CN104733606A - 一种具有双层优化层的磁电阻元件 - Google Patents

一种具有双层优化层的磁电阻元件 Download PDF

Info

Publication number
CN104733606A
CN104733606A CN201510152898.9A CN201510152898A CN104733606A CN 104733606 A CN104733606 A CN 104733606A CN 201510152898 A CN201510152898 A CN 201510152898A CN 104733606 A CN104733606 A CN 104733606A
Authority
CN
China
Prior art keywords
layer
lattice
magnetic
lattice optimization
optimization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510152898.9A
Other languages
English (en)
Other versions
CN104733606B (zh
Inventor
郭一民
陈峻
肖荣福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Ciyu Information Technologies Co Ltd
Original Assignee
Shanghai Ciyu Information Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Ciyu Information Technologies Co Ltd filed Critical Shanghai Ciyu Information Technologies Co Ltd
Priority to CN201510152898.9A priority Critical patent/CN104733606B/zh
Publication of CN104733606A publication Critical patent/CN104733606A/zh
Application granted granted Critical
Publication of CN104733606B publication Critical patent/CN104733606B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

本发明提供了一种具有双层优化层的磁电阻元件,包括依次相邻的参考层、势垒层、记忆层、第一晶格优化层、第二晶格优化层和基础层;所述参考层的磁化方向不变且磁各向异性垂直于层表面;所述记忆层的磁化方向可变且磁各向异性垂直于层表面;所述势垒层位于所述记忆层和所述参考层之间且分别与所述记忆层和所述参考层相邻;所述第一晶格优化层与所述记忆层相邻,所述第一晶格优化层是具有NaCl晶格结构的材料层且其(100)晶面平行于基底平面;所述第二晶格优化层是包含至少一种掺杂元素的NaCl晶格材料层且其(100)晶面平行于基底平面;进一步还包括磁性校正层和自旋极化稳定层,它们依次设置在所述基础层和所述第二晶格优化层之间。

Description

一种具有双层优化层的磁电阻元件
技术领域
本发明涉及存储器件领域,具体而言,涉及一种垂直式磁电阻元件。
背景技术
磁性隧道结(MTJ,Magnetic Tunnel Junction)是由绝缘体或半导体构成的磁性多层膜,它在横跨绝缘层的电压作用下,其隧道电流和隧道电阻依赖于两个铁磁层磁化强度的相对取向,当此相对取向在外磁场的作用下发生改变时,可观测到大的隧穿磁电阻(TMR)。人们利用MTJ的特性做成的磁性随机存取记忆体,即为非挥发性的磁性随机存储器(MRAM,Magnetic Random Access Memory)。MRAM是一种新型固态非易失性记忆体,它有着高速读写、大容量、低功耗的特性。
自旋转移力矩(STT,Spin Transfer Torque)可以用于磁电阻元件的写操作,即自旋极化的电流通过磁电阻元件时,可以通过STT改变记忆层的磁化方向。当记忆层的磁性物体体积变小时,所需的极化电流也会同样变小,这样就可以同时达到小型化与低电流。
垂直式磁性隧道结(PMTJ,Perpendicular Magnetic Tunnel Junction)即磁矩垂直于衬底表面的磁性隧道结,在这种结构中,由于两个磁性层的磁晶各向异性比较强(不考虑形状各向异性),使得其易磁化方向都垂直于层表面。在同样的条件下,器件的尺寸可以做得比平面式磁性隧道结(即易磁化方向在面内的)器件更小,易磁化方向的磁极化误差可以做的很小。因此,如果能够找到具体有更大的磁晶各向异性的材料的话,可以在保持热稳定性的同时,满足使得器件小型化与低电流要求。
现有技术得到高的磁电阻(MR)率的方法为:在非晶态磁性膜与其紧邻的晶态隧道势垒层的界表面形成一层晶化加速膜。当此层膜形成后,晶化开始从隧道势垒层一侧开始形成,这样使得隧道势垒层的表面与磁性表面形成匹配,这样就可以得到高MR率。然而,这种技术和结构在后续的工艺中对非晶态的CoFeB进行退火时,在磁性膜另一侧的基础层的晶格无法与晶化后得到CoFe的晶体形成良好的匹配,使得CoFe晶体无法在垂直方向产生强调的磁各向异性,导致得到的MR率较低,并且热稳定性较差。
中国专利200810215231.9(日本优先权)公开了一种磁阻元件,包含:基底层,其由具有NaCl构造、并且取向于(001)面的氮化物构成;第一磁性层,其被设置在上述基底层上,且具有垂直于膜面的方向的磁各向异性,并且由具有L10构造、并且取向于(001)面的铁磁性合金构成;非磁性层,其被设置在上述第一磁性层上;以及第二磁性层,其被设置在上述非磁性层(16)上,并且包含Pd或Pt、Au元素而具有垂直于膜面的方向的磁各向异性。该技术方案利用L10构型和Pd等元素可以实现较高的垂直磁各向异性和磁电阻率,但磁记录层的阻尼系数高,写入功耗高,制造成本高,难以规模应用,且热稳定性也较差。
中国专利201210097760.X(日本优先权)公开一种磁阻元件和磁存储器,包括:存储层,其具有垂直且可变的磁化;参考层,其具有垂直且恒定的磁化;偏移调整层,其具有沿与所述参考层的磁化相反的方向的垂直且恒定的磁化;第一非磁性层,其在所述存储层与所述参考层之间;以及第二非磁性层,其在所述参考层与所述偏移调整层之间。该技术方案解决了存储层的磁滞曲线的偏移问题,但也未解决MR率低,热稳定性差的问题。
发明内容
为克服上述现有技术中的问题,本发明提供了一种具有双层优化层的磁电阻元件,可以显著减小阻尼系数、增大电流自旋极化率、增强磁晶垂直各向异性,进而减小写电流及得到更高的MR率。
本发明的一种具有双层优化层的磁电阻元件,包括:
参考层,所述参考层的磁化方向不变且磁各向异性垂直于层表面;
记忆层,所述记忆层的磁化方向可变且磁各向异性垂直于层表面;
势垒层,所述势垒层位于所述参考层和所述记忆层之间且分别与所述参考层和所述记忆层相邻(本文中的层与层的“相邻”是指层与层紧贴设置,其间未主动设置其它层);
相邻设置的第一晶格优化层和第二晶格优化层,所述第一晶格优化层与所述记忆层相邻,所述第一晶格优化层是具有NaCl晶格结构的材料层且其(100)晶面平行于基底平面;所述第二晶格优化层是包含至少一种掺杂元素的具有NaCl晶格结构的材料层且其(100)晶面平行于基底平面;以及
非磁性的基础层,所述基础层与所述晶格优化层相邻。
进一步地,所述第一晶格优化层的NaCl晶格材料是金属氧化物、氮化物或氯化物且其中的金属是Mg、Ca、Zn和Cd中的至少一种,优选材料是状态稳定的NaCl晶格结构的金属氧化物,如MgO、MgN、CaO、CaN、MgZnO、CdO、CdN、MgCdO或CdZnO;
所述第二晶格优化层的NaCl晶格材料是金属氧化物、氮化物或氯化物且其中的金属是Mg、Ca、Zn和Cd中的至少一种,所述掺杂元素包括Cr、Al、B、Si、P、S、Cu、Zn、Cd、In、Sn、Ag、Be、Ca、Li、Na、Sc、Ti、Rb、V、Mn、Ta、Hf、W、Nb和N,优选MgXO或MgZnXO,其中X为所述掺杂元素。
进一步地,所述掺杂元素在所述第二晶格优化层中的含量小于或等于5%。
进一步地,所述第一晶格优化层的厚度小于所述第二晶格优化层的厚度。
进一步地,所述势垒层的材料是非磁性金属氧化物或氮化物,优选MgO、ZnO或MgZnO。
进一步地,所述记忆层的材料是Co合金,优选CoFeB或CoB,其中B含量优选在5%-25%之间。
进一步地,所述基础层是单层或多层结构,各层材料可以是非磁性金属,如Ta、Ti、W、Nb、Mo、V、Ru、Cu、Al或Zr;也可以是非磁性氮化物,如AlN、NbN、ZrN、IrN、TaN、TiN或SiN;还可以是非晶态合金,如CoFeB、CoB、FeB、CoNiFeB、CoNiB、NiFeB或NiB,其中B含量优选大于20%。
进一步地,在所述第二晶格优化层和所述基础层之间增设磁性校正层,所述磁性校正层分别与第二晶格优化层和所述基础层相邻;所述磁性校正层的磁化方向不变且磁各向异性垂直于层表面;所述磁性校正层的磁化方向与所述参考层的磁化方向相反,即两者反平行。
进一步地,所述磁性校正层具有与所述参考层相匹配或近似匹配的净磁矩;或者所述磁性校正层的磁各向异性值至少1.2倍于所述参考层的磁各向异性值,或者所述参考层的磁各向异性值至少1.2倍于所述磁性校正层的磁各向异性值。
进一步地,所述磁性校正层是多层结构,其中与所述第二晶格优化层距离最近的子层的材料是CoB、CoFeB或FeB。
进一步地,在所述磁性校正层和所述第二晶格优化层之间增设自旋极化稳定层,所述自旋极化稳定层分别与所述磁性校正层和所述第二晶格优化层相邻;所述自旋极化稳定层的材料是过渡金属元素的非晶氧化物或非晶氮化物。
进一步地,所述自旋极化稳定层的材料具体可以是MnAs、CrAs、CrSb、CrO2、NiMnSb、Co2MnSi、Co2FeSi、Cr2CoGa、CrCa7Se8、CoFeB、TaN、TaO、TiO或TiN。
与现有技术相比,本发明能够显著减小阻尼系数、增大电流自旋极化率、增强磁晶垂直各向异性,进而减小写电流及得到更高的MR率。
附图说明
图1是本发明实施例一的结构示意图;
图2是本发明实施例二的结构示意图,在图1的器件结构中增加了磁性校正层;
图3是本发明实施例三的结构示意图,在图2的器件结构中增加了自旋极化稳定层。
具体实施方式
以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例一
图1是基于本发明的一种MTJ元件的结构示意图,其中包括由下至上依次相邻设置底电极11、参考层12、势垒层13、记忆层14、第一晶格优化层15a、第二晶格优化层15b和基础层18。
参考层12和记忆层14是铁磁性材料,参考层12的磁化方向不变且磁各向异性垂直于层表面,记忆层14的磁化方向可变且磁各向异性垂直于层表面。参考层12的磁垂直各向异性能量充分大于记忆层14的磁垂直各向异性能量,这可以通过对参考层12的材料、结构以及膜厚的调整来实现,从而当自旋极化电流通过MTJ时,只能改变能量壁垒较低的记忆层14的磁化方向,而参考层12的磁化方向不受影响。
记忆层14的材料是Co合金,优选CoFeB或CoB,其中B含量优选在5%-25%之间。本实施例中,记忆层14的材料为CoFeB(厚度约1.2nm),其中B含量为20%,其沉积态为非晶态;参考层12的材料结构为CoFeB(厚度约2nm)/TbCoFe(厚度约10nm)。其中“/”表示多层结构,左边的材料层设置在右边材料层之上。需要注意的是,实施例中所指的关于“上”、“下”的位置描述,是依据附图内元件的显示状态确定的,是为了更好地对附图进行说明,当观察元件的角度或位置发生变化时,各层间的位置描述也可需要根据实际情况做相应变化。
势垒层13的材料是非磁性金属氧化层或氮化物,比如MgO、ZnO或MgZnO。本实施例中,势垒层13为NaCl晶格结构的MgO(厚度约1nm),且其(100)晶面平行于基底。
相邻设置的第一晶格优化层15a和第二晶格优化层15b主要用于增强记忆层14的垂直磁各向异性。先假设第一晶格优化层15a和第二晶格优化层15b是一个单一的层,即采用单层晶格优化层的结构,该层使用NaCl晶格材料,且其(100)晶面平行于基底平面,如单层的NaCl晶格结构的金属氧化物、氮化物或氯化物,其中的金属选自Mg、Ca、Zn和Cd中的至少一种,优选材料是状态稳定的NaCl晶格结构的金属氧化物,如MgO、MgN、CaO、CaN、MgZnO、CdO、CdN、MgCdO或CdZnO等。这些材料具有稳定的NaCl晶格结构,其(100)面平行于基底平面,特别适合用于与非晶态的CoFeB(即记忆层14)间的界面结合,在增强记忆层14的垂直磁各向异性的同时,还可减小自旋泵效应。以MgO为例,在NaCl晶格结构中,Mg与O各自形成一套fcc相子晶格,这两套子晶格在[100]晶向上的相对位移为此方向上晶格常数的一半(它在[110]晶向的晶格常数在2.98至3.02埃米之间,此值略大于bcc相CoFe在[100]晶向的晶格常数,两者之间产生的晶格失配在4%至7%之间)。经过250摄氏度以上温度的退火处理,非晶态CoFeB晶化成bcc相的CoFe晶体颗粒,它的(100)晶面平行于晶格优化层表面,并且有面内膨胀,面外收缩的特性。当MgO厚度足够大时(大于1.2nm),即可在CoFeB记忆层中形成较强的垂直各向异性,从而在CoFeB记忆层中得到垂直方向的磁化矢量。当MgO厚度太大,其电阻值也相应升高,从而导致通过器件的读电流减小。一种方法是,可以在其中掺杂其它元素如Cr,从而形成MgCrO,其具有较小的电阻,可以减小读电流的损耗。但是当在工艺制造中进行250摄氏度以上温度的退火处理时,MgCrO中的Cr掺杂会趋向集中到晶格优化层和记忆层的交界面,导致邻接记忆层的NaCl晶体结构受到破坏,从而减弱了其垂直各向异性。
为此本发明采用第一晶格优化层15a和第二晶格优化层15b两层结构,只在第二晶格优化层15b中掺杂其它元素,所掺杂的元素可以是Cr、Al、B、Si、P、S、Cu、Zn、Cd、In、Sn、Ag、Be、Ca、Li、Na、Sc、Ti、Rb、V、Mn、Ta、Hf、W、Nb和N等,并且在第二晶格优化层15b中的含量小于或等于5%。这样的设置使得,第一晶格优化层15a保证了其与记忆层14的界面的NaCl晶体结构不会因为高温退火而被破坏(掺杂元素无法越过第一晶格优化层15a到达其与记忆层14的界面),确保了记忆层14中形成较强的垂直各向异性;而包含掺杂元素的第二晶格优化层15b有效地降低了整个晶格优化层的电阻,减小了读电流的损耗。基于这样的设置,第一晶格优化层15a的厚度应小于第二晶格优化层15b的厚度。本实施例中第一晶格优化层15a采用MgO(厚度约为0.2nm),第二晶格优化层15b采用MgCrO(厚度约为1.0nm),其中掺杂元素Cr的含量为2%。
从工艺制备上来看,第一晶格优化层15a为一层纯MgO层,第二晶格优化层15b为掺杂了X元素(本实施例中为Cr)的掺杂复合物层MgXO。自然状态下,如果基底面为立方晶格的(100)面,MgO易于在此基底上形成NaCl晶格结构的颗粒晶体。独立状态下的MgXO基于X的种类和含量的选择,既可能形成NaCl晶体结构,也可能形成其它晶体结构。但如果以NaCl晶体结构的MgO作为外延种子层,则第二晶格优化层MgXO也易于形成NaCl晶体结构,这样可以在记忆层中得到较强的垂直各向异性。为了减小MgXO/MgO的电阻和读电流的损耗,可以进行以下的处理:在比较薄的第一晶格优化层15a的MgO的表面,进行Mg的沉积,然后暴露于氧(可为氧分子、自由基氧、离子化氧)和氩气的混合气体中进行氧化,然后通过溅射MgX靶材,在第一晶格优化层上再增加一层掺杂MgXO膜作为第二晶格优化层,根据需要可进行一次可选的自然氧气氛围的氧化处理。另一种形成MgXO的方法:在共溅射Mg和X金属,或直接溅射MgX合金后,使用氧(可为氧分子、自由基氧、离子化氧)与氩气的混合气体进行氧化。其它形成MgXO的方法还包括:在氩气或氩气-氮气混合气体中,对MgXO复合物靶材进行溅射获得。
基础层18是单层或多层结构,各层材料可以是非磁性金属,如Ta、Ti、W、Nb、Mo、V、Ru、Cu、Al或Zr;也可以是非磁性氮化物,如AlN、NbN、ZrN、IrN、TaN、TiN或SiN;还可以是非晶态合金,如CoFeB、CoB、FeB、CoNiFeB、CoNiB、NiFeB或NiB,其中B含量优选大于20%。本实施例中,基础层18的材料结构为Ta(厚度约20nm)/Cu(厚度约20nm)/CoFeB(厚度约0.5nm)。
实施例二
图2是在图1中器件结构基础上进一步改进的一种MTJ元件的结构示意图,其中包括由下至上依次相邻设置底电极11、参考层12、势垒层13、记忆层14、第一晶格优化层15a、第二晶格优化层15b、磁性校正层17和基础层18,即在图1中器件的第二晶格优化层15b和基础层18间增设了磁性校正层17。
磁性校正层17的特征与参考层12类似,均为磁化方向不变且磁各向异性垂直于层表面;磁性校正层17的磁化方向与参考层12的磁化方向相反,即两者反平行。磁性校正层17和参考层12设置需满足:磁性校正层17具有与参考层12相匹配或近似匹配的净磁矩;或者磁性校正层17的磁各向异性值至少1.2倍于参考层12的磁各向异性值,或者参考层12的磁各向异性值至少1.2倍于磁性校正层17的磁各向异性值。并且磁性校正层17也可以是多层结构,其中与第二晶格优化层15b相邻子层的材料是CoB、CoFeB或FeB。
本实施例中,磁性校正层17的材料结构是TbCoFe(厚度约20nm)/CoFeB(厚度约2nm),参考层12的材料结构为CoFeB(厚度约1nm)/[Co/Pd]n。具有相反方向磁化强度矢量的磁性校正层17与参考层12,使得作用在记忆层14上的杂散场几乎为零,进一步提高了MTJ元件的热稳定性。
本实施例中,除磁性校正层17与参考层12以外的其余各层的设置,与实施例一中相应各层的设置相同。
实施例三
图3是在图2中器件结构基础上进一步改进的一种MTJ元件的结构示意图,其中包括由下至上依次相邻设置底电极11、参考层12、势垒层13、记忆层14、第一晶格优化层15a、第二晶格优化层15b、自旋极化稳定层16、磁性校正层17和基础层18,即在图2中器件的磁性校正层17和第二晶格优化层15b间增设了自旋极化稳定层16。
自旋极化稳定层16具有较高的电子极化传导率,在费米能级上的电子自旋极化损耗率接近零,自旋极化稳定层2起着稳定晶格优化层15的作用,其材料可以选择MnAs、CrAs、CrSb、CrO2、CoFeB、TaN、TaO、TiO、TiN等轻原子量过渡金属元素的非晶氧化物或非晶氮化物。本实施例中,自旋极化稳定层16的材料为TiN(厚度约10nm)。
本实施例中,除自旋极化稳定层16以外的其余各层的设置,与实施例二中相应各层的设置相同。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (12)

1.一种磁电阻元件,包括:
参考层,所述参考层的磁化方向不变且磁各向异性垂直于层表面;
记忆层,所述记忆层的磁化方向可变且磁各向异性垂直于层表面;
势垒层,所述势垒层位于所述参考层和所述记忆层之间且分别与所述参考层和所述记忆层相邻;
其特征在于,还包括
相邻设置的第一晶格优化层和第二晶格优化层,所述第一晶格优化层与所述记忆层相邻,所述第一晶格优化层是具有NaCl晶格结构的材料层且其(100)晶面平行于基底平面;所述第二晶格优化层是包含至少一种掺杂元素的具有NaCl晶格结构的材料层且其(100)晶面平行于基底平面;以及非磁性的基础层,所述基础层与所述第二晶格优化层相邻。
2.如权利要求1所述的磁电阻元件,其特征在于,所述第一晶格优化层的NaCl晶格材料是金属氧化物、氮化物或氯化物且其中的金属是Mg、Ca、Zn和Cd中的至少一种;所述第二晶格优化层的NaCl晶格材料是金属氧化物、氮化物或氯化物且其中的金属是Mg、Ca、Zn和Cd中的至少一种,所述掺杂元素包括Cr、Al、B、Si、P、S、Cu、Zn、Cd、In、Sn、Ag、Be、Ca、Li、Na、Sc、Ti、Rb、V、Mn、Ta、Hf、W、Nb和N。
3.如权利要求1所述的磁电阻元件,其特征在于,所述掺杂元素在所述第二晶格优化层中的含量小于或等于5%。
4.如权利要求1所述的磁电阻元件,其特征在于,所述第一晶格优化层的厚度小于所述第二晶格优化层的厚度。
5.如权利要求1所述的磁电阻元件,其特征在于,所述势垒层的材料是非磁性金属氧化物或氮化物。
6.如权利要求1所述的磁电阻元件,其特征在于,所述记忆层的材料是Co合金。
7.如权利要求1所述的磁电阻元件,其特征在于,所述基础层是单层或多层结构,各层材料是非磁性金属、非磁性氮化物或非晶态合金。
8.如权利要求1所述的磁电阻元件,其特征在于,在所述第二晶格优化层和所述基础层之间增设磁性校正层,所述磁性校正层分别与第二晶格优化层和所述基础层相邻;所述磁性校正层的磁化方向不变且磁各向异性垂直于层表面;所述磁性校正层的磁化方向与所述参考层的磁化方向相反。
9.如权利要求8所述的磁电阻元件,其特征在于,所述磁性校正层具有与所述参考层相匹配的净磁矩;或者所述磁性校正层的磁各向异性值至少1.2倍于所述参考层的磁各向异性值,或者所述参考层的磁各向异性值至少1.2倍于所述磁性校正层的磁各向异性值。
10.如权利要求9所述的磁电阻元件,其特征在于,所述磁性校正层是多层结构,其中与所述第二晶格优化层距离最近的子层的材料是CoB、CoFeB或FeB。
11.如权利要求10所述的磁电阻元件,其特征在于,在所述磁性校正层和所述第二晶格优化层之间增设自旋极化稳定层,所述自旋极化稳定层分别与所述磁性校正层和所述第二晶格优化层相邻;所述自旋极化稳定层的材料是过渡金属元素的非晶氧化物或非晶氮化物。
12.如权利要求11所述的磁电阻元件,其特征在于,所述过渡金属元素的非晶氧化物或非晶氮化物包括MnAs、CrAs、CrSb、CrO2、NiMnSb、Co2MnSi、Co2FeSi、Cr2CoGa、CrCa7Se8、CoFeB、TaN、TaO、TiO和TiN。
CN201510152898.9A 2015-04-01 2015-04-01 一种具有双层优化层的磁电阻元件 Active CN104733606B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510152898.9A CN104733606B (zh) 2015-04-01 2015-04-01 一种具有双层优化层的磁电阻元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510152898.9A CN104733606B (zh) 2015-04-01 2015-04-01 一种具有双层优化层的磁电阻元件

Publications (2)

Publication Number Publication Date
CN104733606A true CN104733606A (zh) 2015-06-24
CN104733606B CN104733606B (zh) 2017-12-15

Family

ID=53457294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510152898.9A Active CN104733606B (zh) 2015-04-01 2015-04-01 一种具有双层优化层的磁电阻元件

Country Status (1)

Country Link
CN (1) CN104733606B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106374038A (zh) * 2015-07-24 2017-02-01 爱思开海力士有限公司 电子设备
CN108400236A (zh) * 2018-01-19 2018-08-14 上海磁宇信息科技有限公司 一种使用加强自旋霍尔效应的磁性随机存储器
CN111864055A (zh) * 2016-09-29 2020-10-30 Tdk株式会社 磁阻效应元件
CN115101284A (zh) * 2022-08-25 2022-09-23 季华实验室 一种磁性多层膜及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079469A (zh) * 2006-05-26 2007-11-28 中国科学院物理研究所 一种具有量子效应的MgO双势垒磁性隧道结及其用途
CN101866738A (zh) * 2009-04-17 2010-10-20 中国科学院物理研究所 一种垂直磁各向异性的多层膜
CN102403029A (zh) * 2010-09-14 2012-04-04 索尼公司 存储元件和存储装置
CN102779939A (zh) * 2011-05-10 2012-11-14 索尼公司 存储元件和存储装置
CN102800803A (zh) * 2011-05-23 2012-11-28 索尼公司 存储元件和存储设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079469A (zh) * 2006-05-26 2007-11-28 中国科学院物理研究所 一种具有量子效应的MgO双势垒磁性隧道结及其用途
CN101866738A (zh) * 2009-04-17 2010-10-20 中国科学院物理研究所 一种垂直磁各向异性的多层膜
CN102403029A (zh) * 2010-09-14 2012-04-04 索尼公司 存储元件和存储装置
CN102779939A (zh) * 2011-05-10 2012-11-14 索尼公司 存储元件和存储装置
CN102800803A (zh) * 2011-05-23 2012-11-28 索尼公司 存储元件和存储设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106374038A (zh) * 2015-07-24 2017-02-01 爱思开海力士有限公司 电子设备
CN111864055A (zh) * 2016-09-29 2020-10-30 Tdk株式会社 磁阻效应元件
CN111864055B (zh) * 2016-09-29 2024-01-26 Tdk株式会社 磁阻效应元件
CN108400236A (zh) * 2018-01-19 2018-08-14 上海磁宇信息科技有限公司 一种使用加强自旋霍尔效应的磁性随机存储器
CN115101284A (zh) * 2022-08-25 2022-09-23 季华实验室 一种磁性多层膜及其制备方法和应用

Also Published As

Publication number Publication date
CN104733606B (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
US11672182B2 (en) Seed layer for multilayer magnetic materials
EP2873079B1 (en) Engineered magnetic layer with improved perpendicular anisotropy using glassing agents for spintronic applications
US9287323B2 (en) Perpendicular magnetoresistive elements
EP2820680B1 (en) Engineered magnetic layer with improved perpendicular anisotropy using glassing agents for spintronic applications
US9153306B2 (en) Tunnel magnetoresistive effect element and random access memory using same
US20140203383A1 (en) Perpendicular magnetoresistive memory element
US20130094284A1 (en) Magnetoresistance effect element and magnetic memory
CN107946456B (zh) 一种具有强垂直磁各向异性的磁隧道结
WO2015062174A1 (zh) 一种用于温度传感器的纳米磁性多层膜及其制造方法
CN107534081B (zh) 存储器件
US20220238799A1 (en) Magnetoresistive element having a composite recording structure
KR20150015602A (ko) 메모리 소자
US10672977B2 (en) Perpendicular magnetoresistive elements
KR101636492B1 (ko) 메모리 소자
CN104733606B (zh) 一种具有双层优化层的磁电阻元件
CN104868052B (zh) 一种可调的垂直式磁电阻元件
CN204516804U (zh) 一种具有单层优化层的磁电阻元件
CN204481054U (zh) 一种微型化垂直式各向异性磁电阻元件
US11444239B1 (en) Magnetoresistive element having an adjacent-bias layer and a toggle writing scheme
US20160260890A1 (en) Novel perpendicular magnetoresistive elements
CN104766923B (zh) 一种三层结构记忆层的磁电阻元件
CN204481053U (zh) 一种垂直式磁电阻元件
US20200220071A1 (en) Perpendicular magnetoresistive elements
CN204481057U (zh) 一种具有单层辅助层的磁电阻元件
CN111816762A (zh) 一种磁性随机存储器磁性存储单元及其形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant