CN105073794B - 用于烯烃聚合的包含金属茂和基于三齿氮的配体络合物的多催化剂系统 - Google Patents

用于烯烃聚合的包含金属茂和基于三齿氮的配体络合物的多催化剂系统 Download PDF

Info

Publication number
CN105073794B
CN105073794B CN201480016056.4A CN201480016056A CN105073794B CN 105073794 B CN105073794 B CN 105073794B CN 201480016056 A CN201480016056 A CN 201480016056A CN 105073794 B CN105073794 B CN 105073794B
Authority
CN
China
Prior art keywords
alkyl
group
catalyst
race
polymerization catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480016056.4A
Other languages
English (en)
Other versions
CN105073794A (zh
Inventor
J·B·沃纳
G·R·吉斯布雷西特
S-C·高
S·P·杰克尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Univation Technologies LLC
Original Assignee
Univation Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univation Technologies LLC filed Critical Univation Technologies LLC
Publication of CN105073794A publication Critical patent/CN105073794A/zh
Application granted granted Critical
Publication of CN105073794B publication Critical patent/CN105073794B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Abstract

本发明描述催化剂系统和其制造与使用方法。催化剂系统可包括至少三种催化剂。所述三种催化剂包括金属茂催化剂、第一非金属茂(其包括通过两个或更多个氮原子与金属络合的配体)和第二非金属茂(其包括通过一个或多个氮原子和一个氧原子与金属络合的配体)。

Description

用于烯烃聚合的包含金属茂和基于三齿氮的配体络合物的多 催化剂系统
背景技术
乙烯α-烯烃(聚乙烯)共聚物通常在低压反应器中利用例如溶液、浆料或气相聚合过程来产生。聚合在存在催化剂系统的情况下进行,所述催化剂系统诸如采用例如齐格勒-纳塔催化剂(Ziegler-Natta catalyst)、基于铬的催化剂、金属茂催化剂或其组合的那些系统。
含有单一位点的多种催化剂组合物(例如金属茂催化剂)已经用于制备聚乙烯共聚物,以良好聚合速率产生相对均匀的共聚物。与传统的齐格勒-纳塔催化剂组合物相比,单一位点催化剂组合物(如金属茂催化剂)是其中每一个催化剂分子含有一个或仅几个聚合位点的催化性化合物。单一位点催化剂常常产生具有窄分子量分布的聚乙烯共聚物。尽管存在可以产生较宽分子量分布的单一位点催化剂,但这些催化剂常常随着反应温度增加(例如为了增加生产速率)而展示分子量分布(MWD)变窄。此外,单一位点催化剂将常常以相对均一的速率在聚乙烯共聚物的分子当中并入共聚单体。
本领域中一般已知聚烯烃的MWD将影响不同产物属性。具有宽分子量分布的聚合物可以具有改良的物理特性,尤其如硬度、韧性、可加工性以及抗环境应力开裂性(ESCR)。
为了实现这些特性,双峰型聚合物在聚烯烃工业中已变得越来越重要,且多个制造商提供这种类型的产品。尽管早期的技术依赖于双反应器系统来产生此类物质,但在催化剂设计和负载技术方面的进展已允许发展能够制造双峰型高密度聚乙烯(HDPE)的单反应器双金属催化剂系统。这些系统从成本和易用性两个视角来看均是有吸引力的。
这些特性的控制主要通过选择催化剂系统来获得的。因此,催化剂设计对于制造从商业观点看有吸引力的聚合物来说很重要。由于商业上理想产品所需的具有宽分子分布的聚合物的改良的物理特性,故存在对用于形成具有宽分子量分布的聚乙烯共聚物的受控制的技术的需求。
发明内容
本文中所描述的一个实施例提供聚合催化剂系统,其包括至少三种催化剂。所述三种催化剂包括金属茂催化剂、第一非金属茂(其包括通过两个或更多个氮原子与金属络合的配体)和第二非金属茂(其包括通过一个或多个氮原子和一个氧原子与金属络合的配体)。
另一个实施例提供包括乙烯的聚合物,其中聚合物包含由至少三种催化剂形成的链。所述三种催化剂包括金属茂催化剂、第一非金属茂(其包括通过两个或更多个氮原子与金属络合的配体)和第二非金属茂(其包括通过一个或多个氮原子和一个氧原子与金属络合的配体)。
另一个实施例提供用于产生聚乙烯聚合物的方法,其包括至少使乙烯与包含至少三种常用负载型催化剂系统反应。所述三种催化剂包括金属茂催化剂、第一非金属茂(其包括通过两个或更多个氮原子与金属络合的配体)和第二非金属茂(其包括通过一个或多个氮原子和一个氧原子与金属络合的配体)。
附图说明
图1是根据本文所述的实施例的包括金属茂和两种非金属茂催化剂的三种催化剂系统的分子量分布的曲线图。
图2是气相反应器系统的示意图,其展示添加至少两种催化剂,其中至少一种是作为修整催化剂添加。
具体实施方式
已发现当催化剂负载物被多种催化剂浸透时,可例如通过控制负载物上的催化剂的量和类型来获得具有改良的特性(如硬度、韧性、可加工性和抗环境应力开裂性)平衡的新型聚合材料。如本文中的实施例中所描述,催化剂和比率的适合的选择可用于调节所产生的聚合物的组合分子量分布(MWD)。MWD可以通过将具有适当重量平均分子量(Mw)和个别分子量分布的催化剂组合来控制。举例来说,线性金属茂聚合物的典型MWD是2.5-3.5。掺合研究指示出,所希望的是通过采用各自提供不同平均分子量的催化剂的混合物来加宽这一分布。低分子量组分与高分子量组分的Mw的比率将在1:1与1:10之间,或在约1:2与1:5之间。
图1是根据本文所述的实施例的包括金属茂和两种非金属茂催化剂的三种催化剂系统的分子量分布的曲线图100。在曲线图100中,x轴102表示分子量的对数,并且y轴104表示分子量分布,即所存在的每种分子量的量。可以选择催化剂中的每一个来提供特定分子量组分。举例来说,可以接着选择金属茂来产生低分子量组分106,其中,举例来说,可以为树脂选择结构(II)中示出的第一金属茂催化剂以用于膜和吹塑成型应用,而结构(III)中示出的另一种金属茂催化剂用于管道应用。可以为其它类型的应用选择如本文所述的其它金属茂。可以选择非金属茂(如结构(I)中示出的催化剂)来产生较高分子量组分108。个别分子量组分形成聚合物的单一分子量分布(MWD)110。非金属茂(I)和金属茂(II和III)不限于所示化学式,但可以包括任何数量的其它催化剂系统。
尽管两种催化剂组合(如(I)与(II)(HN5/B),或(I)与(III))提供有吸引力的特性,但仍然保留一些难以解决的问题。举例来说,虽然认为例如具有对数分子量高于约6.5的聚合物链的MWD 110中的高分子量部分或尾部112赋予在如挤出管和吹塑膜的产品中很重要的强度,但两个部分的分子量中的实质性差异可以使其相分离,引起如熔体破裂和气泡不稳定的问题。此外,由两种催化剂掺合物制成的聚合物可能在型坯稳定性的测量方面具有缺陷。举例来说,挤出塑料或型坯可能从模具延伸过长并且在挤压之后未充分收缩。在其它情况下,型坯可能流动地不够远并且在挤压之后过度收缩。使用本文中所描述的三种催化剂掺合物制得的树脂不具有所述问题。
因此,需要保持较高分子量组分108与低分子量组分106的分子量间隔,同时引入中间分子量以填充高分子量与低分子量之间的间隙。在一个实施例中,添加其它催化剂以通过添加更高分子量组分114来增加较高分子量组分108的分子量分布。这将保持与高分子量尾部112相关联的聚合物强度。因此,本文中在实施例中描述包括三种催化剂的替代性催化剂系统。所述其它非金属茂催化剂可具有等于或大于先前测试的非金属茂催化剂的产率、大于先前测试的非金属茂催化剂的分子量分布和高分子量尾部112。
这些实施例使用具有双齿或三齿配体的非金属茂催化剂,所述配体使用一个氧原子和一个氮原子与中心金属络合。举例来说,下文展示的结构(IV)。可注意到,实施例不限于结构(IV),可使用任何数量的类似催化剂。举例来说,如本文中所论述,可使用其它取代基代替从氮基团侧接的芳基环,可在芳基上使用任何其它数目的其它取代模式,如下文关于结构(V)所展示。如本文中所使用,结构(I)也称为HN5,结构(II)也称为B,并且结构(IV)也称为NON5。因此,实例中所使用的两种组分掺合物可称为HN5/B,而三种组分掺合物可称为HN5/B/NON5。
通常,混合催化剂系统提供一种聚合物,其具有作为宽分子量分布以及低和高分子量组分中的每一种的密度的结果的有利特性的混合。控制系统的每一组分的分子量分布和短链支化的能力在测定所得聚合物的可加工性和强度方面至关重要。
使用共同负载在与活化剂混合的单个负载物(如二氧化硅甲基铝氧烷(SMAO))上的多种前催化剂可以通过在一个反应器而非多个反应器中制造产物来提供成本优点。此外,使用单个负载物也确保聚合物的精细混合,且相对于不依赖于单个反应器中的多种催化剂制备不同Mw和密度的聚合物的混合物提供改进的可操作性。如本文中所使用,前催化剂是在暴露于单体以及引发催化剂反应之前的催化剂化合物。催化剂可以在单个操作期间经共同负载,或可以用于修整操作,其中将额外催化剂添加到所负载的催化剂中。
这些因素可以通过控制MWD来调节,MWD又可以通过改变负载物上前催化剂的组合的相对量来调节。这可以在形成前催化剂期间例如通过在单个负载物上负载三种或更多种催化剂来调节。在一些实施例中,前催化剂的相对量可以通过在称为“修整”的过程中在到反应器的途中将组分中的一个添加到催化剂混合物中来调节。修整在通过引用包括在本文中的美国专利号6,605,675;6,608,149;6,689,847和6,825,287中论述。聚合物特性数据的反馈可以用于控制催化剂添加的量。已知金属茂(MCN)经其它催化剂良好修整。
各种催化剂系统和组分可以用于产生所披露的聚合物和分子量组合物。这些在以下部分中进行论述。第一部分论述可以用于实施例的催化剂化合物,尤其包括金属茂和非金属茂催化剂。第二部分论述产生可以用于实施所描述的技术的催化剂浆料。第三部分论述可以使用的负载物。第四部分论述可以使用的催化剂活化剂。第五部分论述可以用于在修整系统中添加额外催化剂的催化剂组分溶液。气相聚合可以使用静电控制剂(staticcontrol agent)或连续性试剂,其在第五部分中论述。具有修整进料系统的气相聚合反应器论述在第六部分中。使用催化剂组合物来控制产物性质论述于第六部分中,并且示例性聚合过程论述于第七部分中。所论述程序的实施方案的实例并入到第八部分中。
催化剂化合物
金属茂催化剂化合物
金属茂催化剂化合物一般描述于《基于金属茂的聚烯烃》(METALLOCENE-BASEDPOLYOLEFINS)1和2(约翰·谢尔斯(John Scheirs)和W.卡明斯基(Kaminsky)编,约翰·威利父子有限公司(John Wiley&Sons,Ltd.)2000);G.G.赫拉缇(Hlatky)的《配位化学评论》(COORDINATION CHEM.REV.)181 243-296(1999)以及尤其《基于茂金属的聚烯烃》1 261-377(2000)中的聚乙烯合成中。金属茂催化剂化合物可以包括“半夹层”和/或“全夹层”化合物,所述化合物具有一或多个结合到至少一个第3族到第12族金属原子上的Cp配体(环戊二烯基和与环戊二烯基同构的配体)以及一或多个结合到所述至少一个金属原子上的离去基。如本文中所使用,对元素周期表和其族的所有参考是参考《霍氏简明化学词典》(HAWLEY'S CONDENSED CHEMICAL DICTIONARY),第十三版,约翰·威利父子公司,(1997)(在IUPAC准许下翻印)中公布的新记法(NEW NOTATION),除非对用罗马数字标记的先前IUPAC形式(也出现在其中)作出参考,或除非另外指出。
Cp配体是一种或多种环或环系统,其至少一部分包括π键结的系统,如环烷二烯基配体和杂环类似物。所述环或环系统通常包括选自由第13族到第16族原子组成的群组的原子,并且在特定示例性实施例中,构成Cp配体的原子选自由以下各者组成的群组:碳、氮、氧、硅、硫、磷、锗、硼、铝以及其组合,其中碳构成环成员的至少50%。在一个更特定示例性实施例中,Cp配体选自由经取代和未经取代的环戊二烯基配体以及与环戊二烯基同构的配体组成的群组,其非限制性实例包括环戊二烯基、茚基、芴基以及其它结构。这类配体的其它非限制性实例包括环戊二烯基、环戊并菲基、茚基、苯并茚基、芴基、八氢芴基、环辛四烯基、环戊并环十二烯、菲并茚基、3,4-苯并芴基、9-苯基芴基、8-H-环戊[a]苊基、7-H-二苯并芴基、茚并[1,2-9]蒽、噻吩并茚基、噻吩并芴基、其氢化形式(例如,4,5,6,7-四氢茚基或“H4 Ind”)、其经取代形式(如下文更详细论述和描述的)以及其杂环形式。
金属茂催化剂化合物的金属原子“M”可以在一个示例性实施例中,选自由第3族到第12族原子和镧系族原子组成的群组;并且在一个更特定示例性实施例中,选自由第3族到第10族原子组成的群组;并且在另一个更特定示例性实施例中,选自由以下各者组成的群组:Sc、Ti、Zr、Hf、V、Nb、Ta、Mn、Re、Fe、Ru、Os、Co、Rh、Ir以及Ni;并且在另一个更特定示例性实施例中,选自由第4族、第5族和第6族原子组成的群组;并且在另一个更特定示例性实施例中是Ti、Zr、Hf原子;并且在另一个更特定示例性实施例中是Zr。金属原子“M”的氧化态在一个示例性实施例中可以在0到+7范围内;并且在一个更特定示例性实施例中,可以是+1、+2、+3、+4或+5;并且在另一个更特定示例性实施例中,可以是+2、+3或+4。除非另外指明,否则结合到金属原子“M”上的基团使得下文所描述的化合物在化学式和结构中是电中性的。Cp配体与金属原子M形成至少一个化学键以形成“金属茂催化剂化合物”。Cp配体与结合到催化剂化合物上的离去基团的不同在于其对取代/夺取反应不高度敏感。
一种或多种金属茂催化剂化合物可以由结构(VI)表示:
CpACpBMXn (VI)
其中M如上文所述;每个X化学键结于M;每个Cp基团化学键结于M;并且n是0或1到4的整数,并且在一个特定示例性实施例中是1或2。
在结构(VI)中,由CpA和CpB表示的配体可以是相同或不同环戊二烯基配体或与环戊二烯基同构的配体,其中的任一个或两个可以含有杂原子,并且其中的任一个或两个可以经基团R取代。在至少一个特定实施例中,CpA和CpB独立地选自由以下组成的群组:环戊二烯基、茚基、四氢茚基、芴基以及每一者的经取代衍生物。
独立地,结构(VI)的每个CpA和CpB可以未经取代或经取代基R中的任一个或组合取代。如结构(VI)中所使用的取代基R以及下文论述和描述的结构中的环取代基的非限制性实例包括选自由以下各者组成的群组的基团:氢基团、烷基、烯基、炔基、环烷基、芳基、酰基、芳酰基、烷氧基、芳氧基、烷基硫醇、二烷基胺、烷基氨基、烷氧基羰基、芳氧基羰基、氨甲酰基、烷基-氨甲酰基和二烷基-氨甲酰基、酰氧基、酰基氨基、芳酰基氨基和其组合。与结构(VI)到(XI)相关联的烷基取代基R的更特定非限制性实例包括甲基、乙基、丙基、丁基、戊基、己基、环戊基、环己基、苯甲基、苯基、甲基苯基和叔丁基苯基等,包括其所有异构体,例如第三丁基、异丙基等。其它可能的基团包括经取代的烷基和芳基,如氟甲基、氟乙基、二氟乙基、碘丙基、溴己基、氯苯甲基;烃基取代的有机类金属基团,包括三甲基硅烷基、三甲基锗烷基、甲基二乙基硅烷基等等;和经卤碳基取代的有机类金属基团,包括三(三氟甲基)硅烷基、甲基双(二氟甲基)硅烷基、溴甲基二甲基甲锗烷基等等;和二取代硼基,包括例如二甲基硼;和二取代第15族基团,包括二甲胺、二甲基膦、二苯胺、甲基苯基膦,以及第16族基团,包括甲氧基、乙氧基、丙氧基、苯氧基、甲硫醚和乙硫醚。其它取代基R包括(但不限于)烯烃,诸如烯烃不饱和取代基,包括乙烯基封端的配体,诸如3-丁烯基、2-丙烯基、5-己烯基等。在一个示例性实施例中,至少两个R基团(在一个特定示例性实施例中,两个相邻R基团)连接以形成具有3到30个选自由以下组成的群组的原子的环结构:碳、氮、氧、磷、硅、锗、铝、硼以及其组合。另外,取代基R,如1-丁基可以与元素M形成键结缔合。
以上结构(VI)和以下(VII)到(IX)中的结构中的每个离去基或X独立地选自由以下各者组成的群组:卤素离子、氢、C1到C12烷基、C2到C12烯基、C6到C12芳基、C7到C20烷基芳基、C1到C12烷氧基、C6到C16芳氧基、C7到C8烷基芳氧基、C1到C12氟烷基、C6到C12氟芳基和含有杂原子的C1到C12烃以及其经取代的衍生物,在更特定示例性实施例中;在更特定示例性实施例中,氢、卤素离子、C1到C6烷基、C2到C6烯基、C7到C18烷基芳基、C1到C6烷氧基、C6到C14芳氧基、C7到C16烷基芳氧基、C1到C6烷基羧酸根、C1到C6氟化烷基羧酸根、C6到C12芳基羧酸根、C7到C18烷基芳基羧酸根、C1到C6氟烷基、C2到C6氟烯基以及C7到C18氟烷基芳基;在更特定示例性实施例中,氢、氯、氟、甲基、苯基、苯氧基、苯甲酰氧基、甲苯磺酰基、氟甲基和氟苯基;在更特定示例性实施例中,C1到C12烷基、C2到C12烯基、C6到C12芳基、C7到C20烷基芳基、经取代的C1到C12烷基、经取代的C6到C12芳基、经取代的C7到C20烷基芳基以及含有杂原子的C1到C12烷基、含有杂原子的C1到C12芳基以及含有杂原子的C1到C12烷基芳基;在更特定示例性实施例中,氯、氟、C1到C6烷基、C2到C6烯基、C7到C18烷基芳基、卤化C1到C6烷基、卤化C2到C6烯基和卤化C7到C18烷基芳基;在更特定示例性实施例中,氯、甲基、乙基、丙基、苯基、甲基苯基、二甲基苯基、三甲基苯基、氟甲基(单、二和三氟甲基)和氟苯基(单、二、三、四和五氟苯基)。
X基团的其它非限制性实例包括酰胺、胺、膦、醚、羧酸根、二烯、具有1到20个碳原子的烃自由基、氟化烃自由基(例如-C6F5(五氟苯基))、氟化烷基羧酸根(例如CF3C(O)O-)、氢、卤素离子以及其组合。X配体的其它实例包括烷基,例如环丁基、环己基、甲基、庚基、甲苯基、三氟甲基、四亚甲基、五亚甲基、亚甲基、甲氧基、乙氧基、丙氧基、苯氧基、双(N-甲基苯胺)、二甲酰胺、二甲基磷化物基团等。在一个示例性实施例中,两个或更多个X形成稠环或环系统的一部分。在至少一个特定实施例中,X可以是选自由以下各者组成的群组的离去基:氯离子、溴离子、C1到C10烷基和C2到C12烯基、羧酸根、乙酰丙酮酸根以及醇盐。
金属茂催化剂化合物包括其中CpA和CpB通过至少一个桥联基(A)彼此桥联的那些结构(VI),使得所述结构由结构(VII)表示。
CpA(A)CpBMXn (VII)
这些由结构(VII)表示的桥联化合物称为“桥联金属茂”。结构(VII)中的元素CpA、CpB、M、X以及n如上文关于结构(VI)所定义;其中每一个Cp配体以化学方式键结到M,并且(A)以化学方式键结到每一个Cp。桥联基(A)可以包括含有至少一个第13族到第16族原子的二价烃基,所述原子如(但不限于)碳、氧、氮、硅、铝、硼、锗、锡原子以及其组合中的至少一个;其中所述杂原子也可以是经取代以满足中性价数的C1到C12烷基或芳基。在至少一个特定实施例中,桥联基(A)也可以包括如上文(对结构(VI))所定义的取代基R,包括卤素基团和铁。在至少一个特定实施例中,桥联基(A)可以是由以下表示:C1到C6亚烷基、经取代C1到C6亚烷基、氧、硫、R'2C═、R'2Si═、═Si(R')2Si(R'2)═、R'2Ge═以及R'P═,其中“═”表示两个化学键,R'独立地选自由以下组成的群组:氢负离子、烃基、经取代烃基、卤碳基、经取代卤碳基、经烃基取代的有机类金属、经卤碳基取代的有机类金属、二取代硼、二取代第15族原子、经取代第16族原子以及卤素基团;并且其中两个或更多个R'可以连接以形成环或环系统。在至少一个特定实施例中,结构(VII)的桥联金属茂催化剂化合物包括两个或更多个桥联基团(A)。在一个或多个实施例中,(A)可以是结合到CpA和CpB两者上的二价桥联基,其选自由二价Cl到C20烃基和Cl到C20含有杂原子的烃基组成的群组,其中所述含有杂原子的烃基包括一到三个杂原子。
桥联基(A)可以包括亚甲基、亚乙基(ethylene)、乙叉(ethylidene)、亚丙基、亚异丙基、二苯基亚甲基、1,2-二甲基亚乙基、1,2-二苯基亚乙基、1,1,2,2-四甲基亚乙基、二甲基硅烷基、二乙基硅烷基、甲基-乙基硅烷基、三氟甲基丁基硅烷基、双(三氟甲基)硅烷基、二(正丁基)硅烷基、二(正丙基)硅烷基、二(异丙基)硅烷基、二(正己基)硅烷基、二环己基硅烷基、二苯基硅烷基、环己基苯基硅烷基、叔丁基环己基硅烷基、二(叔丁基苯基)硅烷基、二(对甲苯基)硅烷基和其中Si原子经Ge或C原子置换的对应部分;以及二甲基硅烷基、二乙基硅烷基、二甲基锗烷基和二乙基锗烷基。
桥联基(A)也可以具有例如4到10个环成员的环状;在一个更特定示例性实施例中,桥联基(A)可以具有5到7个环成员。环成员可以选自上文所提及的元素,并且在一个特定实施例中可以选自B、C、Si、Ge、N以及O中的一个或多个。可以按桥联部分或桥连部分的一部分的形式存在的环结构的非限制性实例是亚环丁基、亚环戊基、亚环己基、亚环庚基、亚环辛基以及其中一或两个碳原子经Si、Ge、N和O中的至少一个置换的对应环。在一个或多个实施例中,一或两个碳原子可以经Si和Ge中的至少一个置换。环与Cp基团之间的键结配置可以是顺式、反式或其组合。
环状桥联基团(A)可以是饱和或不饱和的和/或带有一个或多个取代基和/或稠合到一个或多个其它环结构上。在至少一个特定实施例中,一个或多个取代基(如果存在)选自由以下各者组成的群组:烃基(例如烷基,如甲基)和卤素(例如F、Cl)。上文环状桥联部分可以任选地稠合的一或多个Cp基团可以是饱和或不饱和的,并且选自由以下各者组成的群组:具有4到10个,更确切地说5、6或7个环成员(在一个特定示例性实施例中,选自由C、N、O和S组成的群组)的那些基团,如环戊基、环己基和苯基此外,这些环结构可以自身稠合,例如在萘基的情况下。此外,这些(任选地稠合)环结构可以带有一个或多个取代基。这些取代基的说明性非限制性实例是烃基(尤其烷基)和卤素原子。结构(VI)和(VII)的配体CpA和CpB可彼此不同。结构(VI)和(VII)的配体CpA和CpB可相同。
金属茂催化剂化合物可以包括桥联的单配体金属茂化合物(例如单环戊二烯基催化剂组分)。示例性金属茂催化剂化合物进一步描述于美国专利第6,943,134号中。
预期上文所论述和描述的金属茂催化剂组分包括其结构或光学或对映异构体(外消旋混合物),并且在一个示例性实施例中,可以是纯对映异构体。如本文所用,具有外消旋和/或内消旋异构体的单一、桥联、不对称取代的金属茂催化剂化合物自身不构成至少两个不同桥联、金属茂催化剂组分。
按催化剂系统的总重量计,催化剂系统中一种或多种金属茂催化剂化合物的过渡金属组分的量可以在较低约0.2重量%、约3重量%、约0.5重量%或约0.7重量%到较高1约重量%、约2重量%、约2.5重量%、约3重量%、约3.5重量%或约4重量%范围内。
金属茂催化剂化合物可以包括本文所论述和描述的任何实施例的任何组合。举例来说,金属茂催化剂化合物可包括(但不限于)双(正丁基环戊二烯基)锆(CH3)2、双(正丁基环戊二烯基)锆Cl2、双(正丁基环戊二烯基)锆Cl2、(正丙基环戊二烯基,四甲基环戊二烯基)锆Cl2、[(五甲基苯基NCH2CH2)2NH]ZrBz2、[(五甲基苯基NCH2CH2)2O]ZrBz2或其任何组合。
除上文所论述和描述的金属茂催化剂化合物之外,其它合适的金属茂催化剂化合物可以包括(但不限于)在美国专利第7,741,417号、第7,179,876号、第7,169,864号、第7,157,531号、第7,129,302号、第6,995,109号、第6,958,306号、第6,884,748号、第6,689,847号;以及WO公开案:WO 1997/022635、WO 1998/046651、WO 2000/069922、WO 2001/030860、WO 2001/030861、WO 2002/046246、WO 2002/050088、WO 2004/026921和WO 06/019494中所论述和描述的金属茂。
尽管催化剂化合物可以书写或展示为具有与中央金属连接的甲基、氯基或苯基离去基,但可以了解这些基团可以不同,而不改变所涉及的催化剂。举例来说,这些配体中的每一个可以独立地是苯甲基(Bz)、甲基(Me)、氯基(Cl)、氟基(F)或任何数量的其它基团,包括有机基团或杂原子基团。此外,这些配体将在反应期间变化,因为前催化剂转化成用于反应的活性催化剂。
第15族原子和非金属茂催化剂化合物
催化剂系统可以包括一种或多种含有第15族金属的催化剂化合物。如本文所用,这些化合物被称为非金属茂催化剂化合物。含有第15族金属的化合物通常包括第3族到第14族金属原子、第3族到第7族或第4族到第6族金属原子。在许多实施例中,含有第15族金属的化合物包括结合到至少一个离去基上并且也结合到至少两个第15族原子上的第4族金属原子,所述第15族原子中的至少一个也通过另一个基团结合到第15族或第16族原子上。
在一个或多个实施例中,第15族原子中的至少一个也通过另一个基团结合到第15族或第16族原子上,所述另一个基团可以是C1到C20烃基、含有杂原子的基团、硅、锗、锡、铅或磷,其中所述第15族或第16族原子也可以不结合或结合到氢、含有第14族原子的基团、卤素或含有杂原子的基团上,并且其中所述两个第15族原子中的每一个也结合到环基上,并且可以任选地结合到氢、卤素、杂原子或烃基、或含有杂原子的基团上。
含有第15族金属的化合物可由结构(VIII)或(IX)更具体地描述:
其中M是第3族到第12族过渡金属或第13族或第14族主族金属、或第4族、第5族或第6族金属。在许多实施例中,M是第4族金属,如锆、钛或铪。每一个X独立地是离去基,诸如阴离子离去基。离去基可以包括氢、烃基、杂原子、卤素或烷基;y是0或1(当y是0时,基团L'不存在)。术语‘n’是M的氧化态。在各种实施例中,n是+3、+4或+5。在许多实施例中,n是+4。术语‘m’表示YZL或YZL'配体的形式电荷,并且在各种实施例中是0、-1、-2或-3。在许多实施例中,m是-2。L是第15族或第16族元素,如氮或氧;L'是第15族或第16族元素或含有第14族的基团,如碳、硅或锗。Y是第15族元素,如氮或磷。在许多实施例中,Y是氮。Z是第15族元素,如氮或磷。在许多实施例中,Z是氮。R1和R2独立地是C1到C20烃基、具有最多二十个碳原子的含杂原子的基团、硅、锗、锡、铅或磷。在许多实施例中,R1和R2是C2到C20烷基、芳基或芳烷基,如直链、支链或环状C2到C20烷基或C2到C6烃基,如上文关于结构(VI)和(VII)描述的X。R1和R2也可以彼此互连。R3可以不存在或可以是烃基、氢、卤素、含有杂原子的基团。在许多实施例中,举例来说,如果L是氧、或氢、或具有1到20个碳原子的直链、环状或支链烷基,那么R3不存在。R4和R5独立地是烷基、芳基、经取代芳基、环状烷基、经取代环状烷基、环状芳烷基、经取代环状芳烷基或通常具有最多20个碳原子的多环系统。在许多实施例中,R4和R5具有介于3与10个之间的碳原子,或是C1到C20烃基、C1到C20芳基或C1到C20芳烷基、或含有杂原子的基团。R4和R5可以彼此互连。R6和R7独立地不存在、是氢、烷基、卤素、杂原子或烃基,如具有1到20个碳原子的直链、环状或支链烷基。在许多实施例中,R6和R7不存在。R*可以不存在,或可以是氢、含第14族原子的基团、卤素或含有杂原子的基团。
“YZL或YZL'配体的形式电荷”意味着不存在金属和离去基X的整个配体的电荷。“R1和R2也可以互连”意味着R1和R2可以直接彼此结合或可以通过其它基团彼此结合。“R4和R5也可以互连”意味着R4和R5可以直接彼此结合或可以通过其它基团彼此结合。烷基可以是直链、分支链烷基、烯基、炔基、环烷基、芳基、酰基、芳酰基、烷氧基、芳氧基、烷基硫基、二烷基氨基、烷氧羰基、芳氧基羰基、氨甲酰基、烷基-氨甲酰基和二烷基-氨甲酰基、酰氧基、酰基氨基、芳酰基氨基、直链、分支链或环状亚烷基或其组合。芳烷基定义为经取代的芳基。
在一个或多个实施例中,R4和R5独立地是由下式(X)表示的基团。
当R4和R5如式VII时,R8到R12各自独立地是氢、C1到C40烷基、卤离子、杂原子、含有最多40个碳原子的含杂原子的基团。在许多实施例中,R8到R12是C1到C20直链或分支链烷基,如甲基、乙基、丙基或丁基。任何两个R基团可以形成环基和/或杂环基。环状基团可以是芳族基团。在一个实施例中,R9、R10和R12独立地是甲基、乙基、丙基或丁基(包括所有异构体)。在另一个实施例中,R9、R10和R12是甲基,并且R8和R11是氢。
在一或多个实施例中,R4和R5都是由下式(XI)表示的基团。
当R4和R5遵循式(XI)时,M是第4族金属,诸如锆、钛或铪。在许多实施例中,M是锆。L、Y和Z中的每一个可以是氮。R1和R2中的每一个可以是-CH2-CH2-。R3可以是氢,并且R6和R7可以不存在。
含有第15族金属的催化剂化合物可由结构(IV)表示。在式IV中,Ph表示苯基。代表性含有第15族金属的化合物和其制备可以如在美国专利第5,318,935号、第5,889,128号、第6,333,389号、第6,271,325号和第6,689,847号;WO公开案WO 99/01460、WO 98/46651、WO2009/064404、WO 2009/064452和WO 2009/064482;以及EP 0 893 454和EP 0 894 005中所论述和描述。
催化剂形式
催化剂系统可包括含催化剂组分的浆料,其可具有初始催化剂化合物和添加到浆料中的所添加的溶液催化剂组分。通常,取决于可溶性,非金属茂催化剂将负载在初始浆料中。然而,在一些实施例中,初始催化剂组分浆料可不具有催化剂。在这种情况下,可将两种或更多种溶液催化剂添加到浆料中以引起每种催化剂被负载。
任何数量的催化剂组分的组合均可以用于实施例。举例来说,催化剂组分浆料可包括活化剂和负载物,或负载活化剂。此外,除活化剂和负载物以外,浆料可包括催化剂化合物。如所提到,浆料中的催化剂化合物可被负载。
浆料可以包括一种或多种活化剂和负载物和另一种催化剂化合物。举例来说,浆料可以包括两种或更多种活化剂(如铝氧烷和经改性的铝氧烷)和一种催化剂化合物,或浆料可以包括经负载的活化剂和一种以上催化剂化合物。在一个实施例中,浆料包括负载物、活化剂和两种催化剂化合物。在另一个实施例中,浆料包括可以单独地或以组合形式添加到所述浆料中的负载物、活化剂和两种不同催化剂化合物。含有二氧化硅和铝氧烷的浆料可以与催化剂化合物接触,允许反应,并且其后使浆料与另一种催化剂化合物例如在修整系统中接触。
浆料中的活化剂中的金属与催化剂化合物中的金属的摩尔比可以是1000:1到0.5:1,300:1到1:1或150:1到1:1。浆料可以包括负载材料,其可以是所属领域中已知的任何惰性微粒载体材料,包括(但不限于)二氧化硅、烟雾状二氧化硅、氧化铝、粘土、滑石或如上文公开的其它负载材料。在一个实施例中,浆料含有二氧化硅和活化剂,如甲基铝氧烷(“MAO”)、经改性的甲基铝氧烷(“MMAO”),如下文进一步所论述。
一种或多种稀释剂或载体可以用于促进浆料或修整催化剂溶液中的催化剂系统的任何两种或更多种组分的组合。举例来说,单一位点催化剂化合物和活化剂可以在甲苯或另一种非反应性烃或烃混合物存在下组合在一起以提供催化剂混合物。除了甲苯之外,其它适合的稀释剂可以包括(但不限于)乙苯、二甲苯、戊烷、己烷、庚烷、辛烷、其它烃或其任何组合。干燥或与甲苯混合的负载物可以接着添加到催化剂混合物或催化剂/活化剂混合物中,可以添加到负载物中。
催化剂不限于浆料配置,因为混合的催化剂系统可以在负载物上制得且干燥。干燥的催化剂系统可以接着通过干燥进料系统进料到反应器中。
负载物
如本文所用,术语“负载物”和“载体”可互换地使用且是指任何负载材料,包括多孔负载材料,如滑石、无机氧化物和无机氯化物。浆料的一种或多种单一位点催化剂化合物可与活化剂一起负载在相同或分开的负载物上,或活化剂可以未负载形式使用,或可沉积在与单一位点催化剂化合物或其任何组合不同的载体上。这可以通过所属领域中常用的任何技术来实现。在所属领域中存在各种用于负载单一位点催化剂化合物的其它方法。举例来说,单一位点催化剂化合物可以含有如例如美国专利第5,473,202号和第5,770,755号中所描述的聚合物结合配体。浆料的单一位点催化剂化合物可以如例如美国专利第5,648,310号中所描述喷雾干燥。可以如EP 0 802 203中所描述使与单一位点催化剂化合物一起使用的载体官能化,或如美国专利第5,688,880号中所描述选择至少一个取代基或离去基。
负载物可以是或包括一种或多种无机氧化物,例如第2族、第3族、第4族、第5族、第13族或第14族元素的无机氧化物。无机氧化物可以包括(但不限于)二氧化硅、氧化铝、二氧化钛、氧化锆、氧化硼、氧化锌、氧化镁或其任何组合。无机氧化物的说明性组合可以包括(但不限于)氧化铝-二氧化硅、二氧化硅-二氧化钛、氧化铝-二氧化硅-二氧化钛、氧化铝-氧化锆、氧化铝-二氧化钛等。负载物可以是或包括二氧化硅、氧化铝或其组合。在本文所描述的一个实施例中,负载物是二氧化硅。
适合的商业上可获得的二氧化硅负载物可以包括(但不限于)可购自PQ公司(PQCorporation)的ES757、ES70和ES70W。适合的商业上可获得的二氧化硅-氧化铝负载物可包括(但不限于)可从购得的1、5、10、20、28M、30和40。一般来说,包含二氧化硅凝胶与活化剂(诸如甲基铝氧烷(MAO))的催化剂负载物用于所描述的调整系统中,因为这些负载物对于共负载溶液所运送的催化剂来说较好地起作用。
适合的催化剂负载物论述和描述于赫拉缇,《化学评论》(Chem.Rev.)(2000),100,1347-1376和芬克(Fink)等人,《化学评论》(2000),100,1377-1390,美国专利号:4,701,432、4,808,561、4,912,075、4,925,821、4,937,217、5,008,228、5,238,892、5,240,894、5,332,706、5,346,925、5,422,325、5,466,649、5,466,766、5,468,702、5,529,965、5,554,704、5,629,253、5,639,835、5,625,015、5,643,847、5,665,665、5,698,487、5,714,424、5,723,400、5,723,402、5,731,261、5,759,940、5,767,032和5,770,664;以及WO 95/32995、WO95/14044、WO 96/06187和WO 97/02297中。
活化剂
如本文所用,术语“活化剂”可以是指能够活化单一位点催化剂化合物或组分(诸如通过产生所述催化剂组分的阳离子物质)的任何负载或未负载的化合物或化合物组合。举例来说,这可以包括从单一位点催化剂化合物/组分的金属中心夺取至少一个离去基团(本文所描述的单一位点催化剂化合物中的“X”基团)。活化剂也可以被称为“共催化剂”。
举例来说,活化剂可以包括路易斯酸(Lewis acid)或非配位性离子活化剂或电离活化剂,或包括路易斯碱、铝烷基和/或常规型共催化剂的任何其它化合物。除上述甲基铝氧烷(“MAO”)和经改质的甲基铝氧烷(“MMAO”)之外,说明性活化剂可以包括(但不限于)铝氧烷或经修饰的铝氧烷和/或中性或离子性的电离化合物,诸如三(正丁基)铵四(五氟苯基)硼、三全氟苯基硼类金属前驱物、三全氟萘基硼类金属前驱物或其任何组合。
铝氧烷可以描述为具有-Al(R)-O-子单元的寡聚铝化合物,其中R是烷基。铝氧烷的实例包括(但不限于)甲基铝氧烷(“MAO”)、经改质的甲基铝氧烷(“MMAO”)、乙基铝氧烷、异丁基铝氧烷或其组合。铝氧烷可以通过使相应三烷基铝化合物水解来产生。MMAO可以通过使三甲基铝和较高碳数三烷基铝(诸如三异丁基铝)水解来产生。MMAO一般更可溶于脂肪族溶剂中,并且在储存期间更稳定。存在多种用于制备铝氧烷和经改性的铝氧烷的方法,非限制性实例可以如在美国专利第4,665,208号、第4,952,540号、第5,091,352号、第5,206,199号、第5,204,419号、第4,874,734号、第4,924,018号、第4,908,463号、第4,968,827号、第5,308,815号、第5,329,032号、第5,248,801号、第5,235,081号、第5,157,137号、第5,103,031号、第5,391,793号、第5,391,529号、第5,693,838号、第5,731,253号、第5,731,451号、第5,744,656号、第5,847,177号、第5,854,166号、第5,856,256号和第5,939,346号;以及EP 0 561 476、EP 0 279 586、EP 0 594-218和EP 0 586 665;以及WO公开案WO 94/10180和WO 99/15534中所论述和描述。
如上所述,可以与铝氧烷结合使用一种或多种有机铝化合物,诸如一种或多种烷基铝化合物。举例来说,可以使用的烷基铝物质是二乙基铝乙醇盐、二乙基铝氯化物和/或二异丁基铝氢化物。三烷基铝化合物的实例包括(但不限于)三甲基铝、三乙基铝(“TEAL”)、三异丁基铝(“TiBAl”)、三-正己基铝、三-正辛基铝、三丙基铝、三丁基铝等。
催化剂组分溶液
催化剂组分溶液可仅包括催化剂化合物,如金属茂,或可包括除催化剂化合物以外的活化剂。用于修整过程的催化剂溶液可通过将催化剂化合物和任选的活化剂溶解于液体溶剂中来制备。液体溶剂可以是烷烃,如C5到C30烷烃,或C5到C10烷烃。也可以使用如环己烷的环状烷烃和如甲苯的芳族化合物。此外,可使用矿物油作为溶剂。所使用的溶液应在聚合条件下是液体并且相对惰性。在一个实施例中,催化剂化合物溶液中使用的液体与催化剂组分浆料中使用的稀释剂不同。在另一个实施例中,催化剂化合物溶液中使用的液体与催化剂组分溶液中使用的稀释剂相同。
如果催化剂溶液包括活化剂和催化剂化合物,那么溶液中活化剂中的金属与催化剂化合物中的金属的比率可以是1000:1到0.5:1、300:1到1:1或150:1到1:1。在不同实施例中,按溶剂和活化剂或催化剂化合物的重量计,活化剂和催化剂化合物以至多约90重量%、至多约50重量%、至多约20重量%、优选至多约10重量%、至多约5重量%、小于1重量%或介于100百万分率与1重量%之间存在于溶液中。
催化剂组分溶液可包含本文中催化剂部分中所描述的可溶催化剂化合物中的任一种。由于催化剂溶解于溶液中,需要较高可溶性。因此,催化剂组分溶液中的催化剂化合物通常可包括金属茂,其与其它催化剂相比可具有较高可溶性。
在下文所描述的聚合过程中,上述含有催化剂组分的溶液中的任一种可与上述含有催化剂组分的浆料中的任一种组合。此外,可使用一种以上催化剂组分溶液。
连续性添加剂/静电控制剂
在气相聚乙烯生产过程中,可能需要使用一种或多种静电控制剂来辅助调节反应器中的静电水平。如本文所用,静电控制剂是在引入到流体化床反应器中时可以影响或推进流体化床中的静电荷(变负、变正或为零)的化学组合物。所用的特定静电控制剂可以取决于静电荷的性质,并且静电控制剂的选择可以取决于所产生的聚合物和所用单一位点催化剂化合物而变化。举例来说,静电控制剂的使用揭示于欧洲专利第0229368号和美国专利第4,803,251号、第4,555,370号和第5,283,278号以及其中引用的参考文献中。
可以使用如硬脂酸铝的控制剂。所用静电控制剂可以针对其在没有不利地影响生产率的情况下接受流体化床中静电荷的能力而加以选择。其它适合的静电控制剂还可以包括二硬脂酸铝、乙氧基化的胺和抗静电组合物,如由英诺斯派公司(Innospec Inc.)以商标名OCTASTAT提供的那些组合物。举例来说,OCTASTAT 2000是聚砜共聚物、聚合多元胺和油可溶性磺酸的混合物。
前述控制剂以及描述于例如WO 2001/044322中的那些控制剂(在标题甲酸金属盐下所列并且包括作为抗静电剂所列的那些化学品和组合物)中的任一个可以作为控制剂单独或组合使用。举例来说,甲酸金属盐可以与含胺的控制剂(例如,具有属于(可购自克朗普顿公司(Crompton Corporation))或(可购自皇家化工美洲公司(ICI Americas Inc.))产品家族的任何家族成员的甲酸金属盐)组合。
其它适用的连续性添加剂包括亚乙基亚胺,适用于本文所披露的实施例中的添加剂可以包括具有以下通式的聚亚乙基亚胺:
-(CH2-CH2-NH)n-,
其中n可以是约10到约10,000。聚亚乙基亚胺可以是直链、分支链或高分支链(例如,形成树枝状(dendritic)或树木状(arborescent)聚合物结构)。其可以是亚乙基亚胺的均聚物或共聚物或其混合物(下文被称为聚亚乙基亚胺)。尽管由化学式--[CH2-CH2-NH]--表示的直链聚合物可以用作聚乙二亚胺,但也可以使用具有一级、二级和三级分支的材料。市售聚亚乙基亚胺可以是具有亚乙基亚胺聚合物分支的化合物。
适合的聚亚乙基亚胺可以商标名Lupasol商购自巴斯夫公司(BASFCorporation)。这些化合物可以根据广泛分子量和产物活性制备。适用于本发明中的由巴斯夫销售的商业聚亚乙基亚胺的实例包括(但不限于)Lupasol FG和Lupasol WF。
另一种适用的连续性添加剂可以包括二硬脂酸铝和乙氧基化胺型化合物的混合物,例如可购自亨茨曼公司(Huntsman)(以前汽巴精化(Ciba Specialty Chemicals))的IRGASTAT AS-990。可以在矿物油(例如Hydrobrite 380)中将二硬脂酸铝和乙氧基化胺型化合物的混合物浆化。举例来说,可以在矿物油中将二硬脂酸铝和乙氧基化胺型化合物的混合物浆化以得到介于约5重量%到约50重量%,或约10重量%到约40重量%,或约15重量%到约30重量%范围内的总浆料浓度。其它适用的静态控制剂和添加剂揭示于美国专利申请公开案第2008/0045663号中。
可以用按到达反应器的所有进料(不包括再循环)的重量计介于0.05到200ppm范围内的量向反应器中添加连续性添加剂或静态控制剂。在一些实施例中,可以用介于2到100ppm范围内的量或用介于4到50ppm范围内的量添加连续性添加剂。
气相聚合反应器
图2是气相反应器系统200的示意图,其展示添加至少两种催化剂,其中至少一种是作为修整催化剂添加。可将催化剂组分浆料,优选是包括至少一种负载物和至少一种活化剂、至少一种负载型活化剂和任选的催化剂化合物的矿物油浆料,放入容器或催化剂罐(催化罐)202中。在一个实施例中,催化剂罐202是经设计以保持固体浓度均匀的搅拌储料槽。将通过混合溶剂与至少一种催化剂化合物和/或活化剂而制备的催化剂组分溶液放入另一个容器(其可修整罐204)中。接着可使催化剂组分浆料与催化剂组分溶液串联式组合以形成最终催化剂组合物。可将成核剂206(如二氧化硅、氧化铝、烟雾状二氧化硅或任何其它颗粒物质)以串联方式或在容器202或204中添加到浆料和/或溶液中。类似地,可以串联方式添加其它活化剂或催化剂化合物。举例来说,可从第二催化剂罐引入包括不同催化剂的第二催化剂浆料。可在添加或不添加来自修整罐的溶液催化剂的情况下使用两种催化剂浆料作为催化剂系统。
催化剂组分浆料和溶液可以串联方式混合。举例来说,溶液和浆料可通过使用静态混合器208或搅拌容器(未图示)混合。催化剂组分浆料与催化剂组分溶液的混合应足够长,以允许催化剂组分溶液中的催化剂化合物分散到催化剂组分浆料中,使得原先在溶液中的催化剂组分迁移到原先存在于浆料中的负载型活化剂。组合在形成催化剂组合物的负载型活化剂上形成催化剂化合物的均匀分散液。浆料与溶液接触的时间长度典型地是至多约220分钟,如约1到约60分钟、约5到约40分钟或约10到约30分钟。
当在聚合反应器之前立即在烃溶剂中组合催化剂、活化剂和任选的负载物或其它共催化剂时,需要组合可在1小时内、30分钟内或15分钟内产生新的聚合催化剂。更短的时间是更有效的,因为新的催化剂在引入反应器之前已准备好,提供更快的流动速率的潜能。
在另一个实施例中,将烷基铝、乙氧基化烷基铝、铝氧烷、抗静电剂或硼酸盐活化剂(如C1到C15烷基铝(例如三异丁基铝、三甲基铝等)、C1到C15乙氧基化烷基铝或甲基铝氧烷、乙基铝氧烷、异丁基铝氧烷、经改质铝氧烷等)以串联方式添加到浆料和溶液的混合物中。烷基、抗静电剂、硼酸盐活化剂和/或铝氧烷可从烷基容器210直接添加到溶液和浆料的组合中,或可通过其它烷烃(如异戊烷、己烷、庚烷和或辛烷)载剂流例如从烃容器212添加。其它烷基、抗静电剂、硼酸盐活化剂和/或铝氧烷可以至多约500ppm、约1到约300ppm、10到约300ppm或约10到约100ppm存在。可使用的载剂流尤其包括异戊烷和或己烷。载剂可典型地以约0.5到约60磅/小时(27千克/小时)的速率添加到浆料和溶液的混合物中。类似地,载气214(如氮、氩、乙烷、丙烷等)可以串联方式添加到浆料和溶液的混合物中。典型地,载气可以约1到约100lb/hr(0.4到45kg/hr),或约1到约50lb/hr(5到23公斤/hr),或约1到约25lb/hr(0.4到11kg/hr)的速率添加。
在另一个实施例中,奖液体载剂流引入向下移动的溶液和浆料的组合中。在与气态载剂流接触之前,溶液、浆料和液体载剂流的混合物可穿过混合器或用于混合的试管的长度。
类似地,共聚单体216(如己烯、另一种α-烯烃或二烯烃)可以串联方式添加到浆料和溶液的混合物中。接着,浆料/溶液混合物穿过注射管220到达反应器222。在一些实施例中,注射管可使浆料/溶液混合物雾化。任何数目的适合的导管尺寸和配置可用于雾化和/或喷射浆料/溶液混合物。
在一个实施例中,将气流(如循环气体)或再循环气体、单体、氮或其它材料引入围绕注射管的负载物试管228。为了帮助在反应器中适当形成粒子,可将成核剂218(如烟雾状二氧化硅)添加直接到反应器中。
当气相反应器中使用金属茂催化剂或其它类似催化剂时,氧或氟苯可直接添加到反应器222中或添加到气流226中以控制聚合率。因此,当金属茂催化剂(其对氧或氟苯敏感)在气相反应器中与另一种催化剂(对氧不敏感)组合使用时,可使用氧以相对于另一种催化剂的聚合率改进金属茂聚合率。这类催化剂组合的实例是双(正丙基环戊二烯基)锆二氯化物和[(2,4,6-Me3C6H2)NCH2CH2]2NHZrBz2,其中Me是甲基,或双(茚基)锆二氯化物和[(2,4,6-Me3C6H2)NCH2CH2]2NHHfBz2,其中Me是甲基。举例来说,如果氮进料中的氧浓度从0.1ppm变成0.5ppm,将由双茚基ZrCl2产生显著更少的聚合物并且由[(2,4,6-Me3C6H2)NCH2CH2]2NHHfBz2产生的聚合物的相对量增加。WO 1996/009328披露向气相聚合反应器中添加例如水或二氧化碳以达到类似目的。在一个实施例中,浆料和溶液的接触温度在0℃到约80℃、约0℃到约60℃、约10℃到约50℃和约20℃到约40℃范围内。
以上实例并非限制性,因为可包括其它溶液和浆料。举例来说,浆料可与两种或更多种具有相同或不同催化剂化合物和或活化剂的溶液组合。类似地,溶液可与两种或更多种浆料组合,所述浆料各自具有相同或不同负载物和相同或不同催化剂化合物和或活化剂。类似地,两种或更多种浆料与两种或更多种溶液组合,优选以串联方式,其中浆料各自包含相同或不同负载物并且可包含相同或不同催化剂化合物和或活化剂,并且溶液包含相同或不同催化剂化合物和或活化剂。举例来说,浆料可含有负载型活化剂和两种不同催化剂化合物,并且各自含有浆料中的催化剂中的一种的两种溶液各自独立地与浆料串联组合。
使用催化剂组合物控制产物特性
产物聚合物的特性可通过调节上述溶液、浆料和任何任选的添加材料(成核剂、催化剂化合物、活化剂等)的混合的时序、温度、浓度和顺序来控制。也可以通过操控过程参数来改变由每种催化剂产生的聚合物的MWD、熔融指数、相对量以及所产生的聚合物的其它特性。可调节任何数目的过程参数,包括操控聚合系统中的氢浓度、改变聚合系统中第一催化剂的量、改变聚合系统中第二催化剂的量。其它可调节的过程参数包括改变聚合过程中催化剂的相对比率(和任选地调节其个别进料速率以维持稳定或恒定的聚合物生产率)。反应器222中反应物的浓度可通过改变由过程回收或吹扫的液体或气体的量、改变返回到聚合过程的回收液体和/或回收气体的量和/或组成来调节,其中回收液体或回收气体从由聚合过程排放的聚合物回收。其它可调节的浓度参数包括改变聚合温度、改变聚合过程中的乙烯分压、改变聚合过程中乙烯与共聚单体比率、改变活化程序中活化剂与过渡金属比率。可调节时间依赖性参数,如改变浆料或溶液的相关进料速率、改变串联浆料和溶液的混合时间、温度和或混合程度、向聚合过程中添加不同类型的活化剂化合物以及向聚合过程中添加氧或氟苯或其它催化剂毒物。这些调节的任何组合可用于控制最终聚合物产物的特性。
在一个实施例中,若需要,以一定间隔测量聚合物产物的MWD并且改变以上过程参数中的一种(如温度、催化剂化合物进料速率、两种或更多种催化剂彼此的比率、共聚单体与单体的比率、单体分压和或氢浓度)以使组合物达到所需水平。可尤其通过尺寸排阻色谱(SEC)技术(例如凝胶渗透色谱(GPC))测量MWD。
在一个实施例中,串联并且回应于所组合的催化剂的比率改变而测量聚合物产物性质。在一个实施例中,在混合浆料和溶液以形成最终催化剂组合物之后,催化剂组分浆料中催化剂化合物与催化剂组分溶液中催化剂化合物的摩尔比是500:1到1:500,或100:1到1:100,或50:1到1:50或40:1到1:10。在另一个实施例中,在混合浆料和溶液以形成催化剂组合物之后,浆料中第15族催化剂化合物与溶液中配体金属茂催化剂化合物的摩尔比是500:1、100:1、50:1、10:1或5:1。所测量的产物性质可包括动态剪切粘度、流动指数、熔融指数、密度、MWD、共聚单体含量以及其组合。在另一个实施例中,当催化剂化合物的比率改变时,改变催化剂组合物引入反应器的速率或其它过程参数以维持所需生产率。
聚合过程
催化剂系统可用于聚合一种或多种,以由其提供一种或多种聚合物产物。可以使用任何适合的聚合过程,包括(但不限于)高压、溶液、浆料和/或气相聚合过程。在使用除气相聚合以外的其它技术的实施例中,可使用与关于图2所论述类似的对催化剂添加系统的修改。举例来说,可使用修整系统将催化剂供应到用于聚乙烯共聚物制备的回路浆料反应器中。
术语“聚乙烯”和“聚乙烯共聚物”是指具有至少50重量%乙烯衍生单元的聚合物。在不同实施例中,聚乙烯可具有至少70重量%乙烯衍生单元、至少80重量%乙烯衍生单元、至少90重量%乙烯衍生单元或至少95重量%乙烯衍生单元。本文所述的聚乙烯聚合物通常是共聚物,但还可以包括三元共聚物,具有一种或多种其它单体单元。如本文所描述,聚乙烯可以包括例如至少一种或多种其它烯烃或共聚单体。合适的共聚单体可以含有3到16个碳原子、3到12个碳原子、4到10个碳原子以及4到8个碳原子。共聚单体的实例包括(但不限于)丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、4-甲基戊-1-烯、1-癸烯、1-十二烯、1-十六烯等。
再次参考图2,流体化床反应器222可包括反应区232和减速区234。反应区232可以包括床236,所述床包括生长中的聚合物粒子、形成的聚合物粒子以及少量催化剂粒子,所述催化剂粒子由气态单体和稀释剂(移除聚合热)通过反应区的连续流动而流体化。任选地,一些再循环气体224可以经冷却和压缩以形成液体,所述液体在重新进入反应区中时增加循环气流的排热能力。适合的气体流动速率可以容易地通过实验来确定。将气态单体补充到循环气流中的速率可以等于从反应器中抽取粒状聚合物产物和与其相关的单体的速率,并且可以调节穿过反应器的气体组成以在反应区内维持主要稳定状态的气态组成。离开反应区232的气体可以穿过速度降低区234,其中夹带粒子通过例如减慢并落回到反应区232中来移除。如果需要,可以在分离系统238(如旋流器和/或细粒过滤器)中移除更细的夹带粒子和灰尘。气体224可以穿过热交换器240,其中可以移除聚合热的至少一部分。气体可以随后在压缩机242中压缩,并且返回到反应区232中。其它反应器细节和用于操作反应器222的手段描述于例如美国专利第3,709,853号;第4,003,712号;第4,011,382号;第4,302,566号;第4,543,399号;第4,882,400号;第5,352,749号;和第5,541,270号;EP 0802202;以及比利时专利第839,380号中。
流化床过程的反应器温度可以大于约30℃、约40℃、约50℃、约90℃、约100℃、约110℃、约120℃、约150℃或更高。一般来说,反应器温度在考虑聚合物产物在反应器内烧结温度的情况下的最高可行温度下操作。因此,温度上限在一个实施例中是反应器中所产生聚乙烯共聚物的熔融温度。然而,较高温度可以产生较窄MWD,这可以通过添加结构(IV)或如本文所述的其它共催化剂来改进。
可以在烯烃聚合中使用氢气来控制聚烯烃的最终性质,如描述于《聚丙烯手册》(Polypropylene Handbook)中第76-78页(汉瑟出版社(Hanser Publishers),1996)。在使用某些催化剂系统的情况下,增加氢气浓度(分压)可以增加所生成聚乙烯共聚物的流动指数(FI)或熔融指数(MI)。因此,流动指数可以受氢气浓度影响。聚合中的氢气量可以表示为相对于总可聚合单体(例如乙烯)或乙烯与己烯或丙烯掺合物的摩尔比。
用于聚合过程的氢气的量可以是为实现最终聚烯烃聚合物的所需流动指数所必需的量。举例来说,氢气与总单体的摩尔比(H2:单体)可以大于约0.0001,大于约0.0005,或大于约0.001。此外,氢气与总单体的摩尔比(H2:单体)可以是小于约10,小于约5,小于约3,以及小于约0.10。所需的氢气与单体的摩尔比范围可以包括本文所描述的任何摩尔比上限与任何摩尔比下限的任何组合。换言之,在任何时间时,反应器中的氢气量可以在最多约5,000ppm范围内,在另一个实施例中最多约4,000ppm,最多约3,000ppm,或在另一个实施例中介于约50ppm与5,000ppm之间,或介于约50ppm与2,000ppm之间。以重量计,反应器中的氢气量可以在较低约1ppm、约50ppm或约100ppm到较高约400ppm、约800ppm、约1,000ppm、约1,500ppm或约2,000ppm范围内。此外,氢气与总单体之比(H2:单体)可以是约0.00001:1到约2:1,约0.005:1到约1.5:1,或约0.0001:1到约1:1。在气相过程中的一种或多种反应器压力(单级或两级或更多级)可以在690kPa(100psig)到3,448kPa(500psig)范围内,在1,379kPa(200psig)到2,759kPa(400psig)范围内,或在1,724kPa(250psig)到2,414kPa(350psig)范围内变化。
气相反应器可能能够产生每小时约10kg聚合物(25lbs/hr)到约90,900kg/hr(200,000lbs/hr)或更大,和大于约455kg/hr(1,000lbs/hr),大于约4,540kg/hr(10,000lbs/hr),大于约11,300kg/hr(25,000lbs/hr),大于约15,900kg/hr(35,000lbs/hr),和大于约22,700kg/hr(50,000lbs/hr),以及约29,000kg/hr(65,000lbs/hr)到约45,500kg/hr(100,000lbs/hr)。
如所提到,在实施例中也可以使用浆料聚合过程。浆料聚合过程通常使用介于约101kPa(1个大气压)到约5,070kPa(50个大气压)或更大范围内的压力和介于约0℃到约120℃,并且更确切地说约30℃到约100℃范围内的温度。在浆液聚合中,可以在液体聚合稀释剂介质中形成固体粒状聚合物的悬浮液,向所述介质中可以添加乙烯、共聚单体和氢气以及催化剂。间歇或连续从反应器中移出包括稀释剂的悬浮液,其中挥发性组分与聚合物分离并且任选地在蒸馏之后再循环到反应器中。在聚合介质中所采用的液体稀释剂可以是具有3到7个碳原子的烷烃,诸如分支链烷烃。使用的介质应在聚合条件下是液体并且相对惰性。当使用丙烷介质时,所述过程应在反应稀释剂临界温度和压力以上操作。在一个实施例中,可以采用己烷、异戊烷或异丁烷介质。浆料可以在连续环路系统中循环。
许多测试可用于比较来自不同来源、催化剂系统和制造商的树脂。这种测试可包括熔融指数、高负载熔融指数、熔融指数比率、密度、模具膨胀、抗环境应力开裂性和许多其它测试。在本文中所描述的实施例中进行的对树脂的测试结果呈现于实例部分中。
产物聚乙烯的熔融指数比(MIR或I21/I2)在约10到小于约300范围内,或在许多实施例中在约15到约150范围内。流动指数(FI,HLMI,或I21)可以根据ASTM D1238(190℃,21.6kg)测量。熔融指数(MI,I2)可以根据ASTM D1238(在190℃下,2.16kg重量)测量。
密度可以根据ASTM D-792测定。除非另外指出,否则密度表示为克/立方厘米(g/cm3)。聚乙烯的密度可以在较低约0.89g/cm3、约0.90g/cm3或约0.91g/cm3到较高约0.95g/cm3、约0.96g/cm3或约0.97g/cm3范围内。聚乙烯的容积密度(根据ASTM D1895方法B测量)可以是约0.25g/cm3到约0.5g/cm3。举例来说,聚乙烯的容积密度可以在较低约0.30g/cm3、约0.32g/cm3或约0.33g/cm3到较高约0.40g/cm3、约0.44g/cm3或约0.48g/cm3范围内。
模具膨胀测量离开模具的聚合物的膨胀。使用具有1mm模具直径和20mm模具长度的Galaxy V毛细管流变仪测量模具膨胀。温度设定成190℃并且使用997.2s-1剪切率。测量挤出一股6英寸长度的时间。所报导的结果是10次操作的平均值。
在条件B下,使用ASTM D1693通过弯曲条带测试测量抗环境应力开裂性(ESCR)。在条件B下,在50℃下将测试树脂的弯曲条带放入10%溶液中。条带是75mil+/-2.5mil厚度的薄片。在浸渍之前,跨越条带切割0.012英寸槽口以产生应力点。测量断裂时间。
进行缺口状恒定韧带应力(NCLS)测试以确定树脂的缓慢裂痕生长抗性。测试在ASTM F2136-01条件下在冲压75mil薄片上进行。压力是1200psi,并且薄片在50℃下浸没于10%意格倍(Igepal)溶液中。测量断裂时间。
在ASTM D638,类型IV的条件下测量抗张强度。拉伸速率是2英寸/分钟,并且将应力针对长度制图直到断裂。以张力(长度)开始变化的点处施加到样品的应力形式测量抗张率。
黄度指数是用于测量与样品的感知黄色的视觉评估相关的数字的技术。其测量样品的类似光泽度、纹理、厚度和半透明性。在ASTM E313的条件下进行测试。
聚乙烯可以适合于如膜、纤维、非编织物和/或编织物、挤制品和/或模制品的物品。膜的实例包括通过在单层挤出、共挤出或层合中形成的吹塑或流延膜,其适用作食品接触和非食品接触应用中的收缩膜、保鲜膜(cling film)、拉伸膜、密封膜、定向膜、点心包装、重载袋(heavy duty bag)、杂货袋、烘焙和冷冻食品包装、医学包装、工业衬垫、膜等、农业膜和薄片。纤维的实例包括以编织或非编织形式使用的熔融纺丝、溶液纺丝和熔喷纤维操作,其用于制造过滤器、尿布、卫生产品、医学服装、土工布(geotextile)等。挤制品的实例包括管材、医用管材、电线和电缆涂层、导管、土工膜(geomembrane)以及水池衬垫。模制品的实例包括通过注射成型或旋转成型或吹塑成型工艺产生的单层和多层构造,其呈瓶子、储槽、大型中空制品、刚性食品容器以及玩具等形式。
实例
除非另外指出,否则所有反应均使用标准手套箱、高真空或施兰克技术(Schlenktechniques)在经纯化的氮气气氛下进行。所用的所有溶剂均是无水的,经氮气鼓泡且储存在分子筛上。所有起始物质均购自奥德里奇公司(Aldrich)且在使用之前经纯化或根据所属领域的技术人员已知的程序制备。对配体和催化剂样品的1H NMR光谱分析在250MHz下在Bruker Avance DPX 250仪器上进行。在Rigaku SCX-微型绕射仪上进行单晶X射线衍射。
合成
配体
在实施例中制得的配体展示在表1中。表1还说明用于本文中这些配体的缩写。可注意到,这张表中缩写之前和之后的数字仅仅是结构的数字标识符,并且对配体的结构无任何影响。
表1:NON配体和缩写
5的代表性合成:通过布赫瓦尔德-哈特维希(Buchwald-Hartwig)钯偶合胺化反应制备NON5配体:在干燥箱中,2,3,4,5,6-五甲基溴苯(750.0mg,3.30mmol)、2,2'-氧基二乙胺二盐酸盐(295.3mg,1.67mmol)、叔丁醇钠(714.0mg,7.43mmol)、3.0mL二甲氧基乙烷和10.0mM Pd(OAc)2/CyPF-t-Bu(82.5μL,8.25×10-4mmol)添加到配备有磁性搅拌棒的20mL闪烁瓶中并且用含有PTFE隔板的盖子密封。将反应物放入温控铝加热块中并且在100℃下搅拌6小时。在冷却到室温之后,将反应混合物分配在100mL H2O/Et2O(1:1)之间,分离有机相并且用MgSO4干燥,接着移除所有挥发物,得到611mg(93%产率)标题化合物。使用Pd(OAc)2/CyPF-t-Bu或Pd2dba3/rac-BINAP金属/配体配对,以类似方式制备配体1、3、4、6、7和9。
1的1H NMR数据:NONMe:(CD2Cl2):7.13(d,2H,o-Ar),7.10(t,2H,m-Ar),6.67(t,2H,p-Ar),6.63(d,2H,m-Ar),3.92(br s,2H,NH),3.77(t,4H,-CH2),3.38(t,4H,-CH2),2.14(s,6H,o-ArMe);65%产率。
3的1H NMR数据:NON3:(CD2Cl2):6.84(s,4H,m-Ar),3.61(t,4H,-CH2),3.49(br s,2H,NH),3.15(t,4H,-CH2),2.28(s,12H,o-ArMe),2.24(s,6H,p-ArMe);91%产率。
4的1H NMR数据:NON4:(CD2Cl2):667(s,2H,p-Ar),3.62(t,4H,-CH2),3.54(br s,2H,NH),3.07(t,4H,-CH2),2.23(s,12H,o-ArMe),2.18(s,12H,m-ArMe);85%产率。
5的1H NMR数据:NON5:(CD2Cl2):3.67(t,4H,-CH2),3.53(t,2H,NH),3.08(t,4H,-CH2),2.30(s,12H,o-ArMe),2.24(s,12H,m-ArMe),2.23(s,6H,p-ArMe);93%产率。
6的1H NMR数据:NONiPr:(CD2Cl2):7.15(d,2H,o-Ar),7.12(t,2H,m-Ar),6.76(t,2H,p-Ar),6.64(d,2H,m-Ar),4.15(br s,2H,NH),3.77(t,4H,-CH2),3.36(t,4H,-CH2),2.89(sept,2H,-CHMe2),1.26(d,12H,-CHMe2);81%产率。
7的1H NMR数据:NONCl2:(CD2Cl2):7.24(d,4H,m-Ar),6.79(t,2H,p-Ar),4.50(t,2H,NH),3.60(t,4H,-CH2),3.53(t,4H,-CH2);80%产率。
9的1H NMR数据:NONEt2:(CD2Cl2):7.05(d,4H,m-Ar),6.92(t,2H,p-Ar),3.65(t,4H,-CH2),3.15(t,4H,-CH2),2.71(q,8H,-CH2CH3),1.23(t,12H,-CH2CH3);72%产率。
5的代表性合成:通过二甲苯磺酸盐取代反应制备NON5配体:在干燥箱中,(TsOCH2CH2)2O(300mg,0.724mmol)于乙醚中的浆料添加到2,3,4,5,6-五甲基苯胺(245mg,1.45mmol)于乙醚中的浆料中并且在室温下搅拌24小时。接着过滤混浊的黄色悬浮液得到澄清的乙醚溶液。移除溶剂得到白色固体,其在真空中泵送,得到5:NON5(206mg,72%产率)。以类似方式制备配体2、8和10。
2的1H NMR数据:NON2:(C6D6):6.97(d,4H,m-Ar),6.87(t,2H,p-Ar),3.50(t,2H,NH),3.16(t,4H,-CH2),2.97(t,4H,-CH2),2.21(s,12H,o-ArMe);62%产率。
5的1H NMR数据:NON5:见上文;82%产率。
8的1H NMR数据:NONMeEt:(C6D6):7.05(t,2H,p-Ar),6.97和6.93(d,4H,m-Ar),3.58(t,2H,NH),3.21(t,4H,-CH2),2.96(t,4H,-CH2),2.67(q,4H,-CH2CH3),2.25(s,6H,o-ArMe),1.15(t,6H,-CH2CH3);46%产率。
10的1H NMR数据:NONiPr2:(C6D6):7.16(d,4H,m-Ar),7.06(t,2H,p-Ar),3.60(t,2H,NH),3.56(sept,4H,-CHMe2),3.36(t,4H,-CH2),3.07(t,4H,-CH2),1.23(d,24H,-CHMe2);79%产率。
催化剂
表2:NON锆二苯甲基催化剂和缩写
13的代表性合成:(NON5)ZrBz2:5:NON5(1.70g,4.29mmol)的甲苯溶液添加到ZrBz4(2.00g,4.39mmol)的甲苯溶液中并且混合物加热到70℃,此时形成黄色沉淀物。加热混合物过夜,随后冷却反应混合物,并且在玻璃料上收集固体。黄色固体用戊烷洗涤并且在真空中泵送固体,得到2.51g纯的13:(NON5)ZrBz2(88%产率)。以类似方式合成化合物11、12、14、15和16。
11的1H NMR数据:(NONMe)ZrBz2:(CD2Cl2):7.25(d,2H,o-Ar),7.21(t,2H,m-Ar),7.20(t,2H,苯甲基p-Ar),7.16(t,2H,o-Ar),6.93(t,4H,苯甲基m-Ar),6.80(d,2H,m-Ar),6.01(br s,4H,苯甲基o-Ar),3.83(t,4H,-CH2),3.59(t,4H,-CH2),2.34(s,6H,o-ArMe),1.42(s,4H,-CH2Ph);66%产率。
12的1H NMR数据:(NON3)ZrBz2:(C6D6):7.08(t,4H,苯甲基m-Ar),6.93(t,2H,苯甲基p-Ar),6.92(s,4H,m-Ar),6.54(d,4H,苯甲基o-Ar),3.46(t,4H,-CH2),3.21(t,4H,-CH2),2.41(s,12H,o-ArMe),2.02(s,6H,p-ArMe),1.54(s,4H,-CH2Ph);92%产率。
13的1H NMR数据:(NON5)ZrBz2:(C6D6):7.10(t,4H,m-Ar),6.92(t,2H,p-Ar),6.52(d,4H,o-Ar),3.39(t,4H,-CH2),3.26(t,4H,-CH2),2.45(s,12H,o-ArMe),2.17(s,12H,m-ArMe),2.08(s,6H,p-ArMe),1.49(s,4H,-CH2Ph);88%产率。
13的X射线结晶结构:(NON5)ZrBz2展示于下文中。
14的1H NMR数据:(NONiPr)ZrBz2:(CD2Cl2):7.38(d,4H,苯甲基m-Ar),7.22(t,2H,苯甲基p-Ar),7.17(d,4H,苯甲基o-Ar),7.10-6.70(m,8H,o,m,p-Ar),3.88(t,4H,-CH2),3.51(sept,2H,-CHMe2),3.35(t,4H,-CH2),1.50(s,4H,-CH2Ph),1.25(d,12H,-CHMe2);40%产率。
15的1H NMR数据:(NONCl2)ZrBz2:(CD2Cl2):7.24(t,2H,p-Ar),7.18(d,4H,m-Ar),7.07(t,4H,苯甲基m-Ar),7.05(t,2H,苯甲基p-Ar),6.43(d,4H,苯甲基o-Ar),3.94(t,4H,-CH2),3.52(t,4H,-CH2),1.51(s,4H,-CH2Ph);72%产率。
16的1H NMR数据:(NONEt2)ZrBz2:(CD2Cl2):7.18(t,4H,苯甲基m-Ar),7.11(t,2H,苯甲基p-Ar),7.03(d,4H,m-Ar),6.88(t,2H,p-Ar),6.19(br s,4H,苯甲基o-Ar),3.98(t,4H,-CH2),3.52(t,4H,-CH2),2.88和2.76(q,8H,-CH2CH3),1.70(br s,4H,-CH2Ph),1.28(t,12H,-CH2CH3);70%产率。
表3:NON锆二氯化合物和缩写
19的代表性合成:(NON5)ZrCl2:固体ZrCl2(NMe2)2(DME)(850mg,2.50mmol)添加到5:NON5(1.00g,2.52mmol)的甲苯溶液中并且所得棕色混合物加热到70℃过夜。接着混合物加热到95℃保持2小时以去除任何释放的HNMe2。接着在真空中移除溶剂,得到棕色油。残余物用戊烷洗涤,产生黄色固体(1.13g,80%产率)。以类似方式合成化合物17、18、20和21。
17的1H NMR数据:(NON2)ZrCl2:(CD2Cl2):7.09(d,4H,m-Ar),6.98(t,2H,p-Ar),4.60(t,4H,-CH2),3.74(t,4H,-CH2),2.41(s,12H,o-ArMe);98%产率。
18的1H NMR数据:(NON4)ZrCl2:(CD2Cl2):6.83(s,2H,p-Ar),4.60(t,4H,-CH2),3.67(t,4H,-CH2),2.30(s,12H,o-ArMe),2.27(s,12H,m-ArMe);62%产率。
19的1H NMR数据:(NON5)ZrCl2:(CD2Cl2):4.57(t,4H,-CH2),3.65(t,4H,-CH2),2.35(s,12H,o-ArMe),2.26(s,6H,p-ArMe),2.24(s,12H,m-ArMe);80%产率。
20的1H NMR数据:(NONMeEt)ZrCl2:(CD2Cl2):7.19(t,2H,p-Ar),7.03(d,4H,m-Ar),4.59(t,4H,-CH2),3.77(t,4H,-CH2),2.88(q,4H,-CH2CH3),2.42(s,6H,o-ArMe),1.28(t,6H,-CH2CH3);69%产率。
21的1H NMR数据:(NONiPr2)ZrCl2:(CD2Cl2):7.24(d,4H,m-Ar),7.14(t,2H,p-Ar),4.60(t,4H,-CH2),3.78(t,4H,-CH2),3.53(sept,4H,-CHMe2),1.28和1.23(d,24H,-CHMe2);71%产率。
催化剂测试-高通量实验
在平行压力反应器中进行乙烯/1-辛烯共聚合,其描述于美国专利第6,306,658号、第6,455,316号和第6,489,168l号;WO 00/09255;以及墨菲(Murphy)等人,《美国化学学会杂志》(J.Am.Chem.Soc.),2003,125,4306-4317中。将预称重的玻璃小瓶插入物和抛弃式搅拌桨装配到含有48个单独反应器的反应器的每一反应容器中。接着关闭反应器,且将每个容器单独地加热到设定温度(通常为85℃和/或100℃),且加压到乙烯的预定压力(通常为135psi)。将100μL 1-辛烯(637μmol)注射到每个反应容器中。接着向每个单元中引入500当量的MAO以充当共催化剂/清除剂。接着,在800rpm下搅拌容器的内含物。接着添加催化剂(20nmol)的甲苯溶液,且用异己烷使单元体积的成为最多5mL。所有操作一式三份地进行。接着允许反应进行,直到设定的时间限(通常是30分钟)或直到设定量的乙烯已由反应物吸收(乙烯压力通过计算机控制在每个反应容器中维持在预设水平下)。此时,反应物通过暴露于空气来骤冷。在聚合反应之后,将含有聚合物产物和溶剂的玻璃小瓶插入物从压力单元和惰性气氛手套箱移除,且使用Genevac HT-12离心机和Genevac VC3000D真空蒸发器(在高温和减压下操作)移除挥发性组分。接着,称重小瓶以测定聚合物产物的产率。所得聚合物通过测定分子量的Rapid GPC(参见下文)、测定共聚单体并入的FT-IR(参见下文)以及测定熔点的DSC(参见下文)分析。
高温尺寸排阻色谱使用自动化“Rapid GPC”系统进行,如美国专利第6,491,816号、第6,491,823号、第6,475,391号、第6,461,515号、第6,436,292号、第6,406,632号、第6,175,409号、第6,454,947号、第6,260,407号和第6,294,388号中所述。这一装置具有一系列的三个30cm×7.5mm线性柱,各自含有PLgel 10μM,Mix B。GPC系统使用在580-3,390,000g/mol范围内的聚苯乙烯标准物校准。系统在2.0mL/min的洗脱剂流动速率和165℃的烘箱温度下操作。1,2,4-三氯苯用作洗脱剂。聚合物样品以0.1-0.9mg/mL的浓度溶解于1,2,4-三氯苯中。将250μL聚合物溶液注射到系统中。洗脱剂中的聚合物浓度使用蒸发光散射检测器监测。所获得的分子量是相对于直链聚苯乙烯标准物。
差示扫描热量测定(DSC)测量在TA-Q100仪器上进行以测定聚合物的熔点。样品在220℃下预退火15分钟,并且接着使其冷却到室温过夜。接着,将样品以100℃/min的速率加热到220℃,并且接着以50℃/min的速率冷却。在加热期间收集熔点。
聚合物中并入的1-辛烯与乙烯的比率(重量%)通过快速FT-IR光谱分析在BrukerEquinox55+IR上以反射模式测定。样品通过蒸发沉积技术以薄膜格式制备。1-辛烯重量%从在1378和4322cm-1下的峰高比率获得。这一方法使用具有一系列已知1-辛烯重量%含量的一组乙烯/1-辛烯共聚物校准。
制备二氧化硅负载的催化剂
40g的Ineous ES-757硅胶(在600℃下煅烧)在125mL甲苯中制成浆料且与47g MAO(雅保(Albemarle),30重量%)在室温下反应2小时。SMAO接着经由玻璃料过滤并且用己烷洗涤。在真空中干燥1到2小时,得到54g干燥自由流动SMAO。负载型的NON催化剂通过向SMAO的甲苯浆料中添加催化剂的甲苯溶液持续一小时来制得。固体收集在玻璃料上且在真空中干燥,产生灰白色固体。催化剂负载保持恒定在37μmol/g下,对应于130的Al:Zr比。
表4:由高通量催化剂测试产生的活性、分子量、PDI和共聚单体并入
催化剂测试-气相实验室反应器
所使用的气相反应器是配备有变速机械搅拌器的1.65升不锈钢高压釜。在标准HDPE操作中,首先将200g NaCl(在真空中在150℃下预先干燥2天)装入反应器并且通过在氮气流下在85℃下加热最少1小时来干燥。在从反应器焙烤之后,温度降低到80℃以在氮压力帮助下引入5g SMAO(二氧化硅负载的甲基铝氧烷)作为清除剂。在添加SMAO之后,密封反应器且温和地搅拌组分。接着向其中装入氢(1600ppm)和1-己烯(C6/C2=0.004)。接着用130psi乙烯对反应器加压。一旦系统达到稳定状态,使用不锈钢高压容器将催化剂装入反应器以开始聚合。接着使反应器温度达到至多100℃并且在整个操作期间维持在这一温度下。聚合通常进行60分钟,并且在这一时间期间,氢气、C6/C2比率和乙烯压力保持恒定。在60分钟结束时,反应器冷却、排放并且打开。接着所得混合物用水、甲醇洗涤并且干燥。
表5:由负载型催化剂的实验室反应器测试产生的活性、分子量、PDI和共聚单体併入
分子量分布使用装备有差示折光率检测器(DRI)的高温尺寸排阻色谱(沃特斯(Waters)-Alliance GPCV 2000)表征。使用三个聚合物实验室公司(PolymerLaboratories)的PLgel 10mm混合B柱。标称流动速率是1.0mL/min,并且标称注射体积是300μL。各种传送线、柱和差示折光计(DRI检测器)容纳于维持在145℃下的烘箱中。聚合物溶液通过将所需量的干燥聚合物溶解在适当体积的1,2,4-三氯苯中来制备,得到在0.25到1.5mg/mL范围内的浓度。样品混合物在连续搅拌下在160℃下加热约2小时。溶液使用聚合物实验室公司SP260样品制备台通过2微米不锈钢过滤器(聚合物实验室)过滤到闪烁小瓶中。栏组的分离效率使用一系列窄MWD聚苯乙烯标准物(聚合物实验室公司)校准,其反映样品的预期MW范围和栏组的排除限。十七种Mp在约580到10,000,000范围内的单独的聚苯乙烯标准物用于生成校准曲线。一些GPC也在聚合物实验室公司PL220凝胶渗透色谱(在160℃下操作)上获得以适应较高分子量样品。
制备喷雾干燥13:(NON5)ZrBz2
以表6中列举的比率和量混合13:(NON5)ZrBz2、毛(纯的)、甲苯和烟雾状二氧化硅(Cabosil TS-610)。混合物引入到雾化装置中,产生液滴,其与气流接触以蒸发液体,由此形成白色粉末。供应约63g催化剂,其足以制备1944g喷雾干燥催化剂。在Al/Zr比率是135情况下,确定最终Zr负载是44.96μmol/g。
表6:用于制备喷雾干燥13:(NON5)ZrBz2的条件
制备喷雾干燥三组分双(正丁基环戊二烯基)锆二氯化物/{[(2,3,4,5,6-Me5C6)NCH2CH2]2NH}ZrBz2/13:(NON5)ZrBz2催化剂:通过以表5中列举的比率和量混合双(正丁基环戊二烯基)锆二氯化物、{[(2,3,4,5,6-Me5C6)NCH2CH2]2NH}ZrBz2、(NON5)ZrBz2、MAO(10重量%溶液)、甲苯和烟雾状二氧化硅(Cabosil TS-610)来制备用于制备树脂的三组分催化剂配方。混合物引入到雾化装置中,产生液滴,其与气流接触以蒸发液体,由此形成白色粉末。接着,将所得白色粉末与购自索恩本公司(Sonneborn)的氢布莱特380(hydrobrite380)PO白色矿物油和己烷混合以获得含有22重量%催化剂的催化剂浆料。
表7:喷雾干燥13:(NON5)ZrBz2的实验室反应器测试的产率和分子量数据
表8:喷雾干燥三组分催化剂配方的数据
产物评估
通用
大型零件吹塑(LPBM)描述约8到220升的吹塑容器市场。典型应用包括化学容器、垃圾容器、汽油罐和装运桶。这些产物需要优良的抗环境应力开裂性(ESCR)、高硬度和韧性。树脂必须还提供高熔融强度以在吹塑过程期间维持型坯稳定性。
与许多其它树脂相同,这些用于LPBM的树脂必须还使产物效能与树脂可加工性平衡。提供高ESCR,但认为十分难以加工的树脂在商业上不受青睐。吹塑树脂的可加工性涉及型坯的形状,或在其来开模具之后和模具封闭之前挤出的熔融聚合物。型坯形状对于适当的瓶形成和加工来说是重要的。型坯形状可受模具和心轴工具的膨胀、重力(也称为下坠)以及几何形状影响。型坯形状在模具出口与模具封闭之间的时段经历变化。膨胀是聚合物熔融物离开模具时松弛(熔融物中储存能量的弹性恢复)的结果。通常观察到两种类型的模具膨胀:直径膨胀和壁厚膨胀。直径膨胀在离开模具之后立即发生并且是型坯直径增加超过模具直径。壁厚膨胀是型坯壁的厚度增加。存在许多不同类型的吹塑机器并且各自使熔融聚合物经历不同程度的剪切力、压力和定向。因此,预测型坯形状是非常复杂的。在实验室规模下,进行膨胀测试以预测型坯的形状。不幸的是,除在所希望的吹塑机械上操作树脂以外,不存在绝对的膨胀测试。因此,进行许多膨胀测试以尽可能地学习型坯性质。使用本文所披露的催化剂掺合物制得的树脂的评估在大型零件的吹塑方面展示与市售树脂类似的结果,例如提供在当前市售树脂所得值的百分之五、百分之十或百分之二十内的模具膨胀结果。
吹塑树脂的另一个重要平衡介于硬度与韧性之间。这两种属性以相反的方式与密度相关。较高密度树脂将提供较高硬度,但降低ESCR。或者,较低密度树脂将提供较低硬度和较高ESCR。目标是设计出提供极佳ESCR和硬度使得可使大型零件减重的树脂。
结果
在实验室中评估新型三组分树脂的树脂特征、产物效能和可加工性。使用本文所披露的催化剂掺合物制得的树脂的评估在大型零件的吹塑方面展示与市售树脂类似的结果,例如提供在当前市售树脂所得值的百分之五、百分之十或百分之二十内的模具膨胀结果。
还进行其它膨胀测试-模具膨胀%。结果列举于以下表9中。竞争性单峰树脂与两组分树脂相比呈现较高模具膨胀%。双峰树脂与单峰树脂相比典型地经历较少膨胀。
表9:树脂测试的结果
表9还包括竞争性树脂、HN5/B标准配方和三组分树脂HN5/B/(NON5)ZrBz2的其它性质结果。薄片性质测试结果表明三组分树脂呈现改良的弯曲条带ESCR和艾佐德冲击强度(Izod Impact Strength),以及与市售树脂Total 54050类似的颜色、抗张性和密度。
这些结果表明通过将少量的第三组分(NON5)ZrBz2掺杂到标准HN5/B配方中,可以产生具有可与市场中已存在的物品竞争的大型零件吹塑物品。
所有数值是“约”或“大致”规定值,并且考虑所属领域的技术人员将预期的实验误差和变化。此外,已于上文中定义不同术语。至于权利要求书中所用的术语并未如上文所定义的程度,应给出如至少一种印刷出版物或颁予的专利中所反映的相关技术的人员已针对所述术语给出的最广泛定义。另外,本申请案中引用的所有专利、测试程序和其它文件全部以引用的方式并入,并入的程度就像此类披露内容不会与本申请案不一致并且允许此类并入的所有权限。
虽然前述内容是针对本发明的实施例,但在不脱离本发明的基本范围的情况下,可设计出本发明的其它和另外实施例,且由所附权利要求书确定本发明的范围。

Claims (14)

1.一种聚合催化剂系统,其包含至少三种催化剂,包含:
金属茂催化剂;
具有下式I或II的第一非金属茂,其包含通过两个或更多个氮原子络合到金属的配体
其中M是第3族到第12族过渡金属或者第13族或第14族主族金属;每个X独立地是离去基;y是0或1;n是M的氧化态;m是由YZL或YZL'表示的配体的形式电荷;L是第15族或第16族元素;L'是第15族或第16族元素或含有第14族的基团;Y是第15族元素;Z是第15族元素;其中对于式I,Y、Z和L中的至少两个是氮,以及对于式II,Y和Z都是氮,R1和R2独立地是C1到C20烃基、含有杂原子的具有最多二十个碳原子的基团、硅、锗、锡、铅或磷;R1和R2可以彼此互连;R3不存在、是烃基、氢、卤素或含有杂原子的基团;R4和R5独立地是烷基、芳基、经取代的芳基、环状烷基、经取代的环状烷基、环状芳烷基、经取代的环状芳烷基或多环系统;R4和R5可以彼此互连;R6和R7独立地不存在、是氢、卤素、杂原子或烃基;并且R*不存在、是氢、含有第14族原子的基团、卤素或含有杂原子的基团;和
第二非金属茂,其包含具有下式的催化剂:
或任何组合,
其中X1和X2各自独立地是氯、氟或烃基。
2.根据权利要求1所述的聚合催化剂系统,其中所述烃基是苯基或甲基。
3.根据权利要求1所述的聚合催化剂系统,其包含双(正丁基环戊二烯基)锆(X)2,其中每个X独立地是氯、氟或烃基。
4.根据权利要求3所述的聚合催化剂系统,其中所述烃基是苯基或甲基。
5.根据权利要求1所述的聚合催化剂系统,其包含(正丙基环戊二烯基,四甲基环戊二烯基)锆(X)2,其中每个X独立地是氯、氟或烃基。
6.根据权利要求5所述的聚合催化剂系统,其中所述烃基是苯基或甲基。
7.根据权利要求1所述的聚合催化剂系统,其包含[(五甲基苯甲基NCH2)2NH]Zr(X)2,其中每个X独立地是氯、氟或烃基。
8.根据权利要求7所述的聚合催化剂系统,其中所述烃基是苯基或甲基。
9.根据权利要求1所述的聚合催化剂系统,其包含具有下式的催化剂:
CpACpBMXn或CpA(A)CpBMXn
其中M是第4族、第5族或第6族原子;CpA和CpB各自结合于M且独立地选自由以下各者组成的群组:环戊二烯基配体、经取代的环戊二烯基配体、与环戊二烯基同构的配体和与环戊二烯基同构的经取代的配体;(A)是结合于选自由二价Cl到C20烃基和Cl到C20含有杂原子的烃基组成的群组的CpA和CpB两者的二价桥联基,其中所述含有杂原子的烃基包含一到三个杂原子;X是选自由以下各者组成的群组的离去基:氯离子、溴离子、C1到C10烷基和C2到C12烯基、羧酸根、乙酰丙酮酸根和醇盐;并且n是1到3的整数。
10.根据权利要求1所述的聚合催化剂系统,其中对于R6和R7,所述烃基是烷基。
11.根据权利要求1所述的聚合催化剂系统,其中所述三种催化剂在单一负载物上共同负载。
12.根据权利要求1所述的聚合催化剂,其中所述第一非金属茂催化剂和所述第二非金属茂催化剂在单一负载物上共同负载,并且将所述金属茂催化剂的至少一部分作为修整进料添加到所述负载物中。
13.根据权利要求1所述的聚合催化剂系统,其包含浆料混合物。
14.根据权利要求1所述的聚合催化剂系统,其包含{[(2,3,4,5,6-Me5C6)NCH2CH2]2NH}ZrBz2、{[(2,3,4,5,6-Me5C6)NCH2CH2]2O}ZrBz2和双(正丁基环戊二烯基)锆二氯化物。
CN201480016056.4A 2013-03-15 2014-02-21 用于烯烃聚合的包含金属茂和基于三齿氮的配体络合物的多催化剂系统 Active CN105073794B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361790681P 2013-03-15 2013-03-15
US61/790,681 2013-03-15
PCT/US2014/017670 WO2014149360A1 (en) 2013-03-15 2014-02-21 Multiple catalyst system comprising metallocenes and tridentate nitrogen based ligand complexes for olefin polymerisation

Publications (2)

Publication Number Publication Date
CN105073794A CN105073794A (zh) 2015-11-18
CN105073794B true CN105073794B (zh) 2018-04-20

Family

ID=50238492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480016056.4A Active CN105073794B (zh) 2013-03-15 2014-02-21 用于烯烃聚合的包含金属茂和基于三齿氮的配体络合物的多催化剂系统

Country Status (6)

Country Link
US (3) US9714305B2 (zh)
EP (1) EP2970525B1 (zh)
CN (1) CN105073794B (zh)
BR (1) BR112015023593B1 (zh)
ES (1) ES2873521T3 (zh)
WO (1) WO2014149360A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015023593B1 (pt) * 2013-03-15 2021-05-25 Univation Technologies, Llc sistema catalítico de polimerização
SG10201800009QA (en) * 2014-02-11 2018-02-27 Univation Tech Llc Producing polyolefin products
US9273170B2 (en) 2014-03-12 2016-03-01 Chevron Phillips Chemical Company Lp Polymers with improved toughness and ESCR for large-part blow molding applications
US11123726B2 (en) * 2016-10-27 2021-09-21 Univation Technologies, Lle Method of preparing a molecular catalyst
CN110114374A (zh) 2016-11-03 2019-08-09 埃克森美孚化学专利公司 多组分催化剂组合物供应系统和制备聚合物的方法
BR112019020417B1 (pt) * 2017-03-31 2023-04-04 Dow Global Technologies Llc Sistema catalisador e processo de polimerização para produzir um polímero à base de etileno
US11193008B2 (en) 2017-04-10 2021-12-07 Exxonmobil Chemical Patents Inc. Methods for making polyolefin polymer compositions
WO2019067055A1 (en) 2017-09-28 2019-04-04 Exxonmobil Chemical Patents Inc. PROCESS FOR THE PRODUCTION OF POLYMER COMPOSITIONS HAVING MULTIMODAL MOLECULAR WEIGHT DISTRIBUTION
WO2019070329A1 (en) 2017-10-06 2019-04-11 Exxonmobil Chemical Patents Inc. EXTRUDED POLYETHYLENE PRODUCTS AND PROCESSES FOR THEIR MANUFACTURE
US10941229B2 (en) * 2018-09-20 2021-03-09 Exxonmobil Chemical Patents Inc. Bridged anilinyl phenyl phenol catalyst compounds
KR102427755B1 (ko) * 2018-12-10 2022-08-01 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
CN115698105A (zh) 2020-05-29 2023-02-03 陶氏环球技术有限责任公司 化学转化催化剂
WO2022093814A1 (en) 2020-10-28 2022-05-05 Exxonmobil Chemical Patents Inc. Non-aromatic hydrocarbon soluble olefin polymerization catalysts and use thereof
WO2023069407A1 (en) 2021-10-21 2023-04-27 Univation Technologies, Llc Bimodal poly(ethylene-co-1-alkene) copolymer and blow-molded intermediate bulk containers made therefrom
WO2024000090A1 (en) 2022-06-27 2024-01-04 Univation Technologies, Llc Post-reactor blends of linear low-density polyethylenes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1351615A (zh) * 1999-05-17 2002-05-29 尤尼威蒂恩技术有限责任公司 聚合方法
CN1382162A (zh) * 1999-10-22 2002-11-27 尤尼威蒂恩技术有限责任公司 催化剂体系及其在聚合反应方法中的应用
CN1566163A (zh) * 2003-06-18 2005-01-19 中国石油天然气股份有限公司 用于制备双峰聚乙烯的负载型催化体系及其制备方法
CN101880338A (zh) * 2010-07-16 2010-11-10 华东理工大学 一种β-羟亚胺钛金属催化剂及其对乙烯聚合的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903043A (en) 1994-10-28 1999-05-11 Canon Kabushiki Kaisha Semiconductor device and an arithmetic and logic unit, a signal converter and a signal processing system using the same
US5889128A (en) * 1997-04-11 1999-03-30 Massachusetts Institute Of Technology Living olefin polymerization processes
US6300439B1 (en) * 1999-11-08 2001-10-09 Univation Technologies, Llc Group 15 containing transition metal catalyst compounds, catalyst systems and their use in a polymerization process
TW200936619A (en) * 2007-11-15 2009-09-01 Univation Tech Llc Polymerization catalysts, methods of making, methods of using, and polyolefin products made therefrom
TWI445751B (zh) 2008-07-16 2014-07-21 Univation Tech Llc 聚乙烯組成物
RU2542104C2 (ru) 2009-05-14 2015-02-20 Юнивейшн Текнолоджиз, Ллк Смешанные металлические каталитические системы со специально адаптированным откликом на водород
BR112015023593B1 (pt) * 2013-03-15 2021-05-25 Univation Technologies, Llc sistema catalítico de polimerização

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1351615A (zh) * 1999-05-17 2002-05-29 尤尼威蒂恩技术有限责任公司 聚合方法
CN1382162A (zh) * 1999-10-22 2002-11-27 尤尼威蒂恩技术有限责任公司 催化剂体系及其在聚合反应方法中的应用
CN1566163A (zh) * 2003-06-18 2005-01-19 中国石油天然气股份有限公司 用于制备双峰聚乙烯的负载型催化体系及其制备方法
CN101880338A (zh) * 2010-07-16 2010-11-10 华东理工大学 一种β-羟亚胺钛金属催化剂及其对乙烯聚合的方法

Also Published As

Publication number Publication date
US20170204208A1 (en) 2017-07-20
US10604605B2 (en) 2020-03-31
CN105073794A (zh) 2015-11-18
WO2014149360A1 (en) 2014-09-25
ES2873521T3 (es) 2021-11-03
EP2970525A1 (en) 2016-01-20
BR112015023593A2 (pt) 2017-07-18
EP2970525B1 (en) 2021-03-24
US20190106519A1 (en) 2019-04-11
BR112015023593B1 (pt) 2021-05-25
US10174143B2 (en) 2019-01-08
US20160024238A1 (en) 2016-01-28
US9714305B2 (en) 2017-07-25

Similar Documents

Publication Publication Date Title
CN105073794B (zh) 用于烯烃聚合的包含金属茂和基于三齿氮的配体络合物的多催化剂系统
CN105980424B (zh) 制造聚烯烃产物
CN105143280B (zh) 催化剂的配体
CN107660215B (zh) 制造聚烯烃产物
CN112979853B (zh) 具有特定共聚单体分布的聚乙烯共聚物
CN105143285B (zh) 聚烯烃的制备
CN110191902B (zh) 双峰聚乙烯树脂
CN109790239B (zh) 双峰聚合催化剂
CN109715682B (zh) 聚合催化剂
CN109715683B (zh) 具有改进的乙烯连接的聚合催化剂
CN107438629A (zh) 用于控制长链支化的催化剂
CN105143281B (zh) 用于烯烃聚合催化剂的三齿氮类配体
CN110330580A (zh) 制造聚烯烃产物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant