米多层膜的示 例。
示例 34:
1 )选择一个厚度为 1 mm 的 Si-Si02衬底作为基片 SUB,并在磁控溅射设备 上以真空优于 2x10— 6Pa,沉积速率为 0.1 nm/s,沉积时氩气压为 0.07Pa的条件, 在该基片上沉积 Ta(5nm)/Ru(20nm)/Ta(5nm) 的种子层 SL;
2 ) 在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.059nm/s, 氩气 压为 0.073 Pa的条件, 在种子层 SL上沉积厚度为 0.8nm的 Pt, 然后沉积厚度 为 0.2nm的 Co, 如此重复 6个周期, 得到底部第一磁性多层膜 [Co/Pt]6 ;
3 ) 在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.1nm/s, 氩气压 为 0.07 Pa的条件,在底部第一铁磁性层 FM1(1)上沉积 1.5 nm的超薄非磁性金 属层 Ru作为 NM1层。
4)在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.06nm/s, 氩气压 为 0.07 Pa的条件, 在底部磁性多层膜 ML1上沉积厚度为 l.Onm的 Co-Fe-B的 底部磁性层 FM1(2);
5 )在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.07nm/s, 氩气压 为 0.07 Pa的条件, 在底部铁磁性层 FM1上沉积厚度为 1.2 nm的 MgO作为中 间层 Space;
6)在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.06nm/s, 氩气压 为 0.07 Pa的条件,在中间层 Space上沉积 1.5nm的 Co-Fe-B作为顶部第一铁磁 性层 FM2(1);
7) 在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.1nm/s, 氩气压 为 0.07 Pa的条件,在第二铁磁性层 FM2(1)上沉积 1.5 nm的超薄非磁性金属层 Ru作为 NM2层。
8) 在磁控溅射设备上以真空优于 2x10— 6Pa, 沉积速率为 0.059nm/s, 氩气 压为 0.073 Pa的条件, 在顶部磁性多层膜 ML2上沉积厚度为 0.6nm的 Co, 然 后沉积厚度为 0.2nm的 Ni, 如此重复 4个周期, 得到顶部第二磁性层 [Co/Ni]4
9)将歩骤 6 )所得薄膜放在真空度为 2x10— 4Pa的真空带磁场的退火炉中进 行第一次退火 (其中磁场沿垂直膜面方向), 磁场大于底部第一磁性层的矫顽 力 Η , 在温度为 350°C条件下保持 1小时, 然后降温;
10 ) 将歩骤 7 ) 所得薄膜放在真空度为 2x10— 4Pa的真空带磁场的退火炉中 进行第二次退火 (其中磁场沿垂直膜面方向且与第一次退火磁场方向相反), 磁场大于顶部第二磁性多层膜的矫顽力 HC2但小于底部第一磁性层的矫顽力 HC2, 在温度为 350°C条件下保持 1小时, 然后降温。
该磁性纳米多层膜结构经过后期微加工工艺, 制备成直径是 D=10 m的实 心圆形结构。该磁性纳米多层膜结构可用作 TMR温度传感器的核心检测单元。 示例 35~39
按与示例 34类似的制备方法制备示例 35~39, 不同之处在于每层的厚度 和材料。 如表 7所示:
Figure imgf000026_0001
1mm 1mm 1mm 1mm 1mm 度 成
Ta/Ru/Ta Ru Ru/Cu/Ru Ta Ta/Ru/Ta 分
SL
5/20/5 5 SflO/S 30 SflO/S 1 成 Pt(5)/[Co(0.6)/Pt(l Pt(5)/[Co(0.6)/Pt( Pt(1.8)/[Fe(0.2)/ Pt(1.8)/[Co(0.7)/ Pd(1.6)/[Co(0.4)/
FM1(1)
分 .8)]4 Co(0.6) 1.8)]4 Co(0.6) Pt(1.8)]4/Fe(0.2) Pt(1.8)]4/Co(0.7) Pd(1.6)]4/Co(0.4) 成
Ru Ru Ru Ru Cu 分
NMl
0.85 1.2 0.8 0.9 0.8 度 成
CoFe Co CoFeB CoFe Co 分
FM1(2)
3 3 3 4 2.5
1 成
MgO ΑΙΟχ MgO ΑΙΟχ MgAIO 分
Space
2.8 nm 2.0 nm 1.5 nm 1.0 nm 2.0 nm 度 成
CoFe Co CoFeB CoFe CoFeB 分
FM2(1)
4.0 nm 3 4.0 nm 4.0 nm 3
度 成
Ru Ru Ru Ru Cu 分
NM2
0.85 1.2 0.8 0.9 0.8
1 成 [Co90Fe10(0.2)/Pd [Co90Fe10(0.2)/P [Co(0.6)/Pt(1.8)] [Co90Fe10(0.2)/Pd
FM2(2) [Co(0.1)/Ni(0.2)]20
分 (1.2)]3 d(1.2)]3 4 Pt(2) (1.2)]3
Ta/Ru Cu Ru Cu Ag 分
CAP
5/5 20 10 20 5
(除已标注外, 列表中其余的厚度单位均为纳米
该磁性纳米多层膜结构经过后期微加工工艺, 制备成直径是 D=10 m的实 心圆形结构。 该磁性纳米多层膜结构可用作 TMR温度传感器的核心检测。
工业应用性:
利用磁性隧道结的反平行态电阻实现温度传感器, 其优点在于体积小、 功 耗低、线性度优、成本低, 可以实现精度高、集成度好、低功耗的温度传感器。
当然, 本发明还可有其它多种实施例, 在不背离本发明精神及其实质的情 况下, 熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这 些相应的改变和变形都应属于本发明权利要求的保护范围。

Claims

权利要求书
1. 一种用于磁敏传感器的第一类磁性纳米多层膜, 其特征在于, 由下 至上依次包括:
基片;
种子层;
底部复合磁性层;
中间势垒层;
顶部复合磁性层; 和
覆盖层;
其中所述底部复合磁性层和顶部复合磁性层均采用钉扎结构、人工铁磁 或反铁磁结构, 其钉扎结构包括直接钉扎结构和间接钉扎结构, 其目的为实 现底部和顶部复合磁性层磁矩在膜面内呈反平行排列,从而实现隧道结电阻 随温度呈线性变化。
2. 根据权利要求 1 所述的磁性纳米多层膜, 其特征在于, 所述钉扎结 构包括间接钉扎结构, 该间接钉扎结构包括反铁磁性层(AFM) /第一铁磁性层
(FM1 ) /非磁性金属层 (丽) /第二铁磁性层 (FM2 ) 0
3. 根据权利要求 1所述的磁性纳米多层膜, 其特征在于, 人工反铁磁和 铁磁结构包括第一铁磁性金属层(FM1 ) /非磁性金属层(NM ) /第二铁磁性金 属层(FM2 ) ,通过优化非磁性金属层实现 FM1和 FM2铁磁耦合或反铁磁耦合。
4. 根据权利要求 1所述的磁性纳米多层膜, 其特征在于, 当底部和顶 部复合磁性层均采用人工反铁磁或铁磁结构时,需保证其中一层为人工铁磁 结构, 而另一层为铁磁结构。
5. 根据权利要求 1所述的磁性纳米多层膜, 其特征在于, 在磁性纳米 多层膜中的底部和顶部复合磁性层采用钉扎结构时,退火温度需大于底部和 顶部反铁磁层的阻塞温度。
6. 一种用于磁敏传感器的第二类磁性纳米多层膜, 其特征在于, 由下 至上依次包括:
基片;
种子层
底部钉扎层; 中间势垒层;
顶部钉扎层; 和
覆盖层;
其中所述底部钉扎层和顶部钉扎层均采用钉扎机构,其钉扎机构包括直 接钉扎结构和间接钉扎结构,其目的为实现底部和顶部钉扎层磁矩呈反平行 排列, 从而实现隧道结电阻随温度呈线性变化。
7. 根据权利要求 6所述的磁性纳米多层膜, 其特征在于, 所述钉扎结 构包括间接钉扎结构, 该间接钉扎结构包括反铁磁性层(AFM) /第一铁磁性层
(FM1 ) /非磁性金属层(丽) /第二铁磁性层(FM2 ),或者包括反铁磁性层(AFM) /非磁性金属层 (丽) /铁磁性层 (FM)。
8. 根据权利要求 6所述的磁性纳米多层膜,其特征在于,所述钉扎结构 包括直接钉扎结构,所述直接钉扎结构包括反铁磁性层(AFM) /铁磁性层(FM)。
9. 根据权利要求 6所述的磁性纳米多层膜, 其特征在于, 所述顶部和 底部钉扎层均采用钉扎结构时, 所述顶部钉扎层中反铁磁性层的交换偏置强 度低于所述底部钉扎层中反铁磁性层的交换偏置强度。
10.根据权利要求 6所述的磁性纳米多层膜, 其特征在于, 所述顶部和 底部钉扎层均采用钉扎结构时, 所述顶部钉扎层中反铁磁性层的阻塞温度低 于所述底部钉扎层中反铁磁性层的阻塞温度。
11. 根据权利要求 6所述的磁性纳米多层膜, 其特征在于, 所述底部钉 扎层和所述顶部钉扎层的反铁磁性层由不同反铁磁性材料制成, 或由厚度不 同的同一反铁磁性材料制成。
12. 根据权利要求 1或 6所述的磁性纳米多层膜, 其特征在于, 所述反 铁磁性材料包括具有反铁磁性的合金或氧化物。
13. 根据权利要求 1或 6所述的磁性纳米多层膜, 其特征在于, 所述反 铁磁性的合金包括 Pt-Mn、 Ir-Mn、 Co_Cr_Mn、 Fe-Mn和 Ni_Mn,厚度为 3〜30nm; 所述反铁磁性的氧化物包括 Co0、 Ni0, 厚度为 5〜50nm。
14. 根据权利要求 1或 6所述的磁性纳米多层膜, 其特征在于, 所述顶 部复合磁性层和所述底部复合磁性层中的非磁性金属层 (丽) 采用 Cu、 Cr、 V、 Nb、 Mo、 Ru、 Pd、 Ta、 W、 Pt、 Ag、 Au或其合金制成, 厚度为 0. 1〜5 nm。
15. 根据权利要求 1或 6所属的纳米磁性多层膜结构,所述中间势垒层 均可换成非磁性金属层作为居于巨磁电阻效应的温度传感器。
16. 根据权利要求 1、 6或 14所述的磁性纳米多层膜, 其特征在于, 所 述铁磁性层 (FM)、 第一铁磁性层 (FM1 ) 和第二铁磁性层 (FM2 ) 由铁磁性金 属或其合金制成, 厚度为 1〜20 nm; 或由稀磁半导体材料或半金属材料制成, 厚度为 2. 0〜50 nm。
17. 一种用于磁敏传感器的第三类磁性纳米多层膜, 其特征在于, 由下 至上依次包括:
基片;
种子层;
底部第一磁性层;
底部非磁性金属层;
底部第二磁性层;
中间势垒层;
顶部第一磁性层;
顶部非磁性金属层;
顶部第二磁性层; 和
覆盖层;
其中所述底部磁性层和顶部磁性层可以采用单层磁性层,使其磁矩垂直 于膜面, 所述底部和顶部磁性多层膜为垂直磁性多层膜, 底部磁性多层膜的 矫顽力要大于顶部磁性多层膜, 通过优化磁性层厚度及结构, 非磁性层的厚 度, 使顶部和底部两层铁磁层处于铁磁耦合或反铁磁耦合, 从而势垒旁上下 铁磁层的磁矩在处于反平行态, 从而实现隧道结电阻随温度呈线性变化。
18. 根据权利要求 17所述的磁性纳米多层膜, 其特征在于, 单层垂直 磁性层材料优选 Co、 Fe、 Co-Fe, Co_Fe_B等, 厚度在 0. 5_2nm之间; 所述垂 直磁性多层膜材料优选 [Co/Pt] n、 [Co/Pd] n、 [Fe/Pt] n, 该磁性层的磁矩垂直 于膜面。
19. 根据权利要求 1、 6或 17所述的磁性纳米多层膜, 其特征在于, 所 述中间层包括绝缘势垒层。
20. 根据权利要求 19所述的磁性纳米多层膜, 其特征在于, 所述绝缘 势垒层采用 A10x、 Mg0、 MgZnO、 A1N、 T¾05、 Zn0、 Hf02、 Ti02、 Alq3、 LB有机 复合薄膜、 GaAs、 AlGaAs, InAs制成, 厚度一般在为 0. 5〜10nm。
21. 根据权利要求 1、 6或 17所述的磁性纳米多层膜, 其特征在于, 所 述底层包括由非磁性金属层制成的单层或多层薄膜, 厚度为 3〜50 nm。
22. 根据权利要求 1、 6或 17所述的磁性纳米多层膜, 其特征在于, 所 述覆盖层包括由金属材料制成的单层或多层薄膜, 厚度为 2〜40 nm。
23. 第一类磁性纳米多层膜的制造方法, 其特征在于, 该方法包括以下 歩骤:
1 ) 选取基底;
2 )在该基底上由下之上依次沉积底层、 底部复合磁性层、 中间层、 顶部 复合磁性层和覆盖层;
3 ) 将歩骤 2 ) 所得产物在磁场下真空退火, 该退火温度大于所述顶部和 底部复合磁性层中反铁磁性层的布洛赫温度 TB;
24.根据权利要求 23所述的方法, 其特征在于, 所述歩骤 2 ) 中生长底部 磁性层的歩骤包括:
由下之上依次沉积反铁磁性层(AFM) /第一铁磁性层(FM1 ) /非磁性金属 层 (丽) /第二铁磁性层 (FM2 ) , 或者沉积反铁磁性层 (AFM) /非磁性金属层 (丽) /铁磁性层(FM), 人工反铁磁或铁磁结构包括第一铁磁性金属层(FM1 ) /非磁性金属层 (NM ) /第二铁磁性金属层 (FM2)。
25. 第二类磁性纳米多层膜的制造方法, 其特征在于, 该方法包括以下 歩骤:
1 ) 选取基底;
2 )在该基底上由下之上依次沉积底层、 参考磁性层、 中间层、 探测磁性 层和覆盖层;
3 ) 将歩骤 2 ) 所得产物在磁场下第一次真空退火, 该第一退火温度大于 所述参考磁性层中反铁磁性层的阻塞温度 TB1 ;
4) 将歩骤 3 ) 所得产物在磁场下第二次真空退火, 其第二退火温度小于 所述参考磁性层中反铁磁性层的布洛赫温度 TB1且大于所述探测磁性层中反铁 磁性层的阻塞温度 TB2, 所述第一次退火及第二次退火的磁场方向相反。
26. 根据权利要求 25所述的方法, 其特征在于, 所述歩骤 2 ) 中生长参 考磁性层的歩骤包括: 由下之上依次沉积反铁磁性层(AFM) /第一铁磁性层(FM1 ) /非磁性金属 层 (丽) /第二铁磁性层 (FM2 ) , 或者沉积反铁磁性层 (AFM ) /非磁性金属层 (丽) /铁磁性层 (FM) , 或者人工反铁磁结构包括第一铁磁性金属层 (FM1 ) /非磁性金属层 (NM ) /第二铁磁性金属层 (FM2)。
27. 第三类磁性纳米多层膜的制造方法, 其特征在于, 该方法包括以下 歩骤:
1 ) 选取基底;
2 )在该基底上由下至上依次沉积底层、底部第一铁磁性层、底部非磁性金 属层, 底部第二铁磁性层, 中间势垒层、 顶部第一铁磁性层, 顶部非磁性金属 层, 顶部第二铁磁性层, 和覆盖层;
3 )将歩骤 2 )所得产物在磁场下第一次真空退火,磁场沿垂直于膜面施加, 磁场应该大于底部第一磁性层的矫顽力 Hcl
4)将歩骤 3 )所得产物在磁场下第二次真空退火, 磁场沿垂直于膜面但与 第一次退火所加磁场方向相反, 磁场应该小于底部第一磁性层的矫顽力 Η , 但大于顶部第一磁性层的矫顽力 HC2
28.根据权利要求 27所述的方法, 其特征在于, 当外磁场为零时, 所述 底部复合磁性层磁矩和顶部复合磁性层磁矩处于反平行状态,
29. 根据权利要求 23或 25所属的纳米磁性多层膜结构制造方法,其特 征在于, 均可用于基于巨磁电阻效应的磁性纳米多层膜的制备, 从而用于制 备基于巨磁电阻效应的温度传感器。
PCT/CN2014/071166 2013-11-01 2014-01-23 一种用于温度传感器的纳米磁性多层膜及其制造方法 WO2015062174A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480000687.7A CN105122489B (zh) 2013-11-01 2014-01-23 一种用于温度传感器的纳米磁性多层膜及其制造方法
JP2016526771A JP6105817B2 (ja) 2013-11-01 2014-01-23 温度センサのためのナノ磁性多層膜とその製造方法
US15/046,911 US9484527B2 (en) 2013-11-01 2016-02-18 Nanometer magnetic multilayer film for temperature sensor and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310534781.8 2013-11-01
CN201310534781 2013-11-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/046,911 Continuation US9484527B2 (en) 2013-11-01 2016-02-18 Nanometer magnetic multilayer film for temperature sensor and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2015062174A1 true WO2015062174A1 (zh) 2015-05-07

Family

ID=53003223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071166 WO2015062174A1 (zh) 2013-11-01 2014-01-23 一种用于温度传感器的纳米磁性多层膜及其制造方法

Country Status (4)

Country Link
US (1) US9484527B2 (zh)
JP (1) JP6105817B2 (zh)
CN (1) CN105122489B (zh)
WO (1) WO2015062174A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110186584A (zh) * 2019-06-05 2019-08-30 徐靖才 一种利用磁隧道结自由层矫顽场测量温度的方法

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201501339QA (en) * 2014-03-05 2015-10-29 Agency Science Tech & Res Magnetoelectric Device, Method For Forming A Magnetoelectric Device, And Writing Method For A Magnetoelectric Device
US10468590B2 (en) 2015-04-21 2019-11-05 Spin Memory, Inc. High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
US9728712B2 (en) 2015-04-21 2017-08-08 Spin Transfer Technologies, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US9853206B2 (en) 2015-06-16 2017-12-26 Spin Transfer Technologies, Inc. Precessional spin current structure for MRAM
US9773974B2 (en) 2015-07-30 2017-09-26 Spin Transfer Technologies, Inc. Polishing stop layer(s) for processing arrays of semiconductor elements
US10163479B2 (en) 2015-08-14 2018-12-25 Spin Transfer Technologies, Inc. Method and apparatus for bipolar memory write-verify
US9741926B1 (en) 2016-01-28 2017-08-22 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
US10686127B2 (en) * 2016-03-28 2020-06-16 National University Of Singapore Antiferromagnet and heavy metal multilayer magnetic systems for switching magnetization using spin-orbit torque
US9893027B2 (en) * 2016-04-07 2018-02-13 Nxp Usa, Inc. Pre-plated substrate for die attachment
US10991410B2 (en) 2016-09-27 2021-04-27 Spin Memory, Inc. Bi-polar write scheme
US10818331B2 (en) 2016-09-27 2020-10-27 Spin Memory, Inc. Multi-chip module for MRAM devices with levels of dynamic redundancy registers
US10437723B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device
US10546625B2 (en) 2016-09-27 2020-01-28 Spin Memory, Inc. Method of optimizing write voltage based on error buffer occupancy
US10437491B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register
US10460781B2 (en) 2016-09-27 2019-10-29 Spin Memory, Inc. Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank
US10446210B2 (en) 2016-09-27 2019-10-15 Spin Memory, Inc. Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers
US10366774B2 (en) 2016-09-27 2019-07-30 Spin Memory, Inc. Device with dynamic redundancy registers
US10360964B2 (en) 2016-09-27 2019-07-23 Spin Memory, Inc. Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device
US10672976B2 (en) 2017-02-28 2020-06-02 Spin Memory, Inc. Precessional spin current structure with high in-plane magnetization for MRAM
US10665777B2 (en) 2017-02-28 2020-05-26 Spin Memory, Inc. Precessional spin current structure with non-magnetic insertion layer for MRAM
US10032978B1 (en) 2017-06-27 2018-07-24 Spin Transfer Technologies, Inc. MRAM with reduced stray magnetic fields
US10481976B2 (en) 2017-10-24 2019-11-19 Spin Memory, Inc. Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers
US10656994B2 (en) 2017-10-24 2020-05-19 Spin Memory, Inc. Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques
US10489245B2 (en) 2017-10-24 2019-11-26 Spin Memory, Inc. Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them
US10529439B2 (en) 2017-10-24 2020-01-07 Spin Memory, Inc. On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects
CN109755382B (zh) * 2017-11-07 2022-11-08 上海磁宇信息科技有限公司 一种垂直磁电阻元件的顶覆盖层及其制作方法
US20190157549A1 (en) * 2017-11-17 2019-05-23 Everspin Technologies, Inc. Magnetoresistive stack/structure and methods therefor
US10921373B2 (en) * 2017-11-29 2021-02-16 Allegro Microsystems, Llc Magnetic field sensor able to identify an error condition
US10891997B2 (en) 2017-12-28 2021-01-12 Spin Memory, Inc. Memory array with horizontal source line and a virtual source line
US10360962B1 (en) 2017-12-28 2019-07-23 Spin Memory, Inc. Memory array with individually trimmable sense amplifiers
US10395712B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Memory array with horizontal source line and sacrificial bitline per virtual source
US10395711B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Perpendicular source and bit lines for an MRAM array
US10811594B2 (en) 2017-12-28 2020-10-20 Spin Memory, Inc. Process for hard mask development for MRAM pillar formation using photolithography
US10424726B2 (en) 2017-12-28 2019-09-24 Spin Memory, Inc. Process for improving photoresist pillar adhesion during MRAM fabrication
US10236047B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM
US10367139B2 (en) 2017-12-29 2019-07-30 Spin Memory, Inc. Methods of manufacturing magnetic tunnel junction devices
US10199083B1 (en) 2017-12-29 2019-02-05 Spin Transfer Technologies, Inc. Three-terminal MRAM with ac write-assist for low read disturb
US10840436B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture
US10360961B1 (en) 2017-12-29 2019-07-23 Spin Memory, Inc. AC current pre-charge write-assist in orthogonal STT-MRAM
US10784439B2 (en) 2017-12-29 2020-09-22 Spin Memory, Inc. Precessional spin current magnetic tunnel junction devices and methods of manufacture
US10270027B1 (en) 2017-12-29 2019-04-23 Spin Memory, Inc. Self-generating AC current assist in orthogonal STT-MRAM
US10236048B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. AC current write-assist in orthogonal STT-MRAM
US10546624B2 (en) 2017-12-29 2020-01-28 Spin Memory, Inc. Multi-port random access memory
US10840439B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Magnetic tunnel junction (MTJ) fabrication methods and systems
US10424723B2 (en) 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction devices including an optimization layer
US10886330B2 (en) 2017-12-29 2021-01-05 Spin Memory, Inc. Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch
US10141499B1 (en) 2017-12-30 2018-11-27 Spin Transfer Technologies, Inc. Perpendicular magnetic tunnel junction device with offset precessional spin current layer
US10236439B1 (en) 2017-12-30 2019-03-19 Spin Memory, Inc. Switching and stability control for perpendicular magnetic tunnel junction device
US10255962B1 (en) 2017-12-30 2019-04-09 Spin Memory, Inc. Microwave write-assist in orthogonal STT-MRAM
US10339993B1 (en) 2017-12-30 2019-07-02 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching
US10319900B1 (en) 2017-12-30 2019-06-11 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density
US10229724B1 (en) 2017-12-30 2019-03-12 Spin Memory, Inc. Microwave write-assist in series-interconnected orthogonal STT-MRAM devices
US10468588B2 (en) 2018-01-05 2019-11-05 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer
US10438995B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Devices including magnetic tunnel junctions integrated with selectors
US10438996B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Methods of fabricating magnetic tunnel junctions integrated with selectors
WO2019168655A1 (en) * 2018-02-28 2019-09-06 Applied Materials, Inc. Method for measuring a temperature
US10446744B2 (en) 2018-03-08 2019-10-15 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US11107978B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US20190296223A1 (en) 2018-03-23 2019-09-26 Spin Memory, Inc. Methods of Manufacturing Three-Dimensional Arrays with Magnetic Tunnel Junction Devices Including an Annular Free Magnetic Layer and a Planar Reference Magnetic Layer
US11107974B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer
US10784437B2 (en) 2018-03-23 2020-09-22 Spin Memory, Inc. Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US11257613B2 (en) * 2018-03-31 2022-02-22 Intel Corporation Spin orbit torque (SOT) memory devices with enhanced tunnel magnetoresistance ratio and their methods of fabrication
US10944050B2 (en) * 2018-05-08 2021-03-09 Applied Materials, Inc. Magnetic tunnel junction structures and methods of manufacture thereof
US10411185B1 (en) 2018-05-30 2019-09-10 Spin Memory, Inc. Process for creating a high density magnetic tunnel junction array test platform
US11502188B2 (en) 2018-06-14 2022-11-15 Intel Corporation Apparatus and method for boosting signal in magnetoelectric spin orbit logic
US11476412B2 (en) 2018-06-19 2022-10-18 Intel Corporation Perpendicular exchange bias with antiferromagnet for spin orbit coupling based memory
US11374163B2 (en) 2018-06-19 2022-06-28 Intel Corporation Spin orbit memory with multiferroic material
US11444237B2 (en) 2018-06-29 2022-09-13 Intel Corporation Spin orbit torque (SOT) memory devices and methods of fabrication
US10559338B2 (en) 2018-07-06 2020-02-11 Spin Memory, Inc. Multi-bit cell read-out techniques
US10600478B2 (en) 2018-07-06 2020-03-24 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10692569B2 (en) 2018-07-06 2020-06-23 Spin Memory, Inc. Read-out techniques for multi-bit cells
US10593396B2 (en) 2018-07-06 2020-03-17 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10650875B2 (en) 2018-08-21 2020-05-12 Spin Memory, Inc. System for a wide temperature range nonvolatile memory
US10699761B2 (en) 2018-09-18 2020-06-30 Spin Memory, Inc. Word line decoder memory architecture
US10971680B2 (en) 2018-10-01 2021-04-06 Spin Memory, Inc. Multi terminal device stack formation methods
US11621293B2 (en) 2018-10-01 2023-04-04 Integrated Silicon Solution, (Cayman) Inc. Multi terminal device stack systems and methods
US10580827B1 (en) 2018-11-16 2020-03-03 Spin Memory, Inc. Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching
US11107979B2 (en) 2018-12-28 2021-08-31 Spin Memory, Inc. Patterned silicide structures and methods of manufacture
US10692927B1 (en) 2019-02-15 2020-06-23 International Business Machines Corporation Double MTJ stack with synthetic anti-ferromagnetic free layer and AlN bottom barrier layer
US11594673B2 (en) 2019-03-27 2023-02-28 Intel Corporation Two terminal spin orbit memory devices and methods of fabrication
US11557629B2 (en) 2019-03-27 2023-01-17 Intel Corporation Spin orbit memory devices with reduced magnetic moment and methods of fabrication
EP3739640B1 (en) 2019-05-13 2022-08-24 IMEC vzw A layer stack for a magnetic tunnel junction device
JP2021044429A (ja) * 2019-09-12 2021-03-18 キオクシア株式会社 磁気記憶装置
CN111312891A (zh) * 2020-02-24 2020-06-19 西安交通大学 一种柔性gmr磁场传感器及其制备方法
TWI724968B (zh) * 2020-09-07 2021-04-11 光洋應用材料科技股份有限公司 非鐵磁間隔複合層、其製法、人工反鐵磁疊層結構和磁阻式隨機存取記憶體
CN113241253B (zh) * 2021-05-18 2023-02-10 季华实验室 一种铁磁/氧化物多层膜的制备方法及铁磁/氧化物多层膜
CN115602411A (zh) * 2022-09-07 2023-01-13 甘肃省科学院传感技术研究所(Cn) 交换偏置场可连续调控的垂直各向异性人工合成反铁磁耦合多层膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078296A1 (ja) * 2007-12-14 2009-06-25 Alps Electric Co., Ltd. 磁気センサ
CN102270736A (zh) * 2010-06-01 2011-12-07 中国科学院物理研究所 一种用于磁敏传感器的磁性纳米多层膜及其制造方法
CN102487124A (zh) * 2011-09-19 2012-06-06 中国科学院物理研究所 纳米多层膜、场效应管、传感器、随机存储器及制备方法
CN202582773U (zh) * 2012-08-17 2012-12-05 郑州方兴机械电子有限公司 基于自旋重取向的高灵敏度薄膜微型温度传感器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773515B2 (en) * 2002-01-16 2004-08-10 Headway Technologies, Inc. FeTa nano-oxide layer as a capping layer for enhancement of giant magnetoresistance in bottom spin valve structures
JP2006047004A (ja) * 2004-08-02 2006-02-16 Denso Corp 温度センサおよび磁気抵抗素子を用いたセンサ
US7541804B2 (en) * 2005-07-29 2009-06-02 Everspin Technologies, Inc. Magnetic tunnel junction sensor
US7510883B2 (en) * 2005-09-30 2009-03-31 Everspin Technologies, Inc. Magnetic tunnel junction temperature sensors and methods
US7511990B2 (en) * 2005-09-30 2009-03-31 Everspin Technologies, Inc. Magnetic tunnel junction temperature sensors
JP4444241B2 (ja) * 2005-10-19 2010-03-31 株式会社東芝 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置
US7750627B2 (en) * 2006-10-24 2010-07-06 Headway Technologies, Inc. Magnetic film sensor having a magnetic film for generating a magnetostriction and a depressed insulating layer
US7791845B2 (en) * 2006-12-26 2010-09-07 Hitachi Global Storage Technologies Netherlands B.V. Tunneling magnetoresistive sensor having a high iron concentration free layer and an oxides of magnesium barrier layer
US7605437B2 (en) * 2007-04-18 2009-10-20 Everspin Technologies, Inc. Spin-transfer MRAM structure and methods
JP4738395B2 (ja) * 2007-09-25 2011-08-03 株式会社東芝 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ
JP5191717B2 (ja) * 2007-10-05 2013-05-08 株式会社東芝 磁気記録素子とその製造方法及び磁気メモリ
WO2010080542A1 (en) * 2008-12-17 2010-07-15 Yadav Technology, Inc. Spin-transfer torque magnetic random access memory having magnetic tunnel junction with perpendicular magnetic anisotropy
JP2010147213A (ja) * 2008-12-18 2010-07-01 Fujitsu Ltd 磁気抵抗効果素子とその製造方法、磁気再生ヘッド、および情報記憶装置
CN101692374B (zh) * 2009-10-15 2015-01-07 复旦大学 易轴垂直取向的人工合成反铁磁体和赝自旋阀薄膜结构
JPWO2012004883A1 (ja) * 2010-07-09 2013-09-02 国立大学法人東北大学 磁気抵抗効果素子及びそれを用いたランダムアクセスメモリ
JP2012038929A (ja) * 2010-08-06 2012-02-23 Hitachi Ltd 熱電変換素子、それを用いた磁気ヘッド及び磁気記録再生装置
CN102419393B (zh) * 2011-12-30 2013-09-04 江苏多维科技有限公司 一种电流传感器
US8611053B2 (en) * 2012-03-08 2013-12-17 HGST Netherlands B.V. Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with multilayer reference layer including a Heusler alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078296A1 (ja) * 2007-12-14 2009-06-25 Alps Electric Co., Ltd. 磁気センサ
CN102270736A (zh) * 2010-06-01 2011-12-07 中国科学院物理研究所 一种用于磁敏传感器的磁性纳米多层膜及其制造方法
CN102487124A (zh) * 2011-09-19 2012-06-06 中国科学院物理研究所 纳米多层膜、场效应管、传感器、随机存储器及制备方法
CN202582773U (zh) * 2012-08-17 2012-12-05 郑州方兴机械电子有限公司 基于自旋重取向的高灵敏度薄膜微型温度传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110186584A (zh) * 2019-06-05 2019-08-30 徐靖才 一种利用磁隧道结自由层矫顽场测量温度的方法
CN110186584B (zh) * 2019-06-05 2020-11-06 中国计量大学 一种利用磁隧道结自由层矫顽场测量温度的方法

Also Published As

Publication number Publication date
JP6105817B2 (ja) 2017-03-29
JP2016541112A (ja) 2016-12-28
CN105122489B (zh) 2017-10-13
CN105122489A (zh) 2015-12-02
US20160163965A1 (en) 2016-06-09
US9484527B2 (en) 2016-11-01

Similar Documents

Publication Publication Date Title
WO2015062174A1 (zh) 一种用于温度传感器的纳米磁性多层膜及其制造方法
Parkin et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers
US8962348B2 (en) Co/Ni multilayers with improved out-of-plane anisotropy for magnetic device applications
US7349187B2 (en) Tunnel barriers based on alkaline earth oxides
US7443639B2 (en) Magnetic tunnel junctions including crystalline and amorphous tunnel barrier materials
US9373780B2 (en) Co/X and CoX multilayers with improved out-of-plane anisotropy for magnetic device applications
KR101242628B1 (ko) 비정질 또는 미세결정질 MgO 터널 배리어용 강자성 우선 과립 성장 촉진 시드층
CN102270736B (zh) 一种用于磁敏传感器的磁性纳米多层膜及其制造方法
JP6866694B2 (ja) 磁気抵抗効果素子
WO2014163121A1 (ja) 電流垂直型磁気抵抗効果素子
EP2434556B1 (en) Ferromagnetic tunnel junction structure and magnetoresistive element using same
KR102597922B1 (ko) 스핀 전달 토크의 애플리케이션에 의해 스위칭될 수 있는 호이슬러 화합물의 고도로 텍스처링된 박막 형성용 템플레이팅층
US20060012926A1 (en) Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance
KR101897916B1 (ko) 이지-콘 상태의 자성층을 구비한 자기터널 접합 소자
WO2021212780A1 (zh) 磁性隧道结及其制造方法
CN104733606A (zh) 一种具有双层优化层的磁电阻元件
KR20230118765A (ko) 스핀궤도 토크(spin-orbit torque, SOT) 기반 자기터널 접합 및 이의 제조 방법
JP2003092440A (ja) 磁化スイッチ素子
JP4915765B2 (ja) 強磁性半導体交換結合膜
CN104766923A (zh) 一种三层结构记忆层的磁电阻元件
JP2019033106A (ja) 面直通電巨大磁気抵抗素子用積層膜、面直通電巨大磁気抵抗素子、及びその用途
Rata et al. Large tunneling magnetoresistance effect at high voltage drop for Co-based Heusler alloy∕ MgO∕ CoFe junctions
JP2008218640A (ja) トンネル磁気抵抗効果素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016526771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14857942

Country of ref document: EP

Kind code of ref document: A1