CN105852976A - 手术系统无菌帷帘 - Google Patents
手术系统无菌帷帘 Download PDFInfo
- Publication number
- CN105852976A CN105852976A CN201610181366.2A CN201610181366A CN105852976A CN 105852976 A CN105852976 A CN 105852976A CN 201610181366 A CN201610181366 A CN 201610181366A CN 105852976 A CN105852976 A CN 105852976A
- Authority
- CN
- China
- Prior art keywords
- manipulator
- instrument
- valance
- instrument manipulator
- arm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000033001 locomotion Effects 0.000 claims description 99
- 230000007246 mechanism Effects 0.000 claims description 92
- 238000005096 rolling process Methods 0.000 claims description 58
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims description 42
- 210000000707 wrist Anatomy 0.000 claims description 30
- 238000003780 insertion Methods 0.000 claims description 18
- 230000037431 insertion Effects 0.000 claims description 18
- 238000001356 surgical procedure Methods 0.000 abstract description 41
- 238000000034 method Methods 0.000 abstract description 27
- 239000012528 membrane Substances 0.000 abstract description 2
- 239000012636 effector Substances 0.000 description 46
- 230000000712 assembly Effects 0.000 description 45
- 238000000429 assembly Methods 0.000 description 45
- 238000003384 imaging method Methods 0.000 description 31
- 230000005540 biological transmission Effects 0.000 description 30
- 238000002324 minimally invasive surgery Methods 0.000 description 28
- 230000008859 change Effects 0.000 description 16
- 230000006835 compression Effects 0.000 description 13
- 238000007906 compression Methods 0.000 description 13
- 238000009434 installation Methods 0.000 description 8
- 210000002414 leg Anatomy 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 238000013519 translation Methods 0.000 description 8
- 210000001015 abdomen Anatomy 0.000 description 7
- 238000005452 bending Methods 0.000 description 7
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 238000005286 illumination Methods 0.000 description 7
- 238000005457 optimization Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 230000008602 contraction Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 210000000988 bone and bone Anatomy 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 230000003213 activating effect Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 230000003187 abdominal effect Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 230000003028 elevating effect Effects 0.000 description 3
- 125000001475 halogen functional group Chemical group 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000004973 motor coordination Effects 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 210000004197 pelvis Anatomy 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 241000208340 Araliaceae Species 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 241001125879 Gobio Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 2
- 235000003140 Panax quinquefolius Nutrition 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 235000008434 ginseng Nutrition 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000002432 robotic surgery Methods 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000005355 Hall effect Effects 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000002357 laparoscopic surgery Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B17/3423—Access ports, e.g. toroid shape introducers for instruments or hands
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00131—Accessories for endoscopes
- A61B1/00135—Oversleeves mounted on the endoscope prior to insertion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00142—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with means for preventing contamination, e.g. by using a sanitary sheath
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/02—Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
- A61B17/0218—Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3474—Insufflating needles, e.g. Veress needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/35—Surgical robots for telesurgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Master-slave robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B46/00—Surgical drapes
- A61B46/10—Surgical drapes specially adapted for instruments, e.g. microscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B46/00—Surgical drapes
- A61B46/20—Surgical drapes specially adapted for patients
- A61B46/23—Surgical drapes specially adapted for patients with means to retain or hold surgical implements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B50/00—Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B50/00—Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
- A61B50/20—Holders specially adapted for surgical or diagnostic appliances or instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B50/00—Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
- A61B50/30—Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/90—Identification means for patients or instruments, e.g. tags
- A61B90/98—Identification means for patients or instruments, e.g. tags using electromagnetic means, e.g. transponders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M13/00—Insufflators for therapeutic or disinfectant purposes, i.e. devices for blowing a gas, powder or vapour into the body
- A61M13/003—Blowing gases other than for carrying powders, e.g. for inflating, dilating or rinsing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/0052—Gripping heads and other end effectors multiple gripper units or multiple end effectors
- B25J15/0066—Gripping heads and other end effectors multiple gripper units or multiple end effectors with different types of end effectors, e.g. gripper and welding gun
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/04—Gripping heads and other end effectors with provision for the remote detachment or exchange of the head or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/10—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
- B32B3/12—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/02—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
- F16F1/04—Wound springs
- F16F1/12—Attachments or mountings
- F16F1/121—Attachments or mountings adjustable, e.g. to modify spring characteristics
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B3/00—Focusing arrangements of general interest for cameras, projectors or printers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B35/00—Stereoscopic photography
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2823—Wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F5/00—Coils
- H01F5/02—Coils wound on non-magnetic supports, e.g. formers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F5/00—Coils
- H01F5/04—Arrangements of electric connections to coils, e.g. leads
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/51—Housings
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/54—Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/55—Optical parts specially adapted for electronic image sensors; Mounting thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/555—Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/57—Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
- H04N23/682—Vibration or motion blur correction
- H04N23/685—Vibration or motion blur correction performed by mechanical compensation
- H04N23/687—Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00477—Coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B2017/3445—Cannulas used as instrument channel for multiple instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B2017/3445—Cannulas used as instrument channel for multiple instruments
- A61B2017/3447—Linked multiple cannulas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/302—Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/305—Details of wrist mechanisms at distal ends of robotic arms
- A61B2034/306—Wrists with multiple vertebrae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B50/00—Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
- A61B50/30—Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
- A61B2050/3008—Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments having multiple compartments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/50—Supports for surgical instruments, e.g. articulated arms
- A61B2090/5025—Supports for surgical instruments, e.g. articulated arms with a counter-balancing mechanism
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/02—Gripping heads and other end effectors servo-actuated
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B2205/00—Adjustment of optical system relative to image or object surface other than for focusing
- G03B2205/0007—Movement of one or more optical elements for control of motion blur
- G03B2205/0015—Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B2205/00—Adjustment of optical system relative to image or object surface other than for focusing
- G03B2205/0053—Driving means for the movement of one or more optical element
- G03B2205/0069—Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B5/00—Adjustment of optical system relative to image or object surface other than for focusing
- G03B5/02—Lateral adjustment of lens
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F5/00—Coils
- H01F5/02—Coils wound on non-magnetic supports, e.g. formers
- H01F2005/027—Coils wound on non-magnetic supports, e.g. formers wound on formers for receiving several coils with perpendicular winding axes, e.g. for antennae or inductive power transfer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/20—Control lever and linkage systems
- Y10T74/20207—Multiple controlling elements for single controlled element
- Y10T74/20305—Robotic arm
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Robotics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Electromagnetism (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Radiology & Medical Imaging (AREA)
- General Physics & Mathematics (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manipulator (AREA)
Abstract
提供一种无菌帷帘、带有帷帘的手术系统以及覆盖方法。在一个实施例中,无菌帷帘包括多个帷帘袋,帷帘袋中的每个包括外部表面和内部表面,其中所述外部表面邻近用于执行手术程序的无菌区域,以及所述内部表面邻近与机器人手术系统的操纵器臂连接的非无菌器械操纵器。帷帘进一步包括:在每个帷帘袋的远侧面处的多个柔性薄膜,该多个柔性薄膜用于在器械操纵器的输出端和相应手术器械的输入端之间接口连接;以及适于将每个帷帘袋的近侧开口在操纵器臂远端处连接于可旋转元件的可旋转密封件。
Description
本申请是于2011年5月4日提交的名称为“手术系统无菌帷帘”的中国专利申请201180024117.8的分案申请。
相关申请的交叉引用
本申请要求2010年5月14日提交的题为“Surgical system(手术系统)”的美国临时申请No.61/334978的权益,其全部公开出于所有目的合并于此作为参考。
本申请与2007年6月13日提交的美国专利申请No.11/762165相关,其全部内容出于所有目的合并于此作为参考。美国专利申请No.11/762165要求下列美国临时专利申请的优先权,所述所有专利申请合并于此作为参考:由Cooper等人于2006年6月13日提交的题为“Single port system 2(单端口系统2)”的专利申请60/813028;由Cooper于2006年6月13日提交的题为“Single port system 1(单端口系统1)”的专利申请60/813029;由Larkin等人于2006年6月13日提交的题为“Independently actuated optical train(独立致动光学机组)”的专利申请60/813030;由Larkin等人于2006年6月13日提交的题为“Modularcannula architecture(模块化的套管架构)”的专利申请60/813075;由Larkin等人于2006年6月13日提交的题为“Methods for delivering instruments to a surgical sitewith minimal disturbance to intermediate structures(以对中间结构最小的干扰向手术部位递送器械的方法)”的专利申请60/813125;由Cooper于2006年6月13日提交的题为“Rigid single port surgical system(刚性单端口手术系统)”的专利申请60/813126;由Cooper等人于2006年6月13日提交的题为“Minimum net force actuation(最小净力致动)”的专利申请60/813129;由Duval等人于2006年6月13日提交的题为“Side workingtools and camera(侧工作工具和摄像机)”的专利申请60/813131;由Cooper于2006年6月13日提交的题为“Passing cables through joints(穿过关节的缆线)”的专利申请60/813172;由Larkin等人于2006年6月13日提交的题为“Hollow smoothly bendinginstrument joints(中空平滑弯曲的器械关节)”的专利申请60/813173;由Mohr等人于2006年6月13日提交的题为“Retraction devices and methods(牵开设备和方法)”的专利申请60/813198;由Diolaiti等人于2006年6月13日提交的题为“Sensory architecturefor endoluminal robots(腔内机器人的感应架构)”的专利申请60/813207;由Mohr等人于2006年6月13日提交的题为“Concept for single port laparoscopic surgery(单端口腹腔镜手术的概念)”的专利申请60/813328。
此外,本申请与下列待决美国专利申请相关,所有申请合并于此作为参考:由Mohr提交的题为“Retraction of tissue for single port entry,robotically assistedmedical procedures(单端口进入的组织牵开、机器人辅助医疗程序)”的专利11/762217;由Mohr等人提交的题为“Bracing of bundled medical devices for single portentry,robotically assisted medical procedures(单端口进入捆绑医疗设备的支撑、机器人辅助医疗程序)”的申请11/762222;由Schena提交的题为“Extendable suctionsurface for bracing medical devices during robotically assisted medicalprocedures(用于机器人辅助医疗程序期间支撑医疗设备的可伸展吸力面)”的申请11/762231;由Diolaiti等人提交的题为“Control system configured to compensate fornon-ideal actuator-to-joint linkage characteristics in a medical roboticsystem(配置为补偿医疗机器人系统中非理想致动器关节联动特性的控制系统)”的申请11/762236;由Cooper等人提交的题为“Surgical instrument actuation system(手术器械致动系统)”的申请11/762185;由Cooper等人提交的题为“Surgical instrumentactuator(手术器械致动器)”的申请11/762172;由Larkin等人提交的题为“Minimallyinvasive surgical instrument advancement(微创手术器械改进)”的申请11/762161;由Cooper等人提交的题为“Surgical instrument control and actuation(手术器械控制和致动)”的申请11/762158;由Cooper提交的题为“Surgical instrument with parallelmotion mechanism(带有平行运动机构的手术器械)”的申请11/762154;由Larkin提交的题为“Minimally invasive surgical apparatus with side exit instruments(带有侧出口器械的微创手术装置)”的申请11/762149;由Larkin提交的题为“Minimally invasivesurgical apparatus with side exit instruments(带有侧出口器械的微创手术装置)”的申请11/762170;由Larkin提交的题为“Minimally invasive surgical instrumentsystem(微创手术器械系统)”的申请11/762143;由Cooper等人提交的题为“Side lookingminimally invasive surgery instrument assembly(侧视微创手术器械组件)”的申请11/762135;由Cooper等人提交的题为“Side looking minimally invasive surgeryinstrument assembly(侧视微创手术器械组件)”的申请11/762132;由Larkin等人提交的题为“Guide tube control of minimally invasive surgical instruments(微创手术器械的导引管控制)”的申请11/762127;由Larkin等人提交的题为“Minimally invasivesurgery guide tube(微创手术导引管)”的申请11/762123;由Larkin等人提交的题为“Minimally invasive surgery guide tube(微创手术导引管)”的申请11/762120;由Larkin提交的题为“Minimally invasive surgical retractor system(微创手术牵引器系统)”的专利11/762118;由Schena等人提交的题为“Minimally invasive surgicalillumination(微创手术照明)”的申请11/762114;由Duval等人提交的题为“Retrogradeinstrument(逆行器械)”的申请11/762110;由Duval等人提交的题为“Retrogradeinstrument(逆行器械)”的申请11/762204;由Larkin提交的题为“Preventinginstrument/tissue collisions(防止器械/组织碰撞)”的申请11/762202;由Larkin等人提交的题为“Minimally invasive surgery instrument assembly with reduced crosssection(具有减少截面积的微创手术器械组件)”的申请11/762189;由Larkin等人提交的题为“Minimally invasive surgical system(微创手术系统)”的申请11/762191;由Duval等人提交的题为“Minimally invasive surgical system(微创手术系统)”的申请11/762196;由Diolaiti提交的题为“Minimally invasive surgical system(微创手术系统)”的申请11/762200。
本申请还与下列美国专利申请相关,所有申请合并于此作为参考:12/163051(2008年6月27日提交;题为“Medical Robotic System with Image Referenced CameraControl Using Partitionable Orientation and Translational Modes(利用可分区定向和平移模式控制图像参考摄像机的医疗机器人系统)”);12/163069(2008年6月27日提交;题为“Medical Robotic System Having Entry Guide Controller with InstrumentTip Velocity Limiting(具有器械顶端速度限制的进入引导控制器的医疗机器人系统)”);12/494695(2009年6月30日提交;题为“Control of Medical Robotic SystemManipulator About Kinematic Singularities(关于运动学奇异性的医疗机器人系统操纵器的控制)”);12/541913(2009年8月15日提交;题为“Smooth Control of anArticulated Instrument Across Areas with Different Work Space Conditions(跨不同工作空间条件区域的铰接式器械的平滑控制)”);12/571675(2009年10月1日提交;题为“Laterally Fenestrated Cannula(侧向开窗套管)”);12/613328(2009年11月5日提交;题为“Controller Assisted Reconfiguration of an Articulated Instrument DuringMovement Into and Out Of an Entry Guide(铰接式器械在移入和移出进入引导装置时的控制器辅助重新配置)”);12/645391(2009年12月22日提交;题为“Instrument Wristwith Cycloidal Surfaces(带有摆线表面的器械手腕)”);12/702200(2010年2月8日提交;题为“Direct Pull Surgical Gripper(直接拉动手术爪)”);12/704669(2010年2月12日提交;题为“Medical Robotic System Providing Sensory Feedback Indicating aDifference Between a Commanded State and a Preferred Pose of an ArticulatedInstrument(提供指示铰接器械在命令状态与优选姿态之间的差异的感应反馈的医疗机器人系统)”);12/163087(2008年6月27日提交;题为“Medical Robotic System Providingan Auxiliary View of Articulatable Instruments Extending Out Of a Distal Endof an Entry Guide(提供从进入引导装置远端延伸出来的可铰接器械的辅助视图的医疗机器人系统)”);12/780071(2010年5月14日提交;题为“Medical Robotic System withCoupled Control Modes(带有连接控制模式的医疗机器人系统)”);12/780747(2010年5月14日提交;题为“Cable Re-ordering Device(缆线重新排序设备)”);12/780758(2010年5月14日提交;题为“Force Transmission for Robotic Surgical Instrument(机器人手术器械的力传递)”);12/780773(2010年5月14日提交;题为“Overforce ProtectionMechanism(过力保护机制)”);12/832580(2010年7月8日提交;题为“Sheaths for JointedInstruments(关节器械的护套)”);美国专利申请No.12/855452(2010年8月12日提交;题为“Surgical System Instrument Mounting(手术系统器械安装)”(代理人案卷编号No.ISRG02440/US));美国专利申请No.12/855488(2010年8月12日提交;题为“SurgicalSystem Entry Guide(手术系统导引装置)”(代理人案卷编号No.ISRG02450/US));美国专利申请No.12/855413(2010年8月12日提交;题为“Surgical System InstrumentManipulator(手术系统器械操纵器)”(代理人案卷编号No.ISRG02460/US));美国专利申请No.12/855434(2010年8月12日提交;题为“Surgical System Architecture(手术系统架构)”(代理人案卷编号No.ISRG02550/US));美国专利申请No.12/855475(2010年8月12日提交;题为“Surgical System Counterbalance(手术系统的平衡)”(代理人案卷编号No.ISRG02560/US));以及美国专利申请No.12/855461(2010年8月12日提交;题为“Surgical System Instrument Sterile Adapter(手术系统器械无菌适配器)”(代理人案卷编号No.ISRG02820/US))。
技术领域
背景技术
在机器人辅助或遥控机器人手术中,外科医生通常操作主控制器,以便在远离病人的位置遥控手术器械在手术部位的运动(例如,横跨手术室,在不同房间或与病人完全不同的建筑物内)。主控制器通常包括一个或更多手动输入设备,例如控制杆,外骨骼手套或其类似物,该输入设备通过在手术部位铰接器械的伺服电机连接到手术器械。伺服电机通常是机电设备或手术操纵器(从动器)的一部分,所述手术操纵器支撑和控制已经被直接引入打开的手术部位或通过套管针套引入体腔(例如病人腹部)的手术器械。在手术期间,手术操纵器提供各种手术器械的铰接和控制,各种手术器械例如组织抓钳、针驱动器、电灼烧探针等,各种手术器械中的每个为外科医生执行不同功能,例如夹持或驱动针,紧握血管,或解剖、灼烧或凝固组织。
自由度(DOF)的数量是唯一标识遥控机器人系统姿态/配置的独立变量的数量。由于机器人操纵器是将(输入)关节空间映射到(输出)笛卡尔空间的运动链,DOF的概念可以以这两个空间的任意一个表述。尤其是,关节DOF集合是用于所有独立控制关节的关节变量集合。不失一般性,关节是提供单一平移(棱形关节)或旋转(回转关节)DOF的机构。从运动学建模的角度来考虑,提供多于一个DOF运动的任何机构被认为是两个或更多独立的关节。笛卡尔DOF集合通常由三个平移(位置)变量(例如前后移动,上下移动,左右移动)和三个旋转(取向)变量(例如欧拉角或滚动/俯仰/偏转角)表示,其中所述变量描述末端执行器(或顶端)参考系相对于给定参考笛卡尔参考系的位置和取向。
例如,具有安装在两个独立和垂直导轨上的末端执行器的平面机构具有在两个导轨跨越区域内控制x/y位置的能力(棱形DOF)。如果末端执行器能够围绕垂直于导轨平面的轴线旋转,那么存在与三个输出DOF(末端执行器的x/y位置和取向角)相对应的三个输入DOF(两个导轨位置和该偏转角)。
虽然在笛卡尔参考系内描述身体的非冗余笛卡尔DOF数量可以是6个(其中所有平移和取向变量是独立控制的),但是关节DOF的数量通常是涉及考虑机构复杂性和任务规范的设计选择的结果。因此,关节DOF的数量可以是多于、等于或少于6个。对于非冗余运动链,独立控制关节的数量等于末端执行器参照系的移动性程度。对于一定数量的棱形和回转关节DOF,末端执行器参照系将在笛卡尔空间中具有等同数量的DOF(除了在单数配置以外),其中所述笛卡尔空间中的自由度将对应于平移(x/y/z位置)和旋转(滚动/俯仰/偏转取向角)运动组合。
输入和输出DOF之间的区别在具有冗余或“不完全”运动链(例如,机械操纵器)的情况下是非常重要的。尤其是,“不完全”操纵器具有少于6个独立控制关节,因此不具有完全控制末端执行器位置和取向的能力。相反,不完全操纵器受限于仅控制位置和取向变量的子集。另一方面,冗余操纵器具有多于6个关节DOF。因此,冗余操纵器能够使用不止一个关节配置建立期望的6-DOF末端执行器姿态。换句话说,附加自由度不仅能够用于控制末端执行器位置和取向,而且能够控制操纵器自身的“形状”。除了运动自由度以外,操纵器还具有其他DOF,例如夹取夹钳或剪刀刀片的枢转杆运动。
通过远程操纵的遥控机器人手术已经能够减少手术中要求的切口尺寸和数量,以便增强病人恢复而且有助于减少病人创伤和不适。然而,遥控机器人手术也产生许多新的挑战。邻近病人的机器人操纵器使得有时候病人侧医务人员难以接近病人,并且对于专为单端口手术设计的机器人,接近单端口是非常重要的。例如,在程序中外科医生通常采用大量不同外科器械/工具,并且易于接近操纵器和单端口和易于交换器械是高度有利的。
另一个挑战是由于机电手术操纵器的一部分将位于邻近手术部位。因此,手术操纵器在手术期间会被污染,在手术之间通常被处理或消毒。从成本的角度考虑,优选是对设备进行消毒。然而,伺服电机、传感器、编码器以及对于机器人控制马达必要的电气连接不能使用常规方法消毒,例如蒸汽,加热和加压或化学方法,这是因为在消毒过程中系统部件会被损坏或毁坏。
之前已使用无菌帷帘遮盖手术操纵器并且之前已包括适配器通过其进入无菌区域的孔(例如,手腕单元适配器或套管适配器)。然而,这不利地需要在每个程序后对适配器分离和消毒,而且在穿过帷帘孔时导致污染的可能性更大。
而且,对于现有多臂手术机器人系统的无菌帷帘设计,系统的每个独立臂被覆盖,但是这样的设计不适用于单端口系统,尤其是当通过单个从操纵器将所有器械致动器一起移动时。
因此,所需要的是用于远程控制病人手术部位处的手术器械的改进的遥控机器人系统、装置和方法。尤其是,这些系统、装置和方法应当被配置成最小化对消毒的需求,从而提高成本效率而且保护系统和手术病人。此外,这些系统、装置和方法应当被设计成在提供器械和操纵器之间准确接口连接的同时,在手术程序中最小化器械交换时间和难度。而且,这些系统和方法应当被配置成最小化形式因素,以便为手术人员在进入端口提供最有效空间同时还提供改进的运动范围。而且,这些系统、装置和方法应当提供组织、支撑和有效操作多个器械通过单个端口,同时减少器械与其他装置之间碰撞。
发明内容
本公开提供用于遥控机器人手术的改进手术系统、装置和方法。根据一个方面,系统、装置和方法在具有准确和稳固接口的、覆盖有帷帘的器械操纵器和操纵器臂的远端处提供至少一个远程操纵的手术器械,而且还提供容易的器械交换和增强的器械操控,每个手术器械彼此独立工作,并且每个手术器械具有在笛卡尔空间(即,前后移动,上下移动,左右移动,滚动,俯仰,偏转)的至少6个主动/有源受控自由度的末端执行器。
在一个实施例中,无菌帷帘包括多个帷帘袋,所述帷帘袋中的每个包括外部表面和内部表面,其中所述外部表面邻近用于执行手术程序的无菌区域,以及所述内部表面邻近与机器人手术系统的操纵器臂连接的非无菌器械操纵器。帷帘进一步包括在每个所述帷帘袋的远侧面处的多个柔性薄膜,该多个柔性薄膜用于在器械操纵器的输出端和相应手术器械的输入端之间接口连接/交界连接;以及可旋转密封件,其适于将每个所述帷帘袋的近侧开口在操纵器臂的远端处连接于可旋转元件。
在另一个实施例中,用于在无菌区域内执行手术程序的机器人手术系统包括:具有在非无菌区域中的器械操纵器的操纵器臂;在无菌区域中的手术器械;以及遮盖该操纵器臂以将该操纵器臂与无菌区域屏蔽的无菌帷帘,所述无菌帷帘包括如上所述元件。
在又一个实施例中,用无菌帷帘覆盖机器人手术系统的操纵器臂的方法包括:将无菌帷帘的柔性薄膜定位为邻近器械操纵器远端处的输出端;以及用所述无菌帷帘的帷帘袋从所述器械操纵器的远端到所述器械操纵器的近端覆盖所述器械操纵器。该方法进一步包括将无菌帷帘的可旋转密封件连接于所述操纵器臂的框架和所述操纵器臂的可旋转基座板,以及从所述操纵器臂的远端到所述操纵器臂的近端覆盖所述操纵器臂的剩余部分。
通过考虑下列一个或更多实施例的详细描述,本领域的技术人员会获得对本公开实施例的更完整理解,以及其额外优势的实现。首先简要描述随附的附图。
附图说明
图1A和图1B分别示出根据本公开实施例的在带有无菌帷帘和不带无菌帷帘的遥控手术系统中病人侧支撑组件的示意图。
图2A示出带有无菌帷帘和安装器械的遥控手术系统实施例的图解透视图。
图2B和2C分别示出图2A没有显示无菌帷帘的遥控手术系统的侧视图和俯视图。
图3示出操纵器基座平台、器械操纵器群以及安装器械实施例的透视图。
图4A和4B分别示出器械操纵器沿插入轴线伸展和收缩的透视图。
图5A-1和5B-1示出支撑钩将器械传动机构的近侧面连接到器械操纵器远侧面的操作,以及图5A-2和5B-2分别示出图5A1和5B1的剖视图。
图5C-1到5C-4示出没有外壳的器械操纵器的不同视图。
图6A-6B示出根据本公开实施例的器械操纵器的夹钳模块的不同视图。
图7A示出根据本公开实施例的器械操纵器万向节致动器模块视图。
图7B示出根据本公开实施例的器械操纵器的滚动模块视图。
图8示出根据本公开实施例的器械操纵器可伸缩(telescopic)插入轴线视图。
图9A和9B分别示出配置成安装到器械操纵器的器械的近侧部分和远侧部分透视图。
图10示出根据本公开实施例的可操作连接于器械的器械操纵器的剖视图。
图11A-11B分别示出根据本公开实施例的部分无菌帷帘在收缩状态和展开状态的透视图。
图11C示出根据本公开实施例安装到包括基座平台的操纵器臂远端的旋转无菌帷帘部分的剖视图。
图11D示出根据本公开实施例的展开无菌帷帘。
图12示出根据本公开实施例包括无菌适配器的展开的无菌帷帘部分的透视图。
图13A和13B分别示出根据本公开实施例的组装无菌帷帘适配器透视图和无菌适配器分解图。
图13C示出根据本公开实施例的滚动致动器接口放大图。
图14A和14B示出根据本公开实施例的器械操纵器底部透视图和底视图。
图15示出根据本公开实施例的可操作连接于无菌适配器的器械操纵器底部透视图。
图16A-16E示出根据本公开实施例连接器械操纵器和无菌适配器的顺序。
图17A-17C示出根据本公开实施例将手术器械连接到无菌适配器的顺序。
图18A和18B分别示出器械和无菌适配器在接合前的放大透视图和侧视图。
图19A和19B分别示出可移动套管支架在收缩位置和伸展位置的透视图。
图20A和20B示出根据实施例的安装在套管夹具上的套管的正面透视图和后透视图。
图21单独示出套管的透视图。
图22示出根据本公开实施例的图21的套管和图23A及23B的安装进入导引装置的横截面视图,其中所述进入导引装置结合安装在操纵器平台上的器械操纵器的器械。
图23A和23B示出图22进入导引装置透视图和俯视图。
图24示出根据本公开实施例的另一个套管和另一个安装的进入导引装置横截面视图,其中所述进入导引装置结合安装在操纵器平台上器械操纵器的器械。
图24A-24B分别示出另一个可移动套管安装臂在收缩位置和伸展位置的透视图。
图24C示出根据另一个实施例的套管近侧顶部。
图24D示出根据另一个实施例的在套管安装臂远端的套管夹具。
图25A-25C、26A-26C以及27A-27C示出带有器械操纵器组件滚动轴线或指向不同方向的器械插入轴线的手术系统不同视图。
图28示出根据实施例的用于微创遥控手术系统的集中运动控制系统的示意图。
图29示出根据实施例的用于微创遥控手术系统的分布运动控制系统的示意图。
图30A-30B示出根据实施例的机器人手术系统平衡连杆的不同视图。
图31示出根据实施例的没有外部壳体的平衡连杆的视图。
图32A和32B分别示出根据实施例的平衡连杆远侧部分的底部透视图和剖视图。
图33示出没有端塞的平衡连杆远侧部分侧视图,图34示出端塞线性导引装置的放大透视图,以及图35示出根据本公开各方面的调整销的透视图。
图36A-36C示出根据本公开各方面的调整销相对于线性导引装置移动端塞的运动范围的侧剖视图。
图37A-37C示出根据本公开各方面的平衡近侧连杆远端的细节视图。
通过参考后面的详细描述,能够最好理解本公开的实施例及其优势。应当明白类似参数数字标记用于标识一个或更多附图中的类似元件。还应当明白这些附图不必按照比例绘制。
具体实施方式
说明本公开各方面和各实施例的描述和附图不应当作为对本发明的限制。可以做出各种机械的、组成的、结构的、电气的和操作的变化,而不偏离本说明书精神和范围。在某些实例中,已知的电路、结构和技术没有详细示出是为了不至于模糊本公开。在两个或更多附图中的类似数字标记表示相同或类似元件。
此外,该说明书的术语不是为了限制本公开。例如,空间相关术语,诸如“在...之下”,“在...下方”,“较低”,“在...上方”,“较高”,“近侧的”,“远侧的”及其类似物,可用于描述如图所示的一个元件或特征对另一个元件或特征的关系。这些空间相关术语是为了包含除了图中所示位置和取向以外的在使用中或操作中设备的不同位置和取向。例如,如果图中的设备翻过来,那么描述为在其他元件或特征“下方”“之下”会变成在其他元件或特征“上方”或“之上”。因此,示范性术语“在...下方”可以包含在...上面和在...之上的位置和取向。设备可以被另外定向(旋转90度或在其他取向),因此会相应解释在本文使用的空间相关描述符。类似地,沿各种轴线和围绕各种轴线运动的描述包括各种特殊设备位置和取向。此外,单数形式“一”、“一个”和“所述/该”也包括复数形式,除非上下文特别指出其他情况。并且术语“包含”、“由......构成”、“包括”等指定所述的特征、步骤、操作、元件和/或部件的存在但不排除一个或更多其他特征、步骤、操作、元件、部件和/或组群的存在或增加。描述为连接的部件可以是电气或机械直接连接,或它们可以经由一个或更多中间部件非直接连接。
在一个示例中,术语“近端的”或“近侧”一般用于描述沿系统运动的运动链更靠近操纵器臂基座或沿系统运动的运动链更远离远距离运动中心(或手术部位)的对象或元件。类似地,术语“远端的”或“远侧”一般用于描述沿系统运动的运动链更远离操纵器臂基座或沿系统运动的运动链更靠近远距离运动中心(或手术部位)的对象或元件。
用操作员在主控设备的输入控制机器人从动设备和在工作部位执行工作是已知的。这样的系统被称为各种名称,诸如遥控操作、遥控操控或遥控机器人系统。一种类型的遥控操控系统向操作员提供在工作部位的感知,例如这样的系统称为远程呈现系统。由加利福利亚Sunnyvale的直观外科手术公司(Intuitive Surgical,Inc.)销售的da手术系统是带有远程呈现的遥控操作系统的示例。美国专利US6574355(2001年3月21日提交)公开了这样一种手术系统的远程呈现基本原则,其合并于此作为参考。遥控操作手术系统(具有或没有远程呈现特征)可以称为遥控手术系统。
为了避免各个方面和说明性实施例在下面附图和描述中的重复,应当理解许多特征对于许多方面和实施例是共同的。描述或附图方面的忽略不意味着合并该方面的实施例漏掉了该方面。相反,忽略该方面是为了清晰起见和避免冗长的描述。因此,参考一个描绘和/或描述的实施例描述的各方面可以存在于或应用于其他描绘和/或描述的实施例,除非这样做是不实际的。
因此,几个通用方面应用于下列各种描述。适用于在本公开的各种手术器械、导引管以及器械组件在美国专利申请No.11/762165(2007年6月13提交;美国专利申请公开号US2008/0065105A1)中进一步描述,该申请合并于此作为参考。单个手术器械或包括导引管、多个器械和/或多个导引管的手术器械组件适用于本公开中。因此,可以使用各种手术器械,每个手术器械彼此不受影响地工作,并且每个手术器械都具有末端执行器。在某些实例中,末端执行器经由病人中的单进入端口以笛卡尔空间中的至少6个主动受控DOF(即,前后移动,上下移动,左右移动,滚动,俯仰,偏转)操作。一个或更多附加末端执行器DOF可以应用于,例如在夹持或剪切器械中末端执行器的夹钳运动。
例如,在各个附图中示出或描述至少一个手术末端执行器。末端执行器是执行特定手术功能的微创手术器械或组件的部分(例如镊子/夹持器,针驱动器,剪刀,电灼钩,钉合器,施夹钳/消除器等)。许多末端执行器自身具有单一DOF(例如,打开和闭合的夹持器)。末端执行器可以通过提供一个或更多额外DOF的机构(诸如“手腕”型机构)连接于手术器械主体。这种机构的示例在美国专利US6371952(Madhani等人于1999年6月28日提交)和美国专利US6817974(Cooper等人于2002年6月28日提交)中示出,这两个专利合并于此作为参考,这种机构可以是通常所说的用在da手术系统的8mm和5mm器械上的各种直观外科手术公司的机构。虽然本文所述手术器械通常包括末端执行器,应当理解在某些方面末端执行器可以被省略。例如,器械主体轴件的钝远侧顶端可用于牵开/收缩组织。作为另一个示例,吸入或冲洗开口可以存在于主体轴件远侧顶端或手腕机构。在这些方面中,应当理解定位和定向末端执行器的描述包括不具有末端执行器的手术器械顶端的定位和定向。例如,陈述末端执行器顶端参考系的描述应当解读为包括不具有末端执行器的手术器械的顶端的参考系。
在整个说明书中,应当理解单立体成像系统或立体成像系统/图像获取部件/摄像机设备可以放置在器械的远端,无论末端执行器是否示出或描述(可以认为该设备是“摄像机器械”),或者其可以放置在靠近或处于任何导引管或其他器械组件元件的远端。因此在所述这些方面和实施例的上下文范围内,本文所用的术语“成像系统”等应当广义解释为包括图像获取部件和图像获取部件及其关联线路和硬件的结合。这样的内窥镜成像系统(例如,光学的、红外的、超声波的等)包括带有远侧定位图像感应芯片和经由有线或无线连接将获取图像转发到身体外部的关联电路的系统。这种内窥镜成像系统也包括(例如,通过利用棒状透镜或光纤)将获取图像转发到身体外部的系统。在某些器械或器械组件中,可以使用直接观看光学系统(在目镜直接观看内窥镜图像)。远侧定位半导体立体成像系统的示例在美国专利申请No.11/614661(由Shafer等人于2006年12月21日提交,公开“StereoscopicEndoscope(立体内窥镜)”)中描述,其合并于此作为参考。为了清晰起见,公知的内窥镜成像系统部件(诸如电气和光纤照明连接)被忽略或象征性表示。在附图中用于内窥镜成像的照明通常由单个照明端口表示。应当理解这些表示法是示例性的。照明端口的尺寸、位置和数量可以改变。照明端口通常被布置在(多个)成像孔的多个侧面或完全环绕该成像孔,以便最小化深阴影。
在本说明书中,套管通常用于防止手术器械或导引管摩擦病人组织。套管可以用于切口和自然孔口。对于器械或导引管相对于其插入(纵向的)轴线不频繁地平移或转动的情况,可以不使用套管。对于需要吹入的情况,套管可以包括防止过量吹入气体穿过器械或导引管泄漏的密封件。支持吹入和需要在手术部位吹入气体的程序的套管组件示例可以在美国专利申请No.12/705439(2010年2月12日提交;公开“Entry Guide for MultipleInstruments in a Single Port System(单端口系统中多器械的进入导引装置)”)中找到,其全部公开处于所有目的合并到本文作为参考。对于不需要吹入的胸腔手术,可以省略套管密封件,并且如果器械或导引管插入轴线移动是极小的,那么可以省略套管自身。在相对于导引管插入的器械的某些配置中,刚性导引管可以起套管的作用。套管和导引管可以是例如钢或模压塑料。比钢便宜的塑料可以适于一次性使用。
各种实例以及柔性手术器械和导引管的组件在上述引用的美国专利申请No.11/762165中示出和描述。在本说明书中,这种柔性以各种方式实现。例如,器械或导引管的节段可以是连续弯曲的柔性结构,例如基于螺旋缠绕线圈或基于除去各个节段(例如,缝型切口)的管的一个节段。或者,柔性部分可以由一系列短的、可枢转连接的节段(“椎骨”)组成,其中所述可枢转连接节段提供类似蛇形的连续弯曲结构。器械和导引管结构可以包括在美国专利申请公开号US2004/0138700中的那些器械和导引管结构(由Cooper等人于2003年12月2日提交),其合并于此作为参考。为了清晰起见,附图和关联描述一般仅示出器械和导引管的两个节段,术语称为近侧(更靠近传动机构;远离手术部位)和远侧(远离传动机构;更靠近手术部位)。应当理解器械和导引管可以分为三个或更多节段,每个节段是刚性的、被动柔性/无源柔性或主动柔性/有源柔性的。为了清晰起见,用于远侧节段、近侧节段或整个机构的所述柔性和弯曲也应用于已经省略的中间节段。例如,近侧和远侧节段之间的中间节段可以以简单或复合曲线方式弯曲。柔性节段可以是各种长度。更小外直径的节段可以具有比更大外直径节段具有更小的最小曲率半径。对于缆线控制系统,在弯曲时,不能接受的高缆线摩擦或捆扎限制了最小曲率半径和整体弯角。导引管的(或任何关节的)最小弯曲半径使得其不扭结或除此以外抑制内部手术器械机构的平滑运动。柔性部件可以是,例如长度高达约4英寸以及直径大约0.6英寸。特定机构的其他长度和直径(例如,更短,更小)以及柔性程度可以由专门针对其设计机构的目标解剖结构确定。
在某些实例中,仅有器械或导引管的远侧节段是柔性的,并且近侧节段是刚性的。在其他实例中,在病人体内器械或导引管的整个节段是柔性的。仍然在其他实例中,极远侧节段可以是刚性的,并且一个或更多其他近侧节段是柔性的。柔性节段可以是被动/无源的或者它们是主动/有源可控的(“可操控的”)。这样的主动控制可以利用例如相对的缆线集合完成(例如,一个集合控制“俯仰”并且垂直集合控制“偏转”;可以使用三组缆线完成类似动作)。可以使用其他控制元件,例如小的电致动器或磁性致动器、形状记忆合金、电活性聚合物(“人造肌肉”)、气动或液压波纹管或活塞及其类似物。在器械或导引管节段全部或部分位于另一个导引管内的实例中,可以存在被动和主动柔性的各种结合。例如,在被动柔性导引管中的主动柔性器械可以施加足够的侧向力以便弯曲周围的导引管。类似地,主动柔性导引管可以使其内的被动柔性器械弯曲。导引管和器械的主动柔性节段可以协调工作。对于同时具有柔性和刚性的器械和导引管,根据各种设计的柔度考虑,位于远离中心纵向轴线的控制缆线可以比位于更接近中心纵向轴线的缆线提供机械优势。
柔性节段的柔度(刚度)可以从是几乎完全松弛的(存在小的内部摩擦)改变到是基本刚性的。在某些方面,柔度是可控的。例如,器械或导引管的节段或所有柔性节段可以被基本(即,有效地但不是无限地)制成刚性(节段是“可刚化的”或“可锁定的”)。可锁定节段可以被锁定在直的、简单曲线或复合曲线的形状。可以通过向一个或更多缆线施加足以产生防止相邻椎骨因移动而导致摩擦的张力,来实现锁定,其中所述缆线沿器械或导引管纵向延伸。一条或多条缆线可以延伸穿过每个椎骨中大的中心孔或可以延伸穿过靠近椎骨外圆周的更小孔。可替换地,使一个或更多控制缆线移动的一个或更多马达的驱动元件可以(例如,通过伺服控制)被软锁定在某位置,以便将缆线保持在某位置上,从而防止器械或导引管移动,因此将椎骨锁定在适当位置上。将马达驱动元件保持在适当位置上,以便有效地将其他可移动器械和导引管部件也保持在适当位置上。应当理解在伺服控制下的刚度虽然是有效的,但通常小于利用从直接位于关节上的制动装置获得的刚度,诸如用于将被动设置关节保持在适当位置上的制动装置。缆线刚度通常处于支配地位,这是因为其通常小于伺服系统或制动关节的刚度。
在某些情况下,柔性节段的柔度可以在松弛和刚性状态之间连续变化。例如,可以增加锁定缆线的张力,以便增加刚度但不将柔性节段锁定在刚性状态。这样的中间柔度可以允许用于遥控外科手术,同时可以减少由于手术部位作用力导致的移动而可能发生的组织创伤。合并到柔性节段的合适弯曲传感器允许遥控手术系统确定器械和/或导引管在其弯曲时的位置。美国专利申请公开号US2006/0013523(Childers等人于2005年7月13日提交)公开了光纤位置形状感测设备和方法,其合并于此作为参考。美国专利申请No.11/491384(Larkin等人于2006年7月26日提交)公开了用于这种节段和柔性设备控制的光纤弯曲传感器(例如光纤布拉格光栅),其合并于此作为参考。
如本文所述的用于控制微创手术器械组件、器械、末端执行器以及操纵器臂配置的外科医生输入通常利用直观的、摄像机参考控制接口完成。例如,da手术系统包括带有这种控制接口的外科医生控制台,其可以修改以便控制本文所述的各方面。外科医生操控具有例如6个DOF的一个或更多主控手动输入机构,以便控制从器械组件和器械。输入机构包括控制一个或更多末端执行器DOF(例如,闭合夹持夹爪)的手指操作夹持器。通过外科医生输入机构和图像输出显示器的位置,定向末端执行器和内窥镜成像系统的相关位置来提供直观控制。如果在基本真实呈现中观看手术工作部位,这个定向允许外科医生操纵输入机构和末端执行器控制。这个遥控操作真实呈现意味着外科医生从这样的角度观看图像,即好像是操作者直接观看手术部位和在手术部位工作。美国专利US6671581(由Niemeyer等人于2002年6月5日提交)包含了微创手术装置中摄像机参考控制的进一步信息,其合并于此作为参考。
单端口手术系统
现参考图1A和1B,其示出机器人辅助(遥控操纵)微创手术系统各方面的侧视图和正视图,所述微创手术系统使用本文所述的微创手术器械、器械组件以及操纵和控制系统的各方面。三个主要部件是内窥镜成像系统102,外科医生控制台104(主)以及病人侧支撑系统100(从),如图所示所有这些通过有线(电气的或光学的)连接或无线连接106而互联。一个或更多电子数据处理器可以以不同方式位于这些主要部件中以便提供系统功能。示例在上述引用的美国专利申请No.11/762165中公开。以虚线显示的无菌帷帘1000有利地覆盖病人侧支撑系统100的至少一部分,以便在手术程序中维持无菌区域,同时提供有效和简单的器械交换以及器械与其关联的操纵器之间的准确接口连接。
成像系统102例如对获取的手术部位内窥镜成像数据和/或病人外部其他成像系统术前或实时图像数据执行图像处理功能。成像系统102向在外科医生控制台104处的外科医生输出经处理的图像数据(例如,手术部位的图像以及相关控制和病人信息)。在某些方面,经处理的图像数据被输出到其他手术室人员可见的可选外部监视器或者输出到远离手术室的一个或更多位置(例如,在另一个位置的外科医生可以监控视频;直播视频可以用于训练;等)。
外科医生控制台104包括,例如允许外科医生操纵本文所述的手术器械和导引管的多DOF机械输入(“主”)设备和成像系统(“从”)设备。在某些方面,这些输入设备向外科医生提供来自器械和器械组件的触觉反馈。控制台104还包括立体视频输出显示器,其被定位成使得显示器上的图像通常集中在这样的距离:该距离对应于工作在显示屏后方/下方的外科医生的手。这些方面在美国专利US6671581中更全面讨论,其合并于此作为参考。
插入期间的控制可以例如通过外科医生用一个或两个主控器实际移动图像而实现;外科医生利用主控器左右移动图像并将其朝向其自身拉动,因此命令该成像系统及其关联的器械组件(例如,柔性导引管)朝向输出显示器上的固定中心点操控和在病人体内推进。在一个方面,摄像机控制被设计成给出这样的感觉,即主控器固定于图像以便图像按照与主控器手柄移动的相同方向移动。当外科医生退出摄像机控制时,这个设计促使主控器在正确位置控制器械,因此其避免抓住(脱离)、移动以及分离(接合)主控器以返回到在开始或重新开始器械控制之前的位置的需要。在某些方面,主控器位置可以与插入速度成比例,从而避免使用大的主控器工作空间。可替换地,外科医生可以抓住(clutch)和脱开(declutch)主控器,以便采用渐进的插入动作。在某些方面,插入可以被手动控制(例如,通过手控转轮),然后当手术器械组件的远端接近手术部位时,进行自动插入(例如,伺服电机驱动辊)。对插入轨迹有用的病人解剖结构和空间的术前和实时图像数据(例如,MRI、X射线)可以用于辅助插入。
病人侧支撑系统100包括落地安装基座108,或者可替换地,由可替换线示出的天花板安装基座110。基座是可移动的或固定的(例如,固定到地面、天花板、墙面或例如手术台的其他设备)。
基座108支撑臂组件101,该臂组件101包括被动/无源不受控“设置(setup)”部分和主动/有源受控“操纵器”部分。在一个示例中,设置部分包括两个被动旋转“设置”关节116和120,当关节制动器被释放时,其允许连接的设置连杆118和122的手动定位。臂组件与连接于连杆114的基座之间的被动棱形设置关节(未示出)可以用于允许大的竖直调节112。可替换地,这些设置关节中的某些可以是主动受控的,以及更多或更少设置关节可以用于各种配置中。设置关节和连杆允许人们以笛卡尔x、y、z空间的各个位置和取向放置臂的机器人操纵器部分。远距离运动中心是偏转、俯仰和滚动轴线相交的位置(即,在关节移动通过它们的运动范围时,运动链保持有效静止的位置)。如下详细所述,这些主动受控关节中的某些是与控制各个手术器械的DOF关联的机器人操纵器,以及这些主动受控关节中的其他关节与控制这些机器人操纵器的单个组件的DOF关联。主动关节和连杆通过马达或其他致动器是可移动的,并且接收与在外科医生控制台104处主控器臂移动关联的移动控制信号。
如图1A和1B所示,操纵器组件偏转关节124连接于设置连杆122远端与第一操纵器连杆126近端之间。偏转关节124允许连杆126以被任意定义为围绕操纵器组件偏转轴线123“偏转”的运动关于连杆122移动。如图所示,偏转关节124的旋转轴线与远距离运动中心146对齐,该远距离运动中心146大体是器械(未示出)进入病人的位置(例如,在用于腹腔手术的脐处)。在一个实施例中,设置连杆122沿水平平面或x、y平面是可旋转的,并且偏转关节124被配置成允许第一操纵器连杆126绕偏转轴线123旋转,从而使得设置连杆122、偏转关节124以及第一操纵器连杆126为机器人臂组件提供恒定竖直的偏转轴线123,如从偏转关节124到远距离运动中心146的竖直虚线所示。
分别通过主动受控旋转关节128、132和136,第一操纵器连杆126的远端连接于第二操纵器连杆130的近端,第二操纵器连杆130的远端连接于第三操纵器连杆134的近端,并且第三操纵器连杆134的远端连接于第四操纵器连杆138的近端。在一个实施例中,连杆130、134和138连接在一起,作为连接运动机构。连接运动机构是众所周知的(例如,当输入和输出连杆运动保持彼此平行时,这样的机构称为平行运动联动机构)。例如,如果旋转关节128主动旋转,那么关节132和136也旋转,从而使得连杆138以恒定关系移动到连杆130。因此,可以看出关节128、132和136的旋转轴线是平行的。当这些轴线垂直于关节124的旋转轴线时,关节130、134和138以任意定义为围绕操纵器组件俯仰轴线139“俯仰”的运动关于连杆126移动。由于在一个实施例中,连杆130、134和138作为单个组件移动,因此第一操纵器连杆126可以被视为主动近侧操纵器连杆,而第二到第四操纵器连杆130、134和138可以被集体视为主动远侧操纵器连杆。
操纵器组件平台140连接于第四操纵器连杆138的远端。操纵器平台140包括支撑操纵器组件142的可旋转基座板,其包括在下面详细描述的两个或更多手术器械操纵器。旋转基座板允许操纵器组件142以任意定义为围绕操纵器组件滚动轴线141“滚动”的运动关于平台140作为单个单元旋转。
对于微创手术,器械必须相对于它们进入病人身体的位置(无论在切口还是在自然孔口)保持基本静止,从而避免不必要的组织损坏。因此,器械轴件的偏转和俯仰运动应当位于在空间中保持相对静止的操纵器组件滚动轴线或器械插入轴线上的单个位置的中心处。这个位置称为远距离运动中心。对于单端口微创手术,其中所有器械(包括摄像机器械)必须经由(例如,在脐处)单个小切口或自然孔口进入,所有器械必须关于这样的大体静止的远距离运动中心来移动。因此,操纵器组件142的远距离运动中心由操纵器组件偏转轴线123与操纵器组件俯仰轴线139的交叉点来定义。连杆130、134和138以及关节128、132和136的配置使得远距离运动中心146位于操纵器组件142的远端,并且具有足够的距离允许操纵器组件相对于病人自由移动。可以看出操纵器组件滚动轴线141也与远距离运动中心146相交。
如下详细所述,手术器械安装在操纵器组件142的每个手术器械操纵器上并由其致动。器械是可拆除的,以便各种器械可以互换地安装在特定器械操纵器上。在一个方面中,一个或更多器械操纵器可以被配置成支撑和致动特定类型的器械,诸如摄像机器械。器械的轴件从器械操纵器向远侧延伸。轴件延伸穿过放置在进入端口的公用套管进入病人体内(例如,穿过体壁或在自然孔口处)。在一个方面中,进入导引装置位于套管内,并且每个器械轴件延伸穿过进入导引装置中的通道,从而为器械轴件提供附加支撑。套管被可拆卸地连接于套管支架150,其在一个实施例中连接于第四操纵器连杆138的近端。在一种实现方式中,套管支架150通过旋转关节连接于连杆138,其中所述旋转关节允许支架在邻近连杆138的收起位置(stowed position)与操作位置之间移动,该操作位置将套管保持在正确位置以便远距离运动中心146处于沿套管的位置。在手术期间,根据一个方面,套管支架相对于连杆138固定在适当位置。(多个)器械可以滑动穿过进入导引装置和安装到套管支架150远端的套管组件,其示例在下面进一步详细解释。当病人以各种位置位于可移动台上时,各种被动设置关节/连杆和主动关节/连杆允许器械操纵器的定位,以使器械和成像系统以大运动范围移动。在某些实施例中,套管支架可以连接于近侧连杆或第一操纵器连杆126。
操纵器臂中某些设置以及主动关节和连杆可以被省略,以便减少机器人的尺寸和形状,或关节和连杆可以被增加,以便增加自由度。应当理解操纵器臂可以包括连杆、被动/无源关节和主动/有源关节的各种组合(可以提供冗余DOF),以便实现手术的必要姿态范围。而且,各种单独的手术器械或包括导引管、多个器械和/或多个导引管的器械组件,以及经由各种配置(例如在器械传动装置或器械操纵器的近侧面或远侧面)连接于器械操纵器(例如致动器组件)的器械适用于本公开的各方面。
图2A-2C分别是遥控操作手术(遥控手术)系统中病人侧支撑手推车200的透视图、侧视图和俯视图。描述的手推车200是上述参考图1A和1B通用配置的实施例。外科医生控制台和视频系统未示出,但是适用于如图1A和1B所述和已知的遥控机器人手术系统架构(例如,da手术系统架构)。在这个实施例中,手推车200包括落地安装基座208。基座可以是可移动的或固定的(例如,固定到地面、天花板、墙壁或其他充分刚性的结构)。基座208支撑支承柱210,并且臂组件201连接于支承柱210。臂组件包括两个被动旋转设置关节216和220,在其制动器释放时该设置关节216和220允许连接的设置连杆218和222的手动定位。在示出的实施例中,设置连杆218和222在水平平面中移动(平行于地面)。臂组件在支承柱210与竖直设置连杆214之间的被动滑动设置关节215处连接于支承柱210。关节215允许操纵器臂被竖直(垂直于地面)调整。因此,被动设置关节和连杆可以用于关于病人适当地定位远距离运动中心246。一旦远距离运动中心246被适当定位,在关节215、216和220中每个的制动器设置成防止臂的设置部分移动。
此外,臂组件包括用于操纵器臂配置和移动、器械操纵以及器械插入的主动关节和连杆。第一操纵器连杆226的近端经由主动受控旋转操纵器组件偏转关节224连接于设置连杆222的远端。如图所示,偏转关节224的旋转操纵器组件偏转轴线223与远距离运动中心246对齐,如从偏转关节224到远距离运动中心246的竖直虚线所示。
分别通过主动受控旋转关节228、232和236,第一操纵器连杆226远端连接于第二操纵器连杆230近端,第二操纵器连杆230远端连接于第三操纵器连杆234近端,第三操纵器连杆234远端连接于第四操纵器连杆238近端。如上所述,连杆230、234和238用作连接运动机构,以便当连杆230被致动时,第四操纵器连杆238与第二操纵器连杆230自动地一致移动。在示出的实施例中,类似的机构在美国专利US7594912(2004年9月30日提交)中公开,其被修改使用(还参见例如,美国专利申请No.11/611849(2006年12月15日提交;美国专利申请公开号US2007/0089557A1))。因此,第一操纵器连杆226可以被视为主动近侧连杆,而第二到第四连杆230、234和238可以被集体视为主动远侧连杆。在一个实施例中,第一连杆226可以包括压缩弹簧平衡机构,如下所述其均衡远侧连杆绕关节228移动的力。
操纵器组件平台240连接于第四连杆238的远端。平台240包括基座板240a,器械操纵器组件242安装在基座板240a上面。如图2A所示,平台240包括“晕轮”环,圆盘形基座板240a在其内部旋转。在其他实施例中可以使用不同于晕轮和圆盘的其他配置。基座板240a的旋转中心与操纵器臂滚动轴线241重合,如图穿过操纵器平台240的中心和远距离运动中心246延伸的虚线所示。在一个实施例中,器械260在器械操纵器远侧面上安装到操纵器组件242的器械操纵器。
如图2A和2B所示,器械操纵器组件242包括四个器械操纵器242a。每个器械操纵器支撑和致动其关联的器械。在示出实施例中,一个器械操纵器242a被配置成致动摄像机器械,并且三个器械操纵器242a被配置成致动在手术部位执行手术和/或诊断工作的各种其他可互换手术器械。可以使用更多或更少器械操纵器。在某些操作配置中,在部分或全部手术程序中,一个或更多操纵器不一定具有关联的手术器械。下面更详细地公开器械操纵器。
如上面所提及的,手术器械260安装到相应器械操纵器242a并由其致动。根据本公开的一方面,每个器械仅在器械的近端安装到其关联的操纵器。从图2A可以看出,这个近端安装特征使器械操纵器组件242和支撑平台240保持尽可能远离病人,这对于给定的器械几何形状来说,允许操纵器臂的主动受控部分在最大运动范围内关于病人自由移动而又不碰撞病人。器械260被安装,使得它们的轴件聚集在操纵器臂滚动轴线241周围。每个轴件从器械的力传动机构向远侧延伸,并且所有轴件穿过置于端口处的单个套管延伸到病人体内。套管由套管支架250可拆卸地保持在相对于基座板240a的固定位置,其中所述套管支架250连接于第四操纵器连杆238。单个导引管插入套管并在其中自由旋转,并且每个器械轴件延伸穿过导引管中的关联通道。套管和导引管的纵向轴线与滚动轴线241重合/一致。因此,在基座板240a旋转时,导引管在套管内旋转。在某些实施例中,套管支架可操作连接于第一操纵器连杆226。
每个器械操纵器242a可移动地连接于主动可伸缩插入机构244(图2B)并用于插入和取回(多个)手术器械,其中所述主动可伸缩插入机构244可操作连接于基座板240a。图2A示出器械操纵器242a向可伸缩插入机构244远端延伸一定距离(也参见图3和图4A),并且图2B示出器械操纵器242向可伸缩插入机构244近端收缩(也参见图4B)。主动关节224、228、232、236以及操纵器平台240协同移动和/或独立移动,以便在远距离运动中心246已经由被动设置臂和关节建立后,手术器械(或组件)在进入端口(例如病人的脐)处围绕远距离运动中心246运动。
如图2A所示,套管支架250连接于靠近第四操纵器连杆近端的第四连杆238。在其他方面中,套管支架250可以连接于近侧连杆的另一个部分。如上所述,套管支架250是铰接的,以便其能够摇摆到邻近第四连杆238的收回位置(stowed position)并摇摆到伸展位置(如图所示)以支撑套管。在手术中,根据一个方面,套管支架250相对于第四连杆238保持在固定位置。
在一个示例中,可以看出第一操纵器连杆226的示出实施例大体成形为倒“L”。“L”形连杆的近侧腿部在偏转关节224处连接于连杆226,并且该连杆的远侧腿部在旋转关节228处连接于第二操纵器连杆238。在这个说明性实施例中,这两个腿部是大体垂直的,并且第一操纵器连杆的近侧腿部围绕垂直于操纵器组件偏转轴线223的平面(例如,偏转轴线竖直时,是水平(x,y)平面)旋转。因此,远侧腿部大体平行于操纵器组件偏转轴线223延伸(例如,偏转轴线竖直时,是竖直地(z))。这个形状允许操纵器连杆230、234和238在偏转关节224下方移动,以便连杆230、234和238提供与远距离运动中心246相交的操纵器组件俯仰轴线239。第一连杆226的其他配置是可能的。例如,第一连杆226的近侧腿部和远侧腿部可以不彼此垂直,近侧腿部可以在不同于水平平面的平面中旋转,或连杆226可以具有不是大体“L”形的形状,诸如弧形。
可以看出竖直偏转轴线223允许连杆226旋转基本360度,如虚线249所示(图2C)。在一个实例中,操纵器组件偏转旋转可以是连续的,以及在另一个实例中,操纵器组件偏转旋转约为±180度。还在另一个实例中,操纵器组件偏转旋转可以约为660度。在这样的偏转轴线旋转期间,俯仰轴线239可以或可以不保持恒定。由于器械以与操纵器组件滚动轴线241对齐的方向插入病人体内,因此臂可以主动受控从而以环绕操纵器组件偏转轴线的任何期望方向定位和重新定位器械插入方向(参见,例如图25A-25C示出朝向病人头部的器械插入方向,以及图26A-26C示出朝向病人足部的器械插入方向)。在某些手术中,这个功能是明显有益的。在某些腹部手术中,器械经由定位在脐部的单端口插入,例如,在不要求在病人体壁中打开新端口的情况下,器械可被定位成接近腹部的所有四个象限。例如通过腹部的淋巴结接近/入路可以要求多象限接近/入路。相反,多端口遥控机器人系统的使用会要求在病人体壁中安排额外口,以便更完全地接近其他腹部象限。
此外,操纵器可以竖直向下并以轻微向上俯仰配置(参见图27A-27C,其示出向上俯仰的器械插入方向)导向器械。因此,器械穿过单个进入端口的进入角(绕远端中心的偏转和俯仰)可以容易地操纵和改变,同时又在进入端口周围提供增加的空间,以利于病人安全和病人侧工作人员操纵。
而且,连杆230、234和238连同主动关节228、232和236可用于轻易操纵器械穿过单个进入端口的进入俯仰角,同时又在单个进入端口周围创建空间。例如,连杆230、234和238可以被定位成具有“弧远离”病人的形状要素。这样的弧远离允许操纵器臂绕偏转轴线223的旋转不会导致操纵器臂与病人的碰撞。这样的弧远离还允许病人侧工作人员轻易接近用于交换器械的操纵器和轻易接近用于插入和操作手动器械的进入端口(例如,手动腹腔镜器械或牵开设备)。在又一个示例中,第四连杆238具有弧远离运动运动中心从而弧远离病人的形状要素,从而允许更大的病人安全。在其他条件中,器械操纵器242a集群的工作包络可以近似椎体,并且椎体顶端在远距离运动中心246处,并且椎体圆形端部在器械操纵器242a的近端处。这样的工作包络导致病人与手术机器人系统之间的更少干扰,允许对手术部位的改进接近的更大的系统运动范围,以及手术人员对病人的改进接近。
因此,操纵器臂组件201的配置和几何形状连同其大运动范围允许穿过单端口的多象限外科手术。穿过单个切口,操纵器可以以一个方向导向器械并且容易改变方向;例如,朝向病人的头部或骨盆工作(参见,例如图25A-25C),然后通过绕恒定竖直偏转轴线移动操纵器臂,来改变朝向病人骨盆或头部的方向(参见,例如图26A-26C)。
这个说明性的操纵器臂组件用于,例如可操作关于远距离运动中心移动的器械组件。操纵器臂中的某些设置关节和连杆以及主动关节和连杆可以被省略,或关节和连杆可以被增加以便增加自由度。应当理解操纵器臂可以包括连杆、被动和主动关节的各种组合(可以提供冗余DOF),以实现外科手术的必要姿态范围。而且,单独的各种手术器械或包括导引管、多个器械和/或多个导引管的器械组件,以及经由各种配置(例如,在致动器组件或传动机构的近侧面或远侧面上)连接于器械操纵器(致动器组件)的器械适用于本公开。
现参考图3、4A-4B、5A-1到5B-2、5C-1到5C-4以及图8,更详细描述器械操纵器的各方面和实施例,而不限制本公开这些方面和实施例。图3示出操纵器组件平台的可旋转基座板340a、安装在基座板340a上以形成器械操纵器组件的四个器械操纵器342集群和四个器械360(示出近侧部分)的实施例的透视图,其中四个器械360中的每个安装在关联器械操纵器342的远侧面。如上所述,基座板340a绕操纵器组件滚动轴线341是可旋转的。在一个实施例中,滚动轴线341延伸穿过套管和进入导引组件的纵向中心,器械360通过套管和进入导引组件进入病人身体。滚动轴线341也基本垂直于每个器械操纵器342远侧面的单个平面,并且因此基本垂直于安装到器械操纵器远侧面的器械近侧面的单个平面。
每个器械操纵器342包括连接于基座板340a的插入机构344。图8以更多细节示出器械插入机构实施例的剖面透视图。如图8所示,器械插入机构844包括以伸缩方式关于彼此线性滑动三个连杆。插入机构844包括滑座802、滑座连杆804和基座连杆808。如美国专利申请No.11/613800(2006年12月20日提交;美国专利申请公开号US2007/0137371A1)所述(该申请合并于此作为参考),滑座连杆804沿基座连杆808滑动,并且滑座802沿滑座连杆804滑动。滑座802和连杆804、808通过连接环806(在一个实例中,其包括一个或更多柔性金属带;可替换地,可以使用一个或更多缆线)互联。在基座连杆808中的导螺杆808a驱动滑动件808b,该滑动件808b连接于连接环806上的固定位置。滑座802也在固定位置连接于连接环806,使得滑动件808b关于基座连杆808滑动特定距离x,滑座802关于基座连杆808滑动2x。在插入机构的可替换实现方式中,可以使用各种其他线性运动机构(例如,导螺杆和滑座)。
如图3和8所示,基座连杆808近端连接于可旋转基座板340a,并且滑座802连接于器械操纵器342的外壳层或内框架(例如,在图5C-1到5C-3的内框架孔542i’内)。伺服电机(未示出)驱动导螺杆808a,结果器械操纵器342以大体平行于滚动轴线341的方向关于基座板340a向近侧和远侧移动。由于手术器械360连接于操纵器342,因此插入机构344的功能是将器械穿过套管插向手术部位和将器械穿过套管从手术部位取出(器械插入DOF)。邻近连接环延伸的扁平导电柔度电缆(未示出)向器械操纵器提供电源、信号和接地。
可以看出插入机构344的伸缩特征的优势是相比于仅使用单个不动插入级件,其在器械操纵器从其全近侧位置移动到全远侧位置时,提供更大运动范围(参见,例如图4A(全远侧位置)和4B(全近侧位置)),在操纵器处于其全近侧位置时其具有较小伸出插入机构。变短的伸出防止当器械操纵器在其近端位置时插入机构影响外科手术期间的病人和手术室的工作人员(例如在器械改变期间)。
如图3进一步所示,在一个实施例中,可伸缩插入机构344对称安装到可旋转基座板340a上,从而器械操纵器342和安装的器械360关于滚动轴线341对称集群。在一个实施例中,器械操纵器342和其关联器械360以大体扇形(pie-wedge)布局围绕滚动轴线布置,并且器械轴件更靠近操纵器组件滚动轴线341定位。因此,当基座板绕滚动轴线341旋转时,器械操纵器342集群和安装的器械360也绕滚动轴线旋转。
图4A和4B分别示出器械操纵器442沿安装到可旋转基座板440a的插入机构444在伸展和收缩位置的透视图。如上所述,器械操纵器442能够沿基座板440a与插入机构自由远端444a之间的插入机构444的纵向轴线伸展和收缩,如邻近插入机构444的双向箭头所示。在这个说明性实施例中,器械抵靠器械操纵器442远侧面442a安装。
远侧面442a包括将致动力传递到安装器械的各种致动输出。如图4A和4B所示,这样的致动输出可以包括抓握输出拉杆442b(控制器械末端执行器的抓握运动),摇摆(joggle)输出万向节442c(控制远端平行联动装置左右运动和上下运动(“摇摆(joggle)”或“手肘”机构)),手腕输出万向节442d(控制器械末端执行器偏转运动和俯仰运动)以及滚动输出圆盘442e(控制器械的滚动运动)。这种输出的细节,以及接收这种输出的器械力传动机构的关联部件可以在美国专利申请No.12/060104(2008年3月31日提交;美国专利申请公开号US2009/0248040A1)中发现,其合并于此作为参考。可以接收这种输入的说明性手术器械的近端示例可以在美国专利申请No.11/762165中发现,其已在上文提及。简言之,左右和上下DOF由远端平行联动装置提供,末端执行器偏转和末端执行器俯仰DOF由远端柔性手腕机构提供,器械滚动DOF通过滚动器械轴件同时将末端执行器保持在基本恒定位置和俯仰/偏转取向而提供,以及器械抓握DOF由两个可相对移动的末端执行器夹爪提供。这种DOF是说明性的更多或更少DOF(例如,在某些实现方式中,摄像机器械省略器械滚动和抓握DOF)。
为了便于器械抵靠器械操纵器远侧面的安装,支撑件(例如支撑钩442f)被定位在器械操纵器上。在示出的实施例中,支撑钩关于器械操纵器的主壳体是静止不动的,并且器械操纵器的远侧面向近侧和远侧移动以便提供器械操纵器与器械之间的安全互联。插销机构442g用于将器械操纵器的远侧面朝器械的近侧面移动。在可替换实施例中,插销机构可以用于将器械近侧面朝操纵器远侧面移动,从而接合或分离操纵器输出端和器械输入端。
图5A-1和5B-1示出器械操纵器542示范性架构的透视图。图5A-2和5B-2分别是图5A-1和5B-1沿切割线I-I和II-II的横截面视图。如图所示,操纵器包括内框架542i,其例如通过滑动关节、导轨或其类似物可移动地连接于外壳层542h。由于插销机构542g动作的结果,内框架542i关于外壳层542h向远侧和向近侧移动。
现参考图5A-1和5B-2,其示出支撑钩542f和插销机构542g将器械(未示出)安装到器械操纵器542的操作。如图所示,器械操纵器542的远侧面542a基本是单个平面,并且其可操作连接于器械力传动机构的近侧面(例如,图9A-9B中器械960的近侧面960’)。插销机构542g可以包括致动机构,例如滑轮和金属线,以使器械操纵器的内框架和外壳层相对彼此运动,并且在操作时保持远侧面542a抵靠器械。
在示出的实施例中,器械支撑钩542f刚性安装到器械操纵器外壳层542h,并且当插销机构542g被致动时,器械操纵器内框架542i的远侧面542a朝向支撑钩542f远端向远侧运动并远离器械操纵器外壳层的近侧面542j。因此,当器械力传动机构安装在支撑钩542f上时,器械操纵器的远侧面542a朝向器械传动机构的近侧面运动,其由支撑钩542f限制,以便将器械操纵器输出端和器械力传动输入端接合或除此以外可操作接口连接,其如图5A-1和5A-2中箭头A1所示。如这个实施例所示,操纵器的致动器输出端对器械近侧面施压并与其接口连接,以将器械致动器信号传输到器械。当插销542g以相反方向致动时,器械操纵器的远侧面542a朝向器械操纵器的近侧面542j移动(即,远离静止支撑钩542f的远端),从而将器械操纵器输出端从器械分离,其如图5B-1和5B-2中箭头A2所示。示出实施例的优势是,当插销机构被致动时,器械操纵器的致动器部分相对于在空间中固定在支撑钩上的静止器械移动。在插销或脱扣过程中,器械操纵器致动器朝向器械或离开器械的移动使不必要或非预期中的器械运动最小化。因此,由于在器械安装过程期间器械不相对于病人移动,因此由于器械的远端在病人体内保持静止而避免了对组织的潜在伤害。
在可替换实施例中,支撑钩542f可以朝向近侧面542j收缩,以将器械的近侧面朝向静止器械操纵器的远侧面542a移动,从而接合器械操纵器输出端与器械输入端,如图5A-1和5A-2中箭头B1所示。当插销是打开的或反向致动时,过程是相反的,并且支撑钩542f远离静止器械操纵器的远侧面542a移动,从而将器械操纵器输出端与器械输入端分离,如图5B-1和5B-2中箭头B2所示。
图5C-1到5C-4示出器械操纵器542在没有外壳层542h情况下的不同视图,以便展现用于致动器械操纵器输出端的独立驱动模块。驱动模块以模块形式安装到器械操纵器的内框架542i,其与驱动模块一起相对于器械操纵器的外壳层542h和支撑钩542f移动。当插销闭合时,器械操纵器的内框架朝向器械移动设定距离,并且弹簧加载模块输出端穿过无菌帷帘接合器械输入端,其在下面进一步描述。当插销打开时,该过程是相反的。弹簧加载致动器驱动模块输出端提供穿过帷帘的与器械力传动机构输入端的稳固接口连接,其在下面更详细描述。
如示出的实施例所示,器械操纵器542包括用于致动抓握输出拉杆542b的抓握致动器驱动模块542b’、用于致动摇摆输出万向节542c的摇摆致动器驱动模块542c’、用于致动手腕输出万向节542d的手腕致动器驱动模块542d’以及用于致动滚动圆盘542e的滚动致动器驱动模块542e’。输出端542b、542c、542d和542e从器械操纵器542远侧面542a向远侧伸出,其如图5C-4中示例所示。并且它们适于接合器械力传动机构输入端,以便致动安装器械X-Y平移以及末端执行器抓握、俯仰、偏转以及滚动的运动。
图6A-6B是器械操纵器的抓握致动器驱动模块642b’上部和下部透视图。抓握致动器驱动模块642b’包括线性滑动件602、包括弹簧606的驱动弹簧机构604以及抓握驱动输出拉杆642b。驱动弹簧机构604连接于器械操纵器的内框架542i。在插销542g被致动以接合器械时,内框架移动,并且抓握驱动模块642b’沿线性滑动件602移动直到输出拉杆642b接触其在器械上的匹配输入端。这个接触对弹簧606进行预加载,从而在器械被插锁到位时,加载弹簧使得抓握输出端642b抵靠器械输入端。接着,经预加载的弹簧606确保在操作期间适当的致动器驱动输出端/输入端接触得到保持,以便不会在输出端/输入端接触中形成间隙,该间隙会使得精确的运动学控制变得困难。
图7A示出器械操纵器的万向节驱动模块742c/d’的底部透视图,其可被用于提供摇摆输出万向节对器械摇摆机构的X-Y平移的控制或者用于提供手腕输出万向节对器械末端执行器的俯仰和偏转的控制。在这个实施例中,万向节驱动模块742c/d’包括线性滑动件702、包括弹簧706的驱动弹簧机构704以及在万向节销710上的致动器输出万向节742c/d。驱动弹簧机构704连接于器械操纵器的内框架542i。在插销542f被致动以接合器械时,内框架向远侧移动,并且致动器驱动模块742c/d’沿线性滑动件702移动直到输出万向节742c/d接触其在器械上的匹配输入端。这个接触对弹簧706进行预加载,从而在器械被插锁到位时,加载弹簧使得输出万向节742c/d抵靠器械输入端。由于采用抓握致动器驱动模块,利用,经预加载的弹簧606接着确保在操作期间适当的致动器驱动输出端/输入端接触得到保持,使得不会在输出端/输入端接触中形成间隙,该间隙将使得精确的运动控制变得困难。万向节驱动模块742c/d’进一步包括两个“狗骨式(dog bone)”连杆712、两个滚珠螺杆(ball screw)714、两个马达716、两个霍尔效应传感器718以及两个旋转的或线性的运动编码器720。马达716驱动关联的滚珠螺杆714,该滚珠螺杆714致动狗骨式连杆712。狗骨式连杆712的近端连接于线性滑动件721,该线性滑动件721沿平行于滚珠螺杆714的轴线移动。狗骨式连杆712的远端连接于输出万向节742c/d,所述输出万向节742c/d中的每个绕垂直于通过万向节销710的纵向轴线的两个正交轴线旋转。在一个方面,驱动模块的万向节具有两个自由度,但是没有正交轴线。
图7B示出器械操纵器的滚动致动器驱动模块742e’底部透视图,其可用于提供控制安装器械的滚动移动的滚动输出圆盘。在这个实施例中,滚动致动器驱动模块742e’包括驱动谐波驱动器736的马达734,该谐波驱动器736又驱动正齿轮740。正齿轮740旋转滚动输出圆盘742e从而驱动器械上的滚动输入圆盘。编码器732用于感测位置和与马达734通信。绝对编码器738连接于滚动输出圆盘742e并且感测器械滚动的绝对位置。
在一个方面中,系统驱动模块可操作地独立且充分地彼此隔离,使得通过一个接口输出端施加的大力不会传递到其他接口输出端。换句话说,通过一个接口输出端的大力不会传递到其他接口输出端,因此不会影响其他接口输出端致动的器械部件。在一个方面中,驱动模块及其相应致动器输出端基本没有从另一个驱动模块和/或其相应致动器输出端输入的非预期力。这个特征提高器械操作以及从而改善病人的安全性。
图9A和9B分别示出配置成安装到图4A-4B和5A-1到5C-4的器械操纵器的器械960近侧部分960a和远侧部分960b的透视图。器械960的传动机构近侧面960’包括与抓握输出拉杆542b接口连接的器械抓握输入拉杆962b,与摇摆输出万向节542c接口连接的器械摇摆输入万向节962c,与手腕输出万向节542d接口连接的器械手腕输入万向节962d,以及与滚动输出圆盘542e接口连接的器械滚动输入圆盘962e。图9B示出包括手腕964、摇摆机构966以及末端执行器968的柔性手术器械960的远端960b的示例。在一个实施例中,当操纵器输出端和器械输入端可操作接合时,器械960的传动机构的近侧面960’具有与器械操纵器的远侧面可操作接口连接的基本单个平面。由Larkin等人提交的题为“Minimally InvasiveSurgical System(微创伤手术系统)”的美国专利申请No.11/762165和由Cooper等人提交的题为“Surgical Instrument With Parallel Motion Mechanism(带有平行运动机构的手术器械)”的美国专利申请No.11/762154公开了手术器械(诸如器械960)的适用的远侧部和近侧部的进一步细节,其中这两篇美国专利申请合并于此作为参考。
在图9A和9B所示说明性方面中,器械960包括在其近端的传动部分、细长的器械主体、各种手术末端执行器968中的一个以及将末端执行器968连接于摇摆机构966和器械主体的蛇形2自由度手腕机构964。正如在da手术系统中一样,在某些方面,传动部分包括与永久安装在支撑臂上的电气致动器(例如,伺服电机)接口连接以便轻易改变器械的圆盘。其他联动装置,诸如匹配万向节板和拉杆可以用于传递在机械接口处的致动力。在传动部分的机械机构(例如,齿轮、拉杆、万向节)将致动力从圆盘传递到多条缆线、多条金属线和/或一条缆线、一条金属线以及延伸穿过器械主体中的一个或更多通道(其可以包括一个或更多铰接节段)的海波管组合,以便控制手腕964和末端执行器970移动。在某些方面,一个或更多圆盘及其关联机构传递将器械主体围绕其纵向轴线滚动的致动力。器械主体的主要节段是基本刚性的单管,虽然在某些方面中,其可以是轻微弹性柔性的。这个小的柔性允许导引管的近侧主体节段(即,在病人外部)是轻微屈曲的,以便几个器械主体可以比它们个体传动节段外壳所允许的更加紧密地分布在导引管内,就像等长的几段被切割的花被放置在小口花瓶中。这个屈曲是极微小的(例如,在一个实施例中,少于或等于大约5度弯角)并且不导致明显的摩擦,这是因为在器械主体内的控制缆线和海波管弯角是很小的。换句话说,在一个实施例中,器械轴件可以以微小角度从力传动机构远端退出而不是正交于力传动机构远侧面或近侧面。该器械轴件然后可以轻微弯曲,并继续变直以在器械轴件近侧部分形成轻微的弧度,使器械轴件从力传动机构远端退出。因此,器械可以具有带有靠近导引管的近侧曲线部分和远侧直线部分的器械轴件。在一个示例中,当器械轴件从力传动机构远端退出时,器械轴件可以俯仰大约0度到大约5度。
如图9A和9B所示,器械960包括近侧主体节段968(在一个示例中其穿过导引管延伸)和至少一个远侧主体节段或摇摆机构966(在一个示例中,其定位成超过导引管的远端)。例如,器械960包括近侧主体节段968、在关节967连接于近侧主体节段968的摇摆机构966,在另一个关节965连接于摇摆机构966的手腕机构964(连接可以包括另一个短的远侧主体节段)以及末端执行器970。在某些方面,摇摆机构966以及关节965和967用作平行运动机构,其中,器械远端处的参考系位置可以相对于器械近端处的参考系改变,而不改变远端参考系取向。适用的平行运动或包括可用器械的相关关节的摇摆机构的细节在美国专利申请No.11/762165中进一步公开,其合并于此作为参考。
图10示出根据本公开各方面的可操作连接于器械960的器械操纵器542的横截面侧视图。如图10所示,在器械操纵器542远侧面上的致动器输出端542b-542e与手术器械960近侧面上的致动器输入端962b-962e接口连接。
由于器械末端执行器被提供有便于外科手术的七个自由度(器械插入、抓握、2个DOF手腕转动、2个DOF摇摆(手腕平移)以及器械滚动),因此器械致动精度的要求较高,并且期望器械与器械操纵器之间的高保真、低间隙接口连接。器械操纵器的独立操作驱动系统模块(例如,模块542b’,542c’,542d’以及542e’)允许各种驱动系穿过不精确制造帷帘连接于手术器械,而没有性能折中。由于驱动系统模块不彼此连接并且彼此之间充分隔离,因此通过一个接口输出端施加的大力不会传递到另一个接口输出端。换句话说,穿过一个接口输出端的大力不会传递到另一个接口输出端。在一个方面中,驱动模块及其相应致动器输出端基本没有从另一个驱动模块和/或其相应致动器输出端输入的非预期力。这个特征提供器械操作以及从而改善病人的安全。
在一个方面中,匹配圆盘可以用于力传动特征和致动特征,如同da手术系统器械接口一样。在另一方面中,使用匹配的万向节板和拉杆。在传动机构中各种机械部件(例如,齿轮、拉杆、缆线、滑轮、缆线导引装置、万向节等)可以用于将机械力从接口传递到控制元件。每个致动器机构包括在关联器械远端控制移动的至少一个致动器(例如,伺服电机(有刷或无刷的))。例如,致动器可以是控制手术器械末端执行器抓握DOF的电气伺服电机。器械(包括本文所述导引探针)或导引管(或聚集的器械组件)可以从关联致动器机构断开并滑出。然后,其可以替换为另一个器械或导引管。除了机械接口以外,在每个传动机构与致动器机构之间还存在电子接口。电子接口允许传递数据(例如,器械/导引管类型)。美国专利US6866671(由Tierney等人于2001年8月13日提交)和US6132368(由Cooper于1997年11月21日提交)讨论了用于各种器械、导引管以及成像系统的机械和电气接口以及保护无菌区域的无菌帷帘的示例,该上述两篇专利合并于此作为参考。
单独手术器械或包括导引管、多个器械和/或多个导引管的组件,以及经由各种配置(例如,在器械/致动器组件的近侧面或远侧面上)连接于致动器组件的器械适用于本公开。因此,可以采用经由病人的单个进入端口的各种手术器械,每种手术器械彼此独立工作并且包含具有在笛卡尔空间中至少6个主动受控DOF(即,前后移动,上下移动,左右移动,滚动,俯仰,偏转)的末端执行器。
形成上述这些运动链端部的器械轴件可以通过套管和/或进入导引装置被引导插入到病人体内,如下面进一步描述。可用的附属夹具和附件(例如套管)的示例在2005年9月30日提交的待决美国专利申请No.11/240087中公开,其全部公开处于所有目的合并于此作为参考。
无菌帷帘
现在将更详细地描述无菌帷帘的实施例。回去参考图1A-1B和2A-2C,其分别示出遮盖臂组件101和201一部分的无菌帷帘1000和2000,其将操纵器臂的非无菌部分与无菌区域屏蔽,以及将臂及其各部分与手术程序的材料(例如,体液等)屏蔽。在一个实施例中,无菌帷帘包括被配置成接收器械操纵器组件的器械操纵器的帷帘袋。帷帘袋包括邻近无菌区域的外部表面以及邻近非无菌器械操纵器的内部表面。帷帘进一步包括用于在器械操纵器输出端(例如,将致动力传输到关联器械的接口)与手术器械输入端(例如,从关联器械操纵器接收致动力的接口)之间接口连接/交界连接(interface)的在帷帘袋远端的柔性薄膜,和可操作连接于无菌袋近侧开口的可旋转密封件。
在另一个实施例中,无菌帷帘包括多个帷帘袋,其中每个帷帘袋包括在远端的多个柔性薄膜,其用于在相应器械操纵器输出端与相应手术器械输入端之间接口连接,其中所述手术器械控制手术器械的的手腕、滚动、抓握以及平移运动。可旋转密封件(诸如迷宫式密封件)可操作连接于帷帘袋的近侧开口,以便允许所有帷帘袋关于帷帘更多近侧部分作为组一起旋转。在一个示例中,包括多个帷帘袋的可旋转密封件第一部分连接于操纵器组件平台的可旋转基座板,并且可旋转密封件的第二部分连接于操纵器组件平台的框架。
在又一个实施例中,机器人手术系统操纵器臂的覆盖方法包括首先定位器械操纵器远端处的无菌帷帘的远端,然后从器械操纵器远端到器械操纵器近端用帷帘袋覆盖每个器械操纵器。接着,无菌帷帘的可旋转密封件连接于器械组件平台的框架和可旋转基座板。接着,按需要从操纵器臂远端到操纵器臂近端覆盖操纵器臂的剩余部分。在这个示例中,操纵器臂从器械操纵器到偏转关节被覆盖。
有利地,如上所述,带有无菌帷帘的操纵器臂和器械操纵器的配置和几何形状提供了允许通过单端口进行多象限外科手术的大运动范围(即,从单进入端口以病人所有象限的手术入路),在病人和进入端口周围的增加空间,以及增加的病人安全性,而又提供可靠的器械/操纵器接口连接,器械交换便捷,以及无菌环境的维持。
回去参考图10,器械操纵器542的致动器输出端穿过无菌帷帘1000或2000接合器械960的致动器输入端。如上所述,在一个实施例中,当插销542g被致动时,器械操纵器542的内框架朝向器械960移动设定距离,并且弹簧加载模块输出端542b-542e穿过帷帘1000或2000接合器械输入端962b-962e。如上所述,在器械操纵器542中的独立致动器驱动模块542b’、542c’、542d’和542e’分别提供致动器输出端542b、542c、542d和542e,这些致动器输出端在致动插销机构542g时穿过无菌帷帘分别接合器械输入端962b、962c、962d和962e。
现在结合图10参考图11A-11D,图11A-11B分别示出无菌帷帘1100的第一帷帘部分1100a(图11D)在收缩状态和展开状态的透视图,图11C示出根据本公开实施例的安装到操纵器平台的可旋转基座板1140a远端的帷帘部分1100a的截面视图。上述无菌帷帘1000和2000的描述适用于无菌帷帘1100。例如,无菌帷帘1100遮盖操纵器臂组件的一部分,尤其是器械操纵器,从而将操纵器臂的非无菌部分与无菌区域屏蔽。帷帘部分1100a包括多个帷帘袋1105(例如,示出四个楔形帷帘袋1105a-1105d),每个包括被配置成邻近无菌区域的外部表面,以及被配置成邻近非无菌器械操纵器的内部表面。帷帘袋1105中的每个进一步包括在帷帘袋1105远端1101处的多个柔性薄膜1102,其用于在器械操纵器输出端与手术器械输入端之间接口连接。在一个示例中,柔性薄膜1102b、1102c、1102d和1102e在器械操纵器输出端542b、542c、542d和542e与器械输入端962b、962c、962d和962e之间接口连接,以便分别控制手术器械的器械抓握、平移、手腕以及滚动运动。柔性薄膜提供用于每个器械操纵器的伸缩插入机构(例如,插入机构444)的袋延伸部1106,其中器械操纵器可以沿该插入机构平移。
在一个方面中,袋延伸部1106远端附连于插入机构,使得帷帘袋延伸部1106与插入机构一起移动并保持在远离病人的紧凑形式,从而提供空间和对手术端口的接近。在一个示例中,袋延伸部1106的远端可以通过任何适当附连装置,例如夹子、接头、尼龙搭扣带及其类似物附连于插入机构844(图8)的滑座连杆804。
可旋转密封件1108将帷帘袋1105近侧开口1103可操作连接于操纵器臂组件的操纵器平台。在一个示例中,可旋转密封件1108包括可旋转迷宫式密封件(labyrinth seal),其具有辊遮盖(roll cover)部分1108a和基座梳齿部分1108b,其中所述基座梳齿部分1108b在辊遮盖部分1108a内可相对于该辊遮盖部分1108a旋转。在一个实施例中,基座梳齿部分1108b包括带有肋1104的圆盘,其中所述肋1104形成带有孔的多个楔形“框架”,每个框架的尺寸被设计成外接(circumscribe)器械操纵器。在一个实施例中,基座梳齿部分1108b包括在圆盘内形成相距90度的肋1104。帷帘袋1105的近端连接于基座梳齿部分1108b的每个框架。因此,带肋的基座梳齿部分1108b有助于覆盖在器械操纵器可旋转基座板上紧密集群的各个器械操纵器,并且进一步有助于在手术程序期间当被覆盖器械操纵器移动时保持帷帘袋1105的取向和布置。
辊遮盖部分1108a固定安装到操纵器平台的框架,并且基座梳齿部分1108b固定安装到可旋转基座板1140a,使得当基座板1140a旋转时,基座梳齿部分1108b也连同被覆盖器械操纵器旋转,而固定安装到操纵器平台框架的辊遮盖部分1108a静止不动。
图11A和11B分别示出在器械操纵器沿其相应插入轴线收缩和伸展时,在收缩和展开状态的帷帘袋1105。虽然示出的四个帷帘袋等同地收缩和展开,但当器械操纵器是独立的和/或相对彼此依附控制时,帷帘袋可以独立地收缩和展开。
应当指出,基座梳齿部分1108b可以包括以不是90度的角度定向不同数量的肋,只要提供的空间适于器械操纵器穿过基座梳齿部分的每个框架。在一个示例中,基座梳齿部分1108b可以由肋组成,其中所述肋将圆形区域分成多个段,每个段的大小被设计成封闭器械操纵器。
无菌帷帘1100也允许从覆盖个体器械操纵器到操纵器臂组件剩余部分的转移,如图11D所示。帷帘1100可以从可旋转密封件1108(例如,辊遮盖部分1108a)继续以合成更大的第二帷帘部分1100b,该第二帷帘部分1100b被设计成按期望遮盖操纵器臂剩余部分(例如,关节和连杆),在一个示例中,连续遮盖操纵器臂到操纵器组件偏转关节(例如,偏转关节124、224)。因此,可旋转密封片1108允许器械操纵器集群相对于剩余操纵器臂组件自由旋转,而同时又基本保持整个臂组件被覆盖,从而保持手术部位的无菌环境。
根据另一个实施例,无菌帷帘部分1100b包括被设计成覆盖可收缩套管安装臂的套管安装臂袋1110,其在下面进一步详细描述。在一个实施例中,可移动套管支架包括连接于操纵器臂的基座部分和可移动连接于该基座部分的可收缩部分。可收缩部分可以经由旋转关节在收缩位置和展开位置之间移动,以便可收缩部分可以向上旋转或向基座部分折叠,从而在病人周围创建更多空间和/或在覆盖操纵器臂时更易于覆盖套管支架。其他关节可用于连接可收缩部分和基座部分,包括但不限于球和窝关节或万向关节,产生伸缩效果的滑动关节及其类似物,使得可收缩部分可以移动到更靠近基座部分,从而减少套管支架整体形状要素。在另一个实施例中,整个套管支架相对于操纵器臂可以是内部可伸缩的。因此,可移动套管安装臂允许以帷帘中相对小的开口覆盖更大机器人臂。帷帘可以位于可收缩套管安装臂上方,并且在被覆盖到袋1110内之后,套管安装臂可以延伸到操作位置。根据一个方面,在器械操作期间,套管安装臂被固定在操作位置。
在一个实例中,帷帘袋1110可以包括配合在套管安装臂远端上的夹具(参见,例如在图19A-19B中夹具1754,以及在图24A-24D中夹具2454和插孔2456)的加强帷帘部分1111。
帷帘1100a可以进一步包括在各个帷帘袋1105侧面的插销盖1107,用于覆盖在使用期间延伸到器械操纵器外周之外的各个插销1342g(图14A、15、16A以及17A-17C)。
有利地,由于与器械接口连接的器械操纵器远侧面、器械操纵器弹簧加载和独立输出端以及有利的无菌帷帘,在手术程序中,器械可以轻易且可靠地在器械操纵器上交换同时保持稳固的无菌环境。而且,无菌帷帘允许快速和容易地准备手术机器人系统同时又提供具有小形状要素的改善运动范围(例如,旋转运动),从而减少手术室准备时间和降低成本。
无菌适配器
现更详细描述包括无菌适配器的帷帘的另一个实施例。图12示出根据本公开另一个实施例的包括无菌适配器1250展开无菌帷帘的帷帘部分1200a的透视图。帷帘部分1200a可以替换在图11D中的帷帘部分1100a,并且通过基本类似于可旋转密封件1108的可旋转密封件1208的方式可操作连接于帷帘部分1100b。帷帘部分1200a包括连接在可旋转密封件1208与无菌适配器1250之间的多个帷帘套筒1205。帷帘部分1200a进一步包括用于覆盖器械操纵器插入机构的连接于无菌适配器1250的袋延伸部1206。
可旋转密封件1208将帷帘套筒1205的近侧开口1203可操作连接于操纵器臂组件的操纵器平台。在一个示例中,可旋转密封件1208包括可旋转迷宫式密封件,其具有辊遮盖部分1208a和相对辊遮盖部分1208a可旋转的基座梳齿部分1208b。在一个实施例中,基座梳齿部分1208b包括带有肋1204的圆盘,其中所述肋1204形成带有孔的多个楔形“框架”,框架中的每个尺寸被设计为外接器械操纵器。在一个示例中,基座梳齿部分1208b包括在圆盘内形成的相距90度的肋。帷帘套筒1205的近端连接于基座梳齿部分1208b的每个框架。因此,带肋的基座梳齿部分1208b有助于覆盖在器械操纵器可旋转基座板上紧密集群的单个器械操纵器,以及在手术程序期间当被覆盖器械操纵器移动时,进一步有助于保持帷帘袋1205的取向和布置。
虽然图12示出在伸展状态的所有帷帘套筒1205,例如当器械操纵器沿它们相应插入机构延伸时,但是应当明白当器械操纵器独立控制和/或彼此依附控制时,帷帘套筒可以独立收缩和伸展。
还应当明白基座梳齿部分1208b可以包括以不同于90度的其他角定向的不同数量的肋,只要提供的空间适合器械操纵器穿过基座梳齿部分的每个框架。在一个示例中,基座梳齿部分1208b可以由肋组成,其将圆形区域分成许多节段,每个节段的尺寸被设计成封闭器械操纵器。
辊遮盖部分1208a固定安装到操纵器平台(例如,操纵器晕轮)的框架,并且基座梳齿部分1208b固定安装到可旋转基座板1140a,使得当基座板1140a旋转时,基座梳齿部分1208b也连同覆盖的器械操纵器一起旋转。在一个示例中,由于帷帘套筒1205的近端连接于基座梳齿部分1208b,因此所有帷帘套筒1205作为一个组相对于更近侧的帷帘部分1100b一起旋转。
图13A和图13B根据本公开的实施例,分别示出组装好的无菌帷帘适配器1250透视图和无菌适配器1250的分解图。无菌适配器1250包括保护罩(boot)1252,保护罩1252具有保护罩壁1252a和用作用于器械操纵器上支柱的通路的圆柱形孔1252b,其在下面将进一步描述。帷帘套筒1205远端可以连接于保护罩壁1252a的外表面。适配器1250进一步包括一对支撑件1258,其用于将手术器械适当对齐、定位和保持在无菌适配器下面,用于接合无菌适配器上表面上的器械操纵器。适配器1250进一步包括柔性薄膜接口1254,其在相应器械操纵器输出端与相应手术器械输入端之间接口连接,用于控制手术器械的手腕、滚动、抓握以及平移运动。在一个实施例中,薄膜接口1254包括用于与关联器械操纵器输出端接口连接的抓握致动器接口1254b、摇摆致动器接口1254c、手腕致动器接口1254d以及滚动致动器接口1254e。
在一个实施例中,滚动致动器接口1254e设计用于在无菌适配器1250内旋转和保持无菌屏障。如图13C所示,在一个方面中,滚动致动器接口1254e包括滚动圆盘1257a,其具有接受扁平固定板1254f(图13B)的绕圆盘外周的狭槽或凹槽1257b。扁平固定板1254f附连于柔性薄膜接口1254并且在保持无菌适配器和帷帘的无菌屏障的同时允许滚动圆盘旋转。
薄膜接口1254定位在保护罩1252与支撑件1258之间,以及管1256将保护罩1252、薄膜接口1254以及支撑件1258连接在一起。管1256与保护罩孔1252b和薄膜孔1254b对齐,并且管1256的轴部分定位在孔内。管唇1256a保持在保护罩孔1252b内,并且管末端1256固定连接于支撑件1258,使得管1256和由此的支撑件1258可移动管轴的一定纵向距离,如图13A的双向箭头所示。
可选地,抓握致动器接口板1254b’、摇摆致动器接口板1254c’以及手腕致动器接口板1254d’分别连接于抓握致动器接口1254b、摇摆致动器接口1254c以及手腕致动器接口1254d的下侧,用于与关联器械输入端的增强接合和连接。
图14A和14B示出根据本公开实施例的器械操纵器1300底部透视图和底部视图。在这个说明性实施例中,器械抵靠器械操纵器1300的远侧面1342a安装。远侧面1342a包括将致动力传递到安装器械的各种致动输出端,类似于上述图3-8的器械操纵器。如图14A和14B所示,这样的致动输出端可以包括抓握输出拉杆1342b(控制器械末端执行器的抓握动作)、摇摆输出万向节1342c(控制远端平行联动装置(“摇摆”或“手肘”机构)的左右运动和上下运动)、手腕输出万向节1342d(控制器械末端执行器的偏转运动和俯仰运动)以及滚动输出圆盘1342e(控制器械的滚动运动)。器械操纵器1300中的独立致动器驱动模块(类似于上述的模块542b’、542c’、542d’和542e’)提供致动器输出端1342b、1342c、1342d和1342e。以类似方式,致动器输出端1342b-1342e可以是弹簧加载的。适用的输出端以及接收这种输出端的器械力传动机构的关联部件的细节可以在美国专利申请No.12/060104(2008年3月31日提交;美国专利申请公开号US2009/0248040A1)中发现,该申请合并于此作为参考。接收这种输入端的说明性手术器械的近端的示例可以在美国专利申请No.11/762165中发现,该申请在此供参考。简短地,左右和上下DOF由远端平行联动装置提供,末端执行器偏转和末端执行器俯仰DOF由远端柔性手腕机构提供,器械滚动DOF通过在将末端执行器保持在基本恒定位置和俯仰/偏转取向同时滚动器械轴件而提供,以及器械抓握DOF由两个可移动反向末端执行器夹爪提供。这样的DOF是更多或更少DOF的说明性DOF(例如,在某些实现方式中,摄像机器械省略器械滚动和抓握DOF)。
器械操纵器1300进一步包括插销机构1342g,该插销机构1342g用于通过无菌适配器1250将器械操纵器1300的致动器输出端与安装器械的致动器输入端接合。在一个实施例中,类似于上述插销机构,当插销1342g被致动时,器械操纵器1300的内框架1342i相对于外壳层1342h朝向安装器械移动设定距离。弹簧加载模块输出端1342b-1342e通过无菌适配器1250接合适当的器械输入端,在一个示例中通过薄膜接口1254接合适当的器械输入端。由此,通过无菌适配器的薄膜接口,安装器械被夹在支撑件1258上表面与弹簧加载输出端之间。
如上所述,帷帘1100a可以包括用于遮盖各个插销1342g的在各个帷帘袋1105上的插销盖1107(图11D),其中所述各个插销1342g可以在使用期间延伸到器械操纵器外围。插销手柄中的每个能够折叠在相应器械操纵器外周内,以便使得帷帘的可旋转密封件能够超过器械操纵器。
器械操纵器1300进一步包括将器械操纵器1300可操作连接到无菌适配器1250的支柱1350,其在下面会进一步描述。
现参考图15和16A-16E,其示出和描述器械操纵器1300到无菌适配器1250的连接。图15示出根据本公开实施例的可操作连接于无菌适配器1250的器械操纵器1300的底部透视图。图16A-16E示出根据本公开实施例的器械操纵器1300与无菌适配器1250连接的顺序。如图16A所示,支柱1350在保护罩孔1252b内与管1256对齐。接着,如图16B所示,支柱1350的自由端穿过管1256定位,直到支柱1350端部接头接合关联的支撑件孔,如图16E所示。因此,支柱1350的一端被固定安装到支撑件1258。在一个实施例中,支撑件1258包括具有钥匙孔1258b的滑动件1258a,如图16C-1和16C-2所示。在无菌适配器如箭头II所示被提到最终位置时,支撑件1258以箭头I的方向滑动,以允许支柱1350穿到钥匙孔1258b的端部。然后,支撑件1258由偏置装置以箭头III方向返回,使得钥匙孔1258b的狭长部分锁定到支柱1350中的凹槽1350a中(图16E)。
在无菌适配器支撑件1258已经附连于器械操纵器外壳上的支柱后,无菌适配器1250的保护罩1252附连于器械操纵器1300远侧面1342a。在一个实施例中,这种附连通过保护罩内壁的凸起套准在器械操纵器内框架1342i侧面上的凹陷实现。这种附连允许在随着内框架被插销1342g抬起或放下时保护罩依然保持附连于内框架。
现参考图17A-17C和18A-18B,其示出和描述手术器械1460到无菌适配器1250的连接。图17A-17C示出根据本公开实施例的手术器械1460到无菌适配器1250的连接顺序。如图17A所示,器械1460包括力传动机构1460a和轴件1460b。轴件1460b的顶端被置于进入导引装置1500内,其在套管1600内是可自由可旋转的。图17B示出与一对支撑件1258接合并对齐的在器械1460力传动机构1460a上的接头(图18A的接头1462),以及图17C示出进一步沿支撑件1258顶面平移的力传动机构1460a。
图18A和18B分别示出在力传动机构1460a沿支撑件1258完全平移之前,器械1460和无菌适配器1250的放大透视图和侧视图。器械1460沿支撑件1258平移直到沿支撑件达到保持机构,所述保持机构在一个示例中可以是与支撑件1258顶面上的孔对齐并连接的在接头1462下侧的凸起。然后可以致动插销1342g,以使器械操纵器输出端通过无菌适配器1250与器械输入端接合。在一个实施例中,在器械已经安装后,防止支撑件1258从支柱1350脱落。在一个方面,支撑件上的凸起可以接合器械力传动机构外壳侧面上的凹陷,以在已经安装器械后防止支撑件移动。
进入导引装置
现更详细描述进入导引装置、套管以及套管安装臂的实施例。如上所述,手术器械安装在每个手术器械操纵器上并且被每个手术器械操纵器致动。器械被可拆卸地安装,以便各种器械可以互换地安装在特定操纵器上。在一个方面,一个或更多操纵器可以被配置成支撑和致动特定器械类型,诸如摄像机器械。器械的轴件从器械操纵器向远侧伸出。轴件穿过放置在进入端口处的公用套管延伸到病人体内(例如,在自然孔口穿过体壁)。套管连接于套管安装臂,该套管安装臂可拆卸连接于操纵器臂。在一个方面,进入导引装置至少部分定位在套管内,并且每个器械轴件延伸穿过进入导引装置中的通道,从而为器械轴件提供附加的支撑。
图19A和19B分别示出可移动和/或可拆卸套管支架1750在收缩位置和展开位置的透视图。套管支架1750包括可移动连接于操纵器臂连杆1738的延伸件1752,诸如邻近第四操纵器连杆138的近端(图1A和1B)。套管支架1750进一步包括在延伸件1752远端上的夹具1754。在一个实现方式中,延伸件1752通过可旋转关节1753连接于连杆1738,其中所述可旋转关节1753允许延伸件1752在邻近连杆1738的收起位置与将套管保持在正确位置以便远距离运动中心位于沿套管位置的操作位置之间移动。在一个实施中,延伸件1752可以向上旋转或朝连杆1738折叠,如箭头C所示,以便在病人周围创造更多空间和/或在给操纵器臂覆盖帷帘时,更易于在套管上覆盖帷帘。其他关节可以用于连接延伸件1752,包括但不限于球窝关节或通用关节,产生伸缩效果的滑动关节及其类似物,使得延伸件可以更靠近连杆移动,以便减少套管支架和操纵器臂的整体形状要素。在另一个实施例中,延伸件1752相对于操纵器臂可以是内部可伸缩的,或延伸件1752可从连杆拆卸并可操作连接于连杆。在手术系统操作期间,延伸件1752保持在操作位置。
图20A和20B示出安装到如图19A-19B所示套管支架1750的夹具1754上的套管1800的透视图,图21示出自立套管1800的透视图。在一个实施例中,套管1800包括可拆卸连接于夹具1754的近侧部分1804,以及用于使器械轴件通过的管1802(如图22所示)。一旦套管1800安装在夹具1754中,夹具可以防止套管1800旋转。在一个示例中,管1802由不锈钢组成,并且管1802的内表面可以涂覆以或衬以润滑或抗摩擦材料,虽然套管可能由带衬里或不带衬里的其他材料组成。近侧部分1804可以包括外脊1806、1808和用于接收进入导引装置通道的内部空间,如图22和23A-23B所示,下面会更详细描述。适用的附件夹具和附件(诸如套管)的示例在2005年9月30日提交的待决美国专利申请No.11/240087中公开,其全部公开并入本文作为参考。
现参考图22和23A-23B,根据本公开的实施例,图22示出图21的套管1800横截面视图以及安装的进入导引管2200的横截面视图。器械操纵器1942连接于操纵器平台的可旋转基座板1940,在一个示例中,器械操纵器1942通过可伸缩插入机构1942a连接于操纵器平台的可旋转基座板1940,并且器械2160安装到器械操纵器1942(例如,在器械操纵器远侧面或近侧面上)。在一个实施例中,可伸缩插入机构1942a对称安装到可旋转基座板1940,在一个示例中被设置成彼此相距90度,以便提供给四个器械操纵器。其他配置和插入机构的数量(以及由此的器械操纵器和器械)是可能的。
因此,器械2160被安装到器械操纵器1942,使得器械轴件2160b围绕操纵器组件滚动轴线1941集群。每个轴件2160b从器械力传动机构2160a向远侧延伸,并且所有轴件穿过放置在端口的套管1800延伸到病人体内。套管1800通过套管支架1750关于基座板1940可拆卸地保持在固定位置,在一个实施例中,所述套管支架1750连接于第四操纵器连杆138。进入导引管2200被插入套管1800并在套管1800内自由旋转,并且每个器械轴件2160b穿过关联的通道2204延伸到导引管2200中。套管和导引管的中心纵向轴线与滚动轴线1941大体重合/一致。因此,在基座板1940旋转以使器械操纵器和相应的器械轴件旋转时,导引管2200随着基座板1940旋转而在套管内旋转。在一个示例中,进入导引管2200在套管内绕导引管的中心纵向轴线可自由旋转,所述进入导引管2200的中心纵向轴线与套管中心纵向轴线对齐,套管中心纵向轴线又与操纵器平台的滚动轴线1941对齐或平行延伸。在其他实施例中,进入导引管2200可以固定安装于套管,如果需要对器械轴的这种固定支撑。
进入导引管2200的侧视和俯视横截面视图分别沿图23A和23B中的线III-III获得,所述进入导引管2200具有连接唇2202、管2206以及通道2204a,2204b。进入导引管2200包括在管2206近端上的唇2202,用于将进入导引装置可旋转连接于套管1800的近侧部分1804。在一个示例中,唇2202连接在套管的脊(例如,在图22中的脊1806与1808)之间。在其他实施例中,进入导引装置不需要连接唇,下面会进一步描述。
进入导引管2200进一步包括穿过进入导引装置用于使器械轴件(例如,图22中器械轴2160b)通过的通道2204a和2204b。在一个方面,为每个器械轴件提供一个通道或通路,并且通道可以具有不同几何形状和尺寸。如图23A和23B所示,通道2204a与通道2204b具有不同外形和尺寸,以及在一个示例中,通道2204a用于引导具有更大和更刚性的轴件的摄像机器械,而通道2204b用于引导普通器械的器械轴件。通道的其他形状和尺寸是适用的,包括但不限于成形为圆形、卵形、椭圆形、三角形、正方形、矩形以及多边形的开口。
在基座板绕滚动轴线1941旋转时,器械操纵器1942和器械2160的集群也绕滚动轴线旋转。在器械轴件2160绕滚动轴线1941旋转而又在进入导引装置通道2204中时,器械轴件撞击进入导引装置通道的内表面,并且至少一个旋转的器械轴件驱动进入导引管2200以使其相对于套管1800在套管1800内旋转,其中所述套管1800由套管支架的夹具夹住并保持静止不动;例如,套管支架1750的夹具1754。
器械轴件可以穿过进入导引装置通道独立插入和伸缩或通过相应插入机构1942a的运动彼此协同插入和伸缩。器械2160可以以顺时针或逆时针方向绕滚动轴线1941旋转,并且因此进入导引管2200可以相应以顺时针或逆时针方向绕滚动轴线旋转。应当进一步指出虽然示出进入导引管中四个通道并且示出多个器械轴件穿过进入导引装置和套管,但在手术系统内的进入导引装置和套管组件可以以其他数量的通道和器械/器械组件轴件穿过进入导引装置和套管操作。例如,带有用于使一个或更多器械/器械组件轴件延伸穿过进入导引装置和套管的一个或更多通道的进入导引管在本公开的范围内。而且,由器械轴件提供的用于使进入导引装置旋转的转矩不必由多个器械轴件对称提供,而是可以非对称和独立提供,包括由单个器械轴件提供大多数转矩。
在一个实施例中,进入导引管2200和套管1800每个可以包括电子接口或无线接口,例如射频识别(RFID)芯片或接头,其包括关于套管和/或进入导引管的标识信息并且允许手术系统(例如,由操纵器臂读取)确认具体的进入导引装置和/或套管的标识。金属环、机械销以及电感感测机构也可以用于读取标识数据。这种电子或无线接口允许将数据(例如,进入导引管/套管类型)传递到手术系统。各种器械、导引管和成像系统的机械和电气接口的细节以及保持无菌区域的无菌帷帘的细节,在美国专利US6866671(Tierney等人)和US6132368(Cooper)中讨论,这两个专利类似使用进入导引装置和套管,其合并于此作为参考。
应进一步注意到,在其他实施例中,进入导引管可以不包括连接唇。图24示出安装到套管2400的进入导引管2300的横截面视图。进入导引管2300包括通道2304并且类似于上述不包括连接唇的进入导引管2200。相反,进入导引管2300通过器械轴件2160b对进入导引管通道2304内壁的撞击力而可旋转连接于套管近侧部分。应进一步注意到在一个方面中,进入导引管可以通过穿过进入导引管的器械轴件驱动,以沿套管纵向轴线或滚动轴线可旋转地和纵向地移动。
现参考图24A-24D,其示出与上述进入导引装置一起使用的套管安装臂、夹具和套管的不同实施例。图24A和24B分别示出可移动和/或可拆卸套管支架2450在收缩位置和展开操作位置的透视图。套管支架2450包括可移动连接于操纵器臂连杆2438的延伸件2452,其中所述操纵器臂具有例如邻近第四操纵器连杆138(图1A和1B)的近端的器械操纵器组件平台2440。在一个实现方式中,延伸件2452通过旋转关节2453连接于连杆2438,其中所述旋转关节2453允许延伸件2452在邻近连杆2438的收起位置以及将套管保持在正确位置以便远距离运动中心沿套管分布的操作位置之间运动。在一个实现方式中,延伸件2452可以向上旋转或朝连杆2438折叠,如箭头D所示,以便在病人周围创建更多空间和/或当帷帘覆盖操纵器臂时更易于在套管支架上覆盖帷帘。其他关节可用于连接延伸件2452,包括但不限于球和窝关节或通用关节,产生伸缩效果的滑动关节及其类似物,使得延伸件可以移动得更靠近连杆,以便减少套管支架和操纵器臂的整体形状要素。在另一个实施例中,延伸件2452可以相对于操纵器臂内部可伸缩,或者延伸件2452可从连杆拆卸并且可操作连接于连杆。
套管支架2450进一步包括在延伸件2452远端上的插孔2456上方的夹具2454。图24C示出可安装到如图24D所示的套管支架2450夹具2454和插孔2456的套管2470的透视图。在一个实施例中,套管2470包括具有凸台(boss)2476的近侧部分2474。凸台2476包括位于匹配插孔2456内的底部半球表面2478(如从半球表面到插孔2456箭头所示)。凸台2476进一步包括顶表面2479,该顶表面2479由夹具2454接合以便将凸台锁定到位,因此使得套管2470相对于套管支架延伸件2452保持在固定位置。夹具2454由拉杆2480致动。套管2470进一步包括用作使器械轴件通过的管2472(如图22和24所示)。一旦套管2470由夹具2454和插孔2456安装,夹具可以防止套管2470旋转。在一个示例中,管2472由不锈钢组成,并且管2472内表面可以涂覆以或衬以润滑或抗摩擦材料,即使套管可以由带有衬里或不带衬里的其他材料组成。近侧部分2474包括用于接收带有通道的进入导引装置的内部空间,如图22、23A-23B和24所示。适用的辅助夹具和附件(例如套管)的示例在与此相关的2005年9月30日提交的美国专利申请No.11/240087中公开,其全部公开在此合并作为参考。
在一个方面中,上述进入导引装置和套管组件支撑要求在手术部位吹入气体的吹入法和程序。通过进入导引装置和套管组件吹入程序的进一步公开可以在2010年2月12日提交的题为“Entry Guide for Multiple Instruments in a Single Port System(单端口系统中多个器械的进入导引装置)”的美国专利申请No.12/705439中找到,其全部公开合并于此作为参考。
有利地,因为进入导引装置由(多个)器械轴件依赖驱动,可以消除对于使进入导引装置旋转的马达或其他致动的需要。而且,进入导引装置允许靠近病人或手术部位的大量致动器机构的移除。因此,该进入导引装置和套管组件提供用于有利组织和支撑多个器械穿过单端口和在手术程序中减少器械与其他装置之间碰撞的高效和稳固装置。
单端口手术系统架构
图25A-25C、26A-26C以及27A-27C示出手术系统2500的不同视图,其中带有以不同方向指向病人P的器械操纵器组件滚动轴线或器械插入轴线。图25A-25C示出向上和向下指向病人P头部H的器械组件滚动轴线2541。图26A-26C示出向上和向下指向病人P足部F的器械组件滚动轴线2541。图27A-27C示出向上和向下指向病人P头部H的器械组件滚动轴线2541。
手术系统2500包括用于定位机器人手术系统的远距离运动中心的设置连杆2518,以及包括主动近侧连杆2526和主动远侧连杆2528的操纵器臂组件2501,其中所述近侧连杆2526通过主动偏转关节2524可操作连接于设置连杆2518。多个器械操纵器2542形成可旋转连接于远侧连杆2528远端的器械操纵器组件。在一个实施例中,多个器械操纵器通过可伸缩插入机构2544连接于操纵器组件平台2540。多个器械操纵器2542绕滚动轴线2541可旋转。在一个实施例中,多个器械操纵器中的每个包括多个致动器输出端从其向远侧伸出的远侧面,并且多个手术器械2560连接于相应器械操纵器的远侧面。套管支架2550可移动地连接于远侧连杆2528,并且套管和进入导引管组件2552连接于套管支架2550。在一个实施例中,套管具有与滚动轴线2541基本重合的中心纵向轴线。每个手术器械具有穿过进入导引管和套管的轴件,使得至少一个器械轴件的旋转使进入导引管绕套管的纵向轴线旋转。
在偏转关节2524处的竖直操纵器组件偏转轴线2523允许近侧连杆2526绕手术系统的远距离运动中心旋转基本360度或更多(参见,例如图2C)。在一个实例中,操纵器组件偏转旋转可以是连续的,在另一个实例中,操纵器组件偏转旋转是大约±180度。在又一个实例中,操纵器组件偏转旋转可以是大约660度。由于器械以与操纵器组件滚动轴线2541大致对齐的方向插入病人体内,因此操纵器臂组件2501可以被主动控制从而以围绕操纵器组件偏转轴线的任何期望方向定位和重定位器械插入方向(参见,例如图25A-25C示出朝向病人头部的器械插入方向,图26A-26C示出朝向病人足部的器械插入方向)。在某些手术中这种功能是明显有益的。在某些腹部手术中,器械经由位于脐部的单端口插入(参见,例如图25A-25C),例如,器械可以被定位成接近腹部的所有四个象限,而不需要在病人体壁中打开新端口。例如通过腹部的淋巴结接近/入路可能需要多象限接近。相反,多端口遥控机器人手术系统的使用可能需要在病人体壁中打开附加端口,以便更全面接近其他腹部象限。
此外,操纵器可以竖直向下和以轻微向上俯仰的配置导向器械(参见,例如图27A-27C示出靠近身体孔口O向上俯仰的器械插入方向)。因此,器械穿过单进入端口的进入角度(绕远距离中心的偏转和俯仰)可以被轻松操纵和改变,同时又为病人安全和病人侧工作人员操控提供在进入端口周围的增加空间。
而且,操纵器臂组件2501的连杆和主动关节可以用于轻易操纵器械穿过单进入端口的俯仰进入角,同时又在单进入端口周围创建空间。例如,臂组件2501的连杆可以被定位成具有“弧远离”病人的形状要素。这样的弧远离允许操纵器臂绕偏转轴线2523旋转而产生操纵器臂与病人的碰撞。这样的弧远离也允许病人侧工作人员轻松接近操纵器以便交换器械和轻松接近进入端口以便插入和手动操作器械(例如,手动腹腔镜器械或伸缩设备)。在其他情况中,器械操纵器2542集群的工作包络可以近似椎体,椎体顶端在远距离运动中心处,并且椎体圆形端在器械操纵器2542的近端。这样的工作包络带来病人与手术机器人系统之间的更少干扰,允许对手术部位的改善接近以及手术工作人员对病人的改善接近的系统更大运动范围。
因此,操纵器臂组件2501的配置和几何形状连同其大的运动范围允许穿过单端口的多象限手术。通过单个切口,操纵器可以以一个方向导向器械并轻易改变方向;例如,朝向病人头部工作(参见,例如图25A-25C),然后通过绕恒定竖直的偏转轴线2523移动操纵器臂而把方向改变成朝向病人骨盆(参见,例如图26A-26C)。
现参考图28,其示出合并本文所述手术器械组件和部件的微创遥控手术系统的集中运动控制和协调系统架构。运动协调系统2802接收主控器输入2804、传感器输入2806以及优化输入2808。
主控器输入2804可以包括外科医生在主控制机构上的手臂、手腕、手以及手指移动。输入还可以来自其他移动(例如,手指、足、膝盖等按压或移动按钮、拉杆、开关等)和控制具体部件位置和取向或控制特定任务操作(例如,激励/供电电烙末端执行器或激光器、成像系统操作及其类似物)的命令(例如,声音)。
传感器输入2806可以包括来自例如测量伺服电机位置的位置信息或感应的弯曲信息。题为“Robotic surgery system including position sensors using fiber Bragggratings(包括利用光纤布拉格光栅的位置传感器的机器人手术系统”的美国专利申请No.11/491384(Larkin等人)描述了用于位置感测的光纤布拉格光栅的使用,该申请合并于此作为参考。当确定部件(例如,末端执行器顶端)的位置和取向信息时,这种弯曲传感器可以被合并到本文所述各种器械和成像系统中供使用。位置和取向信息还可以由位于病人体外的一个或更多传感器(例如,透视、MRI、超声波及其类似物)生成,并且该传感器实时感测病人体内部件位置和取向的变化。
如下所述,用户接口具有三个连接控制模式:用于(多个)器械的模式、用于成像系统的模式以及用于操纵器臂配置和/或滚动轴线控制的模式。用于(多个)导引管的模式也是适用的。这些连接模式使得用户能够将系统作为整体处理而不是直接控制单个部分。因此,运动协调器必须确定如何利用整体系统运动学(即,系统的整体DOF),以便实现某些目标。例如,一个目标可以是优化病人周围空间或最小化操纵器臂的形状因素。另一个目标可以是优化特定配置的器械工作空间。另一个目标可以是保持成像系统的视野在两个器械之间中心。因此,优化输入2808可以是高等级命令,或输入可以包括更多详细命令或感测信息。高等级命令的示例可以是智能控制器优化工作空间的命令。更详细命令的示例可以是成像系统开始或停止优化其摄像机。传感器输入的示例可以是已经达到工作空间限制的信号。
运动协调器2802向各个致动器控制器以及与各个遥控手术系统臂的操纵器关联的致动器(例如,伺服电机)输出命令信号。图28描绘输出信号发送到四个器械控制器2810,发送到成像系统控制器2812,发送到滚动轴线控制器2814,以及发送到操纵器臂控制器2816的示例,接着所述控制器将控制信号发送到器械致动器,主动臂关节,操纵器平台旋转机构以及主动伸缩插入机构。可以使用控制器的其他数量和组合。控制和反馈机构以及例如位置信息(例如来自一个或更多个无线发射器、RFID芯片等)的信号和来自感测系统其他数据在美国专利申请No.11/762196中公开,并且在本公开中是适用的,上述申请合并于此作为参考。
因此,在某些方面中,操作遥控手术系统的外科医生会同时自动使用上述标识的至少三个控制模式:用于移动器械的器械控制模式、用于移动成像系统的成像系统控制模式,和用于将操纵器臂的连杆配置成某些形状要素或相对彼此配置或操纵器平台旋转以及用于绕外部偏转轴线主动移动以能够进行多象限外科手术的操纵器臂滚动轴线控制模式。类似集中架构可以适于与本文所述各种其他机构方面一起工作。
图29示出合并本文所述手术器械组件和部件的微创遥控手术系统的分布运动控制和协调系统架构各方面的示意图。在图29示出的示例性方面中,控制和变换处理器2902与两个主控臂优化器/控制器2904a、2904b,与三个手术器械优化器/控制器2906a、2906b、2906c,与成像系统优化器/控制器2908以及与滚动轴线优化器/控制器2910交换信息。每个优化器/控制器与遥控手术系统中主控臂或从动臂(其包括,例如摄像机(成像系统)臂、器械臂以及操纵器臂)关联。优化器/控制器中的每个接收臂专用优化目标2912a-2912g。
控制和变换处理器2902与各种优化器/控制器之间的双头箭头表示与优化器/控制器臂关联的跟随数据(Following Data)的交换。所述跟随数据包括整个臂(包括基座框架和远侧顶端框架)的全部笛卡尔配置。控制和变换处理器2902将从每个优化器/控制器接收的跟随数据传送到所有优化器/控制器,以便每个优化器/控制器具有系统中所有臂当前笛卡尔配置的数据。此外,每个臂的优化器/控制器接收对该臂是唯一的优化目标。然后,每个臂优化器/控制器在继续其优化目标时,使用其他臂位置作为输入和约束。在一个方面中,每个优化控制器使用嵌入局部优化器继续其优化目标。用于每个臂优化器/控制器的优化模块可以独立打开或关闭。例如,仅用于成像系统和器械臂的优化模块可以被打开。
分布控制架构比集中架构提供更多灵活性,虽然存在降低性能的可能性。然而,在这种分布式架构中,相对于用集中架构实现的全局优化,其中单个模块可以感知整个系统状态,分布架构的优化是局部的。
连杆平衡
现参考图30A-37C更详细描述近侧连杆中的平衡机构的实施例。图30A示出操纵器臂组件3001,其基本类似于上述的臂组件,上述操纵器臂组件的特征也适用于组件3001,图30B示出臂组件3001的平衡近侧连杆的详细视图。图31-37C示出没有近侧连杆外壳壁的平衡系统各方面的不同视图。尤其是,图31示出平衡系统的透视图。图32A-36C示出调整销、线性导引装置以及调整销相对于线性导引装置移动端塞的运动范围,以及图37A-37C示出根据本公开各个方面的显示摇臂和定位螺钉的平衡近侧连杆远端的详细视图。
现参考图30A-30C,操纵器臂组件3001包括通过偏转关节可操作连接于设置连杆以形成操纵器组件偏转轴线3023的近侧连杆3026。近侧连杆3026围绕枢转轴线3070可旋转连接于远侧连杆3028。在一个示例中,电机3073可以被控制以使远侧连杆3028绕枢转轴线3070转动。在一个实施例中,远侧连杆3028包括在远侧连杆远端处的器械操纵器组件平台3040。套管支架3050可移动连接于远侧连杆3028。在一个实施例中,平台3040提供可旋转基座板,可以在可旋转基座板上安装器械操纵器并且该器械操纵器围绕器械操纵器组件滚动轴线3041旋转。偏转轴线3023、滚动轴线3041以及器械操纵器组件俯仰轴线3039的交叉点形成如之前上述的远距离运动中心3046。
现特别参考图30B和31,平衡连杆3026包括外壳3084,其具有在外壳近端或第一端部3084a与外壳远端或第二端部3084b之间延伸的中心纵向轴线3084c。压缩弹簧3080沿纵向轴线3084c布置,并且具有弹簧近端或第一端部3080a和弹簧远端或第二端部3080b。在一个实施例中,压缩弹簧由硅铬合金构成,但可以由其他材料构成。基座3092布置在外壳第一端部并且通过它们之间的对准环3090连接于压缩弹簧3080的第一端部3080a。塞3074布置在外壳第二端部并连接于压缩弹簧3080的第二端部3080b。在一个实施例中,对准环3090固定连接于压缩弹簧3080的第一端部3080a,并且塞3074包括外螺纹(例如,螺纹3074a),在该外螺纹3074上拧有弹簧第二端部3080b。
在缆线第一端部具有连接器3071的缆线3088连接于远侧连杆3028的负载,并且缆线3088的第二端部可操作连接于塞3074。从连接器3071处的缆线3088的负载承受端开始,缆线3088穿过外壳3084外部的多个滑轮3076和3078,然后在连接于塞3074之前穿过在基座3092处的滑轮3094。来自远侧连杆3028的负载以方向E1和E2绕滑轮3094牵引缆线3088(图31),促使塞3074以E2方向压缩弹簧3080,其被设置成平衡围绕枢转轴线3070的来自远侧连杆的至少一部分负载。
为了增加安全性,缆线3088可以包括连接于缆线张力均衡器3082的冗余缆线,所述缆线张力均衡器3082均衡冗置缆线上的张力。缆线捻线器3095可选地用于将滑轮3094与连接器3071之间的冗余缆线可操作地彼此连接起来。多个有头螺钉3075可以布置在缆线张力均衡器3082与塞3074之间,并且可以用于调整平衡连杆的力抵消。在一个实施例中,三个有头螺钉3075连接缆线张力均衡器3082和塞3074,其中一个有头螺钉承受基本所有张力,而剩下的两个有头螺钉出于冗余和安全目的提供。
在一个方面中,在滑轮3094与塞3074之间部分的缆线3088基本沿近侧连杆外壳的中心纵向轴线3084c延伸。在进一步方面中,弹簧3080沿近侧连杆外壳的中心纵向轴线3084c压缩。不过,弹簧压缩会产生弹簧沿外壳纵向轴线的“弧状弯曲”或非线性压缩,其可能导致弹簧与近侧连杆外壳内表面的刮擦和接触。为了减少或基本消除弧状弯曲,可以根据本公开的各个方面调整弹簧3080在第一端部3080a和第二端部3080b的取向。而且,在一个实施例中,外壳包括平行于外壳3084c纵向轴线布置的线性导引轨3096。可移动或可滑动地接合线性导引轨3096的线性导引装置3086被固定连接于压缩弹簧3080的线圈。可移动或可滑动地接合线性导引轨3096的线性导引装置3072也可操作连接于塞3074。线性导引轨3096和线性导引装置3086及3072进一步减少或基本消除压缩弹簧3080的弧状弯曲。应当注意到在某些实施例中,可以在没有线性导引装置和线性导引轨的情况下操作平衡系统。
现参考压缩弹簧第一端部或近端的可调整对齐,在一个方面中,对准环3090通过多个调整螺钉3091可移动连接于基座3092,使得调整螺钉3091的移动调整对准环3090的取向,以及由此的固定连接于对准环3090的弹簧3080a第一端部的取向。在一个示例中,基座3092通过设置成以正方形或矩形配置彼此远离的四个调整螺钉3091连接于对准环3090。螺钉的其他几何配置是可能的。调整螺钉3091中的每个在基本垂直于对准环3090平坦顶部表面的方向上是可移动的(例如,经由旋拧动作穿过具有内螺纹的基座孔),使得对准环的取向在与调整螺钉接触的每个接触点是可调整的。因此,对准环3090和弹簧3080的固定连接第一端部3080a的取向在沿对准环3090的各个点是可调整的。更多或更少调整螺钉3091在本公开的范围内。
现参考图32A-37C,其示出没有连杆外壳壁的平衡近侧连杆远端的详细视图。特别地,这些图示出根据本公开各个方面的调整销3106,摇臂3108,以及调整销和摇臂调整端塞3074和弹簧3080的固定连接第二端部3080b取向的运动范围。
图32A示出平衡系统底部透视图,以及图32B示出沿图31、32A和37A的线IV-IV的横截面的透视图。如上所述,多个有头螺钉3075a和3075b布置在缆线张力均衡器3082与塞3074之间并将其连接。有头螺钉3075a承受该实施例中的所有张力,而其他两个有头螺钉3075b出于备份和安全性目的提供。正如上所述,通过拧在塞3074外螺纹3074a上,弹簧3080远端连接于塞3074。塞3074可选地包括形成为减轻塞重量的多个凹槽3200。应当注意到,线性导引装置3072可以通过线性导引法兰3072a可滑动连接于线性导引轨3096。
正如图32A-32B所示,塞子3074通过调整销3106,穿过调整销3106内部通道延伸的凹头螺钉3104以及拧在凹头螺钉3104自由端3104a的螺母3102连接于线性导引装置3072,以将调整销3106和线性导引装置3072相对彼此锁定到位。在一个实施例中,凹头螺钉3104是内六角螺钉。与自由端3104a相反的凹头螺钉3104的头部3104b被放置在调整销3106的接合沟槽3105内,以便当螺母3102完全接合凹头螺钉自由端3104a时,将凹头螺钉头部锁定在调整销内,从而将调整销3106和线性导引装置3072相对彼此锁定。
现参考图33-36C,其更详细描述对调整销3106相对线性导引装置3072移动的调整。图33示出连接于线性导引装置3072的调整销3106、圆圈3114以及圆圈中心3114a,曲轴当调整销相对线性导引装置3072未完全锁定到位时调整销3106绕圆圈中心3114a枢转。图34示出当调整销3106的中心纵向轴线3107垂直于线性导引装置3072或导引轨3096的中心纵向轴线3097时的线性导引标记3072b和调整销标记3106c。线性导引标记3072b和调整销标记3106c可以由平衡系统的调节器(以及特别是塞取向)使用,以便确定调整销和线性导引装置的相对位置。图35示出包括销轴件3106a和销头部3106b的调整销3106的透视图。正如在图33-35中可以看出,销头部3106b具有可操作匹配线性导引装置3072弯曲面的弯曲顶表面。
图36A-36C分别示出调整销3106和线性导引装置3072以及它们相应中心纵向轴线3107和3097的侧视图。图36A示出调整销3106的中心纵向轴线3107相对于线性导引装置3072的中心纵向轴线3097的垂直位置,图36B示出调整销3106的中心纵向轴线3107与线性导引装置3072的中心纵向轴线3097形成钝角的位置,以及图36C示出调整销3106的中心纵向轴线3107与线性导引装置3072的中心纵向轴线3097形成锐角的位置。因此,图36A-36C示出调整销3106相对于线性导引装置3072的枢转运动,从而可以对塞3074以及弹簧3080的固定连接第二端部3080b的取向进行调整。
图37A示出显示摇臂3108和设置螺钉3110的平衡系统的另一个底部透视图,图37B示出移除塞3074的图37A,以及图37C示出移除摇臂3108的图37B。摇臂3108在销轴件3106a的自由端处连接于调整销3106,并且设置螺钉3110将摇臂3108连接到塞3074。交叉圆盘销3112将摇臂3108夹持到调整销3106。摇臂3108和连接的塞3074可以绕调整销3106的中心纵向轴线3107枢转,并且可以通过设置螺钉3110在基本垂直于纵向轴线3107的方向上的运动来调整,例如通过穿过具有内螺纹的摇臂孔的旋拧动作。因此,塞3074和弹簧3080的固定连接第二端部3080b的取向可以在与设置螺钉3110接触的每个接触点上调整。更多或更少调整螺钉3110在本公开的范围内。因此,塞和由此的弹簧3080第二或远端的取向可以通过转动调整销3106和转动摇臂3108在各个点调整。在一个方面中,调整销3106和摇臂3108绕彼此垂直的轴线转动。
而且,本公开的平衡连杆允许塞与压缩弹簧第二端部之间的调整,以便改变在压缩弹簧中是可压缩的主动线圈数量。在一个方面中,压缩弹簧的第二端部可以更深或更少地被旋拧到塞的外螺纹上,以便改变可压缩的主动线圈数量。
有利地,在电机使远侧连杆3028绕增加的和有利机器人臂配置和器械操纵器的枢转轴线3070转动时,平衡近侧连杆3026允许远侧连杆的更轻松运动,以及电机使远侧连杆转动所需要的力矩更少,同时又提供任何电机失效时的增加安全性。在某些实施例中,虽然近侧连杆的平衡机构总体失效,但电机使远侧连杆转动会被制动,以便将远侧连杆保持在位。
上述实施例仅用于说明目的,而不是为了限制本公开。应当理解根据本公开的原则,很多修改和变化是可能的。例如,在许多方面,本文所述设备用作单端口设备;即,完成手术程序的所有必要部件经由单个进入端口进入体内。不过在某些方面,可以使用多个设备和端口。
Claims (10)
1.一种无菌帷帘,其包括:
多个帷帘袋,所述帷帘袋中的每个包括外部表面和内部表面,其中所述外部表面邻近用于执行手术程序的无菌区域,所述内部表面邻近与机器人手术系统的操纵器臂连接的非无菌器械操纵器;
在所述帷帘袋中的每个的远侧面处的多个柔性薄膜,其用于接口连接在器械操纵器的输出端和相应手术器械的输入端之间,以及
可旋转密封件,其适于将所述帷帘袋中的每个的远侧开口在所述操纵器臂的远端处连接到可旋转元件。
2.根据权利要求1所述的无菌帷帘,其中所述柔性薄膜在所述器械操纵器的万向节手腕输出端与所述手术器械的万向节手腕输入端、所述器械操纵器的万向节摇摆输出端与所述手术器械的万向节摇摆输入端、所述器械操纵器的抓握输出端与所述手术器械的抓握输入端以及所述器械操纵器的滚动输出端与所述手术器械的滚动输入端中的一种之间接口连接。
3.根据权利要求1所述的无菌帷帘,其中所述可旋转密封件是迷宫式密封件,所述迷宫式密封件包括可旋转连接于辊遮盖部分的基座梳齿部分,所述辊遮盖部分被配置成固定安装于所述操纵器臂的框架,并且所述梳齿部分被配置成固定安装于所述操纵器臂的可旋转基座板。
4.根据权利要求3所述的无菌帷帘,其中所述基座梳齿部分包括带有形成多个孔的肋的圆盘,其中所述孔中的每个与器械操纵器外接。
5.根据权利要求4所述的无菌帷帘,其中所述多个帷帘袋中的每个帷帘袋连接于相应的圆盘的框架。
6.根据权利要求1所述的无菌帷帘,其进一步包括帷帘延伸部,所述帷帘延伸部用于接收可移动连接于所述操纵器臂的远侧连杆的可收缩套管支架。
7.根据权利要求1所述的无菌帷帘,其进一步包括在所述帷帘袋远端处的帷帘袋延伸部,所述帷帘袋延伸部用于接收可伸缩插入机构,其中所述器械操纵器沿所述可伸缩插入机构移动。
8.一种无菌帷帘,其包括:
多个帷帘袋,所述帷帘袋中的每个包括外部表面和内部表面,其中所述外部表面邻近用于执行手术程序的无菌区域,所述内部表面邻近与机器人手术系统的操纵器臂连接的非无菌器械操纵器;
在每个所述帷帘袋的远端处的多个柔性薄膜,所述多个柔性薄膜在相应器械操纵器的输出端和相应手术器械的输入端之间接口连接,并且控制所述手术器械的手腕、滚动、平移和抓握运动;以及
可旋转迷宫式密封件,其包括可旋转连接于辊遮盖部分的基座梳齿部分,所述辊遮盖部分被配置成固定安装于所述操纵器臂的框架,并且所述梳齿部分被配置成固定安装于所述操纵器臂的可旋转基座板和每个所述帷帘袋的近侧开口。
9.根据权利要求8所述的无菌帷帘,其中所述基座梳齿部分包括带有形成多个孔的肋的圆盘,所述孔中的每个连接于相应帷帘袋的近侧开口。
10.根据权利要求8所述的无菌帷帘,其进一步包括安装臂帷帘袋,其用于接收可移动连接于所述操纵器臂的远侧连杆的可收缩套管支架。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US33497810P | 2010-05-14 | 2010-05-14 | |
US61/334,978 | 2010-05-14 | ||
US12/855,499 US8746252B2 (en) | 2010-05-14 | 2010-08-12 | Surgical system sterile drape |
US12/855,499 | 2010-08-12 | ||
CN201180024117.8A CN102892376B (zh) | 2010-05-14 | 2011-05-04 | 手术系统无菌帷帘 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180024117.8A Division CN102892376B (zh) | 2010-05-14 | 2011-05-04 | 手术系统无菌帷帘 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105852976A true CN105852976A (zh) | 2016-08-17 |
CN105852976B CN105852976B (zh) | 2019-11-05 |
Family
ID=44121151
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180024096XA Pending CN102892363A (zh) | 2010-05-14 | 2011-05-04 | 手术系统器械架构 |
CN201180024022.6A Active CN102892374B (zh) | 2010-05-14 | 2011-05-04 | 手术系统器械安装 |
CN201610181366.2A Active CN105852976B (zh) | 2010-05-14 | 2011-05-04 | 手术系统无菌帷帘 |
CN201510224829.4A Active CN104958111B (zh) | 2010-05-14 | 2011-05-04 | 手术系统无菌帷帘 |
CN201510430673.5A Active CN105125263B (zh) | 2010-05-14 | 2011-05-04 | 手术系统器械操纵器 |
CN201910947224.6A Active CN110604619B (zh) | 2010-05-14 | 2011-05-04 | 手术系统无菌帷帘 |
CN201510271529.1A Active CN104958085B (zh) | 2010-05-14 | 2011-05-04 | 手术系统器械安装 |
CN201180024117.8A Active CN102892376B (zh) | 2010-05-14 | 2011-05-04 | 手术系统无菌帷帘 |
CN201180024036.8A Active CN102892375B (zh) | 2010-05-14 | 2011-05-04 | 手术系统器械操纵器 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180024096XA Pending CN102892363A (zh) | 2010-05-14 | 2011-05-04 | 手术系统器械架构 |
CN201180024022.6A Active CN102892374B (zh) | 2010-05-14 | 2011-05-04 | 手术系统器械安装 |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510224829.4A Active CN104958111B (zh) | 2010-05-14 | 2011-05-04 | 手术系统无菌帷帘 |
CN201510430673.5A Active CN105125263B (zh) | 2010-05-14 | 2011-05-04 | 手术系统器械操纵器 |
CN201910947224.6A Active CN110604619B (zh) | 2010-05-14 | 2011-05-04 | 手术系统无菌帷帘 |
CN201510271529.1A Active CN104958085B (zh) | 2010-05-14 | 2011-05-04 | 手术系统器械安装 |
CN201180024117.8A Active CN102892376B (zh) | 2010-05-14 | 2011-05-04 | 手术系统无菌帷帘 |
CN201180024036.8A Active CN102892375B (zh) | 2010-05-14 | 2011-05-04 | 手术系统器械操纵器 |
Country Status (7)
Country | Link |
---|---|
US (24) | US9096033B2 (zh) |
EP (8) | EP2568894A1 (zh) |
JP (8) | JP5782114B2 (zh) |
KR (14) | KR102176624B1 (zh) |
CN (9) | CN102892363A (zh) |
BR (4) | BR112012028465B1 (zh) |
WO (6) | WO2011143016A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106983513A (zh) * | 2017-05-02 | 2017-07-28 | 内蒙古智牧溯源技术开发有限公司 | 一种基于rfid及物联网的牲畜体征检测装置 |
CN107334536A (zh) * | 2017-07-31 | 2017-11-10 | 成都中科博恩思医学机器人有限公司 | 一种内部支撑机构及控制台 |
CN108324384A (zh) * | 2018-05-04 | 2018-07-27 | 傅丽秋 | 一种改良型医疗手术设备 |
CN108324385A (zh) * | 2018-05-04 | 2018-07-27 | 吕丹丹 | 一种医疗手术设备 |
CN108338845A (zh) * | 2018-05-04 | 2018-07-31 | 吕丹丹 | 一种先进的医疗手术设备 |
CN109922751A (zh) * | 2016-11-08 | 2019-06-21 | Cmr外科有限公司 | 用于将机器人臂固定到支撑结构的附接结构 |
CN111249007A (zh) * | 2018-11-30 | 2020-06-09 | 微创(上海)医疗机器人有限公司 | 医疗机器人及其用于夹持医疗器械的机械臂 |
CN112618023A (zh) * | 2020-12-30 | 2021-04-09 | 上海微创医疗机器人(集团)股份有限公司 | 一种无菌隔离装置及手术机器人系统 |
CN113453643A (zh) * | 2018-12-30 | 2021-09-28 | 迈米克创新手术有限公司 | 机器人设备的手术布单 |
Families Citing this family (1063)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9259280B2 (en) | 1999-09-17 | 2016-02-16 | Intuitive Surgical Operations, Inc. | Phantom degrees of freedom in joint estimation and control |
US8414505B1 (en) | 2001-02-15 | 2013-04-09 | Hansen Medical, Inc. | Catheter driver system |
US9155544B2 (en) * | 2002-03-20 | 2015-10-13 | P Tech, Llc | Robotic systems and methods |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US7837674B2 (en) | 2005-01-24 | 2010-11-23 | Intuitive Surgical Operations, Inc. | Compact counter balance for robotic surgical systems |
US7763015B2 (en) | 2005-01-24 | 2010-07-27 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
US8465474B2 (en) | 2009-05-19 | 2013-06-18 | Intuitive Surgical Operations, Inc. | Cleaning of a surgical instrument force sensor |
US8496647B2 (en) | 2007-12-18 | 2013-07-30 | Intuitive Surgical Operations, Inc. | Ribbed force sensor |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US7673781B2 (en) | 2005-08-31 | 2010-03-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with staple driver that supports multiple wire diameter staples |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US8628518B2 (en) | 2005-12-30 | 2014-01-14 | Intuitive Surgical Operations, Inc. | Wireless force sensor on a distal portion of a surgical instrument and method |
US9962066B2 (en) | 2005-12-30 | 2018-05-08 | Intuitive Surgical Operations, Inc. | Methods and apparatus to shape flexible entry guides for minimally invasive surgery |
US7930065B2 (en) | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US9861359B2 (en) | 2006-01-31 | 2018-01-09 | Ethicon Llc | Powered surgical instruments with firing system lockout arrangements |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US8219178B2 (en) | 2007-02-16 | 2012-07-10 | Catholic Healthcare West | Method and system for performing invasive medical procedures using a surgical robot |
US10893912B2 (en) | 2006-02-16 | 2021-01-19 | Globus Medical Inc. | Surgical tool systems and methods |
US10357184B2 (en) | 2012-06-21 | 2019-07-23 | Globus Medical, Inc. | Surgical tool systems and method |
US10653497B2 (en) | 2006-02-16 | 2020-05-19 | Globus Medical, Inc. | Surgical tool systems and methods |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US20070225562A1 (en) | 2006-03-23 | 2007-09-27 | Ethicon Endo-Surgery, Inc. | Articulating endoscopic accessory channel |
US8062211B2 (en) | 2006-06-13 | 2011-11-22 | Intuitive Surgical Operations, Inc. | Retrograde instrument |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US7665647B2 (en) | 2006-09-29 | 2010-02-23 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US10130359B2 (en) | 2006-09-29 | 2018-11-20 | Ethicon Llc | Method for forming a staple |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US20080169333A1 (en) | 2007-01-11 | 2008-07-17 | Shelton Frederick E | Surgical stapler end effector with tapered distal end |
US7669747B2 (en) | 2007-03-15 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Washer for use with a surgical stapling instrument |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
US9096033B2 (en) | 2007-06-13 | 2015-08-04 | Intuitive Surgical Operations, Inc. | Surgical system instrument sterile adapter |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US8308040B2 (en) | 2007-06-22 | 2012-11-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an articulatable end effector |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US20130165945A9 (en) * | 2007-08-14 | 2013-06-27 | Hansen Medical, Inc. | Methods and devices for controlling a shapeable instrument |
US8561473B2 (en) | 2007-12-18 | 2013-10-22 | Intuitive Surgical Operations, Inc. | Force sensor temperature compensation |
US8400094B2 (en) | 2007-12-21 | 2013-03-19 | Intuitive Surgical Operations, Inc. | Robotic surgical system with patient support |
US8561870B2 (en) | 2008-02-13 | 2013-10-22 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US8657174B2 (en) | 2008-02-14 | 2014-02-25 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument having handle based power source |
RU2493788C2 (ru) | 2008-02-14 | 2013-09-27 | Этикон Эндо-Серджери, Инк. | Хирургический режущий и крепежный инструмент, имеющий радиочастотные электроды |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US10390823B2 (en) | 2008-02-15 | 2019-08-27 | Ethicon Llc | End effector comprising an adjunct |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US7832612B2 (en) | 2008-09-19 | 2010-11-16 | Ethicon Endo-Surgery, Inc. | Lockout arrangement for a surgical stapler |
PL3476312T3 (pl) | 2008-09-19 | 2024-03-11 | Ethicon Llc | Stapler chirurgiczny z urządzeniem do dopasowania wysokości zszywek |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US9339342B2 (en) * | 2008-09-30 | 2016-05-17 | Intuitive Surgical Operations, Inc. | Instrument interface |
US9259274B2 (en) | 2008-09-30 | 2016-02-16 | Intuitive Surgical Operations, Inc. | Passive preload and capstan drive for surgical instruments |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
WO2010090059A1 (ja) * | 2009-02-03 | 2010-08-12 | オリンパスメディカルシステムズ株式会社 | マニピュレータ |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
US8453907B2 (en) | 2009-02-06 | 2013-06-04 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with cutting member reversing mechanism |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
BRPI1008667A2 (pt) | 2009-02-06 | 2016-03-08 | Ethicom Endo Surgery Inc | aperfeiçoamento do grampeador cirúrgico acionado |
US9138207B2 (en) | 2009-05-19 | 2015-09-22 | Teleflex Medical Incorporated | Methods and devices for laparoscopic surgery |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US20110161172A1 (en) * | 2009-12-30 | 2011-06-30 | Wei-Yeh Lee | System and method for providing user control of the user's network usage data and personal profile information |
US8721539B2 (en) | 2010-01-20 | 2014-05-13 | EON Surgical Ltd. | Rapid laparoscopy exchange system and method of use thereof |
JP5992834B2 (ja) | 2010-01-20 | 2016-09-21 | イーオン サージカル リミテッド | 腔内における細長ユニットの展開システム |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
FR2963693B1 (fr) | 2010-08-04 | 2013-05-03 | Medtech | Procede d'acquisition automatise et assiste de surfaces anatomiques |
JP5612971B2 (ja) * | 2010-09-07 | 2014-10-22 | オリンパス株式会社 | マスタスレーブマニピュレータ |
CA2811730C (en) | 2010-09-19 | 2017-12-05 | EON Surgical Ltd. | Micro laparoscopy devices and deployments thereof |
US9351730B2 (en) | 2011-04-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising channels |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US9301755B2 (en) | 2010-09-30 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Compressible staple cartridge assembly |
US9332974B2 (en) | 2010-09-30 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Layered tissue thickness compensator |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US9517063B2 (en) | 2012-03-28 | 2016-12-13 | Ethicon Endo-Surgery, Llc | Movable member for use with a tissue thickness compensator |
US9314246B2 (en) | 2010-09-30 | 2016-04-19 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent |
US9204880B2 (en) | 2012-03-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising capsules defining a low pressure environment |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9307989B2 (en) | 2012-03-28 | 2016-04-12 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorportating a hydrophobic agent |
BR112013007717B1 (pt) | 2010-09-30 | 2020-09-24 | Ethicon Endo-Surgery, Inc. | Sistema de grampeamento cirúrgico |
US11849952B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9480476B2 (en) | 2010-09-30 | 2016-11-01 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising resilient members |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US20120080498A1 (en) | 2010-09-30 | 2012-04-05 | Ethicon Endo-Surgery, Inc. | Curved end effector for a stapling instrument |
US9220501B2 (en) | 2010-09-30 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensators |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US9592050B2 (en) | 2010-09-30 | 2017-03-14 | Ethicon Endo-Surgery, Llc | End effector comprising a distal tissue abutment member |
US9386988B2 (en) | 2010-09-30 | 2016-07-12 | Ethicon End-Surgery, LLC | Retainer assembly including a tissue thickness compensator |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
US9289115B2 (en) | 2010-10-01 | 2016-03-22 | Applied Medical Resources Corporation | Natural orifice surgery system |
US9101379B2 (en) | 2010-11-12 | 2015-08-11 | Intuitive Surgical Operations, Inc. | Tension control in actuation of multi-joint medical instruments |
US8979826B2 (en) | 2010-12-29 | 2015-03-17 | Boston Scientific Scimed, Inc. | Instrument holder |
WO2012131660A1 (en) | 2011-04-01 | 2012-10-04 | Ecole Polytechnique Federale De Lausanne (Epfl) | Robotic system for spinal and other surgeries |
BR112013027794B1 (pt) | 2011-04-29 | 2020-12-15 | Ethicon Endo-Surgery, Inc | Conjunto de cartucho de grampos |
US9259277B2 (en) | 2011-05-13 | 2016-02-16 | Intuitive Surgical Operations, Inc. | Instrument actuation interface |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
BR112013031159A2 (pt) | 2011-06-07 | 2017-02-07 | Koninklijke Philips Nv | aparelho e método para determinação da posição rotacional, aparelho e método de assistência de posicionamento rotacional, aparelho e método de posicionamento rotacional, sistema e programa de computador |
JP2014529423A (ja) | 2011-08-11 | 2014-11-13 | ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | 遠隔動心機構及びその使用方法 |
US8961537B2 (en) * | 2011-08-24 | 2015-02-24 | The Chinese University Of Hong Kong | Surgical robot with hybrid passive/active control |
US9050084B2 (en) | 2011-09-23 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Staple cartridge including collapsible deck arrangement |
US10238837B2 (en) | 2011-10-14 | 2019-03-26 | Intuitive Surgical Operations, Inc. | Catheters with control modes for interchangeable probes |
US9387048B2 (en) | 2011-10-14 | 2016-07-12 | Intuitive Surgical Operations, Inc. | Catheter sensor systems |
US9452276B2 (en) | 2011-10-14 | 2016-09-27 | Intuitive Surgical Operations, Inc. | Catheter with removable vision probe |
US20130303944A1 (en) | 2012-05-14 | 2013-11-14 | Intuitive Surgical Operations, Inc. | Off-axis electromagnetic sensor |
US9713500B2 (en) * | 2011-10-25 | 2017-07-25 | Snu R&Db Foundation | Surgical robot control apparatus |
WO2013063522A2 (en) * | 2011-10-26 | 2013-05-02 | Reid Robert Cyrus | Surgical instrument motor pack latch |
WO2013063674A1 (en) | 2011-11-04 | 2013-05-10 | Titan Medical Inc. | Apparatus and method for controlling an end-effector assembly |
WO2013063675A1 (en) | 2011-11-04 | 2013-05-10 | Titan Medical Inc. | Apparatus and method for controlling an end-effector assembly |
WO2013075205A1 (en) * | 2011-11-25 | 2013-05-30 | Titan Medical Inc. | Apparatus and method for mounting a trocar |
FR2983059B1 (fr) * | 2011-11-30 | 2014-11-28 | Medtech | Procede assiste par robotique de positionnement d'instrument chirurgical par rapport au corps d'un patient et dispositif de mise en oeuvre. |
US9636091B2 (en) | 2012-01-13 | 2017-05-02 | Covidien Lp | Hand-held electromechanical surgical system |
US9241757B2 (en) | 2012-01-13 | 2016-01-26 | Covidien Lp | System and method for performing surgical procedures with a reusable instrument module |
WO2013116869A1 (en) | 2012-02-02 | 2013-08-08 | Transenterix, Inc. | Mechanized multi-instrument surgical system |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
KR101917076B1 (ko) * | 2012-02-21 | 2018-11-09 | 삼성전자주식회사 | 링크 유닛 및 이를 가지는 암 모듈 |
RU2014143258A (ru) | 2012-03-28 | 2016-05-20 | Этикон Эндо-Серджери, Инк. | Компенсатор толщины ткани, содержащий множество слоев |
BR112014024194B1 (pt) | 2012-03-28 | 2022-03-03 | Ethicon Endo-Surgery, Inc | Conjunto de cartucho de grampos para um grampeador cirúrgico |
CN104334098B (zh) | 2012-03-28 | 2017-03-22 | 伊西康内外科公司 | 包括限定低压强环境的胶囊剂的组织厚度补偿件 |
US9254234B2 (en) * | 2012-04-11 | 2016-02-09 | University of Pittsburgh—of the Commonwealth System of Higher Education | Robotic strong arm |
DE102012207060A1 (de) * | 2012-04-27 | 2013-10-31 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Roboteranordnung zum Einsatz in medizinischen Bereichen |
DE102012008535A1 (de) * | 2012-04-27 | 2013-10-31 | Kuka Laboratories Gmbh | Chirurgierobotersystem |
KR101647246B1 (ko) * | 2012-04-27 | 2016-08-09 | 쿠카 레보라토리즈 게엠베하 | 외과용 로봇 시스템 |
DE102012015541A1 (de) * | 2012-08-06 | 2014-02-06 | Kuka Laboratories Gmbh | Chirurgierobotersystem |
US20130317519A1 (en) | 2012-05-25 | 2013-11-28 | Hansen Medical, Inc. | Low friction instrument driver interface for robotic systems |
KR102638550B1 (ko) * | 2012-06-01 | 2024-02-21 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 하드웨어 제한형 원격 중심 로봇 매니퓰레이터용 여유 축 및 자유도 |
CN104334111B (zh) | 2012-06-01 | 2017-11-17 | 直观外科手术操作公司 | 用于手术系统的器械托架组件 |
KR102636293B1 (ko) * | 2012-06-01 | 2024-02-15 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 멀티포트 수술 로봇 시스템 구조 |
CN104334110B (zh) | 2012-06-01 | 2017-10-03 | 直观外科手术操作公司 | 使用零空间回避操纵器臂与患者碰撞 |
EP3915504A1 (en) * | 2012-06-01 | 2021-12-01 | Intuitive Surgical Operations, Inc. | Surgical instrument manipulator aspects |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US10758315B2 (en) | 2012-06-21 | 2020-09-01 | Globus Medical Inc. | Method and system for improving 2D-3D registration convergence |
US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
WO2013192598A1 (en) | 2012-06-21 | 2013-12-27 | Excelsius Surgical, L.L.C. | Surgical robot platform |
US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
US11607149B2 (en) | 2012-06-21 | 2023-03-21 | Globus Medical Inc. | Surgical tool systems and method |
US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
US11395706B2 (en) | 2012-06-21 | 2022-07-26 | Globus Medical Inc. | Surgical robot platform |
US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
US11045267B2 (en) | 2012-06-21 | 2021-06-29 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
US10624710B2 (en) | 2012-06-21 | 2020-04-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
US11116576B2 (en) | 2012-06-21 | 2021-09-14 | Globus Medical Inc. | Dynamic reference arrays and methods of use |
US10231791B2 (en) | 2012-06-21 | 2019-03-19 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
US10136954B2 (en) | 2012-06-21 | 2018-11-27 | Globus Medical, Inc. | Surgical tool systems and method |
US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
US10350013B2 (en) | 2012-06-21 | 2019-07-16 | Globus Medical, Inc. | Surgical tool systems and methods |
RU2636861C2 (ru) | 2012-06-28 | 2017-11-28 | Этикон Эндо-Серджери, Инк. | Блокировка пустой кассеты с клипсами |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
BR112014032776B1 (pt) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
US9226751B2 (en) | 2012-06-28 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument system including replaceable end effectors |
US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
DE102013005493A1 (de) | 2013-03-28 | 2014-10-02 | Kuka Laboratories Gmbh | Chirurgisches Instrument |
EP2869779B1 (de) | 2012-07-03 | 2019-02-27 | KUKA Deutschland GmbH | Chirurgische instrumentenanordnung |
DE102013007761A1 (de) | 2013-05-06 | 2014-11-06 | Kuka Laboratories Gmbh | Chirurgisches Instrument |
CN104869912A (zh) * | 2012-07-27 | 2015-08-26 | 小利兰·斯坦福大学理事会 | 成像探头在医疗程序期间的操纵 |
JP6195333B2 (ja) * | 2012-08-08 | 2017-09-13 | キヤノン株式会社 | ロボット装置 |
JP6255402B2 (ja) | 2012-08-15 | 2017-12-27 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 手術システムの動きを操作するためのファントム自由度 |
CN104718054B (zh) | 2012-08-15 | 2017-03-01 | 直观外科手术操作公司 | 操纵机械体的活动的假想自由度(dof) |
US20140051934A1 (en) * | 2012-08-16 | 2014-02-20 | Covidien Lp | Stabilizing Port for Surgery for Facilitating Concurrent Introduction of Multiple Instruments |
US9050527B2 (en) | 2012-08-23 | 2015-06-09 | Wms Gaming Inc. | Interactive tether using tension and feedback |
JP6385935B2 (ja) | 2012-09-17 | 2018-09-05 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 入力装置を遠隔操作手術器具機能に割り当てるための方法及びシステム |
JP2015535702A (ja) * | 2012-09-19 | 2015-12-17 | ナンヤン テクノロジカル ユニヴァーシティNanyang Technological University | フレキシブルマスター‐スレーブロボット内視鏡システム |
EP3711701A1 (en) | 2012-11-02 | 2020-09-23 | Intuitive Surgical Operations, Inc. | Flux transmission connectors and systems, flux disambiguation, and systems and methods for mapping flux supply paths |
KR20150084801A (ko) * | 2012-11-14 | 2015-07-22 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 충돌 회피용 스마트 드레이프 |
WO2014078388A1 (en) | 2012-11-14 | 2014-05-22 | Intuitive Surgical Operations, Inc. | Systems and methods for a dual-control surgical instrument |
US11284803B2 (en) | 2012-11-15 | 2022-03-29 | Intuitive Surgical Operations, Inc. | Low capacitance endoscopic system |
US9993135B2 (en) | 2012-11-15 | 2018-06-12 | Intuitive Surgical Operations, Inc. | Endoscopic system with electrogmagnetic interference shielding |
KR102189693B1 (ko) | 2012-11-15 | 2020-12-11 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 낮은 커패시턴스 및/또는 전자기 차폐를 구비한 내시경 시스템, 및 관련 방법 |
DE102013004459A1 (de) * | 2012-12-20 | 2014-06-26 | avateramedical GmBH | Halterungs- und Positioniervorrichtung eines chirurgischen Instruments und/oder eines Endoskops für die minimal-invasive Chirurgie sowie ein chirurgisches Robotersystem |
US9386984B2 (en) | 2013-02-08 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Staple cartridge comprising a releasable cover |
US9398911B2 (en) | 2013-03-01 | 2016-07-26 | Ethicon Endo-Surgery, Llc | Rotary powered surgical instruments with multiple degrees of freedom |
RU2672520C2 (ru) | 2013-03-01 | 2018-11-15 | Этикон Эндо-Серджери, Инк. | Шарнирно поворачиваемые хирургические инструменты с проводящими путями для передачи сигналов |
RU2669463C2 (ru) | 2013-03-01 | 2018-10-11 | Этикон Эндо-Серджери, Инк. | Хирургический инструмент с мягким упором |
US9668814B2 (en) | 2013-03-07 | 2017-06-06 | Hansen Medical, Inc. | Infinitely rotatable tool with finite rotating drive shafts |
US9345481B2 (en) | 2013-03-13 | 2016-05-24 | Ethicon Endo-Surgery, Llc | Staple cartridge tissue thickness sensor system |
US9173713B2 (en) | 2013-03-14 | 2015-11-03 | Hansen Medical, Inc. | Torque-based catheter articulation |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US9326822B2 (en) | 2013-03-14 | 2016-05-03 | Hansen Medical, Inc. | Active drives for robotic catheter manipulators |
US11213363B2 (en) | 2013-03-14 | 2022-01-04 | Auris Health, Inc. | Catheter tension sensing |
US20140277334A1 (en) | 2013-03-14 | 2014-09-18 | Hansen Medical, Inc. | Active drives for robotic catheter manipulators |
US9883860B2 (en) | 2013-03-14 | 2018-02-06 | Ethicon Llc | Interchangeable shaft assemblies for use with a surgical instrument |
US9498601B2 (en) | 2013-03-14 | 2016-11-22 | Hansen Medical, Inc. | Catheter tension sensing |
US9408669B2 (en) | 2013-03-15 | 2016-08-09 | Hansen Medical, Inc. | Active drive mechanism with finite range of motion |
US20140276936A1 (en) | 2013-03-15 | 2014-09-18 | Hansen Medical, Inc. | Active drive mechanism for simultaneous rotation and translation |
US9629681B2 (en) | 2013-03-15 | 2017-04-25 | Intuitive Surgical Operations, Inc. | Sealing multiple surgical instruments |
US10492825B2 (en) | 2013-03-15 | 2019-12-03 | Intuitive Surgical Operations, Inc. | Sealing multiple surgical instruments |
US10292730B2 (en) | 2013-03-15 | 2019-05-21 | Intuitive Surgical Operations, Inc. | Sealing multiple surgical instruments |
US9452018B2 (en) | 2013-03-15 | 2016-09-27 | Hansen Medical, Inc. | Rotational support for an elongate member |
WO2014144233A1 (en) * | 2013-03-15 | 2014-09-18 | Intuitive Surgical Operations, Inc. | Rotating assistant port |
US20140275794A1 (en) | 2013-03-15 | 2014-09-18 | Applied Medical Resources Corporation | Mechanical Gel Surgical Access Device |
WO2014151744A1 (en) * | 2013-03-15 | 2014-09-25 | Intuitive Surgical Operations, Inc. | Surgical patient side cart with drive system and method of moving a patient side cart |
US9549783B2 (en) * | 2013-03-15 | 2017-01-24 | Corindus, Inc. | Catheter system with magnetic coupling |
US9888941B2 (en) | 2013-03-15 | 2018-02-13 | Intuitive Surgical Operations, Inc. | Sealing multiple surgical instruments |
US20140276647A1 (en) | 2013-03-15 | 2014-09-18 | Hansen Medical, Inc. | Vascular remote catheter manipulator |
US10070887B2 (en) | 2013-03-15 | 2018-09-11 | Intuitive Surgical Operations, Inc. | Sealing multiple surgical instruments |
KR102188100B1 (ko) * | 2013-03-15 | 2020-12-07 | 삼성전자주식회사 | 로봇 및 그 제어방법 |
KR102283176B1 (ko) | 2013-03-15 | 2021-07-29 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 로봇 수술 시스템에서의 수술 중 도구의 교환 |
EP2967521B1 (en) | 2013-03-15 | 2019-12-25 | SRI International | Electromechanical surgical system |
EP4238605A3 (en) | 2013-03-15 | 2023-10-18 | Intuitive Surgical Operations, Inc. | Sealing multiple surgical instruments |
EP2977150B1 (en) | 2013-03-18 | 2017-06-28 | Olympus Corporation | Manipulator |
US9332984B2 (en) | 2013-03-27 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Fastener cartridge assemblies |
US9572577B2 (en) | 2013-03-27 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a tissue thickness compensator including openings therein |
US9795384B2 (en) | 2013-03-27 | 2017-10-24 | Ethicon Llc | Fastener cartridge comprising a tissue thickness compensator and a gap setting element |
KR101994426B1 (ko) * | 2013-04-04 | 2019-07-02 | 큐렉소 주식회사 | 의료용 중재시술장치 |
ITMI20130516A1 (it) * | 2013-04-05 | 2014-10-06 | Sofar Spa | Sistema chirurgico con teli sterili |
DE102013005982A1 (de) * | 2013-04-08 | 2014-10-09 | Kuka Laboratories Gmbh | Medizinroboter |
US9801626B2 (en) | 2013-04-16 | 2017-10-31 | Ethicon Llc | Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts |
BR112015026109B1 (pt) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | Instrumento cirúrgico |
DE102013007597A1 (de) * | 2013-05-02 | 2014-11-06 | Kuka Laboratories Gmbh | Roboter mit Werkzeug |
DE102013209122A1 (de) * | 2013-05-16 | 2014-11-20 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Halteeinrichtung für ein chirurgisches Instrument |
US9574644B2 (en) | 2013-05-30 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Power module for use with a surgical instrument |
US9179051B1 (en) * | 2013-06-13 | 2015-11-03 | Clara Stoudt | Voice-activated hands-free camera holder systems |
KR102158499B1 (ko) * | 2013-06-24 | 2020-09-23 | 큐렉소 주식회사 | 중재시술용 바늘 삽입 엔드이펙터 |
EP3033031B1 (en) * | 2013-08-15 | 2019-03-20 | Intuitive Surgical Operations, Inc. | Actuator interface to instrument sterile adapter |
US10076348B2 (en) | 2013-08-15 | 2018-09-18 | Intuitive Surgical Operations, Inc. | Rotary input for lever actuation |
JP6426181B2 (ja) * | 2013-08-15 | 2018-11-21 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 可変器具予荷重機構コントローラ |
CN105611892B (zh) | 2013-08-15 | 2019-02-19 | 直观外科手术操作公司 | 机器人器械从动元件 |
CN108784838B (zh) | 2013-08-15 | 2021-06-08 | 直观外科手术操作公司 | 器械无菌适配器驱动接口 |
US10550918B2 (en) | 2013-08-15 | 2020-02-04 | Intuitive Surgical Operations, Inc. | Lever actuated gimbal plate |
WO2015023730A1 (en) * | 2013-08-15 | 2015-02-19 | Intuitive Surgical Operations, Inc. | Preloaded surgical instrument interface |
WO2015023834A1 (en) | 2013-08-15 | 2015-02-19 | Intuitive Surgical Operations, Inc. | Instrument sterile adapter drive features |
JP6416260B2 (ja) | 2013-08-23 | 2018-10-31 | エシコン エルエルシー | 動力付き外科用器具のための発射部材後退装置 |
US20150053746A1 (en) | 2013-08-23 | 2015-02-26 | Ethicon Endo-Surgery, Inc. | Torque optimization for surgical instruments |
CN105705110B (zh) * | 2013-08-28 | 2018-11-13 | 新加坡工艺教育学院 | 用于引导器械的系统和设备 |
WO2015046081A1 (ja) * | 2013-09-24 | 2015-04-02 | ソニー・オリンパスメディカルソリューションズ株式会社 | 医療用ロボットアーム装置、医療用ロボットアーム制御システム、医療用ロボットアーム制御方法及びプログラム |
US9283048B2 (en) | 2013-10-04 | 2016-03-15 | KB Medical SA | Apparatus and systems for precise guidance of surgical tools |
WO2015052629A1 (en) * | 2013-10-07 | 2015-04-16 | Srivastava Sudhir Prem | Modular interface for a robotic system |
CN105939647B (zh) | 2013-10-24 | 2020-01-21 | 奥瑞斯健康公司 | 机器人辅助腔内外科手术系统及相关方法 |
US9993313B2 (en) * | 2013-10-24 | 2018-06-12 | Auris Health, Inc. | Instrument device manipulator with roll mechanism |
WO2015075689A1 (en) * | 2013-11-22 | 2015-05-28 | Sudhir Srivastava | Motorized surgical instrument |
EP3079608B8 (en) | 2013-12-11 | 2020-04-01 | Covidien LP | Wrist and jaw assemblies for robotic surgical systems |
US9724092B2 (en) | 2013-12-23 | 2017-08-08 | Ethicon Llc | Modular surgical instruments |
US9687232B2 (en) | 2013-12-23 | 2017-06-27 | Ethicon Llc | Surgical staples |
US9839428B2 (en) | 2013-12-23 | 2017-12-12 | Ethicon Llc | Surgical cutting and stapling instruments with independent jaw control features |
US20150173756A1 (en) | 2013-12-23 | 2015-06-25 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling methods |
TWI548388B (zh) | 2013-12-30 | 2016-09-11 | 國立臺灣大學 | 骨科手術之手持式機器人以及其控制方法 |
US9241771B2 (en) | 2014-01-15 | 2016-01-26 | KB Medical SA | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
US20150224639A1 (en) * | 2014-02-07 | 2015-08-13 | Control Interfaces LLC | Remotely operated manipulator and rov control systems and methods |
US9314922B2 (en) | 2014-02-07 | 2016-04-19 | Control Interfaces LLC | Remotely operated manipulator and ROV control systems and methods |
US10039605B2 (en) | 2014-02-11 | 2018-08-07 | Globus Medical, Inc. | Sterile handle for controlling a robotic surgical system from a sterile field |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
JP6165080B2 (ja) * | 2014-02-21 | 2017-07-19 | オリンパス株式会社 | マニピュレータシステムの初期化方法 |
JP6462004B2 (ja) | 2014-02-24 | 2019-01-30 | エシコン エルエルシー | 発射部材ロックアウトを備える締結システム |
US9693777B2 (en) | 2014-02-24 | 2017-07-04 | Ethicon Llc | Implantable layers comprising a pressed region |
KR102324953B1 (ko) | 2014-03-17 | 2021-11-12 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 디스크 결합을 확인하는 시스템 및 방법 |
EP3119338B1 (en) * | 2014-03-17 | 2020-05-06 | Intuitive Surgical Operations, Inc. | Automatic push-out to avoid range of motion limits |
KR102397300B1 (ko) | 2014-03-17 | 2022-05-13 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 수술 캐뉼라 및 수술 캐뉼라를 식별하는 관련 시스템 및 방법 |
CN110192919B (zh) * | 2014-03-17 | 2022-11-25 | 直观外科手术操作公司 | 用于保持工具姿态的系统和方法 |
JP2017516507A (ja) * | 2014-03-17 | 2017-06-22 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | イメージング器具の向きの制御のためのシステム及び方法 |
KR102456408B1 (ko) * | 2014-03-17 | 2022-10-20 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 수술용 캐뉼라 마운트 및 관련된 시스템과 방법 |
CN106232049A (zh) | 2014-03-17 | 2016-12-14 | 直观外科手术操作公司 | 手术帷帘和包括手术帷帘和附接传感器的系统 |
US9839487B2 (en) | 2014-03-17 | 2017-12-12 | Intuitive Surgical Operations, Inc. | Backup latch release for surgical instrument |
US9826977B2 (en) | 2014-03-26 | 2017-11-28 | Ethicon Llc | Sterilization verification circuit |
US9820738B2 (en) | 2014-03-26 | 2017-11-21 | Ethicon Llc | Surgical instrument comprising interactive systems |
BR112016021943B1 (pt) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico |
US20150272580A1 (en) | 2014-03-26 | 2015-10-01 | Ethicon Endo-Surgery, Inc. | Verification of number of battery exchanges/procedure count |
US9913642B2 (en) | 2014-03-26 | 2018-03-13 | Ethicon Llc | Surgical instrument comprising a sensor system |
EP3492036B1 (en) | 2014-04-01 | 2024-05-01 | Intuitive Surgical Operations, Inc. | Control input accuracy for teleoperated surgical instrument |
WO2015153174A1 (en) * | 2014-04-02 | 2015-10-08 | Intuitive Surgical Operations, Inc. | Devices, systems, and methods using a steerable stylet and flexible needle |
CN103892922B (zh) * | 2014-04-08 | 2016-08-17 | 合肥德铭电子有限公司 | 用于微创手术的气动臂持物端快速泄压调节装置 |
US9844369B2 (en) | 2014-04-16 | 2017-12-19 | Ethicon Llc | Surgical end effectors with firing element monitoring arrangements |
CN106456176B (zh) | 2014-04-16 | 2019-06-28 | 伊西康内外科有限责任公司 | 包括具有不同构型的延伸部的紧固件仓 |
US20150297225A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
JP6612256B2 (ja) | 2014-04-16 | 2019-11-27 | エシコン エルエルシー | 不均一な締結具を備える締結具カートリッジ |
JP6532889B2 (ja) | 2014-04-16 | 2019-06-19 | エシコン エルエルシーEthicon LLC | 締結具カートリッジ組立体及びステープル保持具カバー配置構成 |
US9801628B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Surgical staple and driver arrangements for staple cartridges |
US10046140B2 (en) | 2014-04-21 | 2018-08-14 | Hansen Medical, Inc. | Devices, systems, and methods for controlling active drive systems |
US10080552B2 (en) * | 2014-04-21 | 2018-09-25 | Covidien Lp | Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
US10004562B2 (en) | 2014-04-24 | 2018-06-26 | Globus Medical, Inc. | Surgical instrument holder for use with a robotic surgical system |
CN110251048B (zh) | 2014-04-28 | 2022-08-05 | 柯惠Lp公司 | 用于容纳力传递构件的手术组件 |
JP2017514608A (ja) | 2014-05-05 | 2017-06-08 | バイカリアス サージカル インク. | 仮想現実外科手術デバイス |
US10639113B2 (en) * | 2014-05-13 | 2020-05-05 | Covidien Lp | Robotic surgical systems and instrument drive units |
US10569052B2 (en) | 2014-05-15 | 2020-02-25 | Auris Health, Inc. | Anti-buckling mechanisms for catheters |
US10046421B2 (en) * | 2014-06-11 | 2018-08-14 | Andersen Industries, Inc. | Welding apparatus |
US10045781B2 (en) | 2014-06-13 | 2018-08-14 | Ethicon Llc | Closure lockout systems for surgical instruments |
US10792464B2 (en) | 2014-07-01 | 2020-10-06 | Auris Health, Inc. | Tool and method for using surgical endoscope with spiral lumens |
US9561083B2 (en) | 2014-07-01 | 2017-02-07 | Auris Surgical Robotics, Inc. | Articulating flexible endoscopic tool with roll capabilities |
KR101630794B1 (ko) * | 2014-07-02 | 2016-06-15 | (주)미래컴퍼니 | 수술 로봇 시스템 및 이에 구비되는 액티브 가이드 유닛 |
US10357257B2 (en) | 2014-07-14 | 2019-07-23 | KB Medical SA | Anti-skid surgical instrument for use in preparing holes in bone tissue |
WO2016018618A1 (en) | 2014-07-28 | 2016-02-04 | Intuitive Surgical Operations, Inc. | Guide apparatus for delivery of a flexible instrument and methods of use |
CN106659538B (zh) | 2014-08-13 | 2019-05-10 | 柯惠Lp公司 | 机器人控制的具有机械优势的夹持 |
CN106573373B (zh) * | 2014-08-14 | 2019-10-18 | 库卡罗伯特有限公司 | 对机器人的定位 |
KR20240134217A (ko) | 2014-08-15 | 2024-09-06 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 가변 엔트리 가이드 구성을 가진 수술 시스템 |
US20170231701A1 (en) | 2014-09-04 | 2017-08-17 | Memic Innovative Surgery Ltd. | Method and devices for hysterectomy |
BR112017004361B1 (pt) | 2014-09-05 | 2023-04-11 | Ethicon Llc | Sistema eletrônico para um instrumento cirúrgico |
US10016199B2 (en) | 2014-09-05 | 2018-07-10 | Ethicon Llc | Polarity of hall magnet to identify cartridge type |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
CN107072722B (zh) | 2014-09-15 | 2020-05-12 | 柯惠Lp公司 | 机器人控制手术组件 |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
MX2017003960A (es) | 2014-09-26 | 2017-12-04 | Ethicon Llc | Refuerzos de grapas quirúrgicas y materiales auxiliares. |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US10610314B2 (en) | 2014-10-23 | 2020-04-07 | Covidien Lp | Drive unit and rack drape for robotic surgical instruments |
EP3212150B1 (en) | 2014-10-27 | 2021-08-11 | Intuitive Surgical Operations, Inc. | System for registering to a surgical table |
CN110478036B (zh) | 2014-10-27 | 2022-05-17 | 直观外科手术操作公司 | 用于集成手术台的系统和方法 |
KR102707904B1 (ko) | 2014-10-27 | 2024-09-23 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 기기 교란 보상을 위한 시스템 및 방법 |
WO2016069661A1 (en) | 2014-10-27 | 2016-05-06 | Intuitive Surgical Operations, Inc. | Medical device with active brake release control |
JP6774404B2 (ja) | 2014-10-27 | 2020-10-21 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 統合手術台アイコンのためのシステム及び方法 |
CN107072729B (zh) | 2014-10-27 | 2020-03-20 | 直观外科手术操作公司 | 用于集成的手术台运动的系统和方法 |
KR102479287B1 (ko) * | 2014-10-27 | 2022-12-20 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 반응 운동 동안 제어점을 감시하기 위한 시스템 및 방법 |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
DE102014117408A1 (de) * | 2014-11-27 | 2016-06-02 | avateramedical GmBH | Vorrichtung zur robotergestützten Chirurgie |
DE102014117407A1 (de) * | 2014-11-27 | 2016-06-02 | avateramedical GmBH | Vorrichtung zur robotergestützten Chirurgie |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
MX2017008108A (es) | 2014-12-18 | 2018-03-06 | Ethicon Llc | Instrumento quirurgico con un yunque que puede moverse de manera selectiva sobre un eje discreto no movil con relacion a un cartucho de grapas. |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
US9943309B2 (en) | 2014-12-18 | 2018-04-17 | Ethicon Llc | Surgical instruments with articulatable end effectors and movable firing beam support arrangements |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US10117649B2 (en) | 2014-12-18 | 2018-11-06 | Ethicon Llc | Surgical instrument assembly comprising a lockable articulation system |
US10013808B2 (en) | 2015-02-03 | 2018-07-03 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
WO2016131903A1 (en) | 2015-02-18 | 2016-08-25 | KB Medical SA | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
AU2016220501B2 (en) | 2015-02-19 | 2020-02-13 | Covidien Lp | Repositioning method of input device for robotic surgical system |
US10357324B2 (en) * | 2015-02-20 | 2019-07-23 | Stryker Corporation | Sterile barrier assembly, mounting system, and method for coupling surgical components |
WO2016137611A1 (en) * | 2015-02-26 | 2016-09-01 | Covidien Lp | Instrument drive unit including lead screw rails |
EP3261574A4 (en) * | 2015-02-26 | 2018-10-31 | Covidien LP | Robotically controlling remote center of motion with software and guide tube |
US9993258B2 (en) | 2015-02-27 | 2018-06-12 | Ethicon Llc | Adaptable surgical instrument handle |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US10045779B2 (en) | 2015-02-27 | 2018-08-14 | Ethicon Llc | Surgical instrument system comprising an inspection station |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
JP2020121162A (ja) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価 |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US9895148B2 (en) | 2015-03-06 | 2018-02-20 | Ethicon Endo-Surgery, Llc | Monitoring speed control and precision incrementing of motor for powered surgical instruments |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US10045776B2 (en) | 2015-03-06 | 2018-08-14 | Ethicon Llc | Control techniques and sub-processor contained within modular shaft with select control processing from handle |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US10716639B2 (en) | 2015-03-10 | 2020-07-21 | Covidien Lp | Measuring health of a connector member of a robotic surgical system |
GB201504486D0 (en) * | 2015-03-17 | 2015-04-29 | Cambridge Medical Robotics Ltd | Power supply for a robotic arm instrument |
US9866035B2 (en) * | 2015-03-27 | 2018-01-09 | Irobot Corporation | Rotatable coupling |
US10213201B2 (en) | 2015-03-31 | 2019-02-26 | Ethicon Llc | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
WO2016164824A1 (en) * | 2015-04-09 | 2016-10-13 | Auris Surgical Robotics, Inc. | Surgical system with configurable rail-mounted mechanical arms |
US10226239B2 (en) * | 2015-04-10 | 2019-03-12 | Covidien Lp | Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
EP3282996A1 (en) * | 2015-04-15 | 2018-02-21 | Covidien LP | Methods for exchanging instruments using a surgical port assembly |
EP3285676B1 (en) * | 2015-04-22 | 2022-07-27 | Intuitive Surgical Operations, Inc. | Tension regulator for actuation elements, and related remotely actuated instruments, and systems |
GB2538326B (en) * | 2015-05-07 | 2019-06-05 | Cmr Surgical Ltd | A surgical drape for transferring drive |
EP3294184B1 (en) | 2015-05-11 | 2023-07-12 | Covidien LP | Coupling instrument drive unit and robotic surgical instrument |
GB2538497B (en) | 2015-05-14 | 2020-10-28 | Cmr Surgical Ltd | Torque sensing in a surgical robotic wrist |
WO2016187290A1 (en) * | 2015-05-19 | 2016-11-24 | Mako Surgical Corp. | System and method for manipulating an anatomy |
EP3302336B1 (en) * | 2015-06-01 | 2020-12-30 | Covidien LP | Surgical drape including unrolling mechanism |
US10959788B2 (en) | 2015-06-03 | 2021-03-30 | Covidien Lp | Offset instrument drive unit |
WO2016201313A1 (en) * | 2015-06-11 | 2016-12-15 | Intuitive Surgical Operations, Inc. | Systems and methods for instrument engagement |
FR3037269B1 (fr) * | 2015-06-12 | 2017-07-14 | Robocath | Chaine de transmission de mouvement entre des actionneurs et un socle d'organe d'entrainement d'un element mobile |
JP6819966B2 (ja) * | 2015-06-15 | 2021-01-27 | ヒューマン エクステンションズ リミテッド | 医療デバイスを機能上滅菌するためのアダプタまたはアダプタシステム |
AU2016279993B2 (en) | 2015-06-16 | 2021-09-09 | Covidien Lp | Robotic surgical system torque transduction sensing |
US10335149B2 (en) | 2015-06-18 | 2019-07-02 | Ethicon Llc | Articulatable surgical instruments with composite firing beam structures with center firing support member for articulation support |
CA2987643A1 (en) * | 2015-06-19 | 2016-12-22 | Covidien Lp | Robotic surgical assemblies |
US10667877B2 (en) | 2015-06-19 | 2020-06-02 | Covidien Lp | Controlling robotic surgical instruments with bidirectional coupling |
WO2016205288A1 (en) * | 2015-06-19 | 2016-12-22 | Covidien Lp | Robotic surgical assemblies |
AU2016284040B2 (en) | 2015-06-23 | 2020-04-30 | Covidien Lp | Robotic surgical assemblies |
JP6772185B2 (ja) | 2015-07-07 | 2020-10-21 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 複数の装置の制御 |
KR101703114B1 (ko) * | 2015-07-08 | 2017-02-06 | 한국기계연구원 | 중재시술용 마스터장치와 마스터장치의 제어방법 그리고 이것을 이용한 원격중재시술장치 |
US10058394B2 (en) | 2015-07-31 | 2018-08-28 | Globus Medical, Inc. | Robot arm and methods of use |
US10646298B2 (en) | 2015-07-31 | 2020-05-12 | Globus Medical, Inc. | Robot arm and methods of use |
US10321963B2 (en) * | 2015-08-04 | 2019-06-18 | Vanderbilt University | Apparatus and method for moving an elongate rod |
US10080615B2 (en) | 2015-08-12 | 2018-09-25 | Globus Medical, Inc. | Devices and methods for temporary mounting of parts to bone |
US10835249B2 (en) | 2015-08-17 | 2020-11-17 | Ethicon Llc | Implantable layers for a surgical instrument |
MX2022009705A (es) | 2015-08-26 | 2022-11-07 | Ethicon Llc | Metodo para formar una grapa contra un yunque de un instrumento de engrapado quirurgico. |
US11103248B2 (en) | 2015-08-26 | 2021-08-31 | Cilag Gmbh International | Surgical staples for minimizing staple roll |
CN108348233B (zh) | 2015-08-26 | 2021-05-07 | 伊西康有限责任公司 | 用于允许改变钉特性并实现轻松仓加载的外科钉条 |
EP3344179B1 (en) | 2015-08-31 | 2021-06-30 | KB Medical SA | Robotic surgical systems |
MX2022006189A (es) | 2015-09-02 | 2022-06-16 | Ethicon Llc | Configuraciones de grapas quirurgicas con superficies de leva situadas entre porciones que soportan grapas quirurgicas. |
US10357252B2 (en) | 2015-09-02 | 2019-07-23 | Ethicon Llc | Surgical staple configurations with camming surfaces located between portions supporting surgical staples |
WO2017037723A1 (en) | 2015-09-04 | 2017-03-09 | Memic Innovative Surgery Ltd. | Actuation of a device comprising mechanical arms |
CN105058373B (zh) * | 2015-09-07 | 2016-10-19 | 哈尔滨工业大学 | 一种基于双虎克铰机构的机械臂柔顺对接装置 |
CN113229942A (zh) * | 2015-09-09 | 2021-08-10 | 奥瑞斯健康公司 | 手术器械装置操纵器 |
US10034716B2 (en) | 2015-09-14 | 2018-07-31 | Globus Medical, Inc. | Surgical robotic systems and methods thereof |
US10368908B2 (en) | 2015-09-15 | 2019-08-06 | Applied Medical Resources Corporation | Surgical robotic access system |
DE102015115559A1 (de) * | 2015-09-15 | 2017-03-16 | Karl Storz Gmbh & Co. Kg | Manipulationssystem sowie Handhabungsvorrichtung für chirurgische Instrumente |
US10085751B2 (en) | 2015-09-23 | 2018-10-02 | Ethicon Llc | Surgical stapler having temperature-based motor control |
US10076326B2 (en) | 2015-09-23 | 2018-09-18 | Ethicon Llc | Surgical stapler having current mirror-based motor control |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
CN108024834A (zh) | 2015-09-25 | 2018-05-11 | 柯惠Lp公司 | 机器人手术系统的弹性手术接口 |
CN108024835B (zh) | 2015-09-25 | 2021-08-31 | 柯惠Lp公司 | 机器人外科手术组件及其器械驱动连接器 |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US20170086829A1 (en) | 2015-09-30 | 2017-03-30 | Ethicon Endo-Surgery, Llc | Compressible adjunct with intermediate supporting structures |
US10478188B2 (en) | 2015-09-30 | 2019-11-19 | Ethicon Llc | Implantable layer comprising a constricted configuration |
US9771092B2 (en) | 2015-10-13 | 2017-09-26 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
AU2016337425A1 (en) * | 2015-10-13 | 2018-05-31 | Reliance Industries Limited | An electromechanical device for removing material from an enclosed space |
US10912449B2 (en) | 2015-10-23 | 2021-02-09 | Covidien Lp | Surgical system for detecting gradual changes in perfusion |
US10231793B2 (en) | 2015-10-30 | 2019-03-19 | Auris Health, Inc. | Object removal through a percutaneous suction tube |
US9955986B2 (en) | 2015-10-30 | 2018-05-01 | Auris Surgical Robotics, Inc. | Basket apparatus |
US9949749B2 (en) | 2015-10-30 | 2018-04-24 | Auris Surgical Robotics, Inc. | Object capture with a basket |
KR102202403B1 (ko) * | 2015-11-12 | 2021-01-14 | 한국전자통신연구원 | 모발이식장치 지지용 스탠드 조립체 |
AU2016351730B2 (en) * | 2015-11-13 | 2019-07-11 | Novadaq Technologies Inc. | Systems and methods for illumination and imaging of a target |
EP3376988B1 (en) | 2015-11-19 | 2023-08-23 | Covidien LP | Optical force sensor for robotic surgical system |
US10292779B2 (en) * | 2015-11-23 | 2019-05-21 | Sina Robotics And Medical Innovators Co. | Adapting manual laparoscopic surgical instruments for robotic telesurgery applications |
US10219871B2 (en) * | 2015-11-23 | 2019-03-05 | Alireza Mirbagheri | Robotic system for tele-surgery |
GB201521808D0 (en) * | 2015-12-10 | 2016-01-27 | Cambridge Medical Robotics Ltd | Interfacing a surgical robot and instrument |
JP6654883B2 (ja) * | 2015-12-11 | 2020-02-26 | 川崎重工業株式会社 | 外科手術システム、マニピュレータアーム、及びマニピュレータアーム支持体 |
JP6654884B2 (ja) * | 2015-12-11 | 2020-02-26 | 川崎重工業株式会社 | 外科手術システム |
US10779900B2 (en) * | 2015-12-29 | 2020-09-22 | Covidien Lp | Robotic surgical systems and instrument drive assemblies |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
EP3399935B1 (en) * | 2016-01-07 | 2024-02-14 | Intuitive Surgical Operations, Inc. | Telescoping cannula arm |
WO2017120028A1 (en) | 2016-01-08 | 2017-07-13 | Intuitive Surgical Operations, Inc. | Sheathes for surgical instruments, and related devices and methods |
JP6110527B1 (ja) * | 2016-01-28 | 2017-04-05 | 上銀科技股▲分▼有限公司 | 伸縮性を有する医療機器の制御機構 |
US11058378B2 (en) | 2016-02-03 | 2021-07-13 | Globus Medical, Inc. | Portable medical imaging system |
US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
US10448910B2 (en) | 2016-02-03 | 2019-10-22 | Globus Medical, Inc. | Portable medical imaging system |
US10117632B2 (en) | 2016-02-03 | 2018-11-06 | Globus Medical, Inc. | Portable medical imaging system with beam scanning collimator |
US10842453B2 (en) | 2016-02-03 | 2020-11-24 | Globus Medical, Inc. | Portable medical imaging system |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10433837B2 (en) | 2016-02-09 | 2019-10-08 | Ethicon Llc | Surgical instruments with multiple link articulation arrangements |
BR112018016098B1 (pt) | 2016-02-09 | 2023-02-23 | Ethicon Llc | Instrumento cirúrgico |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10463438B2 (en) | 2016-03-09 | 2019-11-05 | Memic Innovative Surgery Ltd. | Modular device comprising mechanical arms |
US10866119B2 (en) | 2016-03-14 | 2020-12-15 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
CN105686883B (zh) * | 2016-03-14 | 2018-11-30 | 昆山一邦泰汽车零部件制造有限公司 | 一种冗余自由度持镜机械臂 |
CN108697470B (zh) * | 2016-03-25 | 2021-08-17 | 直观外科手术操作公司 | 由多个臂支撑的外科平台 |
US20190105112A1 (en) * | 2016-03-31 | 2019-04-11 | Koninklijke Philips N.V. | Image guided robot for catheter placement |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
US10285705B2 (en) | 2016-04-01 | 2019-05-14 | Ethicon Llc | Surgical stapling system comprising a grooved forming pocket |
WO2017173524A1 (en) | 2016-04-07 | 2017-10-12 | Titan Medical Inc. | Camera positioning method and apparatus for capturing images during a medical procedure |
EP3241518B1 (en) | 2016-04-11 | 2024-10-23 | Globus Medical, Inc | Surgical tool systems |
WO2017181153A1 (en) | 2016-04-14 | 2017-10-19 | Transenterix Surgical, Inc. | Electromechanical surgical system inlcuding linearly driven instrument roll |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US10363037B2 (en) | 2016-04-18 | 2019-07-30 | Ethicon Llc | Surgical instrument system comprising a magnetic lockout |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US10454347B2 (en) | 2016-04-29 | 2019-10-22 | Auris Health, Inc. | Compact height torque sensing articulation axis assembly |
WO2017205467A1 (en) * | 2016-05-26 | 2017-11-30 | Covidien Lp | Cannula assemblies for use with robotic surgical systems |
WO2017205576A1 (en) | 2016-05-26 | 2017-11-30 | Covidien Lp | Instrument drive units |
AU2017269271B2 (en) | 2016-05-26 | 2021-07-08 | Covidien Lp | Robotic surgical assemblies |
CN114504387A (zh) | 2016-06-03 | 2022-05-17 | 柯惠Lp公司 | 用于机器人手术系统的被动轴系统 |
CN107735040B (zh) | 2016-06-03 | 2021-06-18 | 柯惠Lp公司 | 用于机器人手术系统的控制臂 |
EP3463163A4 (en) | 2016-06-03 | 2020-02-12 | Covidien LP | ROBOTIC SURGICAL SYSTEM WITH AN EMBEDDED IMAGER |
US11612446B2 (en) | 2016-06-03 | 2023-03-28 | Covidien Lp | Systems, methods, and computer-readable program products for controlling a robotically delivered manipulator |
US11000278B2 (en) | 2016-06-24 | 2021-05-11 | Ethicon Llc | Staple cartridge comprising wire staples and stamped staples |
CN109310431B (zh) | 2016-06-24 | 2022-03-04 | 伊西康有限责任公司 | 包括线材钉和冲压钉的钉仓 |
USD826405S1 (en) | 2016-06-24 | 2018-08-21 | Ethicon Llc | Surgical fastener |
USD850617S1 (en) | 2016-06-24 | 2019-06-04 | Ethicon Llc | Surgical fastener cartridge |
USD847989S1 (en) | 2016-06-24 | 2019-05-07 | Ethicon Llc | Surgical fastener cartridge |
CN106137396B (zh) * | 2016-06-27 | 2018-11-27 | 哈尔滨思哲睿智能医疗设备有限公司 | 一种用于腹腔镜手术机器人器械的连接机构 |
EP3478355A4 (en) | 2016-06-30 | 2020-03-04 | Intuitive Surgical Operations Inc. | ORIENTABLE ELONGATE DEVICE SYSTEMS AND METHODS |
WO2018005354A1 (en) * | 2016-07-01 | 2018-01-04 | Intuitive Surgical Operations, Inc. | Method for positioning an endoscope with flexible shaft |
CN109475388B (zh) * | 2016-07-01 | 2021-11-16 | 直观外科手术操作公司 | 计算机辅助的医疗系统和方法 |
CN115252149A (zh) * | 2016-07-14 | 2022-11-01 | 直观外科手术操作公司 | 外科手术盖布安装辅助工具 |
WO2018013298A1 (en) | 2016-07-14 | 2018-01-18 | Intuitive Surgical Operations, Inc. | Geared grip actuation for medical instruments |
WO2018013217A1 (en) | 2016-07-14 | 2018-01-18 | Intuitive Surgical Operations, Inc. | Instruments with electrically isolated components, related systems and methods |
CN109195544B (zh) * | 2016-07-14 | 2021-07-20 | 直观外科手术操作公司 | 计算机辅助式远程操作系统中的次级器械控制 |
WO2018013354A1 (en) | 2016-07-14 | 2018-01-18 | Intuitive Surgical Operations, Inc. | Surgical instruments with electrically isolated actuation members, related devices, and related methods |
WO2018013187A1 (en) | 2016-07-14 | 2018-01-18 | Intuitive Surgical Operations, Inc. | Instrument release |
US11020190B2 (en) * | 2016-07-14 | 2021-06-01 | Intuitive Surgical Operations, Inc. | Automated instrument preload engage/disengage mechanism |
WO2018013309A1 (en) * | 2016-07-14 | 2018-01-18 | Intuitive Surgical Operations, Inc. | Telescoping medical device assembly and sterile drape |
WO2018013316A1 (en) | 2016-07-14 | 2018-01-18 | Intuitive Surgical Operations, Inc. | Geared roll drive for medical instrument |
CN109688960B (zh) | 2016-07-14 | 2022-04-01 | 直观外科手术操作公司 | 多线缆医疗器械 |
US11000345B2 (en) | 2016-07-14 | 2021-05-11 | Intuitive Surgical Operations, Inc. | Instrument flushing system |
WO2018013300A1 (en) | 2016-07-14 | 2018-01-18 | Intuitive Surgical Operations, Inc. | Mechanism for managing and retaining a surgical drape |
WO2018013214A1 (en) | 2016-07-14 | 2018-01-18 | Intuitive Surgical Operations, Inc. | Automatic manipulator assembly deployment for draping |
US11026757B2 (en) | 2016-07-20 | 2021-06-08 | Intuitive Surgical Operations, Inc. | Surgical cannulas, and related systems and methods |
US11925431B2 (en) | 2016-07-29 | 2024-03-12 | Cmr Surgical Limited | Motion feedthrough |
GB2552540B (en) | 2016-07-29 | 2021-11-24 | Cmr Surgical Ltd | Interface structure |
GB2600067B (en) * | 2016-07-29 | 2022-08-10 | Cmr Surgical Ltd | Motion feedthrough |
US11241559B2 (en) | 2016-08-29 | 2022-02-08 | Auris Health, Inc. | Active drive for guidewire manipulation |
AU2016422171B2 (en) | 2016-08-31 | 2022-01-20 | Auris Health, Inc. | Length conservative surgical instrument |
EP3509524A1 (en) * | 2016-09-12 | 2019-07-17 | Applied Medical Resources Corporation | Surgical robotic access system for irregularly shaped robotic actuators and associated robotic surgical instruments |
WO2018053305A1 (en) | 2016-09-15 | 2018-03-22 | Intuitive Surgical Operations, Inc. | Computer-assisted tele-operated surgery systems and methods |
WO2018056584A1 (ko) | 2016-09-21 | 2018-03-29 | 삼성전자 주식회사 | 피부 상태 측정 방법 및 이를 위한 전자 장치 |
WO2018057690A1 (en) | 2016-09-22 | 2018-03-29 | Intuitive Surgical Operations, Inc. | Tension regulation of remotely actuated instruments, and related devices, systems, and methods |
CN106236276B (zh) * | 2016-09-28 | 2019-09-17 | 微创(上海)医疗机器人有限公司 | 手术机器人系统 |
KR101853867B1 (ko) | 2016-10-18 | 2018-05-02 | 한국기계연구원 | 중재시술용 손잡이유닛과 이것을 이용한 중재시술용 마스터장치 그리고 이것을 이용한 원격중재시술시스템 |
US11399886B2 (en) * | 2016-11-11 | 2022-08-02 | Intuitive Surgical Operations, Inc. | Surgical instruments, related systems, and related methods |
US11166744B2 (en) | 2016-11-14 | 2021-11-09 | Intuitive Surgical Operations, Inc. | Electrically conductive reducer device, related systems, and related methods |
US11241290B2 (en) | 2016-11-21 | 2022-02-08 | Intuitive Surgical Operations, Inc. | Cable length conserving medical instrument |
US10905513B2 (en) | 2016-12-20 | 2021-02-02 | Verb Surgical Inc. | Sensors for detecting sterile adapter and tool attachment for use in a robotic surgical system |
US10568625B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
US10888322B2 (en) | 2016-12-21 | 2021-01-12 | Ethicon Llc | Surgical instrument comprising a cutting member |
US11684367B2 (en) | 2016-12-21 | 2023-06-27 | Cilag Gmbh International | Stepped assembly having and end-of-life indicator |
US20180168619A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling systems |
CN110114014B (zh) | 2016-12-21 | 2022-08-09 | 爱惜康有限责任公司 | 包括端部执行器闭锁件和击发组件闭锁件的外科器械系统 |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
JP7010956B2 (ja) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | 組織をステープル留めする方法 |
MX2019007311A (es) | 2016-12-21 | 2019-11-18 | Ethicon Llc | Sistemas de engrapado quirurgico. |
US10695055B2 (en) | 2016-12-21 | 2020-06-30 | Ethicon Llc | Firing assembly comprising a lockout |
US10624635B2 (en) | 2016-12-21 | 2020-04-21 | Ethicon Llc | Firing members with non-parallel jaw engagement features for surgical end effectors |
US10856868B2 (en) | 2016-12-21 | 2020-12-08 | Ethicon Llc | Firing member pin configurations |
US10499914B2 (en) | 2016-12-21 | 2019-12-10 | Ethicon Llc | Staple forming pocket arrangements |
JP6983893B2 (ja) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | 外科用エンドエフェクタ及び交換式ツールアセンブリのためのロックアウト構成 |
US10945727B2 (en) | 2016-12-21 | 2021-03-16 | Ethicon Llc | Staple cartridge with deformable driver retention features |
US10624671B2 (en) * | 2016-12-21 | 2020-04-21 | Ethicon Llc | Trocar attachment devices and methods |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US10993715B2 (en) | 2016-12-21 | 2021-05-04 | Ethicon Llc | Staple cartridge comprising staples with different clamping breadths |
US10667810B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems |
US10687810B2 (en) | 2016-12-21 | 2020-06-23 | Ethicon Llc | Stepped staple cartridge with tissue retention and gap setting features |
US10835247B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Lockout arrangements for surgical end effectors |
US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
US20180168650A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Connection portions for disposable loading units for surgical stapling instruments |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US10543048B2 (en) | 2016-12-28 | 2020-01-28 | Auris Health, Inc. | Flexible instrument insertion using an adaptive insertion force threshold |
US10244926B2 (en) | 2016-12-28 | 2019-04-02 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
CN106667579B (zh) * | 2016-12-30 | 2020-02-21 | 哈尔滨思哲睿智能医疗设备有限公司 | 一种用于腹腔镜手术机器人器械的连接机构 |
US11173003B2 (en) * | 2017-01-10 | 2021-11-16 | Intuitive Surgical Operations, Inc. | Systems and methods for using a robotic medical system |
EP3360502A3 (en) | 2017-01-18 | 2018-10-31 | KB Medical SA | Robotic navigation of robotic surgical systems |
US11235133B2 (en) | 2017-01-24 | 2022-02-01 | Intuitive Surgical Operations, Inc. | Surgical instrument ports configured for use with wound retractors, and related devices and methods |
US10617858B2 (en) | 2017-01-24 | 2020-04-14 | Intuitive Surgical Operations, Inc. | Surgical port features with electrically conductive portions, related devices, and related methods |
CN110650691B (zh) | 2017-01-31 | 2023-11-10 | 阿森塞斯(美国)手术公司 | 用于微创手术的液压器械驱动系统 |
US11744654B2 (en) | 2017-02-06 | 2023-09-05 | Intuitive Surgical Operations, Inc. | Systems and methods for coupling components of a medical system |
GB2599324B (en) * | 2017-02-07 | 2022-09-07 | Cmr Surgical Ltd | Mounting an endoscope to a surgical robot |
US11266475B2 (en) | 2017-02-08 | 2022-03-08 | Intuitive Surgical Operations, Inc. | Repositioning system for a remotely controllable manipulator and related methods |
EP3579736B1 (en) | 2017-02-09 | 2024-09-04 | Vicarious Surgical Inc. | Virtual reality surgical tools system |
AU2018221456A1 (en) | 2017-02-15 | 2019-07-11 | Covidien Lp | System and apparatus for crush prevention for medical robot applications |
EP3363401A1 (en) * | 2017-02-16 | 2018-08-22 | Microsure B.V. | Robotic manipulator interface for hinged surgical tools |
US10624738B2 (en) * | 2017-02-23 | 2020-04-21 | Edwards Lifesciences Corporation | Heart valve manufacturing devices and methods |
US10357321B2 (en) | 2017-02-24 | 2019-07-23 | Intuitive Surgical Operations, Inc. | Splayed cable guide for a medical instrument |
US11779410B2 (en) | 2017-03-09 | 2023-10-10 | Momentis Surgical Ltd | Control console including an input arm for control of a surgical mechanical arm |
US10973592B2 (en) | 2017-03-09 | 2021-04-13 | Memie Innovative Surgery Ltd. | Control console for surgical device with mechanical arms |
GB2560384B (en) * | 2017-03-10 | 2022-07-20 | Cmr Surgical Ltd | Controlling a surgical instrument |
US11071594B2 (en) | 2017-03-16 | 2021-07-27 | KB Medical SA | Robotic navigation of robotic surgical systems |
CN108618845B (zh) * | 2017-03-20 | 2022-07-29 | 新加坡国立大学 | 一种可固定于颅骨的并联脑外科微创手术机器人 |
US11076926B2 (en) | 2017-03-21 | 2021-08-03 | Intuitive Surgical Operations, Inc. | Manual release for medical device drive system |
IT201700042116A1 (it) * | 2017-04-14 | 2018-10-14 | Medical Microinstruments Spa | Assieme robotico per chirurgia |
WO2018203426A1 (ja) * | 2017-05-01 | 2018-11-08 | 株式会社メディカロイド | 処置具ユニット、医療用処置具および手術システム |
WO2018209518A1 (en) * | 2017-05-15 | 2018-11-22 | Bio-Medical Engineering (HK) Limited | Systems, devices, and methods for performing surgical actions via externally driven driving assemblies |
CN110650705B (zh) | 2017-05-24 | 2023-04-28 | 柯惠Lp公司 | 机器人系统中的电外科工具的存在检测 |
US11839441B2 (en) | 2017-05-25 | 2023-12-12 | Covidien Lp | Robotic surgical system with automated guidance |
US11553974B2 (en) | 2017-05-25 | 2023-01-17 | Covidien Lp | Systems and methods for detection of objects within a field of view of an image capture device |
US11510747B2 (en) | 2017-05-25 | 2022-11-29 | Covidien Lp | Robotic surgical systems and drapes for covering components of robotic surgical systems |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US10631859B2 (en) | 2017-06-27 | 2020-04-28 | Ethicon Llc | Articulation systems for surgical instruments |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
US11058424B2 (en) | 2017-06-28 | 2021-07-13 | Cilag Gmbh International | Surgical instrument comprising an offset articulation joint |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
EP3420947B1 (en) | 2017-06-28 | 2022-05-25 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US11026758B2 (en) | 2017-06-28 | 2021-06-08 | Auris Health, Inc. | Medical robotics systems implementing axis constraints during actuation of one or more motorized joints |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US10639037B2 (en) | 2017-06-28 | 2020-05-05 | Ethicon Llc | Surgical instrument with axially movable closure member |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US11058508B2 (en) * | 2017-06-29 | 2021-07-13 | Verb Surgical Inc. | Sterile adapter for a linearly-actuating instrument driver |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US10426559B2 (en) * | 2017-06-30 | 2019-10-01 | Auris Health, Inc. | Systems and methods for medical instrument compression compensation |
US11135015B2 (en) | 2017-07-21 | 2021-10-05 | Globus Medical, Inc. | Robot surgical platform |
CN107361849B (zh) | 2017-07-31 | 2023-11-21 | 成都博恩思医学机器人有限公司 | 用于操纵执行机构的控制台 |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
EP4115823A1 (en) | 2017-08-11 | 2023-01-11 | Intuitive Surgical Operations, Inc. | Medical apparatus with optical sensing |
EP3681429A4 (en) * | 2017-08-16 | 2021-09-08 | Covidien LP | ROBOTIC SURGICAL SYSTEMS AND FIELDS FOR COVERING ELEMENTS OF ROBOTIC SURGICAL SYSTEMS |
CN111225596B (zh) * | 2017-08-23 | 2022-05-31 | 麦米克创新外科有限公司 | 用于阴道途径的工具与方法 |
US11253336B2 (en) | 2017-09-01 | 2022-02-22 | Koh Young Technology Inc. | Medical arm assembly |
EP3678572A4 (en) | 2017-09-05 | 2021-09-29 | Covidien LP | COLLISION HANDLING ALGORITHMS FOR SURGICAL ROBOTIC SYSTEMS |
JP2020533061A (ja) | 2017-09-06 | 2020-11-19 | コヴィディエン リミテッド パートナーシップ | 手術ロボットの境界スケーリング |
CN117731218A (zh) | 2017-09-14 | 2024-03-22 | 维卡瑞斯外科手术股份有限公司 | 虚拟现实外科手术摄像机系统 |
US10857347B2 (en) | 2017-09-19 | 2020-12-08 | Pulse Biosciences, Inc. | Treatment instrument and high-voltage connectors for robotic surgical system |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
US11096754B2 (en) | 2017-10-04 | 2021-08-24 | Mako Surgical Corp. | Sterile drape assembly for surgical robot |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US11357548B2 (en) | 2017-11-09 | 2022-06-14 | Globus Medical, Inc. | Robotic rod benders and related mechanical and motor housings |
EP3492032B1 (en) | 2017-11-09 | 2023-01-04 | Globus Medical, Inc. | Surgical robotic systems for bending surgical rods |
US11794338B2 (en) | 2017-11-09 | 2023-10-24 | Globus Medical Inc. | Robotic rod benders and related mechanical and motor housings |
US11134862B2 (en) | 2017-11-10 | 2021-10-05 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
US11460360B2 (en) | 2017-11-14 | 2022-10-04 | Intuitive Surgical Operations, Inc. | Split bridge circuit force sensor |
WO2019096939A1 (en) * | 2017-11-15 | 2019-05-23 | Steerable Instruments nv | Controllable steerable instrument |
US10675107B2 (en) | 2017-11-15 | 2020-06-09 | Intuitive Surgical Operations, Inc. | Surgical instrument end effector with integral FBG |
US11160621B2 (en) | 2017-11-17 | 2021-11-02 | Intuitive Surgical Operations, Inc. | Surgical instrument sterile adapter with optical coupler |
WO2019108437A2 (en) | 2017-11-29 | 2019-06-06 | Covidien Lp | Robotic surgical systems, instrument drive assemblies, and drive assemblies |
EP3716882A4 (en) | 2017-12-01 | 2021-08-25 | Covidien LP | DRAPE ADMINISTRATION ARRANGEMENTS FOR ROBOTIC SURGICAL SYSTEMS |
EP3723655A4 (en) | 2017-12-11 | 2021-09-08 | Auris Health, Inc. | SYSTEMS AND METHODS FOR INSTRUMENT-BASED INSERTION ARCHITECTURES |
CN110869173B (zh) | 2017-12-14 | 2023-11-17 | 奥瑞斯健康公司 | 用于估计器械定位的系统与方法 |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US10743868B2 (en) | 2017-12-21 | 2020-08-18 | Ethicon Llc | Surgical instrument comprising a pivotable distal head |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
CN108175506A (zh) * | 2017-12-25 | 2018-06-19 | 宁波杨古诚文化传播有限公司 | 一种辅助手术用的医疗机械臂 |
CN111556735A (zh) | 2018-01-04 | 2020-08-18 | 柯惠Lp公司 | 将手术配件安装至机器人手术系统并且提供穿过其的通路的系统和组件 |
EP3737326B1 (en) | 2018-01-10 | 2024-10-16 | Covidien LP | Determining positions and conditions of tools of a robotic surgical system utilizing computer vision |
EP3740150A4 (en) | 2018-01-17 | 2021-11-03 | Auris Health, Inc. | SURGICAL ROBOTIC SYSTEMS WITH IMPROVED ROBOTIC ARMS |
JP6999824B2 (ja) | 2018-01-17 | 2022-01-19 | オーリス ヘルス インコーポレイテッド | 調節可能なアーム支持体を有する外科用プラットフォーム |
GB2570520B8 (en) * | 2018-01-30 | 2023-05-24 | Cmr Surgical Ltd | Interfacing a surgical robotic arm and instrument |
GB2570518B8 (en) * | 2018-01-30 | 2023-05-24 | Cmr Surgical Ltd | Interfacing a surgical robotic arm and instrument |
GB2570514B8 (en) * | 2018-01-30 | 2023-06-07 | Cmr Surgical Ltd | Surgical drape |
US12102403B2 (en) | 2018-02-02 | 2024-10-01 | Coviden Lp | Robotic surgical systems with user engagement monitoring |
US11497567B2 (en) | 2018-02-08 | 2022-11-15 | Intuitive Surgical Operations, Inc. | Jointed control platform |
US11118661B2 (en) | 2018-02-12 | 2021-09-14 | Intuitive Surgical Operations, Inc. | Instrument transmission converting roll to linear actuation |
WO2019157763A1 (en) | 2018-02-15 | 2019-08-22 | Covidien Lp | Sheath assembly for a rigid endoscope |
US20190254753A1 (en) | 2018-02-19 | 2019-08-22 | Globus Medical, Inc. | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
US11189379B2 (en) | 2018-03-06 | 2021-11-30 | Digital Surgery Limited | Methods and systems for using multiple data structures to process surgical data |
JP2021514220A (ja) * | 2018-03-08 | 2021-06-10 | コヴィディエン リミテッド パートナーシップ | 手術ロボットシステム |
CN108567489B (zh) * | 2018-03-23 | 2022-05-13 | 深圳市精锋医疗科技股份有限公司 | 操作臂、从操作设备及手术机器人 |
CN108852515B (zh) * | 2018-03-23 | 2022-06-24 | 深圳市精锋医疗科技股份有限公司 | 单切口手术的从操作设备及手术机器人 |
US10573023B2 (en) | 2018-04-09 | 2020-02-25 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
CA3095798A1 (en) * | 2018-04-17 | 2019-10-24 | Chengdu Borns Medical Robotics Inc. | Laparoscope-holding robot system for laparoscopic surgery |
CN110384556B (zh) * | 2018-04-20 | 2021-04-02 | 赛诺微医疗科技(浙江)有限公司 | 快换机构、采用其的器械夹持手及外科手术机器人 |
US11986261B2 (en) | 2018-04-20 | 2024-05-21 | Covidien Lp | Systems and methods for surgical robotic cart placement |
US11647888B2 (en) | 2018-04-20 | 2023-05-16 | Covidien Lp | Compensation for observer movement in robotic surgical systems having stereoscopic displays |
CN110384557B (zh) * | 2018-04-20 | 2021-03-30 | 赛诺微医疗科技(浙江)有限公司 | 组合定位机构、采用其的器械夹持手及外科手术机器人 |
KR102452566B1 (ko) | 2018-04-27 | 2022-10-06 | 주식회사 엘지화학 | 고흡수성 수지 조성물 |
WO2019227032A1 (en) | 2018-05-25 | 2019-11-28 | Intuitive Surgical Operations, Inc. | Fiber bragg grating end effector force sensor |
CN109009449B (zh) * | 2018-06-22 | 2020-08-11 | 深圳市精锋医疗科技有限公司 | 操作臂及从操作设备 |
CN110623746B (zh) * | 2018-06-22 | 2021-05-11 | 深圳市精锋医疗科技有限公司 | 手术机器人 |
CN109124773A (zh) * | 2018-06-25 | 2019-01-04 | 深圳市精锋医疗科技有限公司 | 机械臂 |
US10667875B2 (en) * | 2018-06-27 | 2020-06-02 | Auris Health, Inc. | Systems and techniques for providing multiple perspectives during medical procedures |
JP7366943B2 (ja) | 2018-06-27 | 2023-10-23 | オーリス ヘルス インコーポレイテッド | 医療器具のための位置合わせ及び取り付けシステム |
WO2020009830A1 (en) | 2018-07-03 | 2020-01-09 | Covidien Lp | Systems, methods, and computer-readable media for detecting image degradation during surgical procedures |
KR20210032998A (ko) | 2018-07-17 | 2021-03-25 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 감소된 커패시턴스를 갖는 수술 기구, 관련 디바이스, 및 관련 방법 |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
CN113143353B (zh) * | 2018-08-24 | 2023-03-17 | 上海微创医疗机器人(集团)股份有限公司 | 蛇形手术器械 |
JP6777694B2 (ja) * | 2018-08-28 | 2020-10-28 | 株式会社メディカロイド | 内視鏡アダプタ |
US11197728B2 (en) | 2018-09-17 | 2021-12-14 | Auris Health, Inc. | Systems and methods for concomitant medical procedures |
US11998288B2 (en) | 2018-09-17 | 2024-06-04 | Covidien Lp | Surgical robotic systems |
CN109223181A (zh) * | 2018-09-19 | 2019-01-18 | 中国科学院苏州生物医学工程技术研究所 | 用于疼痛觉治疗的穿刺针机器人 |
CN109091234A (zh) * | 2018-09-19 | 2018-12-28 | 中国科学院苏州生物医学工程技术研究所 | 微创手术穿刺针机器人系统 |
US11369449B2 (en) | 2018-09-20 | 2022-06-28 | Board Of Regents Of The University Of Nebraska | Modular cable-driven surgical robots |
US12076100B2 (en) | 2018-09-28 | 2024-09-03 | Auris Health, Inc. | Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures |
WO2020069080A1 (en) | 2018-09-28 | 2020-04-02 | Auris Health, Inc. | Devices, systems, and methods for manually and robotically driving medical instruments |
WO2020072917A1 (en) | 2018-10-05 | 2020-04-09 | Intuitive Surgical Operations, Inc. | Systems and methods for positioning medical instruments |
US11109746B2 (en) | 2018-10-10 | 2021-09-07 | Titan Medical Inc. | Instrument insertion system, method, and apparatus for performing medical procedures |
EP3639983A1 (en) * | 2018-10-18 | 2020-04-22 | Technische Universität München | Anti-collision safety measures for a reconfigurable modular robot |
EP3866669A4 (en) | 2018-10-19 | 2022-06-29 | Intuitive Surgical Operations, Inc. | Cleaning devices for imaging instruments, devices, and methods |
JP6469304B1 (ja) | 2018-10-23 | 2019-02-13 | 株式会社A−Traction | 手術支援装置、その制御方法及びプログラム |
US11337742B2 (en) | 2018-11-05 | 2022-05-24 | Globus Medical Inc | Compliant orthopedic driver |
CN109452973A (zh) * | 2018-11-15 | 2019-03-12 | 山东大学齐鲁医院 | 一种框架式辅助微创外科单孔手术机器人 |
US11815412B2 (en) | 2018-11-15 | 2023-11-14 | Intuitive Surgical Operations, Inc. | Strain sensor with contoured deflection surface |
WO2020102780A1 (en) | 2018-11-15 | 2020-05-22 | Intuitive Surgical Operations, Inc. | Cable drive limited slip capstan and shaft |
CN109452974A (zh) * | 2018-11-15 | 2019-03-12 | 山东大学齐鲁医院 | 一种折叠式辅助微创外科单孔手术机器人 |
US11278360B2 (en) | 2018-11-16 | 2022-03-22 | Globus Medical, Inc. | End-effectors for surgical robotic systems having sealed optical components |
DE102018220758B4 (de) * | 2018-11-30 | 2023-02-16 | Siemens Healthcare Gmbh | Vorrichtung und Verfahren zum Steuern eines Röntgengeräts |
US11744655B2 (en) | 2018-12-04 | 2023-09-05 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11602402B2 (en) | 2018-12-04 | 2023-03-14 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
CN113316431B (zh) | 2018-12-04 | 2024-09-20 | 马科外科公司 | 用于联接外科部件的具有无菌屏障组件的安装系统 |
WO2020117908A1 (en) | 2018-12-05 | 2020-06-11 | Intuitive Surgical Operations, Inc. | Cannulas with non-circular cross-sections, systems, and methods |
US11254009B2 (en) | 2018-12-20 | 2022-02-22 | Auris Health, Inc. | Systems and methods for robotic arm alignment and docking |
JP6827518B2 (ja) * | 2018-12-26 | 2021-02-10 | 川崎重工業株式会社 | 外科手術システムに使用されるマニピュレータアームおよび患者側システム |
US11586106B2 (en) | 2018-12-28 | 2023-02-21 | Titan Medical Inc. | Imaging apparatus having configurable stereoscopic perspective |
US11730556B2 (en) | 2018-12-31 | 2023-08-22 | Asensus Surgical Us, Inc. | Compact actuation configuration and expandable instrument receiver for robotically controlled surgical instruments |
US11690688B2 (en) | 2018-12-31 | 2023-07-04 | Asensus Surgical Us, Inc. | Compact actuation configuration and expandable instrument receiver for robotically controlled surgical instruments |
WO2020142340A1 (en) * | 2018-12-31 | 2020-07-09 | Xact Medical, Inc. | Subcutaneous delivery system |
JP6870010B2 (ja) * | 2019-01-21 | 2021-05-12 | 株式会社メディカロイド | 手術システムおよび支持装置 |
JP7153335B2 (ja) * | 2019-01-29 | 2022-10-14 | リバーフィールド株式会社 | 手術支援装置 |
US11717355B2 (en) | 2019-01-29 | 2023-08-08 | Covidien Lp | Drive mechanisms for surgical instruments such as for use in robotic surgical systems |
CN109620368A (zh) * | 2019-01-30 | 2019-04-16 | 珠海市人民医院 | 一种基于ct引导下的智能介入穿刺装置 |
US11576733B2 (en) | 2019-02-06 | 2023-02-14 | Covidien Lp | Robotic surgical assemblies including electrosurgical instruments having articulatable wrist assemblies |
WO2020163076A1 (en) | 2019-02-08 | 2020-08-13 | Auris Health, Inc. | Robotically controlled clot manipulation and removal |
US11484372B2 (en) | 2019-02-15 | 2022-11-01 | Covidien Lp | Articulation mechanisms for surgical instruments such as for use in robotic surgical systems |
US11571569B2 (en) | 2019-02-15 | 2023-02-07 | Pulse Biosciences, Inc. | High-voltage catheters for sub-microsecond pulsing |
CN113453642A (zh) | 2019-02-22 | 2021-09-28 | 奥瑞斯健康公司 | 具有用于可调式臂支撑件的机动臂的外科平台 |
EP3934558A4 (en) | 2019-03-07 | 2022-12-14 | PROCEPT BioRobotics Corporation | ROBOT ARMS AND METHODS OF TISSUE RESECTION AND IMAGING |
KR102269772B1 (ko) * | 2019-03-13 | 2021-06-28 | 큐렉소 주식회사 | 수술용 로봇의 엔드이펙터 |
US11918313B2 (en) | 2019-03-15 | 2024-03-05 | Globus Medical Inc. | Active end effectors for surgical robots |
US11419616B2 (en) | 2019-03-22 | 2022-08-23 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11382549B2 (en) | 2019-03-22 | 2022-07-12 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
WO2020198027A1 (en) * | 2019-03-22 | 2020-10-01 | Intuitive Surgical Operations, Inc. | Systems and methods for maintaining sterility of a component using a movable, sterile volume |
WO2020197671A1 (en) | 2019-03-22 | 2020-10-01 | Auris Health, Inc. | Systems and methods for aligning inputs on medical instruments |
US11806084B2 (en) | 2019-03-22 | 2023-11-07 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11571265B2 (en) | 2019-03-22 | 2023-02-07 | Globus Medical Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11317978B2 (en) | 2019-03-22 | 2022-05-03 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US20200297357A1 (en) | 2019-03-22 | 2020-09-24 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US20220117461A1 (en) * | 2019-03-25 | 2022-04-21 | W Endoluminal Robotics Ltd. | Manipulator with serial actuation |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
CN109998685A (zh) * | 2019-03-28 | 2019-07-12 | 山东大学齐鲁医院 | 一种单、双臂辅助微创外科手术机器人及协作组合机器人系统 |
AT16885U1 (de) | 2019-03-28 | 2020-11-15 | Palfinger Ag | Kran mit Kransteuerung |
JP6866417B2 (ja) * | 2019-03-28 | 2021-04-28 | 株式会社メディカロイド | アダプタおよびアダプタの装着方法 |
KR20210149805A (ko) | 2019-04-08 | 2021-12-09 | 아우리스 헬스, 인코포레이티드 | 동시 절차를 위한 시스템, 방법, 및 작업흐름 |
US12090629B2 (en) * | 2019-04-16 | 2024-09-17 | University Of Louisville Research Foundation, Inc. | Adaptive robotic nursing assistant |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
JP6562174B1 (ja) * | 2019-05-10 | 2019-08-21 | 株式会社A−Traction | 手術支援装置 |
US11045179B2 (en) | 2019-05-20 | 2021-06-29 | Global Medical Inc | Robot-mounted retractor system |
US11123146B2 (en) * | 2019-05-30 | 2021-09-21 | Titan Medical Inc. | Surgical instrument apparatus, actuator, and drive |
EP3986676A4 (en) * | 2019-06-24 | 2022-08-24 | Vicarious Surgical Inc. | DEVICES AND METHODS FOR ROBOT ARRANGEMENTS |
US10881477B1 (en) * | 2019-06-26 | 2021-01-05 | Titan Medical Inc. | Sterile barrier systems for robotic surgery systems |
WO2020263520A1 (en) | 2019-06-26 | 2020-12-30 | Auris Health, Inc. | Systems and methods for robotic arm alignment and docking |
US10881478B1 (en) * | 2019-06-26 | 2021-01-05 | Titan Medical Inc. | Methods for protecting robotic surgery systems with sterile barriers |
US11625107B2 (en) | 2019-06-27 | 2023-04-11 | Intuitive Surgical Operations, Inc. | System and method for motion mode management |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11229437B2 (en) | 2019-06-28 | 2022-01-25 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11628023B2 (en) | 2019-07-10 | 2023-04-18 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
EP3998980A4 (en) * | 2019-07-17 | 2023-08-09 | Asensus Surgical US, Inc. | COMPACT ACTUATION CONFIGURATION AND EXPANDABLE INSTRUMENT RECEIVER FOR ROBOTICALLY CONTROLLED SURGICAL INSTRUMENTS |
US11896330B2 (en) | 2019-08-15 | 2024-02-13 | Auris Health, Inc. | Robotic medical system having multiple medical instruments |
US11717147B2 (en) * | 2019-08-15 | 2023-08-08 | Auris Health, Inc. | Medical device having multiple bending sections |
EP4028221A1 (en) | 2019-09-10 | 2022-07-20 | Auris Health, Inc. | Systems and methods for kinematic optimization with shared robotic degrees-of-freedom |
US12050143B2 (en) | 2019-09-17 | 2024-07-30 | Intuitive Surgical Operations, Inc. | Symmetric trimming of strain gauges |
US11571171B2 (en) | 2019-09-24 | 2023-02-07 | Globus Medical, Inc. | Compound curve cable chain |
EP4034349A1 (en) | 2019-09-26 | 2022-08-03 | Auris Health, Inc. | Systems and methods for collision detection and avoidance |
US11426178B2 (en) | 2019-09-27 | 2022-08-30 | Globus Medical Inc. | Systems and methods for navigating a pin guide driver |
US11864857B2 (en) | 2019-09-27 | 2024-01-09 | Globus Medical, Inc. | Surgical robot with passive end effector |
US11890066B2 (en) | 2019-09-30 | 2024-02-06 | Globus Medical, Inc | Surgical robot with passive end effector |
WO2021064536A1 (en) | 2019-09-30 | 2021-04-08 | Auris Health, Inc. | Medical instrument with capstan |
EP4041106A1 (en) | 2019-09-30 | 2022-08-17 | Intuitive Surgical Operations, Inc. | Instrument entry guide |
US20220330976A1 (en) | 2019-09-30 | 2022-10-20 | Intuitive Surgical Operations, Inc. | Single port instrument access device |
CN114521129A (zh) | 2019-09-30 | 2022-05-20 | 直观外科手术操作公司 | 单端口器械接入设备 |
US11359919B2 (en) * | 2019-10-04 | 2022-06-14 | Aptiv Technologies Limited | Calculating vehicle states of a vehicle system for lane centering |
KR102343395B1 (ko) * | 2019-10-04 | 2021-12-27 | 한국기계연구원 | 생체 자극 및 치료용 정위 장치 및 이를 이용한 정위 방법 |
US20240058079A1 (en) * | 2019-10-11 | 2024-02-22 | Board Of Regents Of The University Of Texas System | Seven degree of freedom positioning device for robotic surgery |
US11510684B2 (en) | 2019-10-14 | 2022-11-29 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
US11529734B2 (en) * | 2019-10-31 | 2022-12-20 | Verb Surgical Inc. | Systems and methods for visual sensing of and docking with a trocar |
CN110811838B (zh) * | 2019-11-01 | 2020-10-20 | 山东大学 | 一种可实现多孔单孔互换的双操作模式手术机器人 |
US11375965B2 (en) | 2019-11-01 | 2022-07-05 | Turner Imaging Systems, Inc. | Sterile barriers for medical devices |
US11071601B2 (en) * | 2019-11-11 | 2021-07-27 | Procept Biorobotics Corporation | Surgical probes for tissue resection with robotic arms |
FR3102946B1 (fr) * | 2019-11-13 | 2022-04-01 | Percipio Robotics | Dispositif pour microactionneur et microactionneur équipé d’un tel dispositif |
US20210153966A1 (en) * | 2019-11-21 | 2021-05-27 | Auris Health, Inc. | Drape for arms of a robotic surgical system |
GB2589380B (en) * | 2019-11-29 | 2024-02-21 | Cmr Surgical Ltd | Controlling a surgical instrument |
US11992373B2 (en) | 2019-12-10 | 2024-05-28 | Globus Medical, Inc | Augmented reality headset with varied opacity for navigated robotic surgery |
CN110897659B (zh) * | 2019-12-11 | 2021-03-16 | 山东大学 | 一种模块化可实现单孔与多孔转换的手术机器人 |
US11653912B2 (en) | 2019-12-12 | 2023-05-23 | Intuitive Surgical Operations, Inc. | Needle driver devices and related systems and methods |
US12064189B2 (en) | 2019-12-13 | 2024-08-20 | Globus Medical, Inc. | Navigated instrument for use in robotic guided surgery |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
JP2023508718A (ja) | 2019-12-31 | 2023-03-03 | オーリス ヘルス インコーポレイテッド | 高度バスケット駆動モード |
WO2021137109A1 (en) | 2019-12-31 | 2021-07-08 | Auris Health, Inc. | Alignment techniques for percutaneous access |
CN118383870A (zh) | 2019-12-31 | 2024-07-26 | 奥瑞斯健康公司 | 用于经皮进入的对准界面 |
EP4084717A4 (en) | 2019-12-31 | 2024-02-14 | Auris Health, Inc. | DYNAMIC PULLEY SYSTEM |
EP4084721A4 (en) | 2019-12-31 | 2024-01-03 | Auris Health, Inc. | IDENTIFICATION OF AN ANATOMIC FEATURE AND AIMING |
CN114305710B (zh) * | 2020-01-07 | 2023-08-22 | 深圳市精锋医疗科技股份有限公司 | 手术器械与驱动装置的接合方法、从操作设备及手术机器人 |
CN111166471B (zh) * | 2020-01-09 | 2020-12-22 | 浙江理工大学 | 一种三轴交汇式主被动混合手术持镜臂 |
CN111227940B (zh) * | 2020-01-23 | 2021-11-30 | 诺创智能医疗科技(杭州)有限公司 | 手术机械臂及手术机器人 |
CN111214291A (zh) * | 2020-01-23 | 2020-06-02 | 诺创智能医疗科技(杭州)有限公司 | 手术机械臂及手术机器人 |
CN111134847B (zh) * | 2020-01-23 | 2021-10-22 | 诺创智能医疗科技(杭州)有限公司 | 操作组件及手术机器人 |
WO2021147270A1 (zh) * | 2020-01-23 | 2021-07-29 | 诺创智能医疗科技(杭州)有限公司 | 手术机械臂及手术机器人 |
CN111227944B (zh) * | 2020-01-23 | 2021-11-30 | 诺创智能医疗科技(杭州)有限公司 | 手术机械臂及手术机器人 |
CN111249008B (zh) * | 2020-01-23 | 2021-07-27 | 诺创智能医疗科技(杭州)有限公司 | 手术机械臂及手术机器人 |
WO2021150334A1 (en) * | 2020-01-24 | 2021-07-29 | Covidien Lp | Surgical robotic systems |
BR112022015706A2 (pt) | 2020-02-10 | 2022-09-27 | Medical Microinstruments Inc | Conjunto de barreira estéril e sistema de cirurgia robótica |
IT202000002536A1 (it) | 2020-02-10 | 2021-08-10 | Medical Microinstruments Spa | Adattatore sterile per un sistema di chirurgia robotica, assieme, sistema e metodo |
IT202000002545A1 (it) | 2020-02-10 | 2021-08-10 | Medical Microinstruments Spa | Assieme di barriera sterile e sistema di chirurgia robotica |
IT202000002548A1 (it) * | 2020-02-10 | 2021-08-10 | Medical Microinstruments Spa | Assieme di chirurgia robotica, arena operatoria e metodo |
US11382699B2 (en) | 2020-02-10 | 2022-07-12 | Globus Medical Inc. | Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery |
US11207150B2 (en) | 2020-02-19 | 2021-12-28 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
JP6892707B1 (ja) * | 2020-02-20 | 2021-06-23 | リバーフィールド株式会社 | 手術支援装置 |
WO2021202869A1 (en) | 2020-04-02 | 2021-10-07 | Intuitive Surgical Operations, Inc. | Devices for instrument use recording, devices for recording instrument reprocessing events, and related systems and methods |
US12023205B2 (en) | 2020-04-20 | 2024-07-02 | Intuitive Surgical Operations, Inc. | Breakage detection of tension element for counterbalance mechanism |
US11253216B2 (en) | 2020-04-28 | 2022-02-22 | Globus Medical Inc. | Fixtures for fluoroscopic imaging systems and related navigation systems and methods |
US11510750B2 (en) | 2020-05-08 | 2022-11-29 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
US11153555B1 (en) | 2020-05-08 | 2021-10-19 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
US11382700B2 (en) | 2020-05-08 | 2022-07-12 | Globus Medical Inc. | Extended reality headset tool tracking and control |
US12030195B2 (en) | 2020-05-27 | 2024-07-09 | Covidien Lp | Tensioning mechanisms and methods for articulating surgical instruments such as for use in robotic surgical systems |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
US12070276B2 (en) | 2020-06-09 | 2024-08-27 | Globus Medical Inc. | Surgical object tracking in visible light via fiducial seeding and synthetic image registration |
US11317973B2 (en) | 2020-06-09 | 2022-05-03 | Globus Medical, Inc. | Camera tracking bar for computer assisted navigation during surgery |
US11382713B2 (en) | 2020-06-16 | 2022-07-12 | Globus Medical, Inc. | Navigated surgical system with eye to XR headset display calibration |
CA3183162A1 (en) | 2020-06-19 | 2021-12-23 | Jake Anthony Sganga | Systems and methods for guidance of intraluminal devices within the vasculature |
WO2022003485A1 (en) | 2020-06-29 | 2022-01-06 | Auris Health, Inc. | Systems and methods for detecting contact between a link and an external object |
US11931901B2 (en) | 2020-06-30 | 2024-03-19 | Auris Health, Inc. | Robotic medical system with collision proximity indicators |
US11357586B2 (en) | 2020-06-30 | 2022-06-14 | Auris Health, Inc. | Systems and methods for saturated robotic movement |
JP6998620B1 (ja) | 2020-07-01 | 2022-01-24 | 株式会社マスダック | 焼成板洗浄装置及び洗浄方法 |
US11877807B2 (en) | 2020-07-10 | 2024-01-23 | Globus Medical, Inc | Instruments for navigated orthopedic surgeries |
USD963851S1 (en) | 2020-07-10 | 2022-09-13 | Covidien Lp | Port apparatus |
US11793588B2 (en) | 2020-07-23 | 2023-10-24 | Globus Medical, Inc. | Sterile draping of robotic arms |
US20220031350A1 (en) | 2020-07-28 | 2022-02-03 | Cilag Gmbh International | Surgical instruments with double pivot articulation joint arrangements |
US20220039890A1 (en) * | 2020-08-07 | 2022-02-10 | Intuitive Surgical Operations, Inc. | Rotatable carriage for an instrument holder |
CN114098845B (zh) * | 2020-08-28 | 2023-07-25 | 中国科学院沈阳自动化研究所 | 一种模块化手术机器人驱动装置 |
AU2021338193A1 (en) * | 2020-09-02 | 2023-03-02 | Nuvasive, Inc. | Surgical systems |
US11737831B2 (en) | 2020-09-02 | 2023-08-29 | Globus Medical Inc. | Surgical object tracking template generation for computer assisted navigation during surgical procedure |
US11523785B2 (en) | 2020-09-24 | 2022-12-13 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement |
US11793597B2 (en) | 2020-09-30 | 2023-10-24 | Verb Surgical Inc. | Attachment mechanism for docking cannulas to surgical robotic arms |
US11793500B2 (en) | 2020-09-30 | 2023-10-24 | Verb Surgical Inc. | Adjustable force and ball bearing attachment mechanism for docking cannulas to surgical robotic arms |
US20230346538A1 (en) | 2020-10-07 | 2023-11-02 | Canary Medical Switzerland Ag | Providing medical devices with sensing functionality |
JP7520678B2 (ja) * | 2020-10-07 | 2024-07-23 | 株式会社メディカロイド | 手術器具 |
US11919153B2 (en) | 2020-10-15 | 2024-03-05 | Intuitive Surgical Operations, Inc. | Counterbalance mechanism including drive ratio |
CN113967071B (zh) | 2020-10-23 | 2023-09-29 | 成都博恩思医学机器人有限公司 | 手术机器人机械臂跟随手术床运动的控制方法及装置 |
KR102495396B1 (ko) * | 2020-10-26 | 2023-02-06 | 주식회사 피치랩 | 의료용 다자유도 로봇 |
US11911112B2 (en) | 2020-10-27 | 2024-02-27 | Globus Medical, Inc. | Robotic navigational system |
US12076091B2 (en) | 2020-10-27 | 2024-09-03 | Globus Medical, Inc. | Robotic navigational system |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US20220133331A1 (en) | 2020-10-30 | 2022-05-05 | Mako Surgical Corp. | Robotic surgical system with cut selection logic |
US11941814B2 (en) | 2020-11-04 | 2024-03-26 | Globus Medical Inc. | Auto segmentation using 2-D images taken during 3-D imaging spin |
US11717350B2 (en) | 2020-11-24 | 2023-08-08 | Globus Medical Inc. | Methods for robotic assistance and navigation in spinal surgery and related systems |
CN112353496A (zh) * | 2020-11-30 | 2021-02-12 | 中国科学院沈阳自动化研究所 | 一种软式内窥镜操控机器人 |
EP4251222A2 (en) | 2020-11-30 | 2023-10-04 | Intuitive Surgical Operations, Inc. | Modified gas ducts for medical gas evacuation devices and related systems and methods |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
AU2021412908A1 (en) * | 2020-12-28 | 2023-07-13 | Boston Scientific Scimed, Inc. | Control mechanism for end effectors |
US12070286B2 (en) | 2021-01-08 | 2024-08-27 | Globus Medical, Inc | System and method for ligament balancing with robotic assistance |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
EP4301270A1 (en) * | 2021-03-01 | 2024-01-10 | Mazor Robotics Ltd. | Shrink sterile drape and related systems and methods |
JP2024511978A (ja) * | 2021-03-18 | 2024-03-18 | ヴィルトゥオーソ サージカル インコーポレイテッド | 低侵襲手術を行うためのシステム |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
CN117222371A (zh) | 2021-03-29 | 2023-12-12 | 直观外科手术操作公司 | 用于执行缝合程序的装置、系统以及方法 |
EP4322882A1 (en) * | 2021-04-14 | 2024-02-21 | Covidien LP | Robotic remote center of motion with active portal/trocar manipulation |
CN115383787A (zh) * | 2021-05-25 | 2022-11-25 | 敏捷医疗科技(苏州)有限公司 | 机械臂及其控制方法 |
US11426886B1 (en) * | 2021-05-25 | 2022-08-30 | Rj Hanlon Company, Inc. | Protective robot wrap |
US11826047B2 (en) | 2021-05-28 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising jaw mounts |
US11948226B2 (en) | 2021-05-28 | 2024-04-02 | Covidien Lp | Systems and methods for clinical workspace simulation |
US20220401161A1 (en) * | 2021-06-21 | 2022-12-22 | Globus Medical, Inc. | Gravity compensation of end effector arm for robotic surgical system |
CA3219824A1 (en) * | 2021-06-21 | 2022-12-29 | Jack Alexander HORNSBY | Robotic surgical instruments with diverging form factors |
CN113331952B (zh) * | 2021-06-28 | 2023-02-17 | 上海交通大学 | 基于纤维胆道镜的手术机器人 |
US11707332B2 (en) | 2021-07-01 | 2023-07-25 | Remedy Robotics, Inc. | Image space control for endovascular tools |
CA3222522A1 (en) | 2021-07-01 | 2023-01-05 | David James Bell | Vision-based position and orientation determination for endovascular tools |
US11857273B2 (en) | 2021-07-06 | 2024-01-02 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
US11439444B1 (en) | 2021-07-22 | 2022-09-13 | Globus Medical, Inc. | Screw tower and rod reduction tool |
CN113440291B (zh) * | 2021-07-26 | 2023-05-16 | 河南医学高等专科学校 | 一种口腔手术中多功能上药清洗整合装置 |
USD1044829S1 (en) | 2021-07-29 | 2024-10-01 | Mako Surgical Corp. | Display screen or portion thereof with graphical user interface |
US20230055386A1 (en) * | 2021-08-20 | 2023-02-23 | Titan Medical Inc. | Robotic surgery system |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
EP4419031A1 (en) | 2021-10-19 | 2024-08-28 | Intuitive Surgical Operations, Inc. | Force transmission systems using planetary gear assembly, and related devices and methods |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
CN114098992A (zh) * | 2021-11-11 | 2022-03-01 | 深圳市精锋医疗科技股份有限公司 | 机械臂、从操作设备以及手术机器人 |
CN114098952A (zh) * | 2021-11-11 | 2022-03-01 | 深圳市精锋医疗科技股份有限公司 | 机械臂、从操作设备以及手术机器人 |
CN114098951A (zh) * | 2021-11-11 | 2022-03-01 | 深圳市精锋医疗科技股份有限公司 | 机械臂、从操作设备以及手术机器人 |
CN114098957A (zh) * | 2021-11-11 | 2022-03-01 | 深圳市精锋医疗科技股份有限公司 | 机械臂、从操作设备以及手术机器人 |
CN114098977B (zh) * | 2021-11-12 | 2024-06-25 | 艺柏湾医疗科技(上海)有限公司 | 手术机器人的末端机构及其控制方法和相关设备 |
EP4440484A1 (en) | 2021-11-30 | 2024-10-09 | Endoquest Robotics, Inc. | Master control systems for robotic surgical systems |
WO2023101974A1 (en) * | 2021-11-30 | 2023-06-08 | Endoquest Robotics, Inc. | Force transmission systems for robotically controlled medical devices |
EP4440479A1 (en) | 2021-11-30 | 2024-10-09 | Endoquest Robotics, Inc. | Steerable overtube assemblies for robotic surgical systems |
EP4440481A1 (en) * | 2021-11-30 | 2024-10-09 | Endoquest Robotics, Inc. | Barrier drape adapters for robotic surgical systems |
US11963733B2 (en) | 2021-12-01 | 2024-04-23 | Nuvasive Inc. | Connector assemblies for connecting a robotic arm with a medical end effector |
CN114209369A (zh) * | 2021-12-10 | 2022-03-22 | 江苏集萃微纳自动化系统与装备技术研究所有限公司 | 一种适于柔性弯曲的轴向动力系统 |
US11911115B2 (en) | 2021-12-20 | 2024-02-27 | Globus Medical Inc. | Flat panel registration fixture and method of using same |
CN114533275B (zh) * | 2022-02-22 | 2024-02-23 | 上海微创医疗机器人(集团)股份有限公司 | 末端关节臂、机械臂以及医疗台车 |
CN114521967B (zh) * | 2022-02-22 | 2024-01-23 | 上海微创医疗机器人(集团)股份有限公司 | 机械臂以及医疗台车 |
CN114587603B (zh) * | 2022-02-25 | 2023-04-25 | 上海奥朋医疗科技有限公司 | 用于腹腔镜手术机器人的无菌隔离装置及其腹腔镜手术机器人 |
WO2023170546A1 (en) * | 2022-03-07 | 2023-09-14 | Cilag Gmbh International | Reuseable stowage cover for robotic surgical system |
US12103480B2 (en) | 2022-03-18 | 2024-10-01 | Globus Medical Inc. | Omni-wheel cable pusher |
CN114642486B (zh) * | 2022-03-23 | 2023-04-07 | 哈尔滨工业大学 | 穿刺针夹持驱动装置及前列腺穿刺机器人的末端操作装置 |
US12048493B2 (en) | 2022-03-31 | 2024-07-30 | Globus Medical, Inc. | Camera tracking system identifying phantom markers during computer assisted surgery navigation |
WO2023212277A1 (en) | 2022-04-29 | 2023-11-02 | Intuitive Surgical Operations, Inc. | Nesting proximal links for table mounted manipulator system, and related devices, systems and methods |
WO2023212344A1 (en) | 2022-04-29 | 2023-11-02 | Intuitive Surgical Operations, Inc. | Table-mounted manipulator system, and related devices, systems and methods |
WO2023212275A1 (en) | 2022-04-29 | 2023-11-02 | Intuitive Surgical Operations, Inc. | Rail assembly for table-mounted manipulator system, and related devices, systems and methods |
WO2023250307A1 (en) | 2022-06-21 | 2023-12-28 | Intuitive Surgical Operations, Inc. | Force transmission systems for instruments, and related devices |
US20240021105A1 (en) | 2022-07-13 | 2024-01-18 | Intuitive Surgical Operations, Inc. | Surgical training model including a simulated human prostate and associated methods |
CN115674157B (zh) * | 2022-10-27 | 2024-06-04 | 贵州电网有限责任公司 | 一种多场景应用的机械手底座 |
CN116999170A (zh) * | 2022-11-25 | 2023-11-07 | 深圳康诺思腾科技有限公司 | 一种无菌适配器 |
FR3143965A1 (fr) * | 2022-12-23 | 2024-06-28 | Robocath | Cassette pour un module motorisé d’un système robotisé de manipulation d’un dispositif médical tel qu’un cathéter |
WO2024145000A1 (en) | 2022-12-30 | 2024-07-04 | Intuitive Surgical Operations, Inc. | Clutching of manipulators and related devices and systems |
US11844585B1 (en) | 2023-02-10 | 2023-12-19 | Distalmotion Sa | Surgical robotics systems and devices having a sterile restart, and methods thereof |
WO2024176225A1 (en) * | 2023-02-21 | 2024-08-29 | Momentis Surgical Ltd. | Robotic surgical system, methods of using the same, and robotic control unit |
CN118526290A (zh) * | 2024-07-24 | 2024-08-23 | 苏州视通医疗科技有限公司 | 手术机器人的驱动装置、手术机器人及其系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2824867Y (zh) * | 2005-04-22 | 2006-10-11 | 董永华 | 手术隔离单 |
CN101242789A (zh) * | 2005-09-30 | 2008-08-13 | 直观外科手术公司 | 消毒手术帷帘 |
US20100292707A1 (en) * | 2008-01-24 | 2010-11-18 | Kuka Roboter Gmbh | Sterile Barrier For A Surgical Robot With Torque Sensors |
Family Cites Families (280)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2941776A (en) * | 1957-05-13 | 1960-06-21 | Ritter Co Inc | Counterbalancing mechanism |
NL106631C (nl) | 1960-02-04 | 1963-11-15 | Pieter Johannes Meijs | Ondersteunings- en vastzetinrichting, in het bijzonder voor een meetklok |
DE1212789B (de) * | 1963-05-30 | 1966-03-17 | Zikesch Carl Herbert | Spannvorrichtung fuer eine Schraubendruckfeder |
US3546961A (en) | 1967-12-22 | 1970-12-15 | Gen Electric | Variable flexibility tether |
US3640140A (en) * | 1969-06-02 | 1972-02-08 | Res Engineering Co | Actuator |
US3796477A (en) * | 1972-09-25 | 1974-03-12 | Xomox Corp | Lens housing and lens cover for objective lens ring of an operating microscope |
US4160536A (en) * | 1976-10-27 | 1979-07-10 | Jac. Jacobsen A/S | Counterbalanced arm |
US4107769A (en) * | 1977-03-21 | 1978-08-15 | American Sterilizer Company | Balanced single horizontal suspension arm |
JPS57190549A (en) | 1981-05-19 | 1982-11-24 | Olympus Optical Co | Ultrasonic diagnostic apparatus |
US4437114A (en) | 1982-06-07 | 1984-03-13 | Farrand Optical Co., Inc. | Robotic vision system |
US4518307A (en) * | 1982-09-29 | 1985-05-21 | The Boeing Company | Compliant robot arm adapter assembly |
US4673988A (en) | 1985-04-22 | 1987-06-16 | E.I. Du Pont De Nemours And Company | Electronic mosaic imaging process |
US4742817A (en) | 1985-05-15 | 1988-05-10 | Olympus Optical Co., Ltd. | Endoscopic apparatus having a bendable insertion section |
US4721097A (en) | 1986-10-31 | 1988-01-26 | Circon Corporation | Endoscope sheaths and method and apparatus for installation and removal |
US4809191A (en) | 1987-04-28 | 1989-02-28 | Barry Wright Corporation | Robotic position sensor |
US4792715A (en) | 1987-11-16 | 1988-12-20 | Barsky Michael F | Robot gripper control system using PVDF piezoelectric sensors |
GB2226245A (en) | 1988-11-18 | 1990-06-27 | Alan Crockard | Endoscope, remote actuator and aneurysm clip applicator. |
US5114403A (en) * | 1989-09-15 | 1992-05-19 | Eclipse Surgical Technologies, Inc. | Catheter torque mechanism |
US4949927A (en) | 1989-10-17 | 1990-08-21 | John Madocks | Articulable column |
FR2674639A1 (fr) | 1991-03-29 | 1992-10-02 | Gaz De France | Fibre optique a reseau de bragg et ses applications. |
US5251611A (en) | 1991-05-07 | 1993-10-12 | Zehel Wendell E | Method and apparatus for conducting exploratory procedures |
FI93607C (fi) * | 1991-05-24 | 1995-05-10 | John Koivukangas | Leikkaustoimenpidelaite |
US5417210A (en) * | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
EP0776738B1 (en) | 1992-01-21 | 2002-04-03 | Sri International | An endoscopic surgical instrument |
US6963792B1 (en) | 1992-01-21 | 2005-11-08 | Sri International | Surgical method |
US5631973A (en) | 1994-05-05 | 1997-05-20 | Sri International | Method for telemanipulation with telepresence |
US5624380A (en) | 1992-03-12 | 1997-04-29 | Olympus Optical Co., Ltd. | Multi-degree of freedom manipulator |
JPH06511181A (ja) * | 1992-03-18 | 1994-12-15 | ザ・スペクトラネティックス・コーポレーション | 可捩先端を有する繊維光学カテーテル |
US5395367A (en) * | 1992-07-29 | 1995-03-07 | Wilk; Peter J. | Laparoscopic instrument with bendable shaft and removable actuator |
US5524180A (en) | 1992-08-10 | 1996-06-04 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US5762458A (en) | 1996-02-20 | 1998-06-09 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5297536A (en) | 1992-08-25 | 1994-03-29 | Wilk Peter J | Method for use in intra-abdominal surgery |
US5397323A (en) | 1992-10-30 | 1995-03-14 | International Business Machines Corporation | Remote center-of-motion robot for surgery |
US6450950B2 (en) | 1992-11-12 | 2002-09-17 | Karl Storz Gmbh & Co. Kg | Endoscope having stereo-lateral-view optics |
JP3250759B2 (ja) | 1993-04-02 | 2002-01-28 | オリンパス光学工業株式会社 | 可撓性管状挿入具の湾曲装置 |
US6406472B1 (en) | 1993-05-14 | 2002-06-18 | Sri International, Inc. | Remote center positioner |
WO1994026167A1 (en) | 1993-05-14 | 1994-11-24 | Sri International | Remote center positioner |
US5487757A (en) | 1993-07-20 | 1996-01-30 | Medtronic Cardiorhythm | Multicurve deflectable catheter |
US5876325A (en) | 1993-11-02 | 1999-03-02 | Olympus Optical Co., Ltd. | Surgical manipulation system |
US5467223A (en) * | 1993-12-16 | 1995-11-14 | Xomed-Treace Inc. | Drape adapter |
US6010408A (en) | 1994-05-02 | 2000-01-04 | Eaton Corporation | Torsion isolator with active counterweight |
US5617515A (en) | 1994-07-11 | 1997-04-01 | Dynetics, Inc. | Method and apparatus for controlling and programming a robot or other moveable object |
US6120433A (en) | 1994-09-01 | 2000-09-19 | Olympus Optical Co., Ltd. | Surgical manipulator system |
US6597941B2 (en) | 1994-09-15 | 2003-07-22 | Stryker Corporation | Transillumination of body members for protection during body invasive procedures |
US5792045A (en) * | 1994-10-03 | 1998-08-11 | Adair; Edwin L. | Sterile surgical coupler and drape |
US5649032A (en) | 1994-11-14 | 1997-07-15 | David Sarnoff Research Center, Inc. | System for automatically aligning images to form a mosaic image |
US5868760A (en) | 1994-12-07 | 1999-02-09 | Mcguckin, Jr.; James F. | Method and apparatus for endolumenally resectioning tissue |
US5662581A (en) * | 1995-01-05 | 1997-09-02 | Delaware Capital Formation, Inc. | Easily sterilizable glove system |
US5759151A (en) | 1995-06-07 | 1998-06-02 | Carnegie Mellon University | Flexible steerable device for conducting exploratory procedures |
CN1155833A (zh) | 1995-06-20 | 1997-07-30 | 伍云升 | 用于医疗处理的活节机械手 |
IL115477A0 (en) * | 1995-10-01 | 1996-01-19 | Kaplan Harel Holdings Ltd | Scanner |
JP4166277B2 (ja) | 1996-02-15 | 2008-10-15 | バイオセンス・ウェブスター・インコーポレイテッド | 体内プローブを用いた医療方法および装置 |
US6436107B1 (en) | 1996-02-20 | 2002-08-20 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US6063095A (en) | 1996-02-20 | 2000-05-16 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US5855583A (en) | 1996-02-20 | 1999-01-05 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
JP3225835B2 (ja) | 1996-03-14 | 2001-11-05 | 富士写真光機株式会社 | 内視鏡の処置具固定機構 |
US5792044A (en) * | 1996-03-22 | 1998-08-11 | Danek Medical, Inc. | Devices and methods for percutaneous surgery |
US5797900A (en) | 1996-05-20 | 1998-08-25 | Intuitive Surgical, Inc. | Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5792135A (en) | 1996-05-20 | 1998-08-11 | Intuitive Surgical, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5755713A (en) * | 1996-06-03 | 1998-05-26 | Bilof; Michael L. | Laparoscopic instrument assembly including a plurality of instruments |
US6364888B1 (en) * | 1996-09-09 | 2002-04-02 | Intuitive Surgical, Inc. | Alignment of master and slave in a minimally invasive surgical apparatus |
US5752112A (en) | 1996-11-06 | 1998-05-12 | George Paddock, Inc. | Mounting system for body mounted camera equipment |
US8206406B2 (en) | 1996-12-12 | 2012-06-26 | Intuitive Surgical Operations, Inc. | Disposable sterile surgical adaptor |
US8182469B2 (en) | 1997-11-21 | 2012-05-22 | Intuitive Surgical Operations, Inc. | Surgical accessory clamp and method |
US7666191B2 (en) * | 1996-12-12 | 2010-02-23 | Intuitive Surgical, Inc. | Robotic surgical system with sterile surgical adaptor |
US6132368A (en) | 1996-12-12 | 2000-10-17 | Intuitive Surgical, Inc. | Multi-component telepresence system and method |
US7699855B2 (en) | 1996-12-12 | 2010-04-20 | Intuitive Surgical Operations, Inc. | Sterile surgical adaptor |
US6331181B1 (en) | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US5892860A (en) | 1997-01-21 | 1999-04-06 | Cidra Corporation | Multi-parameter fiber optic sensor for use in harsh environments |
AUPO478397A0 (en) | 1997-01-31 | 1997-02-20 | Fairmont Medical Products Pty Ltd | Endoscopic drape |
US5876328A (en) * | 1997-04-23 | 1999-03-02 | Endolap, Inc. | Surgical camera drape assembly and method |
AU7175398A (en) | 1997-05-02 | 1998-11-27 | Medtronic, Inc. | Adjustable supporting bracket having plural ball and socket joints |
US6066090A (en) | 1997-06-19 | 2000-05-23 | Yoon; Inbae | Branched endoscope system |
GB9713018D0 (en) | 1997-06-20 | 1997-08-27 | Secr Defence | Optical fibre bend sensor |
US6030130A (en) | 1997-07-07 | 2000-02-29 | George Paddock Ii, Inc. | Body mounted camera support system |
EP1015944B1 (en) | 1997-09-19 | 2013-02-27 | Massachusetts Institute Of Technology | Surgical robotic apparatus |
JPH11123675A (ja) * | 1997-10-22 | 1999-05-11 | Sankyo Seiki Mfg Co Ltd | ロボットの垂直軸上下機構 |
US6171277B1 (en) | 1997-12-01 | 2001-01-09 | Cordis Webster, Inc. | Bi-directional control handle for steerable catheter |
US5982791A (en) | 1998-01-14 | 1999-11-09 | Hewlett-Packard Company | Wavelength tracking in adjustable optical systems |
US6860878B2 (en) | 1998-02-24 | 2005-03-01 | Endovia Medical Inc. | Interchangeable instrument |
US7297142B2 (en) * | 1998-02-24 | 2007-11-20 | Hansen Medical, Inc. | Interchangeable surgical instrument |
US20020138082A1 (en) * | 1998-02-24 | 2002-09-26 | Brock David L. | Surgical instrument |
US7214230B2 (en) | 1998-02-24 | 2007-05-08 | Hansen Medical, Inc. | Flexible instrument |
US7758569B2 (en) * | 1998-02-24 | 2010-07-20 | Hansen Medical, Inc. | Interchangeable surgical instrument |
US6949106B2 (en) | 1998-02-24 | 2005-09-27 | Endovia Medical, Inc. | Surgical instrument |
US7090683B2 (en) | 1998-02-24 | 2006-08-15 | Hansen Medical, Inc. | Flexible instrument |
DE19815598B4 (de) | 1998-04-07 | 2007-01-18 | Stm Medizintechnik Starnberg Gmbh | Flexibles Zugangsrohr mit Stülpschlauchsystem |
US6191414B1 (en) | 1998-06-05 | 2001-02-20 | Cidra Corporation | Composite form as a component for a pressure transducer |
US6629630B2 (en) | 1998-06-19 | 2003-10-07 | Scimed Life Systems, Inc. | Non-circular resection device and endoscope |
US6352503B1 (en) | 1998-07-17 | 2002-03-05 | Olympus Optical Co., Ltd. | Endoscopic surgery apparatus |
AU5391999A (en) | 1998-08-04 | 2000-02-28 | Intuitive Surgical, Inc. | Manipulator positioning linkage for robotic surgery |
US6490490B1 (en) * | 1998-11-09 | 2002-12-03 | Olympus Optical Co., Ltd. | Remote operation support system and method |
US6309397B1 (en) * | 1999-12-02 | 2001-10-30 | Sri International | Accessories for minimally invasive robotic surgery and methods |
US6620173B2 (en) * | 1998-12-08 | 2003-09-16 | Intuitive Surgical, Inc. | Method for introducing an end effector to a surgical site in minimally invasive surgery |
JP4242491B2 (ja) | 1998-12-09 | 2009-03-25 | オリンパス株式会社 | 内視鏡治療装置 |
US6275628B1 (en) | 1998-12-10 | 2001-08-14 | Luna Innovations, Inc. | Single-ended long period grating optical device |
US6451027B1 (en) * | 1998-12-16 | 2002-09-17 | Intuitive Surgical, Inc. | Devices and methods for moving an image capture device in telesurgical systems |
CA2261488A1 (en) | 1999-01-21 | 2000-07-21 | Anthony Paolitto | Transabdominal device for performing closed-chest cardiac surgery |
US6394998B1 (en) | 1999-01-22 | 2002-05-28 | Intuitive Surgical, Inc. | Surgical tools for use in minimally invasive telesurgical applications |
US6571639B1 (en) | 1999-03-01 | 2003-06-03 | Luna Innovations, Inc. | Fiber optic system |
US6366722B1 (en) | 1999-03-04 | 2002-04-02 | Luna Innovations, Inc. | Optical waveguide sensors having high refractive index sensitivity |
US6396574B1 (en) | 1999-03-15 | 2002-05-28 | Korea Advanced Institute Science And Technology | Apparatus for measuring the wavelength, optical power and optical signal-to-noise ratio of each optical signal in wavelength-division multiplexing optical communication |
US6569084B1 (en) | 1999-03-31 | 2003-05-27 | Olympus Optical Co., Ltd. | Endoscope holder and endoscope device |
US6424885B1 (en) | 1999-04-07 | 2002-07-23 | Intuitive Surgical, Inc. | Camera referenced control in a minimally invasive surgical apparatus |
US7637905B2 (en) | 2003-01-15 | 2009-12-29 | Usgi Medical, Inc. | Endoluminal tool deployment system |
US6788018B1 (en) * | 1999-08-03 | 2004-09-07 | Intuitive Surgical, Inc. | Ceiling and floor mounted surgical robot set-up arms |
WO2001013060A1 (en) | 1999-08-13 | 2001-02-22 | Advanced Sensor Technologies Llc | Probe position sensing system for use in a coordinate measuring machine |
DE19938549A1 (de) * | 1999-08-18 | 2001-02-22 | Uwe Thomas | Mikrosondensystem |
US8768516B2 (en) | 2009-06-30 | 2014-07-01 | Intuitive Surgical Operations, Inc. | Control of medical robotic system manipulator about kinematic singularities |
US7594912B2 (en) * | 2004-09-30 | 2009-09-29 | Intuitive Surgical, Inc. | Offset remote center manipulator for robotic surgery |
US8004229B2 (en) | 2005-05-19 | 2011-08-23 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
SE514693C2 (sv) * | 1999-09-23 | 2001-04-02 | Elekta Ab | Stereotaktisk apparat |
US6537205B1 (en) | 1999-10-14 | 2003-03-25 | Scimed Life Systems, Inc. | Endoscopic instrument system having reduced backlash control wire action |
DE10004264C2 (de) | 2000-02-01 | 2002-06-13 | Storz Karl Gmbh & Co Kg | Vorrichtung zur intrakorporalen, minimal-invasiven Behandlung eines Patienten |
US6498886B1 (en) | 2000-02-18 | 2002-12-24 | Corning, Incorporated | Adaptive feedback control method for polarization mode dispersion or chromatic dispersion compensation |
US6527753B2 (en) | 2000-02-29 | 2003-03-04 | Olympus Optical Co., Ltd. | Endoscopic treatment system |
DE10011790B4 (de) | 2000-03-13 | 2005-07-14 | Siemens Ag | Medizinisches Instrument zum Einführen in ein Untersuchungsobjekt, sowie medizinisches Untersuchungs- oder Behandlungsgerät |
US6984203B2 (en) | 2000-04-03 | 2006-01-10 | Neoguide Systems, Inc. | Endoscope with adjacently positioned guiding apparatus |
US6671055B1 (en) | 2000-04-13 | 2003-12-30 | Luna Innovations, Inc. | Interferometric sensors utilizing bulk sensing mediums extrinsic to the input/output optical fiber |
JP2001327460A (ja) | 2000-05-18 | 2001-11-27 | Olympus Optical Co Ltd | 内視鏡装置 |
US6743239B1 (en) * | 2000-05-25 | 2004-06-01 | St. Jude Medical, Inc. | Devices with a bendable tip for medical procedures |
US6645196B1 (en) | 2000-06-16 | 2003-11-11 | Intuitive Surgical, Inc. | Guided tool change |
US6975898B2 (en) | 2000-06-19 | 2005-12-13 | University Of Washington | Medical imaging, diagnosis, and therapy using a scanning single optical fiber system |
DE10032203A1 (de) | 2000-07-01 | 2002-01-17 | Deutsches Krebsforsch | Stereotaxiesystem |
WO2002007618A1 (en) | 2000-07-21 | 2002-01-31 | Atropos Limited | A cannula |
US6902560B1 (en) | 2000-07-27 | 2005-06-07 | Intuitive Surgical, Inc. | Roll-pitch-roll surgical tool |
US6746443B1 (en) * | 2000-07-27 | 2004-06-08 | Intuitive Surgical Inc. | Roll-pitch-roll surgical tool |
US6572629B2 (en) | 2000-08-17 | 2003-06-03 | Johns Hopkins University | Gastric reduction endoscopy |
US7194118B1 (en) | 2000-11-10 | 2007-03-20 | Lucid, Inc. | System for optically sectioning and mapping surgically excised tissue |
US6468226B1 (en) * | 2000-11-22 | 2002-10-22 | Mcintyre, Iv John J. | Remote tissue biopsy apparatus and associated methods |
US6856400B1 (en) | 2000-12-14 | 2005-02-15 | Luna Technologies | Apparatus and method for the complete characterization of optical devices including loss, birefringence and dispersion effects |
US20030135204A1 (en) * | 2001-02-15 | 2003-07-17 | Endo Via Medical, Inc. | Robotically controlled medical instrument with a flexible section |
US7699835B2 (en) | 2001-02-15 | 2010-04-20 | Hansen Medical, Inc. | Robotically controlled surgical instruments |
US6578967B1 (en) | 2001-03-15 | 2003-06-17 | George Paddock Ii, Inc. | Mounting system for body mounted camera equipment and connector assemblies therefor |
US20020165524A1 (en) * | 2001-05-01 | 2002-11-07 | Dan Sanchez | Pivot point arm for a robotic system used to perform a surgical procedure |
US6808491B2 (en) | 2001-05-21 | 2004-10-26 | Syntheon, Llc | Methods and apparatus for on-endoscope instruments having end effectors and combinations of on-endoscope and through-endoscope instruments |
US20040054355A1 (en) | 2001-05-31 | 2004-03-18 | Intuitive Surgical, Inc. | Tool guide and method for introducing an end effector to a surgical site in minimally invasive surgery |
AU2002322374B2 (en) * | 2001-06-29 | 2006-10-26 | Intuitive Surgical, Inc. | Platform link wrist mechanism |
US6817974B2 (en) | 2001-06-29 | 2004-11-16 | Intuitive Surgical, Inc. | Surgical tool having positively positionable tendon-actuated multi-disk wrist joint |
JP2003024336A (ja) * | 2001-07-16 | 2003-01-28 | Hitachi Ltd | 術具装置 |
US6676684B1 (en) * | 2001-09-04 | 2004-01-13 | Intuitive Surgical, Inc. | Roll-pitch-roll-yaw surgical tool |
DE10147145C2 (de) * | 2001-09-25 | 2003-12-18 | Kunz Reiner | Multifunktionsinstrument für die mikroinvasive Chirurgie |
JP2003204920A (ja) | 2002-01-11 | 2003-07-22 | Olympus Optical Co Ltd | 挿入補助具 |
JP2003230565A (ja) | 2002-02-12 | 2003-08-19 | Univ Tokyo | 能動トロカール |
JP4073249B2 (ja) * | 2002-05-17 | 2008-04-09 | オリンパス株式会社 | 手術システム |
US6783491B2 (en) | 2002-06-13 | 2004-08-31 | Vahid Saadat | Shape lockable apparatus and method for advancing an instrument through unsupported anatomy |
US7041052B2 (en) | 2002-06-13 | 2006-05-09 | Usgi Medical Inc. | Shape lockable apparatus and method for advancing an instrument through unsupported anatomy |
US6679836B2 (en) | 2002-06-21 | 2004-01-20 | Scimed Life Systems, Inc. | Universal programmable guide catheter |
US7331967B2 (en) * | 2002-09-09 | 2008-02-19 | Hansen Medical, Inc. | Surgical instrument coupling mechanism |
US7947000B2 (en) | 2003-09-12 | 2011-05-24 | Intuitive Surgical Operations, Inc. | Cannula system for free-space navigation and method of use |
JP3680050B2 (ja) * | 2002-09-18 | 2005-08-10 | 株式会社東芝 | 医療用マニピュレータ及びその制御方法 |
US6854327B2 (en) | 2002-11-06 | 2005-02-15 | Shell Oil Company | Apparatus and method for monitoring compaction |
US6899672B2 (en) | 2002-11-08 | 2005-05-31 | Scimed Life Systems, Inc. | Endoscopic imaging system including removable deflection device |
CN1486667A (zh) | 2002-11-22 | 2004-04-07 | 带有一次性鞘套的内窥镜系统 | |
EP2901959B1 (en) * | 2002-12-06 | 2019-02-06 | Intuitive Surgical Operations, Inc. | Flexible wrist for surgical tool |
US20040186350A1 (en) | 2003-01-13 | 2004-09-23 | Usgi Medical Corp. | Apparatus and methods for guiding an endoscope via a rigidizable wire guide |
US20040249367A1 (en) | 2003-01-15 | 2004-12-09 | Usgi Medical Corp. | Endoluminal tool deployment system |
US6925339B2 (en) | 2003-02-04 | 2005-08-02 | Zimmer Technology, Inc. | Implant registration device for surgical navigation system |
US6836578B2 (en) | 2003-04-14 | 2004-12-28 | Lake Shore Cryotronics, Inc. | System and method for measuring physical stimuli using vertical cavity surface emitting lasers with integrated tuning means |
JP2003275223A (ja) | 2003-04-21 | 2003-09-30 | Olympus Optical Co Ltd | 手術装置 |
US7371028B2 (en) | 2003-05-01 | 2008-05-13 | George Paddock Ii, Inc. | Post mounting system |
EP1628632B1 (en) * | 2003-05-21 | 2013-10-09 | The Johns Hopkins University | Devices and systems for minimally invasive surgery of the throat and other portions of mammalian body |
US7090637B2 (en) | 2003-05-23 | 2006-08-15 | Novare Surgical Systems, Inc. | Articulating mechanism for remote manipulation of a surgical or diagnostic tool |
JP4460857B2 (ja) | 2003-06-23 | 2010-05-12 | オリンパス株式会社 | 外科手術用システム |
JP4559093B2 (ja) | 2003-10-03 | 2010-10-06 | オリンパス株式会社 | 医療用具支持装置 |
US20050096502A1 (en) | 2003-10-29 | 2005-05-05 | Khalili Theodore M. | Robotic surgical device |
US7481793B2 (en) | 2003-12-10 | 2009-01-27 | Boston Scientic Scimed, Inc. | Modular steerable sheath catheters |
US8052636B2 (en) | 2004-03-05 | 2011-11-08 | Hansen Medical, Inc. | Robotic catheter system and methods |
WO2005087128A1 (en) | 2004-03-05 | 2005-09-22 | Hansen Medical, Inc. | Robotic catheter system |
JP3922284B2 (ja) | 2004-03-31 | 2007-05-30 | 有限会社エスアールジェイ | 保持装置 |
US20050272977A1 (en) | 2004-04-14 | 2005-12-08 | Usgi Medical Inc. | Methods and apparatus for performing endoluminal procedures |
US7379790B2 (en) * | 2004-05-04 | 2008-05-27 | Intuitive Surgical, Inc. | Tool memory-based software upgrades for robotic surgery |
US20050251176A1 (en) | 2004-05-07 | 2005-11-10 | Usgi Medical Inc. | System for treating gastroesophageal reflux disease |
US7837615B2 (en) | 2004-05-10 | 2010-11-23 | Usgi Medical, Inc. | Shape lockable apparatus and method for advancing an instrument through unsupported anatomy |
EP1744696A1 (en) * | 2004-05-14 | 2007-01-24 | Cardima, Inc. | Ablation probe with stabilizing member |
JP2007537832A (ja) | 2004-05-17 | 2007-12-27 | シー・アール・バード・インコーポレーテッド | 心室頻拍症を治療するためのマッピング及び切除法 |
CA2472421C (en) | 2004-06-25 | 2012-04-24 | 059312 N.B. Inc. | Shape-acceleration measurement device and method |
US7772541B2 (en) | 2004-07-16 | 2010-08-10 | Luna Innnovations Incorporated | Fiber optic position and/or shape sensing based on rayleigh scatter |
US20060013523A1 (en) | 2004-07-16 | 2006-01-19 | Luna Innovations Incorporated | Fiber optic position and shape sensing device and method relating thereto |
US7781724B2 (en) | 2004-07-16 | 2010-08-24 | Luna Innovations Incorporated | Fiber optic position and shape sensing device and method relating thereto |
CN2710567Y (zh) * | 2004-07-22 | 2005-07-20 | 上海英迈吉东影图像设备有限公司 | 手术导航系统机械臂 |
US7979157B2 (en) | 2004-07-23 | 2011-07-12 | Mcmaster University | Multi-purpose robotic operating system and method |
US8075476B2 (en) | 2004-07-27 | 2011-12-13 | Intuitive Surgical Operations, Inc. | Cannula system and method of use |
US8016835B2 (en) * | 2004-08-06 | 2011-09-13 | Depuy Spine, Inc. | Rigidly guided implant placement with control assist |
US9261172B2 (en) | 2004-09-30 | 2016-02-16 | Intuitive Surgical Operations, Inc. | Multi-ply strap drive trains for surgical robotic arms |
CN100588511C (zh) * | 2004-11-22 | 2010-02-10 | 松下电器产业株式会社 | 关节构造体及机器人手臂 |
JP4588432B2 (ja) | 2004-12-15 | 2010-12-01 | 富士重工業株式会社 | 損傷探知用モジュール化センサの製造方法 |
US7763015B2 (en) * | 2005-01-24 | 2010-07-27 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
US7837674B2 (en) | 2005-01-24 | 2010-11-23 | Intuitive Surgical Operations, Inc. | Compact counter balance for robotic surgical systems |
CN100336640C (zh) * | 2005-02-01 | 2007-09-12 | 天津大学 | 外科手术机器人从操作手 |
US20060184161A1 (en) * | 2005-02-16 | 2006-08-17 | Usgi Medical Inc. | Flexible shaft system having interchangeable end effectors |
US7175456B2 (en) * | 2005-02-28 | 2007-02-13 | Robert Bosch Gmbh | Anti-disengagement connect system for a power tool |
US8182433B2 (en) | 2005-03-04 | 2012-05-22 | Endosense Sa | Medical apparatus system having optical fiber load sensing capability |
US8075498B2 (en) | 2005-03-04 | 2011-12-13 | Endosense Sa | Medical apparatus system having optical fiber load sensing capability |
US7752920B2 (en) | 2005-12-30 | 2010-07-13 | Intuitive Surgical Operations, Inc. | Modular force sensor |
US8463439B2 (en) * | 2009-03-31 | 2013-06-11 | Intuitive Surgical Operations, Inc. | Optic fiber connection for a force sensing instrument |
US10555775B2 (en) | 2005-05-16 | 2020-02-11 | Intuitive Surgical Operations, Inc. | Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery |
US9789608B2 (en) * | 2006-06-29 | 2017-10-17 | Intuitive Surgical Operations, Inc. | Synthetic representation of a surgical robot |
EP1887961B1 (en) * | 2005-06-06 | 2012-01-11 | Intuitive Surgical Operations, Inc. | Laparoscopic ultrasound robotic surgical system |
US20070005002A1 (en) | 2005-06-30 | 2007-01-04 | Intuitive Surgical Inc. | Robotic surgical instruments for irrigation, aspiration, and blowing |
EP3395508A1 (en) | 2005-06-30 | 2018-10-31 | Intuitive Surgical Operations Inc. | Indicator for tool state communication in multi-arm robotic telesurgery |
JP2007029274A (ja) * | 2005-07-25 | 2007-02-08 | Hitachi Ltd | 術具装置 |
JP2009507617A (ja) | 2005-09-14 | 2009-02-26 | ネオガイド システムズ, インコーポレイテッド | 経腔的及び他の操作を行うための方法及び装置 |
GB0521281D0 (en) | 2005-10-19 | 2005-11-30 | Acrobat Company The Ltd | hybrid constrant mechanism |
JP4981680B2 (ja) | 2005-11-04 | 2012-07-25 | オリンパスメディカルシステムズ株式会社 | 内視鏡システム、内視鏡、支持部材 |
US8190238B2 (en) | 2005-12-09 | 2012-05-29 | Hansen Medical, Inc. | Robotic catheter system and methods |
JP5043414B2 (ja) * | 2005-12-20 | 2012-10-10 | インテュイティブ サージカル インコーポレイテッド | 無菌外科手術アダプタ |
WO2007075844A1 (en) | 2005-12-20 | 2007-07-05 | Intuitive Surgical, Inc. | Telescoping insertion axis of a robotic surgical system |
CN101340852B (zh) * | 2005-12-20 | 2011-12-28 | 直观外科手术操作公司 | 机器人外科系统的器械对接装置 |
US8672922B2 (en) * | 2005-12-20 | 2014-03-18 | Intuitive Surgical Operations, Inc. | Wireless communication in a robotic surgical system |
US8182470B2 (en) | 2005-12-20 | 2012-05-22 | Intuitive Surgical Operations, Inc. | Telescoping insertion axis of a robotic surgical system |
KR101296220B1 (ko) | 2005-12-30 | 2013-08-13 | 인튜어티브 서지컬 인코포레이티드 | 모듈식 힘센서 |
US7930065B2 (en) | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
US9962066B2 (en) * | 2005-12-30 | 2018-05-08 | Intuitive Surgical Operations, Inc. | Methods and apparatus to shape flexible entry guides for minimally invasive surgery |
US8469945B2 (en) | 2006-01-25 | 2013-06-25 | Intuitive Surgical Operations, Inc. | Center robotic arm with five-bar spherical linkage for endoscopic camera |
US8142420B2 (en) | 2006-01-25 | 2012-03-27 | Intuitive Surgical Operations Inc. | Robotic arm with five-bar spherical linkage |
EP1815949A1 (en) * | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Medical robotic system with manipulator arm of the cylindrical coordinate type |
EP1815950A1 (en) * | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Robotic surgical system for performing minimally invasive medical procedures |
US7918783B2 (en) * | 2006-03-22 | 2011-04-05 | Boston Scientific Scimed, Inc. | Endoscope working channel with multiple functionality |
EP3545815A1 (en) | 2006-03-22 | 2019-10-02 | Koninklijke Philips Electronics N.V. | Fiber optic instrument sensing system |
US8377045B2 (en) * | 2006-06-13 | 2013-02-19 | Intuitive Surgical Operations, Inc. | Extendable suction surface for bracing medial devices during robotically assisted medical procedures |
EP2038712B2 (en) | 2006-06-13 | 2019-08-28 | Intuitive Surgical Operations, Inc. | Control system configured to compensate for non-ideal actuator-to-joint linkage characteristics in a medical robotic system |
US8517933B2 (en) | 2006-06-13 | 2013-08-27 | Intuitive Surgical Operations, Inc. | Retraction of tissue for single port entry, robotically assisted medical procedures |
US8597280B2 (en) | 2006-06-13 | 2013-12-03 | Intuitive Surgical Operations, Inc. | Surgical instrument actuator |
US8029516B2 (en) | 2006-06-13 | 2011-10-04 | Intuitive Surgical Operations, Inc. | Bracing of bundled medical devices for single port entry, robotically assisted medical procedures |
US8062211B2 (en) | 2006-06-13 | 2011-11-22 | Intuitive Surgical Operations, Inc. | Retrograde instrument |
CA3068216C (en) | 2006-06-22 | 2023-03-07 | Board Of Regents Of The University Of Nebraska | Magnetically coupleable robotic devices and related methods |
US10258425B2 (en) * | 2008-06-27 | 2019-04-16 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide |
EP1876372B1 (en) * | 2006-07-05 | 2008-08-20 | Haldex Brake Products AB | Disc brake and spacer element |
US7690222B2 (en) * | 2006-08-02 | 2010-04-06 | Owens-Brockway Glass Container Inc. | Glass gob distribution |
TWM306883U (en) | 2006-08-28 | 2007-03-01 | Taiwan Sakurai Mfg Co Ltd | Glove for baseball or softball |
WO2008028149A2 (en) | 2006-09-01 | 2008-03-06 | Voyage Medical, Inc. | Electrophysiology mapping and visualization system |
US8157793B2 (en) * | 2006-10-25 | 2012-04-17 | Terumo Kabushiki Kaisha | Manipulator for medical use |
US8814779B2 (en) | 2006-12-21 | 2014-08-26 | Intuitive Surgical Operations, Inc. | Stereoscopic endoscope |
US7918785B2 (en) | 2007-01-17 | 2011-04-05 | Olympus Medical Systems Corp. | Medical apparatus, treatment instrument for endoscope and endoscope apparatus |
CN100479776C (zh) * | 2007-02-02 | 2009-04-22 | 天津大学 | 微创外科手术用多自由度微机械手 |
US20080221590A1 (en) * | 2007-03-05 | 2008-09-11 | Intuitive Surgical, Inc. | Apparatus for positioning and holding in place a manually manipulated medical device during the performance of a robotically assisted medical procedure |
US20080235436A1 (en) * | 2007-03-23 | 2008-09-25 | Zimmer Vincent J | Storage access control |
US8377044B2 (en) * | 2007-03-30 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Detachable end effectors |
US8409234B2 (en) * | 2007-05-25 | 2013-04-02 | Hansen Medical, Inc. | Rotational apparatus system and method for a robotic instrument system |
US8620473B2 (en) | 2007-06-13 | 2013-12-31 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
US9084623B2 (en) | 2009-08-15 | 2015-07-21 | Intuitive Surgical Operations, Inc. | Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide |
US9096033B2 (en) | 2007-06-13 | 2015-08-04 | Intuitive Surgical Operations, Inc. | Surgical system instrument sterile adapter |
US8903546B2 (en) | 2009-08-15 | 2014-12-02 | Intuitive Surgical Operations, Inc. | Smooth control of an articulated instrument across areas with different work space conditions |
US8444631B2 (en) * | 2007-06-14 | 2013-05-21 | Macdonald Dettwiler & Associates Inc | Surgical manipulator |
US8264777B2 (en) | 2007-06-26 | 2012-09-11 | Qd Vision, Inc. | Portable electronic device having an electro wetting display illuminated by quantum dots |
US20090054728A1 (en) | 2007-08-21 | 2009-02-26 | Trusty Robert M | Manipulatable guide system and methods for natural orifice translumenal endoscopic surgery |
EP2234549A2 (en) * | 2007-12-20 | 2010-10-06 | Cavanaugh Medical Devices, LLC | Multi-purpose tool for minor surgery |
JP5017076B2 (ja) | 2007-12-21 | 2012-09-05 | テルモ株式会社 | マニピュレータシステム及びマニピュレータの制御方法 |
KR100975047B1 (ko) * | 2008-02-15 | 2010-08-11 | (주)미래컴퍼니 | 수술용 인스트루먼트의 커플링 구조 |
US7886743B2 (en) | 2008-03-31 | 2011-02-15 | Intuitive Surgical Operations, Inc. | Sterile drape interface for robotic surgical instrument |
US8333755B2 (en) | 2008-03-31 | 2012-12-18 | Intuitive Surgical Operations, Inc. | Coupler to transfer controller motion from a robotic manipulator to an attached instrument |
US9895813B2 (en) * | 2008-03-31 | 2018-02-20 | Intuitive Surgical Operations, Inc. | Force and torque sensing in a surgical robot setup arm |
EP2276392A4 (en) | 2008-04-14 | 2013-03-27 | Univ Carnegie Mellon | ARTICULATED DEVICE WITH VISUALIZATION SYSTEM |
AU2009255959B2 (en) | 2008-06-05 | 2013-11-28 | Carnegie Mellon University | Extendable articulated probe device |
CN102014759B (zh) * | 2008-06-11 | 2012-12-26 | 韩商未来股份有限公司 | 用于手术机器人臂的仪器 |
US8220765B2 (en) | 2008-06-23 | 2012-07-17 | Intuitive Surgical Operations, Inc. | Spring counterbalance for rotating load |
US9179832B2 (en) | 2008-06-27 | 2015-11-10 | Intuitive Surgical Operations, Inc. | Medical robotic system with image referenced camera control using partitionable orientational and translational modes |
US8414469B2 (en) | 2008-06-27 | 2013-04-09 | Intuitive Surgical Operations, Inc. | Medical robotic system having entry guide controller with instrument tip velocity limiting |
US8490953B2 (en) | 2008-06-30 | 2013-07-23 | Intuitive Surgical Operations, Inc. | Spring counterbalance with failure detection |
US20100111645A1 (en) | 2008-11-04 | 2010-05-06 | Mayez Al-Mouhamed | Anthropomorphic force-reflective master arm |
US8720448B2 (en) * | 2008-11-07 | 2014-05-13 | Hansen Medical, Inc. | Sterile interface apparatus |
CN101474090B (zh) * | 2009-02-17 | 2010-12-08 | 哈尔滨工业大学 | 六自由度穿戴式辅助接骨并联机器人 |
CN101548904B (zh) * | 2009-05-22 | 2010-11-17 | 四川大学 | 一种手术机器人手臂 |
US8918212B2 (en) | 2009-06-24 | 2014-12-23 | Intuitive Surgical Operations, Inc. | Arm with a combined shape and force sensor |
US8918211B2 (en) | 2010-02-12 | 2014-12-23 | Intuitive Surgical Operations, Inc. | Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument |
US8504134B2 (en) | 2009-10-01 | 2013-08-06 | Intuitive Surgical Operations, Inc. | Laterally fenestrated cannula |
US8887595B2 (en) | 2009-12-22 | 2014-11-18 | Intuitive Surgical Operations, Inc. | Instrument wrist with cycloidal surfaces |
US9339341B2 (en) | 2010-02-08 | 2016-05-17 | Intuitive Surgical Operations, Inc. | Direct pull surgical gripper |
US9877744B2 (en) | 2010-02-12 | 2018-01-30 | Intuitive Surgical Operations, Inc. | Entry guide for multiple instruments in a single port surgical system |
US10376331B2 (en) | 2010-02-12 | 2019-08-13 | Intuitive Surgical Operations, Inc. | Sheaths for jointed instruments |
US8603077B2 (en) | 2010-05-14 | 2013-12-10 | Intuitive Surgical Operations, Inc. | Force transmission for robotic surgical instrument |
US8661927B2 (en) | 2010-05-14 | 2014-03-04 | Intuitive Surgical Operations, Inc. | Cable re-ordering device |
US8991278B2 (en) | 2010-05-14 | 2015-03-31 | Intuitive Surgical Operations, Inc. | Overforce protection mechanism |
KR102356881B1 (ko) | 2013-08-15 | 2022-02-03 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 카테터 위치설정 및 삽입을 위한 그래픽 사용자 인터페이스 |
US10912523B2 (en) | 2014-03-24 | 2021-02-09 | Intuitive Surgical Operations, Inc. | Systems and methods for anatomic motion compensation |
EP3174490B1 (en) | 2014-07-28 | 2020-04-15 | Intuitive Surgical Operations, Inc. | Systems and methods for planning multiple interventional procedures |
EP3691558A4 (en) | 2017-10-05 | 2021-07-21 | Mobius Imaging LLC | METHODS AND SYSTEMS FOR PERFORMING COMPUTER-AIDED SURGERY |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
US11592657B2 (en) | 2018-12-18 | 2023-02-28 | Hemotech Cognition, LLC | Method and system for identifying objects in a blood sample |
-
2010
- 2010-08-12 US US12/855,461 patent/US9096033B2/en active Active
- 2010-08-12 US US12/855,488 patent/US8784435B2/en active Active
- 2010-08-12 US US12/855,452 patent/US8852208B2/en active Active
- 2010-08-12 US US12/855,434 patent/US20110282357A1/en not_active Abandoned
- 2010-08-12 US US12/855,413 patent/US8945148B2/en active Active
- 2010-08-12 US US12/855,499 patent/US8746252B2/en active Active
- 2010-08-12 US US12/855,475 patent/US9301807B2/en active Active
-
2011
- 2011-05-04 CN CN201180024096XA patent/CN102892363A/zh active Pending
- 2011-05-04 KR KR1020207003642A patent/KR102176624B1/ko active IP Right Grant
- 2011-05-04 EP EP11720924A patent/EP2568894A1/en not_active Withdrawn
- 2011-05-04 JP JP2013511203A patent/JP5782114B2/ja active Active
- 2011-05-04 KR KR1020127032245A patent/KR101812990B1/ko active IP Right Grant
- 2011-05-04 WO PCT/US2011/035097 patent/WO2011143016A1/en active Application Filing
- 2011-05-04 BR BR112012028465A patent/BR112012028465B1/pt active IP Right Grant
- 2011-05-04 JP JP2013510170A patent/JP2013528065A/ja not_active Withdrawn
- 2011-05-04 CN CN201180024022.6A patent/CN102892374B/zh active Active
- 2011-05-04 CN CN201610181366.2A patent/CN105852976B/zh active Active
- 2011-05-04 BR BR112012028375-8A patent/BR112012028375B1/pt active IP Right Grant
- 2011-05-04 CN CN201510224829.4A patent/CN104958111B/zh active Active
- 2011-05-04 WO PCT/US2011/035109 patent/WO2011143020A1/en active Application Filing
- 2011-05-04 KR KR1020177036821A patent/KR101856099B1/ko active IP Right Grant
- 2011-05-04 BR BR112012028374A patent/BR112012028374A2/pt not_active IP Right Cessation
- 2011-05-04 KR KR1020197007458A patent/KR102076823B1/ko active IP Right Grant
- 2011-05-04 KR KR1020187012564A patent/KR101960345B1/ko active IP Right Grant
- 2011-05-04 CN CN201510430673.5A patent/CN105125263B/zh active Active
- 2011-05-04 KR KR1020187013393A patent/KR101894849B1/ko active IP Right Grant
- 2011-05-04 EP EP11720922.1A patent/EP2568909B1/en active Active
- 2011-05-04 WO PCT/US2011/035128 patent/WO2011143024A1/en active Application Filing
- 2011-05-04 WO PCT/US2011/035123 patent/WO2011143023A1/en active Application Filing
- 2011-05-04 EP EP24185835.6A patent/EP4418669A2/en active Pending
- 2011-05-04 EP EP11719951.3A patent/EP2568913B1/en active Active
- 2011-05-04 KR KR1020177036485A patent/KR101911525B1/ko active Application Filing
- 2011-05-04 EP EP20153951.7A patent/EP3673857A1/en active Pending
- 2011-05-04 BR BR112012029169A patent/BR112012029169B1/pt active IP Right Grant
- 2011-05-04 KR KR1020127032774A patent/KR20130076825A/ko not_active Application Discontinuation
- 2011-05-04 KR KR1020187030154A patent/KR101990357B1/ko active IP Right Grant
- 2011-05-04 EP EP20155212.2A patent/EP3677209B1/en active Active
- 2011-05-04 CN CN201910947224.6A patent/CN110604619B/zh active Active
- 2011-05-04 EP EP17188902.5A patent/EP3281752B1/en active Active
- 2011-05-04 KR KR1020177025856A patent/KR101859012B1/ko active IP Right Grant
- 2011-05-04 KR KR1020127032775A patent/KR101780238B1/ko active Application Filing
- 2011-05-04 WO PCT/US2011/035117 patent/WO2011143022A1/en active Application Filing
- 2011-05-04 JP JP2013510169A patent/JP5775154B2/ja active Active
- 2011-05-04 KR KR1020207031744A patent/KR102304696B1/ko active IP Right Grant
- 2011-05-04 WO PCT/US2011/035113 patent/WO2011143021A1/en active Application Filing
- 2011-05-04 CN CN201510271529.1A patent/CN104958085B/zh active Active
- 2011-05-04 KR KR1020217029784A patent/KR102455184B1/ko active IP Right Grant
- 2011-05-04 CN CN201180024117.8A patent/CN102892376B/zh active Active
- 2011-05-04 JP JP2013510168A patent/JP5849090B2/ja active Active
- 2011-05-04 EP EP11719953.9A patent/EP2568908B1/en active Active
- 2011-05-04 CN CN201180024036.8A patent/CN102892375B/zh active Active
- 2011-05-04 KR KR1020127032773A patent/KR101812485B1/ko active IP Right Grant
-
2014
- 2014-04-11 US US14/250,705 patent/US10537358B2/en active Active
- 2014-06-16 US US14/305,338 patent/US9757149B2/en active Active
- 2014-09-05 US US14/478,311 patent/US9801654B2/en active Active
- 2014-11-26 US US14/555,417 patent/US9955996B2/en active Active
-
2015
- 2015-04-15 JP JP2015083153A patent/JP6130428B2/ja active Active
- 2015-07-01 US US14/788,919 patent/US10869730B2/en active Active
- 2015-07-02 JP JP2015133881A patent/JP6113787B2/ja active Active
- 2015-11-30 JP JP2015233121A patent/JP6104353B2/ja active Active
-
2016
- 2016-11-23 US US15/360,311 patent/US10456166B2/en active Active
-
2017
- 2017-04-13 JP JP2017079726A patent/JP6285064B2/ja active Active
- 2017-09-28 US US15/718,963 patent/US10624672B2/en active Active
-
2018
- 2018-03-29 US US15/939,705 patent/US10918449B2/en active Active
- 2018-07-31 US US16/050,033 patent/US10856946B2/en active Active
-
2019
- 2019-09-09 US US16/565,113 patent/US11376086B2/en active Active
- 2019-09-11 US US16/568,118 patent/US11278364B2/en active Active
-
2020
- 2020-04-17 US US16/851,794 patent/US11596488B2/en active Active
- 2020-05-14 US US16/874,163 patent/US11684439B2/en active Active
- 2020-12-04 US US17/112,154 patent/US20210085411A1/en active Pending
-
2021
- 2021-01-27 US US17/159,764 patent/US20210220066A1/en active Pending
-
2022
- 2022-03-01 US US17/683,949 patent/US20220183780A1/en active Pending
-
2023
- 2023-06-01 US US18/327,238 patent/US20240000532A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2824867Y (zh) * | 2005-04-22 | 2006-10-11 | 董永华 | 手术隔离单 |
CN101242789A (zh) * | 2005-09-30 | 2008-08-13 | 直观外科手术公司 | 消毒手术帷帘 |
US20100292707A1 (en) * | 2008-01-24 | 2010-11-18 | Kuka Roboter Gmbh | Sterile Barrier For A Surgical Robot With Torque Sensors |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109922751A (zh) * | 2016-11-08 | 2019-06-21 | Cmr外科有限公司 | 用于将机器人臂固定到支撑结构的附接结构 |
CN106983513A (zh) * | 2017-05-02 | 2017-07-28 | 内蒙古智牧溯源技术开发有限公司 | 一种基于rfid及物联网的牲畜体征检测装置 |
CN106983513B (zh) * | 2017-05-02 | 2023-03-21 | 内蒙古智牧溯源技术开发有限公司 | 一种基于rfid及物联网的牲畜体征检测装置 |
CN107334536A (zh) * | 2017-07-31 | 2017-11-10 | 成都中科博恩思医学机器人有限公司 | 一种内部支撑机构及控制台 |
CN108324384A (zh) * | 2018-05-04 | 2018-07-27 | 傅丽秋 | 一种改良型医疗手术设备 |
CN108324385A (zh) * | 2018-05-04 | 2018-07-27 | 吕丹丹 | 一种医疗手术设备 |
CN108338845A (zh) * | 2018-05-04 | 2018-07-31 | 吕丹丹 | 一种先进的医疗手术设备 |
CN111249007A (zh) * | 2018-11-30 | 2020-06-09 | 微创(上海)医疗机器人有限公司 | 医疗机器人及其用于夹持医疗器械的机械臂 |
CN113453643A (zh) * | 2018-12-30 | 2021-09-28 | 迈米克创新手术有限公司 | 机器人设备的手术布单 |
CN112618023A (zh) * | 2020-12-30 | 2021-04-09 | 上海微创医疗机器人(集团)股份有限公司 | 一种无菌隔离装置及手术机器人系统 |
CN112618023B (zh) * | 2020-12-30 | 2022-05-10 | 上海微创医疗机器人(集团)股份有限公司 | 一种无菌隔离装置及手术机器人系统 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104958111B (zh) | 手术系统无菌帷帘 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20160817 Assignee: Intuitive medical Co. Assignor: INTUITIVE SURGICAL OPERATIONS, Inc. Contract record no.: X2022990000315 Denomination of invention: Sterile curtain of surgical system Granted publication date: 20191105 License type: Common License Record date: 20220620 |