US10149720B2 - Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment - Google Patents

Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment Download PDF

Info

Publication number
US10149720B2
US10149720B2 US14/201,610 US201414201610A US10149720B2 US 10149720 B2 US10149720 B2 US 10149720B2 US 201414201610 A US201414201610 A US 201414201610A US 10149720 B2 US10149720 B2 US 10149720B2
Authority
US
United States
Prior art keywords
rod
actuation wire
apparatus
bending
pathway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/201,610
Other versions
US20150101442A1 (en
Inventor
Enrique Romo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Auris Health Inc
Original Assignee
Auris Health Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201361774901P priority Critical
Application filed by Auris Health Inc filed Critical Auris Health Inc
Priority to US14/201,610 priority patent/US10149720B2/en
Priority claimed from US14/479,095 external-priority patent/US10080576B2/en
Publication of US20150101442A1 publication Critical patent/US20150101442A1/en
Assigned to AURIS SURGICAL ROBOTICS, INC. reassignment AURIS SURGICAL ROBOTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROMO, ENRIQUE
Assigned to AURIS HEALTH, INC. reassignment AURIS HEALTH, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: AURIS SURGICAL ROBOTICS, INC.
Publication of US10149720B2 publication Critical patent/US10149720B2/en
Application granted granted Critical
Application status is Active legal-status Critical
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B19/2203
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0055Constructional details of insertion parts, e.g. vertebral elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0055Constructional details of insertion parts, e.g. vertebral elements
    • A61B1/0056Constructional details of insertion parts, e.g. vertebral elements the insertion parts being asymmetric, e.g. for unilateral bending mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0138Tip steering devices having flexible regions as a result of weakened outer material, e.g. slots, slits, cuts, joints or coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0147Tip steering devices with movable mechanical means, e.g. pull wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • A61B2034/306Wrists with multiple vertebrae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm
    • Y10T74/20323Robotic arm including flaccid drive element

Abstract

An instrument that facilitates bending with large degrees of articulation while maintaining ease of manufacturing for medical and surgical applications is discussed.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/774,901, filed Mar. 8, 2013, the entire content of which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The field of the present application pertains to medical devices. More particularly, the field of the invention pertains to an apparatus, system, and method for performing surgery.

2. Description of the Related Art

Robotic surgery has many benefits to improve patient recovery time and allows precise control of medical and surgical application instruments. In robotics, an end effector is the device at the end of a robotic arm, designed to interact with the environment. The exact nature of this device depends on the application of the robot. For example, several examples of end effectors could include a set of forceps, a pair of scissors, a laser, a camera, a cautery tool, a needle, or any other instrument tip that would benefit from being able to be repositioned.

As previously discussed, which originates from serial robotic manipulators, the end effector means the last link (or end) of the robot. At this endpoint the tools are attached. In a wider sense, an end effector can be seen as the part of a robot that interacts with the work environment.

Many articulating devices use bending sections comprising many small moving parts for creating an assembly. Typically, the assemblies are difficult to manufacture in smaller geometries since the individual components become difficult to fabricate.

Another challenge with existing solutions is accommodating the ancillary components for the end effector; which may include pull wire, electrical wires, fluidic lines, and optical fibers. The location of these components within the bending section impacts performance and stability of the bending section. All beams have an imaginary line within the body what will remain the same length when straight or bent, this line is termed the Neutral Axis of the structure. The neutral axis region does not experience any strain or stress. Typically, material that falls on either side of this line will experience strain and will either be extended or compressed. The inside of the bend will compress and the outside of the bend will extend. See FIG. 1 for an illustration of the neutral axis along with its relationship to the inner and outer bend surfaces.

For example, if the ancillary components are placed outside of the neutral axis region, they will slide in and out of the bending section if they are able to float relative to the bending section. Otherwise, the components will buckle or stretch due to the axial forces being imposed. FIG. 2 depicts an illustration of the relationship of components placed away from the components neutral axis.

Existing solutions for bending sections are created for small articulable instruments that is manufactured from thin walled tube. For example, intricate patterns are cut into the tubing in order to create reliefs that yield a preferential bending direction. However, if a large deflection is required; much of the tubing material will need to be removed in order to allow for such bending. Consequently, a thin walled tube with lots of its material eliminated inevitably loses much of the structure and ability to remain mechanically stable.

Therefore, it would be advantageous to have a method and apparatus for facilitating the bending of an instrument with large degrees of articulation while maintaining a sufficient amount of stiffness in order to provide stability at the end effector, all while ensuring ease of manufacturing.

SUMMARY OF THE INVENTION

Embodiments described herein are directed to a method, apparatus, and system for bending of an instrument with large degrees of articulation while maintaining ease of manufacturing.

In other embodiments, methods and apparatus for creating an articulating segment by starting with a solid rod instead of a tube. First, material is removed from the sides of the rod for enabling a bend. In one embodiment, the rod has material removed from the cross section in order to accommodate an actuation wire.

In other embodiments, the cross section accommodates ancillary components pertaining to the end effector.

One embodiment provides placing the path of the ancillary components close to the neutral axis of the bending section. Consequently, this reduces interactions between the articulation of the bending section and the ancillary components. Furthermore, resulting in a more predictable bend and end effector behavior. For example and not by way of limitation, removing material from the cross section to accommodate the articulation pull wire and the ancillary components permits manipulation of bending stiffness and the amount of opposing forces it is able to resolve during a medical procedure.

In one embodiment, the component is manufactured from a superplastic material that will be discussed later, such as, but not limited to Nitinol and other similar materials. The stiffness of the structure was manipulated via the design of the cross sectional profile in order to ensure the structure provides enough stability throughout the complete range of motion. The structure achieves a significant bend by imposing a moment on the structure and will recover to the original position when the moment is removed from the structure.

This actuation would simply require one pull wire at the tip, which would need to be pulled in order to generate a moment and relaxed to relieve the moment.

In an alternative embodiment, the component is manufactured from a superplastic material, but the cross section allows a different inner profile by incorporating the relief on the profile, the device lends itself to be manufactured using the wire EDM (Electric Discharge Machining) process without having to initially create a clearance hole.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a view to facilitate description of a neutral axis;

FIG. 2 is a view to facilitate description of a neutral axis;

FIGS. 3A-3D depict an apparatus for a bending flexure according to a first embodiment of the present invention;

FIG. 4 is a cross section side view of FIG. 3;

FIG. 5 is a view of a modeling representation of FIG. 3 according to a finite element analysis (FEA);

FIG. 6 is a view depicted an articulated position of the first embodiment depicted in FIG. 3;

FIG. 7 is an isometric view of an assembly, wherein the flexure subject matter is incorporated into an end effector, according to one embodiment of the present invention;

FIG. 8 depicts an apparatus for a bending flexure according to a second embodiment of the present invention;

FIG. 9 is a cross section side view of FIG. 8; and

FIG. 10 is a cross section side view that depicts bending behavior of FIG. 9.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Although certain preferred embodiments and examples are disclosed below, inventive subject matter extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses, and to modifications and equivalents thereof. Thus, the scope of the claims appended hereto is not limited by any of the particular embodiments described below. For example, in any method or process disclosed herein, the acts or operations of the method or process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence. Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding certain embodiments; however, the order of description should not be construed to imply that these operations are order dependent. Additionally, the structures, systems, and/or devices described herein may be embodied as integrated components or as separate components.

For purposes of comparing various embodiments, certain aspects and advantages of these embodiments are described. Not necessarily all such aspects or advantages are achieved by any particular embodiment. Thus, for example, various embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as may also be taught or suggested herein.

The embodiments described herein are directed to an apparatus for a distal bending section of minimally invasive surgical instrument having a large degree of articulation and providing sufficient rigidity to resolve the required forces during remote surgical procedures. Other embodiments provide methods of using the distal bending section and methods for making it.

One embodiment provides placing the path of the ancillary components close to the neutral axis of the bending section. Consequently, this reduces interactions between the articulation of the bending section and the ancillary components. Furthermore, embodiments of the present invention provide a more predictable bend and end effector behavior. For example and not by way of limitation, removing material from the cross section accommodates the articulation pull wire and the ancillary components, hence, the bending stiffness can be manipulated in order to achieve a desired characteristic.

In one embodiment, the component is manufactured from a superplastic material. In one embodiment, the material is Nitinol and with superelastic phase at room and/or body temperature. Also, other embodiments include use of any super elastic alloy. In yet another embodiment, the moment of inertia was tuned such that the structure achieves a significant bend by generating a moment on the structure and recovers to the original position when the moment is removed. This actuation would simply require one pull wire at the tip, which would need to be pulled in order to generate a moment and relaxed to relieve the moment.

In an alternative embodiment, the component is manufactured from a superplastic material, but the cross section allows a different inner profile by incorporating the relief on the profile, the device lends itself to be manufactured using the wire EDM (Electric Discharge Machining) process without having to initially create a clearance hole.

Referring to FIG. 3A, finished bending section 300 in accordance to an embodiment of the present invention is depicted. FIG. 3B is a longitudinal cross-section through the axis of bending section 300, FIG. 3C shows an axial cross-section of bending section 300 along line C of FIG. 3B, and FIG. 3D shows an axial cross-section of bending section 300 along line D of FIG. 3B.

Referring to FIG. 3B, material is removed along the top portion of a rod to create void 302, preferably along the length of the bending section. As discussed below, this void is created to assist in removal of material in the road to create the additional features of this preferred embodiment. Material is also removed from teardrop sections 304, where adjacent to teardrop section 304 material is left in place forming leaves 306. A tendon (not shown) extends through void 308 (described below) is attached at the distal end of bending section 300. When tension is applied to the tendon bending section will bend downward, as shown in the figure, and teardrop voids 304 permit leaves 306 to move inward, and a bend is realized along solid spine 310. The skilled artisan will appreciate the selection of shapes for the teardrop voids and leaves is a matter of design choice, as well as the amount of material left to form spine 310.

Referring now to FIG. 3C, non-cylindrical channel 312 is formed down the length of the solid rod. Preferably the outer circumference of the rod, and therefore the bending section, has an approximately cylindrical shape, similar to that of a drawn hypotube. Prior art bending sections have material cut from a hypotube, and therefore have a cylindrical inner diameter as well, which results is a uniform sidewall thickness along the length of the prior art bending section. When the outer diameter of the bending section is small, the hypotube walls do not provide sufficient strength and rigidity when large degree articulations are required and where a surgical tool at the distal end requires this rigidity to perform desired procedures. Embodiments of the present invention provide a non cylindrical channel 312 through the bending section, which permits distributing material off-axis (i.e., non-uniform wall thickness) to provide structural rigidity to the bending section, provides a pathway 314 for the tendon off-axis and a pathway 316 proximate to the neutral axis for auxiliary cables (not shown), such as tool actuating or articulating cables.

One embodiment provides for placing the path of the ancillary components as close to the neutral axis of the bending section. Consequently, this reduces interactions between the articulation of the bending section and the ancillary components. Furthermore, this embodiment provides a more predictable bend and end effector behavior. For example, removing enough material from the cross section to accommodate the articulation pull wire and the ancillary components, hence, the bending stiffness can be manipulated in order to achieve a desired characteristic. FIG. 4 is a cross section the same as shown in FIG. 3C. The location of the cross section locations relative to the structure are illustrated in FIG. 5. Section c-c demonstrates the cross section of the region 310 that will experience the bend and will contribute to the deflection of the structure. Section d-d demonstrates the region of the structure that provides a chassis 316, similar to a ribcage, to supports and house the components that are required to articulate the structure and manipulate the end effector. In this Figure, the hatched diagonal sections (referred to as hatched regions) depict a solid cross section. For example, section c-c has a solid cross section on the top portion. In contrast, section d-d has a solid cross section around the entire channel.

A dashed line near the top of the figure depicts the neutral axis of the apparatus. Also, a dashed arrow depicts the direction of the preferential bending away from the neutral axis in a downward direction.

Both section views of section c-c and d-d depict a dual oval shaped key opening, or lumen, to accommodate ancillary components (not shown) and an articulation wire (not shown). In some embodiments, the ancillary components could include any or all of the following:

    • Pull wires for generating actuation at the end effector;
    • Fibers for Illumination, laser, vision;
    • Pneumatics and/or hydraulics;
    • Electrical wires;
    • Open lumen for a working channel (open architecture device, end effector is passed through working channel and is interchangeable); and
    • A telescoping tube that supports the end effector

In one embodiment, the top opening, or lumen, accommodates the ancillary components and the bottom opening accommodates the articulating wire that controls the bending of the apparatus. However, the skilled artisan appreciates different lumen configurations and placements based at least in part on the medical, surgical, or other application of the bending apparatus may be used without deviating from the present invention.

FIG. 5 is a view of a modeling representation of FIG. 3 according to a finite element analysis (FEA) which shows the interaction between the articulation wire and the flexure.

FIG. 6 is a view depicting an articulated position of the the embodiment depicted in FIGS. 3-4. This photograph was captured under a microscope and exemplifies the uniform bending of the structure. In one embodiment, the degree of articulation is based at least in part on the amount of reliefs/voids along the length of the structure. In this embodiment, one aspect of the relief also allows the structure a hard stop (a feedback of hitting a barrier) when the leaves come in contact. Consequently, embodiments of the present invention help to prevent over articulation and potential damage to the structure.

FIG. 7 is an isometric view of an assembly, wherein the flexure subject matter is incorporated into an end effector, according to one embodiment of the claimed subject matter in the present invention;

FIG. 8 depicts an apparatus for a bending flexure according to another embodiment of the present invention. The skilled artisan will appreciate the shape of non-cylindrical channel 312 can be varied to achieve desired bending and rigidity properties of the bending section. The cross section of the design depicted in FIG. 8 (shown in FIG. 9), permits the inner profile to break out. By incorporating this relief on the profile, the device lends itself to be manufactured using the wire EDM process without having to initially create a clearance hole

FIG. 9 is a cross section side view of FIG. 8. The two struts 702 on flexure #2 (FIG. 7) tend to bend about the neutral axis, but also slightly into the center of the cross section. This bending characteristic will result in the break out “gap” to start to close as the flexure is articulated, and will eventually close completely during large articulations.

Also, in this second embodiment, an opening allows for lateral insertion of ancillary components. The concept of having a break out on the inner profile also has a benefit during the assembly process. For example, there is an available gap through the piece, the articulation wire and ancillary components can be inserted laterally instead of axially. This assembly option also allows the flexure to replaced without having to sever the articulation wire.

FIG. 10 is a cross section side view that depicts bending behavior of the embodiment depicted in FIG. 8-9. During operation, the gap will tend to close as the flexure is articulated and will therefore minimize the possibility of having the ancillary components “escape” the inner profile lumens. If the presence of the gap is of concern, the component can still be manufactured with a gap and then “shape set” in order to close the gap before integration into an assembly.

Elements or components shown with any embodiment herein are exemplary for the specific embodiment and may be used on or in combination with other embodiments disclosed herein. While the invention is susceptible to various modifications and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. The invention is not limited, however, to the particular forms or methods disclosed, but to the contrary, covers all modifications, equivalents and alternatives thereof.

Claims (18)

What is claimed is:
1. A bending section to carry a tool for use in noninvasive medical procedures, the bending section comprising:
an actuation wire;
a rod having an approximately cylindrical outer circumference and a neutral axis;
a top portion along a length of the rod;
a bottom portion along the length of the rod, wherein at least a section of the bottom portion of the cylindrical rod is formed without material;
a non-cylindrical channel through the entire rod, the non-cylindrical channel comprising a top pathway along the top portion and proximate the neutral axis, a bottom pathway along the bottom portion and off-axis from the neutral axis, and a narrowed region therebetween connecting the top and bottom pathways, wherein the rod has a greater wall thickness at the narrowed region than at the top and bottom pathways, wherein the actuation wire is positioned within the bottom pathway to articulate the rod, wherein the actuation wire is in contact with a surface that forms the non-cylindrical channel, and wherein the top pathway is configured to accommodate at least one ancillary component to be in proximity to the neutral axis of the rod;
a plurality of first sections alternatingly adjacent to a plurality of second sections along the length of the rod, wherein the plurality of first sections is formed without material to form a plurality of partial voids next to the plurality of second sections, such that the partial voids permit bending of the rod along the top portion of rod.
2. The bending section of claim 1 wherein the non-cylindrical channel comprises a joined dual circle or joined dual oval shaped lumen that accommodates the at least one ancillary component and the off-axis actuation wire, respectively, and wherein each of the top and bottom pathways comprise a single circle or a single oval shape.
3. The bending section of claim 1 wherein the off-axis actuation wire comprises a pull wire.
4. The bending section of claim 1 wherein the at least one ancillary component is one or more of a pull wire, an actuation wire for an end effector, an optical fiber, an electrical wire, a pneumatic component, a hydraulic component, an open lumen, or a telescoping tube.
5. The bending section of claim 1 wherein the cross section of the rod material facilitates increased stiffness support relative to that possible with a constant wall thickness.
6. The bending section of claim 1 wherein the first sections that are formed without material are teardrop shaped.
7. The bending section of claim 1 wherein the second sections that are next to the first sections are leaf shaped as defined by adjacent tear-shaped cutouts from the first sections.
8. The bending section of claim 1 wherein the rod is formed from a superplastic material.
9. The bending section of claim 8 wherein the superplastic material comprises Nitinol.
10. An apparatus to facilitate bending of an instrument comprising:
an actuation wire;
a rod with a non-cylindrical lumen;
the rod with a first and a second cross sectional shape of the rod lumen,
the first configured to facilitate a bend and to accommodate the actuation wire, the actuation wire being positioned within the rod at the first cross sectional shape, the actuation wire being in contact with a surface that forms the non-cylindrical lumen and configured to articulate the rod;
and the second to facilitate at least one ancillary component to be in proximity to a neutral axis of the rod,
wherein the first and the second cross-sectional shapes are open to one another with a narrowed region therebetween, the rod having a greater wall thickness at the narrowed region than at the top and bottom pathways, and
wherein the non-cylindrical lumen is a joined dual oval or joined dual circle shaped lumen that accommodates the ancillary component and actuation wire, wherein each of the first and second cross-sectional shapes comprise a single oval or a single circle shape.
11. The apparatus of claim 10 wherein the cross section of the rod material facilitates increased stiffness support relative to that possible with a constant wall thickness.
12. The apparatus of claim 10 wherein the rod is formed from a superplastic material.
13. The apparatus of claim 12, wherein the superplastic material comprises Nitinol.
14. An apparatus to facilitate bending of an instrument comprising:
an actuation wire;
a rod with a non-cylindrical channel and a neutral axis, the rod with a first and a second cross-section of the rod, to facilitate a bend and to accommodate the actuation wire; and
the non-cylindrical channel comprising a first pathway to facilitate at least one ancillary component to be in proximity to the neutral axis of the rod and a second pathway open to the first pathway with a narrowed region therebetween, the rod having a greater wall thickness at the narrowed region than at the top and bottom pathways, wherein the apparatus is coupled to an end effector, and
wherein the actuation wire is positioned within the second pathway to articulate the rod, the actuation wire being in contact with a surface that forms the non-cylindrical channel, and
wherein the first and second pathways form a dual oval or a dual circle shaped lumen that accommodates the ancillary component and actuation wire, the first pathway comprising a single first oval or a single first circle to accommodate the ancillary component and the second pathway comprising a single second oval or a single second circle to accommodate the actuation wire.
15. The apparatus of claim 14 wherein the second cross section facilitates increased stiffness support relative to the first cross section.
16. The apparatus of claim 14 wherein the rod is formed from a superplastic material.
17. The apparatus of claim 16, wherein the superplastic material comprises Nitinol.
18. The apparatus of claim 14 wherein the at least one ancillary component is one or more of a pull wire, an actuation wire for the end effector, an optical fiber, an electrical wire, a pneumatic component, a hydraulic component, an open lumen, or a telescoping tube.
US14/201,610 2013-03-08 2014-03-07 Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment Active 2035-06-23 US10149720B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201361774901P true 2013-03-08 2013-03-08
US14/201,610 US10149720B2 (en) 2013-03-08 2014-03-07 Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US14/201,610 US10149720B2 (en) 2013-03-08 2014-03-07 Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
JP2015561752A JP6434430B2 (en) 2013-03-08 2014-03-10 Method, apparatus and system for facilitating instrument bending in a surgical environment
CN201480011423.1A CN105228502B (en) 2013-03-08 2014-03-10 For the method, apparatus and system for the bending for promoting apparatus in surgical environment
KR1020157027676A KR20160096537A (en) 2013-03-08 2014-03-10 Method, apparatus, and system for facilitating bending of an instrument in a surgical environment
PCT/US2014/022424 WO2014138729A1 (en) 2013-03-08 2014-03-10 Method, apparatus, and system for facilitating bending of an instrument in a surgical environment
EP14760802.0A EP2964072A4 (en) 2013-03-08 2014-03-10 Method, apparatus, and system for facilitating bending of an instrument in a surgical environment
US14/479,095 US10080576B2 (en) 2013-03-08 2014-09-05 Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
JP2018152647A JP2018196759A (en) 2013-03-08 2018-08-14 Method, apparatus, and system for facilitating bending of instrument in surgical environment
US16/115,389 US20180360435A1 (en) 2013-03-08 2018-08-28 Method, apparatus, and system for facilitating bending of an instrument in a surgical or medical robotic environment

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/479,095 Continuation-In-Part US10080576B2 (en) 2013-03-08 2014-09-05 Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US16/115,389 Continuation US20180360435A1 (en) 2013-03-08 2018-08-28 Method, apparatus, and system for facilitating bending of an instrument in a surgical or medical robotic environment

Publications (2)

Publication Number Publication Date
US20150101442A1 US20150101442A1 (en) 2015-04-16
US10149720B2 true US10149720B2 (en) 2018-12-11

Family

ID=51492041

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/201,610 Active 2035-06-23 US10149720B2 (en) 2013-03-08 2014-03-07 Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US16/115,389 Pending US20180360435A1 (en) 2013-03-08 2018-08-28 Method, apparatus, and system for facilitating bending of an instrument in a surgical or medical robotic environment

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/115,389 Pending US20180360435A1 (en) 2013-03-08 2018-08-28 Method, apparatus, and system for facilitating bending of an instrument in a surgical or medical robotic environment

Country Status (6)

Country Link
US (2) US10149720B2 (en)
EP (1) EP2964072A4 (en)
JP (2) JP6434430B2 (en)
KR (1) KR20160096537A (en)
CN (1) CN105228502B (en)
WO (1) WO2014138729A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10405940B2 (en) 2013-10-24 2019-09-10 Auris Health, Inc. Endoscopic device with double-helical lumen design
US10470830B2 (en) 2017-12-11 2019-11-12 Auris Health, Inc. Systems and methods for instrument based insertion architectures
US10482599B2 (en) 2015-09-18 2019-11-19 Auris Health, Inc. Navigation of tubular networks

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007005976A1 (en) 2005-07-01 2007-01-11 Hansen Medical, Inc. Robotic catheter system
US9254123B2 (en) 2009-04-29 2016-02-09 Hansen Medical, Inc. Flexible and steerable elongate instruments with shape control and support elements
US8672837B2 (en) 2010-06-24 2014-03-18 Hansen Medical, Inc. Methods and devices for controlling a shapeable medical device
US20120191107A1 (en) 2010-09-17 2012-07-26 Tanner Neal A Systems and methods for positioning an elongate member inside a body
US20120191083A1 (en) 2011-01-20 2012-07-26 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
US9504604B2 (en) 2011-12-16 2016-11-29 Auris Surgical Robotics, Inc. Lithotripsy eye treatment
US10383765B2 (en) 2012-04-24 2019-08-20 Auris Health, Inc. Apparatus and method for a global coordinate system for use in robotic surgery
US10231867B2 (en) 2013-01-18 2019-03-19 Auris Health, Inc. Method, apparatus and system for a water jet
US9668814B2 (en) 2013-03-07 2017-06-06 Hansen Medical, Inc. Infinitely rotatable tool with finite rotating drive shafts
US10080576B2 (en) 2013-03-08 2018-09-25 Auris Health, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US9867635B2 (en) 2013-03-08 2018-01-16 Auris Surgical Robotics, Inc. Method, apparatus and system for a water jet
US10149720B2 (en) 2013-03-08 2018-12-11 Auris Health, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US9057600B2 (en) 2013-03-13 2015-06-16 Hansen Medical, Inc. Reducing incremental measurement sensor error
US9498601B2 (en) 2013-03-14 2016-11-22 Hansen Medical, Inc. Catheter tension sensing
US10376672B2 (en) 2013-03-15 2019-08-13 Auris Health, Inc. Catheter insertion system and method of fabrication
US9283046B2 (en) 2013-03-15 2016-03-15 Hansen Medical, Inc. User interface for active drive apparatus with finite range of motion
US9014851B2 (en) 2013-03-15 2015-04-21 Hansen Medical, Inc. Systems and methods for tracking robotically controlled medical instruments
US10426661B2 (en) 2013-08-13 2019-10-01 Auris Health, Inc. Method and apparatus for laser assisted cataract surgery
US9561083B2 (en) 2014-07-01 2017-02-07 Auris Surgical Robotics, Inc. Articulating flexible endoscopic tool with roll capabilities
US9737373B2 (en) 2013-10-24 2017-08-22 Auris Surgical Robotics, Inc. Instrument device manipulator and surgical drape
US9788910B2 (en) 2014-07-01 2017-10-17 Auris Surgical Robotics, Inc. Instrument-mounted tension sensing mechanism for robotically-driven medical instruments
US10159533B2 (en) 2014-07-01 2018-12-25 Auris Health, Inc. Surgical system with configurable rail-mounted mechanical arms
US10314463B2 (en) 2014-10-24 2019-06-11 Auris Health, Inc. Automated endoscope calibration
US20170119481A1 (en) 2015-10-30 2017-05-04 Auris Surgical Robotics, Inc. Process for percutaneous operations
US10143526B2 (en) 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
WO2017151560A1 (en) * 2016-03-01 2017-09-08 Cook Medical Technologies Llc Flexible endoscopic support system
US10454347B2 (en) 2016-04-29 2019-10-22 Auris Health, Inc. Compact height torque sensing articulation axis assembly
US10463439B2 (en) 2016-08-26 2019-11-05 Auris Health, Inc. Steerable catheter with shaft load distributions
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
US10136959B2 (en) 2016-12-28 2018-11-27 Auris Health, Inc. Endolumenal object sizing
US10285574B2 (en) 2017-04-07 2019-05-14 Auris Health, Inc. Superelastic medical instrument
US10022192B1 (en) 2017-06-23 2018-07-17 Auris Health, Inc. Automatically-initialized robotic systems for navigation of luminal networks
WO2019005872A1 (en) 2017-06-28 2019-01-03 Auris Health, Inc. Instrument insertion compensation
US10426559B2 (en) 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
WO2019068174A1 (en) * 2017-10-04 2019-04-11 Ivy Devices Inc. Devices for stabilizing medical tubes
US10464209B2 (en) 2017-10-05 2019-11-05 Auris Health, Inc. Robotic system with indication of boundary for robotic arm
US10145747B1 (en) 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
US10016900B1 (en) 2017-10-10 2018-07-10 Auris Health, Inc. Surgical robotic arm admittance control

Citations (226)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3572325A (en) 1968-10-25 1971-03-23 Us Health Education & Welfare Flexible endoscope having fluid conduits and control
US4580551A (en) 1984-11-02 1986-04-08 Warner-Lambert Technologies, Inc. Flexible plastic tube for endoscopes and the like
US4597388A (en) 1983-12-15 1986-07-01 Trutek Research, Inc. Apparatus for removing cataracts
US4700693A (en) 1985-12-09 1987-10-20 Welch Allyn, Inc. Endoscope steering section
US4721097A (en) 1986-10-31 1988-01-26 Circon Corporation Endoscope sheaths and method and apparatus for installation and removal
US4745908A (en) 1987-05-08 1988-05-24 Circon Corporation Inspection instrument fexible shaft having deflection compensation means
US4748969A (en) 1987-05-07 1988-06-07 Circon Corporation Multi-lumen core deflecting endoscope
US4869238A (en) * 1988-04-22 1989-09-26 Opielab, Inc. Endoscope for use with a disposable sheath
US4905673A (en) 1986-07-03 1990-03-06 Dornier System Gmbh Arc discharge for shock wave generation
US4907168A (en) 1988-01-11 1990-03-06 Adolph Coors Company Torque monitoring apparatus
US4911148A (en) 1989-03-14 1990-03-27 Intramed Laboratories, Inc. Deflectable-end endoscope with detachable flexible shaft assembly
US5106387A (en) 1985-03-22 1992-04-21 Massachusetts Institute Of Technology Method for spectroscopic diagnosis of tissue
WO1992014411A1 (en) 1991-02-26 1992-09-03 Northgate Technologies Incorporated Improvements in electrohydraulic lithotripsy
US5168864A (en) 1991-09-26 1992-12-08 Clarus Medical Systems, Inc. Deflectable endoscope
EP0543539A1 (en) 1991-11-18 1993-05-26 Intelliwire, Inc. Steerable flexible elongate device and method for use therewith
US5287861A (en) 1992-10-30 1994-02-22 Wilk Peter J Coronary artery by-pass method and associated catheter
US5313934A (en) 1992-09-10 1994-05-24 Deumed Group Inc. Lens cleaning means for invasive viewing medical instruments
US5381782A (en) 1992-01-09 1995-01-17 Spectrum Medsystems Corporation Bi-directional and multi-directional miniscopes
US5425735A (en) 1989-02-22 1995-06-20 Psi Medical Products, Inc. Shielded tip catheter for lithotripsy
US5462561A (en) 1993-08-05 1995-10-31 Voda; Jan K. Suture device
US5472406A (en) 1991-10-03 1995-12-05 The General Hospital Corporation Apparatus and method for vasodilation
US5477856A (en) 1991-02-15 1995-12-26 Lundquist; Ingemar H. Torquable catheter and torquable tubular member for use therewith
US5507725A (en) 1992-12-23 1996-04-16 Angeion Corporation Steerable catheter
US5572999A (en) 1992-05-27 1996-11-12 International Business Machines Corporation Robotic system for positioning a surgical instrument relative to a patient's body
EP0776739A2 (en) 1992-01-21 1997-06-04 Sri International Surgical System
JPH09224951A (en) 1995-12-22 1997-09-02 Sugino Mach Ltd Operation device
US5695500A (en) 1991-06-13 1997-12-09 International Business Machines Corporation System for manipulating movement of a surgical instrument with computer controlled brake
US5704534A (en) * 1994-12-19 1998-01-06 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
US5873817A (en) * 1997-05-12 1999-02-23 Circon Corporation Endoscope with resilient deflectable section
US5876325A (en) 1993-11-02 1999-03-02 Olympus Optical Co., Ltd. Surgical manipulation system
US5910129A (en) * 1996-12-19 1999-06-08 Ep Technologies, Inc. Catheter distal assembly with pull wires
US5928163A (en) 1995-03-31 1999-07-27 Boston Scientific Corporation Biopsy sampler
US6012494A (en) * 1995-03-16 2000-01-11 Deutsche Forschungsanstalt Fur Luft- Und Raumfahrt E.V. Flexible structure
US6019772A (en) 1998-09-21 2000-02-01 Arteria Medical Sciences, Inc. Atherectomy device
WO2000067640A2 (en) 1999-05-10 2000-11-16 Brock Rogers Surgical Inc. Surgical instrument
US6157853A (en) 1997-11-12 2000-12-05 Stereotaxis, Inc. Method and apparatus using shaped field of repositionable magnet to guide implant
WO2001005849A1 (en) 1999-07-19 2001-01-25 Nova Chemicals (International) S.A. Mixed phosphinimine catalyst
US6198974B1 (en) 1998-08-14 2001-03-06 Cordis Webster, Inc. Bi-directional steerable catheter
US6326616B1 (en) 1997-10-15 2001-12-04 Analytica Of Branford, Inc. Curved introduction for mass spectrometry
US6398792B1 (en) 1999-06-21 2002-06-04 O'connor Lawrence Angioplasty catheter with transducer using balloon for focusing of ultrasonic energy and method for use
US6406486B1 (en) 1991-10-03 2002-06-18 The General Hospital Corporation Apparatus and method for vasodilation
US6436107B1 (en) 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
WO2002074178A2 (en) 2001-02-15 2002-09-26 Endovia Medical, Inc. Flexible surgical instrument
US6491626B1 (en) * 1999-04-16 2002-12-10 Nuvasive Articulation systems for positioning minimally invasive surgical tools
US6554793B1 (en) 1998-04-07 2003-04-29 Stm Medizintechnik Starnberg Gmbh Flexible trocar with an upturning tube system
US20030195664A1 (en) 1999-04-07 2003-10-16 Intuitive Surgical, Inc. Grip strength with tactile feedback for robotic surgery
US6638246B1 (en) 2000-11-28 2003-10-28 Scimed Life Systems, Inc. Medical device for delivery of a biologically active material to a lumen
WO2003096871A2 (en) 2002-05-16 2003-11-27 Patent Max Q (P.M.Q) Ltd. Multipurpose fluid jet surgical device
US6671581B2 (en) 1999-04-07 2003-12-30 Intuitive Surgical, Inc. Camera referenced control in a minimally invasive surgical apparatus
US20040015122A1 (en) 1998-06-29 2004-01-22 John Zhang Sheath for use with an ultrasound element
US20040030349A1 (en) 2002-08-08 2004-02-12 Mikhail Boukhny Liquefaction handpiece tip
US20040059257A1 (en) 2001-01-08 2004-03-25 Benny Gaber Deflectable guiding apparatus
US6716178B1 (en) 2001-05-31 2004-04-06 Advanced Cardiovascular Systems, Inc. Apparatus and method for performing thermal and laser doppler velocimetry measurements
WO2004039273A2 (en) 2002-10-31 2004-05-13 C.R. Bard, Inc. Electrophysiology catheter with biased tip
US6736784B1 (en) 1999-06-24 2004-05-18 Ferton Holding S.A. Medical instrument for treating biological tissue and method for transmitting pressure waves
US6763259B1 (en) 1999-07-02 2004-07-13 Carl-Zeiss-Stiftung (De) Surgical system supported by optical coherence tomography
US20040138525A1 (en) * 2003-01-15 2004-07-15 Usgi Medical Corp. Endoluminal tool deployment system
US20040135733A1 (en) 2003-01-13 2004-07-15 Uniwill Computer Corporation Integral structure including an antenna and a shielding cover and wireless module thereof
EP1442720A1 (en) 2003-01-31 2004-08-04 Tre Esse Progettazione Biomedica S.r.l Apparatus for the maneuvering of flexible catheters in the human cardiovascular system
EP0904796B1 (en) 1997-09-05 2004-11-17 Biosense Webster, Inc. Omni-directional steerable catheter
US6827712B2 (en) 1997-06-18 2004-12-07 United States Surgical Corporation Robotic arm DLUs for performing surgical tasks
WO2004105849A1 (en) 2003-05-29 2004-12-09 Japan Science And Technology Agency Bendable tube and method of manufacturing the same
US20050004515A1 (en) 2002-11-15 2005-01-06 Hart Charles C. Steerable kink resistant sheath
US20050070844A1 (en) 2003-09-30 2005-03-31 Mina Chow Deflectable catheter assembly and method of making same
US20050125005A1 (en) 2003-12-08 2005-06-09 Tetsuya Fujikura Balloon attaching jig of endoscope
US20050154262A1 (en) 2003-04-01 2005-07-14 Banik Michael S. Imaging system for video endoscope
US20050159646A1 (en) 1997-01-13 2005-07-21 Medispectra, Inc. Optical probe accessory device for use in in vivo diagnostic procedures
US6932824B1 (en) 2004-03-02 2005-08-23 St. Jude Medical Puerto Rico B.V. Three-needle closure device
WO2005081202A1 (en) 2004-02-17 2005-09-01 Acumen Medical, Inc. Variable steerable catheters and methods for using them
US20050197623A1 (en) 2004-02-17 2005-09-08 Leeflang Stephen A. Variable steerable catheters and methods for using them
US20050272975A1 (en) 2004-03-23 2005-12-08 Mcweeney John O In-vivo visualization system
US20060041188A1 (en) * 2003-03-25 2006-02-23 Dirusso Carlo A Flexible endoscope
US7008401B2 (en) 1990-02-02 2006-03-07 Boston Scientific Scimed, Inc. Assemblies for creating compound curves in distal catheter regions
US20060111692A1 (en) 2004-07-19 2006-05-25 Hlavka Edwin J Robotically controlled intravascular tissue injection system
US20060173243A1 (en) 2003-09-05 2006-08-03 Olympus Corporation Endoscope
US7087061B2 (en) 2002-03-12 2006-08-08 Lithotech Medical Ltd Method for intracorporeal lithotripsy fragmentation and apparatus for its implementation
CN1839764A (en) 2005-03-31 2006-10-04 伊西康内外科公司 Stapling means
US7130700B2 (en) * 2002-11-19 2006-10-31 Medtronic, Inc. Multilumen body for an implantable medical device
US20060276827A1 (en) 2005-06-02 2006-12-07 Vladimir Mitelberg Stretch resistant embolic coil delivery system with mechanical release mechanism
US20070032906A1 (en) 2002-08-13 2007-02-08 Sutherland Garnette R Microsurgical robot system
US20070060879A1 (en) 2001-02-15 2007-03-15 Hansen Medical, Inc. Coaxial catheter system
US20070135733A1 (en) 2005-12-09 2007-06-14 Soukup Thomas M Handle and articulator system and method
US20070135763A1 (en) 2005-12-12 2007-06-14 Musbach Frank A Micromachined medical devices
US20070135803A1 (en) 2005-09-14 2007-06-14 Amir Belson Methods and apparatus for performing transluminal and other procedures
US20070270679A1 (en) 2006-05-17 2007-11-22 Duy Nguyen Deflectable variable radius catheters
US20070270645A1 (en) 2006-05-17 2007-11-22 Fujinon Corporation Endoscope
US20070282167A1 (en) 2006-05-19 2007-12-06 Michael Barenboym Control mechanism for steerable medical device
US20070287886A1 (en) 2005-02-02 2007-12-13 Voyage Medical Inc. Tissue visualization and manipulation systems
US20070299427A1 (en) 2006-06-14 2007-12-27 Yeung Benny H B Surgical manipulator
US20080051629A1 (en) 2003-07-29 2008-02-28 Akira Sugiyama Internal Treatment Apparatus for a Patient and an Internal Treatment System for a Patient
US20080064921A1 (en) 2006-06-13 2008-03-13 Intuitive Surgical, Inc. Guide tube control of minimally invasive surgical instruments
US7344528B1 (en) 2003-02-24 2008-03-18 Maxwell Sensors Inc Optic fiber probe
US7351193B2 (en) 2003-08-06 2008-04-01 Xoft, Inc. Treatment of age-related macular degeneration
US20080097293A1 (en) 2006-09-11 2008-04-24 Boston Scientific Scimed, Inc. Steerable catheter with rapid exchange lumen
US20080108869A1 (en) 2006-10-20 2008-05-08 Femsuite Llc Optical surgical device and methods of use
US20080114341A1 (en) 2004-04-30 2008-05-15 Reinhardt Thyzel Method and device for removing and/or inhibiting of molecular structures and/or cells from or at human or animal tissue
US20080177285A1 (en) 1998-02-24 2008-07-24 Hansen Medical, Inc. Surgical instrument
US20080187101A1 (en) 2006-10-16 2008-08-07 Oraya Therapeutics, Inc. Orthovoltage radiotherapy
WO2008097540A2 (en) 2007-02-02 2008-08-14 Hansen Medical, Inc. Robotic surgical instrument and methods using bragg fiber sensors
US20080208001A1 (en) * 2007-02-26 2008-08-28 Ron Hadani Conforming endoscope
US20080212082A1 (en) 2004-07-16 2008-09-04 Luna Innovations Incorporated Fiber optic position and/or shape sensing based on rayleigh scatter
US20080228104A1 (en) 2004-03-11 2008-09-18 Uber Arthur E Energy Assisted Medical Devices, Systems and Methods
US20080249483A1 (en) 2007-01-09 2008-10-09 Slenker Dale E Surgical instrument, system, and method for biofilm removal
US20090099420A1 (en) 2007-10-11 2009-04-16 Neoguide Systems, Inc. System for managing bowden cables in articulating instruments
US20090137952A1 (en) 2007-08-14 2009-05-28 Ramamurthy Bhaskar S Robotic instrument systems and methods utilizing optical fiber sensor
US20090171271A1 (en) 2005-11-15 2009-07-02 The Johns Hopkins University Active Cannula for Bio-Sensing and Surgical Intervention
WO2009092059A2 (en) 2008-01-16 2009-07-23 Catheter Robotics, Inc. Remotely controlled catheter insertion system
WO2009097461A1 (en) 2008-01-29 2009-08-06 Neoguide Systems Inc. Apparatus and methods for automatically controlling an endoscope
US20090248043A1 (en) 1998-12-08 2009-10-01 Intuitive Surgical, Inc. Mechanical actuator interface system for robotic surgical tools
US20090247880A1 (en) 2008-03-28 2009-10-01 Mutsumi Naruse Ultrasonic diagnosis system and pump apparatus
US20090248041A1 (en) 2008-03-31 2009-10-01 Intuitive Surgical, Inc. Robotic surgical tools for laser marking and laser cutting
US20090254083A1 (en) 2008-03-10 2009-10-08 Hansen Medical, Inc. Robotic ablation catheter
US20090262109A1 (en) 2008-04-18 2009-10-22 Markowitz H Toby Illustrating a three-dimensional nature of a data set on a two-dimensional display
US20090264878A1 (en) 2008-04-21 2009-10-22 Electro Medical Associates, Llc Devices and methods for ablating and removing a tissue mass
US20090268015A1 (en) 2008-04-26 2009-10-29 Intuitive Surgical, Inc. Augmented stereoscopic visualization for a surgical robot
US20090312768A1 (en) 2008-06-13 2009-12-17 Aspen Medtech, Inc. Shockwave balloon catheter system
US20090326322A1 (en) 2008-06-27 2009-12-31 Intuitive Surgical, Inc. Medical robotic system with image referenced camera control using partitionable orientational and translational modes
US20100030023A1 (en) 2008-08-04 2010-02-04 Olympus Medical Systems Corp. Active drive type medical apparatus and drive control method
US20100036294A1 (en) 2008-05-07 2010-02-11 Robert Mantell Radially-Firing Electrohydraulic Lithotripsy Probe
JP2010046384A (en) 2008-08-25 2010-03-04 Terumo Corp Medical manipulator and experimental device
US20100073150A1 (en) 2008-09-24 2010-03-25 Olson Eric S Robotic catheter system including haptic feedback
US20100114115A1 (en) 2006-03-22 2010-05-06 Hansen Medical, Inc. Fiber optic instrument sensing system
US20100130823A1 (en) * 2008-11-25 2010-05-27 Fujifilm Corporation Endoscope
WO2010081187A1 (en) 2009-01-15 2010-07-22 Cathrx Ltd Steerable stylet
WO2010088187A1 (en) 2009-01-27 2010-08-05 Proteogenix, Inc. Biomarkers for detection of neonatal sepsis in biological fluid
US20100228191A1 (en) 2009-03-05 2010-09-09 Hansen Medical, Inc. Lockable support assembly and method
US20100331856A1 (en) 2008-12-12 2010-12-30 Hansen Medical Inc. Multiple flexible and steerable elongate instruments for minimally invasive operations
US20110009779A1 (en) 2008-02-19 2011-01-13 Eye Tech Care Method Of Treating An Ocular Pathology By Applying High Intensity Focused Ultrasound and Device Thereof
JP2011015992A (en) 2002-11-25 2011-01-27 Edwards Lifesciences Ag Method and device for remodeling extravascular tissue structure
US20110028887A1 (en) 2008-04-03 2011-02-03 Klaus Fischer Water jet surgical instrument
US7883475B2 (en) 2005-11-08 2011-02-08 Trustees Of Boston University Manipulators employing multiple deformable elongate members
US20110040404A1 (en) 2009-08-15 2011-02-17 Intuitive Surgical, Inc. Smooth control of an articulated instrument across areas with different work space conditions
US20110046411A1 (en) 2001-07-06 2011-02-24 Oehrlein Reinhold Process for the preparation of intermediates useful in the synthesis of statin derivatives
US20110071508A1 (en) 2006-06-13 2011-03-24 Intuitive Surgical Operations, Inc. Retrograde instrument
US7930065B2 (en) 2005-12-30 2011-04-19 Intuitive Surgical Operations, Inc. Robotic surgery system including position sensors using fiber bragg gratings
US20110106102A1 (en) 2009-10-30 2011-05-05 The Johns Hopkins University Surgical Instrument and Systems with Integrated Optical Sensor
US20110130718A1 (en) 2009-05-25 2011-06-02 Kidd Brian L Remote Manipulator Device
CN102088920A (en) 2008-04-10 2011-06-08 阿瑟罗迈德公司 Atherectomy devices and methods
US20110152880A1 (en) 2009-12-23 2011-06-23 Hansen Medical, Inc. Flexible and steerable elongate instruments with torsion control
US7967799B2 (en) 2005-03-16 2011-06-28 Alcon, Inc. Liquefaction handpiece tip
US20110237888A1 (en) 2010-03-23 2011-09-29 Motohiko Matsushita Guide tube for guiding endoscope or surgical tool in or into body cavity
US20110261183A1 (en) 2010-03-16 2011-10-27 Tyco Healthcare Group Lp Wireless laparoscopic camera
US8049873B2 (en) 2008-03-19 2011-11-01 Carl Zeiss Meditec Ag Surgical microscopy system having an optical coherence tomography facility
US8052636B2 (en) 2004-03-05 2011-11-08 Hansen Medical, Inc. Robotic catheter system and methods
US20110306836A1 (en) 2000-04-03 2011-12-15 Intuitive Surgical Operations, Inc. Tendon-driven endoscope and methods of use
WO2011161218A1 (en) 2010-06-23 2011-12-29 Renzo Marco Giovanni Brun Del Re Hand-held biopsy support tool
US20120071894A1 (en) 2010-09-17 2012-03-22 Tanner Neal A Robotic medical systems and methods
US20120123327A1 (en) 2010-11-03 2012-05-17 Biocardia, Inc. Steerable endoluminal devices and methods
US20120136419A1 (en) 2010-11-29 2012-05-31 Zarembo Paul E Implantable medical leads with spiral lumens
US20120143226A1 (en) 2009-03-14 2012-06-07 Vasostitch, Inc. Vessel access and closure device
US20120138586A1 (en) 2010-09-25 2012-06-07 Queen's University At Kingston Methods and systems for coherent imaging and feedback control for modification of materials
US8224484B2 (en) 2007-09-30 2012-07-17 Intuitive Surgical Operations, Inc. Methods of user interface with alternate tool mode for robotic surgical tools
US8256428B2 (en) 2003-03-12 2012-09-04 Biosense Webster, Inc. Method for treating tissue
US20120239012A1 (en) 2009-12-24 2012-09-20 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US20120259244A1 (en) * 2011-04-08 2012-10-11 Salient Surgical Technologies, Inc. Catheter Systems and Methods of Use
US20120283747A1 (en) 2009-11-16 2012-11-08 Koninklijke Philips Electronics N.V. Human-robot shared control for endoscopic assistant robot
US20130018400A1 (en) 2011-07-11 2013-01-17 Sven Milton Status control for electrically powered surgical tool systems
US20130030519A1 (en) 2011-07-27 2013-01-31 Edwards Lifesciences Corporation Delivery systems for prosthetic heart valve
US20130035537A1 (en) 2011-08-05 2013-02-07 Wallace Daniel T Robotic systems and methods for treating tissue
US20130072787A1 (en) 2011-09-16 2013-03-21 Translucent Medical, Inc. System and method for virtually tracking a surgical tool on a movable display
US8414564B2 (en) 2010-02-18 2013-04-09 Alcon Lensx, Inc. Optical coherence tomographic system for ophthalmic surgery
US8444637B2 (en) * 2006-12-29 2013-05-21 St. Jude Medical, Atrial Filbrillation Division, Inc. Steerable ablation device
US20130165854A1 (en) 2011-12-22 2013-06-27 Kulbir Sandhu Multi-user touch-based control of a remote catheter guidance system (rcgs)
US20130165908A1 (en) * 2011-12-02 2013-06-27 Barosense, Inc. Positioning device and articulation assembly for remote positioning of a tool
US8498691B2 (en) 2005-12-09 2013-07-30 Hansen Medical, Inc. Robotic catheter system and methods
US8515215B2 (en) 2007-04-20 2013-08-20 Koninklijke Philips Electronics N.V. Optical fiber shape sensing systems
US8518024B2 (en) 2006-04-24 2013-08-27 Transenterix, Inc. System and method for multi-instrument surgical access using a single access port
US20130317519A1 (en) 2012-05-25 2013-11-28 Hansen Medical, Inc. Low friction instrument driver interface for robotic systems
US20130317276A1 (en) 2012-05-23 2013-11-28 Mark A. D'Andrea Brachytherapy tandem and ovoid implantation devices and methods
US8602031B2 (en) 2009-01-12 2013-12-10 Hansen Medical, Inc. Modular interfaces and drive actuation through barrier
US20130345519A1 (en) 2012-06-22 2013-12-26 Gregory Piskun Floating, multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment
US20140012276A1 (en) 2011-12-16 2014-01-09 Auris Surgical Robotics, Inc. Lithotripsy eye treatment
US20140046313A1 (en) 2012-01-30 2014-02-13 Vytronus, Inc. Tissue necrosis methods and apparatus
US8720448B2 (en) 2008-11-07 2014-05-13 Hansen Medical, Inc. Sterile interface apparatus
US20140142591A1 (en) 2012-04-24 2014-05-22 Auris Surgical Robotics, Inc. Method, apparatus and a system for robotic assisted surgery
US8821477B2 (en) 2007-08-06 2014-09-02 Boston Scientific Scimed, Inc. Alternative micromachined structures
US8827947B2 (en) 2010-07-27 2014-09-09 Koninklijke Philips N.V. Breast pump
WO2014138729A1 (en) 2013-03-08 2014-09-12 Auris Surgical Robotics, Inc. Method, apparatus, and system for facilitating bending of an instrument in a surgical environment
US20140276391A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Catheter insertion system and method of fabrication
US20140276594A1 (en) 2013-03-14 2014-09-18 Hansen Medical, Inc. Catheter tension sensing
US20140309649A1 (en) 2013-01-18 2014-10-16 Auris Surgical Robotics, Inc. Method, apparatus and system for a water jet
US8894610B2 (en) 2012-11-28 2014-11-25 Hansen Medical, Inc. Catheter having unirail pullwire architecture
US20140357984A1 (en) 2013-05-30 2014-12-04 Translucent Medical, Inc. System and method for displaying anatomy and devices on a movable display
US20140364870A1 (en) 2013-06-11 2014-12-11 Auris Surgical Robotics, Inc. Method, apparatus, and a system for robotic assisted cataract surgery
US20140379000A1 (en) 2013-03-08 2014-12-25 Auris Surgical Robotics, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US20150025539A1 (en) 2013-03-08 2015-01-22 Auris Surgical Robotics, Inc. Method, apparatus and system for a water jet
US20150051592A1 (en) 2013-08-13 2015-02-19 Auris Surgical Robotics, Inc. Method and apparatus for laser assisted cataract surgery
US20150119638A1 (en) 2013-10-24 2015-04-30 Auris Surgical Robotics, Inc. Instrument device manipulator with tension sensing apparatus
US20150335480A1 (en) 2012-04-24 2015-11-26 Auris Surgical Robotics, Inc. Apparatus and method for a global coordinate system for use in robotic surgery
US20160001038A1 (en) 2014-07-01 2016-01-07 Auris Surgical Robotics, Inc. Tool and method for using surgical endoscope with spiral lumens
US20160007881A1 (en) 2011-07-29 2016-01-14 Hansen Medical, Inc. Apparatus and methods for fiber integration and registration
US9254123B2 (en) 2009-04-29 2016-02-09 Hansen Medical, Inc. Flexible and steerable elongate instruments with shape control and support elements
WO2016037133A1 (en) 2014-09-05 2016-03-10 Auris Surgical Robotics, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US9408669B2 (en) 2013-03-15 2016-08-09 Hansen Medical, Inc. Active drive mechanism with finite range of motion
US9427551B2 (en) 2013-03-16 2016-08-30 Clph, Llc Steerable catheters and methods for making them
US20160270865A1 (en) 2014-07-01 2016-09-22 Auris Surgical Robotics, Inc. Reusable catheter with disposable balloon attachment and tapered tip
US20160287346A1 (en) 2013-12-20 2016-10-06 Olympus Corporation Flexible-manipulator guide member and flexible manipulator
US20160287279A1 (en) 2015-04-01 2016-10-06 Auris Surgical Robotics, Inc. Microsurgical tool for robotic applications
US9462932B2 (en) 2008-01-24 2016-10-11 Boston Scientific Scimed, Inc. Structure for use as part of a medical device
US20160296294A1 (en) 2014-07-01 2016-10-13 Auris Surgical Robotics, Inc. Surgical system with configurable rail-mounted mechanical arms
US20160346049A1 (en) 2014-02-07 2016-12-01 Covidien Lp Input device assemblies for robotic surgical systems
US20160374541A1 (en) 2014-10-24 2016-12-29 Auris Surgical Robotics, Inc. Automated endoscope calibration
US20170007337A1 (en) 2014-07-01 2017-01-12 Auris Surgical Robotics, Inc. Driver-mounted torque sensing mechanism
US9561083B2 (en) 2014-07-01 2017-02-07 Auris Surgical Robotics, Inc. Articulating flexible endoscopic tool with roll capabilities
US20170065365A1 (en) 2013-10-24 2017-03-09 Auris Surgical Robotics, Inc. Instrument Device Manipulator with Surgical Tool De-Articulation
US9591990B2 (en) 2007-03-09 2017-03-14 St. Jude Medical, Atrial Fibrillation Division, Inc. Automated catalog and system for correction of inhomogeneous fields
US9622827B2 (en) 2015-05-15 2017-04-18 Auris Surgical Robotics, Inc. Surgical robotics system
US20170119481A1 (en) 2015-10-30 2017-05-04 Auris Surgical Robotics, Inc. Process for percutaneous operations
US20170119411A1 (en) 2015-10-30 2017-05-04 Auris Surgical Robotics, Inc. Basket apparatus
US20170119412A1 (en) 2015-10-30 2017-05-04 Auris Surgical Robotics, Inc. Object capture with a basket
US20170202627A1 (en) 2016-01-14 2017-07-20 Auris Surgical Robotics, Inc. Electromagnetic tracking surgical system and method of controlling the same
US20170209073A1 (en) 2016-01-26 2017-07-27 Auris Surgical Robotics, Inc. Surgical tools having electromagnetic tracking components
US9727963B2 (en) 2015-09-18 2017-08-08 Auris Surgical Robotics, Inc. Navigation of tubular networks
US9737371B2 (en) 2014-09-30 2017-08-22 Auris Surgical Robotics, Inc. Configurable robotic surgical system with virtual rail and flexible endoscope
US9744335B2 (en) 2014-07-01 2017-08-29 Auris Surgical Robotics, Inc. Apparatuses and methods for monitoring tendons of steerable catheters
US20170290631A1 (en) 2016-04-08 2017-10-12 Auris Surgical Robotics, Inc. Floating electromagnetic field generator system and method of controlling the same
US9788910B2 (en) 2014-07-01 2017-10-17 Auris Surgical Robotics, Inc. Instrument-mounted tension sensing mechanism for robotically-driven medical instruments
US20170367782A1 (en) 2015-09-09 2017-12-28 Auris Surgical Robotics, Inc. Instrument device manipulator with back-mounted tool attachment mechanism
US20180025666A1 (en) 2016-07-21 2018-01-25 Auris Surgical Robotics, Inc. System with emulator movement tracking for controlling medical devices
US20180055583A1 (en) 2016-08-31 2018-03-01 Auris Surgical Robotics, Inc. Length conservative surgical instrument
US20180055589A1 (en) 2016-08-26 2018-03-01 Hansen Medical, Inc. Steerable catheter with shaft load distributions
US20180177383A1 (en) 2016-12-28 2018-06-28 Auris Surgical Robotics, Inc. Detecting endolumenal buckling of flexible instruments
US20180177561A1 (en) 2016-12-28 2018-06-28 Auris Surgical Robotics, Inc. Endolumenal object sizing
US20180177556A1 (en) 2016-12-28 2018-06-28 Auris Surgical Robotics, Inc. Flexible instrument insertion using an adaptive insertion force threshold
US10016900B1 (en) 2017-10-10 2018-07-10 Auris Health, Inc. Surgical robotic arm admittance control
US10022192B1 (en) 2017-06-23 2018-07-17 Auris Health, Inc. Automatically-initialized robotic systems for navigation of luminal networks

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511247A (en) * 2003-05-19 2007-05-10 ユーエスジーアイ メディカル, インコーポレイテッド Lumen tool deployment system

Patent Citations (265)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3572325A (en) 1968-10-25 1971-03-23 Us Health Education & Welfare Flexible endoscope having fluid conduits and control
US4597388A (en) 1983-12-15 1986-07-01 Trutek Research, Inc. Apparatus for removing cataracts
US4580551A (en) 1984-11-02 1986-04-08 Warner-Lambert Technologies, Inc. Flexible plastic tube for endoscopes and the like
US5106387A (en) 1985-03-22 1992-04-21 Massachusetts Institute Of Technology Method for spectroscopic diagnosis of tissue
US4700693A (en) 1985-12-09 1987-10-20 Welch Allyn, Inc. Endoscope steering section
US4905673A (en) 1986-07-03 1990-03-06 Dornier System Gmbh Arc discharge for shock wave generation
US4721097A (en) 1986-10-31 1988-01-26 Circon Corporation Endoscope sheaths and method and apparatus for installation and removal
US4748969A (en) 1987-05-07 1988-06-07 Circon Corporation Multi-lumen core deflecting endoscope
US4745908A (en) 1987-05-08 1988-05-24 Circon Corporation Inspection instrument fexible shaft having deflection compensation means
US4907168A (en) 1988-01-11 1990-03-06 Adolph Coors Company Torque monitoring apparatus
US4869238A (en) * 1988-04-22 1989-09-26 Opielab, Inc. Endoscope for use with a disposable sheath
US5425735A (en) 1989-02-22 1995-06-20 Psi Medical Products, Inc. Shielded tip catheter for lithotripsy
US4911148A (en) 1989-03-14 1990-03-27 Intramed Laboratories, Inc. Deflectable-end endoscope with detachable flexible shaft assembly
US7008401B2 (en) 1990-02-02 2006-03-07 Boston Scientific Scimed, Inc. Assemblies for creating compound curves in distal catheter regions
US5477856A (en) 1991-02-15 1995-12-26 Lundquist; Ingemar H. Torquable catheter and torquable tubular member for use therewith
WO1992014411A1 (en) 1991-02-26 1992-09-03 Northgate Technologies Incorporated Improvements in electrohydraulic lithotripsy
US5695500A (en) 1991-06-13 1997-12-09 International Business Machines Corporation System for manipulating movement of a surgical instrument with computer controlled brake
US5168864A (en) 1991-09-26 1992-12-08 Clarus Medical Systems, Inc. Deflectable endoscope
US6033371A (en) 1991-10-03 2000-03-07 The General Hospital Corporation Apparatus and method for vasodilation
US5472406A (en) 1991-10-03 1995-12-05 The General Hospital Corporation Apparatus and method for vasodilation
US6406486B1 (en) 1991-10-03 2002-06-18 The General Hospital Corporation Apparatus and method for vasodilation
US5662590A (en) 1991-10-03 1997-09-02 The General Hospital Corporation Apparatus and method for vasodilation
EP0543539A1 (en) 1991-11-18 1993-05-26 Intelliwire, Inc. Steerable flexible elongate device and method for use therewith
US5381782A (en) 1992-01-09 1995-01-17 Spectrum Medsystems Corporation Bi-directional and multi-directional miniscopes
EP0776739A2 (en) 1992-01-21 1997-06-04 Sri International Surgical System
US5572999A (en) 1992-05-27 1996-11-12 International Business Machines Corporation Robotic system for positioning a surgical instrument relative to a patient's body
US5313934A (en) 1992-09-10 1994-05-24 Deumed Group Inc. Lens cleaning means for invasive viewing medical instruments
US5287861A (en) 1992-10-30 1994-02-22 Wilk Peter J Coronary artery by-pass method and associated catheter
US5507725A (en) 1992-12-23 1996-04-16 Angeion Corporation Steerable catheter
US5462561A (en) 1993-08-05 1995-10-31 Voda; Jan K. Suture device
US5876325A (en) 1993-11-02 1999-03-02 Olympus Optical Co., Ltd. Surgical manipulation system
US5704534A (en) * 1994-12-19 1998-01-06 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
US6012494A (en) * 1995-03-16 2000-01-11 Deutsche Forschungsanstalt Fur Luft- Und Raumfahrt E.V. Flexible structure
US5928163A (en) 1995-03-31 1999-07-27 Boston Scientific Corporation Biopsy sampler
JPH09224951A (en) 1995-12-22 1997-09-02 Sugino Mach Ltd Operation device
US6436107B1 (en) 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5910129A (en) * 1996-12-19 1999-06-08 Ep Technologies, Inc. Catheter distal assembly with pull wires
US20050159646A1 (en) 1997-01-13 2005-07-21 Medispectra, Inc. Optical probe accessory device for use in in vivo diagnostic procedures
US5873817A (en) * 1997-05-12 1999-02-23 Circon Corporation Endoscope with resilient deflectable section
US6827712B2 (en) 1997-06-18 2004-12-07 United States Surgical Corporation Robotic arm DLUs for performing surgical tasks
EP0904796B1 (en) 1997-09-05 2004-11-17 Biosense Webster, Inc. Omni-directional steerable catheter
US6326616B1 (en) 1997-10-15 2001-12-04 Analytica Of Branford, Inc. Curved introduction for mass spectrometry
US6157853A (en) 1997-11-12 2000-12-05 Stereotaxis, Inc. Method and apparatus using shaped field of repositionable magnet to guide implant
US20080177285A1 (en) 1998-02-24 2008-07-24 Hansen Medical, Inc. Surgical instrument
US6554793B1 (en) 1998-04-07 2003-04-29 Stm Medizintechnik Starnberg Gmbh Flexible trocar with an upturning tube system
US20040015122A1 (en) 1998-06-29 2004-01-22 John Zhang Sheath for use with an ultrasound element
US6198974B1 (en) 1998-08-14 2001-03-06 Cordis Webster, Inc. Bi-directional steerable catheter
US6019772A (en) 1998-09-21 2000-02-01 Arteria Medical Sciences, Inc. Atherectomy device
US20090248043A1 (en) 1998-12-08 2009-10-01 Intuitive Surgical, Inc. Mechanical actuator interface system for robotic surgical tools
US6671581B2 (en) 1999-04-07 2003-12-30 Intuitive Surgical, Inc. Camera referenced control in a minimally invasive surgical apparatus
US20030195664A1 (en) 1999-04-07 2003-10-16 Intuitive Surgical, Inc. Grip strength with tactile feedback for robotic surgery
US6491626B1 (en) * 1999-04-16 2002-12-10 Nuvasive Articulation systems for positioning minimally invasive surgical tools
WO2000067640A2 (en) 1999-05-10 2000-11-16 Brock Rogers Surgical Inc. Surgical instrument
US6398792B1 (en) 1999-06-21 2002-06-04 O'connor Lawrence Angioplasty catheter with transducer using balloon for focusing of ultrasonic energy and method for use
US6736784B1 (en) 1999-06-24 2004-05-18 Ferton Holding S.A. Medical instrument for treating biological tissue and method for transmitting pressure waves
US6763259B1 (en) 1999-07-02 2004-07-13 Carl-Zeiss-Stiftung (De) Surgical system supported by optical coherence tomography
WO2001005849A1 (en) 1999-07-19 2001-01-25 Nova Chemicals (International) S.A. Mixed phosphinimine catalyst
US20110306836A1 (en) 2000-04-03 2011-12-15 Intuitive Surgical Operations, Inc. Tendon-driven endoscope and methods of use
US6638246B1 (en) 2000-11-28 2003-10-28 Scimed Life Systems, Inc. Medical device for delivery of a biologically active material to a lumen
US20040059257A1 (en) 2001-01-08 2004-03-25 Benny Gaber Deflectable guiding apparatus
US20070060879A1 (en) 2001-02-15 2007-03-15 Hansen Medical, Inc. Coaxial catheter system
WO2002074178A2 (en) 2001-02-15 2002-09-26 Endovia Medical, Inc. Flexible surgical instrument
US6716178B1 (en) 2001-05-31 2004-04-06 Advanced Cardiovascular Systems, Inc. Apparatus and method for performing thermal and laser doppler velocimetry measurements
US20110046411A1 (en) 2001-07-06 2011-02-24 Oehrlein Reinhold Process for the preparation of intermediates useful in the synthesis of statin derivatives
US7087061B2 (en) 2002-03-12 2006-08-08 Lithotech Medical Ltd Method for intracorporeal lithotripsy fragmentation and apparatus for its implementation
WO2003096871A2 (en) 2002-05-16 2003-11-27 Patent Max Q (P.M.Q) Ltd. Multipurpose fluid jet surgical device
US20040030349A1 (en) 2002-08-08 2004-02-12 Mikhail Boukhny Liquefaction handpiece tip
US20070032906A1 (en) 2002-08-13 2007-02-08 Sutherland Garnette R Microsurgical robot system
WO2004039273A2 (en) 2002-10-31 2004-05-13 C.R. Bard, Inc. Electrophysiology catheter with biased tip
US20050004515A1 (en) 2002-11-15 2005-01-06 Hart Charles C. Steerable kink resistant sheath
US7130700B2 (en) * 2002-11-19 2006-10-31 Medtronic, Inc. Multilumen body for an implantable medical device
JP2011015992A (en) 2002-11-25 2011-01-27 Edwards Lifesciences Ag Method and device for remodeling extravascular tissue structure
US20040135733A1 (en) 2003-01-13 2004-07-15 Uniwill Computer Corporation Integral structure including an antenna and a shielding cover and wireless module thereof
US20040138525A1 (en) * 2003-01-15 2004-07-15 Usgi Medical Corp. Endoluminal tool deployment system
US20110046441A1 (en) 2003-01-15 2011-02-24 Usgi Medical, Inc. Endoluminal tool deployment system
US20040138529A1 (en) 2003-01-15 2004-07-15 Usgi Medical Corp. Endoluminal tool deployment system
EP1442720A1 (en) 2003-01-31 2004-08-04 Tre Esse Progettazione Biomedica S.r.l Apparatus for the maneuvering of flexible catheters in the human cardiovascular system
US7344528B1 (en) 2003-02-24 2008-03-18 Maxwell Sensors Inc Optic fiber probe
US8256428B2 (en) 2003-03-12 2012-09-04 Biosense Webster, Inc. Method for treating tissue
US20060041188A1 (en) * 2003-03-25 2006-02-23 Dirusso Carlo A Flexible endoscope
US20050154262A1 (en) 2003-04-01 2005-07-14 Banik Michael S. Imaging system for video endoscope
WO2004105849A1 (en) 2003-05-29 2004-12-09 Japan Science And Technology Agency Bendable tube and method of manufacturing the same
US20080051629A1 (en) 2003-07-29 2008-02-28 Akira Sugiyama Internal Treatment Apparatus for a Patient and an Internal Treatment System for a Patient
US7351193B2 (en) 2003-08-06 2008-04-01 Xoft, Inc. Treatment of age-related macular degeneration
US20060173243A1 (en) 2003-09-05 2006-08-03 Olympus Corporation Endoscope
US20050070844A1 (en) 2003-09-30 2005-03-31 Mina Chow Deflectable catheter assembly and method of making same
WO2005032637A2 (en) 2003-09-30 2005-04-14 Advanced Cardiovascular Systems, Inc. Deflectable catheter assembly and method of making same
US20050125005A1 (en) 2003-12-08 2005-06-09 Tetsuya Fujikura Balloon attaching jig of endoscope
WO2005081202A1 (en) 2004-02-17 2005-09-01 Acumen Medical, Inc. Variable steerable catheters and methods for using them
US20050197623A1 (en) 2004-02-17 2005-09-08 Leeflang Stephen A. Variable steerable catheters and methods for using them
US6932824B1 (en) 2004-03-02 2005-08-23 St. Jude Medical Puerto Rico B.V. Three-needle closure device
US8052636B2 (en) 2004-03-05 2011-11-08 Hansen Medical, Inc. Robotic catheter system and methods
US20080228104A1 (en) 2004-03-11 2008-09-18 Uber Arthur E Energy Assisted Medical Devices, Systems and Methods
US20050272975A1 (en) 2004-03-23 2005-12-08 Mcweeney John O In-vivo visualization system
US20080114341A1 (en) 2004-04-30 2008-05-15 Reinhardt Thyzel Method and device for removing and/or inhibiting of molecular structures and/or cells from or at human or animal tissue
US20080212082A1 (en) 2004-07-16 2008-09-04 Luna Innovations Incorporated Fiber optic position and/or shape sensing based on rayleigh scatter
US20060111692A1 (en) 2004-07-19 2006-05-25 Hlavka Edwin J Robotically controlled intravascular tissue injection system
US20070287886A1 (en) 2005-02-02 2007-12-13 Voyage Medical Inc. Tissue visualization and manipulation systems
US7967799B2 (en) 2005-03-16 2011-06-28 Alcon, Inc. Liquefaction handpiece tip
CN1839764A (en) 2005-03-31 2006-10-04 伊西康内外科公司 Stapling means
US20060276827A1 (en) 2005-06-02 2006-12-07 Vladimir Mitelberg Stretch resistant embolic coil delivery system with mechanical release mechanism
US20070135803A1 (en) 2005-09-14 2007-06-14 Amir Belson Methods and apparatus for performing transluminal and other procedures
US7883475B2 (en) 2005-11-08 2011-02-08 Trustees Of Boston University Manipulators employing multiple deformable elongate members
US20090171271A1 (en) 2005-11-15 2009-07-02 The Johns Hopkins University Active Cannula for Bio-Sensing and Surgical Intervention
US8498691B2 (en) 2005-12-09 2013-07-30 Hansen Medical, Inc. Robotic catheter system and methods
US20070135733A1 (en) 2005-12-09 2007-06-14 Soukup Thomas M Handle and articulator system and method
US20070135763A1 (en) 2005-12-12 2007-06-14 Musbach Frank A Micromachined medical devices
US8292827B2 (en) 2005-12-12 2012-10-23 Boston Scientific Scimed, Inc. Micromachined medical devices
US7930065B2 (en) 2005-12-30 2011-04-19 Intuitive Surgical Operations, Inc. Robotic surgery system including position sensors using fiber bragg gratings
US20100114115A1 (en) 2006-03-22 2010-05-06 Hansen Medical, Inc. Fiber optic instrument sensing system
US8518024B2 (en) 2006-04-24 2013-08-27 Transenterix, Inc. System and method for multi-instrument surgical access using a single access port
US20070270645A1 (en) 2006-05-17 2007-11-22 Fujinon Corporation Endoscope
US20070270679A1 (en) 2006-05-17 2007-11-22 Duy Nguyen Deflectable variable radius catheters
US20070282167A1 (en) 2006-05-19 2007-12-06 Michael Barenboym Control mechanism for steerable medical device
US20130144116A1 (en) 2006-06-13 2013-06-06 Intuitive Surgical Operations, Inc. Surgical instrument control and actuation
US20080065109A1 (en) 2006-06-13 2008-03-13 Intuitive Surgical, Inc. Preventing instrument/tissue collisions
US20080064921A1 (en) 2006-06-13 2008-03-13 Intuitive Surgical, Inc. Guide tube control of minimally invasive surgical instruments
US20080065103A1 (en) 2006-06-13 2008-03-13 Intuitive Surgical, Inc. Surgical instrument control and actuation
US20110071508A1 (en) 2006-06-13 2011-03-24 Intuitive Surgical Operations, Inc. Retrograde instrument
US7725214B2 (en) 2006-06-13 2010-05-25 Intuitive Surgical Operations, Inc. Minimally invasive surgical system
US20070299427A1 (en) 2006-06-14 2007-12-27 Yeung Benny H B Surgical manipulator
US20080097293A1 (en) 2006-09-11 2008-04-24 Boston Scientific Scimed, Inc. Steerable catheter with rapid exchange lumen
US20080187101A1 (en) 2006-10-16 2008-08-07 Oraya Therapeutics, Inc. Orthovoltage radiotherapy
US20080108869A1 (en) 2006-10-20 2008-05-08 Femsuite Llc Optical surgical device and methods of use
US8444637B2 (en) * 2006-12-29 2013-05-21 St. Jude Medical, Atrial Filbrillation Division, Inc. Steerable ablation device
US20080249483A1 (en) 2007-01-09 2008-10-09 Slenker Dale E Surgical instrument, system, and method for biofilm removal
US20080218770A1 (en) 2007-02-02 2008-09-11 Hansen Medical, Inc. Robotic surgical instrument and methods using bragg fiber sensors
WO2008097540A2 (en) 2007-02-02 2008-08-14 Hansen Medical, Inc. Robotic surgical instrument and methods using bragg fiber sensors
US20080208001A1 (en) * 2007-02-26 2008-08-28 Ron Hadani Conforming endoscope
US9591990B2 (en) 2007-03-09 2017-03-14 St. Jude Medical, Atrial Fibrillation Division, Inc. Automated catalog and system for correction of inhomogeneous fields
US8515215B2 (en) 2007-04-20 2013-08-20 Koninklijke Philips Electronics N.V. Optical fiber shape sensing systems
US8821477B2 (en) 2007-08-06 2014-09-02 Boston Scientific Scimed, Inc. Alternative micromachined structures
US9186046B2 (en) 2007-08-14 2015-11-17 Koninklijke Philips Electronics N.V. Robotic instrument systems and methods utilizing optical fiber sensor
US20130090552A1 (en) 2007-08-14 2013-04-11 Koninklijke Philips Electronics N.V. System and method for sensing shape of elongated instrument
US20090137952A1 (en) 2007-08-14 2009-05-28 Ramamurthy Bhaskar S Robotic instrument systems and methods utilizing optical fiber sensor
US8224484B2 (en) 2007-09-30 2012-07-17 Intuitive Surgical Operations, Inc. Methods of user interface with alternate tool mode for robotic surgical tools
US20090099420A1 (en) 2007-10-11 2009-04-16 Neoguide Systems, Inc. System for managing bowden cables in articulating instruments
WO2009092059A2 (en) 2008-01-16 2009-07-23 Catheter Robotics, Inc. Remotely controlled catheter insertion system
US9462932B2 (en) 2008-01-24 2016-10-11 Boston Scientific Scimed, Inc. Structure for use as part of a medical device
WO2009097461A1 (en) 2008-01-29 2009-08-06 Neoguide Systems Inc. Apparatus and methods for automatically controlling an endoscope
US20110009779A1 (en) 2008-02-19 2011-01-13 Eye Tech Care Method Of Treating An Ocular Pathology By Applying High Intensity Focused Ultrasound and Device Thereof
US20090254083A1 (en) 2008-03-10 2009-10-08 Hansen Medical, Inc. Robotic ablation catheter
US8049873B2 (en) 2008-03-19 2011-11-01 Carl Zeiss Meditec Ag Surgical microscopy system having an optical coherence tomography facility
US20090247880A1 (en) 2008-03-28 2009-10-01 Mutsumi Naruse Ultrasonic diagnosis system and pump apparatus
US20090248041A1 (en) 2008-03-31 2009-10-01 Intuitive Surgical, Inc. Robotic surgical tools for laser marking and laser cutting
US20110028887A1 (en) 2008-04-03 2011-02-03 Klaus Fischer Water jet surgical instrument
CN102088920A (en) 2008-04-10 2011-06-08 阿瑟罗迈德公司 Atherectomy devices and methods
US20090262109A1 (en) 2008-04-18 2009-10-22 Markowitz H Toby Illustrating a three-dimensional nature of a data set on a two-dimensional display
US20090264878A1 (en) 2008-04-21 2009-10-22 Electro Medical Associates, Llc Devices and methods for ablating and removing a tissue mass
US20090268015A1 (en) 2008-04-26 2009-10-29 Intuitive Surgical, Inc. Augmented stereoscopic visualization for a surgical robot
US20100036294A1 (en) 2008-05-07 2010-02-11 Robert Mantell Radially-Firing Electrohydraulic Lithotripsy Probe
US20090312768A1 (en) 2008-06-13 2009-12-17 Aspen Medtech, Inc. Shockwave balloon catheter system
US20090326322A1 (en) 2008-06-27 2009-12-31 Intuitive Surgical, Inc. Medical robotic system with image referenced camera control using partitionable orientational and translational modes
US20100030023A1 (en) 2008-08-04 2010-02-04 Olympus Medical Systems Corp. Active drive type medical apparatus and drive control method
JP2010046384A (en) 2008-08-25 2010-03-04 Terumo Corp Medical manipulator and experimental device
US20100073150A1 (en) 2008-09-24 2010-03-25 Olson Eric S Robotic catheter system including haptic feedback
US8720448B2 (en) 2008-11-07 2014-05-13 Hansen Medical, Inc. Sterile interface apparatus
US20100130823A1 (en) * 2008-11-25 2010-05-27 Fujifilm Corporation Endoscope
US20100331856A1 (en) 2008-12-12 2010-12-30 Hansen Medical Inc. Multiple flexible and steerable elongate instruments for minimally invasive operations
US8602031B2 (en) 2009-01-12 2013-12-10 Hansen Medical, Inc. Modular interfaces and drive actuation through barrier
US20140069437A1 (en) 2009-01-12 2014-03-13 Hansen Medical, Inc. Modular interfaces and drive actuation through barrier
US9204933B2 (en) 2009-01-12 2015-12-08 Hansen Medical, Inc. Modular interfaces and drive actuation through barrier
WO2010081187A1 (en) 2009-01-15 2010-07-22 Cathrx Ltd Steerable stylet
WO2010088187A1 (en) 2009-01-27 2010-08-05 Proteogenix, Inc. Biomarkers for detection of neonatal sepsis in biological fluid
US20100228191A1 (en) 2009-03-05 2010-09-09 Hansen Medical, Inc. Lockable support assembly and method
US20120143226A1 (en) 2009-03-14 2012-06-07 Vasostitch, Inc. Vessel access and closure device
US20160151122A1 (en) 2009-04-29 2016-06-02 Hansen Medical, Inc. Flexible and steerable elongate instruments with shape control and support elements
US9254123B2 (en) 2009-04-29 2016-02-09 Hansen Medical, Inc. Flexible and steerable elongate instruments with shape control and support elements
US20110130718A1 (en) 2009-05-25 2011-06-02 Kidd Brian L Remote Manipulator Device
US20110040404A1 (en) 2009-08-15 2011-02-17 Intuitive Surgical, Inc. Smooth control of an articulated instrument across areas with different work space conditions
US20110106102A1 (en) 2009-10-30 2011-05-05 The Johns Hopkins University Surgical Instrument and Systems with Integrated Optical Sensor
US20120283747A1 (en) 2009-11-16 2012-11-08 Koninklijke Philips Electronics N.V. Human-robot shared control for endoscopic assistant robot
US20110152880A1 (en) 2009-12-23 2011-06-23 Hansen Medical, Inc. Flexible and steerable elongate instruments with torsion control
US20120239012A1 (en) 2009-12-24 2012-09-20 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8414564B2 (en) 2010-02-18 2013-04-09 Alcon Lensx, Inc. Optical coherence tomographic system for ophthalmic surgery
US20110261183A1 (en) 2010-03-16 2011-10-27 Tyco Healthcare Group Lp Wireless laparoscopic camera
US20110237888A1 (en) 2010-03-23 2011-09-29 Motohiko Matsushita Guide tube for guiding endoscope or surgical tool in or into body cavity
WO2011161218A1 (en) 2010-06-23 2011-12-29 Renzo Marco Giovanni Brun Del Re Hand-held biopsy support tool
US8827947B2 (en) 2010-07-27 2014-09-09 Koninklijke Philips N.V. Breast pump
US8961533B2 (en) 2010-09-17 2015-02-24 Hansen Medical, Inc. Anti-buckling mechanisms and methods
US20120071894A1 (en) 2010-09-17 2012-03-22 Tanner Neal A Robotic medical systems and methods
US20120191107A1 (en) 2010-09-17 2012-07-26 Tanner Neal A Systems and methods for positioning an elongate member inside a body
US8827948B2 (en) 2010-09-17 2014-09-09 Hansen Medical, Inc. Steerable catheters
US20120138586A1 (en) 2010-09-25 2012-06-07 Queen's University At Kingston Methods and systems for coherent imaging and feedback control for modification of materials
US20120123327A1 (en) 2010-11-03 2012-05-17 Biocardia, Inc. Steerable endoluminal devices and methods
US20120136419A1 (en) 2010-11-29 2012-05-31 Zarembo Paul E Implantable medical leads with spiral lumens
US20120259244A1 (en) * 2011-04-08 2012-10-11 Salient Surgical Technologies, Inc. Catheter Systems and Methods of Use
US20130018400A1 (en) 2011-07-11 2013-01-17 Sven Milton Status control for electrically powered surgical tool systems
US20130030519A1 (en) 2011-07-27 2013-01-31 Edwards Lifesciences Corporation Delivery systems for prosthetic heart valve
US20160374590A1 (en) 2011-07-29 2016-12-29 Hansen Medical, Inc. Apparatus and methods for fiber integration and registration
US20160007881A1 (en) 2011-07-29 2016-01-14 Hansen Medical, Inc. Apparatus and methods for fiber integration and registration
US20130035537A1 (en) 2011-08-05 2013-02-07 Wallace Daniel T Robotic systems and methods for treating tissue
US20130072787A1 (en) 2011-09-16 2013-03-21 Translucent Medical, Inc. System and method for virtually tracking a surgical tool on a movable display
US20130165908A1 (en) * 2011-12-02 2013-06-27 Barosense, Inc. Positioning device and articulation assembly for remote positioning of a tool
US9504604B2 (en) 2011-12-16 2016-11-29 Auris Surgical Robotics, Inc. Lithotripsy eye treatment
US20140012276A1 (en) 2011-12-16 2014-01-09 Auris Surgical Robotics, Inc. Lithotripsy eye treatment
US20130165854A1 (en) 2011-12-22 2013-06-27 Kulbir Sandhu Multi-user touch-based control of a remote catheter guidance system (rcgs)
US20140046313A1 (en) 2012-01-30 2014-02-13 Vytronus, Inc. Tissue necrosis methods and apparatus
US20140142591A1 (en) 2012-04-24 2014-05-22 Auris Surgical Robotics, Inc. Method, apparatus and a system for robotic assisted surgery
US20150335480A1 (en) 2012-04-24 2015-11-26 Auris Surgical Robotics, Inc. Apparatus and method for a global coordinate system for use in robotic surgery
US20130317276A1 (en) 2012-05-23 2013-11-28 Mark A. D'Andrea Brachytherapy tandem and ovoid implantation devices and methods
US20160338783A1 (en) 2012-05-25 2016-11-24 Hansen Medical, Inc. Low friction instrument driver interface for robotic systems
US20130317519A1 (en) 2012-05-25 2013-11-28 Hansen Medical, Inc. Low friction instrument driver interface for robotic systems
US20130345519A1 (en) 2012-06-22 2013-12-26 Gregory Piskun Floating, multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment
US8894610B2 (en) 2012-11-28 2014-11-25 Hansen Medical, Inc. Catheter having unirail pullwire architecture
US20140309649A1 (en) 2013-01-18 2014-10-16 Auris Surgical Robotics, Inc. Method, apparatus and system for a water jet
US20140379000A1 (en) 2013-03-08 2014-12-25 Auris Surgical Robotics, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
WO2014138729A1 (en) 2013-03-08 2014-09-12 Auris Surgical Robotics, Inc. Method, apparatus, and system for facilitating bending of an instrument in a surgical environment
US20150025539A1 (en) 2013-03-08 2015-01-22 Auris Surgical Robotics, Inc. Method, apparatus and system for a water jet
US20150101442A1 (en) 2013-03-08 2015-04-16 Auris Surgical Robotics, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US20140276594A1 (en) 2013-03-14 2014-09-18 Hansen Medical, Inc. Catheter tension sensing
US20140276391A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Catheter insertion system and method of fabrication
US9408669B2 (en) 2013-03-15 2016-08-09 Hansen Medical, Inc. Active drive mechanism with finite range of motion
US20160338785A1 (en) 2013-03-15 2016-11-24 Hansen Medical, Inc. Active drive mechanism with finite range of motion
US9427551B2 (en) 2013-03-16 2016-08-30 Clph, Llc Steerable catheters and methods for making them
US20140357984A1 (en) 2013-05-30 2014-12-04 Translucent Medical, Inc. System and method for displaying anatomy and devices on a movable display
US20140364870A1 (en) 2013-06-11 2014-12-11 Auris Surgical Robotics, Inc. Method, apparatus, and a system for robotic assisted cataract surgery
US20150051592A1 (en) 2013-08-13 2015-02-19 Auris Surgical Robotics, Inc. Method and apparatus for laser assisted cataract surgery
US20150119638A1 (en) 2013-10-24 2015-04-30 Auris Surgical Robotics, Inc. Instrument device manipulator with tension sensing apparatus
US20150164594A1 (en) 2013-10-24 2015-06-18 Auris Surgical Robotics, Inc. Endoscopic device with helical lumen design
US20170065364A1 (en) 2013-10-24 2017-03-09 Auris Surgical Robotics, Inc. Instrument device manipulator with roll mechanism
US9737373B2 (en) 2013-10-24 2017-08-22 Auris Surgical Robotics, Inc. Instrument device manipulator and surgical drape
US9713509B2 (en) 2013-10-24 2017-07-25 Auris Surgical Robotics, Inc. Instrument device manipulator with back-mounted tool attachment mechanism
US20150164596A1 (en) 2013-10-24 2015-06-18 Auris Surgical Robotics, Inc. Endoscopic device with double-helical lumen design
US20150164595A1 (en) 2013-10-24 2015-06-18 Auris Surgical Robotics, Inc. Methods and apparatus for constructing endoscopic device with helical lumen design
US20150119637A1 (en) 2013-10-24 2015-04-30 Auris Surgical Robotics, Inc. System for robotic-assisted endolumenal surgery and related methods
US20170065365A1 (en) 2013-10-24 2017-03-09 Auris Surgical Robotics, Inc. Instrument Device Manipulator with Surgical Tool De-Articulation
US20160287346A1 (en) 2013-12-20 2016-10-06 Olympus Corporation Flexible-manipulator guide member and flexible manipulator
US20160346049A1 (en) 2014-02-07 2016-12-01 Covidien Lp Input device assemblies for robotic surgical systems
US20160001038A1 (en) 2014-07-01 2016-01-07 Auris Surgical Robotics, Inc. Tool and method for using surgical endoscope with spiral lumens
US20160296294A1 (en) 2014-07-01 2016-10-13 Auris Surgical Robotics, Inc. Surgical system with configurable rail-mounted mechanical arms
US20170333679A1 (en) 2014-07-01 2017-11-23 Auris Surgical Robotics, Inc. Apparatuses and methods for monitoring tendons of steerable catheters
US9744335B2 (en) 2014-07-01 2017-08-29 Auris Surgical Robotics, Inc. Apparatuses and methods for monitoring tendons of steerable catheters
US20160270865A1 (en) 2014-07-01 2016-09-22 Auris Surgical Robotics, Inc. Reusable catheter with disposable balloon attachment and tapered tip
US9561083B2 (en) 2014-07-01 2017-02-07 Auris Surgical Robotics, Inc. Articulating flexible endoscopic tool with roll capabilities
US20170100199A1 (en) 2014-07-01 2017-04-13 Auris Surgical Robotics, Inc. Articulating flexible endoscopic tool with roll capabilities
US9788910B2 (en) 2014-07-01 2017-10-17 Auris Surgical Robotics, Inc. Instrument-mounted tension sensing mechanism for robotically-driven medical instruments
US20170007337A1 (en) 2014-07-01 2017-01-12 Auris Surgical Robotics, Inc. Driver-mounted torque sensing mechanism
WO2016037133A1 (en) 2014-09-05 2016-03-10 Auris Surgical Robotics, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US9737371B2 (en) 2014-09-30 2017-08-22 Auris Surgical Robotics, Inc. Configurable robotic surgical system with virtual rail and flexible endoscope
US20170340396A1 (en) 2014-09-30 2017-11-30 Auris Surgical Robotics, Inc. Configurable robotic surgical system with virtual rail and flexible endoscope
US20160374541A1 (en) 2014-10-24 2016-12-29 Auris Surgical Robotics, Inc. Automated endoscope calibration
US20160287279A1 (en) 2015-04-01 2016-10-06 Auris Surgical Robotics, Inc. Microsurgical tool for robotic applications
US20170165011A1 (en) 2015-04-01 2017-06-15 Auris Surgical Robotics, Inc. Microsurgical tool for robotic applications
US20170172673A1 (en) 2015-05-15 2017-06-22 Auris Surgical Robotics, Inc. Surgical robotics system
US9636184B2 (en) 2015-05-15 2017-05-02 Auris Surgical Robotics, Inc. Swivel bed for a surgical robotics system
US9622827B2 (en) 2015-05-15 2017-04-18 Auris Surgical Robotics, Inc. Surgical robotics system
US20170367782A1 (en) 2015-09-09 2017-12-28 Auris Surgical Robotics, Inc. Instrument device manipulator with back-mounted tool attachment mechanism
US9727963B2 (en) 2015-09-18 2017-08-08 Auris Surgical Robotics, Inc. Navigation of tubular networks
US20170365055A1 (en) 2015-09-18 2017-12-21 Auris Surgical Robotics, Inc. Navigation of tubular networks
US20170119413A1 (en) 2015-10-30 2017-05-04 Auris Surgical Robotics, Inc. Object removal through a percutaneous suction tube
US20170119412A1 (en) 2015-10-30 2017-05-04 Auris Surgical Robotics, Inc. Object capture with a basket
US20170119411A1 (en) 2015-10-30 2017-05-04 Auris Surgical Robotics, Inc. Basket apparatus
US20170119481A1 (en) 2015-10-30 2017-05-04 Auris Surgical Robotics, Inc. Process for percutaneous operations
US20170202627A1 (en) 2016-01-14 2017-07-20 Auris Surgical Robotics, Inc. Electromagnetic tracking surgical system and method of controlling the same
US20170209073A1 (en) 2016-01-26 2017-07-27 Auris Surgical Robotics, Inc. Surgical tools having electromagnetic tracking components
US20170290631A1 (en) 2016-04-08 2017-10-12 Auris Surgical Robotics, Inc. Floating electromagnetic field generator system and method of controlling the same
US20180025666A1 (en) 2016-07-21 2018-01-25 Auris Surgical Robotics, Inc. System with emulator movement tracking for controlling medical devices
US20180055589A1 (en) 2016-08-26 2018-03-01 Hansen Medical, Inc. Steerable catheter with shaft load distributions
US20180055583A1 (en) 2016-08-31 2018-03-01 Auris Surgical Robotics, Inc. Length conservative surgical instrument
US20180177556A1 (en) 2016-12-28 2018-06-28 Auris Surgical Robotics, Inc. Flexible instrument insertion using an adaptive insertion force threshold
US20180177383A1 (en) 2016-12-28 2018-06-28 Auris Surgical Robotics, Inc. Detecting endolumenal buckling of flexible instruments
US20180177561A1 (en) 2016-12-28 2018-06-28 Auris Surgical Robotics, Inc. Endolumenal object sizing
US10022192B1 (en) 2017-06-23 2018-07-17 Auris Health, Inc. Automatically-initialized robotic systems for navigation of luminal networks
US10016900B1 (en) 2017-10-10 2018-07-10 Auris Health, Inc. Surgical robotic arm admittance control

Non-Patent Citations (29)

* Cited by examiner, † Cited by third party
Title
Balicki, et al. Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery. Medical Image Computing and Computer-Assisted Intervention. MICCAI 2009. Springer Berlin Heidelberg, 2009. 108-115.
Effect of microsecond pulse length and tip shape on explosive bubble formation of 2.78 iLtm Er,Cr;YSGG and 2.94 iLtm Er:YAG laser. Paper 8221-12, Proceedings of SPIE, vol. 8221 (Monday Jan. 23, 2013).
Ehlers, et al. Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging. Investigative Ophthalmology and Visual Science 52.6. 2011; 3153-3159.
European search report and search opinion dated Jul. 2, 2015 for EP Application No. 12856685.8.
European search report and search opinion dated Sep. 16, 2016 for EP Application No. 14760802.0.
Hubschman. Robotic Eye Surgery: Past, Present, and Future. Journal of Computer Science and Systems Biology. 2012.
International search report and written opinion dated Dec. 4, 2015 for PCT Application No. PCT/US15/48688.
International search report and written opinion dated Jan. 27, 2015 for PCT Application No. US2014/062284.
International search report and written opinion dated Mar. 29, 2013 for PCT/US2012/069540.
International search report and written opinion dated Nov. 7, 2014 for PCT Application No. US2014/041990.
International search report dated Jun. 16, 2014 for PCT/US2014/022424.
Office action dated Jul. 10, 2017 for U.S. Appl. No. 14/479,095.
Office action dated Jun. 11, 2015 for U.S. Appl. No. 14/158,548.
Office action dated Jun. 19, 2014 for U.S. Appl. No. 13/868,769.
Office action dated May 21, 2015 for U.S. Appl. No. 13/711,440.
Office action dated Oct. 7, 2014 for U.S. Appl. No. 13/711,440.
Stoyanov. Surgical vision. Annals of Biomedical Engineering 40.2. 2012; 332-345. Published Oct. 20, 2011.
U.S. Appl. No. 14/196,953, filed Mar. 4, 2014, Alvarez et al.
U.S. Appl. No. 14/301,871, filed Jun. 11, 2014, Alvarez et al.
U.S. Appl. No. 14/458,042, filed Aug. 12, 2014, Kintz.
U.S. Appl. No. 14/479,095, filed Sep. 5, 2014, Romo et al.
U.S. Appl. No. 14/523,760, filed Oct. 24, 2014, Alvarez et al.
U.S. Appl. No. 14/542,373, filed Nov. 14, 2014, Romo et al.
U.S. Appl. No. 14/542,387, filed Nov. 14, 2014, Bogusky et al.
U.S. Appl. No. 14/542,403, filed Nov. 14, 2014, Yu et al.
U.S. Appl. No. 14/542,429, filed Nov. 14, 2014, Romo et al.
U.S. Appl. No. 14/578,082, filed Dec. 19, 2014, Alvarez et al.
U.S. Appl. No. 14/583,021, filed Dec. 24, 2014, Romo et al.
U.S. Appl. No. 62/037,520, filed Aug. 14, 2014, Yu.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10405940B2 (en) 2013-10-24 2019-09-10 Auris Health, Inc. Endoscopic device with double-helical lumen design
US10482599B2 (en) 2015-09-18 2019-11-19 Auris Health, Inc. Navigation of tubular networks
US10470830B2 (en) 2017-12-11 2019-11-12 Auris Health, Inc. Systems and methods for instrument based insertion architectures

Also Published As

Publication number Publication date
JP6434430B2 (en) 2018-12-05
US20180360435A1 (en) 2018-12-20
WO2014138729A1 (en) 2014-09-12
JP2016513500A (en) 2016-05-16
EP2964072A1 (en) 2016-01-13
CN105228502B (en) 2017-08-08
EP2964072A4 (en) 2016-10-19
JP2018196759A (en) 2018-12-13
CN105228502A (en) 2016-01-06
US20150101442A1 (en) 2015-04-16
KR20160096537A (en) 2016-08-16

Similar Documents

Publication Publication Date Title
Webster et al. Toward active cannulas: Miniature snake-like surgical robots
EP1056399B1 (en) Instrument used for endoscopic interventions
KR102028644B1 (en) Fusing and cutting surgical instrument and related methods
CN100389730C (en) Flexible wrist for surgical tool
JP5530991B2 (en) Manual device for remote control of gripping tools
JP4528438B2 (en) Medical recovery device
US7853331B2 (en) Medical device with procedure improvement features
DE60121316T2 (en) Device for positioning, investigation and / or treatment, especially in the field of endoscopy and / or minimally invasive surgery
US5417709A (en) Endoscopic instrument with end effectors forming suction and/or irrigation lumens
US6264664B1 (en) Surgical basket devices
US20030065358A1 (en) Multifunctional tool and method for minimally invasive surgery
US7294139B1 (en) Controlled - motion endoscopic grasping instrument
JP5197980B2 (en) Multi-joint bending mechanism and medical device with multi-joint bending mechanism
US20190274521A1 (en) Steerable, follow the leader device
US5980556A (en) Scissors-like tool for a surgical instrument and process for its production
JP2006521865A (en) Embolization instrument
Ikuta et al. Development of remote microsurgery robot and new surgical procedure for deep and narrow space
US8500733B2 (en) Asymmetric dual directional steerable catheter sheath
JP5305370B2 (en) Articulated and replaceable endoscope for surgical robots
DE112009001442T5 (en) Medical treatment instrument for a tubular organ
CN102469923B (en) Compliant surgical device
EP1604607A1 (en) Flexible section of an insertion tube of an endoscope and method of manufacturing thereof
US20090012533A1 (en) Robotic instrument control system
ES2249288T3 (en) Clamp instrument for polipectomies.
JP2012000487A (en) Cardiac tissue ablation instrument with flexible wrist

Legal Events

Date Code Title Description
AS Assignment

Owner name: AURIS SURGICAL ROBOTICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROMO, ENRIQUE;REEL/FRAME:035640/0906

Effective date: 20140923

AS Assignment

Owner name: AURIS HEALTH, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:AURIS SURGICAL ROBOTICS, INC.;REEL/FRAME:046598/0123

Effective date: 20180316

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE