CN106029711B - 制造硬度、韧性和可加工性改进的聚烯烃产物 - Google Patents

制造硬度、韧性和可加工性改进的聚烯烃产物 Download PDF

Info

Publication number
CN106029711B
CN106029711B CN201580008297.9A CN201580008297A CN106029711B CN 106029711 B CN106029711 B CN 106029711B CN 201580008297 A CN201580008297 A CN 201580008297A CN 106029711 B CN106029711 B CN 106029711B
Authority
CN
China
Prior art keywords
polymer
catalyst
alkyl
group
race
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580008297.9A
Other languages
English (en)
Other versions
CN106029711A (zh
Inventor
吕清泰
F·C·里克斯
T·M·博勒
G·R·吉斯布雷西特
M·G·古德
高珊爵
李东明
R·E·比凯诺
D·P·小齐尔克尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Univation Technologies LLC
Original Assignee
Univation Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univation Technologies LLC filed Critical Univation Technologies LLC
Publication of CN106029711A publication Critical patent/CN106029711A/zh
Application granted granted Critical
Publication of CN106029711B publication Critical patent/CN106029711B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/34Polymerisation in gaseous state
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • C08F210/18Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/643Component covered by group C08F4/64 with a metal or compound covered by group C08F4/44 other than an organo-aluminium compound
    • C08F4/6432Component of C08F4/64 containing at least two different metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65904Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with another component of C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/72Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
    • C08F4/74Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals
    • C08F4/76Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals selected from titanium, zirconium, hafnium, vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/08Butenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/01Additive used together with the catalyst, excluding compounds containing Al or B
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/02Anti-static agent incorporated into the catalyst
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/01Cp or analog bridged to a non-Cp X neutral donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/08Heteroatom bridge, i.e. Cp or analog where the bridging atom linking the two Cps or analogs is a heteroatom different from Si
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/12Long bridge, i.e. Cp or analog where the bridging unit linking the two Cps or analogs is composed of at least two atoms which are not part of a cycle and which are not an ethylene bridge
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/01High molecular weight, e.g. >800,000 Da.
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/02Low molecular weight, e.g. <100,000 Da.
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/03Narrow molecular weight distribution, i.e. Mw/Mn < 3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/08Low density, i.e. < 0.91 g/cm3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/09Long chain branches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/10Short chain branches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/11Melt tension or melt strength
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/13Environmental stress cracking resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/18Bulk density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerization Catalysts (AREA)

Abstract

本发明描述聚合物以及制造与使用其的系统和方法。聚合物包括乙烯和至少一种具有4到20个碳原子的α烯烃。所述聚合物是通过微调催化剂系统形成,所述催化剂系统包括包含双(正丙基环戊二烯基)铪(R1)(R2)的负载型催化剂和包含内消旋‑O(SiMe2Ind)2Zr2(R1)(R2)的微调催化剂,其中R1和R2各自独立地是甲基、氯、氟或烃基。

Description

制造硬度、韧性和可加工性改进的聚烯烃产物
相关申请
本申请要求具有以下序列号的美国临时专利申请的益处:2014年2月11日提交的Ching-Tai Lue等人的第61/938,466号(2014U002.PRV);2014年2月11日提交的Ching-TaiLue等人的第61/938,472号(2014U003.PRV);2014年4月18日提交的Francis C.Rix等人的第61/981,291号(2014U010.PRV);2014年4月28日提交的Francis C.Rix等人的第61/985,151号(2014U012.PRV);2014年8月1日提交的Sun-Chueh Kao等人的第62/032,383号(2014U018.PRV);2014年12月5日提交的Francis C.Rix等人的第62/087,905号(2014U035.PRV);2014年12月5日提交的Daniel P.Zilker,Jr.等人的第62/088,196号(2014U036.PRV);2014年12月5日提交的Ching-Tai Lue等人的第62/087,911号(2014U037.PRV)以及2014年12月5日提交的Francis C.Rix等人的第62/087,914号(2014U038.PRV),其公开内容以全文引用的方式并入。
背景技术
乙烯α-烯烃(聚乙烯)共聚物通常在低压反应器中利用例如溶液、浆液或气相聚合工艺来产生。聚合在存在催化剂体系的情况下进行,所述催化剂体系如采用例如齐格勒-纳塔催化剂(Ziegler-Natta catalyst)、基于铬的催化剂、茂金属催化剂或其组合的那些系统。
含有单一位点的多种催化剂组合物(例如茂金属催化剂)已经用于制备聚乙烯共聚物,并且以良好聚合速率产生相对均匀的共聚物。与传统的齐格勒-纳塔催化剂组合物相比,单一位点催化剂组合物(如茂金属催化剂)是其中每一个催化剂分子含有一个或仅几个聚合位点的催化性化合物。单一位点催化剂常常产生具有窄分子量分布的聚乙烯共聚物。尽管存在可以产生较宽分子量分布的单一位点催化剂,但这些催化剂常常随着反应温度增加(例如为了增加生产速率)而展示分子量分布变窄。此外,单一位点催化剂将常常以相对均一的速率在聚乙烯共聚物的分子当中并入共聚单体。分子量分布(MWD)和共聚单体并入量可以用于确定组成分布SCBD。
对于乙烯α-烯烃共聚物来说,聚合物链上的短链分支(short chain branching;SCB)典型地是通过在聚合期间并入共聚单体来产生。短链分支分布(Short chain branchdistribution;SCBD)是指包含聚乙烯聚合物的分子内或不同分子之间的短链分支分布。当SCB的数量在聚乙烯分子之间变化时,称树脂具有“宽”SCBD。当SCB的数量在不同链长度的聚乙烯分子之间类似时,称SCBD是“窄的”。
已知SCBD影响共聚物的特性,例如硬度、韧性、可萃取的含量、抗环境应力开裂性和热密封,以及其他特性。聚烯烃的SCBD容易通过所属领域中已知的方法测量,例如升温洗提分级分离(Temperature Raising Elution Fractionation;TREF)或结晶分析分级分离(Crystallization Analysis Fractionation;CRYSTAF)。
所属领域中通常知道,聚烯烃的MWD和SCBD基本上由所用催化剂的类型决定并且对于既定的催化剂体系来说往往是不变的。齐格勒-纳塔催化剂(Ziegler-Nattacatalysts)和铬基催化剂产生具有宽SCBD的聚合物,而茂金属催化剂通常产生具有窄SCBD的聚合物。行业中已长时间注意到,不同产品属性之间存在折衷范式;最明显地是在硬度、韧性与可加工性(S/T/P)之间。自从二十世纪九十年代引入金属茂以来,有些这类范式就分子结构的谨慎操控和产品组成来说已明显宽松。
共聚单体优先并入高分子量链中的具有宽正交组成分布(broad orthogonalcomposition distribution;BOCD)的聚合物能够产生改进的物理特性,尤其例如硬度、韧性、可加工性和抗环境应力开裂性(ESCR)。由于具有宽正交组成分布的聚合物的改进的物理特性是商业上理想产品所需的,因此需要可控技术形成具有宽正交组成分布的聚乙烯共聚物。
发明内容
本文所述的一个实施例提供一种聚合物,其包括乙烯和至少一种具有4到20个碳原子的α烯烃。所述聚合物是通过经微调的催化剂体系形成,所述催化剂体系包括包含双(正丙基环戊二烯基)铪(R1)(R2)的负载型催化剂和包含内消旋-O(SiMe2Ind)2Zr(R1)(R2)的微调催化剂,其中R1和R2各自独立地是甲基、氯、氟或烃基。
另一实施例提供一种聚合物,其包括乙烯和至少一种具有4到20个碳原子的α烯烃。所述聚合物是在单一反应器中通过共负载型催化剂形成;并且具有约0.915与约0.935之间的密度、大于约30,000psi的平均模数、大于约350g/mil的落镖冲击强度、大于约15的熔融指数比率(MIR),并且在凡戈普-帕尔蒙(van Gurp Palmen;vGP)图中、在约0.1rad/s与200rad/s之间的频率下、在190℃下不存在负拐点。
另一实施例提供一种聚合物,其包括乙烯和至少一种具有4到20个碳原子的α烯烃。聚合物在频率介于约0.1rad/s与300rad/s之间、190℃的凡戈普-帕尔蒙(vGP)图的一阶导数中具有峰值。所述聚合物还具有大于约15的熔融指数比率(MIR)和大于约350g/mil的落镖冲击强度。
附图说明
图1是气相反应器系统的示意图,其展示添加至少两种催化剂,其中至少一种是作为微调催化剂添加。
图2是比较多种不同聚合物的硬度、韧性和可加工性的图。
图3是凡戈普-帕尔蒙(vGP)图,其展示在第一次中试工厂操作中所产生的产物的比较。
图4是图3的vGP图中所示结果的一阶导数图。
图5是第二次中试工厂操作中所制备树脂的vGP图的一阶导数图。
图6A和图6B是说明用于确定CFC结果的计算的图。
图7是实验聚合物相对于多种市售竞争性聚合物的(Mw-1/Mw-2)相对于(Tw-1-Tw-2)的图。
具体实施方式
已经发现,当用多种催化剂浸渍载体时,可以例如通过控制存在于载体上的催化剂的量和类型来得到具有改进的硬度、韧性与可加工性平衡的新聚合材料。如本文实施例中所描述,适当选择催化剂和比率可以用于调节例如聚合物的分子量分布(MWD)、短链分支分布(SCBD)和长链分支分布(LCBD)以提供具有宽正交组成分布(BOCD)的聚合物。MWD、SCBD和LCBDs将通过将催化剂与适当重均分子量(Mw)、共聚单体并入和聚合条件下的长链分支(LCB)形成组合来加以控制。
采用共负载在与活化剂混合的单个载体(如二氧化硅甲基铝氧烷(SMAO))上的多种前催化剂可以通过在一个反应器而非多个反应器中制造产物来提供成本优势。另外,使用单个载体也确保聚合物的精细混合,并且相对于不依赖于单个反应器中的多种催化剂制备不同Mw和密度的聚合物的混合物提供改进的可操作性。如本文所用,前催化剂是在暴露于活化剂之前的催化剂化合物。
作为一个实例,对于线性低密度聚乙烯膜(LLDPE)膜应用,需要制备分子量介于约90Kg/mol与110Kg/mol之间或为约100Kg/mol并且平均密度介于约0.9g/cm3与0.925g/cm3之间或为约0.918g/cm3的乙烯己烯共聚物。线性茂金属聚合物的典型MWD是2.0-3.5。掺合物研究指示,将需要通过采用各自提供不同平均分子量的两种催化剂来使此分布变宽。低分子量组分与高分子量组分的Mw的比率将在1:1与1:10之间,或在约1:2与1:5之间。
聚乙烯共聚物的密度提供共聚单体向聚合物中并入量的指示,其中较低密度指示较高并入。低分子量(LMW)组分与高分子量(HMW)组分的密度的差异将优选地大于约0.02,或大于约0.04,其中HMW组分的密度低于LMW组分。对于Mw为25Kg/mol和125Kg/mol的两种聚合物来说,密度差异需要共聚单体并入能力差异为约4:1。也需要是聚合物中长链分支(LCB)的水平降到最低,因为所述长链分支在膜制造中提供使MD/TD撕裂性不平衡并且降低韧性的强取向。
这些因素可以通过控制MWD和SCBD来调节,MWD和SCBD随后又可以通过改变载体上两种前催化剂的相对量来调节。这可以在形成前催化剂期间调节,例如通过将两种催化剂负载在单个载体上。在一些实施例中,前催化剂的相对量可以通过在称为“微调”的工艺中在到反应器的途中将组分中的一个添加到催化剂混合物中来调节。微调论述于美国专利第6,605,675号、第6,608,149号、第6,689,847号及第6,825,287号,这些专利以引用的方式并入本文中。聚合物特性数据的反馈可以用于控制催化剂添加的量。已知茂金属(MCN)经其它催化剂良好微调。
此外,可通过由有限数目种催化剂制备具有不同MWD、SCBD和LCBD的多种聚合物。为了进行这个功能,前催化剂应良好微调到活化剂载体上。有益于此的两个参数是烷烃溶剂中的可溶性和在到反应器的途中在催化剂浆液上的快速负载。这倾向于使用MCN以得到受控的MWD、SCBD和LCBD。本文公开用于选择可以用于产生目标分子量组合物(包括BOCD聚合物系统)的催化剂的技术。
各种催化剂体系和组分可以用于产生所公开的聚合物和分子量组合物。这些在以下部分中进行论述。第一部分论述可以在实施例中使用的催化剂化合物,尤其包括单一位点和茂金属催化剂。第二部分论述产生可以用于实施所描述的技术的催化剂浆液。第三部分论述可以使用的载体。第四部分论述可以使用的催化剂活化剂。第五部分论述可以用于在微调系统中添加其它催化剂的催化剂组分溶液。气相聚合可以使用静电控制剂(staticcontrol agent)或连续性试剂,其论述于第五部分中。在第六部分中论述具有微调进料系统的气相聚合反应器。在第六部分中论述使用催化剂组合物来控制产物特性,并且在第七部分中论述示例性聚合工艺。将所论述程序的实施方案的实例并入第八部分中。
催化剂化合物
茂金属催化剂化合物
茂金属催化剂化合物可以包括“半夹层”和/或“全夹层”化合物,所述化合物具有一个或多个结合到至少一个第3族到第12族金属原子上的Cp配体(环戊二烯基和与环戊二烯基同构的配体)以及一个或多个结合到所述至少一个金属原子上的离去基团。如本文所用,对元素周期表和其族的所有参考是参考《霍氏简明化学词典(HAWLEY'S CONDENSEDCHEMICAL DICTIONARY)》,第十三版,John Wiley&Sons,Inc.,(1997)(在IUPAC准许下翻印)中公布的新记法(NEW NOTATION),除非对用罗马数字标记的先前IUPAC形式(也出现在其中)作出参考,或除非另外指出。
Cp配体是一种或多种环或环系统,其至少一部分包括π键结的系统,如环烷二烯基配体和杂环类似物。所述环或环系统通常包括选自由第13族到第16族原子组成的群组的原子,并且在特定示例性实施例中,构成Cp配体的原子选自由以下组成的群组:碳、氮、氧、硅、硫、磷、锗、硼、铝以及其组合,其中碳构成环成员的至少50%。在一个更特定示例性实施例中,Cp配体选自由被取代和未被取代的环戊二烯基配体以及与环戊二烯基同构的配体组成的群组,其非限制性实例包括环戊二烯基、茚基、芴基以及其它结构。这类配体的其它非限制性实例包括环戊二烯基、环戊并菲基、茚基、苯并茚基、芴基、八氢芴基、环辛四烯基、环戊并环十二烯、菲并茚基、3,4-苯并芴基、9-苯基芴基、8-H-环戊[a]苊基、7-H-二苯并芴基、茚并[1,2-9]蒽、噻吩并茚基、噻吩并芴基、其氢化形式(例如,4,5,6,7-四氢茚基或“H4Ind”)、其被取代形式(如下文更详细论述和描述的)以及其杂环形式。
茂金属催化剂化合物的金属原子“M”可以在一个示例性实施例中,选自由第3族到第12族原子和镧系族原子组成的群组;并且在一个更特定示例性实施例中,选自由第3族到第10族原子组成的群组;并且在又一个更特定示例性实施例中,选自由以下组成的群组:Sc、Ti、Zr、Hf、V、Nb、Ta、Mn、Re、Fe、Ru、Os、Co、Rh、Ir以及Ni;并且在又一个更特定示例性实施例中,选自由第4族、第5族和第6族原子组成的群组,并且在又一个更特定示例性实施例中是Ti、Zr、Hf原子,并且在又一个更特定示例性实施例中是Hf。金属原子“M”的氧化态在一个示例性实施例中可以在0到+7范围内;并且在一个更特定示例性实施例中,可以是+1、+2、+3、+4或+5;并且在又一个更特定示例性实施例中,可以是+2、+3或+4。除非另外指明,否则结合到金属原子“M”上的基团使得下文所描述的化合物在化学式和结构中是电中性的。Cp配体与金属原子M形成至少一个化学键以形成“茂金属催化剂化合物”。Cp配体与结合到催化剂化合物上的离去基团的不同在于其对取代/夺取反应不高度敏感。
一种或多种茂金属催化剂化合物可以由式(I)表示:
CpACpBMXn (I)
其中M如上文所描述;每一个X以化学方式键结到M;每一个Cp基团以化学方式键结到M;并且n是0或1到4的整数,并且在一个特定示例性实施例中是1或2。
在式(I)中,由CpA和CpB表示的配体可以是相同或不同环戊二烯基配体或与环戊二烯基同构的配体,其中的任一个或两个可以含有杂原子,并且其中的任一个或两个可以被基团R取代。在至少一个具体实施例中,CpA和CpB独立地选自由以下组成的群组:环戊二烯基、茚基、四氢茚基、芴基以及每一个的经取代衍生物。
独立地,式(I)的每个CpA和CpB可以未被取代或被取代基R中的任一个或组合取代。下文论述和描述的如在结构(I)以及结构Va-d中的环取代基中所用的取代基R的非限制性实例包括选自由以下组成的群组的基团:氢基、烷基、烯基、炔基、环烷基、芳基、酰基、芳酰基、烷氧基、芳氧基、烷基硫醇、二烷基胺、烷基氨基、烷氧基羰基、芳氧基羰基、氨甲酰基、烷基-氨甲酰基和二烷基-氨甲酰基、酰氧基、酰基氨基、芳酰基氨基以及其组合。与式(I)到(Va-d)相关联的烷基取代基R的更特定非限制性实例包括甲基、乙基、丙基、丁基、戊基、己基、环戊基、环己基、苯甲基、苯基、甲基苯基以及叔丁基苯基等等,包括其所有异构体,例如叔丁基、异丙基等等。
其它可能的基团包括被取代的烷基和芳基,如例如氟甲基、氟乙基、二氟乙基、碘丙基、溴己基、氯苯甲基;被烃基取代的有机类金属基团,包括三甲基硅烷基、三甲基锗烷基、甲基二乙基硅烷基等等;和被卤碳基取代的有机类金属基团,包括三(三氟甲基)硅烷基、甲基双(二氟甲基)硅烷基、溴甲基二甲基甲锗烷基等等;和二取代硼基,包括例如二甲基硼;和二取代第15族基团,包括二甲胺、二甲基膦、二苯胺、甲基苯基膦,以及第16族基团,包括甲氧基、乙氧基、丙氧基、苯氧基、甲硫醚和乙硫醚。其它取代基R包括(但不限于)烯烃,如烯烃不饱和取代基,包括乙烯基封端的配体,如3-丁烯基、2-丙烯基、5-己烯基等等。在一个示例性实施例中,至少两个R基团(在一个特定示例性实施例中,两个相邻R基团)连接以形成具有3到30个选自由以下组成的群组的原子的环结构:碳、氮、氧、磷、硅、锗、铝、硼以及其组合。另外,取代基R(如1-丁基)可以与元素M形成键结缔合。
上文式(I)中和用于下文式/结构(II)到(Va-d)的每一个X独立地选自由以下组成的群组:在一个示例性实施例中,任何离去基团;在一个更特定示例性实施例中,卤素离子、氢负离子、C1到C12烷基、C2到C12烯基、C6到C12芳基、C7到C20烷基芳基、C1到C12烷氧基、C6到C16芳氧基、C7到C8烷基芳氧基、C1到C12氟烷基、C6到C12氟芳基和C1到C12含杂原子的烃以及其经取代衍生物;在又一个更特定示例性实施例中,氢负离子、卤素离子、C1到C6烷基、C2到C6烯基、C7到C18烷基芳基、C1到C6烷氧基、C6到C14芳氧基、C7到C16烷基芳氧基、C1到C6烷基羧酸根、C1到C6氟化烷基羧酸根、C6到C12芳基羧酸根、C7到C18烷基芳基羧酸根、C1到C6氟烷基、C2到C6氟烯基以及C7到C18氟烷基芳基;在又一个更特定示例性实施例中,氢负离子、氯离子、氟离子、甲基、苯基、苯氧基、苯甲酰氧基、甲苯磺酰基、氟甲基以及氟苯基;在又一个更特定示例性实施例中,C1到C12烷基、C2到C12烯基、C6到C12芳基、C7到C20烷基芳基、被取代的C1到C12烷基、被取代的C6到C12芳基、被取代的C7到C20烷基芳基以及C1到C12含杂原子的烷基、C1到C12含杂原子的芳基和C1到C12含杂原子的烷基芳基;在又一个更特定示例性实施例中,氯离子、氟离子、C1到C6烷基、C2到C6烯基、C7到C18烷基芳基、卤化C1到C6烷基、卤化C2到C6烯基以及卤化C7到C18烷基芳基;在又一个更特定示例性实施例中,氟离子、甲基、乙基、丙基、苯基、甲基苯基、二甲基苯基、三甲基苯基、氟甲基(单氟甲基、二氟甲基和三氟甲基)以及氟苯基(单氟苯基、二氟苯基、三氟苯基、四氟苯基和五氟苯基);以及在又一个更特定示例性实施例中,氟离子。
X基团的其它非限制性实例包括胺、膦、醚、羧酸酯、二烯、具有1到20个碳原子的烃基、氟化烃基(例如,-C6F5(五氟苯基))、氟化烷基羧酸根(例如,CF3C(O)O-)、氢负离子、卤素离子以及其组合。X配体的其它实例包括烷基,如环丁基、环己基、甲基、庚基、甲苯基、三氟甲基、四亚甲基、五亚甲基、亚甲基、甲氧基、乙氧基、丙氧基、苯氧基、双(N-甲基苯胺)、二甲酰胺、二甲基磷化物基团等等。在一个示例性实施例中,两个或更多个X形成稠环或环系统的一部分。在至少一个具体实施例中,X可以是选自由以下组成的群组的离去基团:氯离子、溴离子、C1到C10烷基和C2到C12烯基、羧酸根、乙酰基丙酮酸根以及醇盐。
茂金属催化剂化合物包括其中CpA和CpB通过至少一个桥连基(A)彼此桥连的那些式(I),以使得所述结构由式(II)表示:
CpA(A)CpBMXn (II)
这些由式(II)表示的桥连化合物称为“桥连茂金属”。式(II)中的要素CpA、CpB、M、X以及n如上文对式(I)所定义;其中每一个Cp配体以化学方式键结到M,并且(A)以化学方式键结到每一个Cp。桥连基(A)可以包括含有至少一个第13族到第16族原子的二价烃基,所述原子如(但不限于)碳、氧、氮、硅、铝、硼、锗、锡原子以及其组合中的至少一个;其中所述杂原子也可以是被取代以满足中性价数的C1到C12烷基或芳基。在至少一个具体实施例中,桥连基(A)也可以包括如上文(对式(I))所定义的取代基R,包括卤素基团和铁。在至少一个具体实施例中,桥连基(A)可以由以下表示:C1到C6亚烷基、被取代的C1到C6亚烷基、氧、硫、R′2C═、R′2Si═、═Si(R′)2Si(R′2)═、R′2Ge═以及R′P═,其中“═”表示两个化学键,R′独立地选自由以下组成的群组:氢负离子、烃基、被取代的烃基、卤碳基、被取代的卤碳基、被烃基取代的有机类金属、被卤碳基取代的有机类金属、二取代硼、二取代第15族原子、被取代的第16族原子以及卤素基团;并且其中两个或更多个R′可以连接以形成环或环系统。在至少一个具体实施例中,式(II)桥连茂金属催化剂化合物包括两个或更多个桥连基团(A)。在一个或多个实施例中,(A)可以是结合到CpA和CpB两者上的二价桥连基,其选自由二价Cl到C20烃基和Cl到C20含杂原子的烃基组成的群组,其中所述含杂原子的烃基包括一个到三个杂原子。
桥连基(A)可以包括亚甲基、亚乙基(ethylene)、乙叉(ethylidene)、亚丙基(propylidene)、亚异丙基、二苯基亚甲基、1,2-二甲基亚乙基、1,2-二苯基亚乙基、1,1,2,2-四甲基亚乙基、二甲基硅烷基、二乙基硅烷基、甲基-乙基硅烷基、三氟甲基丁基硅烷基、双(三氟甲基)硅烷基、二(正丁基)硅烷基、二(正丙基)硅烷基、二(异丙基)硅烷基、二(正己基)硅烷基、二环己基硅烷基、二苯基硅烷基、环己基苯基硅烷基、叔丁基环己基硅烷基、二(叔丁基苯基)硅烷基、二(对甲苯基)硅烷基和其中Si原子被Ge或C原子置换的对应部分;以及二甲基硅烷基、二乙基硅烷基、二甲基锗烷基和二乙基锗烷基。
桥连基(A)也可以是具有例如4到10个环成员的环状;在一个更特定示例性实施例中,桥连基(A)可以具有5到7个环成员。环成员可以选自上文所提到的元素,并且在一个特定实施例中可以选自B、C、Si、Ge、N以及O中的一个或多个。可以以桥连部分或桥连部分的一部分的形式存在的环结构的非限制性实例是亚环丁基、亚环戊基、亚环己基、亚环庚基、亚环辛基以及其中一个或两个碳原子被Si、Ge、N和O中的至少一个置换的对应环。在一个或多个实施例中,一个或两个碳原子可以被Si和Ge中的至少一个置换。环与Cp基团之间的键结布置可以是顺式、反式或其组合。
环状桥连基团(A)可以是饱和或不饱和的和/或带有一个或多个取代基和/或稠合到一个或多个其它环结构上。在至少一个特定实施例中,所述一个或多个取代基如果存在,那么可以选自由烃基(例如,烷基,如甲基)和卤素(例如,F、Cl)组成的群组。上文环状桥连部分可以任选地稠合的一个或多个Cp基团可以是饱和或不饱和的,并且选自由以下组成的群组:具有4到10个,更确切地说5、6或7个环成员(在一个特定示例性实施例中,选自由C、N、O和S组成的群组)的那些基团,如环戊基、环己基和苯基。此外,这些环结构可以自身稠合,例如在萘基的情况下。此外,这些(任选地稠合)环结构可以带有一个或多个取代基。这些取代基的说明性非限制性实例是烃基(尤其烷基)和卤素原子。式(I)和(II)的配体CpA和CpB可以彼此不同。式(I)和(II)的配体CpA和CpB可以相同。茂金属催化剂化合物可以包括桥连的单配体茂金属化合物(例如,单环戊二烯基催化剂组分)。
预期上文所论述和描述的茂金属催化剂组分包括其结构或光学或对映异构体(外消旋混合物),并且在一个示例性实施例中,可以是纯对映异构体。如本文所用,具有外消旋和/或内消旋异构体的单一、桥连、不对称取代的茂金属催化剂化合物自身不构成至少两个不同桥连、茂金属催化剂组分。
按催化剂体系的总重量计,催化剂体系中一种或多种茂金属催化剂化合物的过渡金属组分量可以在较低约0.2wt.%、约3wt.%、约0.5wt.%或约0.7wt.%到较高约1wt.%、约2wt.%、约2.5wt.%、约3wt.%、约3.5wt.%或约4wt.%范围内。
“茂金属催化剂化合物”可以包括本文所论述和描述的任何“实施例”的任何组合。此外,其它单一位点催化剂(在技术上可以不是茂金属催化剂)可以用这个术语称呼。举例来说,茂金属催化剂化合物可以包括(但不限于)双(正丙基环戊二烯基)铪(CH3)2、双(正丙基环戊二烯基)铪F2、双(正丙基环戊二烯基)铪Cl2、双(正丁基,甲基环戊二烯基)锆Cl2,或其任何组合。
可以使用的其它茂金属催化剂化合物是负载型几何构型受限的催化剂(supported constrained geometry catalyst,sCGC),其包括(a)离子复合物、(b)过渡金属化合物、(c)有机金属化合物以及(d)负载材料。这种sCGC催化剂描述于PCT公开案WO2011/017092中。在一些实施例中,sCGC催化剂可以包括硼酸根离子。硼酸根阴离子由式[BQ4-z'(Gq(T--H)r)z']d-表示,其中:B是价态为3的硼;Q选自由以下组成的群组:氢负离子、二烃基氨基、卤离子、烃基氧离子、烃基以及被取代的烃基;z'是介于1到4范围内的整数;G是键结到M'和r基团(T--H)的价数为r+1的多价烃基;q是整数0或1;基团(T--H)是其中T包括O、S、NR或PR(其中O、S、N或P原子键结到氢原子H,其中R是烃基、三烃基硅烷基、三烃基锗烷基或氢)的基团;r是1到3的整数;并且d是1。替代性地,硼酸根离子可以由式[BQ4-z'(Gq(T--MoRC x-1Xa y)r)z']d-表示,其中:B是价态为3的硼;Q选自由以下组成的群组:氢负离子、二烃基氨基、卤离子、烃基氧离子、烃基以及被取代的烃基;z'是介于1到4范围内的整数;G是键结到B和r基团(T--MoRC x-1Xa y)的价数为r+1的多价烃基;q是整数0或1;基团(T--MoRC x-1Xa y)是其中T包括O、S、NR或PR(其中O、S、N或P原子键结到Mo,其中R是烃基、三烃基硅烷基、三烃基锗烷基或氢)的基团;Mo是选自元素周期表第1族到第14族的金属或类金属,RC在每次出现时独立地是氢或具有1到80个非氢原子的基团,其是烃基、烃基硅烷基或烃基硅烷基烃基;Xa是具有1到100个非氢原子的无干扰基团,其是被卤基取代的烃基、被烃基氨基取代的烃基、被烃氧基取代的烃基、烃基氨基、二(烃基)氨基、烃氧基或卤离子;x是可以在1到等于Mo价数的整数范围内的非零整数;y是零或可以在1到等于1小于Mo价数的整数范围内的非零整数;并且x+y等于Mo价数;r是1到3的整数;并且d是1。在一些实施例中,硼酸根离子可以具有上述式,其中z'是1或2,q是1,并且r是1。
催化剂体系可以包括其它单一位点催化剂,如含第15族的催化剂。除单一位点催化剂化合物之外,催化剂体系可以包括一种或多种第二催化剂,如基于铬的催化剂、齐格勒-纳塔催化剂、一种或多种其它单一位点催化剂(如茂金属或含第15族的催化剂)、双金属催化剂以及混合催化剂。催化剂体系也可以包括AlCl3、钴、铁、钯或其任何组合。
可以用于实施例中的MCN化合物的结构实例包括如式(III)所示的铪化合物、如式(IV-A-D)所示的锆化合物以及如(V-A和V-B)所示的桥连锆化合物。
尽管展示这些化合物具有与中央金属连接的甲基和氯基,但可以理解这些基团可以不同,而不改变所涉及的催化剂。举例来说,这些取代基中的每一者可以独立地是甲基(Me)、氯基(Cl)、氟基(F)或多种其它基团,包括有机基团或杂原子基团。此外,这些取代基将在反应期间变化,因为前催化剂转化为用于反应的活性催化剂。
第15族原子和含金属催化剂化合物
催化剂体系可以包括一种或多种第15族含金属的催化剂化合物。第15族含金属的化合物大体上包括第3族到第14族金属原子、第3族到第7族或第4族到第6族金属原子。在许多实施例中,第15族含金属的化合物包括结合到至少一个离去基团上并且也结合到至少两个第15族原子上的第4族金属原子,所述第15族原子中的至少一个也通过另一个基团结合到第15族或第16族原子上。
在一个或多个实施例中,第15族原子中的至少一者也通过另一个基团结合到第15族或第16族原子上,所述另一个基团可以是C1到C20烃基、含杂原子的基团、硅、锗、锡、铅或磷,其中所述第15族或第16族原子也可以不结合或结合到氢、含第14族原子的基团、卤素或含杂原子的基团上,并且其中所述两个第15组原子中的每一者也结合到环基上,并且可以任选地结合到氢、卤素、杂原子或烃基、或含杂原子的基团上。
含第15族的金属化合物可以更确切地用式(VI)或(VII)来描述:
其中M是第3族到第12族过渡金属或第13族或第14族主族金属、第4族、第5族或第6族金属。在许多实施例中,M是第4族金属,如锆、钛或铪。每一个X独立地是离去基团,如阴离子离去基团。离去基团可以包括氢、烃基、杂原子、卤素或烷基;y是0或1(当y是0时,基团L'不存在)。术语‘n’是M的氧化态。在各种实施例中,n是+3、+4或+5。在许多实施例中,n是+4。术语‘m’表示YZL或YZL'配体的形式电荷,并且在各种实施例中是0、-1、-2或-3。在许多实施例中,m是-2。L是第15族或第16族元素,如氮;L'是第15族或第16族元素或含第14族的基团,如碳、硅或锗。Y是第15族元素,如氮或磷。在许多实施例中,Y是氮。Z是第15族元素,如氮或磷。在许多实施例中,Z是氮。R1和R2独立地是C1到C20烃基、具有最多20个碳原子的含杂原子的基团、硅、锗、锡、铅或磷。在许多实施例中,R1和R2是C2到C20烷基、芳基或芳烷基,如直链、分支链或环状C2到C20烷基、或C2到C6烃基。R1和R2也可以彼此互连。R3可以不存在或可以是烃基、氢、卤素、含杂原子的基团。在许多实施例中,R3不存在或是氢、或具有1到20个碳原子的直链、环状或分支链烷基。R4和R5独立地是烷基、芳基、经取代的芳基、环状烷基、经取代的环状烷基、环状芳烷基、经取代的环状芳烷基或常常具有最多20个碳原子的多环系统。在许多实施例中,R4和R5具有介于3与10个之间的碳原子,为是C1到C20烃基、C1到C20芳基或C1到C20芳烷基、或含杂原子的基团。R4和R5可以彼此互连。R6和R7独立地不存在、是氢、烷基、卤素、杂原子或烃基,如具有1到20个碳原子的直链、环状或分支链烷基。在许多实施例中,R6和R7不存在。R*可以不存在,或可以是氢、含第14族原子的基团、卤素或含杂原子的基团。
“YZL或YZL'配体的形式电荷”意味着不存在金属和离去基团X的整个配体的电荷。“R1和R2也可以互连”意味着R1和R2可以直接彼此结合或可以通过其它基团彼此结合。“R4和R5也可以互连”意味着R4和R5可以直接彼此结合或可以通过其它基团彼此结合。烷基可以是直链、分支链烷基、烯基、炔基、环烷基、芳基、酰基、芳酰基、烷氧基、芳氧基、烷基硫基、二烷基氨基、烷氧羰基、芳氧基羰基、氨甲酰基、烷基-氨甲酰基和二烷基-氨甲酰基、酰氧基、酰基氨基、芳酰基氨基、直链、分支链或环状亚烷基或其组合。芳烷基定义为被取代的芳基。
在一个或多个实施例中,R4和R5独立地是由下式(VIII)表示的基团。
当R4和R5如式VII时,R8到R12各自独立地是氢、C1到C40烷基、卤离子、杂原子、含有最多40个碳原子的含杂原子的基团。在许多实施例中,R8到R12是C1到C20直链或分支链烷基,如甲基、乙基、丙基或丁基。任何两个R基团可以形成环基和/或杂环基。环状基团可以是芳香族基团。在一个实施例中,R9、R10和R12独立地是甲基、乙基、丙基或丁基(包括所有异构体)。在另一个实施例中,R9、R10和R12是甲基,并且R8和R11是氢。
在一个或多个实施例中,R4和R5都是由下式(IX)表示的基团。
当R4和R5遵循式IX时,M是第4族金属,如锆、钛或铪。在许多实施例中,M是锆。L、Y和Z中的每一个可以是氮。R1和R2中的每一者可以是-CH2-CH2-。R3可以是氢,并且R6和R7可以不存在。
第15族含金属的催化剂化合物可以由下式(X)表示。
在式X中,Ph表示苯基。
浆状催化剂
催化剂体系可以包括含催化剂组分的浆液,其可以具有起始催化剂化合物和向所述浆液中添加的添加溶液催化剂组分。起始催化剂组分浆液可以不具有催化剂。在这种情况下,可以向浆液中添加两种或更多种溶液催化剂以引起每一种催化剂被负载。
任何数目的催化剂组分的组合均可以用于实施例中。举例来说,催化剂组分浆液可以包括活化剂和载体,或负载型活化剂。此外,除活化剂和载体以外,浆液还可以包括催化剂化合物。如所提到的,浆液中的催化剂化合物可以被负载。
浆液可以包括一种或多种活化剂和载体和另一种催化剂化合物。举例来说,浆液可以包括两种或更多种活化剂(如铝氧烷和改性铝氧烷)和一种催化剂化合物,或浆液可以包括负载型活化剂和超过一种催化剂化合物。在一个实施例中,浆液包括载体、活化剂和两种催化剂化合物。在另一个实施例中,浆液包括可以单独地或以组合形式向中所述浆液添加的载体、活化剂和两种不同催化剂化合物。含有二氧化硅和铝氧烷的浆液可以与催化剂化合物接触,使其反应,并且之后使浆液与另一种催化剂化合物例如在微调系统中接触。
活化剂中金属与浆液中催化剂化合物中金属的摩尔比可以是1000:1到0.5:1、300:1到1:1或150:1到1:1。浆液可以包括负载材料,其可以是所属领域中已知的任何惰性粒状载体材料,包括(但不限于)二氧化硅、烟雾状二氧化硅、氧化铝、粘土、滑石或如上文公开的其它负载材料。在一个实施例中,浆液含有二氧化硅和活化剂,如甲基铝氧烷(“MAO”)、改性甲基铝氧烷(“MMAO”),如下文进一步所论述。
可以使用一种或多种稀释剂或载剂来促进浆液或微调催化剂溶液中的催化剂体系的任何两种或更多种组分的组合。举例来说,单一位点催化剂化合物和活化剂可以在甲苯或另一种非反应性烃或烃混合物存在下组合在一起以提供催化剂混合物。除了甲苯之外,其它合适的稀释剂可以包括(但不限于)乙苯、二甲苯、戊烷、己烷、庚烷、辛烷、其它烃或其任何组合。接着可以向催化剂混合物中添加干燥的或与甲苯混合的载体,或者可以向载体中添加催化剂/活化剂混合物。
载体
如本文所用,术语“载体”和“载剂”可互换地使用并且是指任何负载材料,包括多孔负载材料,如滑石、无机氧化物和无机氯化物。浆液的一种或多种单一位点催化剂化合物可以与活化剂一起负载在相同或分开的载体上,或活化剂可以按未负载形式使用,或可以沉积在与单一位点催化剂化合物或其任何组合不同的载体上。这可以通过所属领域中常用的任何技术来实现。在所属领域中存在各种用于负载单一位点催化剂化合物的其它方法。举例来说,单一位点催化剂化合物可以含有聚合物结合的配体。可以对浆液的单一位点催化剂化合物进行喷雾干燥。与单一位点催化剂化合物一起使用的载体可以被官能化。
载体可以是或包括一种或多种无机氧化物,例如第2族、第3族、第4族、第5族、第13族或第14族元素的无机氧化物。无机氧化物可以包括(但不限于)二氧化硅、氧化铝、二氧化钛、氧化锆、氧化硼、氧化锌、氧化镁或其任何组合。无机氧化物的说明性组合可以包括(但不限于)氧化铝-二氧化硅、二氧化硅-二氧化钛、氧化铝-二氧化硅-二氧化钛、氧化铝-氧化锆、氧化铝-二氧化钛等等。载体可以是或包括二氧化硅、氧化铝或其组合。在本文所描述的一个实施例中,载体是二氧化硅。在本文所描述的另一个实施例中,载体是二氧化硅-氧化铝。
合适的可商购的二氧化硅载体可以包括(但不限于)可购自PQ Corporation的ES757、ES70和ES70W。合适的可商购的二氧化硅-氧化铝载体可以包括(但不限于)可购自1、5、10、20、28M、30以及40。一般来说,包含二氧化硅凝胶与活化剂(如甲基铝氧烷(MAO))的催化剂载体用于所描述的微调系统中,因为这些载体对于共负载溶液携带的催化剂来说可以更好地起作用。
活化剂
如本文所用,术语“活化剂”可以指能够活化单一位点催化剂化合物或组分(如通过产生所述催化剂组分的阳离子物质)的任何负载或未负载的化合物或化合物组合。举例来说,这可以包括从单一位点催化剂化合物/组分的金属中心夺取至少一个离去基团(本文所描述的单一位点催化剂化合物中的“X”基团)。活化剂也可以被称为“共催化剂”。
举例来说,活化剂可以包括路易斯酸或非配位性离子活化剂或电离活化剂,或包括路易斯碱、烷基铝和/或常规型共催化剂的任何其它化合物。除上文所提及的甲基铝氧烷(“MAO”)和改性甲基铝氧烷(“MMAO”)以外,说明性活化剂可以包括(但不限于)铝氧烷或改性铝氧烷;和/或中性或离子性电离化合物,如三(正丁基)铵肆(五氟苯基)硼、三(全氟苯基)硼、三(全氟萘基)硼或其任何组合。
铝氧烷可以描述为具有-Al(R)-O-子单元的低聚铝化合物,其中R是烷基。铝氧烷的实例包括(但不限于)甲基铝氧烷(“MAO”)、改性甲基铝氧烷(“MMAO”)、乙基铝氧烷、异丁基铝氧烷或其组合。铝氧烷可以通过使相应三烷基铝化合物水解来产生。MMAO可以通过使三甲基铝和较高碳数三烷基铝(如三异丁基铝)水解来产生。MMAO一般更可溶于脂肪族溶剂中,并且在储存期间更稳定。存在多种用于制备铝氧烷和改性铝氧烷的方法。
在一个或多个实施例中,可以使用视觉上透明的MAO。举例来说,可以过滤混浊或胶凝的铝氧烷以产生透明铝氧烷,或可以从混浊铝氧烷溶液中倾析出透明铝氧烷。在另一个实施例中,可以使用混浊和/或胶凝的铝氧烷。另一种铝氧烷可以包括改性的3A型甲基铝氧烷(“MMAO”)(可以商标名3A型经修饰甲基铝氧烷商购自阿克苏化学品公司(AkzoChemicals,Inc.),其论述并且描述于美国专利第5,041,584号中)。合适的MAO来源可以是具有例如约1wt.%到约50wt.%MAO的溶液。可商购的MAO溶液可以包括可购自路易斯安那州巴吞鲁日(Baton Rouge,La)的雅保公司(Albemarle Corporation)的10wt.%和30wt.%MAO溶液。
如上所述,可以与铝氧烷结合使用一种或多种有机铝化合物,如一种或多种烷基铝化合物。举例来说,可以使用的烷基铝物质是二乙基铝乙醇盐、二乙基铝氯化物和/或二异丁基铝氢化物。三烷基铝化合物的实例包括(但不限于)三甲基铝、三乙基铝(“TEAL”)、三异丁基铝(“TiBAl”)、三-正己基铝、三-正辛基铝、三丙基铝、三丁基铝等等。
催化剂组分溶液
催化剂组分溶液可以仅包括催化剂化合物,或可以除催化剂化合物以外还包括活化剂。微调工艺中所用的催化剂溶液可以通过将催化剂化合物和任选的活化剂溶解于液体溶剂中来制备。液体溶剂可以是烷烃,如C5到C30烷烃,或C5到C10烷烃。也可以使用如环己烷的环状烷烃和如甲苯的芳香族化合物。此外,可以使用矿物油作为溶剂。所采用的溶液应在聚合条件下是液体,并且相对惰性。在一个实施例中,催化剂化合物溶液中使用的液体与催化剂组分浆液中所用的稀释剂不同。在另一个实施例中,催化剂化合物溶液中使用的液体与催化剂组分溶液中所用的稀释剂相同。
如果催化剂溶液包括活化剂和催化剂化合物两者,那么活化剂中金属与溶液中催化剂化合物中金属的比率可以是1000:1到0.5:1、300:1到1:1或150:1到1:1。在各种实施例中,按溶剂和活化剂或催化剂化合物的重量计,活化剂和催化剂化合物以最多约90wt.%、最多约50wt.%、最多约20wt.%、优选地最多约10wt.%、最多约5wt.%、小于1wt.%或介于100ppm与1wt.%之间存在于溶液中。
催化剂组分溶液可以包含本文催化剂部分中所描述的可溶催化剂化合物中的任一种。由于催化剂溶解于溶液中,需要较高可溶性。因此,催化剂组分溶液中的催化剂化合物常常可以包括茂金属,其与其它催化剂相比可以具有较高可溶性。
在下文所描述的聚合工艺中,上文所描述的任何含催化剂组分的溶液均可以与上文所描述的任何含催化剂组分的浆液组合。另外,可以使用超过一种催化剂组分溶液。
连续性添加剂/静电控制剂
在气相聚乙烯生产工艺中,可能需要使用一种或多种静电控制剂来辅助调控反应器中的静电水平。如本文所用,静电控制剂是在引入到流体化床反应器中时可以影响或推进流体化床中的静电荷(变负、变正或为零)的化学组合物。所用的特定静电控制剂可以取决于静电荷的性质,并且静电控制剂的选择可以取决于所产生的聚合物和所用单一位点催化剂化合物而变化。
可以采用如硬脂酸铝的控制剂。所用静电控制剂可以针对其在不不利地影响生产率的情况下接受流体化床中静电荷的能力而加以选择。其它合适的静电控制剂还可以包括二硬脂酸铝、乙氧基化的胺和抗静电组合物,如由Innospec Inc.以商标名OCTASTAT提供的那些组合物。举例来说,OCTASTAT 2000是聚砜共聚物、聚合多元胺和油可溶性磺酸的混合物。
前述控制剂中的任一种可以作为控制剂单独或组合采用。举例来说,甲酸金属盐可以与含胺的控制剂(例如,具有属于(可购自Crompton Corporation)或(可购自ICI Americas Inc.)产品家族的任何家族成员的甲酸金属盐)组合。
其它适用的连续性添加剂包括亚乙基亚胺,适用于本文所公开的实施例中的添加剂可以包括具有以下通式的聚亚乙基亚胺:
-(CH2-CH2-NH)n-
其中n可以是约10到约10,000。聚亚乙基亚胺可以是线性、支化或超支化(例如,形成树枝状(dendritic)或树木状(arborescent)聚合物结构)。其可以是亚乙基亚胺的均聚物或共聚物或其混合物(下文被称为聚亚乙基亚胺)。尽管可以使用由化学式--[CH2-CH2-NH]--表示的线性聚合物作为聚乙二亚胺,但也可以使用具有一级、二级和三级分支的材料。商业聚乙二亚胺可以是具有亚乙基亚胺聚合物分支的化合物。
合适的聚亚乙基亚胺可以商标名Lupasol购自巴斯夫公司(BASF Corporation)。这些化合物可以制备为具有大范围的分子量和产物活性。适用于本发明中的由巴斯夫出售的商业聚亚乙基亚胺的实例包括(但不限于)Lupasol FG和Lupasol WF。
另一种适用的连续性添加剂可以包括二硬脂酸铝和乙氧基化胺型化合物的混合物,例如可购自亨茨曼公司(Huntsman)(以前汽巴精化(Ciba Specialty Chemicals))的IRGASTAT AS-990。二硬脂酸铝和乙氧基化胺型化合物的混合物可以在矿物油(例如市售产品Hydrobrite 380)中制成浆液。举例来说,二硬脂酸铝和乙氧基化胺型化合物的混合物可以在矿物油中制成浆液以得到介于约5wt.%到约50wt.%,或约10wt.%到约40wt.%,或约15wt.%到约30wt.%范围内的总浆液浓度。
可以按以进入反应器中的所有进料(不包括再循环)的重量计介于0.05到200ppm范围内的量向反应器中添加连续性添加剂或静电控制剂。在一些实施例中,可以按介于2到100ppm范围内的量或按介于4到50ppm范围内的量添加连续性添加剂。
气相聚合反应器
图1是气相反应器系统100的示意图,其展示添加至少两种催化剂,其中至少一种是作为微调催化剂添加。可以将催化剂组分浆液,优选地包括至少一种载体和至少一种活化剂、至少一种被负载活化剂和任选的催化剂化合物的矿物油浆液,放入容器或催化剂罐(催化罐)102中。在一个实施例中,催化剂罐102是被设计成用于保持固体浓度均匀的搅拌储料槽。将通过混合溶剂与至少一种催化剂化合物和/或活化剂而制备的催化剂组分溶液放入另一个容器(其可以称为微调罐104)中。接着可以使催化剂组分浆液与催化剂组分溶液在管线内组合以形成最终催化剂组合物。可以将成核剂106(如二氧化硅、氧化铝、烟雾状二氧化硅或任何其它粒状物质)在管线内或在容器102或104中添加到浆液和/或溶液中。类似地,可以在管线内添加其它活化剂或催化剂化合物。举例来说,可从第二催化罐引入包括不同催化剂的第二催化剂浆液。可以在添加或不添加来自微调罐的溶液催化剂的情况下使用两种催化剂浆液作为催化剂体系。
催化剂组分浆液和溶液可以在管线内混合。举例来说,溶液和浆液可以通过使用静态混合器108或搅拌容器(未图示)混合。催化剂组分浆液与催化剂组分溶液的混合应足够长,以允许催化剂组分溶液中的催化剂化合物分散到催化剂组分浆液中,使得原先在溶液中的催化剂组分迁移到原先存在于浆液中的被负载活化剂。组合在被负载活化剂上形成催化剂化合物的均匀分散,从而形成催化剂组合物。浆液与溶液接触的时间长度通常是最多约120分钟,如约1到约60分钟、约5到约40分钟或约10到约30分钟。
当在聚合反应器之前立即在烃溶剂中组合催化剂、活化剂和任选的载体或其它共催化剂时,需要组合可以在小于1小时内、小于30分钟内或小于15分钟内产生新的聚合催化剂。更短的时间是更有效的,因为新的催化剂在引入反应器之前已准备好,提供更快的流动速率的可能性。
在另一个实施例中,在管线内向浆液和溶液的混合物中添加烷基铝、乙氧基化烷基铝、铝氧烷、抗静电剂或硼酸盐活化剂(如C1到C15烷基铝(例如三异丁基铝、三甲基铝等等)、C1到C15乙氧基化烷基铝或甲基铝氧烷、乙基铝氧烷、异丁基铝氧烷、改性铝氧烷等等)。烷基类、抗静电剂、硼酸盐活化剂和/或铝氧烷可以从烷基容器110直接添加到溶液和浆液的组合中,或可以通过其它烷烃(如异戊烷、己烷、庚烷和或辛烷)载剂流例如从烃容器112添加。其它烷基类、抗静电剂、硼酸盐活化剂和/或铝氧烷可以最多约500ppm、约1到约300ppm、10到约300ppm或约10到约100ppm存在。可以使用的载剂流尤其包括异戊烷和或己烷。取决于反应器大小,通常可以约0.5到约60lbs/hr(27kg/hr)的速率将载剂添加到浆液和溶液的混合物中。类似地,可以将载气114(如氮气、氩气、乙烷、丙烷等等)在管线内添加到浆液和溶液的混合物中。通常,载气可以约1到约100lb/hr(0.4到45kg/hr),或约1到约50lb/hr(5到23kg/hr),或约1到约25lb/hr(0.4到11kg/hr)的速率添加。
在另一个实施例中,将液体载剂流引入向下移动的溶液和浆液的组合中。在与气态载剂流接触之前,溶液、浆液和液体载剂流的混合物可以穿过混合器或用于混合的管道的长度。
类似地,可以将共聚单体116(如1-丁烯、1-己烯、另一种α-烯烃或二烯烃)在管线内添加到浆液和溶液的混合物中。接着,使浆液/溶液混合物通过注射管120达到反应器122。在一些实施例中,注射管可以使浆液/溶液混合物雾化。任何数目的合适的导管尺寸和配置可以用于雾化和/或注入浆液/溶液混合物。
在一个实施例中,将气流124(如循环气体)或再循环气体126、单体、氮气或其它材料引入围绕注射管120的载体管道128。为了有助于在反应器122中适当形成颗粒,可将成核剂118(如发烟状二氧化硅)直接添加到反应器122中。
当在气相反应器中使用茂金属催化剂或其它类似催化剂时,可以将氧气或氟苯直接添加到反应器122中或添加到气流126中以控制聚合速率。因此,当茂金属催化剂(其对氧气或氟苯敏感)在气相反应器中与另一种催化剂(对氧气不敏感)组合使用时,可以使用氧气相对于另一种催化剂的聚合速率来改变茂金属聚合速率。这类催化剂组合的实例是双(正丙基环戊二烯基)锆二氯化物和[(2,4,6-Me3C6H2)NCH2CH2]2NHZrBn2,其中Me是甲基,或双(茚基)锆二氯化物和[(2,4,6-Me3C6H2)NCH2CH2]2NHHfBn2,其中Me是甲基。举例来说,如果氮气进料中的氧气浓度从0.1ppm变成0.5ppm,将由双茚基ZrCl2产生显著更少的聚合物并且由[(2,4,6-Me3C6H2)NCH2CH2]2NHHfBn2产生的聚合物的相对量增加。WO/1996/09328公开处于类似目的而例如向气相聚合反应器中添加水或二氧化碳。在一个实施例中,浆液和溶液的接触温度在0℃到约80℃、约0℃到约60℃、约10℃到约50℃和约20℃到约40℃范围内。
以上实例并非限制性,因为可以包括其它溶液和浆液。举例来说,浆液可以与两种或更多种具有相同或不同催化剂化合物和或活化剂的溶液组合。类似地,溶液可以与两种或更多种浆液组合,所述浆液各自具有相同或不同载体和相同或不同催化剂化合物和或活化剂。类似地,两种或更多种浆液与两种或更多种溶液组合,优选地在管线内组合,其中浆液各自包含相同或不同载体并且可以包含相同或不同催化剂化合物和或活化剂,并且溶液包含相同或不同催化剂化合物和或活化剂。举例来说,浆液可以含有被负载的活化剂和两种不同催化剂化合物,并且各自含有浆液中催化剂中的一种的两种溶液各自独立地在管线内与浆液组合。
使用催化剂组合物控制产物特性
产物聚合物的特性可以通过调节上文所描述的溶液、浆液和任何任选的添加材料(成核剂、催化剂化合物、活化剂等)的混合的时序、温度、浓度和顺序来控制。通过每一种催化剂产生的聚合物的MWD、SCBD、相对量以及所产生聚合物的其它特性还可以通过操控工艺参数来改变。可以调节任何数目个工艺参数,尤其包括操控聚合系统中的氢气浓度、改变聚合系统中第一催化剂的量或改变聚合系统中第二催化剂的量。其它可以调节的工艺参数包括改变聚合工艺中催化剂的相对比率(和任选地调节其个别进料速率以维持稳定或恒定的聚合物生产速率)。反应器122中反应物的浓度可以通过改变由工艺回收或净化的液体或气体的量、改变返回到聚合工艺的回收液体和/或回收气体的量和/或组成来调节,其中回收液体或回收气体可以从由聚合工艺排放的聚合物回收。其它可以调节的参数尤其包括改变聚合温度、改变聚合工艺中的乙烯分压、改变聚合工艺中乙烯与共聚单体比率或改变活化程序中活化剂与过渡金属比率。可以调节时间依赖性参数,如改变浆液或溶液的相关进料速率、改变管线内浆液和溶液的混合时间、温度和或混合程度、向聚合工艺中添加不同类型的活化剂化合物以及向聚合工艺中添加氧气或氟苯或其它催化剂毒物。这些调节的任何组合可以用于控制最终聚合物产物的特性。
在一个实施例中,每隔一定间隔测量聚合物产物的SCBD,并且视需要改变以上工艺参数中的一个,如温度、催化剂化合物进料速率、两种或更多种催化剂彼此间的比率、共聚单体与单体比率、单体分压和或氢气浓度以使组成达到所需水平。SCBD可以通过升温淋洗分离(TREF)或类似技术来进行。如实例中所论述,TREF能够测量随洗脱温度而变化的SCBD。可以使用技术组合,如通过凝胶渗透色谱法(GPC)测量多种所洗脱的洗脱份的分子量分布。
在一个实施例中,在管线内测量聚合物产物特性,并且作为回应,改变所组合的催化剂的比率。在一个实施例中,在混合浆液和溶液以形成最终催化剂组合物之后,催化剂组分浆液中催化剂化合物与催化剂组分溶液中催化剂化合物的摩尔比是500:1到1:500,或100:1到1:100,或50:1到1:50,或10:1到1:10,或5:1到1:5。在另一个实施例中,在混合浆液和溶液以形成最终催化剂组合物之后,浆液中第15族催化剂化合物与溶液中配体茂金属催化剂化合物的摩尔比是500:1、100:1、50:1、10:1、5:1、1:5、1:10、1:100或1:500。所测量的产物特性可以包括动态剪切粘度、流动指数、熔融指数、密度、MWD、共聚单体含量、SCBD以及其组合。在此所述的聚乙烯产物在其MWD和/或SCBD曲线(例如通过GPC和TREF)上可以是单峰或多峰的。在另一个实施例中,当改变催化剂化合物的比率时,改变催化剂组合物引入反应器的速率或其它工艺参数以维持所需生产速率。
虽然不希望受任何理论束缚或限制,但本发明人相信本文所描述的工艺将溶液催化剂化合物固定在载体中和载体上,所述载体优选地是被负载的活化剂。本文所描述的管线内固定技术优选地产生一种负载型催化剂体系,其在引入到反应器时提供合适的聚合物特性以及适当的粒子形态、容积密度或较高催化剂活性,并且不需要用于将催化剂化合物溶液引入到反应器中的其它设备,尤其气相或浆液相反应器。
聚合工艺
催化剂体系可以用于聚合一种或多种烯烃,以由其提供一种或多种聚合物产物。可以使用任何合适的聚合工艺,包括(但不限于)高压、溶液、浆液和/或气相聚合工艺。在使用除气相聚合以外的其它技术的实施例中,可以使用与关于图1所论述的那些类似的对催化剂添加系统的修改。举例来说,可以使用微调系统将催化剂进料到用于聚乙烯共聚物制备的回路浆液反应器。
术语“聚乙烯”和“聚乙烯共聚物”是指具有至少50wt.%乙烯衍生单元的聚合物。在各种实施例中,聚乙烯可以具有至少70wt.%乙烯衍生单元、至少80wt.%乙烯衍生单元、至少90wt.%乙烯衍生单元、至少95wt.%乙烯衍生单元或100wt.%乙烯衍生单元。在此所述的聚乙烯聚合物通常是共聚物,但也可以包括三元共聚物,其具有一或多个其它单体单元。如本文所描述,聚乙烯可以包括例如至少一种或多种其它烯烃或共聚单体。合适的共聚单体可以含有3到16个碳原子、3到12个碳原子、4到10个碳原子以及4到8个碳原子。共聚单体的实例包括(但不限于)丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、4-甲基戊-1-烯、1-癸烯、1-十二烯、1-十六烯等等。
再次参考图1,流体化床反应器122可以包括反应区130和减速区132。反应区130可以包括床134,所述床包括生长中的聚合物粒子、形成的聚合物粒子以及少量催化剂粒子,所述粒子通过使气态单体和用于去除聚合热的稀释剂连续流动通过反应区而流体化。任选地,一些再循环气体124可以经冷却和压缩以形成液体,所述液体在重新进入反应区中时增加循环气流的排热能力。合适的气体流动速率可以容易地通过实验来确定。将气态单体补充到循环气流中的速率可以等于从反应器中抽取粒状聚合物产物和与其相关的单体的速率,并且可以调节穿过反应器的气体组成以在反应区内维持基本上稳定状态的气态组成。离开反应区130的气体可以穿过减速区132,其中夹带粒子通过例如减慢并落回到反应区130中来去除。如果需要,可以在分离系统136(如旋流器和/或细粒过滤器)中去除更细的夹带粒子和灰尘。气体124可以穿过热交换器138,其中可以去除聚合热的至少一部分。然后,气体可以在压缩机140中压缩,并且返回到反应区130中。
流化床工艺的反应器温度可以大于约30℃、约40℃、约50℃、约90℃、约100℃、约110℃、约120℃、约150℃或更高。一般来说,反应器温度在考虑反应器内的聚合物产物的烧结温度的情况下的最高可行温度下操作。因此,在一个实施例中,温度上限是反应器中所产生的聚乙烯共聚物的熔融温度。然而,较高温度可能产生较窄MWD,这可以通过添加MCN或如本文所描述的其它共催化剂来改进。
烯烃聚合中可以使用氢气控制聚烯烃的最终特性。在使用某些催化剂体系的情况下,增加氢气浓度(分压)可以增加所产生聚乙烯共聚物的熔融指数(MI)或流动指数(FI)。因此,熔融指数会受到氢气浓度影响。聚合中的氢气量可以表示为相对于总可聚合单体(例如乙烯或乙烯与己烯或丙烯掺合物)的摩尔比。
聚合工艺中所用的氢气量可以是为实现最终聚烯烃聚合物的所需熔融指数所必需的量。举例来说,氢气与总单体的摩尔比(H2:单体)可以大于约0.0001,大于约0.0005,或大于约0.001。此外,氢气与总单体的摩尔比(H2:单体)可以小于约10,小于约5,小于约3,以及小于约0.10。所需的氢气与单体的摩尔比范围可以包括本文所描述的任何摩尔比上限与任何摩尔比下限的任何组合。换言之,在任何时间时,反应器中的氢气量可以在最多约5,000ppm范围内,在另一个实施例中最多约4,000ppm,最多约3,000ppm,或在另一个实施例中介于约50ppm与5,000ppm之间,或介于约50ppm与2,000ppm之间。反应器中的氢气量按重量计可以在较低约1ppm、约50ppm或约100ppm到较高约400ppm、约800ppm、约1,000ppm、约1,500ppm或约2,000ppm范围内。此外,氢气与总单体的比率(H2:单体)可以是约0.00001:1到约2:1,约0.005:1到约1.5:1,或约0.0001:1到约1:1。气相工艺(单级或两级或更多级)中的一个或多个反应器压力可以在690kPa(100psig)到3,448kPa(500psig)范围内,在1,379kPa(200psig)到2,759kPa(400psig)范围内,或在1,724kPa(250psig)到2,414kPa(350psig)范围内。
气相反应器可能能够产生每小时约10kg聚合物(25lbs/hr)到约90,900kg/hr(200,000lbs/hr)或更大,和大于约455kg/hr(1,000lbs/hr),大于约4,540kg/hr(10,000lbs/hr),大于约11,300kg/hr(25,000lbs/hr),大于约15,900kg/hr(35,000lbs/hr),和大于约22,700kg/hr(50,000lbs/hr),以及约29,000kg/hr(65,000lbs/hr)到约45,500kg/hr(100,000lbs/hr)。
如所提到,在实施例中也可以使用浆液聚合工艺。浆液聚合工艺一般使用介于约101kPa(1大气压)到约5,070kPa(50大气压)或更大范围内的压力和介于约0℃到约120℃,并且更确切地说约30℃到约100℃范围内的温度。在浆液聚合中,可以在液体聚合稀释剂介质中形成固体粒状聚合物的悬浮液,向所述介质中可以添加乙烯、共聚单体和氢气以及催化剂。间歇或连续从反应器中移出包括稀释剂的悬浮液,其中挥发性组分与聚合物分离并且任选地在蒸馏之后再循环到反应器中。在聚合介质中所采用的液体稀释剂可以是具有3到7个碳原子的烷烃,如分支链烷烃。所采用的介质应在聚合条件下是液体,并且相对惰性。当使用丙烷介质时,所述工艺应在反应稀释剂临界温度和压力以上操作。在一个实施例中,可以采用己烷、异戊烷或异丁烷介质。浆液可以在连续环管系统中循环。
产物聚乙烯的熔融指数比率(MIR或I21/I2)可以在约15到约300,或约15到小于约150,或在多个实施例中约25到约80的范围内。流动指数(FI、HLMI或I21)可以根据ASTMD1238(190℃,21.6kg)测量。熔融指数(MI,I2)可以根据ASTM D1238(在190℃下,2.16kg重量)测量。
密度可以根据ASTM D-792测定。除非另外指出,否则密度表示为克/立方厘米(g/cm3)。聚乙烯的密度可以在较低约0.89g/cm3、约0.90g/cm3或约0.91g/cm3到较高约0.95g/cm3、约0.96g/cm3或约0.97g/cm3范围内。根据ASTM D1895方法B测得的聚乙烯的容积密度可以是约0.25g/cm3到约0.5g/cm3。举例来说,聚乙烯的容积密度可以在较低约0.30g/cm3、约0.32g/cm3或约0.33g/cm3到较高约0.40g/cm3、约0.44g/cm3或约0.48g/cm3范围内。
聚乙烯可以适合于如膜、纤维、非编织物和/或编织物、挤制品和/或模制品的制品。膜的实例包括通过单层挤出、共挤出或层合形成的吹塑或流延膜,其适用作食品接触和非食品接触应用中的收缩膜、保鲜膜(cling film)、拉伸膜、密封膜、定向膜、点心包装、重载袋(heavy duty bag)、杂货袋、烘焙和冷冻食品包装、医用包装、工业衬垫、膜等、农业膜和薄片。纤维的实例包括以编织或非编织形式使用的熔融纺丝、溶液纺丝和熔喷纤维操作,其用于制造过滤器、尿布、卫生产品、医用服装、土工布(geotextile)等。挤制品的实例包括管材、医用管材、电线和电缆涂层、导管、土工膜(geomembrane)以及水池衬垫。模制品的实例包括通过注射成型或旋转成型或吹塑成型工艺所得的单层和多层构造,其呈瓶子、储槽、大型中空制品、刚性食品容器以及玩具等等。
实例
为了更好地理解前文论述,提供以下非限制性实例。除非另外指明,否则所有份数、比例和百分比均以重量计。
如本文所述,向反应物中添加共聚单体(如C4-C8α-烯烃)以及乙烯单体,以在聚乙烯共聚物中产生短链分支(SCB)。聚合物分子内和/或不同分子之间的SCB的类型、含量和分布可以在结晶形态、系连链机率、树脂密度、可加工性、硬度、韧性、光学特性、熔融分布和热密封特性方面对聚合物产生巨大影响。
相比之下,长链分支(LCB)是指长度与线性聚合物链的临界扭结长度相当的分支。此类分支强烈影响聚合物流变学的各个方面并且因此强烈影响制造工艺中的聚合物性能。LCB由于其长松弛性质,还可以通过定向作用而对制品的韧性具有明显影响。可以向聚合物反应物中添加氢气以控制分子量。氢气充当链终止剂,主要置换反应物中的单体或共聚单体分子。由此终止当前聚合物链的形成,并且允许新聚合物链开始。
具有增强的硬度、韧性和可加工性的聚乙烯聚合物
已经研发出多种聚合物催化剂体系以通过在线组成调节(例如使用关于图1所论述的微调催化剂体系)提供不同硬度、韧性和可加工性(S/T/P)组合。这些催化剂体系利用一组催化剂化合物,所述催化剂化合物展示制备宽正交组成分布(BOCD)产物或缺乏长链分支(LCB)的宽组成分布(BCD)产物的潜力,如在此所定义。这种组合允许控制参数来使得S/T/P属性超过现有产品。
使用在两个中试工厂试验中进行的聚合操作来验证这些概念。表1展示在第一中试工厂试验中产生的聚合物。这个试验是使用包括符合化学式(III)的催化剂和含有化学式(IV-A)和(IV-B)的催化剂组合物的催化剂对进行,这些催化剂按不同比率共沉积于SMAO(二氧化硅-甲基铝氧烷)上。所有操作都在约78℃,例如约77.3℃到约78.9℃的温度下进行。
第一试验验证使用固定的一对混合催化剂制备广泛范围的产物的构思,其中不同产物可以通过改变两种催化剂的比率来获得。制得的产物的MI和密度类似于现有产品的MI和密度,从而可以进行吹塑膜评估。
表1中,聚合物1-1、1-8、1-9和1-10是对照样品,其制备是为了与实施例中所述的实验聚合物1-2到1-7比较。对照聚合物1-8和1-9是使用催化剂二甲基硅烷基-双-(四氢茚基)二氯化锆Me2Si(H4Ind)2ZrCl2制备。此催化剂体系和其可以制备的相应聚合物论述于卢(Lue)等人的美国专利第6,255,426号(下文中称“'426专利”)中。聚合物1-1和1-10是使用负载在SMAO上的符合结构(III)的纯净催化剂制备。
对使用示例性混合催化剂体系的第一试验所产生的的聚合物(聚合物1-2到1-4)进行吹塑膜评估,展示与使用其它催化剂所产生的聚合物相比,组合的S/T/P特性相当大地改进。聚合物的可加工性由MIR表示,如表1中所示,其是I-21/I-2的比率。MIR越高,表示聚合物越容易加工。
图2是比较多种不同聚合物的硬度、韧性和可加工性的图200。x轴202表示硬度,如通过针对1%正割模数的平均纵向和横向结果所量测。y轴204表示落镖(g/mil)。图200上所示的数值对应于表2中所列出的结果数。虚线206对应于针对'426专利中所述的聚合物(即对照聚合物1-8和1-9(表2和图2中的结果9-12))所产生的模数与落镖冲击之间的关系。为了测试,针对各种聚合物产生两个不同薄膜计(FG):1mil(25.4μm)和2mil(50.8μm),均按2.5吹胀比(BUR)从60mil(1.52mm)的单一模隙中挤出。对于示例性聚合物来说,结果5-8(较厚膜)表明落镖和硬度均增加。
如图2中所示,示例性聚合物1-2和1-4(表2和图2中的结果5-8)具有与对照聚合物1-1和1-10(表2和图2中的结果1-4)类似的落镖与模数关系,例如落镖随着模数增加而以指数方式减少。但是,与对照聚合物1-8和1-9的关系206相比,实验聚合物1-2和1-4展现相当大改进的落镖与模数关系。此外,实验聚合物1-2和1-4的MIR高于对照1-1和1-10(50-60s相对于20-30s),表明示例性聚合物在同等或类似MI下更容易加工。
所达成的差异进一步说明于表3中。表3是从第一次中试工厂试验中所制备的聚合物所得的结果的表。实验聚合物展示于栏1-2和1-4中,其中身份对应于表1中的聚合物。如关于图2所论述,两种实验聚合物的MIR值高于对照聚合物1-10、1-1、1-9和1-8的值,表明更容易加工的性质。这进一步通过针对电动机负载所获得的值确认,其表明在与可获得总功率成比例的既定输出率下,吹塑膜样品所必需的功率。两种实验聚合物的电动机负载值一般低于对照聚合物的值,并且当基于类似MI进行比较时变得最明显,例如实验聚合物1-2相对于对照聚合物1-10、1-11和1-9。类似地,表3中的能量比输出(E.S.O)的值的比较清楚地证明,对于挤压机的既定功率输入,实验聚合物1-2的输出率高于对照聚合物1-10、1-11和1-9。除可加工性改进外,表3中展示硬度和落镖的值增加,不过这些更清楚地说明于图2的图中。
所测试的替代实施例
第二次中试工厂试验是使用式(III)催化剂的喷雾干燥型式作为基础催化剂,并且将其与四种不同“微调催化剂”(例如式(IV-A和IV-B)、(IV-C)、(IV-D)和(V-A))在线混合。表4展示在第二次中试工厂操作中所产生的聚合物。应注意所述数据提供了通过小规模抽样和均匀化、根据特定级别产生的单一图像。因此,所述值仅仅是可以用本发明的聚合物系统产生的值的实例。第二次试验的关键目标是验证调整构思并研究如何改变产物组成。并非试图实现特定MI/密度目标。按照在此所述的程序制备多种不同的聚合物类型。这些聚合物类型说明现行程序使用微调催化剂方法产生可调节产物的灵活性,并且关于以下表5-8进行论述。
对这次中试工厂操作中所产生的所选树脂和在第一次中试工厂操作中所产生的树脂之一进行膜测试,结果示于表5和表6中。表5中,对照是与聚合物1-8(表1)相同商业级别的不同批料,标记为1-8B。表5中的结果表明由所有实验聚合物1-3(表1)、2-3b和2-4b制成的膜的硬度都与对照类似,但MD撕裂值更高并且落镖值大幅提高,表明韧性改进。此外,所有实验聚合物1-3、2-3b和2-4B还具有较低的电动机负载值和较高的能量比输出(E.S.O)值,表明改进的可加工性,不过此也可能部分归因于熔融指数(I-2)较高。
表6比较针对实验聚合物2-6A所获得的结果,其使用另一种微调系统(表4中所示)控制聚合物特性。四种聚乙烯树脂用作对照聚合物:Exceed 1327CA,获自埃克森美孚化学(ExxonMobil Chemical);ML2610PNX,使用HfP催化剂体系制备;LL3201.69,其为使用1-己烯共聚单体的齐格勒-纳塔催化剂;以及Enable 2705CH,其为一种商业LLDPE。实验聚合物2-6A的硬度类似于对照。但是,实验聚合物2-6A的落镖大幅高于任一比较聚合物,表明了其韧性比对照高得多。此外,撕裂值大幅高于对照值,证实韧性增加。这种类型的聚合物可以制备有效替换使用齐格勒-纳塔(ZN)型催化剂制备的聚合物的树脂。
比较用在此所述的微调系统制备的催化剂的膜特性与用齐格勒催化剂制备的聚合物的掺合物。在第三次中试工厂试验期间,以丁烯(C4)作为共聚单体的两种微调共聚物产物制备为催化剂体系A和催化剂体系B,均使用具有式(III)的催化剂并用式(IV-A)和(IV-B)的催化剂的混合物微调。在常规催化剂体系(如齐格勒-纳塔)的情况下,已知共聚单体1-丁烯(C4)产生的产品品质低于用1-己烯共聚单体制备的产物,但是经济上更有利。基于在此论述的发展,相信在此所述的产物将具有一定程度的BOCD特征,并且因此硬度、韧性和可加工性(S/T/P)比常规ZN-LLC4产物有某种形式的改进。更具体地说,希望实验聚合物将提供优于(ZNLLC4+HP-LDPE)和/或ZN-LLC6的富含LL的掺合物的S/T/P优点,如韧性(例如落镖)。
表7中的数据展示关于实验C4聚合物相对于对照聚合物掺合物LLC4/HPLD之间的比较数据,LLC4/HPLD是由齐格勒-纳塔催化的LLC4产物和LDPE通过高压聚合工艺(HPLD)形成。虽然实验C4聚合物未展示全部各种S/T/P测量值的大幅度改进,但实验聚合物的落镖冲击和纵向(MD)撕裂度展示接近常规ZN-LLC6产物的结果。
从表4-7中的数据可以看出,微调工艺可成功地用于产生具有在此所述的特征的聚合物。因此,各种实施例在气相聚合过程中使用微调工艺产生目标聚合物。
长链分支(LCB)的区别
可以通过对缺乏LCB的本发明树脂与存在LCB的对照树脂(聚合物1-8和聚合物1-9)进行比较来描述使用在此所述的技术所产生的树脂所提供的优点。这可以使用凡戈普-帕尔蒙(vGP)图进行,凡戈普-帕尔蒙(vGP)图已经作为一种检测LCB存在的方式描述于文献中。参见César A.García-Franco等人,“胶凝与长链分支粘弹性行为之间的相似性(Similarities between Gelation and Long Chain Branching ViscoelasticBehavior),”《大分子(Macromolecules)》,第34卷,第10期,第3115-3117页。
图3是凡戈普-帕尔蒙(vGP)图300,其展示在第一中试工厂操作中所产生的产物的比较。x轴302表示频率(弧度/秒),而y轴304表示损耗角(度)。每个图用来自表1的相应标识标记。在ω的关注范围(即,0.1rad/s到251rad/s)内,对照聚合物1-8和对照聚合物1-9展示拐点(包括凹入区段)。此外,已知对照聚合物1-8与1-9均存在LCB。相比之下,所有实验聚合物1-1到1-7都未展示拐点。拐点可以通过vGP图的一阶导数图进一步区分,如图4中所示。
动态剪切粘度和凡戈普-帕尔蒙图
使用Rheometric Scientific的动态应力流变计,在190℃下,使用25mm盘直径和1.5mm间隙的并列盘几何形状,进行小幅度振荡剪切测试。所述测试在2000达因/平方厘米的可控应力下、在0.1rad/sec到251rad/sec的频率下进行,其中对数扫描模式为每十倍频5个点。如图3中所示,用于产生凡戈普-帕尔蒙图的数据可直接从测试结果中获得,例如通过对相角相对于频率作图。
图4是图3的vGP图中所示结果的一阶导数图400。编号相同的项如针对图3所述。图4中每对连续数据点的一阶导数值按一阶导数=[(相角)i+1-(相角)i]/[log(频率)i+1-log(频率)i]计算。在图400中,y轴402表示来自vGP图300的损耗角的一阶导数。如图400中所示,对照聚合物1-8和1-9(表1)展示在一阶导数中极其独特的峰,证实拐点。相比之下,实验聚合物1-2到1-7的一阶导数展示与对照聚合物1-8和1-9的峰值相同位置的负向偏转。虽然一些实验聚合物在约100-200Rad/S之间的频率下展示最终值之尖峰,这是因为测量中的噪音。第二次中试工厂操作中所产生的实验聚合物获得类似结果。
图5是第二次中试工厂操作中所制备树脂的vGP图的一阶导数图500。同编号项如关于图3和图4所论述。至于图4中所示的结果,实验聚合物2-3A到2-6B(表4)与对照聚合物1-8和1-9的值在相同位置展示负偏差。
除缺乏长链分支之外,例如如vGP图中所指示,发现第一和第二中试工厂操作的实验聚合物均具有独特分子量分布(MWD)和短链分支分布(SCBD)。这通过多种技术测定,所述技术包括测定SCB含量的核磁共振(NMR)、测定MWD的凝胶渗透色谱法(GPC),和分级分离聚合物以测定SCBD的温升组成分布(TREF)。
通过CFC测量Tw1、Tw2、Mw1和Mw2
已经研发出一种新技术用于测定MWD与SCBD组成信息,其使用交叉分级分离(CFC)比较实验聚合物与市售竞争产品。用于测定CFC数据的程序更详细地论述于下文呈现的实例中。
图6A和图6B是以图形方式说明用于确定CFC结果的计算的图。仅仅考虑具有MWD数据的洗脱份。在图6A和6B中,x轴602表示洗脱温度(摄氏度),而右手侧y轴604表示已经洗脱的分子量的积分606的值。在这个实例中100%材料已经洗脱时的温度608是约100℃。50%聚合物已经洗脱的点通过积分606确定,其用于每个图分成下半部分610和上半部分612。
图6A和图6B中所示并且在本发明的多个权利要求中所指明的值Tw1、Tw2、Mw1和Mw2来源于如通过仪器软体所报告的CFC数据文件。在CFC数据文件中的“洗脱份概述”章节中,每种洗脱份列有其分离温度(Ti)以及其标准化重量%值(Wi)、累计重量%(即图6A和图6B上的合计重量)以及分子量平均值(包括Mwi)的各种力矩。
为计算Tw1、Tw2、Mw1和Mw2的值,“洗脱份概述”中的数据划分成两个大致相同的一半。每一半的Ti和Mwi的重均值根据重均值的常规定义计算。从Tw1、Tw2、Mw1和Mw2的计算中排除数量不足以根据原始数据文件中的分子量平均值加以处理的洗脱份。
所述方法的第一部分通过图6A说明。依据CFC数据文件中的洗脱份概述章节,鉴别累计重量%((即,合计重量)最接近50的洗脱份(例如图6A上的在84℃下的洗脱份)。洗脱份概述数据分成两半,例如在图6A上,Ti<=84℃作为第1半并且Ti>84℃作为第2半。排除原始数据文件中未报告分子量平均值的洗脱份,例如排除在图6A上Ti在25℃与40℃之间的洗脱份。
图6A中,左手侧y轴610表示所洗脱的洗脱份的重量%612。使用上述程序将曲线分成两半,使用等式1中所示的公式、利用这些值计算每一半的重均洗脱温度。
等式1中,Ti表示每种洗脱份的洗脱温度,并且Wi表示每种所洗脱的洗脱份的标准化重量%(聚合物数量)。对于图6A中所示的实例来说,由此得到前一半的重均洗脱温度64.0℃和后一半的重均洗脱温度91.7℃。
图6B中,左手侧轴618表示每种所洗脱的洗脱份的重均分子量(Mwi)620。使用等式2中所示的公式、利用这些值计算每一半的重均分子量。
等式2中,Mwi表示每种所洗脱的洗脱份的重均分子量,并且Wi表示每种所洗脱的洗脱份的标准化重量%(聚合物数量)。对于图6B中所示的实例来说,由此得到前一半的重均分子量237,539和后一半的重均分子量74,156。使用上述技术计算的值可用于对如表8和图7中所示的实验聚合物和对照聚合物的MWD×SCBD进行分类。
图7是实验聚合物相对于多种市售竞争聚合物的(Mw-1/Mw-2)相对于(Tw-1-Tw-2)的半对数图700。在图700中,x轴702表示第一重均洗脱温度与第二重均洗脱温度之间的差异值。对数标度的y轴704表示第一重均分子量与第二重均分子量的比率。每一种聚合物标识于表8中,表8还列出重均分子量和重均洗脱温度的计算值。实验聚合物得自第一中试工厂操作,并且在表1中定义。
图700通常可以界定四个区域。属于BOCD区域706的聚合物具有宽正交组成分布。BOCD表明聚合物中的较低分子量聚合物链由于例如缺乏短链分支(SCB)而具有高密度,而较高分子量区段由于例如具有较高量的SCB而具有低密度。在常规区域708中,聚合物中的较长聚合物链的密度高于较短聚合物链,其为BOCD区域的镜像。在中心区域710中,聚合物具有均一、但不一定窄的MWD,例如两个一半的Mw1和Mw2彼此类似,但每个一半内的MWD可以窄或宽。在侧面区域712中,聚合物具有均一、但不一定窄的组成分布,例如两个一半的Mw1和Mw2值彼此类似,但每个一半内的TREF曲线的形状不一定窄。作为假设实例,在分成两个相同的一半之后,展现一个单主峰且尾部在其TREF曲线的一个或两个末端的聚合物可属于此类别。这种假设聚合物的Tw1和Tw2值可彼此接近,但TREF曲线上的其尾部可以使聚合物无具有窄SCBD的资格。
可以看出,实验聚合物1-2和1-4以及对照聚合物1-1和1-10在BOCD区域706中,表明大部分商业聚合物的MWD和SCBD不同。对照聚合物1-1和1-10的MIR不同于实验聚合物,对照聚合物1-1和1-10的MIR大幅低于实验聚合物1-2和1-4。一种商业聚合物G稍微处于BOCD区域706中,而且具有低MIR(约30)。
因此,使用上述技术可以鉴别具有BOCD的聚合物。因此,技术可用于根据分布来筛选新颖聚合物并控制聚合物产生以瞄准BOCD区域706中的特定位置。
物理测试程序
交叉分离色谱法(CFC)
交叉分离色谱法(CFC)在得自Polymer Char,Valencia,Spain的CFC-2仪器上进行。操作仪器,并且根据随仪器提供的CFC用户手册中所述的方式或按所属领域中常用的方式进行后续数据处理,例如修匀参数、设定基线和界定积分限值。仪器在第一维度上装备有TREF管柱(不锈钢;o.d.,3/8”;长度,15cm;堆积无孔不锈钢微珠)并且在第二维度上装备GPC管柱组(得自Polymer Labs,UK的3×PLgel 10μm混合型B管柱)。GPC管柱下游是红外检测器(得自Polymer Char的IR4),其能够产生与溶液中之聚合物浓度成比例的吸光度信号。
待分析的样品通过在150℃下搅拌75分钟而溶解于邻二氯苯中,浓度为约5mg/ml。接着将含有2.5mg聚合物的0.5ml体积溶液装载于TREF管柱的中心,并且降低柱温并在约120℃下稳定30分钟。接着将管柱缓慢冷却(0.2℃/min)到30℃(环境操作)或-15℃(低温操作)以使聚合物在惰性载体上结晶。保持低温10分钟,接着将可溶性洗脱份注射到GPC管柱中。所有GPC分析都使用1ml/min溶剂邻二氯苯、140℃的柱温和“重叠GPC注射”模式进行。接着如下分析后续较高温度的溶离份:以逐步方式提高TREF柱温到洗脱份设定点,使聚合物溶解16分钟(“分析时间”)并且将溶解的聚合物注射到GPC管柱中历时3分钟(“洗脱时间”)。
利用通用校准方法测定洗脱聚合物的分子量。利用1.5-8200Kg/mol范围内的十三种窄分子量分布聚苯乙烯标准(获自Polymer Labs,UK)产生通用校准曲线。马克-霍温克参数(Mark-Houwink parameter)是从S.莫里(S.Mori)和H.G.巴特(H.G.Barth)的“尺寸排阻色谱法(Size Exclusion Chromatography)”的附录I(施普林格出版社(Springer))获得。对于聚苯乙烯来说,使用K=1.38×10-4dl/g和α=0.7;并且对于聚乙烯来说,使用K=5.05×10-4dl/g和α=0.693。不处理回收重量%(如仪器软件所报告)小于0.5%的洗脱份用于计算个别洗脱份或洗脱份聚集物的分子量平均值(Mn、Mw等)。
聚合物的数据表:
表1:第一次中试工厂试验中所产生的聚合物
表2:图2的催化剂身份和聚合物参数
结果编号 聚合物标识(来自表1) 膜厚度(密耳)
1 1-10 2
2 1-10 1
3 1-1 2
4 1-1 1
5 1-2 2
6 1-2 1
7 1-4 2
8 1-4 1
9 1-8 2
10 1-8 1
11 1-9 2
12 1-9 1
表3:得自第一次中试工厂操作的聚合物的数据
表4:在使用微调添加的第二次中试工厂试验中所产生的聚合物
表5:来自第二次中试工厂操作的比较性膜结果
表6:来自第二次中试工厂操作的进一步比较膜结果
表7:微调过程中形成的聚合物与掺合物的比较,所有聚合物都使用1-丁烯共聚单体
表8:具有相同半部的低温-CFC分析的概述
用于形成催化剂组分的通用程序
所有操控均在N2吹扫的手套箱中或使用标准希莱克技术(Schlenk technique)来进行。所有无水溶剂均购自西格玛-奥德里奇公司(Sigma-Aldrich)并且在使用之前,进行脱气和经煅烧的Al2O3珠粒干燥。用于催化剂制备的甲苯在使用之前用Al2O3珠粒进行预干燥,接着经SMAO 757干燥。氘化溶剂购自剑桥同位素实验室(Cambridge IsotopeLaboratories)并且在使用之前,进行脱气和经氧化铝珠粒干燥。所用试剂购自西格玛-奥德里奇公司,以下除外:99+%ZrCl4购自施特雷姆化学公司(Strem Chemicals),双(正丙基-环戊二烯基)铪二甲基(HfPMe2)购自博尔德科学公司(Boulder Scientific)并且内消旋-O-(SiMe2茚基)2ZrCl2(V-A)购自Süd-Chemie Catalytica。1H在250Mz或500Mz布鲁克光谱仪(Bruker spectrometer)上记录NMR测量值。
茚基锂
将50.43g(434.14mmol)刚蒸馏的茚溶解于1L戊烷中并且添加约25mL Et2O。在5分钟期间内,将268.47mL(429.55mmol)含有1.6M正丁基锂的己烷添加到透明搅拌溶液中。添加正丁基锂时,有白色固体沉淀,并且上清液呈现淡黄色。搅拌过夜之后,过滤悬浮液,并且真空干燥白色固体。回收46.51g(380.95mmol)产物,产率为88.7%。1H NMR(THF-d8):δ5.91(2H,d),6.44(2H,m),6.51(1H,t),7.31(2H,m)。
茚基锂,程序II
将刚蒸馏的茚(50.43g,434.1mmol)溶解于1L戊烷中。在5分钟期间内向透明搅拌溶液中添加Et2O(25mL),接着添加含有1.6M正丁基锂的己烷(268.5mL,429.6mmol)。白色固体沉淀,并且上清液呈现淡黄色。搅拌过夜之后,过滤悬浮液,接着真空干燥,得到白色固体(46.51g,381.0mmol,88.7%)。1H NMR(THF-d8):δ5.91(d,2H),6.44(m,2H),6.51(t,1H),7.31(m,2H)。
1-乙基茚
将46.51g(380.95mmol)茚基锂溶解于250mL Et2O中,并且用95.94g(615.12mmol)碘乙烷在400mL Et2O中制成单独溶液。使用干冰/丙酮浴使碘乙烷溶液冷却到-30℃,并且使茚基锂溶液冷却到0℃-10℃。通过导管转移将茚基锂添加到碘乙烷的透明搅拌溶液中。在添加茚基锂溶液后,溶液变成淡黄色到黄色。使反应物搅拌过夜并且缓慢升温到室温。在搅拌过夜之后,将烧瓶放入箱中,并且真空浓缩Et2O。一旦LiI开始沉淀,添加300mL戊烷,并且过滤白色悬浮液,得到淡橙色溶液。蒸发戊烷,其中更多LiI沉淀,并且获得淡橙色油状液体。使用旋转真空泵在减压下蒸馏粗产物,得到微黄色透明液体。1H NMR展示约90%1-乙基茚和约10%3-乙基茚。因为在粗物质1H NMR谱中没有异构化存在,所以可能的异构化可能是由于蒸馏期间存在的少量酸而发生。分离出44.27g(306.96mmol)产物,产率80.6%。1HNMR(CD2Cl2):δ0.96(3H,t),1.59(1H,q),1.99(1H,q),3.41(1H,m),6.58(1H,d),6.59(1H,d),7.24(2H,m),7.41(2H,dd)。
1-乙基茚基锂
将44.27g(306.98mmol)含有约10%3-乙基茚的1-乙基茚溶解于500mL戊烷和约3mL Et2O中。在5分钟期间内,将188.28mL(301.25mmol)含有1.6M正丁基锂的己烷添加到透明搅拌溶液中。立即形成片状白色沉淀物,并且使搅拌停止。手动搅拌混合物以确保试剂恰当并入,并且使悬浮液静置过夜。过滤悬浮液,并且真空干燥白色固体。获得43.27g(288.18mmol)产物,产率95.7%。1H NMR(THF-d8):δ1.26(3H,三重峰),2.86(2H,四重峰),5.72(双重峰,1H),6.38(dd 1H),6.43(2H,m),7.26(1H,t),7.30(1H,m)。
外消旋和内消旋-双(1-乙基-茚基)锆二甲基(1-EtInd)2ZrMe2,化学式(IV-A)和化学式(IV-B)
将7.00g(46.65mmol)1-乙基-茚基锂溶解于74mL 1,2-二甲氧基乙烷(DME)中,并且用5.43g(23.30mmol)ZrCl4在75mL DME中制成单独溶液。在十五分钟期间内通过移液管向透明的ZrCl4溶液中添加1-乙基-茚基锂鲜黄色溶液。在开始添加后,溶液呈现黄色,并且在添加5分钟之后,有沉淀物形成并且随之出现橙黄色。在添加10分钟时,上清液变成橙色,伴有黄色沉淀物,并且一旦添加所有1-乙基-茚基锂溶液,混合物变回黄色。使反应物搅拌过夜。
粗浆液的1H NMR谱展示外消旋/内消旋比率为约1.1:1;然而,因为外消旋异构体比内消旋异构体更可溶于DME中,所以这可能具有误导性。不论异构体比率,在十分钟内按1mL逐份添加15.61mL(46.83mmol)含有3.0M CH3MgBr的Et2O。在第十次添加之后,黄色混合物变成橙色。最后添加格林纳试剂(Grignard reagent)时,混合物变成棕色,并且使反应物搅拌过夜。粗混合物的1H NMR谱揭露1.1:1内消旋/外消旋比率。蒸发DME,并且用3×20mL甲苯加额外10mL萃取棕色固体。去除溶剂之后所获得的淡棕色固体用10mL戊烷洗涤并且真空干燥。获得8.26g(20.26mmol)灰白色固体,产率87%。二氯化物谱数据:1H NMR(CD2Cl2):δ1.16(6.34H,t,外消旋),1.24(6H,t,内消旋),2.73-2.97(8H,重叠q),5.69(1.82H,dd,内消旋),5.94(1.92H,dd,外消旋),6.06(1.99H,d,外消旋),6.35(1.84H,d,内消旋),7.22-7.65(16H,m)。二甲基谱数据:1H NMR(C6D6):δ-1.40(3.33H,s,内消旋),-0.895(6H,s,外消旋),-0.323(3.34H,s,内消旋),1.07(13H,重叠t),2.47(4H,重叠q),2.72(4H,q),5.45-5.52(8H,m),6.91(8H,m),7.06-7.13(4H,m),7.30(4H,m)。
第1批75%HfPMe2/25%(1-EtInd)2ZrMe2催化剂制备
向8L颈摩尔顿烧瓶(Morton flask)中装入375g SMAO,接着添加2L戊烷。混合物结块,令搅拌困难,因此添加另外2L的戊烷,接着添加375g SMAO。机械搅拌器设定为约140rpm。用2.89g(7.09mmol)(1-EtInd)2ZrMe2和8.86g(20.95mmol)HfPMe2在20mL甲苯中制得两种单独溶液。将单独溶液添加到圆底烧瓶中并添加额外160mL甲苯,并且使溶液搅拌约20分钟。在一小时期间内,用加料漏斗将溶液逐滴添加到SMAO于戊烷中的浆液中。在添加混合茂金属溶液时混合物变成绿色,并再搅拌一小时。接着逐批过滤混合物,并且真空干燥总共8小时。重要的是注意到戊烷中存在约7个Al2O3珠粒,并且在制备期间还存在痕量红色固体。在过滤期间手动并通过筛分最终产物去除Al2O3珠粒。
第2批75%HfPMe2/25%(1-EtInd)2ZrMe2催化剂制备
第二批75/25催化剂采用与上文所描述类似的程序。使用SMAO的混合物,其包含得自第一次操作的204.15g、得自第二次操作的176.17g、得自第三次操作的209.49g和得自第四次操作的160.19g。对于第二批来说,首先向摩尔顿烧瓶中添加4L戊烷,接着添加SMAO,因此不出现结块。用2.87g(7.09mmol)(1-EtInd)2ZrMe2和8.94g(20.95mmol)HfPMe2在20mL甲苯中制得两种单独溶液。
第1和2批50%HfPMe2/50%(1-EtInd)2ZrMe2催化剂制备
两组50/50催化剂使用用于制备第二批75/25催化剂的相同程序。第1批使用得自第四次操作的SMAO、5.75g(14.10mmol)(1-EtInd)2ZrMe2和5.97g(14.11mmol)HfPMe2。第2批使用得自第五次操作的SMAO、5.75g(14.09mmol)(1-EtInd)2ZrMe2和5.97g(14.11mmol)HfPMe2
2,3,4,5-四甲基-1-三甲基硅烷基-环戊并-2,4-二烯
在2升锥形瓶中,将四甲基环戊二烯(50g,409mmol,获自博尔德科学公司)黄色油状物溶解于1升无水THF中。在室温下搅拌,同时通过配有调节逐滴流动的20号针的60ml塑料注射器添加正丁基锂(175ml,437mmol)。观察到浅黄色沉淀物形成。锂试剂完全添加后,反应物是黄色浆液。在室温下搅拌1小时,接着在剧烈搅拌下添加氯三甲基硅烷(60ml,470mmol),并且使反应物在室温下搅拌过夜。在室温下搅拌15小时之后,混合物是黄色溶液。在N2气流下去除THF溶剂,得到油状残余物,接着用1升无水戊烷进行萃取,并且在粗玻璃料上通过硅藻土垫过滤。在真空下去除挥发物,得到呈黄色油状的产物:62.9g,79%。1HNMR(C6D6,250MHz):δ-0.04(s,Si(CH3)3),δ1.81,(s,CH3),δ1.90(s,CH3),δ2.67(s,CH)
(四甲基环戊二烯基)三氯化锆
在干燥箱中,向具有磁性搅拌子的450ml Chemglass压力容器中装入固体ZrCl4(30.0g,129mmol),悬浮于100ml无水甲苯中。施配呈黄色油状的2,3,4,5-四甲基-1-三甲基硅烷基-环戊并-2,4-二烯(27.5g,142mmol),并且用额外100ml无水甲苯冲洗。用具有VitonO形环的螺纹盖密封压力容器,并且在适配的铝加热套上加热到110℃持续90分钟。溶液随时间变深,并且在反应期间存在不溶物。使容器搅拌过夜,并且冷却到室温。打开容器,并且在N2气流下浓缩溶剂体积,得到红色稠淤渣。用2×50ml无水戊萃取烷,接着用100ml无水乙醚萃取。去除红色溶液,回收呈浅红色固体状的产物:35.4g,85%。1H NMR(C6D6,250MHz):δ1.89(br s,CH3),δ2.05(br s,CH3),δ5.78(br s,CH)
1-甲基-茚基锂
将刚蒸馏的3-甲基茚(33.75g,259.24mmol)溶解于戊烷(1L)中。向透明搅拌溶液中添加Et2O(10ml),接着添加含有1.6M正丁基锂的己烷(107mL,171.2mmol)和含有2.5M正丁基锂的己烷(34.2mL,85.5mmol)。立即有片状白色固体沉淀。在搅拌过夜之后,过滤悬浮液并且真空中干燥白色固体(33.88g,248.90mmol,97%)。1H NMR(THF-d8):δ2.41(s,3H),5.68(d,1H),6.31(d,1H),6.41(m,2H),7.22(m,2H)。
1,3-二甲基茚
在干燥箱中,在具有磁性搅拌子的250ml圆底烧瓶中将碘甲烷(2.0ml,32.1mmol)溶解于80ml无水乙醚中。将烧瓶于宽口杜瓦瓶(dewar)中放置于异己烷冷却浴(-25℃)中。在单独100ml锥形瓶中,制备1-甲基茚基锂(3.50g,25.7mmol)于50ml无水乙醚中的室温溶液,得到黄色溶液。历经15分钟将茚基锂溶液缓慢逐滴添加到碘甲烷的冷搅拌溶液中。在低温下继续搅拌30分钟,接着去除冷却浴,并且使反应物升温到室温过夜。在室温下搅拌15小时之后,溶液呈浑浊白色。在氮气流下浓缩溶液体积,接着在高真空下蒸发挥发物。用2×80ml异己烷萃取固体,并且在粗玻璃料上通过硅藻土垫过滤。在高真空下蒸发滤液,得到棕色油状物。溶解于5ml二氯甲烷中并且通过移液管加载到硅胶管柱(Biotage SNAP 100g)上,用二氯甲烷:异己烷(梯度2%-20%)洗脱。合并洗脱份并且蒸发,得到透明油状物。收集2.54g,68%。1H NMR(C6D6,500MHz):δ1.11(d,J=7.5Hz,-CHCH3),δ1.96(s,CH=CCH3),δ3.22(m,CHCH3),δ5.91(m,CH=CCH3),δ7.15-7.27(芳香族CH)。混合物含有次要异构体3,3-二甲基茚与所要产物,比率为1:10。δ1.17(s,CH3),δ6.14(d,J=5.5Hz,CHH),δ6.51(d,J=5.5Hz,CHH)。
1,3-二甲基茚基锂
将2.54g(17.6mmol)透明油状物(1,3-二甲基茚和3,3-二甲基茚的10:1混合物)溶解于35ml无水戊烷中。在室温下搅拌,同时缓慢逐滴添加6.2ml正丁基锂(15.5mmol)的2.5M己烷溶液。立即有白色沉淀物形成。在室温下搅拌45分钟,接着通过导管过滤上清液。将残余物悬浮在30ml无水戊烷中,并且在干燥箱冷冻机(-27℃)中冷却60分钟。过滤上清液,并且真空干燥,得到白色粉末2.34g(88%),并且不经表征即按原样用于后续反应步骤。
[(1,3-二甲基茚基)(四甲基环戊二烯基)]二氯化锆,化学式(IV-D)
称取3.50g(10.98mmol)(四甲基环戊二烯基)三氯化锆褐色粉末,置于具有磁性搅拌子的100ml平底玻璃瓶中。悬浮于80ml无水乙醚中。搅拌,同时历经若干分钟添加呈粉末形式的1,3-二甲基茚基锂(1.65g,10.99mmol)。用额外20ml乙醚冲洗。给瓶子加盖,并且在室温下搅拌过夜。在室温下搅拌15小时之后,混合物成为黄色浆液。在高真空下蒸发挥发物,接着用2×80ml二氯甲烷萃取残余物。在粗玻璃料上通过硅藻土垫过滤。真空浓缩,并且再次在粗玻璃料上通过新鲜硅藻土过滤。真空干燥,得到自由流动的黄色粉末3.6g(77%)。1HNMR(CD2Cl2,500MHz):δ1.89(s,CpMe4中的CH3),δ1.90(s,CpMe4中的CH3),δ2.40(s,C9片段中的CH3),δ5.67(s,CpMe4中的CH),δ6.33(s,C9片段中的CH),δ7.24(AA'BB',C9片段中的芳香族CH),δ7.52(AA'BB',C9片段中的芳香族CH)。含有约15%乙醚。
[(1,3-二甲基茚基)(四甲基环戊二烯基)]锆二甲基,化学式(IV-D)
在干燥箱中,在具有磁性搅拌子的100ml琥珀色平底玻璃瓶中将(1,3-Me2Ind)(CpMe4)ZrCl2(3.6g,8.4mmol)鲜黄色粉末悬浮于75ml无水乙醚中。将瓶子在异己烷浴中冷却到-10℃,搅拌,同时通过注射器逐份(4×3ml,19.2mmol)递送甲基锂溶液(1.6M于乙醚中)。用隔片将瓶子盖好,并且搅拌过夜,使冷却浴缓慢升温到室温。在高真空下将浆液蒸发到干燥。用3×50ml二氯甲烷萃取,并且在粗玻璃料上通过硅藻土过滤。在氮气流下浓缩,接着添加戊烷。搅拌15分钟,接着蒸发挥发物。用冷戊烷洗涤固体,真空干燥。收集褐色粉末1.67g;从滤液中回收第二批料0.52g。合并产生2.19g,67%。1H NMR(CD2Cl2,500MHz):-1.22(s,ZrCH3),1.78(s,CpMe4片段中的CH3),1.87(s,CpMe4片段中的CH3),2.25(s,C9片段中的CH3),4.92(s,CpMe4片段中的CH),5.60(s,C9片段中的CH),7.14(AA'BB',C9片段中的芳香族CH),7.44(AA'BB',C9片段中的芳香族CH)。13C{1H}NMR(CD2Cl2,125MHz):11.64(CpMe4片段中的CH3),12.91(C9片段中的CH3),13.25(CpMe4片段中的CH3),37.23(ZrCH3),106.34(CpMe4片段中的CH),115.55(C9片段中的CH);四元13C共振107.36,117.51,122.69,125.06。
(1-甲基茚基)(五甲基环戊二烯基)二氯化锆(IV),式(IV-C)的氯化物型式
在干燥箱中,称取1-甲基-1H-茚油状物(1.85g,14.2mmol)置于250ml圆底烧瓶中,并且溶解于25ml无水乙醚中。利用20ml针/注射器逐滴添加正丁基锂(1.6M于己烷中,12.0ml,19.2mmol),形成黄色溶液。在室温下搅拌60分钟。向(1-甲基)茚基锂的黄橙色溶液中一次性快速添加呈黄色结晶固体形式的Cp*ZrCl3(4.51g,13.5mmol,购自奥德里奇-475181,原样使用)。在室温下搅拌黄橙色浆液过夜。将混合物静置30分钟。从淡黄色固体中倾析出深棕色溶液,在玻璃料上用100ml无水乙醚冲洗固体。在玻璃料上用100ml二氯甲烷萃取固体,得到黄色悬浮液。在玻璃料上通过硅藻土塞过滤,并且蒸发挥发物,得到黄色固体。从乙醚/戊烷中再结晶,得到2.70g(47%)。从母液中获得额外材料:1.19g(20%)1H NMR(C6D6,500MHz,35℃):δ1.70(15H,s,Cp*),δ2.30(3H,s,茚基CH3),δ5.56(2H,ABq,茚基CH,CH),δ7.05(1H,dd,茚基CH),δ7.10(1H,dd,茚基CH),δ7.24(1H,dt,茚基CH),δ7.56(1H,dq,茚基CH)。
(1-甲基茚基)(五甲基环戊二烯基)锆(IV)二甲基,式(IV-C)
将(1-甲基茚基)(五甲基环戊二烯基)二氯化锆(4.92g,11.5mmol)在50mL乙醚中制成浆液,并且冷却到-50℃。通过注射器向其中缓慢添加MeLi溶液(14.8mL于乙醚中的1.71M溶液,25.4mmol)。搅拌混合物,并且缓慢升温到室温,得到粉红色浆液。在16小时之后,在真空下去除溶剂,并且用甲苯萃取残余物。通过经过衬有硅藻土的玻璃料过滤来去除不溶物,并且去除溶剂,得到橙色油状固体。用戊烷洗涤固体,并且在真空下干燥(3.89g,产率88%)。1H NMRδ(C6D6):7.53(d,1H,8-IndH),7.13-6.99(m,3H,5,6,7-IndH),5.21(d,1H,2-IndH),5.11(d,1H,3-IndH),2.20(s,3H,1-MeInd),1.69(s,15H,CpMe5),-0.51(s,3H,ZrMe),-1.45(s,3H,ZrMe)。
制备内消旋-O-(SiMe2茚基)2ZrMe2
将内消旋-O-(SiMe2茚基)2ZrCl2(21.2g;40.6mmol)在乙醚(约250mL)制成浆液,并在搅拌下添加MeMgBr(28.4mL;3.0M于乙醚中;85.2mmol)。在室温下搅拌2小时之后,在真空下去除乙醚并将所得固体用庚烷(250mL,80℃)萃取,接着过滤。冷却到-35℃过夜之后,黄色结晶固体通过过滤分离,接着用戊烷洗涤并在真空下干燥;产量=13g。1H NMRδ(C6D6):7.54(m,2H);7.40(m,2H);7.00(m,2H);6.93(m,2H);6.31(m,2H);5.82(m,2H);0.44(s,6H);0.33(s,6H);-0.02(s,3H);-2.08(s,3H)。
在610℃下使二氧化硅脱水
向配备有3段加热器的脱水器(6英尺长度,6.25直径)中装入Ineos ES757二氧化硅(3969g),接着用干燥N2气体、按0.12ft3/s的流动速率流体化。之后,在2小时期间内将温度升高到200℃。在200℃下保持2小时之后,在6小时期间内使温度升高到610℃。在610℃下保持4小时之后,在12小时期间内使温度冷却到环境温度。在N2下将二氧化硅转移到APC罐中,接着在N2压力(20psig)下储存。
制备负载于二氧化硅上的甲基铝氧烷(SMAO)
在典型程序中,向甲苯(2L)和甲基铝氧烷于甲苯中的30wt%溶液(874g,4.52mol)的搅拌(顶置式机械锥形搅拌器)混合物中添加在610℃下脱水的Ineos ES757二氧化硅(741g)。对二氧化硅追加甲苯(200mL),接着将混合物加热到90℃持续3小时。之后,通过施加真空和温和加热(40℃)过夜来去除挥发物,接着使固体冷却到室温。
R124中试工厂测试用的典型大规模催化剂制备
向5L 3颈摩尔顿烧瓶中装入戊烷(4L),接着用机械搅拌器搅拌(140rpm),同时装入SMAO(375g)。在一小时过程中用加料漏斗添加含有(1-EtInd)2ZrMe2、HfPMe2和甲苯的溶液。浆液呈现绿色并且再搅拌一小时。接着过滤混合物并且真空干燥总共8小时。
催化剂的混合
表8:所测试的催化剂混合物
将两个75/25批次合并于4L奈尔津瓶(Nalgene bottle)中,并且通过旋转和振荡瓶子来手动混合。两个50/50批次也以相同方式混合。通过将催化剂二甲基络合物溶解于无水并且脱气的异戊烷中以形成0.015重量%到0.02重量%的溶液来制备微调溶液。
所有数值是“大约”或“大致”的指定值,并且考虑所属领域的技术人员会估计到的实验误差和变化。此外,上文已定义多个术语。在权利要求书中所用术语未定义如上的情况下,应给出如至少一种印刷出版物或颁发专利中所反映的相关技术人员已针对所述术语给出的最广泛定义。另外,本申请案中引用的所有专利、测试程序和其它文件全部以引用的方式并入,并入的程度就像此类披露内容不会与本申请不一致并且允许此类并入的所有权限。
虽然前述内容是针对本发明的实施例,但可设计出本发明的其它和另外实施例而这些实施例不会偏离本发明的基本范围,并且本发明范围是由随附的权利要求书确定。

Claims (10)

1.一种聚合物,其包含乙烯和至少一种具有4到20个碳原子的α-烯烃,其中所述聚合物是通过微调催化剂体系形成,所述催化剂体系包含含有双(正丙基环戊二烯基)铪(R1)(R2)的负载型催化剂和含有内消旋-O(SiMe2Ind)2Zr(R1)(R2)的微调催化剂,其中R1和R2各自独立地是氯、氟或烃基,和
其中所述聚合物不存在长链分支,不存在长链分支通过如下显示:在190℃在0.1rad/s至300rad/s频率的凡戈普-帕尔蒙(van GurpPalmen;vGP)图中的一阶导数具有负偏差,所述聚合物的熔融指数比率,即根据ASTM D1238测定的流动指数(I21)/根据ASTM D1238测定的熔融指数(I2)为15到80,和密度为0.89到0.93g/cm3
2.根据权利要求1所述的聚合物,其中所述α-烯烃包含1-己烯。
3.根据权利要求1所述的聚合物,其中所述聚合物具有:
至少2.0的Mw1/Mw2值,其中Mw1/Mw2是升温淋洗(TREF)曲线前一半的重均分子量(Mw)与所述TREF曲线后一半的Mw的比率;以及
小于-25℃的Tw1-Tw2值,其中Tw1-Tw2为所述TREF曲线前一半的重均洗脱温度(Tw)与所述TREF曲线后一半的Tw的差值。
4.根据权利要求1所述的聚合物,其中所述聚合物在190℃在0.1rad/s至300rad/s频率的凡戈普-帕尔蒙(vGP)图中没有拐点。
5.根据权利要求1所述的聚合物,其包含:
通过所述微调催化剂形成的较低分子量聚合物和通过所述负载型催化剂形成的较高分子量聚合物,其中:
较低分子量聚合物与较高分子量聚合物的密度的差异大于0.02g/cm3
所述微调催化剂与所述负载型催化剂的摩尔比率为1:1至1:10。
6.根据权利要求1所述的聚合物,其中所述微调催化剂进一步包含由下式表示的化合物:
其中R1和R2各自独立地是氯、氟或烃基。
7.根据权利要求1所述的聚合物,其包含通过催化剂体系形成的聚合物链,所述催化剂体系包含由下式之一表示的化合物:
CpACpBMXn或CpA(A)CpBMXn
其中M是第4族、第5族或第6族原子;CpA和CpB各自结合于M且独立地选自以下配体:环戊二烯基配体、取代的环戊二烯基配体、与环戊二烯基等瓣的配体和与环戊二烯基等瓣的取代的配体;(A)是与CpA和CpB两者结合的二价桥连基,所述二价桥连基选自二价Cl到C20烃基和Cl到C20含杂原子烃基,其中所述含杂原子烃基包含一到三个杂原子;X是选自以下的离去基团:氯离子、溴离子、C1到C10烷基和C2到C12烯基、羧酸根、乙酰丙酮根和醇盐;并且n是整数1到3。
8.根据权利要求1所述的聚合物,其包含的通过所述负载型催化剂形成的聚合物与通过所述微调催化剂形成的聚合物的比率为1:1至1:5。
9.一种聚合物,其包含乙烯和至少一种具有4到20个碳原子的α烯烃,其中所述聚合物已在单一反应器中通过共负载型催化剂形成;并且其中所述聚合物具有:
0.915至0.935g/cm3的密度;
大于30,000psi的平均模数;
大于350g/密耳的落镖冲击强度;
大于15的熔融指数比率(MIR);以及
所述聚合物不存在长链分支,不存在长链分支通过如下显示:在190℃在0.1rad/s至200rad/s频率的凡戈普-帕尔蒙(vGP)图中不存在负拐点。
10.根据权利要求1所述的聚合物,其中所述烃基进一步包含甲基。
CN201580008297.9A 2014-02-11 2015-02-10 制造硬度、韧性和可加工性改进的聚烯烃产物 Active CN106029711B (zh)

Applications Claiming Priority (19)

Application Number Priority Date Filing Date Title
US201461938472P 2014-02-11 2014-02-11
US201461938466P 2014-02-11 2014-02-11
US61/938,472 2014-02-11
US61/938,466 2014-02-11
US201461981291P 2014-04-18 2014-04-18
US61/981,291 2014-04-18
US201461985151P 2014-04-28 2014-04-28
US61/985,151 2014-04-28
US201462032383P 2014-08-01 2014-08-01
US62/032,383 2014-08-01
US201462087905P 2014-12-05 2014-12-05
US201462088196P 2014-12-05 2014-12-05
US201462087911P 2014-12-05 2014-12-05
US201462087914P 2014-12-05 2014-12-05
US62/087,914 2014-12-05
US62/087,911 2014-12-05
US62/088,196 2014-12-05
US62/087,905 2014-12-05
PCT/US2015/015120 WO2015123165A2 (en) 2014-02-11 2015-02-10 Producing polyolefin products with improved stiffness, toughness, and processability

Publications (2)

Publication Number Publication Date
CN106029711A CN106029711A (zh) 2016-10-12
CN106029711B true CN106029711B (zh) 2019-05-10

Family

ID=52573736

Family Applications (14)

Application Number Title Priority Date Filing Date
CN201580008192.3A Active CN105980424B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物
CN201580008294.5A Active CN105992776B (zh) 2014-02-11 2015-02-10 制造硬度、韧性和可加工性改进的聚烯烃产物
CN201580008253.6A Active CN106029710B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物
CN201580008195.7A Active CN106034402B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物
CN201811354190.1A Active CN109535299B (zh) 2014-02-11 2015-02-10 制备乙烯共聚物的方法
CN201910457197.4A Active CN110330581B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物
CN202210249339.XA Active CN114805656B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物
CN201580008297.9A Active CN106029711B (zh) 2014-02-11 2015-02-10 制造硬度、韧性和可加工性改进的聚烯烃产物
CN201580008214.6A Active CN105992775B (zh) 2014-02-11 2015-02-10 制备乙烯共聚物的方法
CN201910457198.9A Active CN110330582B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物
CN201580007889.9A Active CN105980423B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物
CN201910851602.0A Active CN110540612B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物
CN201580008114.3A Active CN106062016B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物
CN201580008302.6A Active CN106029712B (zh) 2014-02-11 2015-02-10 聚乙烯的制造方法和其聚乙烯

Family Applications Before (7)

Application Number Title Priority Date Filing Date
CN201580008192.3A Active CN105980424B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物
CN201580008294.5A Active CN105992776B (zh) 2014-02-11 2015-02-10 制造硬度、韧性和可加工性改进的聚烯烃产物
CN201580008253.6A Active CN106029710B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物
CN201580008195.7A Active CN106034402B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物
CN201811354190.1A Active CN109535299B (zh) 2014-02-11 2015-02-10 制备乙烯共聚物的方法
CN201910457197.4A Active CN110330581B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物
CN202210249339.XA Active CN114805656B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物

Family Applications After (6)

Application Number Title Priority Date Filing Date
CN201580008214.6A Active CN105992775B (zh) 2014-02-11 2015-02-10 制备乙烯共聚物的方法
CN201910457198.9A Active CN110330582B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物
CN201580007889.9A Active CN105980423B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物
CN201910851602.0A Active CN110540612B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物
CN201580008114.3A Active CN106062016B (zh) 2014-02-11 2015-02-10 制造聚烯烃产物
CN201580008302.6A Active CN106029712B (zh) 2014-02-11 2015-02-10 聚乙烯的制造方法和其聚乙烯

Country Status (16)

Country Link
US (23) US9879106B2 (zh)
EP (21) EP3998293A1 (zh)
JP (19) JP6527165B2 (zh)
KR (18) KR102496899B1 (zh)
CN (14) CN105980424B (zh)
AU (14) AU2015217394B2 (zh)
BR (9) BR112016019334B1 (zh)
CA (8) CA3206038A1 (zh)
ES (7) ES2858098T3 (zh)
MX (21) MX2016010307A (zh)
MY (7) MY186379A (zh)
PH (9) PH12016501555A1 (zh)
RU (12) RU2734065C9 (zh)
SA (10) SA519401457B1 (zh)
SG (20) SG10201800002WA (zh)
WO (9) WO2015123179A1 (zh)

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015123179A1 (en) * 2014-02-11 2015-08-20 Univation Technologies, Llc Producing polyolefin products
CN106574014B (zh) * 2014-06-16 2021-04-16 尤尼威蒂恩技术有限责任公司 修改聚乙烯树脂的熔体流动比率和/或溶胀的方法
CN107531837B (zh) 2015-04-23 2021-10-15 尤尼威蒂恩技术有限责任公司 具有特定共聚单体分布的聚乙烯共聚物
FR3043687B1 (fr) * 2015-11-13 2020-07-03 Universite Blaise Pascal Clermont Ii Procede sol-gel de synthese d'un materiau luminescent de formulation generale axbyfz:mn
KR101711788B1 (ko) * 2016-03-09 2017-03-14 한화케미칼 주식회사 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀
SG11201808179SA (en) * 2016-03-31 2018-10-30 Dow Global Technologies Llc An olefin polymerization catalyst
CN109071844A (zh) * 2016-04-22 2018-12-21 埃克森美孚化学专利公司 聚乙烯片材
US10302621B2 (en) 2016-06-15 2019-05-28 Exxonmobil Chemical Patents Inc. Methods for characterizing branching distribution in polymers
ES2728941T3 (es) * 2016-09-12 2019-10-29 Thai Polyethylene Co Ltd Película de polietileno multimodal
CN109963714B (zh) * 2016-09-29 2021-09-10 陶氏环球技术有限责任公司 具有高粘附力的多层拉伸膜及其方法
SG11201901900SA (en) * 2016-10-05 2019-04-29 Exxonmobil Chemical Patents Inc Sterically hindered metallocenes, synthesis and use
US10882932B2 (en) 2016-10-05 2021-01-05 Exxonmobil Chemical Patents Inc. Sterically hindered metallocenes, synthesis and use
US20190284310A1 (en) * 2016-11-03 2019-09-19 Exxonmobil Chemical Patents Inc. Catalyst Supply System and Process for Producing Polymers
SG11201903393RA (en) * 2016-11-08 2019-05-30 Univation Tech Llc Bimodal polyethylene
JP7045377B2 (ja) * 2016-12-05 2022-03-31 エクソンモービル ケミカル パテンツ インコーポレイテッド 幅広い直交分布のフィルム用メタロセンポリエチレン
US10611867B2 (en) 2016-12-05 2020-04-07 Exxonmobil Chemical Patents Inc. Broad orthogonal distribution metallocene polyethylenes for films
CN109983035B (zh) * 2016-12-15 2022-02-11 尤尼威蒂恩技术有限责任公司 对聚合工艺进行评定
JP2020514430A (ja) * 2016-12-19 2020-05-21 ダウ グローバル テクノロジーズ エルエルシー 伝導体外被およびその製造プロセス
ES2842974T3 (es) * 2017-02-13 2021-07-15 Univation Tech Llc Resinas de polietileno bimodal
WO2018151903A1 (en) 2017-02-20 2018-08-23 Exxonmobil Chemical Patents Inc. Supported catalyst systems and processes for use thereof
US10723819B2 (en) 2017-02-20 2020-07-28 Exxonmobil Chemical Patents, Inc. Supported catalyst systems and processes for use thereof
CN110431160B (zh) * 2017-02-20 2021-12-31 埃克森美孚化学专利公司 负载型催化剂体系及其使用方法
EP3621996B1 (en) * 2017-05-10 2023-01-18 Univation Technologies, LLC Catalyst systems and processes for using the same
WO2018213395A1 (en) 2017-05-17 2018-11-22 Univation Technologies, Llc A hafnium complex; a supported hafnium complex; methods of forming a polymer using such complexes
US11203651B2 (en) 2017-06-02 2021-12-21 Univation Technologies, Llc Method of determining a relative decrease in catalytic efficacy of a catalyst in a catalyst solution
BR112019025923B1 (pt) * 2017-06-08 2024-02-06 Univation Technologies, Llc Método de manutenção de um valor alvo de um índice de fluxo de fusão de um produto de polímero de polietileno
US10913808B2 (en) * 2017-08-04 2021-02-09 Exxonmobil Chemical Patents Inc. Mixed catalysts with unbridged hafnocenes with -CH2-SiMe3 moieties
US10844150B2 (en) 2017-08-04 2020-11-24 Exxonmobil Chemical Patents Inc. Mixed catalysts with 2,6-bis(imino)pyridyl iron complexes and bridged hafnocenes
EP3661981A1 (en) * 2017-08-04 2020-06-10 ExxonMobil Chemical Patents Inc. Polyethylene compositions and films prepared therefrom
WO2019070329A1 (en) 2017-10-06 2019-04-11 Exxonmobil Chemical Patents Inc. EXTRUDED POLYETHYLENE PRODUCTS AND PROCESSES FOR THEIR MANUFACTURE
BR112020008024B1 (pt) * 2017-10-23 2023-12-05 Exxonmobil Chemical Patents Inc Composições de polietileno, artigos produzidos a partir das mesmas e processo de produção dos mesmos
US11161924B2 (en) * 2017-10-27 2021-11-02 Univation Technologies, Llc Polyethylene copolymer resins and films
WO2019089153A1 (en) * 2017-10-31 2019-05-09 Exxonmobil Chemical Patents Inc. Mixed catalyst systems with four metallocenes on a single support
US10703838B2 (en) 2017-10-31 2020-07-07 Exxonmobil Chemical Patents Inc. Mixed catalyst systems with four metallocenes on a single support
WO2019094131A1 (en) 2017-11-13 2019-05-16 Exxonmobil Chemical Patents Inc. Polyethylene compositions and articles made therefrom
WO2019094132A1 (en) 2017-11-13 2019-05-16 Exxonmobil Chemical Patents Inc. Polyethylene compositions and articles made therefrom
US11130827B2 (en) 2017-11-14 2021-09-28 Exxonmobil Chemical Patents Inc. Polyethylene compositions and articles made therefrom
EP3710501A2 (en) * 2017-11-15 2020-09-23 ExxonMobil Chemical Patents Inc. Polymerization processes
WO2019099589A1 (en) 2017-11-15 2019-05-23 Exxonmobil Chemical Patents Inc. Polymerization processes
US11015002B2 (en) 2017-11-15 2021-05-25 Exxonmobil Chemical Patents Inc. Polymerization processes
CN111511781B (zh) * 2017-11-28 2023-07-11 埃克森美孚化学专利公司 催化剂体系和使用其的聚合方法
CN115850552A (zh) 2017-12-01 2023-03-28 埃克森美孚化学专利公司 催化剂体系和使用其的聚合方法
US10926250B2 (en) 2017-12-01 2021-02-23 Exxonmobil Chemical Patents Inc. Catalyst systems and polymerization processes for using the same
CN108129729A (zh) * 2017-12-20 2018-06-08 宁波市鄞州智伴信息科技有限公司 一种基于永磁材料的新型可塑型磁控管的制备工艺
KR102459861B1 (ko) 2017-12-21 2022-10-27 주식회사 엘지화학 가공성이 우수한 에틸렌/1-부텐 공중합체
KR102323807B1 (ko) * 2018-01-12 2021-11-09 주식회사 엘지화학 촉매 조성물 내 브롬 화합물의 제거 방법
US10865258B2 (en) * 2018-01-31 2020-12-15 Exxonmobil Chemical Patents Inc. Mixed catalyst systems containing bridged metallocenes with a pendant group 13 element, processes for making a polymer product using same, and products made from same
US10851187B2 (en) 2018-01-31 2020-12-01 Exxonmobil Chemical Patents Inc. Bridged metallocene catalysts with a pendant group 13 element, catalyst systems containing same, processes for making a polymer product using same, and products made from same
CN111868106B (zh) * 2018-02-12 2023-02-17 埃克森美孚化学专利公司 用于具有高乙烯叉基含量的聚α-烯烃的催化剂体系及方法
CN112055720B (zh) * 2018-05-02 2022-11-22 埃克森美孚化学专利公司 从中试装置放大到较大生产设施的方法
US11447587B2 (en) * 2018-05-02 2022-09-20 Exxonmobil Chemical Patents Inc. Methods for scale-up from a pilot plant to a larger production facility
EP3810666A1 (en) * 2018-06-19 2021-04-28 ExxonMobil Chemical Patents Inc. Polyethylene compositions and films prepared therefrom
US10927205B2 (en) 2018-08-30 2021-02-23 Exxonmobil Chemical Patents Inc. Polymerization processes and polymers made therefrom
WO2020046406A1 (en) * 2018-08-30 2020-03-05 Exxonmobil Chemical Patents Inc. Polymerization processes and polymers made therefrom
US10899860B2 (en) 2018-08-30 2021-01-26 Exxonmobil Chemical Patents Inc. Polymerization processes and polymers made therefrom
KR102258230B1 (ko) * 2018-10-19 2021-05-28 한화솔루션 주식회사 올레핀계 중합체
EP3873947A1 (en) * 2018-11-01 2021-09-08 ExxonMobil Chemical Patents Inc. On-line adjustment of mixed catalyst ratio by trim and olefin polymerization with the same
US20210395400A1 (en) * 2018-11-01 2021-12-23 Exxonmobil Chemical Patents Inc. Mixed Catalyst Systems with Properties Tunable by Condensing Agent
CN113039211B (zh) * 2018-11-01 2023-04-14 埃克森美孚化学专利公司 通过修整的催化剂在线调节和烯烃聚合
WO2020092584A2 (en) * 2018-11-01 2020-05-07 Exxonmobil Chemical Patents Inc. In-line trimming of dry catalyst feed
CN113056489B (zh) * 2018-11-01 2023-04-14 埃克森美孚化学专利公司 淤浆修整催化剂进料器修改
US20220033535A1 (en) * 2018-11-01 2022-02-03 Exxonmobil Chemical Patents Inc. On-Line Adjustment of Mixed Catalyst Ratio and Olefin Polymerization
KR20210091199A (ko) 2018-11-06 2021-07-21 다우 글로벌 테크놀로지스 엘엘씨 알칸-가용성 비-메탈로센 전촉매를 사용한 올레핀 중합 방법
WO2020096732A1 (en) 2018-11-06 2020-05-14 Dow Global Technologies Llc Alkane-soluble non-metallocene precatalysts
CA3118433A1 (en) 2018-11-06 2020-05-14 Dow Global Technologies Llc Alkane-soluble non-metallocene precatalysts
WO2020102057A1 (en) 2018-11-16 2020-05-22 Exxonmobil Chemical Patents Inc. Polyolefin compositions suitable for films
KR102116476B1 (ko) 2019-01-18 2020-05-28 대림산업 주식회사 폴리올레핀 중합 촉매 조성물, 폴리올레핀의 제조 방법 및 폴리올레핀 수지
US11840596B2 (en) 2019-02-20 2023-12-12 Lg Chem, Ltd. Catalyst composition and method for preparing polyolefin using the same
KR102372974B1 (ko) * 2019-04-05 2022-03-10 한화솔루션 주식회사 혼성 촉매 조성물, 이를 포함하는 촉매 및 이들의 제조방법
US20220259231A1 (en) * 2019-04-30 2022-08-18 Dow Global Technologies Llc Metal-ligand complexes
US11014997B2 (en) 2019-05-16 2021-05-25 Chevron Phillips Chemical Company Lp Dual catalyst system for producing high density polyethylenes with long chain branching
KR102203007B1 (ko) * 2019-06-05 2021-01-14 대림산업 주식회사 다단계 연속 중합 방법을 이용한 멀티모달 폴리올레핀 제조방법
WO2021040760A1 (en) 2019-08-28 2021-03-04 Exxonmobil Chemical Patents Inc. Polyolefin compositions for films
EP3957660A4 (en) * 2019-09-30 2022-08-10 Lg Chem, Ltd. OLEFIN-BASED POLYMER
EP3950824A4 (en) * 2019-09-30 2022-08-24 Lg Chem, Ltd. POLYPROPYLENE BASED COMPOSITE MATERIAL
KR102595112B1 (ko) * 2019-09-30 2023-10-30 주식회사 엘지화학 올레핀계 중합체
KR102547232B1 (ko) * 2019-10-24 2023-06-26 한화솔루션 주식회사 올레핀 중합용 촉매의 제조방법
KR102605269B1 (ko) * 2019-12-09 2023-11-23 한화솔루션 주식회사 기상 중합에 의한 올레핀계 중합체의 제조방법
US20230022904A1 (en) 2019-12-17 2023-01-26 ExxonMobil Chemical Company - Law Technology Broad Orthogonal Distribution Polyethylenes for Films
US20230174757A1 (en) 2020-05-01 2023-06-08 Exxonmobil Chemical Patents Inc. Linear Low Density Polyethylene for Film Applications
US20230167254A1 (en) 2020-05-01 2023-06-01 Exxonmobil Chemical Patents Inc. Linear Low Density Polyethylene for Film Applications
EP4157900A1 (en) * 2020-05-29 2023-04-05 Dow Global Technologies LLC Catalyst systems and processes for producing polyethylene using the same
KR102605406B1 (ko) * 2020-07-03 2023-11-24 주식회사 엘지화학 올레핀계 중합체
WO2022066550A1 (en) 2020-09-22 2022-03-31 Dow Global Technologies Llc Bimodal polyethylene copolymer and film thereof
US11578156B2 (en) 2020-10-20 2023-02-14 Chevron Phillips Chemical Company Lp Dual metallocene polyethylene with improved processability for lightweight blow molded products
KR102608616B1 (ko) * 2020-11-23 2023-12-04 한화솔루션 주식회사 올레핀계 중합체, 그로부터 제조된 필름 및 그 제조방법
KR102608612B1 (ko) * 2020-11-23 2023-12-04 한화솔루션 주식회사 올레핀계 중합체 및 그 제조방법
EP4255942A1 (en) 2020-12-02 2023-10-11 ExxonMobil Chemical Patents Inc. Medium density polyethylene compositions with broad orthogonal composition distribution
KR102652269B1 (ko) * 2020-12-08 2024-03-29 한화솔루션 주식회사 올레핀계 중합체 및 그 제조방법
JP2023553076A (ja) * 2020-12-08 2023-12-20 ハンファ ソリューションズ コーポレーション オレフィン系重合体およびその製造方法
KR102652273B1 (ko) * 2020-12-08 2024-03-29 한화솔루션 주식회사 올레핀계 중합체, 그로부터 제조된 필름 및 그 제조방법
WO2022173723A1 (en) * 2021-02-09 2022-08-18 Dow Global Technologies Llc Hafnium metallocenes having nonidentical ligands
JP2023546442A (ja) * 2021-03-23 2023-11-02 エルジー・ケム・リミテッド オレフィン系重合体
CN117120490A (zh) * 2021-03-31 2023-11-24 三井化学株式会社 乙烯-α-烯烃共聚物、热塑性树脂组合物和膜
CN113089152B (zh) * 2021-04-06 2022-11-22 军事科学院系统工程研究院军需工程技术研究所 一种原位聚合阻燃锦纶66全牵伸丝的高质高效生产方法
CN115490733A (zh) * 2021-06-17 2022-12-20 广东阿格蕾雅光电材料有限公司 含oncn四齿配体的杂环修饰的铂配合物
KR20230036257A (ko) * 2021-09-07 2023-03-14 한화솔루션 주식회사 올레핀계 중합체의 제조방법 및 이를 이용하여 제조된 올레핀계 중합체
CN117980354A (zh) 2021-10-26 2024-05-03 埃克森美孚化学专利公司 具有卓越加工性和机械性质的高度取向线性低密度聚乙烯膜
AR128453A1 (es) 2022-02-11 2024-05-08 Dow Global Technologies Llc Composiciones de polietileno de densidad media bimodal adecuadas para el uso como cintas de goteo de microirrigación
WO2023215696A1 (en) 2022-05-04 2023-11-09 Exxonmobil Chemical Patents Inc. Modified pyridine-2,6-bis(phenylenephenolate) complexes with enhanced solubility that are useful as catalyst components for olefin polymerization
WO2023215695A1 (en) 2022-05-04 2023-11-09 Exxonmobil Chemical Patents Inc. Substituted pyridine-2,6-bis (phenylenephenolate) complexes with enhanced solubility that are useful as catalyst components for olefin polymerization
WO2023215694A1 (en) 2022-05-04 2023-11-09 Exxonmobil Chemical Patents Inc. Substituted pyridine-2,6-bis(phenylenephenolate) complexes with enhanced solubility that are useful as catalyst components for olefin polymerization
WO2023215693A1 (en) 2022-05-04 2023-11-09 Exxonmobil Chemical Patents Inc. Substituted pyridine-2,6-bis(phenylenephenolate) complexes with enhanced solubility that are useful as catalyst components for olefin polymerization
WO2024030621A1 (en) * 2022-08-05 2024-02-08 Dow Global Technologies Llc Symmetrical zirconium metallocenes having isobutyl cyclopentadienyl ligands
WO2024044423A1 (en) 2022-08-22 2024-02-29 Exxonmobil Chemical Patents, Inc. Polyethylene compositions and films made therefrom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402739A (zh) * 1999-10-22 2003-03-12 尤尼威蒂恩技术有限责任公司 催化剂组合物、聚合方法及由其生产的聚合物
CN1484655A (zh) * 2000-12-04 2004-03-24 �������ٶ������������ι�˾ 聚合方法
CN1547596A (zh) * 2001-07-19 2004-11-17 �������ٶ������������ι�˾ 含有弱共聚单体引入剂和良共聚单体引入剂的混合金属茂催化剂体系

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067518A (en) 1958-04-02 1962-12-11 Martin A Herman Master type squaring fixture
US4003712A (en) 1970-07-29 1977-01-18 Union Carbide Corporation Fluidized bed reactor
US3709853A (en) 1971-04-29 1973-01-09 Union Carbide Corp Polymerization of ethylene using supported bis-(cyclopentadienyl)chromium(ii)catalysts
US4011382A (en) 1975-03-10 1977-03-08 Union Carbide Corporation Preparation of low and medium density ethylene polymer in fluid bed reactor
US4302566A (en) 1978-03-31 1981-11-24 Union Carbide Corporation Preparation of ethylene copolymers in fluid bed reactor
US4543399A (en) 1982-03-24 1985-09-24 Union Carbide Corporation Fluidized bed reaction systems
FR2618786B1 (fr) 1987-07-31 1989-12-01 Bp Chimie Sa Procede de polymerisation d'olefines en phase gazeuse dans un reacteur a lit fluidise
DE68928100T2 (de) * 1988-09-30 1997-11-06 Exxon Chemical Patents Inc Lineare ethylen-copolymermischungen von copolymeren mit engen molekulargewichts- und kompositionsverteilungen
US5041584A (en) 1988-12-02 1991-08-20 Texas Alkyls, Inc. Modified methylaluminoxane
TW300901B (zh) 1991-08-26 1997-03-21 Hoechst Ag
ES2095037T3 (es) * 1991-12-30 1997-02-01 Dow Chemical Co Polimerizaciones de interpolimeros de etileno.
US5352749A (en) 1992-03-19 1994-10-04 Exxon Chemical Patents, Inc. Process for polymerizing monomers in fluidized beds
EP0882731A3 (de) * 1992-08-15 2000-05-31 TARGOR GmbH Verbrückte Metallocenverbindungen und ihre Verwendung als Olefinpolymerisationskatalysatore
NL9201970A (nl) 1992-11-11 1994-06-01 Dsm Nv Indenylverbindingen en katalysatorcomponenten voor de polymerisatie van olefinen.
JP3365661B2 (ja) * 1992-11-19 2003-01-14 三井化学株式会社 エチレン系共重合体組成物
GB9224876D0 (en) * 1992-11-27 1993-01-13 Exxon Chemical Patents Inc Improved processing polyolefin blends
ZA943399B (en) 1993-05-20 1995-11-17 Bp Chem Int Ltd Polymerisation process
DE69422410T2 (de) * 1993-08-06 2000-07-06 Exxon Chemical Patents Inc Polymerisationskataylsatoren, ihre herstellung und verwendung
US5854165A (en) 1993-09-30 1998-12-29 Idemitsu Kosan Co., Ltd. Transition metal compound, catalyst for olefin polymerization, process for preparing olefin polymer by use of catalyst
AT401520B (de) * 1994-03-22 1996-09-25 Danubia Petrochem Polymere Metallocene und deren einsatz für die olefinpolymerisation
KR970701740A (ko) * 1994-03-25 1997-04-12 데니스 피. 샌티니 선형 저 밀도 폴리에틸렌(linear low density polyethylene)
US5525678A (en) 1994-09-22 1996-06-11 Mobil Oil Corporation Process for controlling the MWD of a broad/bimodal resin produced in a single reactor
EP1217013A3 (en) * 1995-05-16 2004-12-22 Univation Technologies LLC Production of polyethylene using stereoisomeric metallocenes
CN1067689C (zh) * 1995-10-20 2001-06-27 中国科学院化学研究所 一种用于合成高分子量聚乙烯的金属茂催化剂及其制备方法
US5780659A (en) * 1996-03-29 1998-07-14 Phillips Petroleum Company Substituted indenyl unbridged metallocenes
US6255426B1 (en) * 1997-04-01 2001-07-03 Exxon Chemical Patents, Inc. Easy processing linear low density polyethylene
EP0991675A4 (en) * 1997-06-14 2002-07-03 Univ Leland Stanford Junior IMPROVED IMPROVEMENTS IN THE SYNTHESIS OF HIGH-MELTING THERMOPLASTIC ELASTOMERIC ALPHA-OLEFIN POLYMERS BY MEANS OF ETHYLENE
GB9712663D0 (en) * 1997-06-16 1997-08-20 Borealis As Process
FI973050A (fi) 1997-07-18 1999-01-19 Borealis As Menetelmä sellaisten olefiinipolymeerien valmistamiseksi joilla on haluttu molekyylipainojakauma
EP1003757B1 (de) 1997-07-28 2003-01-29 Basell Polyolefine GmbH Verfahren zur herstellung von metallocenen
US20060293470A1 (en) * 2005-06-28 2006-12-28 Cao Phuong A Polymerization process using spray-dried catalyst
US6242545B1 (en) 1997-12-08 2001-06-05 Univation Technologies Polymerization catalyst systems comprising substituted hafinocenes
EP0953582A1 (en) 1998-04-27 1999-11-03 Fina Research S.A. Polyolefin production
US6207606B1 (en) * 1998-05-15 2001-03-27 Univation Technologies, Llc Mixed catalysts and their use in a polymerization process
ES2572756T3 (es) 1998-05-18 2016-06-02 Chevron Phillips Chemical Company Lp Proceso para la polimerización de un monómero con una composición de catalizador que contiene un compuesto organometálico, un compuesto de organoaluminio y un compuesto de óxido sólido tratado
FI990003A (fi) * 1999-01-04 2000-07-05 Borealis Polymers Oy Polymeerikoostumus, menetelmä sen valmistamiseksi ja siitä valmistetut kalvot
EP1165622B1 (en) * 1999-02-22 2003-04-09 Borealis Technology Oy Olefin polymerisation process
US6271325B1 (en) 1999-05-17 2001-08-07 Univation Technologies, Llc Method of polymerization
GB9917851D0 (en) * 1999-07-29 1999-09-29 Borealis As Process
CN1184242C (zh) 1999-10-22 2005-01-12 尤尼威蒂恩技术有限责任公司 催化剂体系及其在聚合反应方法中的应用
AU763705B2 (en) * 1999-10-22 2003-07-31 Univation Technologies Llc Start up methods for multiple catalyst systems
US6372868B1 (en) 1999-12-07 2002-04-16 Univation Technologies, Llc Start up methods for multiple catalyst systems
US6380328B1 (en) * 1999-12-10 2002-04-30 Univation Technologies, Llc Catalyst systems and their use in a polymerization process
US6482903B1 (en) 1999-12-15 2002-11-19 Univation Technologies, Llc Method for preparing a supported catalyst system and its use in a polymerization process
US7041617B2 (en) * 2004-01-09 2006-05-09 Chevron Phillips Chemical Company, L.P. Catalyst compositions and polyolefins for extrusion coating applications
JP2001320296A (ja) 2000-05-12 2001-11-16 Temuko Japan:Kk トランシーバ
US6608149B2 (en) * 2000-12-04 2003-08-19 Univation Technologies, Llc Polymerization process
US6897273B2 (en) * 2000-12-04 2005-05-24 Univation Technologies, Llc Catalyst composition, method of polymerization and polymer therefrom
US6605675B2 (en) 2000-12-04 2003-08-12 Univation Technologies, Llc Polymerization process
US20030008988A1 (en) * 2001-01-29 2003-01-09 Sasol Technology (Proprietary) Limited Polymerization
EP1416001A4 (en) * 2001-06-29 2005-03-09 Japan Polypropylene Corp CATALYST FOR POLYMERIZATION OF OLEFINS AND CORRESPONDING METHOD
JP3660623B2 (ja) * 2001-07-05 2005-06-15 株式会社東芝 アンテナ装置
JP2004536183A (ja) * 2001-07-19 2004-12-02 ユニベーション・テクノロジーズ・エルエルシー コモノマー低結合性メタロセン触媒化合物
US6936675B2 (en) * 2001-07-19 2005-08-30 Univation Technologies, Llc High tear films from hafnocene catalyzed polyethylenes
ES2361734T3 (es) * 2001-07-19 2011-06-21 Univation Technologies Llc Películas de polietileno con propiedades físicas mejoradas.
JP2003105029A (ja) 2001-07-25 2003-04-09 Japan Polychem Corp オレフィン重合体及びその製造方法
US6642400B2 (en) * 2001-09-26 2003-11-04 Univation Technologies, Llc Linked metallocene complexes, catalyst systems, and olefin polymerization processes using same
JP2003096124A (ja) * 2001-09-27 2003-04-03 Sumitomo Chem Co Ltd 付加重合用触媒成分、付加重合用触媒および付加重合体の製造方法、並びにメタロセン系遷移金属化合物の用途
SG96700A1 (en) * 2001-09-27 2003-06-16 Sumitomo Chemical Co Catalyst component for addition polymerization, process for producing catalyst for addition polymerization and process for producing addition polymer
JP2003096125A (ja) * 2001-09-27 2003-04-03 Sumitomo Chem Co Ltd 付加重合用触媒成分、付加重合用触媒および付加重合体の製造方法、並びにメタロセン系遷移金属化合物の用途
CA2466493A1 (en) * 2001-11-15 2003-05-30 Exxonmobil Chemical Patents Inc. Polymerization monitoring and control using leading indicators
US6884748B2 (en) 2002-09-04 2005-04-26 Univation Technologies, Llc Process for producing fluorinated catalysts
EP1554296B1 (en) * 2002-10-25 2008-10-15 Basell Polyolefine GmbH Racemoselective preparation of isolable ansa-metallocene biphenoxide complexes
US6869903B2 (en) * 2002-11-07 2005-03-22 Univation Technologies, Llc Synthesis of polymerization catalyst components
BRPI0415341B1 (pt) 2003-10-15 2014-02-04 Método para produção de uma composição polimérica
US7119153B2 (en) * 2004-01-21 2006-10-10 Jensen Michael D Dual metallocene catalyst for producing film resins with good machine direction (MD) elmendorf tear strength
US20050182210A1 (en) 2004-02-17 2005-08-18 Natarajan Muruganandam De-foaming spray dried catalyst slurries
ES2386357T3 (es) * 2004-04-07 2012-08-17 Union Carbide Chemicals & Plastics Technology Llc Procedimiento para controlar la polimerización de olefinas
US7285608B2 (en) 2004-04-21 2007-10-23 Novolen Technology Holdings C.V. Metallocene ligands, metallocene compounds and metallocene catalysts, their synthesis and their use for the polymerization of olefins
BRPI0513057A (pt) * 2004-07-08 2008-04-22 Exxonmobil Chem Patents Inc produção de polìmero em condições supercrìticas
US7193017B2 (en) * 2004-08-13 2007-03-20 Univation Technologies, Llc High strength biomodal polyethylene compositions
US7432328B2 (en) * 2005-06-14 2008-10-07 Univation Technologies, Llc Enhanced ESCR bimodal HDPE for blow molding applications
GB0420396D0 (en) 2004-09-14 2004-10-13 Bp Chem Int Ltd Polyolefins
US7064096B1 (en) 2004-12-07 2006-06-20 Nova Chemicals (International) Sa Dual catalyst on a single support
AU2006270436B2 (en) * 2005-07-19 2011-12-15 Exxonmobil Chemical Patents Inc. Polyalpha-olefin compositions and processes to produce the same
WO2007011462A1 (en) * 2005-07-19 2007-01-25 Exxonmobil Chemical Patents Inc. Lubricants from mixed alpha-olefin feeds
US7312283B2 (en) * 2005-08-22 2007-12-25 Chevron Phillips Chemical Company Lp Polymerization catalysts and process for producing bimodal polymers in a single reactor
US7625982B2 (en) * 2005-08-22 2009-12-01 Chevron Phillips Chemical Company Lp Multimodal polyethylene compositions and pipe made from same
US7619047B2 (en) * 2006-02-22 2009-11-17 Chevron Phillips Chemical Company, Lp Dual metallocene catalysts for polymerization of bimodal polymers
US8247065B2 (en) * 2006-05-31 2012-08-21 Exxonmobil Chemical Patents Inc. Linear polymers, polymer blends, and articles made therefrom
CN101472964B (zh) 2006-06-27 2012-09-05 尤尼威蒂恩技术有限责任公司 使用茂金属催化剂的改进聚合方法、其聚合产物及最终用途
MX2009000270A (es) * 2006-06-27 2009-02-17 Univation Tech Llc Copolimeros de etileno-alfa olefina y procesos de polimerizacion para hacerlos.
BRPI0712945B1 (pt) 2006-06-27 2018-05-08 Univation Tech Llc Processo para a produção de um Copolímero de Etileno Alfa- Olefina
US7569784B2 (en) * 2006-10-13 2009-08-04 Eaton Corporation Electrical switching apparatus, and housing and integral pole shaft bearing assembly therefor
BRPI0718849B1 (pt) * 2006-11-14 2018-11-27 Univation Tech Llc método de polimerização de olefinas
US7662894B2 (en) 2006-12-19 2010-02-16 Saudi Bosic Industries Corporation Polymer supported metallocene catalyst composition for polymerizing olefins
TWI404730B (zh) * 2007-02-05 2013-08-11 Univation Tech Llc 控制聚合物性質之方法
WO2008105546A1 (en) * 2007-02-26 2008-09-04 Sumitomo Chemical Company, Limited Production process of olefin polymer
US20100121006A1 (en) * 2007-05-02 2010-05-13 Joon-Hee Cho Polyolefin and preparation method thereof
TW200932762A (en) * 2007-10-22 2009-08-01 Univation Tech Llc Polyethylene compositions having improved properties
TW200936619A (en) * 2007-11-15 2009-09-01 Univation Tech Llc Polymerization catalysts, methods of making, methods of using, and polyolefin products made therefrom
ES2388016T3 (es) * 2007-11-20 2012-10-05 Univation Technologies, Llc Procedimientos de fabricación de poliolefinas
JP5311805B2 (ja) 2007-11-21 2013-10-09 日本ポリエチレン株式会社 オレフィン重合用触媒及びそれを用いたオレフィンの重合方法
BRPI0822091B1 (pt) * 2007-12-18 2019-10-08 Univation Technologies, Llc Método de polimerização
US8436114B2 (en) * 2010-10-21 2013-05-07 Exxonmobil Chemical Patents Inc. Polyethylene and process for production thereof
CA2711162A1 (en) 2007-12-31 2009-07-16 Dow Global Technologies Inc. Process for polymerizing olefin-based polymers
US7884163B2 (en) 2008-03-20 2011-02-08 Chevron Phillips Chemical Company Lp Silica-coated alumina activator-supports for metallocene catalyst compositions
US20090240010A1 (en) 2008-03-20 2009-09-24 Mcdaniel Max P Alumina-silica activator-supports for metallocene catalyst compositions
ATE545664T1 (de) * 2008-04-28 2012-03-15 Univation Tech Llc Verfahren zur herstellung von katalysatorsystemen
WO2009155471A2 (en) 2008-06-20 2009-12-23 Exxonmobil Chemical Patents Inc. High vinyl terminated propylene based oligomers
US8372930B2 (en) 2008-06-20 2013-02-12 Exxonmobil Chemical Patents Inc. High vinyl terminated propylene based oligomers
US8580902B2 (en) * 2008-08-01 2013-11-12 Exxonmobil Chemical Patents Inc. Catalyst system, process for olefin polymerization, and polymer compositions produced therefrom
WO2010034520A1 (en) * 2008-09-25 2010-04-01 Basell Polyolefine Gmbh Impact resistant lldpe composition and films made thereof
JP5752043B2 (ja) 2008-12-17 2015-07-22 バーゼル・ポリオレフィン・ゲーエムベーハー オレフィン重合用の触媒系、その製造、及び使用
RU2542104C2 (ru) * 2009-05-14 2015-02-20 Юнивейшн Текнолоджиз, Ллк Смешанные металлические каталитические системы со специально адаптированным откликом на водород
AU2010260128B2 (en) 2009-06-16 2015-09-10 Chevron Phillips Chemical Company Lp Oligomerization of alpha olefins using metallocene-SSA catalyst systems and use of the resultant polyalphaolefins to prepare lubricant blends
MY158186A (en) 2009-07-28 2016-09-15 Univation Tech Llc Polymerization process using a supported constrained geometry catalyst
WO2011072851A1 (en) 2009-12-18 2011-06-23 Basell Polyolefine Gmbh Process for the preparation of supported catalysts
WO2011090859A1 (en) * 2010-01-22 2011-07-28 Exxonmobil Chemical Patents Inc. Ethylene copolymers, methods for their production, and use
CA2789687C (en) * 2010-02-22 2018-03-06 Univation Technologies, Llc Catalyst systems and methods for using same to produce polyolefin products
WO2011147573A2 (en) 2010-05-28 2011-12-01 Basell Polyolefine Gmbh Process for preparing a supported catalyst system for olefin polymerization, the catalyst system and its use
US8288487B2 (en) * 2010-07-06 2012-10-16 Chevron Phillips Chemical Company Lp Catalysts for producing broad molecular weight distribution polyolefins in the absence of added hydrogen
US8932975B2 (en) 2010-09-07 2015-01-13 Chevron Phillips Chemical Company Lp Catalyst systems and methods of making and using same
CA2734167C (en) * 2011-03-15 2018-03-27 Nova Chemicals Corporation Polyethylene film
JP2013053308A (ja) * 2011-08-11 2013-03-21 Sumitomo Chemical Co Ltd オレフィン重合体の製造方法、エチレン系重合体および成形体
WO2013028283A1 (en) * 2011-08-19 2013-02-28 Univation Technologies, Llc Catalyst systems and methods for using same to produce polyolefin products
CN102382217B (zh) * 2011-08-30 2013-05-08 浙江大学 分子量可调的双峰或宽峰分布聚乙烯的制备方法
US9580533B2 (en) * 2011-09-23 2017-02-28 Exxonmobil Chemical Patents Inc. Modified polyethylene compositions
WO2013070602A1 (en) 2011-11-08 2013-05-16 Univation Technologies, Llc Methods for producing polyolefins with catalyst systems
CA2798855C (en) * 2012-06-21 2021-01-26 Nova Chemicals Corporation Ethylene copolymers having reverse comonomer incorporation
US9115233B2 (en) 2012-06-21 2015-08-25 Nova Chemicals (International) S.A. Ethylene copolymer compositions, film and polymerization processes
CA2780508A1 (en) * 2012-06-21 2013-12-21 Nova Chemicals Corporation Polyethylene composition, film and polymerization process
SG11201503462TA (en) * 2012-11-07 2015-05-28 Chevron Phillips Chemical Co Low density polyolefin resins ad films made therefrom
CN104918972B (zh) * 2012-12-14 2018-01-02 诺瓦化学品(国际)股份有限公司 乙烯共聚物组合物、膜和聚合方法
WO2014099307A1 (en) * 2012-12-21 2014-06-26 Exxonmobil Chemical Patents Inc. Branched polyethylene with improved processing and high tear films made therefrom
CN105143285B (zh) 2013-02-07 2019-03-08 尤尼威蒂恩技术有限责任公司 聚烯烃的制备
EP2970525B1 (en) * 2013-03-15 2021-03-24 Univation Technologies, LLC Multiple catalyst system comprising metallocenes and tridentate nitrogen based ligand complexes for olefin polymerisation
US9156970B2 (en) * 2013-09-05 2015-10-13 Chevron Phillips Chemical Company Lp Higher density polyolefins with improved stress crack resistance
US9181370B2 (en) * 2013-11-06 2015-11-10 Chevron Phillips Chemical Company Lp Low density polyolefin resins with low molecular weight and high molecular weight components, and films made therefrom
WO2015123179A1 (en) * 2014-02-11 2015-08-20 Univation Technologies, Llc Producing polyolefin products

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402739A (zh) * 1999-10-22 2003-03-12 尤尼威蒂恩技术有限责任公司 催化剂组合物、聚合方法及由其生产的聚合物
CN1484655A (zh) * 2000-12-04 2004-03-24 �������ٶ������������ι�˾ 聚合方法
CN1547596A (zh) * 2001-07-19 2004-11-17 �������ٶ������������ι�˾ 含有弱共聚单体引入剂和良共聚单体引入剂的混合金属茂催化剂体系

Also Published As

Publication number Publication date
JP6836903B2 (ja) 2021-03-03
PH12016501560A1 (en) 2016-09-14
US20190322780A1 (en) 2019-10-24
US20160347888A1 (en) 2016-12-01
AU2020273299A1 (en) 2020-12-17
US9902790B2 (en) 2018-02-27
JP6861031B2 (ja) 2021-04-21
RU2016136093A3 (zh) 2018-09-28
EP3105262A1 (en) 2016-12-21
KR20210129251A (ko) 2021-10-27
SA516371661B1 (ar) 2020-11-03
SG11201606564YA (en) 2016-09-29
AU2015217390A1 (en) 2016-09-15
KR20160119801A (ko) 2016-10-14
PH12016501559A1 (en) 2016-09-14
AU2020273299B2 (en) 2022-09-29
KR102378586B1 (ko) 2022-03-25
CN106029712A (zh) 2016-10-12
RU2725653C1 (ru) 2020-07-03
JP6532881B2 (ja) 2019-06-19
CN106034402B (zh) 2019-05-31
KR102329477B1 (ko) 2021-11-24
SG10201800009QA (en) 2018-02-27
SG10201710935UA (en) 2018-02-27
JP2021036050A (ja) 2021-03-04
KR20160124788A (ko) 2016-10-28
MX2022003089A (es) 2022-04-11
SG11201606592VA (en) 2016-09-29
KR20160122178A (ko) 2016-10-21
RU2693828C2 (ru) 2019-07-05
US20210284770A1 (en) 2021-09-16
JP2017505374A (ja) 2017-02-16
AU2015217388A1 (en) 2016-09-15
CA2938846C (en) 2022-07-12
JP6526030B2 (ja) 2019-06-05
AU2018282375B2 (en) 2020-09-03
MX2022002889A (es) 2022-04-06
RU2016136093A (ru) 2018-03-15
EP3663323B1 (en) 2024-03-20
RU2691994C2 (ru) 2019-06-19
SG11201606537VA (en) 2016-09-29
SA516371658B1 (ar) 2019-12-10
EP3819314A2 (en) 2021-05-12
JP2017507017A (ja) 2017-03-16
JP7208176B2 (ja) 2023-01-18
AU2015217394A1 (en) 2016-09-15
RU2670755C9 (ru) 2018-12-17
CA2938839C (en) 2023-09-19
US11661466B2 (en) 2023-05-30
EP3819314A3 (en) 2021-07-21
US9850332B2 (en) 2017-12-26
MY196468A (en) 2023-04-12
JP6527165B2 (ja) 2019-06-05
SG10201701980PA (en) 2017-05-30
KR20210135629A (ko) 2021-11-15
CA2938846A1 (en) 2015-08-20
AU2015217393B2 (en) 2018-12-20
SG11201606539RA (en) 2016-09-29
AU2015217402A8 (en) 2018-11-29
ES2918979T3 (es) 2022-07-21
SG11201606571QA (en) 2016-09-29
PH12016501563A1 (en) 2017-02-06
SA516371653B1 (ar) 2019-10-09
AU2015217402A1 (en) 2016-09-15
EP4317200A3 (en) 2024-05-15
KR102496899B1 (ko) 2023-02-07
SG10201709279RA (en) 2017-12-28
KR20160121541A (ko) 2016-10-19
JP2021102776A (ja) 2021-07-15
EP4317200A2 (en) 2024-02-07
KR20160119817A (ko) 2016-10-14
EP3816196A2 (en) 2021-05-05
AU2015217391A1 (en) 2016-09-15
KR20220000908A (ko) 2022-01-04
EP3105266A1 (en) 2016-12-21
WO2015123168A8 (en) 2016-06-02
KR102403962B1 (ko) 2022-06-02
RU2689991C1 (ru) 2019-05-30
AU2019200925B2 (en) 2020-04-02
US20190367650A1 (en) 2019-12-05
CN110540612A (zh) 2019-12-06
MX2022005711A (es) 2022-06-08
EP3105257A2 (en) 2016-12-21
US11142598B2 (en) 2021-10-12
JP6538703B2 (ja) 2019-07-03
MX2016010384A (es) 2017-01-05
SA516371657B1 (ar) 2019-10-30
US20160347874A1 (en) 2016-12-01
SA516371652B1 (ar) 2019-06-13
JP2021073361A (ja) 2021-05-13
CA2938843C (en) 2022-11-15
US10392456B2 (en) 2019-08-27
MX2022002888A (es) 2022-04-06
BR112016018423A2 (pt) 2017-08-08
BR112016019334B1 (pt) 2021-03-09
US20170183433A1 (en) 2017-06-29
MX2022005710A (es) 2022-06-08
CN114805656A (zh) 2022-07-29
EP3105258A1 (en) 2016-12-21
BR112016018400A2 (pt) 2017-08-08
RU2734065C9 (ru) 2020-11-26
KR102454827B1 (ko) 2022-10-17
KR20220043228A (ko) 2022-04-05
US20170022309A1 (en) 2017-01-26
AU2015217400A1 (en) 2016-09-15
EP3105263A1 (en) 2016-12-21
EP3105263B1 (en) 2023-04-05
US20170008983A1 (en) 2017-01-12
AU2015217386B2 (en) 2018-12-06
CN110330581B (zh) 2022-06-28
AU2018282274A1 (en) 2019-01-17
CA3155959A1 (en) 2015-08-20
US10253121B2 (en) 2019-04-09
MX2022005282A (es) 2022-05-24
JP6833902B2 (ja) 2021-02-24
CN106062016A (zh) 2016-10-26
BR112016019324B1 (pt) 2021-11-09
AU2015217391B2 (en) 2018-11-15
CN110330582A (zh) 2019-10-15
MX2022005279A (es) 2022-05-24
MX2022002890A (es) 2022-04-06
KR102362123B1 (ko) 2022-02-14
MY186379A (en) 2021-07-21
EP3677605A1 (en) 2020-07-08
EP3998292A1 (en) 2022-05-18
KR20160123320A (ko) 2016-10-25
CN106029711A (zh) 2016-10-12
CA2938836A1 (en) 2015-08-20
EP3663323A1 (en) 2020-06-10
EP3105265B1 (en) 2021-06-02
JP2020143296A (ja) 2020-09-10
US20180105625A1 (en) 2018-04-19
US20210024670A1 (en) 2021-01-28
US20220002455A1 (en) 2022-01-06
KR102514764B1 (ko) 2023-03-29
US9879106B2 (en) 2018-01-30
CN114805656B (zh) 2024-02-27
JP7222006B2 (ja) 2023-02-14
PH12016501559B1 (en) 2016-09-14
SA519401457B1 (ar) 2021-03-16
CN109535299B (zh) 2022-06-28
RU2016135513A3 (zh) 2018-08-31
KR20210158429A (ko) 2021-12-30
CA2938836C (en) 2023-05-02
US11034783B2 (en) 2021-06-15
SG10201800006YA (en) 2018-02-27
MX2022006494A (es) 2022-07-04
SA516371656B1 (ar) 2020-02-02
SG10201709280WA (en) 2018-01-30
EP3805278A1 (en) 2021-04-14
CN106029710A (zh) 2016-10-12
SA516371655B1 (ar) 2020-08-31
KR102324441B1 (ko) 2021-11-11
CA2938841C (en) 2023-10-24
EP3105261A1 (en) 2016-12-21
AU2015217387A1 (en) 2016-09-15
CN109535299A (zh) 2019-03-29
MY193760A (en) 2022-10-27
AU2018282375A1 (en) 2019-01-17
CA2938841A1 (en) 2015-08-20
PH12016501562A1 (en) 2017-02-06
JP2020090678A (ja) 2020-06-11
RU2016136183A3 (zh) 2018-09-28
CN105980423A (zh) 2016-09-28
MX2022005712A (es) 2022-06-08
JP2017508834A (ja) 2017-03-30
AU2015217402B2 (en) 2018-11-08
EP3105259B1 (en) 2020-11-11
KR20210054044A (ko) 2021-05-12
CN105992776B (zh) 2019-05-21
US10308742B2 (en) 2019-06-04
KR102323279B1 (ko) 2021-11-08
MX2016010394A (es) 2016-12-14
ES2786323T3 (es) 2020-10-09
MX2022005281A (es) 2022-05-24
SG10201706683TA (en) 2017-09-28
CN105980424B (zh) 2019-05-21
SG11201606575TA (en) 2016-09-29
KR102454826B1 (ko) 2022-10-17
AU2015217386A1 (en) 2016-09-08
US20230174694A1 (en) 2023-06-08
EP3105264B1 (en) 2023-09-06
RU2697832C1 (ru) 2019-08-21
JP7229846B2 (ja) 2023-02-28
CN110330581A (zh) 2019-10-15
EP3943514A1 (en) 2022-01-26
MX2022008903A (es) 2022-08-16
ES2931331T3 (es) 2022-12-28
US20180186911A1 (en) 2018-07-05
EP3105257B1 (en) 2020-10-21
MX2016010312A (es) 2016-12-20
US20240076427A1 (en) 2024-03-07
CA2938740C (en) 2022-06-21
BR112016019314B1 (pt) 2021-11-03
MX2016010309A (es) 2016-12-20
JP2017505376A (ja) 2017-02-16
BR112016019310B1 (pt) 2022-08-02
RU2018141057A3 (zh) 2019-09-03
SG11201606532QA (en) 2016-09-29
WO2015123171A3 (en) 2015-10-22
PH12016501556A1 (en) 2016-09-14
KR102293490B1 (ko) 2021-08-26
CN106029710B (zh) 2019-08-30
PH12016501558A1 (en) 2016-09-14
BR112016019329B1 (pt) 2021-09-28
AU2015217387B2 (en) 2018-12-06
US20180066088A1 (en) 2018-03-08
EP3660058A1 (en) 2020-06-03
CN105992775A (zh) 2016-10-05
US10189923B2 (en) 2019-01-29
RU2727930C1 (ru) 2020-07-27
AU2015217388B2 (en) 2018-09-20
PH12016501557A1 (en) 2016-09-14
US20190177452A1 (en) 2019-06-13
WO2015123164A1 (en) 2015-08-20
RU2016136092A (ru) 2018-03-15
JP6970161B2 (ja) 2021-11-24
PH12016501555A1 (en) 2016-09-14
RU2018141057A (ru) 2019-03-21
SA516371654B1 (ar) 2022-08-14
US20160347889A1 (en) 2016-12-01
MY189929A (en) 2022-03-22
KR102329464B1 (ko) 2021-11-23
US20160362510A1 (en) 2016-12-15
KR20210106026A (ko) 2021-08-27
JP2020055811A (ja) 2020-04-09
CN110330582B (zh) 2022-04-12
JP2019163476A (ja) 2019-09-26
CN105992776A (zh) 2016-10-05
US20160347886A1 (en) 2016-12-01
EP3105261B1 (en) 2022-10-12
MX2016010378A (es) 2016-11-30
BR112016018400B1 (pt) 2021-06-08
CA3206038A1 (en) 2015-08-20
JP6970240B2 (ja) 2021-11-24
WO2015123165A2 (en) 2015-08-20
RU2016135542A3 (zh) 2018-09-28
JP2017505370A (ja) 2017-02-16
KR102362120B1 (ko) 2022-02-14
CA2938843A1 (en) 2015-08-20
EP3105264A1 (en) 2016-12-21
ES2836145T3 (es) 2021-06-24
WO2015123169A1 (en) 2015-08-20
WO2015123179A1 (en) 2015-08-20
KR102354757B1 (ko) 2022-02-08
PH12016501561A1 (en) 2016-09-14
CN105992775B (zh) 2019-10-25
WO2015123172A1 (en) 2015-08-20
RU2670755C2 (ru) 2018-10-25
AU2015217393A1 (en) 2016-09-15
JP6613240B2 (ja) 2019-11-27
BR112016019327B1 (pt) 2021-09-21
RU2734065C2 (ru) 2020-10-12
JP2017505371A (ja) 2017-02-16
US9809667B2 (en) 2017-11-07
EP3105258B1 (en) 2024-03-06
WO2015123165A3 (en) 2015-10-08
KR20210137229A (ko) 2021-11-17
US9932426B2 (en) 2018-04-03
WO2015123171A2 (en) 2015-08-20
BR112016019329A2 (pt) 2018-05-08
JP7212445B2 (ja) 2023-01-25
RU2016135513A (ru) 2018-03-06
AU2020204208A1 (en) 2020-07-16
RU2670986C2 (ru) 2018-10-29
BR112016018402B1 (pt) 2021-06-15
SG11201606535YA (en) 2016-09-29
RU2767902C1 (ru) 2022-03-22
MY189858A (en) 2022-03-14
CA2938839A1 (en) 2015-08-20
JP2017505372A (ja) 2017-02-16
CN106029712B (zh) 2019-05-21
AU2019200925A1 (en) 2019-02-28
MY192954A (en) 2022-09-19
BR112016019310A2 (pt) 2018-05-08
JP2021073360A (ja) 2021-05-13
KR20210148433A (ko) 2021-12-07
AU2015217394B2 (en) 2018-12-13
BR112016019314A2 (pt) 2017-08-15
AU2015217400B2 (en) 2018-12-20
RU2016136092A3 (zh) 2018-08-31
CN106062016B (zh) 2019-10-08
BR112016019334A2 (pt) 2018-05-08
ES2944883T3 (es) 2023-06-26
KR102394133B1 (ko) 2022-05-09
US10421829B2 (en) 2019-09-24
ES2959613T3 (es) 2024-02-27
MX2016010310A (es) 2016-12-20
EP3105259A2 (en) 2016-12-21
BR112016018402A2 (pt) 2017-08-08
EP3105262B1 (en) 2022-03-30
US10604606B2 (en) 2020-03-31
CN106034402A (zh) 2016-10-19
RU2016136183A (ru) 2018-03-15
BR112016019324A2 (pt) 2018-05-08
EP3998293A1 (en) 2022-05-18
JP2017506281A (ja) 2017-03-02
SG11201606534UA (en) 2016-09-29
MX2016010387A (es) 2017-02-28
JP6709160B2 (ja) 2020-06-10
ES2858098T3 (es) 2021-09-29
KR102344094B1 (ko) 2021-12-30
BR112016019327A2 (pt) 2017-08-15
CA3155959C (en) 2024-02-06
EP4198064A1 (en) 2023-06-21
SG10201800008XA (en) 2018-02-27
RU2674254C1 (ru) 2018-12-06
AU2015217391B9 (en) 2018-12-13
US20190169333A1 (en) 2019-06-06
JP2017505846A (ja) 2017-02-23
MY181775A (en) 2021-01-06
KR102321784B1 (ko) 2021-11-05
US20160347890A1 (en) 2016-12-01
AU2018282274B2 (en) 2020-08-06
US11708438B2 (en) 2023-07-25
KR20160121540A (ko) 2016-10-19
WO2015123171A8 (en) 2016-09-01
WO2015123168A1 (en) 2015-08-20
CN105980423B (zh) 2022-03-25
AU2015217390B2 (en) 2018-11-29
JP2021073362A (ja) 2021-05-13
JP7277501B2 (ja) 2023-05-19
JP7108065B2 (ja) 2022-07-27
WO2015123166A1 (en) 2015-08-20
US10239977B2 (en) 2019-03-26
EP3778671A1 (en) 2021-02-17
SG10201800007UA (en) 2018-02-27
EP3105265A1 (en) 2016-12-21
BR112016018423B1 (pt) 2021-06-22
US20180186912A1 (en) 2018-07-05
CA2938740A1 (en) 2015-08-20
MX2016010381A (es) 2016-11-30
EP3105266B1 (en) 2020-03-25
CN105980424A (zh) 2016-09-28
KR20160121542A (ko) 2016-10-19
EP3816196A3 (en) 2021-07-14
MX2016010307A (es) 2016-12-20
SG10201800002WA (en) 2018-02-27
RU2016135542A (ru) 2018-03-02
SA516371659B1 (ar) 2018-09-06
JP2019143160A (ja) 2019-08-29
KR102440033B1 (ko) 2022-09-06
KR20160121543A (ko) 2016-10-19
SG10201710927RA (en) 2018-02-27
WO2015123177A1 (en) 2015-08-20
CN110540612B (zh) 2022-08-12
US20230250204A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
CN106029711B (zh) 制造硬度、韧性和可加工性改进的聚烯烃产物
CN105073794B (zh) 用于烯烃聚合的包含金属茂和基于三齿氮的配体络合物的多催化剂系统
CN107438629A (zh) 用于控制长链支化的催化剂
CN110330580A (zh) 制造聚烯烃产物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant