CN118383870A - 用于经皮进入的对准界面 - Google Patents
用于经皮进入的对准界面 Download PDFInfo
- Publication number
- CN118383870A CN118383870A CN202410482671.XA CN202410482671A CN118383870A CN 118383870 A CN118383870 A CN 118383870A CN 202410482671 A CN202410482671 A CN 202410482671A CN 118383870 A CN118383870 A CN 118383870A
- Authority
- CN
- China
- Prior art keywords
- medical instrument
- alignment
- orientation
- target
- instrument
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims abstract description 215
- 210000003484 anatomy Anatomy 0.000 claims abstract description 85
- 230000008859 change Effects 0.000 claims description 62
- 230000033001 locomotion Effects 0.000 claims description 27
- 230000000007 visual effect Effects 0.000 claims description 21
- 230000004044 response Effects 0.000 claims description 17
- 239000003550 marker Substances 0.000 claims description 15
- 230000008569 process Effects 0.000 description 61
- 210000003734 kidney Anatomy 0.000 description 60
- 206010029148 Nephrolithiasis Diseases 0.000 description 38
- 238000012800 visualization Methods 0.000 description 37
- 208000000913 Kidney Calculi Diseases 0.000 description 35
- 210000002445 nipple Anatomy 0.000 description 25
- 238000004891 communication Methods 0.000 description 19
- 238000003384 imaging method Methods 0.000 description 16
- 230000006870 function Effects 0.000 description 13
- 210000003708 urethra Anatomy 0.000 description 13
- 238000002591 computed tomography Methods 0.000 description 12
- 238000003780 insertion Methods 0.000 description 12
- 230000037431 insertion Effects 0.000 description 12
- 230000008901 benefit Effects 0.000 description 11
- 238000013500 data storage Methods 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 10
- 210000000626 ureter Anatomy 0.000 description 10
- 210000003932 urinary bladder Anatomy 0.000 description 9
- 241001164374 Calyx Species 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000012530 fluid Substances 0.000 description 8
- 238000002594 fluoroscopy Methods 0.000 description 8
- 208000008281 urolithiasis Diseases 0.000 description 8
- 208000009911 Urinary Calculi Diseases 0.000 description 7
- 239000013307 optical fiber Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 210000000056 organ Anatomy 0.000 description 6
- 230000002262 irrigation Effects 0.000 description 5
- 238000003973 irrigation Methods 0.000 description 5
- 239000004575 stone Substances 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 210000001635 urinary tract Anatomy 0.000 description 5
- 210000002700 urine Anatomy 0.000 description 5
- 210000000028 corpus adiposum pararenale Anatomy 0.000 description 4
- 239000012636 effector Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 206010007027 Calculus urinary Diseases 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 210000002254 renal artery Anatomy 0.000 description 3
- 210000005085 renal fascia Anatomy 0.000 description 3
- 210000002796 renal vein Anatomy 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 206010073306 Exposure to radiation Diseases 0.000 description 2
- 229920000271 Kevlar® Polymers 0.000 description 2
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 2
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 210000004100 adrenal gland Anatomy 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 210000001624 hip Anatomy 0.000 description 2
- 239000004761 kevlar Substances 0.000 description 2
- 210000000244 kidney pelvis Anatomy 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 210000000885 nephron Anatomy 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 210000005239 tubule Anatomy 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 229940116269 uric acid Drugs 0.000 description 2
- 230000002485 urinary effect Effects 0.000 description 2
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241001522301 Apogonichthyoides nigripinnis Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- 208000015924 Lithiasis Diseases 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 206010038478 Renal lithiasis Diseases 0.000 description 1
- 210000000683 abdominal cavity Anatomy 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 210000000120 body fluid compartment Anatomy 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 238000013276 bronchoscopy Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000994 contrast dye Substances 0.000 description 1
- 230000036757 core body temperature Effects 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003195 fascia Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002575 gastroscopy Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000001937 intercostal nerve Anatomy 0.000 description 1
- 238000002357 laparoscopic surgery Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000002504 lithotomy Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000001531 micro-dissection Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 238000013059 nephrectomy Methods 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 210000004303 peritoneum Anatomy 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 210000004224 pleura Anatomy 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 210000000574 retroperitoneal space Anatomy 0.000 description 1
- 210000000614 rib Anatomy 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 210000001113 umbilicus Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Master-slave robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3478—Endoscopic needles, e.g. for infusion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/25—User interfaces for surgical systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00115—Electrical control of surgical instruments with audible or visual output
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/107—Visualisation of planned trajectories or target regions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2048—Tracking techniques using an accelerometer or inertia sensor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2051—Electromagnetic tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2059—Mechanical position encoders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2061—Tracking techniques using shape-sensors, e.g. fiber shape sensors with Bragg gratings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2065—Tracking using image or pattern recognition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/25—User interfaces for surgical systems
- A61B2034/252—User interfaces for surgical systems indicating steps of a surgical procedure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/25—User interfaces for surgical systems
- A61B2034/254—User interfaces for surgical systems being adapted depending on the stage of the surgical procedure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/30—Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
- A61B2090/306—Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using optical fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/376—Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/376—Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
- A61B2090/3762—Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/04—Constructional details of apparatus
- A61B2560/0487—Special user inputs or interfaces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Robotics (AREA)
- Pathology (AREA)
- Gynecology & Obstetrics (AREA)
- Radiology & Medical Imaging (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Human Computer Interaction (AREA)
- Endoscopes (AREA)
- Surgical Instruments (AREA)
Abstract
本发明提供了用于对准医疗器械以经皮进入人体解剖结构内的位置的技术,该技术可包括:确定该医疗器械的取向,确定该人体解剖结构内的目标位置,以及确定用于经皮进入该目标位置的目标轨迹。此外,该技术可包括致使显示界面,该界面包括指示该医疗器械的取向与该目标轨迹的对准的器械对准元素。
Description
相关申请
本申请要求于2019年12月31日提交的名称为“ALIGNMENT INTERFACES FORPERCUTANEOUS ACCESS”的美国临时申请号62/955,993的优先权,该美国临时申请的公开内容据此全文以引用方式并入。
背景技术
技术领域
本公开涉及医疗规程领域。
相关技术的描述
各种医疗规程涉及使用被配置成穿透人体解剖结构以到达治疗部位的一个或多个装置。某些操作过程可涉及将一个或多个装置插入穿过患者的皮肤和其他解剖结构以到达治疗部位并从患者体内取出对象(诸如尿结石)。
发明内容
本文描述了一种或多种系统、装置和/或方法,用于帮助医师或其他用户将用于经皮进入的医疗器械对准位于人体解剖结构内的对象,诸如尿结石。
在一些实施方案中,本公开涉及一种用于辅助引导针的方法。该方法可包括由医疗系统的控制电路接收来自针的第一传感器数据,该针被配置成经皮插入患者体内;以及至少部分地基于第一传感器数据,由控制电路确定针的取向。此外,该方法可包括由控制电路从内窥镜接收第二传感器数据,该内窥镜至少部分地设置在患者的解剖内腔内;以及至少部分地基于第二传感器数据,由控制电路确定患者的器官内的目标位置。该方法还可包括由控制电路确定用于经皮进入目标位置的目标轨迹;由控制电路生成表示界面的用户界面数据,该界面包括表示针的取向的针对准图标,该针对准图标在界面内的定位指示针的取向与目标轨迹的对准;以及至少部分地基于用户界面数据来显示界面。
在一些实施方案中,界面可包括边界标记,并且该方法可包括确定针的取向与目标轨迹失准超过阈值量;以及在具有变形形状的边界标记处显示针对准图标。此外,在一些实施方案中,该方法可包括确定针的取向与目标轨迹对准;以及在界面内显示针的取向与目标轨迹对准的指示。
在一些实施方案中,该方法可包括确定针与目标位置的接近度;以及在界面内显示指示针与目标位置的接近度的进度条。此外,在一些实施方案中,该方法可包括确定针已经到达目标位置;以及在界面内显示针已经到达目标位置的指示。此外,在一些实施方案中,该方法可包括确定针被插入到目标位置之外;以及在界面内显示针被插入到目标位置之外的指示。
在一些实施方案中,本公开涉及一种医疗系统,该医疗系统包括通信接口和通信地耦接到该通信接口的控制电路。该通信接口可被配置成从医疗器械接收传感器数据,该医疗器械被配置成经皮进入人体解剖结构。该控制电路可被配置成:至少部分地基于传感器数据,确定医疗器械的取向;确定人体解剖结构内的目标位置;确定用于经皮进入目标位置的目标轨迹;以及致使显示界面,该界面包括指示医疗器械的取向与目标轨迹的对准的器械对准元素。
在一些实施方案中,控制电路可被配置成:将位置变化参数设置为第一值;确定医疗器械在与目标位置的预定接近度内;以及至少部分地基于确定医疗器械在与目标位置的预定接近度内,将位置变化参数设置为第二值。位置变化参数可指示界面内的器械对准元素相对于医疗器械的移动单位的位置变化量。第二值可与比第一值更大的针对医疗器械的移动单位的器械对准元素的位置变化量相关联。
在一些实施方案中,医疗系统还包括被配置成经皮进入目标位置的医疗器械。该医疗器械可包括传感器,该传感器被配置成向通信接口提供传感器数据。目标轨迹可至少部分地基于传感器数据来确定。此外,在一些实施方案中,该医疗系统还包括内窥镜,该内窥镜被配置成经由人体解剖结构的内腔进入目标位置。该内窥镜可包括传感器,该传感器被配置成向该通信接口提供附加传感器数据。目标轨迹可至少部分地基于附加传感器数据来确定。
在一些实施方案中,控制电路可被配置成确定医疗器械的取向与目标轨迹对准;以及致使显示医疗器械的取向与目标轨迹对准的指示。此外,在一些实施方案中,控制电路可被配置成确定医疗器械的取向与目标轨迹失准超过阈值量;以及致使显示医疗器械的取向与目标轨迹失准超过阈值量的指示。
在一些实施方案中,控制电路可被配置成确定医疗器械与目标位置的接近度;以及致使显示医疗器械与目标位置的接近度的指示。此外,在一些实施方案中,控制电路可被配置成确定医疗器械被插入到目标位置之外;以及致使显示医疗器械被插入到目标位置之外的指示。此外,在一些实施方案中,控制电路可被配置成确定医疗器械已经到达目标位置;以及致使显示医疗器械已经到达目标位置的指示。
在一些实施方案中,控制电路系统可被配置成确定医疗器械的取向与目标轨迹失准超过阈值量;以及确定医疗器械被插入人体解剖结构中。此外,控制电路可被配置成至少部分地基于确定医疗器械的取向与目标轨迹失准超过阈值量以及确定医疗器械被插入人体解剖结构中,致使显示将医疗器械从人体解剖结构缩回的指示。
在一些实施方案中,本公开涉及一个或多个非暂态计算机可读介质,该一个或多个非暂态计算机可读介质存储计算机可执行指令,当由控制电路执行时,该计算机可执行指令致使控制电路执行操作。该操作可包括:确定被配置成进入人体解剖结构的医疗器械的取向;确定人体解剖结构内的目标位置;确定用于经皮进入目标位置的目标轨迹;以及致使显示界面,该界面包括指示医疗器械的取向与目标轨迹的对准的器械对准元素。
在一些实施方案中,该界面还包括对准标记。器械对准元素相对于对准标记的定位可指示医疗器械的取向与目标轨迹的对准。在一些实施方案中,对准标记包括边界标记。该操作可包括确定医疗器械的取向与目标轨迹失准超过阈值量;以及致使器械对准元素在距边界标记的预定距离内显示。另选地或除此之外,该操作可包括确定医疗器械的取向与目标轨迹对准;以及致使以与对准标记对准的布置来显示器械对准元素。
在一些实施方案中,该操作包括确定医疗器械与目标位置的接近度;以及致使在界面内显示医疗器械与目标位置的接近度的指示。此外,在一些实施方案中,该操作包括确定医疗器械被插入到目标位置之外;以及致使在界面内显示医疗器械被插入到目标位置之外的指示。
在一些实施方案中,该操作包括:响应于确定医疗器械的取向已变化测量单位并且确定医疗器械在目标位置的预定接近度之外,将器械对准元素在界面内的位置更新第一量。此外,该操作可包括:响应于确定医疗器械的取向已变化该测量单位并且确定医疗器械在与目标位置的预定接近度内,将器械对准元素在界面内的位置更新第二量。
在一些实施方案中,本公开涉及一种方法,该方法包括:由控制电路确定被配置成进入人体解剖结构的医疗器械的取向;确定人体解剖结构内的目标位置;以及由控制电路确定进入目标位置的目标轨迹。该方法还可包括由控制电路致使显示界面,该界面包括指示医疗器械的取向与目标轨迹的对准的器械对准元素。
在一些实施方案中,该方法包括:从医疗器械接收传感器数据;至少部分地基于该传感器数据,确定医疗器械的取向与目标轨迹对准;以及致使显示医疗器械的取向与目标轨迹对准的指示。
在一些实施方案中,该方法包括:从医疗器械接收传感器数据;至少部分地基于该传感器数据,确定医疗器械与目标位置的接近度;以及致使显示指示医疗器械与目标位置的接近度的进度表示。此外,在一些实施方案中,该方法包括:从医疗器械接收传感器数据;至少部分地基于该传感器数据,确定医疗器械的取向与目标轨迹失准超过阈值量;以及致使在进度表示的至少一部分内显示医疗器械的取向与目标轨迹失准超过阈值量的指示。此外,在一些实施方案中,该方法包括:从医疗器械接收传感器数据;至少部分地基于该传感器数据,确定医疗器械被插入到目标位置之外;以及致使在进度表示的至少一部分内显示医疗器械被插入到目标位置之外的指示。
在一些实施方案中,该方法包括:从医疗器械接收传感器数据;至少部分地基于该传感器数据,确定医疗器械的取向与目标轨迹失准超过阈值量;以及至少部分地基于该传感器数据,确定医疗器械被插入人体解剖结构中。该方法还可包括:至少部分地基于确定针的取向与目标轨迹失准超过阈值量以及确定医疗器械被插入人体解剖结构中,致使显示将医疗器械从人体解剖结构缩回的指示。
在一些实施方案中,该方法包括:将第一值与位置变化参数相关联;确定医疗器械在与目标位置的预定接近度内;以及至少部分地基于确定医疗器械在与目标位置的预定接近度内,将第二值与位置变化参数相关联。位置变化参数可指示器械对准元素相对于医疗器械的移动单位的位置变化量。
出于概括本公开的目的,已经描述了特定方面、优点和新颖特征。应当理解,根据任何特定实施方案,不必实现所有这些优点。因此,可以实现或优化本文所教导的一个优点或一组优点的方式来执行所公开的实施方案,而不必实现本文所教导或建议的其他优点。
附图说明
出于说明的目的,在附图中描绘了各种实施方案,并且决不应将其解释为限制本公开的范围。此外,可组合所公开的不同实施方案的各种特征以形成附加实施方案,这些附加实施方案是本公开的一部分。在整个附图中,可重复使用参考号来指示参考元件之间的对应关系。
图1示出了根据一个或多个实施方案的被配置成实现本文讨论的技术的医疗系统的实施方案。
图2示出了根据一个或多个实施方案的用于提供关于医疗器械的位置和/或取向的信息的示例性界面。
图3示出了根据一个或多个实施方案的被布置成帮助将窥视镜插入患者体内的图1的医疗系统的顶部。
图4示出了根据一个或多个实施方案的被布置成在患者体内导航窥视镜的图1的医疗系统的顶部。
图5示出了根据一个或多个实施方案的被布置成帮助将针插入患者体内的图1的医疗系统的顶部。
图6-1至图6-11示出了根据一个或多个实施方案的用于在规程期间提供关于医疗器械的对准和/或进度的信息的示例性界面。
图7示出了根据一个或多个实施方案的用于确定医疗器械相对于目标轨迹的对准并呈现关于该对准的信息的过程的示例性流程图。
图8示出了根据一个或多个实施方案的用于呈现关于医疗器械的取向的信息的过程的示例性流程图。
图9示出了根据一个或多个实施方案的用于呈现关于医疗器械与目标位置的接近度的信息的过程的示例性流程图。
图10示出了根据一个或多个实施方案的用于设置和/或更新与器械对准元素相关联的位置变化参数的过程的示例性流程图。
图11示出了根据一个或多个实施方案的图1的机器人系统的示例性细节。
图12示出了根据一个或多个实施方案的图1的控制系统的示例性细节。
具体实施方式
本文提供的标题仅为方便起见,并且不一定影响公开内容的范围或含义。尽管下文公开了某些优选实施方案和示例,但本主题超出了具体公开的实施方案,扩展到其他另选的实施方案和/或使用以及其修改和等效物。因此,本文可能出现的权利要求的范围不受下文描述的特定实施方案中的任一特定实施方案限制。例如,在本文公开的任何方法或过程中,该方法或过程的行为或操作可以任何合适的顺序执行,并且不一定限于任何特定的公开序列。各种操作可以有助于理解某些实施方案的方式依次被描述为多个离散操作;然而,描述顺序不应被解释为暗示这些操作是顺序相关的。另外,本文所述的结构、系统和/或装置可实现为集成部件或单独部件。为了比较各种实施方案,描述了这些实施方案的某些方面和优点。并非所有这些方面或优点都必须通过任何特定实施方案来实现。因此,例如,可以实现或优化本文所教导的一个优点或一组优点的方式来执行各种实施方案,而不必实现本文所教导或建议的其他方面或优点。
关于优选实施方案,本文可使用某些标准的位置解剖学术语来指代动物*即人类)的解剖学。尽管本文使用某些空间相对术语,诸如“外部”、“内部”、“上部”、“下部”、“下方”、“上方”、“竖直”、“水平”、“顶部”、“底部”和类似术语来描述一个装置/元素或解剖结构与另一装置/元素或解剖结构的空间关系,但应当理解,为了便于描述,本文使用这些术语来描述元件/结构之间的位置关系,如图所示。应当理解,空间相对术语旨在涵盖除了附图中描绘的取向之外,在使用或操作中的元件/结构的不同取向。例如,描述为在另一元素/结构“上方”的元素/结构可表示相对于受试患者或元素/结构的交替取向在此类其他元件/结构下方或旁边的位置,反之亦然。
概述
本公开涉及用于帮助医师或其他用户对准医疗器械以经皮进入人体解剖结构内的某个位置的系统、装置和方法。尽管本文在肾、泌尿和/或肾脏规程的背景下详细描述了本公开的某些方面(诸如肾结石移除/治疗规程),但应当理解,提供此类背景是为了方便和清晰,并且本文所公开的概念适用于任何合适的医疗规程。然而,如所提及的,下文呈现了肾/泌尿解剖结构和相关联医疗问题和规程的描述,以帮助描述本文公开的概念。
肾结石病(也称为尿石病)是一种相对常见的医学病症,其涉及在尿路中形成固体物质块,称为“肾结石”(kidney stone、renal calculi、renal lithiasis或nephrolithiasis)或“尿结石”(urinary stone)。尿结石可在肾、输尿管和膀胱中形成和/或发现(称为“膀胱结石”)。此类尿结石是由浓缩矿物质形成的,一旦结石的大小足以阻碍尿液通过输尿管或尿道时,就会引起严重的腹痛。尿结石可由钙、镁、氨、尿酸、半胱氨酸和/或其他化合物形成。
为了从膀胱和输尿管中移除尿结石,外科医生可通过尿道将输尿管镜插入尿路中。通常,输尿管镜在其远侧端部处包括内窥镜,该内窥镜被配置成使得尿路能够可视化。输尿管镜还可包括取石机制,以捕获或打散尿结石。在输尿管镜检查规程期间,一名医师/技术人员可控制输尿管镜的位置,而另一名医师/技术人员可控制取石机制。
为了从肾中移除相对大的结石(即“肾结石”),医师可使用经皮肾镜取石术(“PCNL”)技术,包括穿过皮肤插入肾镜来打碎和/或移除肾结石。可使用荧光透视来定位肾结石,为肾镜的插入提供目标。然而,由于荧光透视本身的成本以及技术人员操作荧光镜的成本,荧光透视增加了肾结石切开术的成本。荧光透视也会使患者长时间暴露在辐射中。即使使用荧光透视,准确地通过经皮切口进入肾结石也可能很困难,而且不太准确。此外,一些肾结石切除术需要住院两天或三天。总之,某些肾结石切除术对患者来说成本相对较高且存在问题。
在一些具体实施中,本公开涉及帮助对准医疗器械以用于经皮进入人体解剖结构内的目标位置的技术和系统。例如,为了执行医疗规程,医师或其他用户可使用医疗器械进入患者体内的目标位置,以便移除位于肾内的肾结石。目标位置可表示医疗器械进入患者解剖结构的期望位置,诸如期望的乳头或肾内的其他位置。本文讨论的技术和系统可提供关于医疗器械的取向的信息,以帮助医师或其他用户将医疗器械对准适当的取向和/或将医疗器械插入患者体内以到达目标位置。例如,该技术和系统可提供指示医疗器械相对于目标轨迹的当前取向的视觉表示,指示医疗器械与目标位置的接近度的视觉表示,和/或关于医疗器械和/或规程的其他信息。目标轨迹可表示用于从患者身上的进入点(诸如从患者皮肤上的位置)进入目标位置的期望路径。通过提供此类信息,医师或其他用户可准确地操作/操纵医疗器械以到达目标位置并以对患者解剖结构的损伤最小化的方式执行医疗规程。
在许多实施方案中,这些技术和系统是在经皮规程的背景下讨论的,该经皮规程可包括通过在皮肤、粘膜和/或其他身体层中形成穿刺和/或切口而获得进入目标位置的通路的任何规程。然而,应当理解,这些技术和系统可在任何医疗规程的背景下实现,包括例如微创规程(例如腹腔镜检查)、非侵入性规程(例如,内窥镜检查)、治疗规程、诊断规程、经皮规程、非经皮规程或其他类型的规程。内窥镜检查规程可包括支气管镜检查、输尿管镜检查、胃镜检查、肾镜检查、肾结石切除术等。在一些实施方案中,在腹腔镜式规程或另一规程的背景下,可使用这些技术和系统将第一医疗器械对准第二医疗器械/解剖位置,诸如引导端口放置(例如,将第一套管针对准第二套管针/解剖位置)。此外,在一些实施方案中,在诊断规程的背景下,可使用这些技术和系统将配备有电磁传感器的超声探头对准解剖目标或将用户引导到一组目标取向以重建解剖结构,诸如三维(3D)肾解剖结构。此外,在一些实施方案中,在窥视镜检查规程的背景下,可使用这些技术和系统引导支气管镜的位置,同时在标记位置(诸如肿瘤位置)处执行活检。
医疗系统
图1示出了根据本公开的各方面的用于执行各种医疗规程的示例性医疗系统100。医疗系统100包括机器人系统110,该机器人系统被配置成与医疗器械120接合和/或控制该医疗器械以对患者130执行规程。医疗系统100还包括控制系统140,该控制系统被配置成与机器人系统110交互,提供关于规程的信息,和/或执行各种其他操作。例如,控制系统140可包括显示器142,以呈现某些信息来帮助医师160。医疗系统100可包括工作台150,该工作台被配置成保持患者130。系统100还可包括电磁(EM)场发生器180,该EM场发生器可由机器人系统110的一个或多个机器人臂112保持,或者可为独立装置。在示例中,医疗系统100还可包括成像装置190,该成像装置可被集成到C形臂中和/或被配置成在规程(诸如荧光透视式规程)期间提供成像。尽管在图1中示出,但在一些实施方案中省略了成像装置190。
在一些具体实施中,医疗系统100可用于执行经皮规程。例如,如果患者130的肾结石太大,无法通过尿路移除,则医师160可执行通过患者130身上的经皮进入点移除肾结石的规程。为了说明,医师160可与控制系统140交互,以控制机器人系统110将医疗器械120(例如,窥视镜)从尿道,穿过膀胱,沿输尿管向上推进并导航到结石所位于的肾中。控制系统140可经由显示器142提供关于医疗器械120的信息,以帮助医师160导航医疗器械120,诸如随其捕获的实时图像。
一旦到达肾结石的部位(例如,在肾盏内),医疗器械120可用于指定/标记医疗器械170经皮进入肾的目标位置(例如,进入肾的期望点)。为了最小化对肾和/或周围解剖结构的损伤,医师160可指定特定乳头作为使用医疗器械170进入肾的目标位置。然而,可指定或确定其他目标位置。为了帮助医师将医疗器械170通过特定乳头插入患者130体内,控制系统140可提供器械对准界面144,该器械对准界面可包括用于指示医疗器械170的取向相对于目标轨迹(例如,期望进入路径)的对准的可视化部,用于指示将医疗器械170朝向目标位置插入的进度的可视化部,和/或其他信息。一旦医疗器械170到达目标位置,医师160可使用医疗器械170和/或另一医疗器械诸如通过经皮进入点,从患者130取出肾结石。
尽管在使用医疗器械120的背景下讨论了上述经皮规程和/或其他规程,但在一些具体实施中,可在没有医疗器械120的协助的情况下执行经皮规程。此外,医疗系统100可用于执行各种其他规程。
此外,尽管许多实施方案描述了医师160使用医疗器械170,但医疗器械170也可由医疗系统100的部件使用。例如,医疗器械170可由机器人系统110(例如,一个或多个机器人臂112)保持/操纵,并且可实现本文讨论的技术来控制机器人系统110以适当的取向插入医疗器械170以到达目标位置。
在图1的示例中,医疗器械120被实现为窥视镜,而医疗器械170被实现为针。因此,为了便于讨论,医疗器械120被称为“窥视镜120”或“基于内腔的医疗器械120”,而医疗器械170被称为“针170”或“经皮医疗器械170”。然而,医疗器械120和医疗器械170可各自实现为合适类型的医疗器械,包括例如窥视镜(有时称为“内窥镜”)、针、导管、导丝、碎石机、篮式取回装置、镊子、真空器、针、解剖刀、成像探针、钳口、剪刀、抓取器、持针器、显微解剖刀、施钉器、敲平头钉器、抽吸/冲洗工具、施夹器等。在一些实施方案中,医疗器械是可操纵装置,而在其他实施方案中,医疗器械是非可操纵装置。在一些实施方案中,外科工具是指被配置成穿刺或插入穿过人体解剖结构的装置,诸如针、解剖刀、导丝等。然而,外科工具也可指其他类型的医疗器械。
在一些实施方案中,医疗器械(诸如窥视镜120和/或针170)包括传感器,该传感器被配置成生成传感器数据,该传感器数据可被发送到另一装置。在示例中,传感器数据可指示医疗器械的位置/取向和/或可用于确定医疗器械的位置/取向。例如,传感器可包括电磁(EM)传感器,该EM传感器具有导电材料线圈。在此,EM场发生器(诸如EM场发生器180)可提供由医疗器械上的EM传感器检测到的EM场。磁场可在该M传感器的线圈中感应小电流,可对该小电流进行分析以确定EM传感器与EM场发生器之间的距离和/或角度/取向。此外,医疗器械可包括被配置成生成传感器数据的其他类型的传感器,诸如相机、距离传感器、雷达装置、形状感测光纤、加速度计、陀螺仪、加速度计、基于卫星的定位传感器(例如,全球定位系统(GPS))、射频收发器等。在一些实施方案中,传感器定位在医疗器械的远侧端部上,而在其他实施方案中,传感器定位在医疗器械上的另一位置处。在一些实施方案中,医疗器械上的传感器可向控制系统140提供传感器数据,并且控制系统140可执行一种或多种定位技术以确定/跟踪医疗器械的位置和/或取向。
术语“窥视镜”(scope)或“内窥镜”(endoscope)在本文根据其广泛且普通的含义使用,并且可指具有图像生成、观察和/或捕获功能并且被配置成引入身体的任何类型的器官、腔、内腔、腔室和/或空间中的任何类型的细长医疗器械。例如,本文提及的窥视镜或内窥镜可指输尿管镜(例如,用于进入尿路)、腹腔镜、肾镜(例如,用于进入肾)、支气管镜(例如,用于进入气道,诸如支气管)、结肠镜(例如,用于进入结肠)、关节镜(例如,用于进入关节)、膀胱镜(例如,用于进入膀胱)、管道镜等。
窥视镜可包括管状和/或柔性医疗器械,该医疗器械被配置成插入患者的解剖结构中以捕获解剖结构的图像。在一些实施方案中,窥视镜可容纳电线和/或光纤,以向光学组件和窥视镜的远侧端部/从光学组件和窥视镜的远侧端部传输信号,该窥视镜的远侧端部可包括成像装置,诸如光学相机。相机/成像装置可用于捕获内部解剖空间的图像,诸如肾的目标盏/乳头。窥视镜可被进一步配置成容纳光纤,以将光从近距离定位的光源(诸如发光二极管)传送到窥视镜的远侧端部。窥视镜的远侧端部可包括用于光源的端口,以在使用相机/成像装置时照亮解剖空间。在一些实施方案中,窥视镜被配置成由机器人系统(诸如机器人系统110)控制。成像装置可包括光纤、光纤阵列和/或透镜。光学部件可与窥视镜的尖端一起移动,使得窥视镜的尖端的移动导致由成像装置捕获的图像发生变化。
窥视镜可以是能够进行关节运动的,诸如能够相对于窥视镜的至少远侧端部部分进行关节运动,使得窥视镜可在人体解剖结构内被操纵。在一些实施方案中,窥视镜被配置成以例如五个或六个自由度进行关节运动,包括X、Y、Z坐标移动以及俯仰、偏航和滚转。窥视镜的位置传感器相对于它们产生/提供的位置信息同样可具有类似的自由度。窥视镜可包括伸缩式零件,诸如内部引导件部分和外部护套部分,这些伸缩式零件可被操纵以伸缩地延伸窥视镜。在一些实例中,窥视镜可包括刚性或柔性管,并且其尺寸可被设定成在外部护套、导管、导引器或其他内腔式装置内通过,或者可在无此类装置的情况下使用。在一些实施方案中,窥视镜包括工作通道,该工作通道用于将医疗器械(例如,碎石机、篮式装置、镊子等)、冲洗和/或抽吸部署到窥视镜的远侧端部处的手术区域。
机器人系统110可被配置成至少部分地促进医疗规程的执行。机器人系统110可以多种方式配置,这取决于特定规程。机器人系统110可包括一个或多个机器人臂112,该一个或多个机器人臂被配置成与窥视镜120接合和/或控制该窥视镜以执行规程。如图所示,每个机器人臂112可包括耦接到关节的多个臂段,该多个臂段可提供多个移动度。在图1的示例中,机器人系统110靠近患者130的腿定位,并且机器人臂112被致动以与窥视镜120接合并定位该窥视镜以进入进入点,诸如患者130的尿道。当机器人系统110正确定位时,可使用机器人臂112、医师160手动或其组合将窥视镜120插入患者130体内。机器人臂112还可连接到EM场发生器180,该EM场发生器可定位在治疗部位附近,诸如定位在与患者130的肾的接近度内。
机器人系统110还可包括支撑结构114,该支撑结构耦接到一个或多个机器人臂112。支撑结构114可包括控制电子器件/电路、一个或多个电源、一个或多个气动装置、一个或多个光源、一个或多个致动器(例如,用于移动一个或多个机器人臂112的马达)、存储器/数据存储装置和/或一个或多个通信接口。在一些实施方案中,支撑结构114包括输入/输出(I/O)装置116,该I/O装置被配置成接收输入(诸如用于控制机器人系统110的用户输入)和/或提供输出(诸如图形用户界面(GUI)、关于机器人系统110的信息、关于规程的信息等)。I/O装置116可包括显示器、触摸屏、触摸板、投影仪、鼠标、键盘、麦克风、扬声器等。在一些实施方案中,机器人系统110是可移动的(例如,支撑结构114包括轮子),使得机器人系统110可定位在适合或期望用于规程的位置。在其他实施方案中,机器人系统110为固定系统。此外,在一些实施方案中,机器人系统112集成到工作台150中。
机器人系统110可耦接到医疗系统100的任何部件,诸如控制系统140、工作台150、EM场发生器180、窥视镜120和/或针170。在一些实施方案中,机器人系统通信地耦接到控制系统140。在一个示例中,机器人系统110可被配置成从控制系统140接收控制信号以执行操作,以便以特定方式定位机器人臂112,操纵窥视镜120等。作为响应,机器人系统110可控制机器人系统110的部件来执行操作。在另一示例中,机器人系统110被配置成从窥视镜120接收描绘患者130的内部解剖结构的图像和/或将该图像发送到控制系统140,然后可在显示器142上显示该图像。此外,在一些实施方案中,机器人系统110耦接到医疗系统100的部件(诸如控制系统140),以允许从其接收流体、光学器件、功率等。下面参考图11进一步详细讨论机器人系统110的示例性细节。
控制系统140可被配置成提供各种功能以帮助执行医疗规程。在一些实施方案中,控制系统140可耦接到机器人系统110并与机器人系统110合作操作,以对患者130执行医疗规程。例如,控制系统140可经由无线或有线连接与机器人系统110通信(例如,以控制机器人系统110和/或窥视镜120,接收由窥视镜120捕获的图像等),经由一个或多个流体通道向机器人系统110提供流体,经由一个或多个电连接向机器人系统110提供电力,经由一个或多个光纤或其他部件向机器人系统110提供光学器件等。此外,在一些实施方案中,控制系统140可与针170和/或窥视镜170通信,以从针170和/或内窥镜120接收传感器数据(经由机器人系统110接收传感器数据和/或直接从针170和/或内窥镜120接收传感器数据)。此外,在一些实施方案中,控制系统140可与工作台150通信,以将工作台150定位在特定取向或以其他方式控制工作台150。此外,在一些实施方案中,控制系统140可与EM场发生器180通信,以控制患者130周围EM场的生成。
控制系统140包括各种I/O装置,该I/O装置被配置成帮助医师160或其他人员执行医疗规程。在该示例中,控制系统140包括I/O装置146,医师160或其他用户使用该I/O装置来控制窥视镜120,以便在患者130体内导航窥视镜120。例如,医师160可经由I/O装置146提供输入,并且作为响应,控制系统140可向机器人系统110发送控制信号以操纵窥视镜120。尽管在图1的示例中I/O装置146被示为控制器,但I/O装置146可被实现为多种类型的I/O装置,诸如触摸屏、触摸板、鼠标、键盘等。
另外如图1所示,控制系统140可包括显示器142,以提供关于规程的各种信息。如上所述,显示器142可呈现器械对准界面144,以帮助医师160操纵针170。显示器142还可提供(例如,经由器械对准界面144和/或另一界面)关于窥视镜120的信息。例如,控制系统140可接收由窥视镜120捕获的实时图像并经由显示器142显示实时图像。图2中示出了示例性器械对准界面。除此之外或另选地,控制系统140可从与患者130相关联的医疗监测器和/或传感器接收信号(例如,模拟信号、数字信号、电信号、声学/声信号、气动信号、触觉信号、液压信号等),并且显示器142可呈现关于患者130的健康或环境的信息。此类信息可包括经由医疗监控器显示的信息,包括(例如)心率(例如,ECG、HRV等)、血压/血率、肌肉生物信号(例如,EMG)、体温、血氧饱和度(例如,SpO2)、CO2、脑波(例如,EEG)、环境和/或局部或核心体温等。
为了便于控制系统140的功能,控制系统140可包括各种部件(有时称为“子系统”)。例如,控制系统140可包括控制电子器件/电路,以及一个或多个电源、气动装置、光源、致动器、存储器/数据存储装置和/或通信接口。在一些实施方案中,控制系统140包括控制电路,该控制电路包括基于计算机的控制系统,该基于计算机的控制系统被配置成存储可执行指令,当被执行时,该可执行指令致使实现各种操作。在一些实施方案中,控制系统140是可移动的,如图1所示,而在其他实施方案中,控制系统140为固定系统。尽管讨论了由控制系统140实现的各种功能和部件,但这些功能和/或部件中的任何功能和/或部件都可集成到其他系统和/或装置中和/或由其他系统和/或装置执行,诸如机器人系统110、工作台150和/或EM发生器180(或者甚至是窥视镜120和/或针170)。下面参考图12进一步详细讨论控制系统140的示例性细节。
成像装置190可被配置成在规程期间捕获/生成患者130的一个或多个图像,诸如一个或多个x射线或CT图像。在示例中,可实时提供来自成像装置190的图像,以查看解剖结构和/或患者130体内的医疗器械(诸如窥视镜120和/或针170),以帮助医师160执行规程。成像装置190可用于执行荧光透视(例如,在患者130体内使用对比染料)或其他类型的成像技术。尽管在图1中示出,但在许多实施方案中,未实现成像装置190来执行规程和/或去除成像装置190(包括C形臂)。
医疗系统100的各个部件可通过网络彼此通信地耦接,该网络可包括无线和/或有线网络。示例性网络包括一个或多个个人区域网络(PAN)、局域网(LAN)、广域网(WAN)、互联网局域网(IAN)、蜂窝网络、互联网等。此外,在一些实施方案中,医疗系统100的部件经由一个或多个支撑电缆、管等连接,以用于数据通信、流体/气体交换、电力交换等。
医疗系统100可提供多种益处,诸如提供指导以帮助医师执行规程(例如,器械跟踪、器械对准信息等),使医师能够从人体工程学位置执行规程而无需笨拙的手臂运动和/或位置,使单个医师能够使用一个或多个医疗器械执行规程,避免辐射暴露(例如,与荧光透视技术相关联),使规程能够在单次手术环境中执行,提供持续抽吸以更有效地移除轴线(例如,移除肾结石)等。例如,医疗系统100可提供指导信息,以帮助医师使用各种医疗器械进入目标解剖特征,同时最小化出血和/或对解剖结构(例如,关键器官、血管等)的损伤。此外,医疗系统100可提供基于非辐射的导航和/或定位技术,以减少医师和患者对辐射的暴露和/或减少手术室中的装备数量。此外,医疗系统100可提供分布在至少控制系统140与机器人系统110之间的功能,这些系统可独立地移动。此类功能性和/或移动性的分布可使得控制系统140和/或机器人系统110能够放置在对于特定医疗程序最佳的位置处,这可最大化患者周围的工作区域和/或为医师执行规程提供最佳位置。
尽管各种技术和系统被讨论为实现为机器人辅助规程(例如,至少部分地使用医疗系统100的规程),但这些技术和系统可在其他规程中实现,诸如在全机器人医疗规程、仅人规程(例如,无机器人系统)等中实现。例如,医疗系统100可用于在无医师握住/操纵医疗器械的情况下执行规程(例如,全机器人规程)。也就是说,在规程期间使用的医疗器械(诸如窥视镜120和针170)可各自由医疗系统100的部件(诸如机器人系统110的机器人臂112)保持/控制。
示例性界面
图2示出了根据一个或多个实施方案的用于提供关于医疗器械的位置和/或取向的信息和/或关于医疗规程的其他信息的示例性器械对准界面200。如图所示,器械对准界面200(有时称为“器械对准图形用户界面(GUI)200”)可包括:窥视镜节段210,以提供由第一医疗器械(诸如窥视镜)捕获的图像212;和对准节段220,以提供关于第二医疗器械(诸如针)的取向的信息。尽管窥视镜区段210和对准区段220被示为包括在同一器械对准界面200中,但在一些实施方案中,器械对准界面200包括区段210和区段220中的仅一者。例如,对准区段220可作为器械对准界面200的一部分被包括在内,并且窥视镜区段210可被包括在附加界面中。此外,在一些示例中,窥视镜区段210和/或对准区段220可在增强或虚拟现实界面内实现,诸如对准区段220覆盖在窥视镜区段212的至少一部分上,窥视镜区段212以与对准区段220不同的形式呈现对准信息等。在图2的示例中,器械对准界面200为使用窥视镜和另一医疗器械的规程提供信息。然而,器械对准界面200可用于其他类型的规程,诸如在无窥视镜的情况下执行的规程。在此类情况下,可不呈现图像212和/或可去除窥视镜区段210。
如上所述,窥视镜区段212为被配置成在内腔或其他解剖结构内导航的窥视镜提供图像212。在该示例中,图像212描绘了肾的内部部分,包括腔214和位于腔214中的一个腔内的肾结石216。在此,肾结石216位于盏内靠近乳头处。然而,图像212可根据窥视镜在患者体内的位置描绘任何人体解剖结构。图像212可包括实时图像,诸如视频。
对准区段220包括对准进度可视化部230,以指示医疗器械的取向与目标轨迹的对准和/或医疗器械与目标位置的接近度。如图所示,对准进度可视化部230包括:器械对准元素232(有时称为“器械对准图标232”或“针对准图标232”),该器械对准元素表示医疗器械的取向;和对准标记234,该对准标记与目标轨迹相关联。在该示例中,器械对准元素232可基于医疗器械取向的变化在由对准标记234(C)(也称为“边界标记234(C)”)定义的区域内移动。例如,随着医疗器械的倾斜,器械对准元素232可改变在该区域内的位置。
在一些实施方案中,医疗器械沿一个方向的倾斜将致使器械对准元素232沿相反方向的移动,类似于靶心精神类型的水平仪。例如,如果医疗器械向右倾斜,则器械对准元素232可向左移动。在其他实施方案中,医疗器械的倾斜将致使器械对准元素232沿与倾斜相同的方向移动。例如,如果医疗器械向右倾斜,则器械对准元素232可向右移动。在任何情况下,当医疗器械的取向与目标轨迹对准时,器械对准元素232可以与对准标记234对准的布置显示(例如,以对准标记234为中心,诸如在对准标记234(A)内或以对准标记234(A)为中心)。
在一些实施方案中,对于医疗器械的取向变化单位,器械对准元素232的位置变化量(例如,器械对准元素232的灵敏度)基于医疗器械与目标位置的接近度。例如,随着医疗器械移动得更靠近目标位置,器械对准元素232可通过更大或更小的移动来实现,以使医疗器械的取向发生相同变化量。为了说明,当医疗器械离目标位置第一距离时,器械对准界面200可响应于医疗器械的取向变化单位而将器械对准元素232的位置变化第一量。当医疗器械离目标位置第二距离时(例如,更靠近目标位置),器械对准界面200可响应于医疗器械的相同取向变化单位而将器械对准元素232的位置变化第二量(例如,更大或更小的量)。
在一些实施方案中,改变器械对准元素232的灵敏度可进一步帮助医师使用医疗器械到达目标位置。例如,在一些情况下,由于医疗器械离目标更远,因此可能需要较低的精度。随着医疗器械移动得更靠近目标位置,可能需要更高的精度来定向医疗器械。换句话讲,随着医疗器械移动得更靠近目标,医师可能需要更精确地调整医疗器械的取向以实际到达目标。因此,通过改变器械对准元素232的灵敏度,医师可更精确地操纵医疗器械以到达目标位置,该目标位置可能相对较小。
对准进度可视化部230还可包括进度条236,以指示医疗器械与目标位置的接近度。在图2的示例中,进度条236呈现在边界标记234(C)周围。然而,进度条236可呈现在器械对准界面200内的任何位置处,诸如呈现在对准进度可视化部230的一侧。进度条236可提供医疗器械相对于目标位置的当前位置信息。例如,可随着医疗器械移动得更靠近目标位置而填充进度条236,如下面的示例中所讨论的。在一些实施方案中,如果医疗器械已到达目标位置,则器械对准界面200可提供医疗器械已到达目标位置的指示,诸如进度条236上的指示。以类似的方式,在一些实施方案中,如果医疗器械被插入到目标位置之外,则器械对准界面200可提供医疗器械已被插入到目标位置之外的指示,诸如进度条236上的指示。在图2的示例中,进度条236指示医疗器械尚未被插入到患者体内(例如,医疗器械在患者的皮肤上或在患者体外)。
在一些实施方案中,对准进度可视化部230包括单个可视化部,以查看关于医疗器械的取向和进度信息。例如,关于医疗器械的取向和器械到目标位置的进度的信息可在组合的可视化部中显示。这种组合的可视化部可允许医师或其他用户在操纵医疗器械的同时维持与单个项目的视觉接触,并避免由于医师的眼睛或身体的移动而导致医疗器械的意外移动,以查看数个显示器、界面、可视化部等。因此,组合的可视化部可允许医师或其他用户更准确地操纵医疗器械以到达患者体内的目标位置。
在图2的示例中,对准进度可视化部230的各个部件呈现为圆形。然而,对准进度可视化部230的任何部件可采取多种形式,诸如任何其他形状。例如,对准标记234、器械对准元素232和/或进度条236可呈现为矩形或任何其他形状。在一些具体实施中,器械对准元素232包括气泡表示,该气泡表示用于表示气泡。
另外如图2所示,器械对准界面200可包括导航表示240,以在与规程的不同阶段/步骤相关联的不同可视化部之间导航。例如,与移除肾结石相关联的规程可包括多个阶段/步骤,其中一个阶段/步骤包括对准医疗器械并将医疗器械插入患者体内以到达目标位置。对于此阶段/步骤,器械对准界面200可显示图2所示的信息,以帮助医师执行此阶段/步骤。医师可通过选择导航表示240内的“后退”或“下一”文本,移动到上一个或下一个阶段/步骤的不同可视化部或界面。此外,器械对准界面200可包括用于访问菜单的视觉表示250,该菜单可允许访问与其他类型的规程或其他信息相关联的界面/信息。
尽管在包括二维(2D)表示的器械对准界面的背景下讨论和示出了许多实施方案,但在一些实施方案中,器械对准界面可包括三维(3D)表示。例如,器械对准界面可呈现平面和该平面上的扭曲线,以指示不对准,呈现平面的形状/形式被配置成扭曲/改变以指示不对准的平面等。
使用医疗系统进行的示例性规程
图3至图5示出了根据一个或多个实施方案的被布置成执行经皮规程的图1的医疗系统100的顶视图。在这些示例中,医疗系统100被布置在手术室中,以借助窥视镜120和针170从患者130体内移除肾结石。在此规程的许多实施方案中,患者130被定位在修改的仰卧位,患者130稍微向一侧倾斜,以接近患者130的背部或侧面,如图1所示。然而,患者130也可以其他方式定位,诸如仰卧位、俯卧位等。为了便于查看患者130的解剖结构,图3至图5示出了患者130处于仰卧位,双腿张开。此外,为了便于说明,成像装置190(包括C形臂)已被移除。
尽管图3至图5示出了使用医疗系统100来执行经皮规程以从患者130体内去除肾结石,但医疗系统100可用于以其他方式去除肾结石和/或执行其他规程。此外,患者130可根据规程的需要布置在其他位置。在图3至图5和整个公开中描述了由医师160执行的各种动作。应当理解,这些动作可由医师160、在医师指导下的用户、另一用户(例如,技术人员)、其组合和/或任何其他用户直接执行。
如在图3至图5中至少部分示出,在此描述肾解剖结构,以供参考与本概念的各方面相关的某些医疗规程。肾通常包括位于腹膜后间隙中的左右两侧的两个豆形器官。成年人的肾一般长约11cm。肾从成对肾动脉接收血液;血液流入成对的肾静脉。每个肾都附接到输尿管,该输尿管是将排泄的尿液从肾运送到膀胱的管。膀胱附接到尿道。
肾通常位于腹腔内相对较高的位置,位于腹膜后,呈略微倾斜的角度。由肝脏位置引起的腹腔内不对称,通常导致右肾略低于左肾,并且比左肾略偏中。每个肾的顶部是肾上腺。肾的上部由第11根肋骨和第根12肋骨部分地保护。每个肾及其肾上腺被两层脂肪包围:肾筋膜与肾包膜之间存在肾周脂肪,肾旁脂肪高于肾筋膜。
肾脏参与控制各种体液隔室的体积、液体渗透压、酸碱平衡、各种电解质浓度和毒素的去除。肾脏通过分泌某些物质并重新吸收其他物质来提供过滤功能。分泌到尿液中的物质的示例是氢、铵、钾和尿酸。此外,肾脏还执行各种其他功能,诸如激素合成等。
肾凹缘上的凹陷区域是肾门,肾动脉在此进入肾脏,肾静脉和输尿管离开此处。肾被坚韧的纤维组织、肾包膜包围,肾包膜本身被肾周脂肪、肾筋膜和肾旁脂肪包围。这些组织的前部(前)表面是腹膜,而后部(后)表面是横筋膜。
肾的功能性物质或实质分为两个主要结构:肾外皮质和肾内髓质。这些结构呈多个锥形肾叶的形状,每个肾叶包含围绕称为肾锥体的髓质部分的肾皮质。肾锥体之间是皮质的突起,称为肾柱。肾单位是肾脏产生尿液的功能结构,横跨皮质和髓质。肾单位的初始过滤部分是位于皮质中的肾小体。然后是肾小管,其从皮质深入髓质锥体。作为肾皮质的一部分,髓射线是肾小管的集合,这些肾小管排出到单个集合管中。
每个锥体的尖端或乳头将尿液排空到相应小盏中;小盏进入小盏,小盏进入肾盂,然后过渡到输尿管。在脐处,输尿管和肾静脉离开肾并且肾动脉进入。具有淋巴结的肺门脂肪和淋巴组织围绕这些结构。肺门脂肪与称为肾窦的脂肪填充腔相邻。肾窦共同包含肾盂和肾盏,并将这些结构与肾髓质组织分开。
图3至图5示出了患者130的解剖结构的各种特征。例如,患者130包括经由输尿管320流体地连接到膀胱330的肾脏310,以及流体地连接到膀胱330的尿道340。如肾310(A)的放大图所示,肾310(A)包括盏(包括盏312)、肾乳头(包括肾乳头314,也称为“乳头314”)和肾锥体(包括肾锥体316)。在这些示例中,肾结石318位于乳头314附近。然而,肾结石318可位于肾310(A)内的其他位置或其他地方。
如图3所示,为了在示例性经皮手术中移除肾结石318,医师160可将机器人系统110定位在工作台150的侧面/底部,以开始将窥视镜120(图3中未示出)递送到患者130中。具体地,机器人系统110可定位在工作台150的一侧,在患者130的脚附近,并对准以便直接线性地进入患者130的尿道340。在示例中,患者130的髋部用作定位机器人系统110的参考点。一旦定位,一个或多个机器人臂112(诸如机器人臂112(B)和112(C))可向外伸展以到达患者130的腿之间。例如,可控制机器人臂112(B)以延伸并提供到尿道340的线性通路,如图3所示。在该示例中,医师160沿着该直接线性进入路径(有时称为“虚拟轨道”)将医疗器械350至少部分地插入尿道340中。医疗器械350可包括内腔式装置,该内腔式装置被配置成接纳窥视镜130,从而帮助将窥视镜120插入患者130的解剖结构中。通过将机器人臂112(B)对准患者130的尿道340和/或使用医疗器械350,可减小该区域中的敏感解剖结构上的摩擦和/或力。尽管医疗器械350在图3中示出,但在一些实施方案中,不使用医疗器械350(例如,窥视镜120可直接插入尿道340中)。
医师160还可将机器人臂112(A)定位在手术的治疗部位附近。例如,机器人臂112(A)可定位在患者130的切口部位和/或肾脏310附近。机器人臂112(A)可连接到EM场发生器180,以在规程期间帮助跟踪窥视镜120和/或针170的位置。尽管机器人臂112(A)被定位成相对靠近患者130,但在一些实施方案中,机器人臂112(A)被定位在其他地方和/或EM场发生器180被集成到工作台150中(这可允许机器人臂112(A)处于对接位置)。在该示例中,在该规程中的该点处,机器人臂112(C)保持在对接位置中,如图3所示。然而,在一些实施方案中,机器人臂112(C)可用于执行机器人臂112(A)和/或112(C)的上述任何功能。
一旦机器人系统110被适当地定位和/或医疗器械350被至少部分地插入尿道340中,窥视镜120可被以机器人方式、手动方式或其组合地插入患者130体内,如图4所示。例如,医师160可将窥视镜120连接到机器人臂112(C)和/或将窥视镜120至少部分地定位在医疗器械350和/或患者130体内。窥视镜120可在任何时间连接到机器人臂112(C),诸如在规程之前或在规程期间(例如,在定位机器人系统110之后)。然后,医师160可与控制系统140(诸如I/O装置146)交互,以在患者130内导航窥视镜120。例如,医师160可经由I/O装置146提供输入,以控制机器人臂112(C)来导航窥视镜120通过尿道340、膀胱330、输尿管320(A),并直至肾310(A)。
如图所示,控制系统140可经由显示器142呈现器械对准界面410(诸如图2的器械对准界面200),以查看由窥视镜120捕获的实时图像412,从而帮助医师160控制窥视镜120。医师160可导航窥视镜120以定位肾结石318,如图像412所示。在一些实施方案中,控制系统140可使用定位技术来确定窥视镜120的位置和/或取向,这可由医师160通过显示器142(图4中的显示器142上未示出)来观察,从而也有助于控制窥视镜120。此外,在一些实施方案中,可通过显示器142呈现其他类型的信息,以帮助医师160控制窥视镜120,诸如患者130的内部解剖结构的x射线图像。
在定位肾结石318时,医师160可识别针170进入肾310(A)的位置,以便最终取出肾结石318。例如,为了尽量减少出血和/或避免撞击肾310(A)和/或肾310(A)周围的血管或其他不期望的解剖结构,医师160可尝试将针170与盏的轴线对准(例如,可尝试通过盏的中心迎面到达盏)。为此,医师160可将乳头识别为目标位置。在该示例中,医师160使用窥视镜120来定位肾结石318附近的乳头314,并将乳头314指定为目标位置。在将乳头314指定为目标位置的一些实施方案中,医师160可导航窥视镜120以接触乳头314,控制系统140可使用定位技术来确定窥视镜120的位置(例如,窥视镜120的端部的位置),并且控制系统140可将窥视镜120的位置与目标位置相关联。在其他实施方案中,医师160可将窥视镜120导航到乳头314的特定距离内(例如,停放在乳头314前面),并提供指示目标位置在窥视镜120的视场内的输入。控制系统140可执行图像分析和/或其他定位技术以确定目标位置的位置。在又一实施方案中,窥视镜120可传递基准以将乳头314标记为目标位置。
如图5所示,医师160可通过定位针170以插入目标位置而继续进行该规程。在一些实施方案中,医师160可使用他或她的最佳判断来将针170放置在患者130身上的切口部位处,诸如基于关于患者130的解剖结构的了解,来自先前执行该规程的经验,对患者130的CT/x射线图像或其他术前信息的分析等。此外,在一些实施方案中,控制系统140可提供关于将针170放置在患者130上的位置的信息。医师160可尝试避开患者130的关键解剖结构,诸如肺、胸膜、结肠、椎旁肌、肋骨、肋间神经等。在一些示例中,控制系统140可使用CT/x射线/超声图像来提供关于将针170放置在患者130上的位置的信息。
在任何情况下,控制系统140可确定插入针170以帮助医师160到达目标位置(即,乳头314)的目标轨迹502。目标轨迹502可表示用于进入目标位置的期望路径。目标轨迹502可基于医疗器械(例如,针170、窥视镜120等)的位置、人体解剖结构内的目标位置、患者的位置和/或取向、患者的解剖结构(例如,患者内的器官相对于目标位置的位置)等来确定。在该示例中,目标轨迹502包括穿过乳头314和针170的直线(例如,从针170的尖端延伸穿过乳头314,诸如乳头314的轴线上的点)。然而,目标轨迹502可采用其他形式(诸如曲线),和/或可以其他方式定义。在一些示例中,针170被实现为柔性斜角尖端针,该柔性斜角尖端针被配置成在针170以直线方式插入时弯曲。这种针可用于围绕特定解剖结构(诸如肋骨或其他解剖结构)转向。在此,控制系统140可提供信息以指导用户,诸如补偿针轨迹的偏差或将用户维持在目标轨迹上。
尽管图5的示例示出了同轴地延伸穿过乳头314的目标轨迹502,但目标轨迹502可具有另一位置、角度和/或形式。例如,目标轨迹可使用下极进入点来实现,诸如通过图5所示的位于肾结石318下方的乳头来实现,该乳头具有非同轴角度,可用于避开髋部。
控制系统140可使用目标轨迹502来经由器械对准界面410提供对准进度可视化部504。例如,对准进度可视化部504可包括器械对准元素506,该器械对准元素指示针170相对于目标轨迹502的取向。医师160可查看对准进度可视化部504并将针170定向到适当的取向(即,目标轨迹502)。当对准时,医师160可将针170插入患者130体内以到达目标位置。对准进度可视化部504可提供进度可视化部508(也称为“进度条508”),该进度可视化部指示针170与目标位置的接近度。因此,器械对准界面410可帮助医师160对准针170和/或插入针以到达目标位置。
一旦使用针170到达目标位置,医师160可将另一医疗器械(例如,动力导管、真空、肾镜等)插入由针170形成的路径中和/或针170上方。医师160可使用其他医疗器械和/或窥视镜120来从肾310(A)中粉碎并移除肾结石318的碎片。
在一些实施方案中,医疗器械的位置可用点/点集表示,和/或医疗器械的取向可表示为相对于轴线/平面的角度/偏移。例如,医疗器械的位置可用坐标系内的点/点集的坐标(例如,一个或多个X、Y、Z坐标)来表示,和/或医疗器械的取向可用相对于坐标系的轴线/平面的角度(例如,相对于X轴/平面,Y轴/平面和/或Z轴/平面的角度)来表示。在此,医疗器械的取向的变化可对应于医疗器械相对于轴线/平面的角度的变化。此外,在一些实施方案中,医疗器械的取向用偏航、俯仰和/或滚转信息来表示。
在一些实施方案中,轨迹是指姿态。例如,医疗器械的轨迹可指医疗器械的姿态,包括/指示医疗器械的位置和取向两者。类似地,目标轨迹可指目标姿态,包括/指示期望路径的位置和取向。然而,在其他实施方案中,轨迹是指取向或位置。
尽管机器人系统110的特定机器人臂在图3至图5的背景下被示为执行特定功能,但任何机器人臂112都可用于执行这些功能。此外,可使用任何附加的机器人臂和/或系统来执行该规程。此外,机器人系统110可用于执行规程的其他部分。例如,可控制机器人系统110以对准针和/或将针插入患者130体内。为了说明,机器人臂112中的一个机器人臂可与针170接合和/或控制针以将针170定位在适当位置,将针170与目标轨迹对准,和/或将针170插入到目标位置。控制系统140可使用定位技术来执行这种处理。因此,在一些实施方案中,可使用医疗系统100完全或部分地执行经皮规程(例如,在有或没有医师160的帮助下)。
示例性器械可视化部
图6-1至图6-11示出了根据一个或多个实施方案的用于在规程期间提供关于医疗器械的对准和/或进度的信息的示例性界面。在使用医疗系统100从患者130移除肾结石662的背景下示出了示例性界面。具体地,可提供可视化部以帮助医师160将针170插入患者130体内以取出肾结石662。然而,可显示可视化部以与其他医疗系统一起使用和/或执行其他医疗规程。为了便于说明,在图6-1至图6-11中未示出界面的一些特征。例如,图6-2至图6-11中未示出对准标记634(B)。
图6-1示出了示例性器械对准界面600,该示例性器械对准界面具有可视化部,以帮助医师160将针170与目标轨迹670对准。如图所示,器械对准界面600可包括:窥视镜节段610,以提供由位于患者130的肾660内的窥视镜120捕获的图像612;和对准节段620,以提供关于针170的取向和/或位置的信息。在此,图像612描绘肾660的内部部分和位于肾660内的肾结石662。对准节段620包括对准进度可视化部630,以指示针170的取向与目标轨迹670的对准和/或针170与目标位置664(例如,乳头上的位置)的接近度。如图所示,对准进度可视化部630包括:器械对准元素632,该器械对准元素表示针170相对于目标轨迹670的取向;和对准标记634,该对准标记表示目标轨迹670;以及进度条636(也称为“进度表示636”),该进度条指示针170与目标位置664的接近度。器械对准界面600还可包括:导航表示640,以与规程的不同阶段/步骤相关联的不同可视化部之间导航;和/或视觉表示650,以访问菜单和/或其他选项。尽管器械对准元素632和对准标记634以特定形状和大小示出,但器械对准元素632和对准标记634可具有其他形状和/或大小。
在图6-1的示例中,医师将针170定位在患者130上,并尝试使用器械对准界面600将针170与目标轨迹670对准。具体地,医师160可使用一只或多只手680握住针170并调整针170的取向(例如,针170的倾斜),同时经由控制系统140查看器械对准界面600。在此,针170的取向与目标轨迹670失准。因此,器械对准界面600示出器械对准元素632与中心对准标记634(A)失准(例如,器械对准元素632不位于中心对准标记634(A)内)。
在一些实施方案中,器械对准元素632可在边界对准标记634(C)的区域内移动(例如,在边界对准标记634(C)的限制范围内)。随着针170与目标轨迹670不太对准,器械对准元素632可移动得更靠近边界对准标记634(C),而随着针170与目标轨迹670更加对准,该器械对准元素可移动得更靠近中心对准标记634(A)。在图6-1的示例中,器械对准界面600还提供文本“倾斜针以将气泡移动到中心”,指示针170与目标轨迹670失准。器械对准界面600的可视化部可帮助医师160倾斜针170,以将针170与适当的取向对准,以便将针170插入到目标位置664。
在一些实施方案中,如果针170与目标轨迹670基本上失准,则器械对准元素632可提供这种失准配置的指示,如图6-2所示。例如,如果针170与目标轨迹670失准超过阈值量(例如,不对准阈值),则可以特定颜色/填充图案对进度条636进行高亮显示、轮廓描绘和/或部分/完全填充,以提供这种失准指示,如图所示。为了说明,可以红色填充进度条636(例如,闭合红色环)。除此之外或另选地,在一些实施方案中,器械对准元素632可显示为与具有变形形状的边界标记634(C)接触,如图6-2所示。在此,随着器械对准元素632在与边界标记634(C)的接近度内的移动,器械对准元素632可以其初始圆形形式显示,并且随着针170移动得更加失准并超过不对准阈值时,该器械对准元素转变为变形形状。这种转变可视化部可能看起来类似于液体内与表面接触的气泡。此外,在一些实施方案中,可在器械对准界面600内提供文本或另一指示,以指示针170与目标轨迹失准超过阈值量。在任何情况下,这种失准指示都可帮助医师160观察到针170与目标轨迹670基本上偏离轴线。尽管进度条636在图6-2中示出为具有特定高亮显示、轮廓描绘和/或填充图案以提供基本上失准指示,但在一些实施方案中,进度条636可在无此类变化的情况下实现。在此,器械对准元素632可显示为具有变形形状,以提供基本上失准指示。
当针170与目标轨迹670对准时,器械对准元素632可以与对准标记634对准的方式显示,如图6-3所示。例如,器械对准元素632可显示在中心对准标记634(A)内和/或与该中心对准标记同心。除此之外或另选地,可高亮显示中心对准标记634(A)(例如,使用辉光可视化、特定颜色等),以指示针170与目标轨迹670对准。此外,器械对准界面600可显示文本以指示对准,诸如文本“对准”,如图6-3所示。尽管图6-3中呈现了高亮显示的对准标记634(A)和文本,但在一些实施方案中仅呈现了此类可视化部中的仅一个可视化部。此外,可使用其他可视化部来指示这种对准。
在该示例中,当针170与目标轨迹670对准时,医师160插入针170,如图6-4至图6-6所示。在此,进度条636提供针170相对于目标位置664的接近度(例如,距离)的指示。具体地,进度条636可围绕边界标记634(C)以顺时针方式填充。控制系统140可通过使用定位技术跟踪针170的位置和/或目标位置664/窥视镜120的位置来确定针170与目标位置664的接近度。
在一些实施方案中,随着针170移动得更靠近目标位置664,器械对准元素632的移动量可变化(例如,器械对准元素632的灵敏度可变化)。例如,当针170离目标位置664相对远时(例如,在到目标位置664的距离之外),控制系统140初始可将器械对准元素632的位置变化参数设置为第一值。位置变化参数可指示器械对准元素632相对于针170的移动单位的位置变化量。随着针170移动得更靠近目标位置664,可将位置变化参数更新为第二值,诸如与比第一值更大或更小的针对针170的相同移动单位的位置变化量相关联的值。
在更新位置变化参数的一个图示中,当针170位于患者130的皮肤上时,位置变化参数可被设置为初始值。初始值可致使器械对准元素632响应于例如针170的取向变化5度而移动第一像素数。随着针170移动得更靠近目标位置664,可将位置变化参数更新为更大的值,其致使器械对准元素632响应于针170的取向变化5度而移动第二像素数,其中第二像素数大于第一像素数。随着针170移动得更靠近目标位置664,可将位置变化参数更新任意次数。在一些实施方案中,这可帮助医师对准针170以到达相对小的目标,诸如直径可为4mm至8mm的盏。
当针170已到达目标位置664时,器械对准界面600可显示已到达目标位置664的指示,如图6-7所示。例如,进度条636可完全围绕边界标记634(C)的周边填充。在一些实施方案中,可以特定颜色/填充图案对进度条636进行高亮显示、轮廓描绘和/或部分/完全填充,以指示已到达目标位置664。例如,可以绿色填充进度条636(例如,闭合绿色环)。除此之外或另选地,器械对准界面600可提供已到达目标位置664的文本,诸如提供文本“已到达目标”,也如图所示。在一些实施方案中,如图6-7所示,描绘肾660的内部部分的图像612还可提供针170已到达目标位置664的视觉确认。
在一些具体实施中,如果针170被插入到目标位置664之外,则器械对准界面600可提供针170被插入到目标位置664之外的指示,如图6-8所示。例如,可以特定颜色/填充图案对进度条636进行高亮显示、轮廓描绘和/或部分/完全填充,以指示针170被插入到目标位置664之外。为了说明,可以红色填充进度条636(例如,闭合红色环)和/或以与针170基本上失准的情况(例如,图6-2的情况)不同的颜色填充进度条。除此之外或另选地,器械对准界面600可提供针170被插入到目标位置664之外的文本,诸如提供文本“已插入到目标之外。请缩回。”在一些实施方案中,当针170在目标位置664之外超过阈值距离时和/或当针170在与窥视镜120的特定距离内时,控制系统140可确定针170被插入到目标位置664之外。
在一些实施方案中,如图6-8所示,描绘肾660的内部部分的图像612还可提供针170已被插入到目标位置664之外的视觉确认。在其他实施方案中,窥视镜120的视场可不包括针170进入肾660的位置(例如,针170可被插入窥视镜120的视场的上方或下方)。在此,进度条636可特别有助于通知医师160针170被插入到目标位置664之外。
在一些规程中,一旦针170已到达目标位置664,则可将医疗器械638可插入针170上方和/或代替针170,如图6-9所示。医疗器械638可包括帮助从肾脏660取出肾结石662的装置。例如,医疗器械638可包括导管(例如,动力导管)、真空管、肾镜或任何其他医疗器械。在一些实施方案中,一个或多个扩张器械(例如,线、管、护套等)可用于扩张到目标位置664的路径,以提供足够空间以便插入医疗器械638。在一些示例中,医疗器械638耦接到机器人系统110和/或由其控制,诸如耦接到机器人系统110的机器人臂。
医疗器械638和/或窥视镜120(和/或针170,在一些情况下)可便于从肾660中取出肾结石662。例如,窥视镜120可部署工具(例如,激光器、切割器械等)以将肾结石662切成碎片,而医疗器械638可从肾660中吸出碎片,如图6-10所示。在一些具体实施中,窥视镜120(和/或医疗器械638)可提供冲洗,以帮助从肾660移除碎片。在图6-10的示例中,图像612提供了正从肾660中移除肾结石662的视觉确认。
在一些实施方案中,在返回到针170在患者130的皮肤上的对准时(例如,图6-2),如果针170在其与目标轨迹670基本上失准时插入,则器械对准界面600可提供缩回针170的指示,如图6-11所示。例如,控制系统140可确定针与目标轨迹670失准超过阈值量(类似于参考图6-2所讨论的)。此外,当针170与目标轨迹670基本上失准时,控制系统140可确定针170被插入患者130体内超过特定距离。在一些实施方案中,可以特定颜色/填充图案对进度条636进行高亮显示、轮廓描绘和/或部分/完全填充,以指示针170已被插入并且基本上失准。为了说明,可以红色(例如,闭合红色环)填充进度条636和/或以与针170正好基本上失准的情况(例如,图6-2的情况)不同的颜色填充进度条。除此之外或另选地,在一些实施方案中,器械对准界面600可提供针170基本上失准并且需要缩回的文本,诸如提供文本“以适当的取向缩回并重新插入针”。在一些实施方案中,当确定无法调整针170以到达目标位置664时,可呈现图6-11的指示。
尽管图6-1至图6-11中以特定指示示出了对准和进度信息,但也可提供其他指示,包括听觉、视觉、触觉等。例如,控制系统140可经由与控制系统140相关联的I/O装置提供声音和/或触觉反馈,以指示针170的对准和/或进度(例如,当针170与目标轨迹670对准时的第一声音,当针170初始被插入时的第二声音、当针170在目标轨迹664的中途时的第三声音、当针170已到达目标位置664时的第三声音等)。此外,所讨论的任何指示都可以不同的形式(例如,不同的形状、大小、颜色等)示出和/或呈现在器械对准界面600内的不同位置处。
在一些具体实施中,进度条636可包括直线进度条,而不是围绕边界标记634示出的圆形条,该圆形条可定位在器械对准界面600内的任何位置处。此外,在一些实施方案中,代替填充进度条636以指示针170与目标位置664的接近度,可在进度条636上使用图标显示针170的当前位置(例如,图标位于顶部位置,指示针170尚未插入患者130体内和/或已到达目标位置664)。此外,在一些实施方案中,可经由器械对准界面600呈现到目标位置664的进度百分比。
此外,在一些实施方案中,中心对准标记634(A)、边界标记634(C)和/或器械对准元素632的大小可变化,以指示将针170插入到目标位置664的进度。例如,中心对准标记634(A)的直径可随着针170的插入而减小,直到中心对准标记634(A)达到与器械对准元素632相同的直径。
示例性流程图
图7至图10示出了用于执行本文讨论的一种或多种技术的过程的示例性流程图。与这些过程相关联的各种操作可由在本文讨论的任何装置/系统中实现的控制电路或其组合来执行,诸如控制系统140、机器人系统110、工作台150、EM场发生器180、窥视镜120和/或针170。
图7示出了根据一个或多个实施方案的用于确定医疗器械相对于目标轨迹的对准并呈现关于医疗器械与目标轨迹的对准的信息的过程700的示例性流程图。在框702处,过程700可包括从一个或多个医疗器械接收传感器数据。例如,根据某些使用情况,装置/系统的控制电路(诸如控制系统)可经由通信接口从一个或多个医疗器械(诸如窥视镜、针或任何其他医疗器械)接收传感器数据。传感器数据可指示一个或多个医疗器械的位置和/或取向。
在框704处,过程700可包括确定人体解剖结构内的目标位置。例如,根据某些使用情况,控制电路可确定患者体内的目标位置,诸如解剖界标、医疗器械的位置或任何其他位置/目标。在一些实施方案中,控制电路可至少部分地基于来自至少部分地设置在患者体内的医疗器械的传感器数据来确定目标位置。
在框706处,过程700可包括确定一个或多个医疗器械的位置和/或取向。例如,根据某些使用情况,控制电路可至少部分地基于来自一个或多个医疗器械的传感器数据来确定一个或多个医疗器械的位置和/或取向。在一些实施方案中,控制电路可使用一种或多种定位技术来确定一个或多个医疗器械的位置和/或取向。
在框708处,过程700可包括确定用于进入目标位置的目标轨迹。例如,根据某些使用情况,控制电路可确定用于经皮进入患者体内的目标位置的目标轨迹。在一些实施方案中,控制电路可至少部分地基于来自至少部分地设置在患者体内的医疗器械的传感器数据、来自位于患者体外(或部分地插入)的医疗器械的传感器数据、目标位置的位置等来确定目标轨迹。除此之外或另选地,可基于用户通过界面提供输入以指定目标轨迹来确定目标轨迹。在示例中,可相对于一个或多个解剖平面/轴线来定义目标轨迹。
在框710处,过程700可包括生成表示界面的用户界面数据,该界面包括指示医疗器械的取向与目标轨迹的对准的器械对准元素。例如,根据某些使用情况,控制电路可生成表示界面(例如,器械对准界面)的用户界面数据,该界面包括表示医疗器械取向的器械对准元素,诸如表示针取向的针对准图标。在一些实施方案中,器械对准元素在界面内的定位可指示医疗器械的取向与目标轨迹的对准。
在框712处,过程700可包括致使显示该界面。例如,根据某些使用情况,控制电路可诸如通过将用户界面数据发送到与控制系统相关联的显示装置,经由显示装置来显示界面。此外,根据某些使用情况,显示装置可至少部分地基于用户界面数据来显示界面。在任何情况下,界面可包括表示医疗器械取向的器械对准元素。
在框714处,过程700可包括至少部分地基于医疗器械的取向的变化来更新器械对准元素的位置。例如,根据某些使用情况,控制电路可确定医疗器械取向的变化,并且至少部分地基于医疗器械取向的变化来更新与医疗器械相关联的器械对准元素的位置。
在框714的一些实施方案中,控制电路可至少部分地基于医疗器械与目标位置的接近度来更新器械对准元素的位置。例如,响应于确定医疗器械的取向已变化测量单位并且确定医疗器械在与目标位置的预定接近度之外,控制电路可将器械对准元素在界面内的位置更新第一量。此外,响应于确定医疗器械的取向已变化该测量单位并且确定医疗器械在与目标位置的预定接近度内,控制电路可将器械对准元素在界面内的位置更新第二量。
图8示出了根据一个或多个实施方案的用于呈现关于医疗器械的取向的信息的过程800的示例性流程图。在框802处,过程800可包括确定医疗器械的取向。例如,根据某些使用情况,控制电路可至少部分地基于来自医疗器械的传感器数据来确定被配置成经皮进入人体解剖结构的医疗器械的取向。在一些实施方案中,控制电路可使用一种或多种定位技术来确定医疗器械的取向。
在框804处,过程800可包括确定医疗器械的取向是否与目标轨迹对准。例如,根据某些使用情况,控制电路可至少部分地基于医疗器械的传感器数据来确定医疗器械的取向是否与被确定用于经皮进入目标位置的目标轨迹对准。在一些实施方案中,控制电路可将医疗器械的取向的一个或多个坐标和/或角度与目标轨迹的一个或多个坐标和/或角度进行比较,并且确定是否满足一个或多个阈值(例如,医疗器械的取向的一个或多个坐标和/或角度在目标轨迹的一个或多个坐标和/或角度的特定数量的坐标和/或度数内)。在示例中,可相对于位置误差和/或角度误差(例如,X、Y、Z、偏航、俯仰、滚转)和/或相对于任何坐标系来确定对准。
如果确定医疗器械的取向与目标轨迹对准,则过程800可前进到框806。相比之下,如果确定医疗器械的取向不与目标轨迹对准,则过程800可前进到框808。
在框806处,过程800可包括致使显示医疗器械的取向与目标轨迹对准的指示。例如,根据某些使用情况,控制电路可诸如通过向与控制系统相关联的显示装置发送数据,致使在界面内显示医疗器械的取向与目标轨迹对准的指示。此外,根据某些使用情况,显示装置可在界面内显示医疗器械的取向与目标轨迹对准的指示。在一些实施方案中,器械对准元素以具有一个或多个对准标记(例如,以标记为中心)的对准布置来显示,以指示医疗器械的取向与目标轨迹对准。
在框808处,过程800可包括确定医疗器械的取向是否与目标轨迹失准超过阈值量。例如,根据某些使用情况,控制电路可至少部分地基于医疗器械的传感器数据来确定医疗器械的取向是否与目标轨迹失准超过阈值量。在一些实施方案中,控制电路可将医疗器械的取向的一个或多个坐标和/或角度与目标轨迹的一个或多个坐标和/或角度进行比较。
如果确定医疗器械的取向与目标轨迹失准超过阈值量,则过程800可前进到框810。相比之下,如果确定医疗器械的取向未与目标轨迹失准超过阈值量,则过程800可前进到框812。
在框810处,过程800可包括致使在边界标记处和/或以变形形式显示器械对准元素。例如,根据某些使用情况,控制电路可诸如通过向与控制系统相关联的显示装置发送数据,致使在与边界标记的预定接近度内和/或以变形形状显示器械对准元素。此外,根据某些使用情况,显示装置可在界面内在与边界标记的预定接近度内和/或以变形形状显示器械对准元素。
在框812处,过程800可包括致使显示位置失准的器械对准元素。例如,根据某些使用情况,控制电路可诸如通过向与控制系统相关联的显示装置发送数据,致使在不与对准标记对准的位置处显示器械对准元素。此外,根据某些使用情况,显示装置可在不与对准标记对准的位置处显示器械对准元素。
在框814处,过程800可包括确定医疗器械是否被插入人体解剖结构中。例如,根据某些使用情况,控制电路可至少部分地基于来自医疗器械的传感器数据和/或关于患者的位置和/或取向的信息来确定医疗器械是否至少部分地设置在患者体内。在一些实施方案中,控制电路可确定医疗器械是否以特定量插入患者体内。
如果确定医疗器械被插入人体解剖结构中,则过程800可前进到框816。相比之下,如果确定医疗器械未被插入人体解剖结构中,则过程800可前进到框818。
在框816处,过程800可包括致使显示缩回医疗器械的指示。例如,根据某些使用情况,控制电路可诸如通过向与控制系统相关联的显示装置发送数据,致使显示缩回医疗器械的指示。此外,根据某些使用情况,显示装置可显示缩回医疗器械的指示。在一些实施方案中,控制电路可维持与框810和/或框812相关联的信息的显示(例如,器械对准元素),以及提供缩回医疗器械的指示。
在框818处,过程800可包括维持信息的显示。例如,根据某些使用情况,控制电路可维持关于医疗器械的当前取向和/或位置的文本或其他可视化部的显示(例如,在框810和/或框812处呈现的信息)。尽管示出了框818,但在一些实施方案中,可执行另一操作或过程。
图9示出了根据一个或多个实施方案的用于呈现关于医疗器械与目标位置的接近度的信息的过程900的示例性流程图。在框902处,过程900可包括确定医疗器械与目标位置的接近度。例如,根据某些使用情况,控制电路可至少部分地基于来自医疗器械的传感器数据来确定医疗器械与患者体内的目标位置的接近度。在一些实施方案中,控制电路可使用一种或多种定位技术来确定医疗器械的位置。
在框904处,过程900可包括致使显示医疗器械与目标位置的接近度的指示。例如,根据某些使用情况,控制电路可诸如通过向与控制系统相关联的显示装置发送数据,致使在界面内显示医疗器械与目标位置的接近度的指示。此外,根据某些使用情况,显示装置可在界面内显示医疗器械接近目标位置的指示。
在框906处,过程900可包括确定医疗器械是否已到达目标位置。例如,根据某些使用情况,控制电路可至少部分地基于来自医疗器械的传感器数据来确定医疗器械是否已到达患者体内的目标位置。
如果确定医疗器械已到达目标位置,则过程900可前进到框908。相比之下,如果确定医疗器械未到达目标位置,则过程900可返回到框902。
在框908处,过程900可包括致使显示该医疗器械已到达目标位置的指示。例如,根据某些使用情况,控制电路可诸如通过向与控制系统相关联的显示装置发送数据,致使在界面内显示医疗器械已到达目标位置的指示。此外,根据某些使用情况,显示装置可在界面内显示医疗器械已到达目标位置的指示。
在框910处,过程900可包括确定医疗器械是否被插入到目标位置之外。例如,根据某些使用情况,控制电路可至少部分地基于来自医疗器械的传感器数据来确定医疗器械是否被插入到目标位置之外。
如果确定医疗器械被插入到目标位置之外,则过程900可前进到框912。相比之下,如果确定医疗器械未被插入到目标位置之外,则过程900可返回到框902。尽管在图9的示例中过程900被示为返回到框902,但在一些实施方案中,过程900可返回到框906、框908或另一框。
在框912处,过程900可包括致使显示该医疗器械被插入到目标位置之外的指示。例如,根据某些使用情况,控制电路可诸如通过向与控制系统相关联的显示装置发送数据,致使在界面内显示医疗器械被插入到目标位置之外的指示。此外,根据某些使用情况,显示装置可在界面内显示医疗器械插入到目标位置之外的指示。然后,过程900可返回到框902。
图10示出了根据一个或多个实施方案的用于设置和/或更新与器械对准元素相关联的位置变化参数的过程1000的示例性流程图。在框1002处,过程1000可包括设置与医疗器械的移动单位相关联的位置变化参数。例如,根据某些使用情况,控制电路可将位置变化参数设置为初始值,该初始值指示器械对准元素的特定位置变化量。位置变化参数可指示界面内的器械对准元素相对于医疗器械的移动单位(例如,取向变化单位)的位置变化量。在一些实施方案中,初始值包括与位于患者体外和/或目标位置的预定接近度之外的医疗器械相关联的预定值或默认值。例如,在将医疗器械插入患者体内之前对准医疗器械时,可将位置变化参数设置为初始值。
在框1004处,过程1000可包括使用位置变化参数来至少部分地基于医疗器械的取向的变化来改变器械对准元素的位置。例如,根据某些使用情况,控制电路可确定医疗器械的取向已变化,并且作为响应,使用位置变化参数来改变器械对准元素的位置(例如,使用位置变化参数的值来识别施加到器械对准元素的位置变化量)。
在框1006,过程1000可包括确定医疗器械是否更靠近目标位置。例如,根据某些使用情况,控制电路可确定与控制电路医疗器械的最后位置相比,医疗器械是否更靠近目标位置。这种确定可至少部分地基于来自医疗器械的传感器数据。在一些实施方案中,控制电路可确定医疗器械是否在与目标位置的预定接近度内。
如果确定医疗器械更靠近目标位置,则过程1000可前进到框1008。相比之下,如果确定医疗器械没有更靠近目标位置,则过程1000可返回到框1004并继续使用先前设置的位置变化参数。
在框1008处,过程1000可包括更新位置变化参数。例如,根据某些使用情况,控制电路可将位置变化参数更新为对于医疗器械的移动单位,与或多或少的位置变化相关联的另一值。在一些实施方案中,框1008可以任意次数实现,以随着医疗器械移动得更靠近目标位置,更新位置变化参数一次或多次。此外,在一些实施方案中,框1008可在医疗器械在与目标位置的预定接近度内时实现一次。在此,过程1000在实施框1008之后可能不会返回到框1004。
示例性机器人系统
图11示出了根据一个或多个实施方案的机器人系统110的示例性细节。在该示例中,机器人系统110被示为可移动的推车式机器人使能系统。然而,机器人系统110可实现为固定系统,集成到工作台中,等。
机器人系统110可包括支撑结构114,该支撑结构包括细长区段114(A)(有时称为“柱114(A)”)和基部114(B)。柱114(A)可包括一个或多个托架,诸如托架1102(另选地称为“臂支撑件1102”),用于支撑一个或多个机器人臂112(图11中示出了三个)的展开。托架1102可包括可单独配置的臂安装件,这些臂安装件沿着垂直轴线旋转,以调整机器人臂112的基部,以便相对于患者进行定位。托架1102还包括托架接口1104,该托架接口允许托架1102沿柱114(A)竖直平移。托架接口1104通过狭槽(诸如狭槽1106)连接到柱114(A),这些狭槽定位在柱114(A)的相对侧上,以引导托架1102的竖直平移。狭槽1106包括竖直平移接口,以将托架1102定位和保持在相对于基部114(B)的各种竖直高度。托架1102的竖直平移允许机器人系统110调整机器人臂112的触及范围,以满足各种工作台高度、患者体型、医师偏好等。类似地,托架1102上的可单独配置的臂安装件允许机器人臂112的机器人臂基部1108以多种配置成角度。柱114(A)可在内部包括机构(诸如齿轮和/或马达),这些机构被设计成使用竖直对准的导螺杆来响应于控制信号而以机械化方式平移托架1102,这些控制信号是响应于用户输入(诸如来自I/O装置116的输入)而生成的。
在一些实施方案中,狭槽1106可补充有狭槽盖,该狭槽盖与狭槽表面齐平和/或平行,以随着托架1102的竖直平移,防止灰尘和/或流体进入柱114(A)的内部腔室和/或竖直平移接口中。狭槽盖可通过定位在狭槽1106的竖直顶部和底部附近的成对弹簧卷筒展开。随着托架1102的竖直向上和向下平移,盖可在卷筒内卷绕,直到展开以从其卷绕状态伸出和缩回。当托架1102朝向卷筒平移时,卷筒的弹簧加载可提供将盖缩回到卷筒中的力,同时当托架1102远离卷筒平移时,也维持紧密密封。盖可使用例如托架接口1104中的支架连接到托架1102,以确保随着托架1102的平移,盖适当伸出和缩回。
基部114(B)可平衡柱114(A)、托架1102和/或臂112在诸如地板的表面上的重量。因此,基部114(B)可容纳较重的部件,诸如一个或多个电子器件、马达、电源等,以及使得机器人系统110能够移动和/或固定不动的部件。例如,基部114(B)可包括可滚动轮1116(也称为“脚轮1116”),这些可滚动轮允许机器人系统110在房间内移动以进行规程。在到达适当位置之后,脚轮1116可使用轮锁固定,以在该规程期间将机器人系统110保持在适当位置。如图所示,机器人系统110还包括柄部1118,以帮助操纵和/或稳定机器人系统110。
机器人臂112一般可包括机器人臂基部1108和端部执行器1110,它们由一系列连杆1112分开,该连杆由一系列关节1114连接。每个关节1114可包括独立的致动器,并且每个致动器可包括独立可控的马达。每个独立可控的关节1114表示机器人臂112可用的独立自由度。例如,每个臂112可具有七个关节,从而提供七个自由度。然而,可以任何自由度实现任意数量的关节。在示例中,多个关节可产生多个自由度,从而允许“冗余”自由度。冗余自由度允许机器人臂112使用不同的连杆位置和/或关节角度将它们相应的端部执行器1110定位在空间中的特定位置、取向和/或轨迹上。在一些实施方案中,端部执行器1110可被配置成接合和/或控制医疗器械、装置、轴线等。臂112的移动自由度可允许机器人系统110从空间中的期望点定位和/或引导医疗器械,和/或允许医师将臂112移动到远离患者的临床上有利的位置以形成通路,同时避免臂碰撞。
如图11所示,机器人系统110还可包括I/O装置116。I/O装置116可包括显示器、触摸屏、触摸板、投影仪、鼠标、键盘、麦克风、扬声器、控制器、相机(例如,用于接收手势输入),或用于接收输入和/或提供输出的另一I/O装置。I/O装置116可被配置成接收触摸、语音、手势或任何其他类型的输入。I/O装置116可定位在柱114(A)的竖直端部(例如,柱114(A)的顶部)和/或提供用于接收用户输入和/或用于提供输出的用户界面。例如,I/O装置116可包括触摸屏(例如,两用装置),以接收输入并向医师提供术前和/或术中数据。示例性术前数据可包括从术前计算机断层扫描(CT)扫描得到的术前计划、导航和/或映射数据,和/或从术前患者访谈得到的记录。示例性术中数据可包括从工具/器械、传感器提供的光学信息,和/或来自传感器的坐标信息,以及重要的患者统计数据(诸如呼吸、心率和/或脉搏)。I/O装置116可被定位和/或倾斜以允许医师从各种位置访问I/O装置116,诸如柱114(A)的与托架1102相对的一侧。从这个位置,医师可在从机器人系统110的后面操作I/O装置116的同时查看I/O装置116、机器人臂112和/或患者。
机器人系统110可包括多种其他部件。例如,机器人系统110可包括一个或多个控制电子器件/电路、电源、气动装置、光源、致动器(例如,用于移动机器人臂112的马达)、存储器和/或通信接口(例如,用于与另一装置通信)。在一些实施方案中,存储器可存储计算机可执行指令,当由控制电路执行时,这些指令致使控制电路执行本文讨论的任何操作。例如,存储器可存储计算机可执行指令,当由控制电路执行时,这些计算机可执行指令致使控制电路接收关于机器人臂112的操纵的输入和/或控制信号,并且作为响应,控制机器人臂112以特定布置定位和/或导航连接到端部执行器1110的医疗器械。
在一些实施方案中,机器人系统110被配置成接合和/或控制医疗器械,诸如窥视镜120。例如,机器人臂112可被配置成控制窥视镜(例如,窥视镜的护套和/或引导件)的位置、取向和/或尖端关节运动。在一些实施方案中,机器人臂112可被配置成/被配置成能够使用细长移动构件来操纵窥视镜120。细长移动构件可包括一根或多根拉线(例如,拉线或推线)、电缆、纤维和/或柔性轴。为了说明,机器人臂112可被配置成致动耦接到窥视镜120的多根拉线以偏转窥视镜120的尖端。拉线可包括任何合适的或期望的材料,诸如金属材料和/或非金属材料,诸如不锈钢、凯夫拉尔(Kevlar)、钨、碳纤维等。在一些实施方案中,窥视镜120被配置成响应于由细长移动构件施加的力而表现出非线性行为。非线性行为可基于窥视镜120的刚度和可压缩性,以及不同细长移动构件之间的松弛或刚度的可变性。
示例性控制系统
图12示出了根据一个或多个实施方案的控制系统140的示例性细节。如图所示,控制系统140可分别地/单独地和/或组合地/共同地包括以下部件、装置、模块和/或单元(在本文称为“部件”)中的一者或多者:控制电路1202、数据存储装置/存储器1204、一个或多个通信接口1206、一个或多个电源单元1208、一个或多个I/O部件1210和/或一个或多个轮子1212(例如,脚轮或其他类型的轮子)。在一些实施方案中,控制系统140可包括壳体/外壳,该壳体/外壳被配置成和/或尺寸设定成容纳或包含控制系统140的一个或多个部件的至少一部分。在该示例中,控制系统140被示为推车式系统,其可与一个或多个轮子1212一起移动。在一些情况下,在到达适当位置之后,一个或多个轮子1212可使用轮锁固定,以将控制系统140保持在适当位置。然而,控制系统140可实现为固定系统,集成到另一系统/装置中,等。
尽管图12中示出了控制系统140的某些部件,但应当理解,在根据本公开的实施方案中可包括未示出的附加部件。此外,在一些实施方案中可省略某些示出的部件。尽管在图12的图示中控制电路1202被示为单独的部件,但应当理解,控制系统140的任何或所有剩余部件可至少部分地体现在控制电路1202中。也就是说,控制电路1202可包括各种装置(有源和/或无源)、半导体材料和/或其区域、层、区和/或部分、导体、引线、通孔、连接件等,其中控制系统140的一个或多个其他部件和/或其部分可至少部分地由此类电路部件/装置形成和/或实现。
控制系统140的各种部件可使用某些连接电路/装置/特征电耦接和/或通信地耦接,这些连接电路/装置/特征可为,或可不为控制电路1202的一部分。例如,连接特征可包括一个或多个印刷电路板,该一个或多个印刷电路板被配置成促进控制系统140的各种部件/电路中的至少一些部件/电路的安装和/或互连。在一些实施方案中,控制电路1202、数据存储装置/存储器1204、通信接口1206、电源单元1208和/或输入/输出(I/O)部件1210中的两者或更多这可彼此电耦接和/或通信地耦接。
如图所示,存储器1204可包括定位部件1214、目标/轨迹部件1216和用户界面部件1218,这些部件被配置成促进本文讨论的各种功能。在一些实施方案中,定位部件1214、目标/轨迹部件1216和/或用户界面部件1218可包括一个或多个指令,该一个或多个指令可由控制电路1202执行以执行一个或多个操作。尽管在包括可由控制电路1202执行的一个或多个指令的部件1214-1218的背景下讨论了许多实施方案,但部件1214-1218中的任何部件都可至少部分地实现为一个或多个硬件逻辑部件,诸如一个或多个专用集成电路(ASIC)、一个或多个现场可编程门阵列(FPGA)、一个或多个程序特定标准产品(ASSP)、一个或多个复杂可编程逻辑器件(CPLD)等。此外,尽管部件1214-1218被示为包括在控制系统140内,但部件1214-1218中的任何部件都可至少部分地在另一装置/系统内实现,诸如机器人系统110、工作台150或另一装置/系统。类似地,控制系统140的任何其他部件都可至少部分地在另一装置/系统内实现。
定位部件1214可被配置成执行一种或多种定位技术以确定和/或跟踪对象(诸如医疗器械)的位置和/或取向。例如,定位部件1214可处理输入数据(例如,来自医疗器械的传感器数据、关于患者解剖结构的模型数据、患者的位置数据、术前数据、机器人命令和/或运动学数据等),以生成一个或多个医疗器械的位置/取向数据1220。位置/取向数据1220可指示一个或多个医疗器械相对于参照系的位置和/或取向。参照系可以是相对于患者解剖结构、已知对象(例如,EM场发生器)、坐标系/空间等的参照系。在一些具体实施中,位置/取向数据1220可指示医疗器械的远侧端部(和/或近侧端部,在一些情况下)的位置和/或取向。
在一些实施方案中,定位部件1214可处理术前数据以确定对象的位置和/或取向。可通过执行计算机断层摄影(CT)扫描(诸如低剂量CT扫描)来生成术前数据(有时称为“映射数据”)。来自扫描的术前CT图像可重建为三维图像,这些三维图像被可视化为例如患者内部解剖结构的剖视图的“切片”。当聚合分析时,可生成患者解剖结构的解剖腔、空间和/或结构的基于图像的模型(诸如患者肺网络)。可根据CT图像确定和/或估计中心线几何图形,以形成患者解剖结构的三维体积,称为模型数据(仅使用术前CT扫描生成时,也称为“术前模型数据”)。中心线几何图形的示例性使用在美国专利申请号14/523,760中有所讨论,其内容全文以引用方式并入本文。网络拓扑模型也可从CT图像中推导出来。
此外,在一些实施方案中,定位部件1214可执行基于视觉的技术来确定对象的位置和/或取向。例如,医疗器械可配备相机、距离传感器(有时称为“深度传感器”)、雷达装置等,以提供视觉数据形式的传感器数据。定位部件1214可处理视觉数据以促进医疗器械的基于视觉的位置跟踪。例如,可结合视觉数据使用术前模型数据,以使得能够对医疗器械(例如,内窥镜)进行基于计算机视觉的跟踪。在示例中,使用术前模型数据,控制系统140可基于窥视镜的预期行进路径生成预期窥视镜图像库,其中每个图像都链接到模型内的位置。在手术中,控制系统140可参考该库,以便将在窥视镜(例如,内窥镜的远侧端部处的相机)处捕获的实时图像和/或其他视觉数据与图像库中的那些图像和/或其他视觉数据进行比较,以帮助定位。
此外,在一些实施方案中,可执行其他类型的基于视觉的技术来确定对象的位置和/或取向。例如,定位部件1214可使用特征跟踪来确定图像传感器(例如,相机或其他传感器)的运动,并因此确定与图像传感器相关联的医疗器械的运动。在一些情况下,定位部件1214可识别术前模型数据中对应于解剖内腔的圆形几何形状,并跟踪这些几何形状的变化,以确定选择了哪个解剖内腔,以及医疗器械的相对旋转和/或平移运动。拓扑图的使用还可增强基于视觉的算法或技术。此外,定位部件1214可使用光流(另一种基于计算机视觉的技术)来分析视觉数据中的视频序列中的图像像素的位移和/或平移,以推断相机移动。光流技术的示例可包括运动检测、对象分割计算、亮度、运动补偿编码、立体视差测量等。通过在多次迭代中比较多个帧,定位部件1214可确定图像传感器(以及内窥镜)的移动和位置。
此外,在一些实施方案中,定位部件1214可使用电磁跟踪来确定对象的位置和/或取向。例如,定位部件1214可使用实时EM跟踪来确定医疗器械在坐标系/空间中的实时位置,该坐标系/空间可被配准到患者的解剖结构,该坐标系/空间可由术前模型或其他模型表示。在EM跟踪中,包括一个或多个传感器线圈的EM传感器(或跟踪器)可嵌入在医疗器械(例如,窥视镜、针等)中的一个或多个位置和/或取向。EM传感器可测量由定位在已知位置处的一个或多个静态EM场发生器产生的EM场的变化。由EM传感器检测到的位置信息可被存储为EM数据。定位部件1214可处理EM数据以确定对象(诸如医疗器械)的位置和/或取向。可将EM场发生器(或发射器)放置在患者附近(例如,在预定距离内),以产生EM传感器可检测到的低强度磁场。磁场可在EM传感器的传感器线圈中感应小电流,可对该小电流进行分析以确定EM传感器与EM场发生器之间的距离和/或角度。这些距离和/或取向可在手术中“配准”到患者解剖结构(例如,术前模型),以便确定将坐标系中的单个位置与患者解剖结构的术前模型中的位置对准的几何变换。一旦配准,位于医疗器械的一个或多个位置(例如,内窥镜的远侧尖端、针等)中的EM传感器(例如,嵌入式EM跟踪器)可提供穿过患者解剖结构的医疗器械的位置和/或取向的实时指示。
除此之外或另选地,在一些实施方案中,定位部件1214可使用机器人命令和/或运动学数据来确定对象的位置和/或取向。机器人命令和/或运动学数据可指示由关节运动命令产生的俯仰和/或偏航(例如,机器人臂的俯仰和/或偏航),诸如在术前校准期间和/或在规程期间使用的那些。在手术中,校准测量可与已知插入深度信息结合使用,以估计医疗器械的位置和/或取向。另选地或除此之外,这些计算可结合EM、视觉和/或拓扑建模进行分析,以估计医疗器械的位置和/或取向。
此外,在一些实施方案中,定位部件1214可使用其他类型的数据来确定对象的位置和/或取向。例如,定位部件1214可分析来自嵌入在医疗器械上的形状感测光纤(例如,其可提供关于医疗器械的位置/形状的形状数据)、加速度计、陀螺仪,基于卫星的定位传感器(例如,全球定位系统(GPS))、射频收发器等的传感器数据。此类数据可指示医疗器械的位置和/或取向。
在一些实施方案中,定位部件1214可组合地使用输入数据。例如,定位部件1214可使用概率方法,其中将置信度权重分配给从多种形式的输入数据确定的位置/取向。为了说明,如果EM数据不可靠(可能存在EM干扰的情况),则EM数据可与相对低的置信度值相关联,并且可依赖于其他形式的输入数据,诸如视觉数据、机器人命令和运动学数据等。
目标/轨迹部件1216可被配置成确定目标位置在人类解剖结构和/或坐标空间/系统内的位置。目标位置可表示人体解剖结构和/或坐标空间/系统内的点/点集。例如,目标/轨迹部件1216可识别坐标系内的目标位置的一个或多个点,识别该一个或多个点的坐标(例如,每个点的X坐标、Y坐标、Z坐标),并将这些坐标与目标位置相关联。在一些实施方案中,目标/轨迹部件1216可使用医疗器械的位置和/或取向来确定目标位置的位置。例如,可将窥视镜导航到接触目标位置或在与目标位置的接近度内(例如,停放在目标位置的前面)。定位部件1214可使用定位技术来确定窥视镜的位置(例如,窥视镜的端部的位置)和/或窥视镜的视场内对象的位置。目标/轨迹部件1216可将窥视镜的位置(例如,窥视镜的坐标)与目标位置相关联。除此之外或另选地,在一些实施方案中,窥视镜可提供基准点来标记目标位置,并且可确定基准点的位置。
目标位置可表示人体解剖结构和/或坐标空间/系统内的固定点或可移动点。例如,如果乳头初始被指定为目标位置,则可随着规程的进行和乳头的移动,确定和更新目标位置的坐标(例如,由于医疗器械的插入)。在此,可随时间推移跟踪窥视镜的位置(其可在与乳头的接近度内),并使用该位置来更新目标位置的坐标。在一些实施方案中,目标/轨迹部件1216可估计/预测目标位置的位置。在此,目标位置可用预测位置来表示。例如,目标/轨迹部件1216可使用算法来随着人体解剖结构的移动,预测目标位置的坐标。预测的坐标可用于确定目标轨迹。
在一些实施方案中,可相对于一个或多个解剖平面/轴线来定义/表示目标轨迹和/或医疗器械的轨迹。例如,轨迹可被定义/表示为相对于冠状平面/矢状平面/横向平面或另一平面/轴线的角度(例如,20度的头尾角、10度的内外角等)。为了说明,控制系统140可确定医疗器械相对于EM场发生器的姿态和/或目标相对于EM场发生器的位置。控制系统140还可基于机器人运动学来确定EM场发生器相对于机器人系统的姿态。在一些情况下,控制系统140可推断/确定机器人系统与床平行。基于此类信息,控制系统140可确定目标轨迹和/或医疗器械相对于解剖平面的轨迹,诸如床上患者相对于解剖平面的角度。
目标/轨迹部件1216还可被配置成确定医疗器械或另一对象的目标轨迹。目标轨迹可表示用于进入目标位置的期望路径。目标轨迹可基于多种信息来确定,诸如:医疗器械(例如,针、窥视镜等)的位置、人体解剖结构内的目标位置、患者的位置和/或取向、患者的解剖结构(例如,患者体内器官相对于目标位置的位置)等。例如,目标轨迹可包括从医疗器械的位置和/或患者皮肤上的位置延伸到/穿过患者内的目标位置的位置的线。在示例中,医师可分析人体解剖结构的图像或模型并提供输入以诸如通过在患者的内部解剖结构的图像上绘制线,指定目标轨迹。在一些实施方案中,目标/轨迹部件1216初始可计算目标轨迹和/或在整个规程中更新目标轨迹。例如,随着目标位置在规程期间的移动,可由于目标位置的位置变化而更新目标轨迹。在估计目标位置的示例中,目标轨迹可表示到达目标位置的估计路径。
用户界面部件1218可被配置成促进一个或多个用户界面(也称为“一个或多个图形用户界面(GUI)”)。例如,用户界面部件1218可生成表示器械对准界面1224的用户界面数据1222,该器械对准界面包括一个或多个可视化部以指示医疗器械的取向和/或位置。用户界面部件1228可使用关于医疗器械的位置/取向数据1220、关于目标位置的信息和/或关于目标轨迹的信息来在器械对准界面1224内呈现一个或多个可视化部,该一个或多个可视化部指示医疗器械相对于目标轨迹的取向的对准和/或医疗器械与目标位置的接近度。此外,用户界面部件1228可使用视觉数据(诸如由窥视镜捕获的图像)来呈现器械对准界面1224内的信息。在示例中,信息可覆盖在来自窥视镜的图像上(例如,增强图像视图)。用户界面部件1228可将用户界面数据1222或其他数据提供给一个或多个显示器142和/或另一显示器,用于显示器械对准界面1224。
一个或多个通信接口1206可被配置成与一个或多个装置/传感器/系统通信。例如,一个或多个通信接口1206可通过网络以无线和/或有线方式发送/接收数据。根据本公开的实施方案的网络可包括局域网(LAN)、广域网(WAN)(例如,互联网)、个人局域网(PAN)、体域网(BAN)等。在一些实施方案中,一个或多个通信接口1206可实现无线技术,诸如蓝牙、Wi-Fi、近场通信(NFC)等。
一个或多个电源单元1208可被配置成管理控制系统140(和/或机器人系统110,在一些情况下)的电力。在一些实施方案中,一个或多个电源单元1208包括一个或多个电池,诸如锂基电池、铅酸电池、碱性电池和/或其他类型的电池。也就是说,一个或多个电源单元1208可包括一个或多个装置和/电路,该一个或多个装置和/电路被配置成提供功率源和/或提供功率管理功能。此外,在一些实施方案中,一个或多个电源单元1208包括主电源连接器,该主电源连接器被配置成耦接到交流电(AC)或直流电(DC)主电源。
一个或多个I/O部件1210可包括多种部件以接收输入和/或提供输出,以便与用户交互。一个或多个I/O部件1210可被配置成接收触摸、语音、手势或任何其他类型的输入。在示例中,一个或多个I/O部件1210可用于提供关于对装置/系统的控制的输入,以便控制机器人系统110,导航窥视镜或附接到机器人系统110的其他医疗器械,控制工作台150,控制荧光透视装置190等。如图所示,一个或多个I/O部件1210可包括一个或多个显示器142(有时称为“一个或多个显示装置142”),该一个或多个显示器被配置成显示数据。一个或多个显示器142可包括一个或多个液晶显示器(LCD)、发光二极管(LED)显示器、有机LED显示器、等离子体显示器、电子纸显示器和/或任何其他类型的技术。在一些实施方案中,一个或多个显示器142包括一个或多个触摸屏,该一个或多个触摸屏被配置成接收输入和/或显示数据。此外,一个或多个I/O部件1210可包括一个或多个I/O装置146,该一个或多个I/O装置可包括触摸屏、触摸板、控制器、鼠标、键盘,可穿戴装置(例如,光学头戴式显示器)、虚拟或增强现实装置(例如,头戴式显示器)等。另外,一个或多个I/O部件1210可包括:一个或多个扬声器1226,该一个或多个扬声器被配置成基于音频信号输出声音;和/或一个或多个麦克风1228,该一个或多个麦克风被配置成接收声音并生成音频信号。在一些实施方案中,一个或多个I/O部件1210包括控制台或被实现为控制台。
尽管图12中未示出,但控制系统140可包括和/或可控制其他部件,诸如一个或多个泵、流量计、阀控制器和/或流体进入部件,以便向医疗器械(例如,窥视镜)、可通过医疗器械部署的装置等提供受控的冲洗和/或抽吸能力。在一些实施方案中,冲洗和抽吸能力可通过单独的电缆直接递送到医疗器械。此外,控制系统140可包括电压和/或电涌保护器,该电压和/或电涌保护器被设计成向另一装置(诸如机器人系统110)提供经滤波的和/或受保护的电力,由此避免在机器人系统110中放置电力变压器和其他辅助电力部件,从而形成更小、更可移动的机器人系统110。
控制系统140还可包括用于部署在整个医疗系统100中的传感器的支持装备。例如,控制系统140可包括用于检测、接收和/或处理从光学传感器和/或相机接收的数据的光电子装备。此类光电子装备可用于生成实时图像,以便在任何数量的装置/系统中显示,包括在控制系统140中显示。类似地,控制系统140可包括用于接收和/或处理从部署的电磁(EM)传感器接收的信号的电子子系统。在一些实施方案中,控制系统140还可用于容纳和定位EM场发生器,以便由医疗器械中或医疗器械上的EM传感器进行检测。
在一些实施方案中,控制系统140可通过一个或多个电缆或连接件(未示出)耦接到机器人系统110、工作台150和/或医疗器械(诸如窥视镜120和/或针170)。在一些具体实施中,来自控制系统140的支持功能可通过单个电缆来提供,从而简化和消除手术室的混乱。在其他具体实施中,特定功能可在单独的电缆和连接件中耦接。例如,虽然可通过单个电力电缆提供电力,但可通过单独的电缆提供对控制、光学、流体和/或导航的支持用于控制。
术语“控制电路”在本文根据其广泛且普通的含义使用,并且可指一个或多个处理器、处理电路、处理模块/单元、芯片、管芯(例如,半导体管芯,其包括一个或多个有源装置和/或无源装置和/或连接电路)、微处理器、微控制器、数字信号处理器、微型计算机、中央处理单元、图形处理单元、现场可编程门阵列、可编程逻辑装置、状态机(例如,硬件状态机)、逻辑电路、模拟电路、数字电路和/或基于电路和/或操作指令的硬编码来操纵信号(模拟和/或数字)的任何装置。控制电路还可包括一个或多个存储装置,该一个或多个存储装置可体现在单个存储器装置、多个存储器装置和/或装置的嵌入式电路中。此类数据存储装置可包括只读存储器、随机存取存储器、易失性存储器、非易失性存储器、静态存储器、动态存储器、闪存存储器、高速缓存存储器、数据存储寄存器和/或存储数字信息的任何装置。应当指出的是,在控制电路包括硬件状态机(和/或实现软件状态机)、模拟电路、数字电路和/或逻辑电路的实施方案中,存储任何相关联操作指令的数据存储装置/寄存器可嵌入到包括状态机、模拟电路、数字电路和/或逻辑电路的电路内或电路外。
术语“存储器”在本文根据其广泛且普通的含义使用,并且可指任何合适或期望类型的计算机可读介质。例如,计算机可读介质可包括一个或多个易失性数据存储装置、非易失性数据存储装置、可移动数据存储装置和/或不可移动数据存储装置,它们使用任何技术、布局和/或数据结构/协议实现,包括任何合适或期望的计算机可读指令、数据结构、程序模块或其他类型的数据。
可根据本公开的实施方案实现的计算机可读介质包括但不限于相变存储器、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦可编程只读存储器(EEPROM)、闪存存储器或其他存储器技术、光盘只读存储器(CD-ROM)、数字多功能盘(DVD)或其他光学存储装置、盒式磁带、磁带、磁盘存储装置或其他磁存储装置,或可用于存储信息以供计算装置访问的任何其他非暂态介质。如在本文的某些背景下所使用的,计算机可读介质一般可不包括通信介质,诸如调制数据信号和载波。因此,计算机可读介质一般应被理解为指非暂态介质。
附加实施方案
取决于实施方案,本文所述的任何过程或算法的某些行为、事件或功能可以不同的序列执行,可被添加、合并或完全省略。因此,在某些实施方案中,并非所有描述的行为或事件都是过程实践所必需的。
除非另外特别说明或在所使用的背景下以其他方式理解,否则本文使用的条件语言,诸如“可”、“能够”、“可能”、“可以”、“例如”等,预期处于其普通意义,并且通常旨在传达某些实施方案包括某些特征部、元件和/或步骤而其他实施方案不包括某些特征部、元件和/或步骤。因此,此类条件语言通常不旨在暗示特征、元件和/或步骤以任何方式是一个或多个实施方案所必需的,或者不旨在暗示一个或多个实施方案在有或没有作者输入或提示的情况下,必须包括用于决定这些特征、元件和/或步骤是否包括在任何特定实施方案中或者是否将在任何特定实施方案中执行的逻辑。术语“包括”、“包含”、“具有”等是同义词,以其普通意义使用,并且以开放式方式包含性地使用,并且不排除另外的元素、特征、行为、操作等。另外,术语“或”以其包含性意义(而不是以其排他性意义)使用,使得当用于例如连接一系列元件时,术语“或”是指该系列的元件中的一个、一些或全部。除非另外特别说明,否则诸如短语“X、Y和Z中的至少一者”的连接词用语在一般使用的背景下被理解为传达项目、术语、元素等可为X、Y或Z。因此,这种连接词用语一般不旨在暗示某些实施方案要求X中的至少一者、Y中的至少一者和Z中的至少一者各自存在。
应当理解,在以上对实施方案的描述中,为了简化公开内容并帮助理解各种发明方面中的一个或多个发明方面,有时将各种特征组合在单个实施方案、附图或其描述中。然而,该公开方法不应被解释为反映任何权利要求需要比该权利要求中明确阐述的特征更多特征的意图。此外,本文的特定实施方案中示出和/或描述的任何部件,特征或步骤可应用于任何其他实施方案或与任何其他实施方案一起使用。此外,对于每个实施方案,没有部件、特征、步骤或部件、特征或步骤组是必要的或必不可少的。因此,期望本文公开和下文要求保护的本发明的范围不受上文描述的特定实施方案限制,而是应仅通过公正地阅读随附权利要求书来确定。
应当理解,某些序数术语(例如,“第一”或“第二”)可能是为了便于参考而提供的,并不一定暗示物理特性或顺序。因此,如本文所用,用于修饰诸如结构、部件、操作等元素的序数术语(例如,“第一”、“第二”、“第三”等)不一定指示元素相对于任何其他元素的优先级或顺序,而是通常可将该元素与具有类似或相同名称的另一元素区分开来(但使用序数术语)。此外,如本文所用,词语“一个/种”可指示“一个/种或多个/种”而不是“一个/种”。此外,“基于”条件或事件执行的操作也可基于未明确阐述的一个或多个其他条件或事件来执行。
除非另外定义,否则本文使用的所有术语(包括技术和科学术语)具有与示例性实施方案所属领域的普通技术人员通常理解的相同含义。还应当理解,术语(诸如在常用词典中定义的术语)应被解释为具有与它们在相关技术的背景下的含义一致的含义,并且不被解释为理想化或过于正式的意义,除非在本文明确地如此定义。
为了便于描述,在本文可使用空间相对术语“外部”、“内部”、“上部”、“下部”、“下方”、“上方”、“竖直”、“水平”和类似术语来描述一个元素或部件与另一元素或部件之间的关系,如附图所示。应当理解,空间相对术语旨在涵盖除了附图中所示的取向之外,在使用或操作中的不同取向。例如,在附图中所示的装置被翻转的情况下,定位在另一装置“下方”或“下面”的装置可被放置在另一装置“上方”。因此,例示性术语“下方”可包括下部位置和上部位置两者。该装置也可沿另一方向取向,因此空间相对术语可根据取向进行不同的解释。
除非另外明确说明,比较和/或定量术语(诸如“更少”、“更多”、“更大”等)旨在涵盖等同的概念。例如,“更少”不仅可表示最严格的数学意义上的“更少”,而且可表示“小于或等于”。
Claims (20)
1.一种系统,包括:
控制电路;以及
存储器,其通信耦合到所述控制电路并存储可执行指令,所述可执行指令当被所述控制电路执行时,使得所述控制电路执行操作,所述操作包括:
从第一医疗器械接收第一传感器数据,所述第一医疗器械被配置成经由切口进入解剖结构;
基于所述第一传感器数据确定所述第一医疗器械的取向;
从第二医疗器械接收第二传感器数据,所述第二医疗器械被配置成通过解剖内腔进入所述解剖结构;
基于所述第二传感器数据确定用来进入所述解剖结构的目标轨迹;以及
生成指示所述第一医疗器械的所述取向与所述目标轨迹的对准的对准数据。
2.根据权利要求1所述的系统,其中,所述第一医疗器械被配置成耦合至机器人组件,并且所述操作还包括:
基于所述对准数据,使所述机器人组件将所述第一医疗器械与所述目标轨迹对准。
3.根据权利要求1所述的系统,其中,所述操作还包括:
基于所述对准数据,显示一个或多个图形表示以指示所述第一医疗器械的所述取向与所述目标轨迹的所述对准。
4.根据权利要求1所述的系统,其中,所述操作还包括:
基于所述对准数据,提供音频输出以指示所述第一医疗器械的所述取向与所述目标轨迹的所述对准。
5.根据权利要求1所述的系统,其中所述操作还包括:
基于所述对准数据,提供触觉输出以指示所述第一医疗器械的所述取向与所述目标轨迹的所述对准。
6.根据权利要求1所述的系统,其中,所述操作还包括:
确定所述解剖结构内的目标位置;
确定所述第一医疗器械与所述目标位置的接近度;以及
提供指示所述第一医疗器械与所述目标位置的所述接近度的输出。
7.根据权利要求1所述的系统,其中,所述操作还包括:
确定所述解剖结构内的目标位置;
确定所述第一医疗器械被插入到所述目标位置之外;以及
提供指示所述第一医疗器械被插入到所述目标位置之外的输出。
8.一种方法,包括:
由控制电路接收来自第一医疗器械的第一传感器数据,所述第一医疗器械被配置成经由切口进入解剖结构;
由所述控制电路基于所述第一传感器数据确定所述第一医疗器械的取向;
由所述控制电路接收来自第二医疗器械的第二传感器数据,所述第二医疗器械被配置成通过解剖内腔进入所述解剖结构;
由所述控制电路基于所述第二传感器数据确定用来进入所述解剖结构的目标轨迹;以及
生成指示所述第一医疗器械的所述取向与所述目标轨迹的对准的对准数据。
9.根据权利要求8所述的方法,还包括:
基于所述对准数据,在界面内显示器械对准元素以指示所述第一医疗器械的所述取向与所述目标轨迹的所述对准。
10.根据权利要求9所述的方法,还包括:
将位置变化参数设置为第一值,所述位置变化参数指示所述界面内所述器械对准元件相对于所述第一医疗器械的移动单位的位置变化量;
确定所述第一医疗器械在目标位置的预定接近度内;和
基于确定所述第一医疗器械在所述目标位置的预定邻近范围内,将所述位置变化参数设置为第二值,所述第二值与比所述第一值更大的针对所述第一医疗器械的所述移动单位的所述器械对准元素的位置变化量相关联。
11.根据权利要求8所述的方法,还包括:
确定所述第一医疗器械的所述取向与所述目标轨迹失准超过阈值量;以及
提供指示所述第一医疗器械的所述取向与所述目标轨迹失准超过所述阈值量的输出。
12.根据权利要求11所述的方法,其中,所述输出包括从所述解剖结构中缩回所述第一医疗器械的指示。
13.根据权利要求8所述的方法,其中,所述第一医疗器械被配置成耦合到机器人组件,并且所述方法还包括:
基于所述对准数据,使所述机器人组件将所述第一医疗器械与所述目标轨迹对准。
14.一个或多个存储计算机可执行指令的非暂时性计算机可读介质,所述计算机可执行指令当由控制电路执行时,使得所述控制电路执行操作,所述操作包括:
从第一医疗器械接收第一传感器数据,所述第一医疗器械被配置成经由切口进入解剖结构;
基于所述第一传感器数据确定所述第一医疗器械的取向;
从第二医疗器械接收第二传感器数据,所述第二医疗器械被配置成通过解剖内腔进入所述解剖结构;
基于所述第二传感器数据确定用来进入所述解剖结构的目标轨迹;以及
生成指示所述第一医疗器械的所述取向与所述目标轨迹的对准的对准数据。
15.根据权利要求14所述的一个或多个非暂时性计算机可读介质,其中所述操作还包括:
基于所述对准数据,在界面内显示视觉表示以指示所述第一医疗器械的所述取向与所述目标轨迹的所述对准。
16.根据权利要求15所述的一个或多个非暂时性计算机可读介质,其中,所述界面包括对准标记,所述视觉表示相对于所述对准标记的定位指示所述第一医疗器械的所述取向与所述目标轨迹的所述对准。
17.根据权利要求16所述的一个或多个非暂时性计算机可读介质,其中,所述对准标记包括边界标记,并且所述操作还包括:
确定所述第一医疗器械的所述取向与所述目标轨迹失准超过阈值量;以及
使得所述视觉表示显示在距所述边界标记的预定距离内。
18.根据权利要求15所述的一个或多个非暂时性计算机可读介质,其中,所述操作还包括:
响应于确定所述第一医疗器械的所述取向已经改变测量单位并且确定所述第一医疗器械在与所述目标轨迹相关联的目标位置的预定接近度之外,将所述视觉表示在所述界面内的位置更新第一量;以及
响应于确定所述第一医疗器械的所述取向已经改变所述测量单位并且确定所述第一医疗器械在所述目标位置的预定接近度内,将所述界面内的所述视觉表示的所述位置更新第二量。
19.根据权利要求14所述的一个或多个非暂时性计算机可读介质,其中,所述第一医疗器械被配置成耦合到机器人组件,并且所述操作还包括:
基于所述对准数据,使所述机器人组件将所述第一医疗器械与所述目标轨迹对准。
20.根据权利要求14所述的一个或多个非暂时性计算机可读介质,其中,所述操作还包括:
基于所述对准数据,提供音频输出以指示所述第一医疗器械的所述取向与所述目标轨迹的所述对准。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962955993P | 2019-12-31 | 2019-12-31 | |
US62/955993 | 2019-12-31 | ||
PCT/IB2020/062359 WO2021137108A1 (en) | 2019-12-31 | 2020-12-22 | Alignment interfaces for percutaneous access |
CN202080091047.7A CN114929148B (zh) | 2019-12-31 | 2020-12-22 | 用于经皮进入的对准界面 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080091047.7A Division CN114929148B (zh) | 2019-12-31 | 2020-12-22 | 用于经皮进入的对准界面 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118383870A true CN118383870A (zh) | 2024-07-26 |
Family
ID=76547112
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080091047.7A Active CN114929148B (zh) | 2019-12-31 | 2020-12-22 | 用于经皮进入的对准界面 |
CN202410482671.XA Pending CN118383870A (zh) | 2019-12-31 | 2020-12-22 | 用于经皮进入的对准界面 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080091047.7A Active CN114929148B (zh) | 2019-12-31 | 2020-12-22 | 用于经皮进入的对准界面 |
Country Status (6)
Country | Link |
---|---|
US (2) | US11602372B2 (zh) |
EP (1) | EP4084722A4 (zh) |
JP (1) | JP7497440B2 (zh) |
KR (1) | KR20220123087A (zh) |
CN (2) | CN114929148B (zh) |
WO (1) | WO2021137108A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9955986B2 (en) | 2015-10-30 | 2018-05-01 | Auris Surgical Robotics, Inc. | Basket apparatus |
US10231793B2 (en) | 2015-10-30 | 2019-03-19 | Auris Health, Inc. | Object removal through a percutaneous suction tube |
US9949749B2 (en) | 2015-10-30 | 2018-04-24 | Auris Surgical Robotics, Inc. | Object capture with a basket |
US10702342B2 (en) * | 2016-09-08 | 2020-07-07 | Medtronic, Inc. | Navigation guidance method for complex catheters |
JP7536752B2 (ja) | 2018-09-28 | 2024-08-20 | オーリス ヘルス インコーポレイテッド | 内視鏡支援経皮的医療処置のためのシステム及び方法 |
US11896330B2 (en) | 2019-08-15 | 2024-02-13 | Auris Health, Inc. | Robotic medical system having multiple medical instruments |
WO2021137108A1 (en) | 2019-12-31 | 2021-07-08 | Auris Health, Inc. | Alignment interfaces for percutaneous access |
CN114901200A (zh) | 2019-12-31 | 2022-08-12 | 奥瑞斯健康公司 | 高级篮式驱动模式 |
EP4084720A4 (en) | 2019-12-31 | 2024-01-17 | Auris Health, Inc. | ALIGNMENT TECHNIQUES FOR PERCUTANE ACCESS |
EP3932357A1 (en) * | 2020-07-01 | 2022-01-05 | Koninklijke Philips N.V. | System for assisting a user in placing a penetrating device in tissue |
EP4408327A1 (en) * | 2021-09-28 | 2024-08-07 | Intuitive Surgical Operations, Inc. | Navigation assistance for an instrument |
US20230145909A1 (en) * | 2021-11-05 | 2023-05-11 | Avent, Inc. | Configurable System and Method for Indicating Deviation from a Medical Device Placement Pathway |
Family Cites Families (660)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4644237A (en) | 1985-10-17 | 1987-02-17 | International Business Machines Corp. | Collision avoidance system |
US4748969A (en) | 1987-05-07 | 1988-06-07 | Circon Corporation | Multi-lumen core deflecting endoscope |
US4745908A (en) | 1987-05-08 | 1988-05-24 | Circon Corporation | Inspection instrument fexible shaft having deflection compensation means |
USD307263S (en) | 1987-09-14 | 1990-04-17 | Sharp Corporation | Control unit of programmable controller |
EP0347098B1 (en) | 1988-06-13 | 1996-02-28 | Samuel Shiber | Atherectomy system with a guide-wire |
JP2750201B2 (ja) | 1990-04-13 | 1998-05-13 | オリンパス光学工業株式会社 | 内視鏡の挿入状態検出装置 |
US5194791A (en) | 1990-07-19 | 1993-03-16 | Mcdonnell Douglas Corporation | Compliant stereo vision target |
US5199417A (en) | 1990-12-21 | 1993-04-06 | Circon Corporation | Endoscope having a deflectable distal section and a semi-rigid proximal section |
US5251611A (en) | 1991-05-07 | 1993-10-12 | Zehel Wendell E | Method and apparatus for conducting exploratory procedures |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
JP3067346B2 (ja) | 1991-10-30 | 2000-07-17 | 株式会社町田製作所 | 内視鏡用重力方向指示装置 |
US5550953A (en) | 1994-04-20 | 1996-08-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | On-line method and apparatus for coordinated mobility and manipulation of mobile robots |
US5603318A (en) | 1992-04-21 | 1997-02-18 | University Of Utah Research Foundation | Apparatus and method for photogrammetric surgical localization |
US5408263A (en) | 1992-06-16 | 1995-04-18 | Olympus Optical Co., Ltd. | Electronic endoscope apparatus |
US5403276A (en) | 1993-02-16 | 1995-04-04 | Danek Medical, Inc. | Apparatus for minimally invasive tissue removal |
US5526812A (en) | 1993-06-21 | 1996-06-18 | General Electric Company | Display system for enhancing visualization of body structures during medical procedures |
NL9301210A (nl) | 1993-07-09 | 1995-02-01 | Robert Philippe Koninckx | Beeldweergavestelsel met beeldpositiecorrectie. |
US6059718A (en) | 1993-10-18 | 2000-05-09 | Olympus Optical Co., Ltd. | Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope |
US5876325A (en) | 1993-11-02 | 1999-03-02 | Olympus Optical Co., Ltd. | Surgical manipulation system |
DE29521895U1 (de) | 1994-10-07 | 1998-09-10 | St. Louis University, St. Louis, Mo. | Chirurgisches Navigationssystem umfassend Referenz- und Lokalisationsrahmen |
US6690963B2 (en) | 1995-01-24 | 2004-02-10 | Biosense, Inc. | System for determining the location and orientation of an invasive medical instrument |
US6246898B1 (en) | 1995-03-28 | 2001-06-12 | Sonometrics Corporation | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system |
AU709432B2 (en) | 1995-09-20 | 1999-08-26 | California Institute Of Technology | Detecting thermal discrepancies in vessel walls |
US5769086A (en) | 1995-12-06 | 1998-06-23 | Biopsys Medical, Inc. | Control system and method for automated biopsy device |
CA2246287C (en) | 1996-02-15 | 2006-10-24 | Biosense, Inc. | Medical procedures and apparatus using intrabody probes |
WO1997029679A2 (en) | 1996-02-15 | 1997-08-21 | Biosense Inc. | Precise position determination of endoscopes |
US6063095A (en) | 1996-02-20 | 2000-05-16 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US5672877A (en) | 1996-03-27 | 1997-09-30 | Adac Laboratories | Coregistration of multi-modality data in a medical imaging system |
US6047080A (en) | 1996-06-19 | 2000-04-04 | Arch Development Corporation | Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images |
US5831614A (en) | 1996-07-01 | 1998-11-03 | Sun Microsystems, Inc. | X-Y viewport scroll using location of display with respect to a point |
US6004016A (en) | 1996-08-06 | 1999-12-21 | Trw Inc. | Motion planning and control for systems with multiple mobile objects |
US8182469B2 (en) | 1997-11-21 | 2012-05-22 | Intuitive Surgical Operations, Inc. | Surgical accessory clamp and method |
US8206406B2 (en) | 1996-12-12 | 2012-06-26 | Intuitive Surgical Operations, Inc. | Disposable sterile surgical adaptor |
EP0918491B1 (en) | 1997-01-24 | 2003-06-04 | Koninklijke Philips Electronics N.V. | Image display system |
US6246784B1 (en) | 1997-08-19 | 2001-06-12 | The United States Of America As Represented By The Department Of Health And Human Services | Method for segmenting medical images and detecting surface anomalies in anatomical structures |
EP2362285B1 (en) | 1997-09-19 | 2015-03-25 | Massachusetts Institute of Technology | Robotic apparatus |
US6810281B2 (en) | 2000-12-21 | 2004-10-26 | Endovia Medical, Inc. | Medical mapping system |
FR2779339B1 (fr) | 1998-06-09 | 2000-10-13 | Integrated Surgical Systems Sa | Procede et appareil de mise en correspondance pour la chirurgie robotisee, et dispositif de mise en correspondance en comportant application |
US6425865B1 (en) | 1998-06-12 | 2002-07-30 | The University Of British Columbia | Robotically assisted medical ultrasound |
DE69940850D1 (de) | 1998-08-04 | 2009-06-18 | Intuitive Surgical Inc | Gelenkvorrichtung zur Positionierung eines Manipulators für Robotik-Chirurgie |
US6198974B1 (en) | 1998-08-14 | 2001-03-06 | Cordis Webster, Inc. | Bi-directional steerable catheter |
US6665554B1 (en) | 1998-11-18 | 2003-12-16 | Steve T. Charles | Medical manipulator for use with an imaging device |
US6659939B2 (en) | 1998-11-20 | 2003-12-09 | Intuitive Surgical, Inc. | Cooperative minimally invasive telesurgical system |
US8600551B2 (en) | 1998-11-20 | 2013-12-03 | Intuitive Surgical Operations, Inc. | Medical robotic system with operatively couplable simulator unit for surgeon training |
US6459926B1 (en) | 1998-11-20 | 2002-10-01 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
US6493608B1 (en) | 1999-04-07 | 2002-12-10 | Intuitive Surgical, Inc. | Aspects of a control system of a minimally invasive surgical apparatus |
US6179776B1 (en) | 1999-03-12 | 2001-01-30 | Scimed Life Systems, Inc. | Controllable endoscopic sheath apparatus and related method of use |
US6501981B1 (en) | 1999-03-16 | 2002-12-31 | Accuray, Inc. | Apparatus and method for compensating for respiratory and patient motions during treatment |
US10820949B2 (en) | 1999-04-07 | 2020-11-03 | Intuitive Surgical Operations, Inc. | Medical robotic system with dynamically adjustable slave manipulator characteristics |
US6594552B1 (en) | 1999-04-07 | 2003-07-15 | Intuitive Surgical, Inc. | Grip strength with tactile feedback for robotic surgery |
US8442618B2 (en) | 1999-05-18 | 2013-05-14 | Mediguide Ltd. | Method and system for delivering a medical device to a selected position within a lumen |
US7386339B2 (en) | 1999-05-18 | 2008-06-10 | Mediguide Ltd. | Medical imaging and navigation system |
US20040015079A1 (en) | 1999-06-22 | 2004-01-22 | Teratech Corporation | Ultrasound probe with integrated electronics |
US8271130B2 (en) | 2009-03-09 | 2012-09-18 | Intuitive Surgical Operations, Inc. | Master controller having redundant degrees of freedom and added forces to create internal motion |
US8004229B2 (en) | 2005-05-19 | 2011-08-23 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US7037258B2 (en) | 1999-09-24 | 2006-05-02 | Karl Storz Imaging, Inc. | Image orientation for endoscopic video displays |
US7366562B2 (en) | 2003-10-17 | 2008-04-29 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US6466198B1 (en) | 1999-11-05 | 2002-10-15 | Innoventions, Inc. | View navigation and magnification of a hand-held device with a display |
FI114282B (fi) | 1999-11-05 | 2004-09-30 | Polar Electro Oy | Menetelmä, järjestely ja sykemittari sydämen lyönnin tunnistamiseksi |
US6671538B1 (en) | 1999-11-26 | 2003-12-30 | Koninklijke Philips Electronics, N.V. | Interface system for use with imaging devices to facilitate visualization of image-guided interventional procedure planning |
US6755797B1 (en) | 1999-11-29 | 2004-06-29 | Bowles Fluidics Corporation | Method and apparatus for producing oscillation of a bladder |
US7747312B2 (en) | 2000-01-04 | 2010-06-29 | George Mason Intellectual Properties, Inc. | System and method for automatic shape registration and instrument tracking |
US6458076B1 (en) | 2000-02-01 | 2002-10-01 | 5 Star Medical | Multi-lumen medical device |
WO2001059643A1 (fr) | 2000-02-10 | 2001-08-16 | Sony Corporation | Dispositif automatique, dispositif fournissant des informations, robot, et procede de transaction |
DE10011790B4 (de) | 2000-03-13 | 2005-07-14 | Siemens Ag | Medizinisches Instrument zum Einführen in ein Untersuchungsobjekt, sowie medizinisches Untersuchungs- oder Behandlungsgerät |
US7181289B2 (en) | 2000-03-20 | 2007-02-20 | Pflueger D Russell | Epidural nerve root access catheter and treatment methods |
US6837846B2 (en) | 2000-04-03 | 2005-01-04 | Neo Guide Systems, Inc. | Endoscope having a guide tube |
US6858005B2 (en) | 2000-04-03 | 2005-02-22 | Neo Guide Systems, Inc. | Tendon-driven endoscope and methods of insertion |
DE10025285A1 (de) | 2000-05-22 | 2001-12-06 | Siemens Ag | Vollautomatische, robotergestützte Kameraführung unter Verwendung von Positionssensoren für laparoskopische Eingriffe |
DE10033723C1 (de) | 2000-07-12 | 2002-02-21 | Siemens Ag | Visualisierung von Positionen und Orientierung von intrakorporal geführten Instrumenten während eines chirurgischen Eingriffs |
EP1301118B1 (en) | 2000-07-14 | 2006-09-06 | Xillix Technologies Corp. | Compact fluorescence endoscopy video system |
WO2002061371A1 (en) | 2001-01-30 | 2002-08-08 | Z-Kat, Inc. | Tool calibrator and tracker system |
JP2002336190A (ja) | 2001-03-12 | 2002-11-26 | Olympus Optical Co Ltd | 内視鏡 |
JP3808321B2 (ja) | 2001-04-16 | 2006-08-09 | ファナック株式会社 | ロボット制御装置 |
US7607440B2 (en) | 2001-06-07 | 2009-10-27 | Intuitive Surgical, Inc. | Methods and apparatus for surgical planning |
US20060178556A1 (en) | 2001-06-29 | 2006-08-10 | Intuitive Surgical, Inc. | Articulate and swapable endoscope for a surgical robot |
US6835173B2 (en) | 2001-10-05 | 2004-12-28 | Scimed Life Systems, Inc. | Robotic endoscope |
US6865498B2 (en) | 2001-11-30 | 2005-03-08 | Thermwood Corporation | System for calibrating the axes on a computer numeric controlled machining system and method thereof |
US6812842B2 (en) | 2001-12-20 | 2004-11-02 | Calypso Medical Technologies, Inc. | System for excitation of a leadless miniature marker |
US7277833B2 (en) | 2002-02-06 | 2007-10-02 | Siemens Corporate Research, Inc. | Modeling of the workspace and active pending behavior of an endscope using filter functions |
US7206626B2 (en) | 2002-03-06 | 2007-04-17 | Z-Kat, Inc. | System and method for haptic sculpting of physical objects |
DE10210646A1 (de) | 2002-03-11 | 2003-10-09 | Siemens Ag | Verfahren zur Bilddarstellung eines in einen Untersuchungsbereich eines Patienten eingebrachten medizinischen Instruments |
US20050256398A1 (en) | 2004-05-12 | 2005-11-17 | Hastings Roger N | Systems and methods for interventional medicine |
EP2380487B1 (en) | 2002-04-17 | 2021-03-31 | Covidien LP | Endoscope structures for navigating to a target in branched structure |
US7998062B2 (en) | 2004-03-29 | 2011-08-16 | Superdimension, Ltd. | Endoscope structures and techniques for navigating to a target in branched structure |
US7822466B2 (en) | 2002-04-25 | 2010-10-26 | The Johns Hopkins University | Robot for computed tomography interventions |
DE60328983D1 (de) | 2002-06-04 | 2009-10-08 | Koninkl Philips Electronics Nv | Hybride dreidimensionale rekonstruktion der koronararterien mittels rotationsangiographie |
WO2003105659A2 (en) | 2002-06-17 | 2003-12-24 | Mazor Surgical Technologies Ltd. | Robot for use with orthopaedic inserts |
AU2003246906A1 (en) | 2002-06-25 | 2004-01-06 | Michael Nicholas Dalton | Apparatus and method for superimposing images over an object |
US20040176751A1 (en) | 2002-08-14 | 2004-09-09 | Endovia Medical, Inc. | Robotic medical instrument system |
AU2003275402A1 (en) | 2002-09-30 | 2004-04-19 | Stereotaxis, Inc. | A method and apparatus for improved surgical navigation employing electronic indentification with automatically actuated flexible medical devices |
KR100449765B1 (ko) | 2002-10-12 | 2004-09-22 | 삼성에스디아이 주식회사 | 리튬전지용 리튬메탈 애노드 |
US6899672B2 (en) | 2002-11-08 | 2005-05-31 | Scimed Life Systems, Inc. | Endoscopic imaging system including removable deflection device |
AU2003278465A1 (en) | 2002-11-13 | 2004-06-03 | Koninklijke Philips Electronics N.V. | Medical viewing system and method for detecting boundary structures |
US7599730B2 (en) | 2002-11-19 | 2009-10-06 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US7697972B2 (en) | 2002-11-19 | 2010-04-13 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US20040186349A1 (en) | 2002-12-24 | 2004-09-23 | Usgi Medical Corp. | Apparatus and methods for achieving endoluminal access |
US7660623B2 (en) | 2003-01-30 | 2010-02-09 | Medtronic Navigation, Inc. | Six degree of freedom alignment display for medical procedures |
FR2852226B1 (fr) | 2003-03-10 | 2005-07-15 | Univ Grenoble 1 | Instrument medical localise a ecran orientable |
US7203277B2 (en) | 2003-04-25 | 2007-04-10 | Brainlab Ag | Visualization device and method for combined patient and object image data |
DE602004019781D1 (de) | 2003-06-20 | 2009-04-16 | Fanuc Robotics America Inc | Mehrfach-roboterarm-verfolgung und spiegel-jog |
US9002518B2 (en) | 2003-06-30 | 2015-04-07 | Intuitive Surgical Operations, Inc. | Maximum torque driving of robotic surgical tools in robotic surgical systems |
US7822461B2 (en) | 2003-07-11 | 2010-10-26 | Siemens Medical Solutions Usa, Inc. | System and method for endoscopic path planning |
EP2316328B1 (en) | 2003-09-15 | 2012-05-09 | Super Dimension Ltd. | Wrap-around holding device for use with bronchoscopes |
US7835778B2 (en) | 2003-10-16 | 2010-11-16 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation of a multiple piece construct for implantation |
US7280863B2 (en) | 2003-10-20 | 2007-10-09 | Magnetecs, Inc. | System and method for radar-assisted catheter guidance and control |
US20050107917A1 (en) | 2003-11-14 | 2005-05-19 | Smith Paul E. | Robotic system for sequencing multiple specimens between a holding tray and a microscope |
TW200523703A (en) | 2003-12-01 | 2005-07-16 | Unisearch Ltd | A method for controlling a system formed from interdependent units |
EP1691666B1 (en) | 2003-12-12 | 2012-05-30 | University of Washington | Catheterscope 3d guidance and interface system |
JP2005192632A (ja) | 2003-12-26 | 2005-07-21 | Olympus Corp | 被検体内移動状態検出システム |
US8021301B2 (en) | 2003-12-26 | 2011-09-20 | Fujifilm Corporation | Ultrasonic image processing apparatus, ultrasonic image processing method and ultrasonic image processing program |
US20050193451A1 (en) | 2003-12-30 | 2005-09-01 | Liposonix, Inc. | Articulating arm for medical procedures |
FI20040255A (fi) | 2004-02-18 | 2005-08-19 | Jurilab Ltd Oy | Menetelmä pre-eklampsian riskin havaitsemiseksi |
US8046049B2 (en) | 2004-02-23 | 2011-10-25 | Biosense Webster, Inc. | Robotically guided catheter |
EP1720480A1 (en) | 2004-03-05 | 2006-11-15 | Hansen Medical, Inc. | Robotic catheter system |
US8021326B2 (en) | 2004-03-05 | 2011-09-20 | Hansen Medical, Inc. | Instrument driver for robotic catheter system |
US20060100610A1 (en) | 2004-03-05 | 2006-05-11 | Wallace Daniel T | Methods using a robotic catheter system |
WO2005094665A2 (en) | 2004-03-23 | 2005-10-13 | Boston Scientific Limited | In-vivo visualization system |
US9345456B2 (en) | 2004-03-24 | 2016-05-24 | Devicor Medical Products, Inc. | Biopsy device |
WO2005092188A1 (ja) | 2004-03-29 | 2005-10-06 | Olympus Corporation | 被検体内位置検出システム |
JP3922284B2 (ja) | 2004-03-31 | 2007-05-30 | 有限会社エスアールジェイ | 保持装置 |
US20070208252A1 (en) | 2004-04-21 | 2007-09-06 | Acclarent, Inc. | Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses |
US7462175B2 (en) | 2004-04-21 | 2008-12-09 | Acclarent, Inc. | Devices, systems and methods for treating disorders of the ear, nose and throat |
US7720521B2 (en) | 2004-04-21 | 2010-05-18 | Acclarent, Inc. | Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses |
US8155403B2 (en) | 2004-05-05 | 2012-04-10 | University Of Iowa Research Foundation | Methods and devices for airway tree labeling and/or matching |
US7303528B2 (en) | 2004-05-18 | 2007-12-04 | Scimed Life Systems, Inc. | Serialization of single use endoscopes |
US7632265B2 (en) | 2004-05-28 | 2009-12-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Radio frequency ablation servo catheter and method |
US20060209019A1 (en) | 2004-06-01 | 2006-09-21 | Energid Technologies Corporation | Magnetic haptic feedback systems and methods for virtual reality environments |
US7197354B2 (en) | 2004-06-21 | 2007-03-27 | Mediguide Ltd. | System for determining the position and orientation of a catheter |
US7772541B2 (en) | 2004-07-16 | 2010-08-10 | Luna Innnovations Incorporated | Fiber optic position and/or shape sensing based on rayleigh scatter |
US20060025668A1 (en) | 2004-08-02 | 2006-02-02 | Peterson Thomas H | Operating table with embedded tracking technology |
US8239002B2 (en) | 2004-08-12 | 2012-08-07 | Novatek Medical Ltd. | Guiding a tool for medical treatment by detecting a source of radioactivity |
JP4709513B2 (ja) | 2004-08-19 | 2011-06-22 | オリンパス株式会社 | 電動湾曲制御装置 |
US7395116B2 (en) | 2004-08-19 | 2008-07-01 | Medtronic, Inc. | Lead body-to-connector transition zone |
JP2006061214A (ja) | 2004-08-24 | 2006-03-09 | Olympus Corp | 手術システム |
JP4695420B2 (ja) | 2004-09-27 | 2011-06-08 | オリンパス株式会社 | 湾曲制御装置 |
US7831294B2 (en) | 2004-10-07 | 2010-11-09 | Stereotaxis, Inc. | System and method of surgical imagining with anatomical overlay for navigation of surgical devices |
US7536216B2 (en) | 2004-10-18 | 2009-05-19 | Siemens Medical Solutions Usa, Inc. | Method and system for virtual endoscopy with guidance for biopsy |
US9049954B2 (en) | 2004-11-03 | 2015-06-09 | Cambridge International, Inc. | Hanger bar assembly for architectural mesh and the like |
CA2587857C (en) | 2004-11-23 | 2017-10-10 | Pneumrx, Inc. | Steerable device for accessing a target site and methods |
JP4674214B2 (ja) | 2004-12-03 | 2011-04-20 | オリンパス株式会社 | 挿入部着脱式電動湾曲内視鏡装置 |
US20060200026A1 (en) | 2005-01-13 | 2006-09-07 | Hansen Medical, Inc. | Robotic catheter system |
US8611983B2 (en) | 2005-01-18 | 2013-12-17 | Philips Electronics Ltd | Method and apparatus for guiding an instrument to a target in the lung |
US7763015B2 (en) | 2005-01-24 | 2010-07-27 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
CA2826925C (en) | 2005-02-22 | 2017-01-24 | Mako Surgical Corp. | Haptic guidance system and method |
US8335357B2 (en) | 2005-03-04 | 2012-12-18 | Kabushiki Kaisha Toshiba | Image processing apparatus |
US8182433B2 (en) | 2005-03-04 | 2012-05-22 | Endosense Sa | Medical apparatus system having optical fiber load sensing capability |
US8945095B2 (en) | 2005-03-30 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Force and torque sensing for surgical instruments |
US7963288B2 (en) | 2005-05-03 | 2011-06-21 | Hansen Medical, Inc. | Robotic catheter system |
US7860609B2 (en) | 2005-05-06 | 2010-12-28 | Fanuc Robotics America, Inc. | Robot multi-arm control system |
WO2006122061A1 (en) | 2005-05-06 | 2006-11-16 | Acumen Medical, Inc. | Complexly shaped steerable catheters and methods for making and using them |
US20060258935A1 (en) | 2005-05-12 | 2006-11-16 | John Pile-Spellman | System for autonomous robotic navigation |
US9789608B2 (en) | 2006-06-29 | 2017-10-17 | Intuitive Surgical Operations, Inc. | Synthetic representation of a surgical robot |
US10555775B2 (en) | 2005-05-16 | 2020-02-11 | Intuitive Surgical Operations, Inc. | Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery |
US7889905B2 (en) | 2005-05-23 | 2011-02-15 | The Penn State Research Foundation | Fast 3D-2D image registration method with application to continuously guided endoscopy |
US7756563B2 (en) | 2005-05-23 | 2010-07-13 | The Penn State Research Foundation | Guidance method based on 3D-2D pose estimation and 3D-CT registration with application to live bronchoscopy |
JP4813190B2 (ja) | 2005-05-26 | 2011-11-09 | オリンパスメディカルシステムズ株式会社 | カプセル型医療装置 |
GB2428110A (en) | 2005-07-06 | 2007-01-17 | Armstrong Healthcare Ltd | A robot and method of registering a robot. |
JP2009501563A (ja) | 2005-07-14 | 2009-01-22 | エンハンスド・メデイカルシステム・エルエルシー | 侵襲性処置を極小にするためのロボット |
US20070043455A1 (en) | 2005-07-26 | 2007-02-22 | Viswanathan Raju R | Apparatus and methods for automated sequential movement control for operation of a remote navigation system |
US8583220B2 (en) | 2005-08-02 | 2013-11-12 | Biosense Webster, Inc. | Standardization of catheter-based treatment for atrial fibrillation |
US8657814B2 (en) | 2005-08-22 | 2014-02-25 | Medtronic Ablation Frontiers Llc | User interface for tissue ablation system |
EP1924197B1 (en) | 2005-08-24 | 2017-10-11 | Philips Electronics LTD | System for navigated flexible endoscopy |
US20070073136A1 (en) | 2005-09-15 | 2007-03-29 | Robert Metzger | Bone milling with image guided surgery |
US8079950B2 (en) | 2005-09-29 | 2011-12-20 | Intuitive Surgical Operations, Inc. | Autofocus and/or autoscaling in telesurgery |
US7835785B2 (en) | 2005-10-04 | 2010-11-16 | Ascension Technology Corporation | DC magnetic-based position and orientation monitoring system for tracking medical instruments |
EP3788944B1 (en) | 2005-11-22 | 2024-02-28 | Intuitive Surgical Operations, Inc. | System for determining the shape of a bendable instrument |
US8303505B2 (en) | 2005-12-02 | 2012-11-06 | Abbott Cardiovascular Systems Inc. | Methods and apparatuses for image guided medical procedures |
US8498691B2 (en) | 2005-12-09 | 2013-07-30 | Hansen Medical, Inc. | Robotic catheter system and methods |
US8190238B2 (en) | 2005-12-09 | 2012-05-29 | Hansen Medical, Inc. | Robotic catheter system and methods |
DE102005059271B4 (de) | 2005-12-12 | 2019-02-21 | Siemens Healthcare Gmbh | Kathetervorrichtung |
US7819859B2 (en) | 2005-12-20 | 2010-10-26 | Intuitive Surgical Operations, Inc. | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
US9586327B2 (en) | 2005-12-20 | 2017-03-07 | Intuitive Surgical Operations, Inc. | Hook and pivot electro-mechanical interface for robotic medical arms |
US8672922B2 (en) | 2005-12-20 | 2014-03-18 | Intuitive Surgical Operations, Inc. | Wireless communication in a robotic surgical system |
US9266239B2 (en) | 2005-12-27 | 2016-02-23 | Intuitive Surgical Operations, Inc. | Constraint based control in a minimally invasive surgical apparatus |
US7930065B2 (en) | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
US9962066B2 (en) | 2005-12-30 | 2018-05-08 | Intuitive Surgical Operations, Inc. | Methods and apparatus to shape flexible entry guides for minimally invasive surgery |
US8469945B2 (en) | 2006-01-25 | 2013-06-25 | Intuitive Surgical Operations, Inc. | Center robotic arm with five-bar spherical linkage for endoscopic camera |
US8161977B2 (en) | 2006-01-31 | 2012-04-24 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
EP1815949A1 (en) | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Medical robotic system with manipulator arm of the cylindrical coordinate type |
EP1815950A1 (en) | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Robotic surgical system for performing minimally invasive medical procedures |
WO2007115174A2 (en) | 2006-03-31 | 2007-10-11 | Traxtal Inc. | System, methods, and instrumentation for image guided prostate treatment |
US8191359B2 (en) | 2006-04-13 | 2012-06-05 | The Regents Of The University Of California | Motion estimation using hidden markov model processing in MRI and other applications |
US8112292B2 (en) | 2006-04-21 | 2012-02-07 | Medtronic Navigation, Inc. | Method and apparatus for optimizing a therapy |
JP4822142B2 (ja) | 2006-05-02 | 2011-11-24 | 国立大学法人名古屋大学 | 内視鏡挿入支援システム及び内視鏡挿入支援方法 |
US8628520B2 (en) | 2006-05-02 | 2014-01-14 | Biosense Webster, Inc. | Catheter with omni-directional optical lesion evaluation |
DE102006021373A1 (de) | 2006-05-08 | 2007-11-15 | Siemens Ag | Röntgendiagnostikeinrichtung |
DE602007007610D1 (de) | 2006-05-17 | 2010-08-19 | Hansen Medical Inc | Roboterinstrumentensystem |
WO2007141784A2 (en) | 2006-06-05 | 2007-12-13 | Technion Research & Development Foundation Ltd. | Controlled steering of a flexible needle |
US8419717B2 (en) | 2006-06-13 | 2013-04-16 | Intuitive Surgical Operations, Inc. | Control system configured to compensate for non-ideal actuator-to-joint linkage characteristics in a medical robotic system |
KR101477125B1 (ko) | 2006-06-13 | 2014-12-29 | 인튜어티브 서지컬 인코포레이티드 | 미소절개 수술 시스템 |
US7505810B2 (en) | 2006-06-13 | 2009-03-17 | Rhythmia Medical, Inc. | Non-contact cardiac mapping, including preprocessing |
US8040127B2 (en) | 2006-08-15 | 2011-10-18 | General Electric Company | Multi-sensor distortion mapping method and system |
JP4878526B2 (ja) | 2006-09-05 | 2012-02-15 | 国立大学法人 名古屋工業大学 | 可撓性線状体の圧縮力計測装置 |
US8150498B2 (en) | 2006-09-08 | 2012-04-03 | Medtronic, Inc. | System for identification of anatomical landmarks |
US7824328B2 (en) | 2006-09-18 | 2010-11-02 | Stryker Corporation | Method and apparatus for tracking a surgical instrument during surgery |
CN100546540C (zh) | 2006-09-19 | 2009-10-07 | 上海宏桐实业有限公司 | 心内膜三维导航系统 |
US7940977B2 (en) | 2006-10-25 | 2011-05-10 | Rcadia Medical Imaging Ltd. | Method and system for automatic analysis of blood vessel structures to identify calcium or soft plaque pathologies |
US20080108870A1 (en) | 2006-11-06 | 2008-05-08 | Wiita Bruce E | Apparatus and method for stabilizing an image from an endoscopic camera |
WO2008125910A2 (en) | 2006-11-10 | 2008-10-23 | Superdimension, Ltd. | Adaptive navigation technique for navigating a catheter through a body channel or cavity |
US20140163664A1 (en) | 2006-11-21 | 2014-06-12 | David S. Goldsmith | Integrated system for the ballistic and nonballistic infixion and retrieval of implants with or without drug targeting |
US7936922B2 (en) | 2006-11-22 | 2011-05-03 | Adobe Systems Incorporated | Method and apparatus for segmenting images |
EP2087468A2 (en) | 2006-12-01 | 2009-08-12 | Thomson Licensing | Estimating a location of an object in an image |
DE102006061178A1 (de) | 2006-12-22 | 2008-06-26 | Siemens Ag | System zur Durchführung und Überwachung minimal-invasiver Eingriffe |
US7783133B2 (en) | 2006-12-28 | 2010-08-24 | Microvision, Inc. | Rotation compensation and image stabilization system |
US9220439B2 (en) | 2006-12-29 | 2015-12-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Navigational reference dislodgement detection method and system |
US20080183188A1 (en) | 2007-01-25 | 2008-07-31 | Warsaw Orthopedic, Inc. | Integrated Surgical Navigational and Neuromonitoring System |
US20080183068A1 (en) | 2007-01-25 | 2008-07-31 | Warsaw Orthopedic, Inc. | Integrated Visualization of Surgical Navigational and Neural Monitoring Information |
US20080243063A1 (en) | 2007-01-30 | 2008-10-02 | Camarillo David B | Robotic instrument systems controlled using kinematics and mechanics models |
US20080183064A1 (en) | 2007-01-30 | 2008-07-31 | General Electric Company | Multi-sensor distortion detection method and system |
US9037215B2 (en) | 2007-01-31 | 2015-05-19 | The Penn State Research Foundation | Methods and apparatus for 3D route planning through hollow organs |
US8672836B2 (en) | 2007-01-31 | 2014-03-18 | The Penn State Research Foundation | Method and apparatus for continuous guidance of endoscopy |
US8146874B2 (en) | 2007-02-02 | 2012-04-03 | Hansen Medical, Inc. | Mounting support assembly for suspending a medical instrument driver above an operating table |
JP4914735B2 (ja) | 2007-02-14 | 2012-04-11 | オリンパスメディカルシステムズ株式会社 | 処置具の位置制御を行う内視鏡システム |
WO2008103383A1 (en) | 2007-02-20 | 2008-08-28 | Gildenberg Philip L | Videotactic and audiotactic assisted surgical methods and procedures |
WO2010058398A2 (en) | 2007-03-08 | 2010-05-27 | Sync-Rx, Ltd. | Image processing and tool actuation for medical procedures |
EP2117436A4 (en) | 2007-03-12 | 2011-03-02 | David Tolkowsky | DEVICES AND METHODS FOR PERFORMING MEDICAL OPERATIONS IN ARBORESCENT LUMINUM STRUCTURES |
JP4550849B2 (ja) | 2007-03-22 | 2010-09-22 | 株式会社東芝 | アーム搭載移動ロボット |
EP1972416B1 (en) | 2007-03-23 | 2018-04-25 | Honda Research Institute Europe GmbH | Robots with occlusion avoidance functionality |
WO2008118481A2 (en) | 2007-03-26 | 2008-10-02 | Hansen Medical, Inc. | Robotic catheter systems and methods |
JP2010524547A (ja) | 2007-04-16 | 2010-07-22 | ニューロアーム サージカル リミテッド | 医療用ロボットに関する自動化された動作のための方法、装置、及びシステム |
CA2684475C (en) | 2007-04-16 | 2016-01-12 | Neuroarm Surgical Ltd. | Frame mapping and force feedback methods, devices and systems |
US20080275349A1 (en) | 2007-05-02 | 2008-11-06 | Earlysense Ltd. | Monitoring, predicting and treating clinical episodes |
US8934961B2 (en) | 2007-05-18 | 2015-01-13 | Biomet Manufacturing, Llc | Trackable diagnostic scope apparatus and methods of use |
US20090030307A1 (en) | 2007-06-04 | 2009-01-29 | Assaf Govari | Intracorporeal location system with movement compensation |
US9138129B2 (en) | 2007-06-13 | 2015-09-22 | Intuitive Surgical Operations, Inc. | Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide |
US9089256B2 (en) | 2008-06-27 | 2015-07-28 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
US9084623B2 (en) | 2009-08-15 | 2015-07-21 | Intuitive Surgical Operations, Inc. | Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide |
US8852208B2 (en) | 2010-05-14 | 2014-10-07 | Intuitive Surgical Operations, Inc. | Surgical system instrument mounting |
US8620473B2 (en) | 2007-06-13 | 2013-12-31 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
US20080319491A1 (en) | 2007-06-19 | 2008-12-25 | Ryan Schoenefeld | Patient-matched surgical component and methods of use |
JP4961475B2 (ja) | 2007-06-20 | 2012-06-27 | オリンパスメディカルシステムズ株式会社 | 内視鏡システム |
WO2009014026A1 (ja) | 2007-07-26 | 2009-01-29 | Kyoto University | 吸引器具、吸引システムおよび吸引方法 |
EP2626006B1 (en) | 2007-08-14 | 2019-10-09 | Koninklijke Philips N.V. | Robotic instrument systems utilizing optical fiber sensors |
US20130165945A9 (en) | 2007-08-14 | 2013-06-27 | Hansen Medical, Inc. | Methods and devices for controlling a shapeable instrument |
US20090076476A1 (en) | 2007-08-15 | 2009-03-19 | Hansen Medical, Inc. | Systems and methods employing force sensing for mapping intra-body tissue |
JP2009055955A (ja) | 2007-08-29 | 2009-03-19 | Olympus Medical Systems Corp | 内視鏡装置 |
ES2661490T3 (es) | 2007-09-13 | 2018-04-02 | Toby D. Henderson | Sistema de posicionador de pacientes |
US8573228B2 (en) * | 2007-09-20 | 2013-11-05 | Medtronic, Inc. | Needle to port trajectory indicator |
US8180428B2 (en) | 2007-10-03 | 2012-05-15 | Medtronic, Inc. | Methods and systems for use in selecting cardiac pacing sites |
US10498269B2 (en) | 2007-10-05 | 2019-12-03 | Covidien Lp | Powered surgical stapling device |
US8396595B2 (en) | 2007-11-01 | 2013-03-12 | Honda Motor Co., Ltd. | Real-time self collision and obstacle avoidance using weighting matrix |
US20090184825A1 (en) | 2008-01-23 | 2009-07-23 | General Electric Company | RFID Transponder Used for Instrument Identification in an Electromagnetic Tracking System |
WO2009097461A1 (en) | 2008-01-29 | 2009-08-06 | Neoguide Systems Inc. | Apparatus and methods for automatically controlling an endoscope |
KR100927096B1 (ko) | 2008-02-27 | 2009-11-13 | 아주대학교산학협력단 | 기준 좌표상의 시각적 이미지를 이용한 객체 위치 측정방법 |
US20090221908A1 (en) | 2008-03-01 | 2009-09-03 | Neil David Glossop | System and Method for Alignment of Instrumentation in Image-Guided Intervention |
US8219179B2 (en) | 2008-03-06 | 2012-07-10 | Vida Diagnostics, Inc. | Systems and methods for navigation within a branched structure of a body |
US20090228020A1 (en) | 2008-03-06 | 2009-09-10 | Hansen Medical, Inc. | In-situ graft fenestration |
US8343096B2 (en) | 2008-03-27 | 2013-01-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system |
US8808164B2 (en) | 2008-03-28 | 2014-08-19 | Intuitive Surgical Operations, Inc. | Controlling a robotic surgical tool with a display monitor |
US8155479B2 (en) | 2008-03-28 | 2012-04-10 | Intuitive Surgical Operations Inc. | Automated panning and digital zooming for robotic surgical systems |
JP5424570B2 (ja) | 2008-04-10 | 2014-02-26 | Hoya株式会社 | 電子内視鏡用プロセッサ、ビデオスコープ及び電子内視鏡装置 |
US20090259099A1 (en) | 2008-04-10 | 2009-10-15 | Georgia Tech Research Corporation | Image-based control systems |
US9002076B2 (en) | 2008-04-15 | 2015-04-07 | Medtronic, Inc. | Method and apparatus for optimal trajectory planning |
US8532734B2 (en) | 2008-04-18 | 2013-09-10 | Regents Of The University Of Minnesota | Method and apparatus for mapping a structure |
US9125562B2 (en) | 2009-07-01 | 2015-09-08 | Avinger, Inc. | Catheter-based off-axis optical coherence tomography imaging system |
KR101479233B1 (ko) | 2008-05-13 | 2015-01-05 | 삼성전자 주식회사 | 로봇 및 그 협조작업 제어방법 |
US8218846B2 (en) | 2008-05-15 | 2012-07-10 | Superdimension, Ltd. | Automatic pathway and waypoint generation and navigation method |
JP5372407B2 (ja) | 2008-05-23 | 2013-12-18 | オリンパスメディカルシステムズ株式会社 | 医療機器 |
US20100076305A1 (en) * | 2008-06-25 | 2010-03-25 | Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts | Method, system and computer program product for targeting of a target with an elongate instrument |
US7720322B2 (en) | 2008-06-30 | 2010-05-18 | Intuitive Surgical, Inc. | Fiber optic shape sensor |
US20100030061A1 (en) | 2008-07-31 | 2010-02-04 | Canfield Monte R | Navigation system for cardiac therapies using gating |
EP2322071A4 (en) | 2008-08-08 | 2012-01-18 | Panasonic Corp | CONTROL DEVICE AND CONTROL METHOD FOR CLEANING APPARATUS, CLEANING APPARATUS, CONTROL PROGRAM FOR CLEANING APPARATUS, AND INTEGRATED ELECTRONIC CIRCUIT |
EP2153794B1 (en) | 2008-08-15 | 2016-11-09 | Stryker European Holdings I, LLC | System for and method of visualizing an interior of a body |
US8126114B2 (en) | 2008-09-12 | 2012-02-28 | Accuray Incorporated | Seven or more degrees of freedom robotic manipulator having at least one redundant joint |
US8348954B2 (en) | 2008-09-16 | 2013-01-08 | Warsaw Orthopedic, Inc. | Electronic guidance of spinal instrumentation |
US9259274B2 (en) | 2008-09-30 | 2016-02-16 | Intuitive Surgical Operations, Inc. | Passive preload and capstan drive for surgical instruments |
WO2010044852A2 (en) | 2008-10-14 | 2010-04-22 | University Of Florida Research Foundation, Inc. | Imaging platform to provide integrated navigation capabilities for surgical guidance |
US9610131B2 (en) | 2008-11-05 | 2017-04-04 | The Johns Hopkins University | Rotating needle driver and apparatuses and methods related thereto |
US8720448B2 (en) | 2008-11-07 | 2014-05-13 | Hansen Medical, Inc. | Sterile interface apparatus |
US20100121139A1 (en) | 2008-11-12 | 2010-05-13 | Ouyang Xiaolong | Minimally Invasive Imaging Systems |
US8083691B2 (en) | 2008-11-12 | 2011-12-27 | Hansen Medical, Inc. | Apparatus and method for sensing force |
US8317746B2 (en) | 2008-11-20 | 2012-11-27 | Hansen Medical, Inc. | Automated alignment |
WO2010068783A1 (en) | 2008-12-12 | 2010-06-17 | Corindus Inc. | Remote catheter procedure system |
US8335590B2 (en) | 2008-12-23 | 2012-12-18 | Intuitive Surgical Operations, Inc. | System and method for adjusting an image capturing device attribute using an unused degree-of-freedom of a master control device |
US8374723B2 (en) | 2008-12-31 | 2013-02-12 | Intuitive Surgical Operations, Inc. | Obtaining force information in a minimally invasive surgical procedure |
CN102123651B (zh) | 2009-01-15 | 2014-02-26 | 奥林巴斯医疗株式会社 | 内窥镜系统 |
KR100961661B1 (ko) | 2009-02-12 | 2010-06-09 | 주식회사 래보 | 수술용 항법 장치 및 그 방법 |
US8120301B2 (en) | 2009-03-09 | 2012-02-21 | Intuitive Surgical Operations, Inc. | Ergonomic surgeon control console in robotic surgical systems |
US8337397B2 (en) | 2009-03-26 | 2012-12-25 | Intuitive Surgical Operations, Inc. | Method and system for providing visual guidance to an operator for steering a tip of an endoscopic device toward one or more landmarks in a patient |
US9002427B2 (en) | 2009-03-30 | 2015-04-07 | Lifewave Biomedical, Inc. | Apparatus and method for continuous noninvasive measurement of respiratory function and events |
EP2241179B1 (en) | 2009-04-16 | 2017-05-17 | DeLaval Holding AB | A milking parlour and method for operating the same |
US20100280320A1 (en) | 2009-04-29 | 2010-11-04 | Hansen Medical, Inc. | Flexible and steerable elongate instruments with shape control and support elements |
US9750399B2 (en) | 2009-04-29 | 2017-09-05 | Koninklijke Philips N.V. | Real-time depth estimation from monocular endoscope images |
US20120062714A1 (en) | 2009-05-08 | 2012-03-15 | Koninklijke Philips Electronics N.V. | Real-time scope tracking and branch labeling without electro-magnetic tracking and pre-operative scan roadmaps |
US8675736B2 (en) | 2009-05-14 | 2014-03-18 | Qualcomm Incorporated | Motion vector processing |
WO2010131500A1 (ja) | 2009-05-15 | 2010-11-18 | シャープ株式会社 | 画像処理装置および画像処理方法 |
US20100292565A1 (en) | 2009-05-18 | 2010-11-18 | Andreas Meyer | Medical imaging medical device navigation from at least two 2d projections from different angles |
US20120069167A1 (en) | 2009-05-18 | 2012-03-22 | Koninklijke Philips Electronics N.V. | Marker-free tracking registration and calibration for em-tracked endoscopic system |
US9895135B2 (en) | 2009-05-20 | 2018-02-20 | Analogic Canada Corporation | Freehand ultrasound imaging systems and methods providing position quality feedback |
ES2388029B1 (es) | 2009-05-22 | 2013-08-13 | Universitat Politècnica De Catalunya | Sistema robótico para cirugia laparoscópica. |
CN102368944B (zh) | 2009-06-11 | 2015-07-08 | 奥林巴斯医疗株式会社 | 医疗用控制装置 |
CN102448683B (zh) | 2009-07-02 | 2014-08-27 | 松下电器产业株式会社 | 机器人、机器人手臂的控制装置及机器人手臂的控制程序 |
KR101180665B1 (ko) | 2009-07-03 | 2012-09-07 | 주식회사 이턴 | 하이브리드 수술용 로봇 시스템 및 수술용 로봇 제어방법 |
US20110015484A1 (en) | 2009-07-16 | 2011-01-20 | Alvarez Jeffrey B | Endoscopic robotic catheter system |
US9492927B2 (en) | 2009-08-15 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose |
GB0915200D0 (en) | 2009-09-01 | 2009-10-07 | Ucl Business Plc | Method for re-localising sites in images |
KR101606097B1 (ko) | 2009-10-01 | 2016-03-24 | 마코 서지컬 코포레이션 | 보철 부품의 위치 선정 및/또는 수술 도구의 이동 제한용 수술 시스템 |
US20110092808A1 (en) | 2009-10-20 | 2011-04-21 | Magnetecs, Inc. | Method for acquiring high density mapping data with a catheter guidance system |
JP5077323B2 (ja) | 2009-10-26 | 2012-11-21 | 株式会社安川電機 | ロボット制御システム |
JP2013509902A (ja) | 2009-11-04 | 2013-03-21 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 距離センサを使用した衝突の回避と探知 |
WO2011058893A1 (ja) | 2009-11-10 | 2011-05-19 | オリンパスメディカルシステムズ株式会社 | 多関節マニピュレータ装置及びそれを有する内視鏡システム |
BR112012011422B1 (pt) | 2009-11-13 | 2020-09-29 | Intuitive Surgical Operations, Inc | Sistema cirúrgico minimamente invasivo |
CN104799890B (zh) | 2009-11-13 | 2017-03-22 | 直观外科手术操作公司 | 弯曲套管和机器人操纵器 |
CN102665590B (zh) | 2009-11-16 | 2015-09-23 | 皇家飞利浦电子股份有限公司 | 用于内窥镜辅助机器人的人-机器人共享控制 |
US20130016185A1 (en) | 2009-11-19 | 2013-01-17 | The John Hopkins University | Low-cost image-guided navigation and intervention systems using cooperative sets of local sensors |
US8374819B2 (en) | 2009-12-23 | 2013-02-12 | Biosense Webster (Israel), Ltd. | Actuator-based calibration system for a pressure-sensitive catheter |
US9675302B2 (en) | 2009-12-31 | 2017-06-13 | Mediguide Ltd. | Prolapse detection and tool dislodgement detection |
CN102883651B (zh) | 2010-01-28 | 2016-04-27 | 宾夕法尼亚州研究基金会 | 可应用于支气管镜引导的基于图像的全局配准系统和方法 |
CN102711586B (zh) | 2010-02-11 | 2015-06-17 | 直观外科手术操作公司 | 在机器人内窥镜的远侧尖端自动维持操作者选择的滚动取向的方法和系统 |
WO2011102012A1 (ja) | 2010-02-22 | 2011-08-25 | オリンパスメディカルシステムズ株式会社 | 医療機器 |
WO2011114568A1 (ja) | 2010-03-17 | 2011-09-22 | オリンパスメディカルシステムズ株式会社 | 内視鏡システム |
DE102010012621A1 (de) | 2010-03-24 | 2011-09-29 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zur automatischen Adaption eines Referenzbildes |
US8425455B2 (en) | 2010-03-30 | 2013-04-23 | Angiodynamics, Inc. | Bronchial catheter and method of use |
IT1401669B1 (it) | 2010-04-07 | 2013-08-02 | Sofar Spa | Sistema di chirurgia robotizzata con controllo perfezionato. |
US8581905B2 (en) | 2010-04-08 | 2013-11-12 | Disney Enterprises, Inc. | Interactive three dimensional displays on handheld devices |
JP4679668B1 (ja) | 2010-04-21 | 2011-04-27 | 日本ライフライン株式会社 | カテーテル |
CA2797302C (en) | 2010-04-28 | 2019-01-15 | Ryerson University | System and methods for intraoperative guidance feedback |
EP2537452B1 (en) | 2010-05-21 | 2014-02-26 | Olympus Medical Systems Corp. | Endoscope with second bending part |
EP2575610B1 (en) * | 2010-05-28 | 2022-10-05 | C. R. Bard, Inc. | Insertion guidance system for needles and medical components |
DE102010029745A1 (de) | 2010-06-07 | 2011-12-08 | Kuka Laboratories Gmbh | Werkstück-Handhabungssystem und Verfahren zum Manipulieren von Werkstücken mittels kooperierender Manipulatoren |
US20120101369A1 (en) | 2010-06-13 | 2012-04-26 | Angiometrix Corporation | Methods and systems for determining vascular bodily lumen information and guiding medical devices |
US20120130217A1 (en) | 2010-11-23 | 2012-05-24 | Kauphusman James V | Medical devices having electrodes mounted thereon and methods of manufacturing therefor |
US8460236B2 (en) | 2010-06-24 | 2013-06-11 | Hansen Medical, Inc. | Fiber optic instrument sensing system |
US8672837B2 (en) | 2010-06-24 | 2014-03-18 | Hansen Medical, Inc. | Methods and devices for controlling a shapeable medical device |
US10737398B2 (en) | 2010-07-08 | 2020-08-11 | Vanderbilt University | Continuum devices and control methods thereof |
US20130303887A1 (en) | 2010-08-20 | 2013-11-14 | Veran Medical Technologies, Inc. | Apparatus and method for four dimensional soft tissue navigation |
US20120071894A1 (en) | 2010-09-17 | 2012-03-22 | Tanner Neal A | Robotic medical systems and methods |
US9101379B2 (en) | 2010-11-12 | 2015-08-11 | Intuitive Surgical Operations, Inc. | Tension control in actuation of multi-joint medical instruments |
US20130274783A1 (en) | 2010-11-15 | 2013-10-17 | Jason B. Wynberg | Percutaneous renal access system |
JP5669529B2 (ja) | 2010-11-17 | 2015-02-12 | オリンパス株式会社 | 撮像装置、プログラム及びフォーカス制御方法 |
US8961526B2 (en) | 2010-11-23 | 2015-02-24 | University Of Massachusetts | System and method for orienting orthopedic implants |
WO2012075631A1 (en) | 2010-12-08 | 2012-06-14 | Industrial Technology Research Institute | Methods for generating stereoscopic views from monoscopic endoscope images and systems using the same |
US9186219B2 (en) | 2010-12-17 | 2015-11-17 | Ethicon Endo-Surgery, Inc. | Surgical system and methods for mimicked motion |
JP2014506167A (ja) | 2010-12-20 | 2014-03-13 | スパイン ビュー, インコーポレイテッド | 関節運動組織除去システムおよび方法 |
US8812079B2 (en) | 2010-12-22 | 2014-08-19 | Biosense Webster (Israel), Ltd. | Compensation for magnetic disturbance due to fluoroscope |
EP2476455A1 (de) | 2011-01-13 | 2012-07-18 | BIOTRONIK SE & Co. KG | Implantierbare Elektrodenleitung |
US20120191086A1 (en) | 2011-01-20 | 2012-07-26 | Hansen Medical, Inc. | System and method for endoluminal and translumenal therapy |
KR101964579B1 (ko) | 2011-02-18 | 2019-04-03 | 디퍼이 신테스 프로덕츠, 인코포레이티드 | 일체형 내비게이션 및 안내 시스템을 갖는 도구와 관련 장치 및 방법 |
US10391277B2 (en) | 2011-02-18 | 2019-08-27 | Voxel Rad, Ltd. | Systems and methods for 3D stereoscopic angiovision, angionavigation and angiotherapeutics |
FR2972915B1 (fr) | 2011-03-24 | 2013-04-19 | Gen Electric | Systeme d'imagerie medicale multiplan |
US10362963B2 (en) | 2011-04-14 | 2019-07-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Correction of shift and drift in impedance-based medical device navigation using magnetic field information |
US10918307B2 (en) | 2011-09-13 | 2021-02-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter navigation using impedance and magnetic field measurements |
US8900131B2 (en) | 2011-05-13 | 2014-12-02 | Intuitive Surgical Operations, Inc. | Medical system providing dynamic registration of a model of an anatomical structure for image-guided surgery |
US9572481B2 (en) | 2011-05-13 | 2017-02-21 | Intuitive Surgical Operations, Inc. | Medical system with multiple operating modes for steering a medical instrument through linked body passages |
EP2723240B1 (en) | 2011-06-27 | 2018-08-08 | Koninklijke Philips N.V. | Live 3d angiogram using registration of a surgical tool curve to an x-ray image |
US20130018306A1 (en) | 2011-07-13 | 2013-01-17 | Doron Moshe Ludwin | System for indicating catheter deflection |
US9173683B2 (en) | 2011-08-31 | 2015-11-03 | DePuy Synthes Products, Inc. | Revisable orthopedic anchor and methods of use |
CN102973317A (zh) | 2011-09-05 | 2013-03-20 | 周宁新 | 微创手术机器人机械臂布置结构 |
CA2863973A1 (en) | 2011-09-08 | 2013-03-14 | Apn Health, Llc | Automatically determining 3d catheter location and orientation using 2d fluoroscopy only |
US9173551B2 (en) | 2011-09-09 | 2015-11-03 | Children's National Medical Center | Enhanced control of flexible endoscopes through human-machine interface |
CN103930926B (zh) | 2011-09-13 | 2017-06-13 | 皇家飞利浦有限公司 | 具有孔口可视化的脉管轮廓描绘 |
WO2013040498A1 (en) | 2011-09-16 | 2013-03-21 | Translucent Medical, Inc. | System and method for virtually tracking a surgical tool on a movable display |
EP2763591A4 (en) * | 2011-10-09 | 2015-05-06 | Clear Guide Medical Llc | GUIDING INTERVENTIONAL IN SITU IMAGES BY FUSIONING AN ULTRASONIC VIDEO |
US9452276B2 (en) | 2011-10-14 | 2016-09-27 | Intuitive Surgical Operations, Inc. | Catheter with removable vision probe |
EP2768373B1 (en) | 2011-10-21 | 2018-06-13 | Viking Systems, Inc. | Steerable endoscope comprising a brake |
US20130131503A1 (en) | 2011-11-22 | 2013-05-23 | Ascension Technology Corporation | Tracking a guidewire |
US9504604B2 (en) | 2011-12-16 | 2016-11-29 | Auris Surgical Robotics, Inc. | Lithotripsy eye treatment |
US8920368B2 (en) | 2011-12-22 | 2014-12-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-user touch-based control of a remote catheter guidance system (RCGS) |
US20130246334A1 (en) | 2011-12-27 | 2013-09-19 | Mcafee, Inc. | System and method for providing data protection workflows in a network environment |
WO2013108776A1 (ja) | 2012-01-16 | 2013-07-25 | オリンパスメディカルシステムズ株式会社 | 挿入装置 |
US8670816B2 (en) | 2012-01-30 | 2014-03-11 | Inneroptic Technology, Inc. | Multiple medical device guidance |
WO2013116140A1 (en) | 2012-02-03 | 2013-08-08 | Intuitive Surgical Operations, Inc. | Steerable flexible needle with embedded shape sensing |
US20130218005A1 (en) | 2012-02-08 | 2013-08-22 | University Of Maryland, Baltimore | Minimally invasive neurosurgical intracranial robot system and method |
WO2013118090A2 (en) | 2012-02-09 | 2013-08-15 | Koninklijke Philips N.V. | Shaft tracker for real-time navigation tracking |
US9314926B2 (en) | 2012-02-15 | 2016-04-19 | Intuitive Surgical Operations, Inc. | Compact needle manipulator for targeted interventions |
US9129417B2 (en) | 2012-02-21 | 2015-09-08 | Siemens Aktiengesellschaft | Method and system for coronary artery centerline extraction |
US9138165B2 (en) | 2012-02-22 | 2015-09-22 | Veran Medical Technologies, Inc. | Systems, methods and devices for forming respiratory-gated point cloud for four dimensional soft tissue navigation |
US10383765B2 (en) | 2012-04-24 | 2019-08-20 | Auris Health, Inc. | Apparatus and method for a global coordinate system for use in robotic surgery |
US20140142591A1 (en) | 2012-04-24 | 2014-05-22 | Auris Surgical Robotics, Inc. | Method, apparatus and a system for robotic assisted surgery |
DE102012207707A1 (de) | 2012-05-09 | 2013-11-28 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Minimalinvasives Instrument für die robotische Chirurgie |
US10039473B2 (en) | 2012-05-14 | 2018-08-07 | Intuitive Surgical Operations, Inc. | Systems and methods for navigation based on ordered sensor records |
US10376178B2 (en) | 2012-05-14 | 2019-08-13 | Intuitive Surgical Operations, Inc. | Systems and methods for registration of a medical device using rapid pose search |
CN104540548B (zh) | 2012-05-15 | 2017-02-22 | 皇家飞利浦有限公司 | 近距放射治疗装置 |
US20150045675A1 (en) | 2012-06-01 | 2015-02-12 | Ary Chernomorsky | Percutaneous methods and devices for carotid body ablation |
JP6262216B2 (ja) | 2012-06-01 | 2018-01-17 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 零空間を使用して操作アーム間の衝突を回避するためのシステム及び方法 |
JP2015528713A (ja) | 2012-06-21 | 2015-10-01 | グローバス メディカル インコーポレイティッド | 手術ロボットプラットフォーム |
US20140001234A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Coupling arrangements for attaching surgical end effectors to drive systems therefor |
JP6633391B2 (ja) | 2012-06-28 | 2020-01-22 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 血管の視覚化及び監視のための光ファイバセンサ誘導ナビゲーション |
US9220570B2 (en) | 2012-06-29 | 2015-12-29 | Children's National Medical Center | Automated surgical and interventional procedures |
DE102012220116A1 (de) | 2012-06-29 | 2014-01-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Mobil handhabbare Vorrichtung, insbesondere zur Bearbeitung oder Beobachtung eines Körpers, und Verfahren zur Handhabung, insbesondere Kalibrierung, einer Vorrichtung |
CN104519823B (zh) | 2012-08-02 | 2018-02-16 | 皇家飞利浦有限公司 | 机器人远程运动中心的控制器限定 |
US9226796B2 (en) | 2012-08-03 | 2016-01-05 | Stryker Corporation | Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path |
CN104718054B (zh) | 2012-08-15 | 2017-03-01 | 直观外科手术操作公司 | 操纵机械体的活动的假想自由度(dof) |
US9183354B2 (en) | 2012-08-15 | 2015-11-10 | Musc Foundation For Research Development | Systems and methods for image guided surgery |
US20140051049A1 (en) | 2012-08-17 | 2014-02-20 | Intuitive Surgical Operations, Inc. | Anatomical model and method for surgical training |
WO2014032046A1 (en) | 2012-08-24 | 2014-02-27 | University Of Houston | Robotic device and systems for image-guided and robot-assisted surgery |
US9008757B2 (en) | 2012-09-26 | 2015-04-14 | Stryker Corporation | Navigation system including optical and non-optical sensors |
US20140107390A1 (en) | 2012-10-12 | 2014-04-17 | Elekta Ab (Publ) | Implementation and experimental results of real-time 4d tumor tracking using multi-leaf collimator (mlc), and/or mlc-carriage (mlc-bank), and/or treatment table (couch) |
CN104736085B (zh) | 2012-10-12 | 2018-01-30 | 直观外科手术操作公司 | 确定医疗器械在分支解剖结构中的位置 |
WO2014074481A2 (en) | 2012-11-07 | 2014-05-15 | Dana Automotive Systems Group, Llc | A clutch management system |
GB201220688D0 (en) | 2012-11-16 | 2013-01-02 | Trw Ltd | Improvements relating to electrical power assisted steering systems |
US20150313503A1 (en) | 2012-11-20 | 2015-11-05 | University Of Washington Through Its Center For Commercialization | Electromagnetic sensor integration with ultrathin scanning fiber endoscope |
US20140148673A1 (en) | 2012-11-28 | 2014-05-29 | Hansen Medical, Inc. | Method of anchoring pullwire directly articulatable region in catheter |
US8894610B2 (en) | 2012-11-28 | 2014-11-25 | Hansen Medical, Inc. | Catheter having unirail pullwire architecture |
LU92104B1 (en) | 2012-11-28 | 2014-05-30 | Iee Sarl | Method and system for determining a ventilatory threshold |
JP6045417B2 (ja) | 2012-12-20 | 2016-12-14 | オリンパス株式会社 | 画像処理装置、電子機器、内視鏡装置、プログラム及び画像処理装置の作動方法 |
US10231867B2 (en) | 2013-01-18 | 2019-03-19 | Auris Health, Inc. | Method, apparatus and system for a water jet |
DE102013100605A1 (de) | 2013-01-22 | 2014-07-24 | Rg Mechatronics Gmbh | Robotersystem und Verfahren zum Steuern eines Robotersystems für die minimal invasive Chirurgie |
US11172809B2 (en) | 2013-02-15 | 2021-11-16 | Intuitive Surgical Operations, Inc. | Vision probe with access port |
BR112015020589B8 (pt) | 2013-02-26 | 2022-03-22 | Sinan Kabakci Ahmet | Sistema manipulador robótico |
US9186142B2 (en) | 2013-02-28 | 2015-11-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument end effector articulation drive with pinion and opposing racks |
US9459087B2 (en) | 2013-03-05 | 2016-10-04 | Ezono Ag | Magnetic position detection system |
WO2014136576A1 (ja) | 2013-03-06 | 2014-09-12 | オリンパスメディカルシステムズ株式会社 | 内視鏡システム |
JP6077102B2 (ja) | 2013-03-06 | 2017-02-08 | Jx金属株式会社 | スパッタリング用チタンターゲット及びその製造方法 |
US9839481B2 (en) | 2013-03-07 | 2017-12-12 | Intuitive Surgical Operations, Inc. | Hybrid manual and robotic interventional instruments and methods of use |
US10080576B2 (en) | 2013-03-08 | 2018-09-25 | Auris Health, Inc. | Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment |
US9867635B2 (en) | 2013-03-08 | 2018-01-16 | Auris Surgical Robotics, Inc. | Method, apparatus and system for a water jet |
US10149720B2 (en) | 2013-03-08 | 2018-12-11 | Auris Health, Inc. | Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment |
US20140296655A1 (en) | 2013-03-11 | 2014-10-02 | ROPAMedics LLC | Real-time tracking of cerebral hemodynamic response (rtchr) of a subject based on hemodynamic parameters |
CN104780826B (zh) | 2013-03-12 | 2016-12-28 | 奥林巴斯株式会社 | 内窥镜系统 |
US9057600B2 (en) | 2013-03-13 | 2015-06-16 | Hansen Medical, Inc. | Reducing incremental measurement sensor error |
US20170303941A1 (en) | 2013-03-14 | 2017-10-26 | The General Hospital Corporation | System and method for guided removal from an in vivo subject |
US9498601B2 (en) | 2013-03-14 | 2016-11-22 | Hansen Medical, Inc. | Catheter tension sensing |
EP2967623B1 (en) | 2013-03-14 | 2021-07-21 | SRI International | Compact robotic wrist |
US9173713B2 (en) | 2013-03-14 | 2015-11-03 | Hansen Medical, Inc. | Torque-based catheter articulation |
US9326822B2 (en) | 2013-03-14 | 2016-05-03 | Hansen Medical, Inc. | Active drives for robotic catheter manipulators |
CA2896381C (en) | 2013-03-15 | 2017-01-10 | Synaptive Medical (Barbados) Inc. | Intelligent positioning system and methods therefore |
US9629595B2 (en) | 2013-03-15 | 2017-04-25 | Hansen Medical, Inc. | Systems and methods for localizing, tracking and/or controlling medical instruments |
US9271663B2 (en) | 2013-03-15 | 2016-03-01 | Hansen Medical, Inc. | Flexible instrument localization from both remote and elongation sensors |
US9014851B2 (en) | 2013-03-15 | 2015-04-21 | Hansen Medical, Inc. | Systems and methods for tracking robotically controlled medical instruments |
KR102257034B1 (ko) | 2013-03-15 | 2021-05-28 | 에스알아이 인터내셔널 | 하이퍼덱스트러스 수술 시스템 |
US9301723B2 (en) | 2013-03-15 | 2016-04-05 | Covidien Lp | Microwave energy-delivery device and system |
US20170238807A9 (en) | 2013-03-15 | 2017-08-24 | LX Medical, Inc. | Tissue imaging and image guidance in luminal anatomic structures and body cavities |
US9174024B1 (en) | 2013-03-15 | 2015-11-03 | St. Jude Medical Luxembourg Holdings S.À.R.L. | Steering control mechanisms for catheters |
CN105073042B (zh) | 2013-03-28 | 2019-03-29 | 皇家飞利浦有限公司 | 使用定制套管针对机器人远程运动中心点的定位 |
US10271810B2 (en) | 2013-04-02 | 2019-04-30 | St. Jude Medical International Holding S.à r. l. | Enhanced compensation of motion in a moving organ using processed reference sensor data |
EP2983579A2 (en) | 2013-04-12 | 2016-02-17 | NinePoint Medical, Inc. | Multiple aperture, multiple modal optical systems and methods |
BR112015025602A2 (pt) | 2013-04-12 | 2017-07-18 | Koninklijke Philips Nv | sistema médico, sistema médico para rastrear movimentos de lúmen para simulação de reserva de fluxo fracionário (rff) e método para rastrear movimentos de lúmen |
US9414859B2 (en) | 2013-04-19 | 2016-08-16 | Warsaw Orthopedic, Inc. | Surgical rod measuring system and method |
US9387045B2 (en) | 2013-05-14 | 2016-07-12 | Intuitive Surgical Operations, Inc. | Grip force normalization for surgical instrument |
US9592095B2 (en) | 2013-05-16 | 2017-03-14 | Intuitive Surgical Operations, Inc. | Systems and methods for robotic medical system integration with external imaging |
US11020016B2 (en) | 2013-05-30 | 2021-06-01 | Auris Health, Inc. | System and method for displaying anatomy and devices on a movable display |
US20140364739A1 (en) | 2013-06-06 | 2014-12-11 | General Electric Company | Systems and methods for analyzing a vascular structure |
US10744035B2 (en) | 2013-06-11 | 2020-08-18 | Auris Health, Inc. | Methods for robotic assisted cataract surgery |
JP5815156B2 (ja) | 2013-07-02 | 2015-11-17 | オリンパス株式会社 | 医療機器 |
JP6037964B2 (ja) | 2013-07-26 | 2016-12-07 | オリンパス株式会社 | マニピュレータシステム |
US10426661B2 (en) | 2013-08-13 | 2019-10-01 | Auris Health, Inc. | Method and apparatus for laser assisted cataract surgery |
CN105451802B (zh) | 2013-08-15 | 2019-04-19 | 直观外科手术操作公司 | 用于导管定位和插入的图形用户界面 |
US10098565B2 (en) | 2013-09-06 | 2018-10-16 | Covidien Lp | System and method for lung visualization using ultrasound |
WO2015042453A1 (en) | 2013-09-20 | 2015-03-26 | Canon U.S.A., Inc. | Control apparatus for tendon-driven device |
CN105592790A (zh) | 2013-10-02 | 2016-05-18 | 皇家飞利浦有限公司 | 用于光学形状感测配准的集线器设计和方法 |
DE102013220798A1 (de) | 2013-10-15 | 2015-04-16 | Kuka Laboratories Gmbh | Verfahren zum Handhaben von Objekten mittels wenigstens zweier Industrieroboter, und zugehöriger Industrieroboter |
US9737373B2 (en) | 2013-10-24 | 2017-08-22 | Auris Surgical Robotics, Inc. | Instrument device manipulator and surgical drape |
JP6656148B2 (ja) | 2013-10-24 | 2020-03-04 | オーリス ヘルス インコーポレイテッド | ロボット支援管腔内手術のためのシステムおよび関連する方法 |
US9173553B2 (en) | 2013-10-30 | 2015-11-03 | Faculty Physicians And Surgeons Of Loma Linda University School Of Medicine | Controlled pressure endoscopic and percutaneous surgery |
CN103565529B (zh) | 2013-11-11 | 2015-06-17 | 哈尔滨工程大学 | 一种机器人辅助微创外科手术多功能器械臂 |
US9314191B2 (en) | 2013-11-19 | 2016-04-19 | Pacesetter, Inc. | Method and system to measure cardiac motion using a cardiovascular navigation system |
US10076385B2 (en) | 2013-12-08 | 2018-09-18 | Mazor Robotics Ltd. | Method and apparatus for alerting a user to sensed lateral forces upon a guide-sleeve in a robot surgical system |
US10610306B2 (en) | 2013-12-09 | 2020-04-07 | Intuitive Surgical Operations, Inc. | Systems and methods for device-aware flexible tool registration |
CN103705307B (zh) | 2013-12-10 | 2017-02-22 | 中国科学院深圳先进技术研究院 | 手术导航系统及医疗机器人 |
CN103735313B (zh) | 2013-12-11 | 2016-08-17 | 中国科学院深圳先进技术研究院 | 一种手术机器人及其状态监测方法 |
JP6261612B2 (ja) | 2013-12-20 | 2018-01-17 | オリンパス株式会社 | 軟性マニピュレータ用ガイド部材および軟性マニピュレータ |
EP4184483B1 (en) | 2013-12-20 | 2024-09-11 | Intuitive Surgical Operations, Inc. | Simulator system for medical procedure training |
CN103767659B (zh) | 2014-01-02 | 2015-06-03 | 中国人民解放军总医院 | 消化内窥镜机器人 |
CN105939648B (zh) | 2014-01-24 | 2018-12-07 | 皇家飞利浦有限公司 | 针对经食道超声心动描记探头的无传感器的力控制 |
EP3096692B1 (en) | 2014-01-24 | 2023-06-14 | Koninklijke Philips N.V. | Virtual image with optical shape sensing device perspective |
KR20160118295A (ko) | 2014-02-04 | 2016-10-11 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 중재 도구의 가상 항행을 위한 조직의 비강체 변형을 위한 시스템 및 방법 |
JP6246383B2 (ja) | 2014-02-06 | 2017-12-13 | セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド | 面取りされたリング電極および可変シャフトを備えた細長医療機器 |
US20150223902A1 (en) | 2014-02-07 | 2015-08-13 | Hansen Medical, Inc. | Navigation with 3d localization using 2d images |
WO2015121311A1 (en) | 2014-02-11 | 2015-08-20 | KB Medical SA | Sterile handle for controlling a robotic surgical system from a sterile field |
US10548630B2 (en) | 2014-02-11 | 2020-02-04 | Vanderbilt University | System, method, and apparatus for configuration, design, and operation of an active cannula robot |
CN106456269B (zh) | 2014-02-18 | 2019-09-24 | 西门子保健有限责任公司 | 对包括心脏的电传导系统的影响在内的患者特定心脏电生理的实时仿真的系统和方法 |
JP6353665B2 (ja) | 2014-02-21 | 2018-07-04 | オリンパス株式会社 | マニピュレータの初期化方法、マニピュレータ、およびマニピュレータシステム |
JP6138071B2 (ja) | 2014-02-26 | 2017-05-31 | オリンパス株式会社 | 弛み補正機構、マニピュレータ及びマニピュレータシステム |
EP3110360B1 (en) | 2014-02-27 | 2019-04-10 | Koninklijke Philips N.V. | System for performing a therapeutic procedure |
JP6270537B2 (ja) | 2014-02-27 | 2018-01-31 | オリンパス株式会社 | 医療用システム |
KR20150103938A (ko) | 2014-03-04 | 2015-09-14 | 현대자동차주식회사 | 리튬황 배터리 분리막 |
US10952751B2 (en) | 2014-03-17 | 2021-03-23 | Marksman Targeting, Inc. | Surgical targeting systems and methods |
CN106102549B (zh) | 2014-03-17 | 2018-12-04 | 直观外科手术操作公司 | 用于控制成像器械定向的系统和方法 |
CN104931059B (zh) | 2014-03-21 | 2018-09-11 | 比亚迪股份有限公司 | 车载救援导航系统和方法 |
EP3243476B1 (en) | 2014-03-24 | 2019-11-06 | Auris Health, Inc. | Systems and devices for catheter driving instinctiveness |
US10912523B2 (en) | 2014-03-24 | 2021-02-09 | Intuitive Surgical Operations, Inc. | Systems and methods for anatomic motion compensation |
JP2017513662A (ja) | 2014-03-28 | 2017-06-01 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Q3d画像の3d画像とのアライメント |
US10046140B2 (en) | 2014-04-21 | 2018-08-14 | Hansen Medical, Inc. | Devices, systems, and methods for controlling active drive systems |
WO2015161677A1 (en) | 2014-04-22 | 2015-10-29 | Bio-Medical Engineering (HK) Limited | Single access surgical robotic devices and systems, and methods of configuring single access surgical robotic devices and systems |
US20150305650A1 (en) | 2014-04-23 | 2015-10-29 | Mark Hunter | Apparatuses and methods for endobronchial navigation to and confirmation of the location of a target tissue and percutaneous interception of the target tissue |
KR102537276B1 (ko) | 2014-05-16 | 2023-05-26 | 어플라이드 메디컬 리소시스 코포레이션 | 전기수술용 시스템 |
US9549781B2 (en) | 2014-05-30 | 2017-01-24 | The Johns Hopkins University | Multi-force sensing surgical instrument and method of use for robotic surgical systems |
WO2015188071A2 (en) | 2014-06-05 | 2015-12-10 | Medrobotics Corporation | Articulating robotic probes, systems and methods incorporating the same, and methods for performing surgical procedures |
CN104055520B (zh) | 2014-06-11 | 2016-02-24 | 清华大学 | 人体器官运动监测方法和手术导航系统 |
US10159533B2 (en) | 2014-07-01 | 2018-12-25 | Auris Health, Inc. | Surgical system with configurable rail-mounted mechanical arms |
US10792464B2 (en) | 2014-07-01 | 2020-10-06 | Auris Health, Inc. | Tool and method for using surgical endoscope with spiral lumens |
US9561083B2 (en) | 2014-07-01 | 2017-02-07 | Auris Surgical Robotics, Inc. | Articulating flexible endoscopic tool with roll capabilities |
US9744335B2 (en) | 2014-07-01 | 2017-08-29 | Auris Surgical Robotics, Inc. | Apparatuses and methods for monitoring tendons of steerable catheters |
US9788910B2 (en) | 2014-07-01 | 2017-10-17 | Auris Surgical Robotics, Inc. | Instrument-mounted tension sensing mechanism for robotically-driven medical instruments |
US20170007337A1 (en) | 2014-07-01 | 2017-01-12 | Auris Surgical Robotics, Inc. | Driver-mounted torque sensing mechanism |
US20160270865A1 (en) | 2014-07-01 | 2016-09-22 | Auris Surgical Robotics, Inc. | Reusable catheter with disposable balloon attachment and tapered tip |
US9770216B2 (en) | 2014-07-02 | 2017-09-26 | Covidien Lp | System and method for navigating within the lung |
US9633431B2 (en) | 2014-07-02 | 2017-04-25 | Covidien Lp | Fluoroscopic pose estimation |
US9603668B2 (en) | 2014-07-02 | 2017-03-28 | Covidien Lp | Dynamic 3D lung map view for tool navigation inside the lung |
US20160000414A1 (en) | 2014-07-02 | 2016-01-07 | Covidien Lp | Methods for marking biopsy location |
CN106659374B (zh) | 2014-07-02 | 2021-04-02 | 柯惠有限合伙公司 | 在3d导航时提供距离和取向反馈的系统和方法 |
CN106794024B (zh) | 2014-07-22 | 2019-11-12 | 艾克西米斯外科公司 | 大体积组织缩减和去除系统和方法 |
KR102414384B1 (ko) | 2014-08-12 | 2022-06-30 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 비제어 이동 검출 |
US20160051221A1 (en) | 2014-08-25 | 2016-02-25 | Covidien Lp | System and Method for Planning, Monitoring, and Confirming Treatment |
US9931651B2 (en) | 2014-08-28 | 2018-04-03 | Nebia Inc. | Immersive showerhead |
JP6460690B2 (ja) | 2014-09-16 | 2019-01-30 | キヤノン株式会社 | ロボット装置、ロボット制御方法、プログラム及び記録媒体 |
WO2016041855A1 (en) | 2014-09-18 | 2016-03-24 | Koninklijke Philips N.V. | Ultrasound imaging apparatus |
WO2016054256A1 (en) | 2014-09-30 | 2016-04-07 | Auris Surgical Robotics, Inc | Configurable robotic surgical system with virtual rail and flexible endoscope |
US10582949B2 (en) | 2014-09-30 | 2020-03-10 | Kaushikkumar Vallabhadas SHAH | Sheath assembly and multihole catheter for different fields of endoscopic surgery involving suction, irrigation and material removal |
WO2016057778A1 (en) | 2014-10-08 | 2016-04-14 | SALMELA, Amy, M. | System for catheter manipulation |
US10037841B2 (en) | 2014-10-15 | 2018-07-31 | Vincent Suzara | Magnetic field structures, field generators, navigation and imaging for untethered robotic device enabled medical procedure |
GB201418368D0 (en) | 2014-10-16 | 2014-12-03 | Creo Medical Ltd | Surgical snare |
US10314463B2 (en) | 2014-10-24 | 2019-06-11 | Auris Health, Inc. | Automated endoscope calibration |
DE102014222293A1 (de) | 2014-10-31 | 2016-05-19 | Siemens Aktiengesellschaft | Verfahren zur automatischen Überwachung des Eindringverhaltens eines von einem Roboterarm gehaltenen Trokars und Überwachungssystem |
SG11201704750SA (en) | 2014-11-11 | 2017-07-28 | Univ Vanderbilt | Methods for limiting acute kidney injury |
KR102540633B1 (ko) | 2014-11-13 | 2023-06-07 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 정위 데이터를 필터링하기 위한 시스템 및 방법 |
EP3226762B1 (en) | 2014-12-01 | 2021-05-19 | Koninklijke Philips N.V. | Virtually-oriented electromagnetic tracking coil for catheter based navigation |
US20160166320A1 (en) | 2014-12-11 | 2016-06-16 | Boston Scientific Scimed, Inc. | Medical device and methods of use |
WO2016098251A1 (ja) | 2014-12-19 | 2016-06-23 | オリンパス株式会社 | 挿抜支援装置及び挿抜支援方法 |
WO2016098252A1 (ja) | 2014-12-19 | 2016-06-23 | オリンパス株式会社 | 挿抜支援装置及び挿抜支援方法 |
US9931168B2 (en) | 2015-01-12 | 2018-04-03 | Biomet Manufacuturing. LLC | Plan implementation |
WO2016134297A1 (en) | 2015-02-20 | 2016-08-25 | Nostix, Llc | Medical device position location systems, devices and methods |
EP3263053A4 (en) | 2015-02-26 | 2018-11-07 | Olympus Corporation | Medical treatment instrument |
JP6348078B2 (ja) | 2015-03-06 | 2018-06-27 | 富士フイルム株式会社 | 分岐構造判定装置、分岐構造判定装置の作動方法および分岐構造判定プログラム |
AU2016229897B2 (en) | 2015-03-10 | 2020-07-16 | Covidien Lp | Measuring health of a connector member of a robotic surgical system |
US10413377B2 (en) | 2015-03-19 | 2019-09-17 | Medtronic Navigation, Inc. | Flexible skin based patient tracker for optical navigation |
JP6371729B2 (ja) | 2015-03-25 | 2018-08-08 | 富士フイルム株式会社 | 内視鏡検査支援装置、内視鏡検査支援装置の作動方法および内視鏡支援プログラム |
US9302702B1 (en) | 2015-03-27 | 2016-04-05 | Proterra Inc. | Steering control mechanisms for an electric vehicle |
JP6360455B2 (ja) | 2015-03-30 | 2018-07-18 | 富士フイルム株式会社 | 検査画像閲覧支援装置、その作動方法及び作動プログラム |
US10226193B2 (en) | 2015-03-31 | 2019-03-12 | Medtronic Ps Medical, Inc. | Wireless pressure measurement and monitoring for shunts |
US20160287279A1 (en) | 2015-04-01 | 2016-10-06 | Auris Surgical Robotics, Inc. | Microsurgical tool for robotic applications |
WO2016164824A1 (en) | 2015-04-09 | 2016-10-13 | Auris Surgical Robotics, Inc. | Surgical system with configurable rail-mounted mechanical arms |
CN105030331A (zh) | 2015-04-24 | 2015-11-11 | 长春理工大学 | 位置传感器与三维腹腔镜摄像机标定装置及方法 |
CN104758066B (zh) | 2015-05-06 | 2017-05-10 | 中国科学院深圳先进技术研究院 | 用于手术导航的设备及手术机器人 |
US9636184B2 (en) | 2015-05-15 | 2017-05-02 | Auris Surgical Robotics, Inc. | Swivel bed for a surgical robotics system |
US9918798B2 (en) | 2015-06-04 | 2018-03-20 | Paul Beck | Accurate three-dimensional instrument positioning |
US20160354057A1 (en) | 2015-06-08 | 2016-12-08 | General Electric Company | Ultrasound imaging system and ultrasound-based method for guiding a catheter |
US20170071456A1 (en) | 2015-06-10 | 2017-03-16 | Nitesh Ratnakar | Novel 360-degree panoramic view formed for endoscope adapted thereto with multiple cameras, and applications thereof to reduce polyp miss rate and facilitate targeted polyp removal |
CN107613839B (zh) | 2015-06-11 | 2019-10-01 | 奥林巴斯株式会社 | 内窥镜装置和内窥镜装置的工作方法 |
WO2016203858A1 (ja) | 2015-06-18 | 2016-12-22 | オリンパス株式会社 | 医療システム |
US10347904B2 (en) | 2015-06-19 | 2019-07-09 | Solidenergy Systems, Llc | Multi-layer polymer coated Li anode for high density Li metal battery |
GB2540757B (en) | 2015-07-22 | 2021-03-31 | Cmr Surgical Ltd | Torque sensors |
EP3326566A4 (en) | 2015-07-23 | 2019-07-03 | Olympus Corporation | MEDICAL SYSTEM AND METHOD FOR OPERATING IT |
WO2017030913A2 (en) | 2015-08-14 | 2017-02-23 | Intuitive Surgical Operations, Inc. | Systems and methods of registration for image-guided surgery |
US11202680B2 (en) | 2015-08-14 | 2021-12-21 | Intuitive Surgical Operations, Inc. | Systems and methods of registration for image-guided surgery |
CN107920861B (zh) | 2015-08-28 | 2021-08-17 | 皇家飞利浦有限公司 | 用于确定运动关系的装置 |
KR102612874B1 (ko) | 2015-08-31 | 2023-12-12 | 마시모 코오퍼레이션 | 무선 환자 모니터링 시스템들 및 방법들 |
US20170056215A1 (en) | 2015-09-01 | 2017-03-02 | Medtronic, Inc. | Stent assemblies including passages to provide blood flow to coronary arteries and methods of delivering and deploying such stent assemblies |
CN113229942A (zh) | 2015-09-09 | 2021-08-10 | 奥瑞斯健康公司 | 手术器械装置操纵器 |
CN108348139B (zh) | 2015-09-17 | 2021-11-09 | 恩达马斯特有限公司 | 改进的挠性机器人内窥镜系统 |
CN108778113B (zh) | 2015-09-18 | 2022-04-15 | 奥瑞斯健康公司 | 管状网络的导航 |
AU2016327595B2 (en) | 2015-09-25 | 2020-07-23 | Covidien Lp | Robotic surgical assemblies and electromechanical instruments thereof |
WO2017059412A1 (en) | 2015-10-02 | 2017-04-06 | Vanderbilt University | Concentric tube robot |
CA3000948C (en) | 2015-10-13 | 2024-02-20 | Lightlab Imaging, Inc. | Intravascular imaging system and methods to determine cut plane view angle of side branch |
US20170106904A1 (en) | 2015-10-16 | 2017-04-20 | Ford Global Technologies, Llc | Control Method For Vehicle With Electronic Steering Column Lock |
US9949749B2 (en) | 2015-10-30 | 2018-04-24 | Auris Surgical Robotics, Inc. | Object capture with a basket |
US10231793B2 (en) | 2015-10-30 | 2019-03-19 | Auris Health, Inc. | Object removal through a percutaneous suction tube |
US9955986B2 (en) | 2015-10-30 | 2018-05-01 | Auris Surgical Robotics, Inc. | Basket apparatus |
US10779976B2 (en) | 2015-10-30 | 2020-09-22 | Ram Medical Innovations, Llc | Apparatus and method for stabilization of procedural catheter in tortuous vessels |
KR102676381B1 (ko) * | 2015-10-30 | 2024-06-20 | 아우리스 헬스, 인코포레이티드 | 경피적 수술을 위한 방법 |
US10548666B2 (en) | 2015-11-17 | 2020-02-04 | Covidien Lp | Systems and methods for ultrasound image-guided ablation antenna placement |
US10413316B2 (en) | 2015-11-17 | 2019-09-17 | Covidien Lp | Articulating ultrasonic surgical instruments and systems |
WO2017091704A1 (en) | 2015-11-25 | 2017-06-01 | Camplex, Inc. | Surgical visualization systems and displays |
US10143526B2 (en) | 2015-11-30 | 2018-12-04 | Auris Health, Inc. | Robot-assisted driving systems and methods |
US11172895B2 (en) | 2015-12-07 | 2021-11-16 | Covidien Lp | Visualization, navigation, and planning with electromagnetic navigation bronchoscopy and cone beam computed tomography integrated |
CN105511881A (zh) | 2015-12-10 | 2016-04-20 | 中国航空工业集团公司西安航空计算技术研究所 | 一种通用机载交互数据的管理方法 |
CN105559850B (zh) | 2015-12-17 | 2017-08-25 | 天津工业大学 | 一种用于机器人辅助外科具有力传感功能的手术钻器械 |
US10154886B2 (en) | 2016-01-06 | 2018-12-18 | Ethicon Llc | Methods, systems, and devices for controlling movement of a robotic surgical system |
CN108472076B (zh) | 2016-01-07 | 2022-05-31 | 伯尔尼大学 | 用于位姿受控的消融的方法和系统 |
US10932861B2 (en) | 2016-01-14 | 2021-03-02 | Auris Health, Inc. | Electromagnetic tracking surgical system and method of controlling the same |
WO2017127595A1 (en) | 2016-01-22 | 2017-07-27 | Boston Scientific Scimed, Inc. | Retrieval system |
US10932691B2 (en) | 2016-01-26 | 2021-03-02 | Auris Health, Inc. | Surgical tools having electromagnetic tracking components |
US10470719B2 (en) | 2016-02-01 | 2019-11-12 | Verily Life Sciences Llc | Machine learnt model to detect REM sleep periods using a spectral analysis of heart rate and motion |
US10485579B2 (en) | 2016-02-25 | 2019-11-26 | Indian Wells Medical, Inc. | Steerable endoluminal punch |
WO2017146890A1 (en) | 2016-02-26 | 2017-08-31 | Intuitive Surgical Operations, Inc. | System and method for collision avoidance using virtual boundaries |
WO2017162820A1 (en) | 2016-03-24 | 2017-09-28 | Koninklijke Philips N.V. | Treatment assessment device |
JP7232051B2 (ja) | 2016-03-31 | 2023-03-02 | コーニンクレッカ フィリップス エヌ ヴェ | カテーテル配置のための画像誘導ロボット |
US11324554B2 (en) | 2016-04-08 | 2022-05-10 | Auris Health, Inc. | Floating electromagnetic field generator system and method of controlling the same |
US10786224B2 (en) | 2016-04-21 | 2020-09-29 | Covidien Lp | Biopsy devices and methods of use thereof |
US10454347B2 (en) | 2016-04-29 | 2019-10-22 | Auris Health, Inc. | Compact height torque sensing articulation axis assembly |
US10470839B2 (en) | 2016-06-02 | 2019-11-12 | Covidien Lp | Assessment of suture or staple line integrity and localization of potential tissue defects along the suture or staple line |
US10806516B2 (en) | 2016-06-20 | 2020-10-20 | General Electric Company | Virtual 4D stent implantation path assessment |
KR20230164237A (ko) | 2016-06-30 | 2023-12-01 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 영상 안내식 시술 중에 복수의 모드에서 안내 정보를 디스플레이하기 위한 그래픽 사용자 인터페이스 |
US11037464B2 (en) | 2016-07-21 | 2021-06-15 | Auris Health, Inc. | System with emulator movement tracking for controlling medical devices |
US10238455B2 (en) | 2016-08-31 | 2019-03-26 | Covidien Lp | Pathway planning for use with a navigation planning and procedure system |
KR20230096148A (ko) | 2016-08-31 | 2023-06-29 | 아우리스 헬스, 인코포레이티드 | 길이 보존 수술용 기구 |
US20180055576A1 (en) | 2016-09-01 | 2018-03-01 | Covidien Lp | Respiration motion stabilization for lung magnetic navigation system |
US9931025B1 (en) | 2016-09-30 | 2018-04-03 | Auris Surgical Robotics, Inc. | Automated calibration of endoscopes with pull wires |
US10278778B2 (en) | 2016-10-27 | 2019-05-07 | Inneroptic Technology, Inc. | Medical device navigation using a virtual 3D space |
KR20190067917A (ko) | 2016-11-02 | 2019-06-17 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 영상 안내식 수술을 위한 연속 정치 시스템 및 방법 |
WO2018098477A1 (en) | 2016-11-28 | 2018-05-31 | University Of Florida Research Foundation, Incorporated | Urologic sheath with photodiode and coaxial grabber for suctioning of larger kidney stones |
US10136959B2 (en) | 2016-12-28 | 2018-11-27 | Auris Health, Inc. | Endolumenal object sizing |
US10543048B2 (en) | 2016-12-28 | 2020-01-28 | Auris Health, Inc. | Flexible instrument insertion using an adaptive insertion force threshold |
US10244926B2 (en) | 2016-12-28 | 2019-04-02 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
CN107028659B (zh) | 2017-01-23 | 2023-11-28 | 新博医疗技术有限公司 | 一种ct图像引导下的手术导航系统及导航方法 |
US11842030B2 (en) | 2017-01-31 | 2023-12-12 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
WO2018144726A1 (en) | 2017-02-01 | 2018-08-09 | Intuitive Surgical Operations, Inc. | Systems and methods for data filtering of passageway sensor data |
WO2018175737A1 (en) | 2017-03-22 | 2018-09-27 | Intuitive Surgical Operations, Inc. | Systems and methods for intelligently seeding registration |
AU2018244318B2 (en) | 2017-03-28 | 2023-11-16 | Auris Health, Inc. | Shaft actuating handle |
US10475235B2 (en) | 2017-03-29 | 2019-11-12 | Fujifilm Corporation | Three-dimensional image processing apparatus, three-dimensional image processing method, and three-dimensional image processing program |
CN108990412B (zh) | 2017-03-31 | 2022-03-22 | 奥瑞斯健康公司 | 补偿生理噪声的用于腔网络导航的机器人系统 |
US10285574B2 (en) | 2017-04-07 | 2019-05-14 | Auris Health, Inc. | Superelastic medical instrument |
US10987174B2 (en) | 2017-04-07 | 2021-04-27 | Auris Health, Inc. | Patient introducer alignment |
US20180308247A1 (en) | 2017-04-25 | 2018-10-25 | Best Medical International, Inc. | Tissue imaging system and method for tissue imaging |
US11529129B2 (en) | 2017-05-12 | 2022-12-20 | Auris Health, Inc. | Biopsy apparatus and system |
JP7301750B2 (ja) | 2017-05-17 | 2023-07-03 | オーリス ヘルス インコーポレイテッド | 交換可能な作業チャネル |
JP6388686B2 (ja) | 2017-05-22 | 2018-09-12 | 株式会社A−Traction | 手術支援装置、その制御方法、プログラム並びに手術支援システム |
US11259878B2 (en) | 2017-05-29 | 2022-03-01 | Intellijoint Surgical Inc. | Systems and methods for surgical navigation with a tracker instrument |
US10022192B1 (en) | 2017-06-23 | 2018-07-17 | Auris Health, Inc. | Automatically-initialized robotic systems for navigation of luminal networks |
AU2018292281B2 (en) | 2017-06-28 | 2023-03-30 | Auris Health, Inc. | Electromagnetic distortion detection |
US10299870B2 (en) | 2017-06-28 | 2019-05-28 | Auris Health, Inc. | Instrument insertion compensation |
EP3644885B1 (en) | 2017-06-28 | 2023-10-11 | Auris Health, Inc. | Electromagnetic field generator alignment |
US11026758B2 (en) | 2017-06-28 | 2021-06-08 | Auris Health, Inc. | Medical robotics systems implementing axis constraints during actuation of one or more motorized joints |
US10426559B2 (en) | 2017-06-30 | 2019-10-01 | Auris Health, Inc. | Systems and methods for medical instrument compression compensation |
US10593052B2 (en) | 2017-08-23 | 2020-03-17 | Synaptive Medical (Barbados) Inc. | Methods and systems for updating an existing landmark registration |
US11166766B2 (en) | 2017-09-21 | 2021-11-09 | DePuy Synthes Products, Inc. | Surgical instrument mounted display system |
US10464209B2 (en) | 2017-10-05 | 2019-11-05 | Auris Health, Inc. | Robotic system with indication of boundary for robotic arm |
US10145747B1 (en) | 2017-10-10 | 2018-12-04 | Auris Health, Inc. | Detection of undesirable forces on a surgical robotic arm |
US10016900B1 (en) | 2017-10-10 | 2018-07-10 | Auris Health, Inc. | Surgical robotic arm admittance control |
US10555778B2 (en) | 2017-10-13 | 2020-02-11 | Auris Health, Inc. | Image-based branch detection and mapping for navigation |
US11058493B2 (en) | 2017-10-13 | 2021-07-13 | Auris Health, Inc. | Robotic system configured for navigation path tracing |
CN107595368B (zh) | 2017-10-19 | 2024-04-30 | 以诺康医疗科技(苏州)有限公司 | 一种超声波手术刀头、刀杆及超声波手术刀 |
JP7362610B2 (ja) | 2017-12-06 | 2023-10-17 | オーリス ヘルス インコーポレイテッド | コマンド指示されていない器具の回動を修正するシステムおよび方法 |
CN116059454A (zh) | 2017-12-08 | 2023-05-05 | 奥瑞斯健康公司 | 用于执行医疗手术的系统和用以移除肾结石的医疗装置 |
WO2019113391A1 (en) | 2017-12-08 | 2019-06-13 | Auris Health, Inc. | System and method for medical instrument navigation and targeting |
WO2019118368A1 (en) | 2017-12-11 | 2019-06-20 | Auris Health, Inc. | Systems and methods for instrument based insertion architectures |
US11510736B2 (en) | 2017-12-14 | 2022-11-29 | Auris Health, Inc. | System and method for estimating instrument location |
EP3684283A4 (en) | 2017-12-18 | 2021-07-14 | Auris Health, Inc. | METHODS AND SYSTEMS FOR MONITORING AND NAVIGATION OF INSTRUMENTS IN LUMINAL NETWORKS |
US11026751B2 (en) | 2017-12-28 | 2021-06-08 | Cilag Gmbh International | Display of alignment of staple cartridge to prior linear staple line |
WO2019143459A1 (en) | 2018-01-17 | 2019-07-25 | Auris Health, Inc. | Surgical platform with adjustable arm supports |
US11484365B2 (en) | 2018-01-23 | 2022-11-01 | Inneroptic Technology, Inc. | Medical image guidance |
US10765303B2 (en) | 2018-02-13 | 2020-09-08 | Auris Health, Inc. | System and method for driving medical instrument |
EP3758641A4 (en) | 2018-03-01 | 2021-12-15 | Auris Health, Inc. | PROCEDURES AND SYSTEMS FOR MAPPING AND NAVIGATION |
JP2019154816A (ja) | 2018-03-13 | 2019-09-19 | ソニー・オリンパスメディカルソリューションズ株式会社 | 医療用画像処理装置、医療用観察装置、及び医療用観察装置の作動方法 |
CN110831480B (zh) | 2018-03-28 | 2023-08-29 | 奥瑞斯健康公司 | 具有可变弯曲刚度分布曲线的医疗器械 |
JP7214747B2 (ja) | 2018-03-28 | 2023-01-30 | オーリス ヘルス インコーポレイテッド | 位置センサの位置合わせのためのシステム及び方法 |
JP7225259B2 (ja) | 2018-03-28 | 2023-02-20 | オーリス ヘルス インコーポレイテッド | 器具の推定位置を示すためのシステム及び方法 |
WO2019191265A1 (en) | 2018-03-29 | 2019-10-03 | Auris Health, Inc. | Robotically-enabled medical systems with multifunction end effectors having rotational offsets |
EP3773301B1 (en) | 2018-04-13 | 2024-03-06 | Karl Storz SE & Co. KG | Guidance system and associated computer program |
CN114601559B (zh) | 2018-05-30 | 2024-05-14 | 奥瑞斯健康公司 | 用于基于定位传感器的分支预测的系统和介质 |
CN112236083B (zh) | 2018-05-31 | 2024-08-13 | 奥瑞斯健康公司 | 用于导航检测生理噪声的管腔网络的机器人系统和方法 |
KR102455671B1 (ko) | 2018-05-31 | 2022-10-20 | 아우리스 헬스, 인코포레이티드 | 이미지-기반 기도 분석 및 매핑 |
EP3801189B1 (en) | 2018-05-31 | 2024-09-11 | Auris Health, Inc. | Path-based navigation of tubular networks |
US10744981B2 (en) | 2018-06-06 | 2020-08-18 | Sensata Technologies, Inc. | Electromechanical braking connector |
KR102579505B1 (ko) | 2018-06-07 | 2023-09-20 | 아우리스 헬스, 인코포레이티드 | 고출력 기구를 가진 로봇 의료 시스템 |
US10667875B2 (en) | 2018-06-27 | 2020-06-02 | Auris Health, Inc. | Systems and techniques for providing multiple perspectives during medical procedures |
CN112367928A (zh) | 2018-06-28 | 2021-02-12 | 奥瑞斯健康公司 | 结合滑轮共享的医疗系统 |
WO2020033318A1 (en) | 2018-08-07 | 2020-02-13 | Auris Health, Inc. | Combining strain-based shape sensing with catheter control |
EP3806772A4 (en) | 2018-08-15 | 2022-03-30 | Auris Health, Inc. | MEDICAL INSTRUMENTS FOR TISSUE CAUTERIZATION |
CN112566567A (zh) | 2018-08-17 | 2021-03-26 | 奥瑞斯健康公司 | 双极医疗器械 |
AU2019326548B2 (en) | 2018-08-24 | 2023-11-23 | Auris Health, Inc. | Manually and robotically controllable medical instruments |
WO2020060750A1 (en) | 2018-09-17 | 2020-03-26 | Auris Health, Inc. | Systems and methods for concomitant medical procedures |
US11179212B2 (en) | 2018-09-26 | 2021-11-23 | Auris Health, Inc. | Articulating medical instruments |
US11864849B2 (en) | 2018-09-26 | 2024-01-09 | Auris Health, Inc. | Systems and instruments for suction and irrigation |
JP7536752B2 (ja) | 2018-09-28 | 2024-08-20 | オーリス ヘルス インコーポレイテッド | 内視鏡支援経皮的医療処置のためのシステム及び方法 |
WO2020069430A1 (en) | 2018-09-28 | 2020-04-02 | Auris Health, Inc. | Systems and methods for docking medical instruments |
US10820947B2 (en) | 2018-09-28 | 2020-11-03 | Auris Health, Inc. | Devices, systems, and methods for manually and robotically driving medical instruments |
WO2020076447A1 (en) | 2018-10-08 | 2020-04-16 | Auris Health, Inc. | Systems and instruments for tissue sealing |
US11950863B2 (en) | 2018-12-20 | 2024-04-09 | Auris Health, Inc | Shielding for wristed instruments |
WO2020140072A1 (en) | 2018-12-28 | 2020-07-02 | Auris Health, Inc. | Percutaneous sheath for robotic medical systems and methods |
EP3890645A4 (en) | 2019-02-22 | 2022-09-07 | Auris Health, Inc. | SURGICAL PLATFORM EQUIPPED WITH MOTORIZED ARMS FOR ADJUSTABLE ARM SUPPORTS |
CN113613612B (zh) | 2019-03-08 | 2022-08-02 | 奥瑞斯健康公司 | 用于医疗系统和应用的倾斜机构 |
CN113613580A (zh) | 2019-03-22 | 2021-11-05 | 奥瑞斯健康公司 | 用于使医疗器械上的输入部对准的系统和方法 |
US11534248B2 (en) | 2019-03-25 | 2022-12-27 | Auris Health, Inc. | Systems and methods for medical stapling |
US11617627B2 (en) | 2019-03-29 | 2023-04-04 | Auris Health, Inc. | Systems and methods for optical strain sensing in medical instruments |
KR20210149805A (ko) | 2019-04-08 | 2021-12-09 | 아우리스 헬스, 인코포레이티드 | 동시 절차를 위한 시스템, 방법, 및 작업흐름 |
WO2021137108A1 (en) | 2019-12-31 | 2021-07-08 | Auris Health, Inc. | Alignment interfaces for percutaneous access |
EP4084720A4 (en) | 2019-12-31 | 2024-01-17 | Auris Health, Inc. | ALIGNMENT TECHNIQUES FOR PERCUTANE ACCESS |
-
2020
- 2020-12-22 WO PCT/IB2020/062359 patent/WO2021137108A1/en unknown
- 2020-12-22 KR KR1020227026439A patent/KR20220123087A/ko not_active Application Discontinuation
- 2020-12-22 CN CN202080091047.7A patent/CN114929148B/zh active Active
- 2020-12-22 EP EP20910792.9A patent/EP4084722A4/en active Pending
- 2020-12-22 US US17/130,700 patent/US11602372B2/en active Active
- 2020-12-22 JP JP2022540452A patent/JP7497440B2/ja active Active
- 2020-12-22 CN CN202410482671.XA patent/CN118383870A/zh active Pending
-
2022
- 2022-09-22 US US17/951,036 patent/US20230094574A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20230094574A1 (en) | 2023-03-30 |
US11602372B2 (en) | 2023-03-14 |
JP2023508719A (ja) | 2023-03-03 |
KR20220123087A (ko) | 2022-09-05 |
US20210196312A1 (en) | 2021-07-01 |
JP7497440B2 (ja) | 2024-06-10 |
CN114929148A (zh) | 2022-08-19 |
WO2021137108A1 (en) | 2021-07-08 |
CN114929148B (zh) | 2024-05-10 |
EP4084722A4 (en) | 2024-01-10 |
EP4084722A1 (en) | 2022-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114929148B (zh) | 用于经皮进入的对准界面 | |
US11660147B2 (en) | Alignment techniques for percutaneous access | |
CN112804959A (zh) | 用于伴随内窥镜和经皮医学规程的机器人系统和方法 | |
US20210393338A1 (en) | Medical instrument driving | |
CN115715174B (zh) | 医疗器械的控制方案校准 | |
US11737663B2 (en) | Target anatomical feature localization | |
US20220096183A1 (en) | Haptic feedback for aligning robotic arms | |
WO2022064369A1 (en) | Haptic feedback for aligning robotic arms | |
CN116075276A (zh) | 机器人碰撞边界确定 | |
US20240127399A1 (en) | Visualization adjustments for instrument roll |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |