CN102811809A - 纳米活性材料的具有抑制的迁移性的催化剂的形成方法 - Google Patents
纳米活性材料的具有抑制的迁移性的催化剂的形成方法 Download PDFInfo
- Publication number
- CN102811809A CN102811809A CN2010800638277A CN201080063827A CN102811809A CN 102811809 A CN102811809 A CN 102811809A CN 2010800638277 A CN2010800638277 A CN 2010800638277A CN 201080063827 A CN201080063827 A CN 201080063827A CN 102811809 A CN102811809 A CN 102811809A
- Authority
- CN
- China
- Prior art keywords
- carrier
- particle
- granulars
- powder
- carrier granular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 239000003054 catalyst Substances 0.000 title claims abstract description 32
- 239000011149 active material Substances 0.000 title description 2
- 239000002245 particle Substances 0.000 claims abstract description 196
- 230000003197 catalytic effect Effects 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims description 51
- 239000006185 dispersion Substances 0.000 claims description 46
- 239000000843 powder Substances 0.000 claims description 46
- 239000007788 liquid Substances 0.000 claims description 39
- 239000002243 precursor Substances 0.000 claims description 27
- 239000004094 surface-active agent Substances 0.000 claims description 17
- 230000015572 biosynthetic process Effects 0.000 claims description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 10
- 238000002309 gasification Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 6
- 238000009833 condensation Methods 0.000 claims description 6
- 230000005494 condensation Effects 0.000 claims description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 239000011363 dried mixture Substances 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 238000004108 freeze drying Methods 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 150000001732 carboxylic acid derivatives Chemical group 0.000 claims description 3
- 238000006555 catalytic reaction Methods 0.000 claims description 3
- -1 glycol ethers Chemical class 0.000 claims description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 3
- 230000005764 inhibitory process Effects 0.000 claims description 3
- 229920000768 polyamine Polymers 0.000 claims description 3
- 229920000570 polyether Polymers 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims 3
- 230000002401 inhibitory effect Effects 0.000 abstract 4
- 239000012530 fluid Substances 0.000 description 41
- 230000035939 shock Effects 0.000 description 40
- 238000010791 quenching Methods 0.000 description 33
- 238000002347 injection Methods 0.000 description 21
- 239000007924 injection Substances 0.000 description 21
- 230000001105 regulatory effect Effects 0.000 description 21
- 238000004519 manufacturing process Methods 0.000 description 20
- 239000007789 gas Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 17
- 230000007246 mechanism Effects 0.000 description 11
- 239000013598 vector Substances 0.000 description 10
- 230000014509 gene expression Effects 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 241001044369 Amphion Species 0.000 description 1
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000003913 materials processing Methods 0.000 description 1
- 239000000320 mechanical mixture Substances 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8926—Copper and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
- B01J35/45—Nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/009—Preparation by separation, e.g. by filtration, decantation, screening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0211—Impregnation using a colloidal suspension
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/32—Freeze drying, i.e. lyophilisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/349—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B23/00—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
- B28B23/0081—Embedding aggregates to obtain particular properties
- B28B23/0087—Lightweight aggregates for making lightweight articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S502/00—Catalyst, solid sorbent, or support therefor: product or process of making
- Y10S502/52714—Specified support particles of peculiar structure or physical form, e.g. whiskers, fiber pieces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S502/00—Catalyst, solid sorbent, or support therefor: product or process of making
- Y10S502/52724—Peculiar structure or physical form, e.g. foam, sponge, foil, sack, bag, fiber in a matrix, monolith, microstructure, microcracking, or microaggregates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/773—Nanoparticle, i.e. structure having three dimensions of 100 nm or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/81—Of specified metal or metal alloy composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/811—Of specified metal oxide composition, e.g. conducting or semiconducting compositions such as ITO, ZnOx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/963—Miscellaneous
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Toxicology (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Ceramic Engineering (AREA)
- Composite Materials (AREA)
- Metallurgy (AREA)
- Catalysts (AREA)
- Dispersion Chemistry (AREA)
Abstract
形成催化剂的方法,包括:提供多个载体颗粒和多个移动-抑制颗粒,其中多个载体颗粒中的每个载体颗粒附着在其自己的催化颗粒上;以及将多个移动-抑制颗粒附着到多个载体颗粒上,其中通过至少一个移动-抑制颗粒将每个载体颗粒与多个载体颗粒中每个其它颗粒分隔开,其中设置移动-抑制颗粒以阻止催化颗粒从一个载体颗粒转移到另一个载体颗粒上。
Description
相关申请的交互参考
本申请要求序列号为61/284,329、提交日为2009年12月15日、名称为“材料加工”的美国临时专利申请的优先权,由此将其全文引入作为参考,如同在文中阐明那样。
发明领域
本发明涉及催化剂领域。具体而言,本发明涉及催化剂的形成方法,其中活性催化颗粒的迁移性被抑制。
发明背景
催化剂用于促进和加速发应。在某些应用中,希望采用小尺寸的催化剂材料,如纳米级的催化颗粒。此外,也常常希望采用担载结构体来提供催化颗粒可在其上留驻的子结构。
附图1A中,催化剂100包括多个载体颗粒110a-d,每个具有至少一个相应的催化颗粒120a-d。尽管附图1A-C仅显示四个载体颗粒110,可以认为催化剂100可含有任何数量的载体颗粒110。催化颗粒120a-d可化学吸附或附着在载体颗粒110a-d的表面。然而,催化颗粒120a-d不会一成不变地固定在其附着的载体颗粒110a-d上。相反,其可从一个载体颗粒110移动到另一个上。例如,附图1A-B显示了催化颗粒120b和120c从其各自的载体颗粒110b和110c分别移动到相邻的载体颗粒110a和110d,这样催化颗粒120a和120b负载在载体颗粒110a上、催化颗粒120c和120d负载在载体颗粒110d上。在高温应用中,这些催化颗粒的移动更为明显。如附图1C所示,当催化颗粒120b和120c移动到临近的载体颗粒110a和110d时,它们开始和那些临近载体颗粒上的其他催化颗粒120a和120d结合,得到更大的催化颗粒120ab和120cd。
可以理解催化剂的效果和活性直接与载体颗粒表面的催化颗粒的尺寸成比例。当催化颗粒结合成更大的团块时,催化颗粒颗粒度增大,催化颗粒的表面积减小,催化剂的效力受到负面影响。
发明内容
本发明抑制了催化颗粒的移动、减少它们的结合,因此可以减少它们各自的大小并提高它们的总表面积。为了阻止催化颗粒从一个载体颗粒移动到另一个上,本发明通过在载体颗粒之间提供一个或多个移动-抑制颗粒来达到这样的结果。
本发明的一个方面在于,提供了催化剂的形成方法。该方法包括提供多个载体颗粒和多个移动-抑制颗粒。多个载体颗粒中的每个载体颗粒附着在其自己的催化颗粒上。然后将多个移动-抑制颗粒附着在载体颗粒上。通过至少一个移动-抑制颗粒,将每个载体颗粒与多个载体颗粒的每个其它的载体颗粒分离开。设置移动-抑制颗粒以阻止催化颗粒从一个载体颗粒移动到另一个载体颗粒上。
本发明的另一方面是在于,提供了催化剂的形成方法。该方法包括提供多个载体颗粒和多个移动-抑制颗粒。多个载体颗粒中的每个载体颗粒附着在其自己的催化颗粒上。多个载体颗粒分散在分散液体中,从而形成载体颗粒的分散体。多个移动-抑制颗粒分散在分散液体中,从而形成移动-抑制颗粒的分散体。将载体颗粒的分散体与移动-抑制颗粒的分散体相混合,从而形成湿混合物。将湿混合物冷冻干燥后形成干燥混合物。然后煅烧干燥混合物,形成多个载体颗粒和多个移动-抑制颗粒的簇。经由至少一个移动-抑制颗粒将每个载体颗粒与多个载体颗粒中的每个其它载体颗粒分离开。设置移动-抑制颗粒以阻止催化颗粒从一个载体颗粒移动到另一个载体颗粒上。
本发明的另一个方面在于,提供了一种催化剂。催化剂包括多个载体颗粒。多个载体颗粒中的每个载体颗粒附着在其自己的催化颗粒上。催化剂还包括多个附着在多个载体颗粒上的移动-抑制颗粒。经由至少一个移动-抑制颗粒,每个载体颗粒与多个载体颗粒中的每个其它载体颗粒相分离。设置移动-抑制颗粒以阻止催化颗粒从一个载体颗粒移动到另一个载体颗粒上。
附图说明
附图1A-C表示容易移动的催化剂和催化颗粒的结合的一个实施方式。
附图2表示根据本发明的原理的形成催化剂的方法的一个实施方式的流程图。
附图3表示根据本发明的原理的颗粒生产系统的一个实施方式。
附图4表示根据本发明的原理的颗粒生产系统的另一个实施方式。
附图5A表示根据本发明的原理的连接有相应催化颗粒的多个载体颗粒的一个实施方式。
附图5B表示根据本发明的原理的多个移动-抑制颗粒的一个实施方式。
附图6A表示根据本发明的原理的带有相关催化颗粒的载体颗粒分散体的一个实施方式。
附图6B表示根据本发明的原理的移动-抑制颗粒的分散体的一个实施方式。
附图7表示根据本发明的原理的附图6A的载体/催化颗粒的分散体和附图6B的移动-抑制颗粒的分散体的混合物的一个实施方式。
附图8表示根据本发明的原理的附着在载体/催化颗粒之间的移动-抑制颗粒的簇的一个实施方式。
实施方式
下述内容可使所属领域技术人员生产和使用本发明以及提供专利申请的内容和必要条件。所述实施方式的多种变形方式对于所属领域技术人员是显然的,并且所述的一般原则可应用到其他实施方式。这样,本发明不仅限于所示的实施方式,而是在于同在此所述的原理和特征相一致的最大范围。
本公开内容涉及颗粒和粉末。这两种术语是等同的,除了强调单一的“粉末”是指颗粒的集合。本发明可应用于多种粉末和颗粒。落入本发明范围的粉末可包括、但不限于下述的任一种:(a)纳米结构粉末(纳米粉末),其具有小于250纳米的平均颗粒尺寸和1至1百万的长径比;(b)亚微米颗粒,其具有小于1微米的平均颗粒尺寸和1至1百万的长径比;(c)超细粉末,其具有小于100微米的平均颗粒尺寸和1至1百万的长径比;以及(d)细粉末,其具有小于500微米的平均颗粒尺寸和1至1百万的长径比。
附图2是流程图,其表示根据本发明的原理的形成催化剂的方法200的一个实施方式。
在步骤210,提供多个载体颗粒和移动-抑制颗粒。优选地,每个载体颗粒附着在其自己各自的催化颗粒上(也就是,载体颗粒与催化颗粒以1:1比例)。然而,可以认为一些载体颗粒上没有任何催化颗粒。本文所用术语“载体/催化颗粒”是指载体颗粒和与之结合的催化颗粒。设置移动-抑制颗粒以阻止催化颗粒从一个载体颗粒移动到另一个载体颗粒上。在优选的实施方式中,移动-抑制颗粒包括一种或多种催化颗粒不会经过或停留其上的材料,从而降低了催化颗粒的移动性。
在优选的实施方式中,载体颗粒具有非催化组成,其与催化颗粒相反。在这种情况下,理想的载体颗粒具有不同于催化颗粒的化学组成。类似地,优选移动-抑制颗粒具有非催化化学组成,其不同于载体颗粒和微化颗粒。然而,可以认为颗粒化学组成可在实施方式和实施方式之间进行变化。在一个示范的实施方式中,载体颗粒包括或由氧化铝和包含或含有铂族金属的催化颗粒组成,其中铂族金属可为铂、钌、铑、钯、锇、或铱。在一些实施方式中,移动-抑制颗粒包含或由金属氧化物(优选过渡金属氧化物)组成,其包括但不限于氧化铈、氧化镧和氧化钛。在其他的实施方式中,移动-抑制颗粒包括或由玻璃或陶瓷组成,包括但不限于氮化硼、碳化钛和二硼化钛。优选地,移动-抑制颗粒不包含任何贵金属。
在优选的实施方式中,载体颗粒、催化颗粒、和移动-抑制颗粒是纳米颗粒。优选地,载体颗粒和移动-抑制颗粒具有500纳米的最大直径和1~5纳米的最小直径,而催化颗粒具有0.5~5纳米范围的直径。在一些实施方式中,载体颗粒和移动-抑制颗粒的直径在10~15纳米范围内,催化颗粒直径在2~5纳米范围内。然而,可以认为能使用其它的微直径。
可以认为能通过多种方法实现颗粒的纳米尺寸结构。在优选的实施方式中,在等离子枪的最热区使载体颗粒和催化颗粒气化。然后将气化的颗粒进行快速骤冷以使其得以冷凝。这种气化和冷凝的结果即是形成具有附着在其上的纳米尺寸催化颗粒的纳米尺寸的载体颗粒。
申请系列号为No.12/151,935、提交日为2008年5月8日、名称为“高湍流骤冷室”的美国专利公开了使用等离子反应器的颗粒生产系统来生产纳米级颗粒的实例,在此全文引入其内容。一种此类的颗粒生产系统300示于附图3中。系统300包括一个前体供应装置310和工作气体供应装置320,两个装置都流体连通到等离子生产室330,该室具有在其中形成的能量传递区335。等离子生产室330与压缩骤冷室345的注射口340流体连通,从而允许能量传递区335与骤冷室345流体连通。一个或多个口390也允许与装有控制环境系统370(由虚线标注)的骤冷室345流体连通。骤冷室345也与注射口365流体连通。
通常,等离子生产室330作为反应器运行,产生包含在气流中的颗粒的产物。颗粒生产包括结合、反应和调节的步骤。工作气体由气体源供应到等离子反应器。在等离子反应器内,能量由工作气体传送,从而产生等离子。可使用多种不同的方法传送能量,包括但不限于DC耦合器、电容耦合器、电感耦合器和谐振耦合器。一个或更多材料分配装置优选以粉末形式将至少一种材料引入等离子反应器。由材料分配装置引入等离子反应器的等离子和一种或多种材料结合生成具有高反应活性和能量的混合物,在此可将粉末气化。被气化的粉末的混合物在工作气体的流动方向上流过等离子反应器。在移动过程中,混合物冷却并形成颗粒。仍富含能量的输出混合物,其包含热气体和富含能量的颗粒,从等离子反应器注射出来。
在典型的实施方式中,等离子生产室330将由前体供应装置310供应的前体材料(优选以粉末的形式)和由位于能量传送区335内的工作气体供应装置320提供的工作气体相结合,在此工作气体被能量化以形成等离子。等离子被施加到位于能量传送区335内的前体材料以形成富含能量的、有反应活性的混合物。混合物包含以多种相态的至少一个存在的一种或多种材料,相态可包括蒸气态、气体和等离子。
通过注射口340将反应活性混合物从能量传送区335传送至压缩骤冷室345。随着热混合物从能量传送区335移动,其在骤冷室345内快速膨胀并冷却。当混合物流入骤冷室345时,口390沿着骤冷室345的内表面供应调节流体。至少在某种程度上,调节流体与混合物结合,并从骤冷室345流过排出口365。
在进入骤冷室345之后立刻形成颗粒。此外,沿着骤冷室345的内表面供应的调节流体调节反应性混合物以保持对颗粒的夹带,并且阻止骤冷室345内表面上材料的沉积。
仍然见附图3,骤冷室345的结构可由相对薄壁的组件构成,该组件能够大量散热。例如,薄壁组件可引导室内的热量和将热辐射到周围。骤冷室345包含基本为圆柱形的表面350,类锥状(截头圆锥体)表面355,连接注射口340和圆柱表面350的环形表面360。圆柱表面350,其具有相对于注射口340的尺寸更大的直径,为流入骤冷室345后产生的反应性混合物的膨胀提供场地。类锥表面355从远离注射口340的圆柱表面350向排出口365延伸。类锥表面355足够光滑变化从而不会过度地压缩流经骤冷室345至排出口365的流体。
从经过入口流入骤冷室345的混合物排出大量的热,大多是以辐射的形式。优选骤冷室345设计为可有效散发该热。例如,优选将骤冷室345的表面暴露于冷却装置(未显示)。
仍然见附图3,优选控制环境系统370包含室385,可将调节流体从储槽375通过导管380引入其中。优选调节流体含有氩气。然而,其它惰性气体但相对重的气体也同样优选。并且,将调节流体引入骤冷室345的优选机制是在骤冷室345和出口365之间形成压力差。这样的压力差可将调节流体通过口390引入骤冷室345。其它提供调节流体的次优选方法包括但不限于在室385内形成正压。
骤冷室345的截头圆锥形状可在骤冷区内提供适量的湍流,以促进调节流体和反应性混合物的混合,从而增加骤冷率超越现有系统。然而,在一些情形下,可预期骤冷率的甚至更大的增加。所述骤冷率的增加可通过在骤冷室区域内制造调节流体和反应性混合物相混合的较高的湍流来实现。
附图4表示具有高湍流骤冷室445的颗粒生产系统400。系统400包括前体供应装置410,其直接连接到等离子产生和反应室430的工作气体供应装置420,与如上所述的附图3的等离子生产室330近似。能量传送系统425也连接到等离子产生和反应室430上。等离子产生和反应室430包括注射口440,其流体连通压缩骤冷室445。一个或多个口490也可允许在骤冷室445和控制环境系统470之间流体连通,与附图3的控制环境系统近似。骤冷室445也流体连通出口465。
通常,室430作为反应器运转,与附图3的室330近似,产生含有包含夹带在气流内的颗粒的产物。生产过程包括下述的结合、反应和调节步骤。系统在室430的能量传递区将供应自前体供应装置410的前体材料和供应自工作气体供应装置420的工作气体结合。系统通过产自能量供应系统490的能量将室430内的工作气体能量化,从而获得等离子。将等离子应用到室430内的前体材料以形成富含能量的、具有反应活性的混合物。混合物包含一种或多种以多种相态的至少一个存在的材料,相态可含有蒸气相、气相、和等离子。反应性混合物从等离子产生和反应室430通过注射口440流入骤冷室445。
优选骤冷室445包含基本为圆柱形的表面450,截头圆锥体表面455、和连接圆柱表面450和注射口440的环形表面460。截头圆锥形表面460变窄以配合出口465。等离子生产和反应室430包括末端的扩大部分,在此设置有注射口440。该扩大部分缩短了注射口440和出口465间的距离,减少了反应性混合物和调节流体混合区域的体积,该区域被称为骤冷区。在优选的实施方式中,注射口440与出口465同轴设置。注射口的中心与出口465的距离为第一距离d1。注射口的周边与截头锥形体表面455的部分的距离为第二距离d2。注射口440和截头锥体形表面455之间形成前述骤冷区。在注射口440周边和截头锥形体表面455之间的空间形成间隙,其作为将调节流体供应到骤冷区的通道。截头锥形体表面455作为漏斗状表面,通过该间隙引导流体并进入骤冷区。
当反应性混合物流入骤冷室445,口490将调节流体供应进入骤冷室445。然后调节流体沿截头锥形体表面455流动,通过注射口440和截头锥形体455之间的间隙、并进入骤冷区。在一些实施方式中,设置控制环境系统470以控制供应到骤冷区的调节流体的体积流速或质量流速。
随着反应性混合物移出注射口440,其发生膨胀并与调节流体相混合。优选地,在供应调节流体的角度产生了高度湍流并促进反应性混合物的混合。湍流可依赖于很多参数。在优选的实施方式中,可调节一个或多个这样的参数以控制湍流水平。这些因素包括调节流体的流速、截头锥形体表面455的温度、截头锥形体表面455的角度(可影响调节流体进入骤冷区的角度)、以及骤冷区的大小。例如,截头锥形体表面455和注射口440的相对位置可调,这可用于调节骤冷区的体积。可以多种不同的方式、使用多种不同的机理进行这些调节,包括但不限于自动方法或人工方法。
在进入骤冷室445后立刻形成颗粒。颗粒聚集的程度取决于冷却速率。冷却速率依赖于骤冷区内的流动湍流。优选地,对系统进行调节以形成高湍流,从而形成非常分散的颗粒。例如,在优选的实施方式中,骤冷区内的湍流具有至少1000的雷诺数。
仍然见附图4,优选骤冷室445的结构由相对薄壁的组件构成,该组件能够大量散热。例如,薄壁组件可引导室内的热量和将热辐射到周围。
从经由入口流入骤冷室445的反应性混合物释放大量的热,大多是以辐射的形式。骤冷室445设计为可有效散发该热。优选将骤冷室245的表面暴露于冷却装置(未显示)。在优选的实施方式中,设置冷却系统以控制截头锥形体表面455的温度。
注射进入骤冷区,冷却,形成颗粒之后,混合物从骤冷室445经由出口465流动。由发生器495产生的抽吸使混合物和调节流体从骤冷区进入导管492。混合物经由导管492从出口465流向抽吸发生器495。优选地,在到达抽吸发生器495之前,颗粒由收集或采样系统(未显示)从混合物中分离。
仍然见附图4,控制环境系统470包括室485,通过一个或多个口490与骤冷区流体连通,调节流体从例如附图3中的储槽375的储槽引出后通过导管480进入该室。如上所述,优选调节流体包含氩气。然而,其它惰性但相对重的气体也同样优选。并且,将调节流体引入骤冷室445的优选机制是在骤冷室445和出口465之间形成压力差。这样的压力差可将调节流体通过口490引入骤冷室445。其它提供调节流体的方法包括但不限于在室485内形成正压。
截头锥形体表面的角度影响调节流体供应到骤冷区的角度,这可影响骤冷区内的湍流水平。优选调节流体沿多个动量矢量流入骤冷区。动量矢量之间的角度越大,产生的湍流水平越高。在优选的实施方式中,高湍流骤冷室包含截头锥形体表面,其设置使进入骤冷区的至少两个调节流体动量矢量形成漏斗状,在两个动量矢量之间的角度至少为90度。可以认为其它的角度极限可如上使用。例如,也可注意至少一个调节流体动量矢量和反应性混合物的动量矢量之间形成的角度。在高湍流骤冷室的一个实施方式中,设置反应性混合物入口以将反应性混合物沿着第一动量矢量供入骤冷区,设置截头锥形体表面以将调节流体沿着第二动量矢量供入骤冷区,第二动量矢量具有相对于第一动量矢量大20度的倾斜角度。
骤冷区的大小也会影响骤冷区的湍流水平。骤冷区越小,产生的湍流水平越高。可以通过缩小注射口440中心和出口465的距离来减小骤冷区的大小。
根据本发明的实施方式产生的高湍流降低了形成的颗粒之间可聚集的时间,从而产生更加均一尺寸的颗粒,在一些情形下,产生小尺寸的颗粒。这些因素共同导致产生增加了分散性和增加了表面积与体积比率的颗粒。
回顾附图2的方法200,可使用颗粒生产系统200或300(或相应的变形)以提供一种或多种纳米级形态的载体颗粒、催化颗粒和移动-抑制颗粒。例如,这些颗粒可作为微米级的前体材料引入颗粒生产系统,在此这些颗粒被气化然后冷凝形成纳米尺寸级颗粒。在优选的实施方式中,形成载体/催化颗粒并独立于移动-抑制颗粒提供,这样可避免移动-抑制颗粒和载体/催化颗粒之间提前的相互作用(如:附着)。这样的分离可通过多种方式来实现,包括但不限于、对于两类颗粒使用不同的颗粒生产系统,或者对于两种颗粒在不同时间使用同一颗粒生产系统。
附图5A表示由方法200的步骤210提供的多个载体颗粒510的一个实施方式。每个载体颗粒510(优选在其外表面)具有附着在其上的催化颗粒520。尽管在一些实施方式中,某些载体颗粒510上可能没有催化颗粒520。可以认为通过改变提供到颗粒生产系统的催化材料的量、或者调节提供到颗粒生产系统中的催化颗粒与载体颗粒的混合比率来影响载体颗粒510上的催化颗粒520的尺寸。提供到颗粒生产系统的催化颗粒的浓度越大,附着在载体颗粒510上的催化颗粒520的尺寸越大。
附图5B表示由方法200的步骤210提供的多个移动-抑制颗粒530的一个实施方式。提供在移动-抑制颗粒530上的条纹的作用仅是为了帮助将移动-抑制颗粒530与载体颗粒510区分开来。
在方法200的步骤220,载体/催化颗粒和移动-抑制颗粒分散在液体中。附图6A表示载体/催化颗粒的分散体625的一个实施方式。分散体625的放大图表示被液体625a分隔开的载体/催化颗粒、其由具有附着在其上的具有催化颗粒620的载体颗粒610组成。附图6B表示移动-抑制颗粒630的分散体635的一个实施方式。分散体635的放大图表示被液体615b分隔开的分散体630。尽管附图6A-B表示了在分离分散体625和635中的载体/催化颗粒和移动-抑制颗粒,可以认为可在同一时间在同一容器内将其分散形成同一分散体。
分散液体615a和615b可以是用来分别分散载体/催化颗粒和移动-抑制颗粒的任何液体。在一个优选的实施方式中,分散液体包含或由水或任何有机液体比如二醇醚组成。在一些实施方式中,分散体625和635使用同一类型的分散液体。在其他的实施方式中,分散体625和635使用不同类型的分散液体(如分散液体615a是水、分散液体615b是乙二醇)。
在一些实施方式中,可将一种或多种表面活性剂或其他分散助剂,如阳离子、阴离子、两性离子、和/或非离子碳基低聚物和/或聚合物加入分散液体。为了调节酸度和使其稳定,可在分散体中加入某些表面活性剂。为了酸化N-氧化物颗粒的表面,可将酸加入分散体。应仔细选择表面活性剂使其不会破坏催化材料。在优选的实施方式中,不在分散体中加入硫酸盐和磷酸盐。能加入分散液体的表面活性剂的实例是羧酸、多胺、聚醚。可以认为也可使用其它的表面活性剂或分散助剂。
可以认为能使用颗粒、分散液体和表面活性剂浓缩物的不同变形。在优选的实施方式中,分散体包括5~25重量%浓度的粉末,也就是载体/催化颗粒和移动-抑制颗粒各自构成它们相应分散体的约5~25重量%。在优选的实施方式中,分散体包括1~10重量%浓度的表面活性剂或其它分散助剂。优选地,表面活性剂或其它分散助剂占分散体的约5%或更少。
在方法200的步骤230,将分散的载体/催化颗粒和移动-抑制颗粒混合得到混合物。如果载体/催化颗粒和移动-抑制颗粒不是最初在一起分散,或者不是随后放入同一个容器以形成单一分散体,那么,可以此时将其放入它们混合在一起的同一容器中。在优选的实施方式中,通过超声、机械混合、和/或剪切混合完成混合。然而,可以认为为了实现混合可以使用多种其它的搅拌方法。
附图7表示在一个容器中分散体的混合物745的一个实施方式。混合物745含有多个载体颗粒710,每个颗粒具有附着在其上的催化颗粒720和移动-抑制颗粒730。颗粒用液体715分离,该液体可含有在前述步骤中使用的任何分散液体和表面活性剂(或其他分散助剂)。
在步骤240,从混合物中除去分散液体以形成干燥混合物。可以认为可以多种方式除去液体。在一个实施方式中,颗粒的分散体是冷冻干燥。将混合物倾倒入适宜冷冻-干燥的容器中。然后用液氮或其它足够冷以冷冻颗粒分散体的介质进行冷冻。在一个实施方式中,液氮、或其它冷冻介质约是-60摄氏度。但是,可以认为也可在其他温度下使用液氮、或其他冷冻介质。然后将混合物放入真空系统,在此颗粒的分散体保持冷冻,如水,或其他分散液体,在真空压力下除去。在一个实施方式中,使用约10微米的真空压力。在其他实施方式中,可以使用约2微米到约5微米之间的真空压力。
真空压力除去混合物中水和具有比水高的蒸气压力的其它液体。然而,在一些实施方式中,表面活性剂留在颗粒的冷冻分散体中。除去水会导致载体/催化颗粒和移动-抑制颗粒的多孔粉末结构,表面活性剂位于孔内。所得粉末处于中间状态,其相互间松散附着,然后摸上去是干燥的,提供机械处理能力。
在步骤250,煅烧干燥后的混合物,从而烘烤表面活性剂、以及形成附着在载体/催化颗粒之间的移动-抑制颗粒的簇。在一些实施方式中,将粉末放置在坩锅中。可以认为坩锅可由陶瓷或多种其它材料制备。然后将坩锅放在煅烧炉中,在设定时间内加热到设定温度。在一些实施方式中,在煅烧炉中在约550摄氏度加热坩锅约2个小时。然而,可以认为也能使用其它温度和加热时间。在一些实施方式中,将坩锅放入已经预热到所需烘烤温度的炉子中。通过在放入坩锅之前预热炉子可以显示测试结果,而不是坩锅在炉子中时将温度逐渐升至所需温度,这样金属颗粒的分散可实现最大化。然而,可以认为,在一些实施方式中,当坩锅在炉子内时逐渐升高炉温。在一些实施方式中,当坩锅治置于炉内时使用1~50摄氏度的升温速率来升高温度。在优选的实施方式中,炉子可以提供周围空气环境,其中坩锅及由此粉末得以加热。可以认为炉内的环境无须包含空气。然而优选含有一定量的氧气。
干燥后的混合物的煅烧可使其从颗粒之间的范德华力或近距离引力变为颗粒间的实际的共价键,这可获得载体/催化颗粒和移动-抑制颗粒的不含表面活性剂的聚集。附图8表示载体颗粒810之间附着的移动-抑制颗粒830的簇的一个实施方式,上述载体颗粒810具有附着其上的催化颗粒820。在一些实施方式中,本发明可得到0.5~50微米范围内的簇。在一些实施方式中,本发明可得到5~10微米范围内的簇。然而,可以认为也能得到其它尺寸的簇。
在一些实施方式中,可调节粉末(载体,催化剂和移动-抑制)的负载百分比以达到所需产物簇的各种类型粉末的粉末浓度。在一些实施方式中,使用0.01~15%负载量的催化剂粉末。然而,可以认为也可使用其它的负载量。
在优选的实施方式中,得到的产品簇中的载体颗粒、催化剂颗粒、和移动-抑制颗粒是纳米颗粒。优选地,载体颗粒和移动-抑制颗粒具有最大500纳米的直径和最小1~5纳米范围的直径,而催化颗粒具有0.5~5纳米范围的直径。在一些实施方式中,载体颗粒和移动-抑制颗粒的直径在5~20纳米范围内。在一些实施方式中,载体颗粒和移动-抑制颗粒的直径在10~15纳米范围内、催化剂颗粒直径在2~5纳米范围内。然而,可以认为能使用其它的颗粒度。
移动-抑制颗粒的引入和附着到载体/催化颗粒上和载体/催化颗粒之间阻止了催化颗粒从一个载体颗粒转移动至另外一个,从而阻止催化颗粒的结合。结果是,单个催化颗粒的尺寸可以尽量小以及簇的总催化表面积的尽量大。
本发明通过引入细节的具体实施方式来描述以促进对本发明的结构和实施的原理的理解。这些对具体实施方式和细节的参考不对要求保护的权利要求的范围构成限制。对实施方式做出其它多种变形方式而不脱离于权利要求所定义的发明的精神和范围对于所属领域技术人员是十分明显的。
Claims (42)
1.催化剂的形成方法,包括:
提供多个载体颗粒和多个移动-抑制颗粒,其中多个载体颗粒中的每个载体颗粒附着在其自己的催化颗粒上;以及
将多个移动-抑制颗粒附着到多个载体颗粒上,
其中通过至少一个移动-抑制颗粒,每个载体颗粒从多个载体颗粒中的每个其它的载体颗粒分离开,以及
其中设置移动-抑制颗粒以阻止催化颗粒从一个载体颗粒移动至另一个载体颗粒上。
2.根据权利要求1的方法,其中提供多个载体颗粒包括:
对具有等于或大于1微米的平均颗粒尺寸的前体载体粉末进行纳米尺寸化;
对具有等于或大于1微米的平均颗粒尺寸的前体催化粉末进行纳米尺寸化;以及
将纳米尺寸催化粉末附着到纳米尺寸载体粉末上,从而形成多个载体颗粒,其中多个载体颗粒中的每个载体颗粒附着在其自己的催化颗粒上。
3.根据权利要求2的方法,其中:
对前体载体粉末和前体催化粉末进行纳米尺寸化包括将等离子流施加到前体载体粉末和前体催化粉末上,从而使前体载体粉末和前体催化粉末气化;以及
使纳米尺寸催化微末附着到纳米尺寸载体粉末包括冷凝气化的载体粉末和气化的催化粉末,从而形成多个载体颗粒,其中多个载体颗粒中的每个载体颗粒附着在其自己的催化颗粒上。
4.根据权利要求1的方法,其中提供多个移动-抑制颗粒包括对具有等于或大于1微米的平均颗粒尺寸的前体移动-抑制粉末进行纳米尺寸化。
5.根据权利要求4的方法,其中对前体移动-抑制粉末进行纳米尺寸化包括:
将等离子流施加到前体移动-抑制粉末以将前体移动-抑制粉末气化;以及冷凝气化的移动-抑制粉末。
6.根据权利要求1的方法,其中提供多个载体颗粒和多个移动-抑制颗粒包括:
将多个载体颗粒分散在分散液体中,其中多个载体颗粒中的每个载体颗粒附着在其自己的催化颗粒上;
将多个移动-抑制颗粒分散在分散液体中;以及
将分散的载体颗粒和分散的移动-抑制颗粒混合,从而得到分散的载体颗粒和分散的移动-抑制颗粒的混合物。
7.根据权利要求6的方法,其中载体颗粒和移动-抑制颗粒的至少一种的分散液体包含水。
8.根据权利要求6的方法,其中载体颗粒和移动-抑制颗粒的至少一种的分散液体包含有机液体。
9.根据权利要求8的方法,其中有机溶液为二醇醚。
10.根据权利要求6的方法,其中多个载体颗粒的分散和多个移动-抑制颗粒的分散中的至少一种包括在分散液体中加入表面活性剂。
11.根据权利要求10的方法,其中表面活性剂选自羧酸、多胺、和聚醚。
12.根据权利要求6的方法,其中通过超声方法混合分散的载体颗粒和分散的移动-抑制颗粒。
13.根据权利要求6的方法,其中至少一个移动-抑制颗粒附着在多个载体颗粒的每个载体颗粒上以及在多个载体颗粒的每个载体颗粒之间的步骤包括冷冻干燥分散的载体颗粒和分散的移动-抑制颗粒的混合物的步骤,从而形成分散的载体颗粒和分散的移动-抑制颗粒的干燥后的混合物。
14.根据权利要求13的方法,其中至少一个移动-抑制颗粒附着在多个载体颗粒的每个载体颗粒上以及在多个载体颗粒的每个载体颗粒之间的步骤包括煅烧分散的载体颗粒和分散的移动-抑制颗粒的干燥混合物的步骤。
15.根据权利要求1的方法,其中多个载体颗粒包括多个氧化铝颗粒。
16.根据权利要求1的方法,其中催化颗粒包括铂。
17.根据权利要求1的方法,其中多个移动-抑制颗粒包括与多个载体颗粒不同的化学组成。
18.根据权利要求17的方法,其中多个移动-抑制颗粒包含多个陶瓷颗粒。
19.根据权利要求17的方法,其中多个移动-抑制颗粒包含多个金属氧化物颗粒。
20.根据权利要求1的方法,其中:
多个载体颗粒中的每个载体颗粒具有1纳米至500纳米之间的直径;
每个催化颗粒具有0.5纳米至5纳米之间的直径;以及
多个移动-抑制颗粒中的每个移动-抑制颗粒具有1纳米至500纳米之间的直径。
21.形成催化剂的方法,包括:
提供多个载体颗粒和多个移动-抑制颗粒,其中多个载体颗粒中的每个载体颗粒附着在其自己的催化颗粒上;
将多个载体颗粒分散在分散液体中,从而形成载体颗粒的分散体;
将多个移动-抑制颗粒分散在分散液体中,从而形成移动-抑制颗粒的分散体;
将载体颗粒的分散体和移动-抑制颗粒的分散体混合,从而形成湿混合物;
冷冻干燥该湿混合物,从而形成干燥的混合物;以及
煅烧该干燥的混合物,从而形成多个载体颗粒和多个移动-抑制颗粒的簇,其中通过至少一个移动-抑制颗粒将每个载体颗粒与多个载体颗粒的每个其它载体颗粒分离开,以及其中设置移动-抑制颗粒以阻止催化颗粒从一个载体颗粒移动到另一个载体颗粒上。
22.根据权利要求21的方法,其中提供多个载体颗粒和多个移动-抑制颗粒包括:
将等于或大于1微米的平均颗粒尺寸的前体载体粉末纳米化;
将等于或大于1微米的平均颗粒尺寸的前体催化粉末纳米化;
将纳米化催化粉末附着到纳米化载体粉末上,从而形成具有多个载体颗粒,其中多个载体颗粒中的每个载体颗粒附着在其自己的催化颗粒上;以及
将具有等于或大于1微米的平均颗粒尺寸的前体移动-抑制粉末纳米化。
23.根据权利要求22的方法,其中纳米化前体粉末的步骤包括:
将等离子流施加到前体粉末上,从而使前体粉末气化;以及
冷凝该气化的粉末。
24.根据权利要求21的方法,其中载体颗粒和移动-抑制颗粒的至少一种的分散液体包含水。
25.根据权利要求21的方法,其中载体颗粒和移动-抑制颗粒的至少一种的分散液体包含有机液体。
26.根据权利要求25的方法,其中有机液体是二醇醚。
27.根据权利要求21的方法,其中多个载体颗粒的分散和多个移动-抑制颗粒的分散中的至少一种包括在分散液体中加入表面活性剂。
28.根据权利要求27的方法,其中表面活性剂选自羧酸、多胺、和聚醚。
29.根据权利要求21的方法,其中载体颗粒分散体和移动-抑制颗粒分散体的混合步骤包括使用超声方法。
30.根据权利要求21的方法,其中多个载体颗粒包括多个氧化铝颗粒。
31.根据权利要求21的方法,其中催化颗粒包含铂。
32.根据权利要求21的方法,其中多个移动-抑制颗粒包含与多个载体颗粒不同的化学组成。
33.根据权利要求32的方法,其中多个移动-抑制颗粒包含多个陶瓷颗粒。
34.根据权利要求32的方法,其中多个移动-抑制颗粒包含多个金属氧化物颗粒。
35.根据权利要求21的方法,其中:
多个载体颗粒中的每个载体颗粒具有1纳米至500纳米之间的直径;
每个催化颗粒具有0.5纳米至5纳米之间的直径;以及
多个移动-抑制颗粒中的每个移动-抑制颗粒具有1纳米至500纳米之间的直径。
36.催化剂包含:
多个载体颗粒,其中多个载体颗粒中的每个载体颗粒附着在其自己的催化颗粒上;以及
多个移动-抑制颗粒附着在多个载体颗粒上,
其中通过至少一个移动-抑制颗粒将每个载体颗粒与多个载体颗粒中的每个其它载体颗粒相分离,以及
其中设置移动-抑制颗粒以阻止催化颗粒从一个载体颗粒移动到另一个载体颗粒上。
37.根据权利要求36的催化剂,其中多个载体颗粒包括多个氧化铝颗粒。
38.根据权利要求36的催化剂,其中催化颗粒包含铂。
39.根据权利要求36的催化剂,其中多个移动-抑制颗粒含有同多个载体颗粒不同的化学组成。
40.根据权利要求39的催化剂,其中多个移动-抑制颗粒包含多个陶瓷颗粒。
41.根据权利要求39的催化剂,其中多个移动-抑制颗粒包含多个金属氧化物颗粒。
42.根据权利要求36的催化剂,其中
多个载体颗粒中的每个载体颗粒具有1纳米至500纳米之间的直径;
每个催化颗粒具有0.5纳米至5纳米之间的直径;以及
多个移动-抑制颗粒中的每个移动-抑制颗粒具有1纳米至500纳米之间的直径。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28432909P | 2009-12-15 | 2009-12-15 | |
US61/284,329 | 2009-12-15 | ||
US12/962,508 US8557727B2 (en) | 2009-12-15 | 2010-12-07 | Method of forming a catalyst with inhibited mobility of nano-active material |
US12/962,508 | 2010-12-07 | ||
PCT/US2010/059761 WO2011081833A1 (en) | 2009-12-15 | 2010-12-09 | Method of forming a catalyst with inhibited mobility of nano-active material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102811809A true CN102811809A (zh) | 2012-12-05 |
Family
ID=51359694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010800638277A Pending CN102811809A (zh) | 2009-12-15 | 2010-12-09 | 纳米活性材料的具有抑制的迁移性的催化剂的形成方法 |
Country Status (12)
Country | Link |
---|---|
US (2) | US8557727B2 (zh) |
EP (1) | EP2512657A4 (zh) |
JP (1) | JP5837886B2 (zh) |
KR (1) | KR20120112563A (zh) |
CN (1) | CN102811809A (zh) |
AU (1) | AU2010337188B2 (zh) |
BR (1) | BR112012015882A2 (zh) |
CA (1) | CA2784518A1 (zh) |
IL (1) | IL220389A (zh) |
MX (1) | MX2012006989A (zh) |
WO (1) | WO2011081833A1 (zh) |
ZA (1) | ZA201205097B (zh) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050195966A1 (en) * | 2004-03-03 | 2005-09-08 | Sigma Dynamics, Inc. | Method and apparatus for optimizing the results produced by a prediction model |
WO2005116650A2 (en) * | 2004-04-19 | 2005-12-08 | Sdc Materials, Llc | High throughput discovery of materials through vapor phase synthesis |
US9173967B1 (en) | 2007-05-11 | 2015-11-03 | SDCmaterials, Inc. | System for and method of processing soft tissue and skin with fluids using temperature and pressure changes |
US8575059B1 (en) | 2007-10-15 | 2013-11-05 | SDCmaterials, Inc. | Method and system for forming plug and play metal compound catalysts |
US20110143930A1 (en) * | 2009-12-15 | 2011-06-16 | SDCmaterials, Inc. | Tunable size of nano-active material on nano-support |
US8803025B2 (en) * | 2009-12-15 | 2014-08-12 | SDCmaterials, Inc. | Non-plugging D.C. plasma gun |
US8557727B2 (en) * | 2009-12-15 | 2013-10-15 | SDCmaterials, Inc. | Method of forming a catalyst with inhibited mobility of nano-active material |
US9149797B2 (en) | 2009-12-15 | 2015-10-06 | SDCmaterials, Inc. | Catalyst production method and system |
US8652992B2 (en) | 2009-12-15 | 2014-02-18 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
US8470112B1 (en) | 2009-12-15 | 2013-06-25 | SDCmaterials, Inc. | Workflow for novel composite materials |
US9039916B1 (en) | 2009-12-15 | 2015-05-26 | SDCmaterials, Inc. | In situ oxide removal, dispersal and drying for copper copper-oxide |
WO2011084534A1 (en) * | 2009-12-15 | 2011-07-14 | Sdcmaterials Llc | Advanced catalysts for fine chemical and pharmaceutical applications |
US8545652B1 (en) | 2009-12-15 | 2013-10-01 | SDCmaterials, Inc. | Impact resistant material |
US9126191B2 (en) | 2009-12-15 | 2015-09-08 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US8669202B2 (en) | 2011-02-23 | 2014-03-11 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PtPd catalysts |
CA2845129A1 (en) | 2011-08-19 | 2013-02-28 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
US9156025B2 (en) | 2012-11-21 | 2015-10-13 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9511352B2 (en) | 2012-11-21 | 2016-12-06 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
EP3024571B1 (en) | 2013-07-25 | 2020-05-27 | Umicore AG & Co. KG | Washcoats and coated substrates for catalytic converters |
CA2926135A1 (en) | 2013-10-22 | 2015-04-30 | SDCmaterials, Inc. | Compositions of lean nox trap |
KR20160074566A (ko) | 2013-10-22 | 2016-06-28 | 에스디씨머티리얼스, 인코포레이티드 | 대형 디젤 연소 엔진용 촉매 디자인 |
KR101574521B1 (ko) * | 2014-03-18 | 2015-12-04 | 한국과학기술연구원 | 계층구조를 이용하여 내재된 형태를 가지는 형태변환소재 및 이를 포함하는 전극 |
EP3119500A4 (en) | 2014-03-21 | 2017-12-13 | SDC Materials, Inc. | Compositions for passive nox adsorption (pna) systems |
CN104084244A (zh) * | 2014-07-10 | 2014-10-08 | 厦门大学 | 碳载金属纳米催化剂制备装置及其制备方法 |
US10124322B2 (en) | 2015-02-11 | 2018-11-13 | Umicore Ag & Co. Kg | Lean NOx traps, trapping materials, washcoats, and methods of making and using the same |
EP4421030A1 (en) * | 2021-10-19 | 2024-08-28 | LG Chem, Ltd. | Carbon nanotube synthesis apparatus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003126694A (ja) * | 2001-10-25 | 2003-05-07 | Toyota Motor Corp | 排ガス浄化用触媒 |
US7022305B2 (en) * | 2000-07-21 | 2006-04-04 | Leibniz-Institut Fuer Neue Materialien Gemeinnuetzige Gmbh | Nanoscale corundum powders, sintered compacts produced from these powders and method for producing the same |
US20080206562A1 (en) * | 2007-01-12 | 2008-08-28 | The Regents Of The University Of California | Methods of generating supported nanocatalysts and compositions thereof |
CN101301610A (zh) * | 2007-01-25 | 2008-11-12 | 日产自动车株式会社 | 废气净化催化剂及其制造方法 |
US20080277267A1 (en) * | 2005-04-19 | 2008-11-13 | Sdc Materials, Inc. | Highly turbulent quench chamber |
CN101400441A (zh) * | 2005-11-01 | 2009-04-01 | 日产自动车株式会社 | 废气净化用催化剂及其制造方法 |
Family Cites Families (453)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2021936A (en) | 1930-12-08 | 1935-11-26 | Univ Illinois | Removal of so2 from flue gases |
US2284554A (en) * | 1940-08-03 | 1942-05-26 | Standard Oil Dev Co | Condensation catalysts of increased activity and process of producing the same |
US2519531A (en) | 1945-07-21 | 1950-08-22 | Lummus Co | Ejector apparatus |
US2419042A (en) * | 1945-10-06 | 1947-04-15 | Todd Floyd | Vacuum distillation apparatus and pressure regulator therefor |
US2562753A (en) | 1948-05-24 | 1951-07-31 | Micronizer Company | Anvil grinder |
US2689780A (en) | 1948-12-27 | 1954-09-21 | Hall Lab Inc | Method of and apparatus for producing ammonium phosphate |
US3181947A (en) | 1957-01-15 | 1965-05-04 | Crucible Steel Co America | Powder metallurgy processes and products |
US3067025A (en) | 1957-04-05 | 1962-12-04 | Dow Chemical Co | Continuous production of titanium sponge |
US3042511A (en) | 1959-02-09 | 1962-07-03 | Dow Chemical Co | Apparatus for condensation of a metal vapor |
US3001402A (en) | 1959-08-06 | 1961-09-26 | Koblin Abraham | Vapor and aerosol sampler |
US3145287A (en) | 1961-07-14 | 1964-08-18 | Metco Inc | Plasma flame generator and spray gun |
US3179782A (en) * | 1962-02-07 | 1965-04-20 | Matvay Leo | Plasma flame jet spray gun with a controlled arc region |
US3178121A (en) * | 1962-04-24 | 1965-04-13 | Du Pont | Process for comminuting grit in pigments and supersonic fluid energy mill therefor |
US3313908A (en) * | 1966-08-18 | 1967-04-11 | Giannini Scient Corp | Electrical plasma-torch apparatus and method for applying coatings onto substrates |
US3450926A (en) | 1966-10-10 | 1969-06-17 | Air Reduction | Plasma torch |
US3401465A (en) | 1966-12-23 | 1968-09-17 | Nat Lead Co | Means for cooling solid particulate materials with fluids |
US3457788A (en) | 1966-12-29 | 1969-07-29 | Continental Carbon Co | Apparatus for sampling carbon black |
US3617358A (en) | 1967-09-29 | 1971-11-02 | Metco Inc | Flame spray powder and process |
US3552653A (en) * | 1968-01-10 | 1971-01-05 | Inoue K | Impact deposition of particulate materials |
US3537513A (en) | 1968-03-11 | 1970-11-03 | Garrett Corp | Three-fluid heat exchanger |
GB1307941A (en) | 1969-02-13 | 1973-02-21 | Shinku Yakin Kk | Method and an apparatus for manufacturing fine powders of metal or alloy |
BE746396A (fr) | 1969-03-05 | 1970-07-31 | Chausson Usines Sa | Procede pour le fluxage et le brasage de pieces en aluminium oualliage d'aluminium devant etre reunies et application de ce procede a la fabrication de radiateurs |
US3761360A (en) | 1971-01-20 | 1973-09-25 | Allied Chem | Re entrainment charging of preheated coal into coking chambers of a coke oven battery |
US3914573A (en) | 1971-05-17 | 1975-10-21 | Geotel Inc | Coating heat softened particles by projection in a plasma stream of Mach 1 to Mach 3 velocity |
US3752172A (en) | 1971-06-14 | 1973-08-14 | United Aircraft Corp | Jet penetration control |
US3774442A (en) | 1972-01-05 | 1973-11-27 | Bahco Ab | Particle sampling devices |
US3741001A (en) | 1972-03-20 | 1973-06-26 | Nasa | Apparatus for sampling particulates in gases |
US4369167A (en) * | 1972-03-24 | 1983-01-18 | Weir Jr Alexander | Process for treating stack gases |
US3804034A (en) | 1972-05-09 | 1974-04-16 | Boride Prod Inc | Armor |
US3959420A (en) * | 1972-05-23 | 1976-05-25 | Stone & Webster Engineering Corporation | Direct quench apparatus |
US3830756A (en) | 1972-08-04 | 1974-08-20 | Grace W R & Co | Noble metal catalysts |
US3892882A (en) | 1973-05-25 | 1975-07-01 | Union Carbide Corp | Process for plasma flame spray coating in a sub-atmospheric pressure environment |
SU493241A1 (ru) | 1973-07-02 | 1975-11-28 | Московский Ордена Ленина И Ордена Трудового Красного Знамени Химикотехнологический Институт Им.Д.И.Менделеева | Катализатор дл синтеза аммиака |
US3871448A (en) * | 1973-07-26 | 1975-03-18 | Vann Tool Company Inc | Packer actuated vent assembly |
US3969482A (en) | 1974-04-25 | 1976-07-13 | Teller Environmental Systems, Inc. | Abatement of high concentrations of acid gas emissions |
JPS543391B2 (zh) * | 1974-05-07 | 1979-02-22 | ||
US3959094A (en) | 1975-03-13 | 1976-05-25 | The United States Of America As Represented By The United States Energy Research And Development Administration | Electrolytic synthesis of methanol from CO2 |
US4127760A (en) | 1975-06-09 | 1978-11-28 | Geotel, Inc. | Electrical plasma jet torch and electrode therefor |
MX4509E (es) | 1975-08-27 | 1982-06-02 | Engelhard Min & Chem | Composicion catalitica mejorada para oxidar en forma simultanea hidrocarburos gascosos y monoxido de carbono y reducir oxidos de nitrogeno |
US4021021A (en) | 1976-04-20 | 1977-05-03 | Us Energy | Wetter for fine dry powder |
US4018388A (en) * | 1976-05-13 | 1977-04-19 | Andrews Norwood H | Jet-type axial pulverizer |
US4139497A (en) * | 1977-04-04 | 1979-02-13 | The Dow Chemical Company | Dehydrogenation catalyst tablet and method for making same |
US4284609A (en) | 1977-07-11 | 1981-08-18 | Quad Environmental Technologies Corp. | Condensation cleaning of particulate laden gases |
US4171288A (en) | 1977-09-23 | 1979-10-16 | Engelhard Minerals & Chemicals Corporation | Catalyst compositions and the method of manufacturing them |
US4174298A (en) | 1978-01-09 | 1979-11-13 | Uop Inc. | Activated multimetallic catalytic composite |
US4227928A (en) | 1978-05-01 | 1980-10-14 | Kennecott Copper Corporation | Copper-boron carbide composite particle and method for its production |
US4189925A (en) | 1978-05-08 | 1980-02-26 | Northern Illinois Gas Company | Method of storing electric power |
JPS6037804B2 (ja) | 1979-04-11 | 1985-08-28 | 三井化学株式会社 | オレフイン重合触媒用担体の製法 |
US4260649A (en) | 1979-05-07 | 1981-04-07 | The Perkin-Elmer Corporation | Laser induced dissociative chemical gas phase processing of workpieces |
US4248387A (en) * | 1979-05-09 | 1981-02-03 | Norandy, Inc. | Method and apparatus for comminuting material in a re-entrant circulating stream mill |
US4459327A (en) | 1979-08-24 | 1984-07-10 | Kennecott Corporation | Method for the production of copper-boron carbide composite |
US4253917A (en) * | 1979-08-24 | 1981-03-03 | Kennecott Copper Corporation | Method for the production of copper-boron carbide composite |
USRE32244E (en) | 1979-10-30 | 1986-09-09 | Armotek Industries, Inc. | Methods and apparatus for applying wear resistant coatings to rotogravure cylinders |
US4326492A (en) | 1980-04-07 | 1982-04-27 | Runfree Enterprise, Inc. | Method and apparatus for preheating fuel |
JPS56146804A (en) | 1980-04-10 | 1981-11-14 | Kobe Steel Ltd | Gas atomizer for molten metal |
US4388274A (en) | 1980-06-02 | 1983-06-14 | Xerox Corporation | Ozone collection and filtration system |
US4344779A (en) | 1980-08-27 | 1982-08-17 | Isserlis Morris D | Air pollution control system |
US4440733A (en) | 1980-11-06 | 1984-04-03 | California Institute Of Technology | Thermochemical generation of hydrogen and carbon dioxide |
US4458138A (en) | 1980-12-15 | 1984-07-03 | Adrian Glenn J | Fast recovery electric fluid |
US4436075A (en) * | 1982-01-07 | 1984-03-13 | Daniel D. Bailey | Fuel pre-heat device |
US4513149A (en) * | 1982-04-05 | 1985-04-23 | Olin Corporation | Raney nickel alloy expanded mesh hydrogenation catalysts |
US4419331A (en) | 1982-04-12 | 1983-12-06 | Michael F. Walters | Sulphur dioxide converter and pollution arrester system |
US4431750A (en) | 1982-05-19 | 1984-02-14 | Phillips Petroleum Company | Platinum group metal catalyst on the surface of a support and a process for preparing same |
FR2545007B1 (fr) * | 1983-04-29 | 1986-12-26 | Commissariat Energie Atomique | Procede et dispositif pour le revetement d'une piece par projection de plasma |
JPS59227765A (ja) * | 1983-06-04 | 1984-12-21 | 科学技術庁金属材料技術研究所長 | セラミツクスの超微粒子の製造法 |
SE461095B (sv) | 1983-09-09 | 1990-01-08 | Berol Kemi Ab | Amineringsfoerfarande med anvaendning av en ruteniumdopad nickel och/eller kovoltkatalysator |
US4545872A (en) | 1984-03-27 | 1985-10-08 | Texaco Inc. | Method for reducing carbon dioxide to provide a product |
US4523981A (en) | 1984-03-27 | 1985-06-18 | Texaco Inc. | Means and method for reducing carbon dioxide to provide a product |
JPS6186815A (ja) | 1984-10-05 | 1986-05-02 | Hitachi Ltd | 微小圧力制御装置 |
DE3445273A1 (de) | 1984-12-12 | 1986-06-19 | Wilfried 8672 Selb Müller | Waermetauscher |
US4824624A (en) * | 1984-12-17 | 1989-04-25 | Ceradyne, Inc. | Method of manufacturing boron carbide armor tiles |
US5006163A (en) | 1985-03-13 | 1991-04-09 | Inco Alloys International, Inc. | Turbine blade superalloy II |
JPS61242644A (ja) * | 1985-04-18 | 1986-10-28 | Toyota Motor Corp | 排気ガス浄化用触媒の製造方法 |
US4764283A (en) | 1985-04-24 | 1988-08-16 | Ashbrook Clifford L | Method and apparatus for treating cooling tower water |
US4921586A (en) | 1989-03-31 | 1990-05-01 | United Technologies Corporation | Electrolysis cell and method of use |
JPS62102827A (ja) | 1985-10-29 | 1987-05-13 | Natl Res Inst For Metals | 金属窒化物微粒子の製造法 |
US4609441A (en) | 1985-12-18 | 1986-09-02 | Gas Research Institute | Electrochemical reduction of aqueous carbon dioxide to methanol |
US4751021A (en) | 1985-12-30 | 1988-06-14 | Aar Corporation | Bendable sheet material |
DE3603511A1 (de) | 1986-02-05 | 1987-08-06 | Standard Elektrik Lorenz Ag | Verfahren und vorrichtung zur entfernung von staub- und gasfoermigen schadstoffen aus abgasen, insbesondere abgasen bei der lichtwellenleiter-vorformherstellung |
NL8600449A (nl) | 1986-02-22 | 1987-09-16 | Delft Tech Hogeschool | Pantserplaat-komposiet met keramische opvanglaag. |
US4731517A (en) * | 1986-03-13 | 1988-03-15 | Cheney Richard F | Powder atomizing methods and apparatus |
US4885038A (en) | 1986-05-01 | 1989-12-05 | International Business Machines Corporation | Method of making multilayered ceramic structures having an internal distribution of copper-based conductors |
US4723589A (en) * | 1986-05-19 | 1988-02-09 | Westinghouse Electric Corp. | Method for making vacuum interrupter contacts by spray deposition |
JPH0720553B2 (ja) * | 1986-11-07 | 1995-03-08 | 軽質留分新用途開発技術研究組合 | 白金担持触媒の製造方法 |
JPS63214342A (ja) | 1987-03-02 | 1988-09-07 | Natl Res Inst For Metals | 化合物の製造方法 |
US5269848A (en) | 1987-03-20 | 1993-12-14 | Canon Kabushiki Kaisha | Process for preparing a functional thin film by way of the chemical reaction among active species and apparatus therefor |
US4983555A (en) * | 1987-05-06 | 1991-01-08 | Coors Porcelain Company | Application of transparent polycrystalline body with high ultraviolet transmittance |
US20020102674A1 (en) | 1987-05-20 | 2002-08-01 | David M Anderson | Stabilized microporous materials |
US5230844A (en) | 1987-09-04 | 1993-07-27 | Skis Rossignol, S.A. | Process for producing a complex elastic molded structure of the sandwich type |
JP2584805B2 (ja) | 1987-12-19 | 1997-02-26 | 富士通株式会社 | ダイヤモンド粒子の合成方法 |
US5041713A (en) | 1988-05-13 | 1991-08-20 | Marinelon, Inc. | Apparatus and method for applying plasma flame sprayed polymers |
US4866240A (en) | 1988-09-08 | 1989-09-12 | Stoody Deloro Stellite, Inc. | Nozzle for plasma torch and method for introducing powder into the plasma plume of a plasma torch |
JPH02160040A (ja) * | 1988-12-15 | 1990-06-20 | Mitsubishi Heavy Ind Ltd | 鉱物質超微粒子の製造方法 |
US4987033A (en) * | 1988-12-20 | 1991-01-22 | Dynamet Technology, Inc. | Impact resistant clad composite armor and method for forming such armor |
US5371049A (en) | 1989-01-09 | 1994-12-06 | Fmc Corporation | Ceramic composite of silicon carbide and aluminum nitride |
US5562966A (en) | 1989-01-27 | 1996-10-08 | Science Applications International Corporation | Method of applying oxidation resistant coating on carbon fibers |
JPH02203932A (ja) * | 1989-01-31 | 1990-08-13 | Idemitsu Petrochem Co Ltd | 超微粒子の製造方法及び製造装置 |
US5043548A (en) | 1989-02-08 | 1991-08-27 | General Electric Company | Axial flow laser plasma spraying |
WO1990012126A1 (en) | 1989-03-31 | 1990-10-18 | Canon Kabushiki Kaisha | Method of forming polycrystalline film by chemical vapor deposition |
JPH032695A (ja) * | 1989-05-31 | 1991-01-09 | Nisshin Steel Co Ltd | 高除熱性の放射線しゃへい材 |
US5070064A (en) | 1989-08-07 | 1991-12-03 | Exxon Research And Engineering Company | Catalyst pretreatment method |
DE3940758A1 (de) | 1989-12-09 | 1991-06-13 | Degussa | Verfahren zur reinigung der abgase von dieselmotoren |
JPH03258332A (ja) | 1990-03-06 | 1991-11-18 | Konica Corp | 乳化物の製造方法及び装置 |
US5073193A (en) | 1990-06-26 | 1991-12-17 | The University Of British Columbia | Method of collecting plasma synthesize ceramic powders |
US5296667A (en) | 1990-08-31 | 1994-03-22 | Flame-Spray Industries, Inc. | High velocity electric-arc spray apparatus and method of forming materials |
CA2070779A1 (en) | 1990-10-09 | 1992-04-10 | Iver E. Anderson | Environmentally stable reactive alloy powders and method of making same |
JPH06135797A (ja) | 1991-01-24 | 1994-05-17 | Idemitsu Petrochem Co Ltd | ダイヤモンドの合成方法および合成装置 |
US5133190A (en) | 1991-01-25 | 1992-07-28 | Abdelmalek Fawzy T | Method and apparatus for flue gas cleaning by separation and liquefaction of sulfur dioxide and carbon dioxide |
US5369241A (en) | 1991-02-22 | 1994-11-29 | Idaho Research Foundation | Plasma production of ultra-fine ceramic carbides |
US5330945A (en) | 1991-04-08 | 1994-07-19 | General Motors Corporation | Catalyst for treatment of diesel exhaust particulate |
JP3200464B2 (ja) | 1991-08-27 | 2001-08-20 | 株式会社エステック | 液体材料気化供給装置 |
US5436080A (en) | 1991-09-13 | 1995-07-25 | Tsuyoshi Masumoto | High strength structural member and process for producing the same |
JP3100084B2 (ja) * | 1991-11-25 | 2000-10-16 | 日清製粉株式会社 | 超微粒子の製造装置 |
JP2673978B2 (ja) | 1991-12-26 | 1997-11-05 | 大平洋金属 株式会社 | 超微粒子の製造方法及び製造装置 |
US5233153A (en) | 1992-01-10 | 1993-08-03 | Edo Corporation | Method of plasma spraying of polymer compositions onto a target surface |
US20020018815A1 (en) * | 1992-03-06 | 2002-02-14 | Sievers Robert E. | Methods and apparatus for fine particle formation |
JPH0665772U (ja) | 1992-05-11 | 1994-09-16 | 田村 悦夫 | 排熱利用式ロードヒーティング装置 |
JPH05324094A (ja) | 1992-05-15 | 1993-12-07 | Tlv Co Ltd | 流体圧力制御装置 |
US6319599B1 (en) * | 1992-07-14 | 2001-11-20 | Theresa M. Buckley | Phase change thermal control materials, method and apparatus |
JP3285614B2 (ja) | 1992-07-30 | 2002-05-27 | 日本碍子株式会社 | 排ガス浄化用触媒及びその製造方法 |
US5804155A (en) | 1992-11-19 | 1998-09-08 | Engelhard Corporation | Basic zeolites as hydrocarbon traps for diesel oxidation catalysts |
US5338716A (en) | 1992-12-01 | 1994-08-16 | Akzo Nobel Nv | Non-oxide metal ceramic catalysts comprising metal oxide support and intermediate ceramic passivating layer |
GB9302387D0 (en) * | 1993-02-06 | 1993-03-24 | Osprey Metals Ltd | Production of powder |
JPH06272012A (ja) | 1993-03-19 | 1994-09-27 | Hirofumi Shimura | レーザ・プラズマハイブリッド溶射による高機能性被膜の作製方法 |
WO1994029716A1 (en) | 1993-06-10 | 1994-12-22 | Rupprecht & Patashnick Company, Inc. | Airborne particulate sampling monitor |
JP2751136B2 (ja) | 1993-07-21 | 1998-05-18 | 科学技術庁無機材質研究所長 | 自己傾斜型複合粒子の製造方法 |
US5460701A (en) | 1993-07-27 | 1995-10-24 | Nanophase Technologies Corporation | Method of making nanostructured materials |
US5543173A (en) | 1993-10-12 | 1996-08-06 | Aluminum Company Of America | Surface treating aluminum trihydrate powders with prehydrolized silane |
US5611896A (en) * | 1993-10-14 | 1997-03-18 | Atomic Energy Corporation Of S. Africa Limited | Production of fluorocarbon compounds |
JPH07130490A (ja) * | 1993-11-02 | 1995-05-19 | Komatsu Ltd | プラズマトーチ |
DK0669162T3 (da) | 1994-02-24 | 2000-03-27 | Fina Research | Fremgangsmåde til fremstilling af kiseljordslerjordstransportører og hydrogenkatalysatorer samt deres anvendelse til aromat |
US5392797A (en) * | 1994-03-10 | 1995-02-28 | Vq Corporation | Single motive pump, clean-in-place system, for use with piping systems and with vessels |
JPH07256116A (ja) | 1994-03-25 | 1995-10-09 | Calsonic Corp | 触媒コンバータの金属触媒担体とその製造方法 |
JPH07279648A (ja) | 1994-04-05 | 1995-10-27 | Isao Yamamoto | 排気ガス浄化システム |
DE4418931C2 (de) | 1994-05-31 | 1997-06-19 | Degussa | Verfahren zur Abtrennung katalysatorfreier Arbeitslösung aus dem Hydrierkreislauf des Anthrachinonverfahrens zur Herstellung von Wasserstoffperoxid |
DE4422588C2 (de) * | 1994-06-28 | 1999-09-23 | Ald Vacuum Techn Gmbh | Verfahren zum Abschrecken von Werkstücken durch Gase und Wärmebehandlungsanlage zur Durchführung des Verfahrens |
US5485941A (en) * | 1994-06-30 | 1996-01-23 | Basf Corporation | Recirculation system and method for automated dosing apparatus |
DE4423738A1 (de) | 1994-07-06 | 1996-01-11 | Basf Ag | Verfahren und Katalysator zur Selektivhydrierung von Butindiol zu Butendiol |
US5679167A (en) | 1994-08-18 | 1997-10-21 | Sulzer Metco Ag | Plasma gun apparatus for forming dense, uniform coatings on large substrates |
US5985356A (en) | 1994-10-18 | 1999-11-16 | The Regents Of The University Of California | Combinatorial synthesis of novel materials |
US5582807A (en) | 1994-11-04 | 1996-12-10 | Tek-Kol | Method and apparatus for removing particulate and gaseous pollutants from a gas stream |
JPH08158033A (ja) | 1994-12-02 | 1996-06-18 | Nisshin Steel Co Ltd | 微細組織厚膜材料の製造法および装置 |
US5858470A (en) * | 1994-12-09 | 1999-01-12 | Northwestern University | Small particle plasma spray apparatus, method and coated article |
US5534270A (en) | 1995-02-09 | 1996-07-09 | Nanosystems Llc | Method of preparing stable drug nanoparticles |
US7576296B2 (en) | 1995-03-14 | 2009-08-18 | Battelle Energy Alliance, Llc | Thermal synthesis apparatus |
US5749937A (en) | 1995-03-14 | 1998-05-12 | Lockheed Idaho Technologies Company | Fast quench reactor and method |
DE19512615A1 (de) | 1995-04-05 | 1996-10-10 | Bayer Ag | Platinmetall enthaltende Träger-Katalysatoren und Verfahren zur Herstellung von Diarylcarbonaten |
US5596973A (en) | 1995-06-05 | 1997-01-28 | Grice; Franklin R. | Fuel expander |
US5793013A (en) | 1995-06-07 | 1998-08-11 | Physical Sciences, Inc. | Microwave-driven plasma spraying apparatus and method for spraying |
JP3375790B2 (ja) | 1995-06-23 | 2003-02-10 | 日本碍子株式会社 | 排ガス浄化システム及び排ガス浄化方法 |
US5652304A (en) | 1995-08-31 | 1997-07-29 | The Goodyear Tire & Rubber Company | Vapor phase synthesis of rubbery polymers |
US5837959A (en) | 1995-09-28 | 1998-11-17 | Sulzer Metco (Us) Inc. | Single cathode plasma gun with powder feed along central axis of exit barrel |
EP0788829B1 (en) * | 1996-02-08 | 2004-09-22 | Sakai Chemical Industry Co., Ltd., | Catalyst and method for catalytic reduction of nitrogen oxides |
CA2250962C (en) * | 1996-04-04 | 2003-06-03 | Nanophase Technologies Corporation | Siloxane star-graft polymers, ceramic powders coated therewith and method of preparing coated ceramic powders |
JP3193294B2 (ja) | 1996-05-24 | 2001-07-30 | 財団法人ファインセラミックスセンター | 複合セラミックス粉末とその製造方法、固体電解質型燃料電池用の電極及びその製造方法 |
US5723187A (en) * | 1996-06-21 | 1998-03-03 | Ford Global Technologies, Inc. | Method of bonding thermally sprayed coating to non-roughened aluminum surfaces |
CA2259691A1 (en) | 1996-07-11 | 1998-01-22 | The University Of Cincinnati | Electrically assisted synthesis of particles and films with precisely controlled characteristics |
US6202471B1 (en) | 1997-10-10 | 2001-03-20 | Nanomaterials Research Corporation | Low-cost multilaminate sensors |
US6832735B2 (en) | 2002-01-03 | 2004-12-21 | Nanoproducts Corporation | Post-processed nanoscale powders and method for such post-processing |
US5788738A (en) | 1996-09-03 | 1998-08-04 | Nanomaterials Research Corporation | Method of producing nanoscale powders by quenching of vapors |
US6855749B1 (en) * | 1996-09-03 | 2005-02-15 | Nanoproducts Corporation | Polymer nanocomposite implants with enhanced transparency and mechanical properties for administration within humans or animals |
US6652967B2 (en) | 2001-08-08 | 2003-11-25 | Nanoproducts Corporation | Nano-dispersed powders and methods for their manufacture |
US6933331B2 (en) | 1998-05-22 | 2005-08-23 | Nanoproducts Corporation | Nanotechnology for drug delivery, contrast agents and biomedical implants |
US5851507A (en) | 1996-09-03 | 1998-12-22 | Nanomaterials Research Corporation | Integrated thermal process for the continuous synthesis of nanoscale powders |
US6569397B1 (en) | 2000-02-15 | 2003-05-27 | Tapesh Yadav | Very high purity fine powders and methods to produce such powders |
US6344271B1 (en) * | 1998-11-06 | 2002-02-05 | Nanoenergy Corporation | Materials and products using nanostructured non-stoichiometric substances |
US5905000A (en) | 1996-09-03 | 1999-05-18 | Nanomaterials Research Corporation | Nanostructured ion conducting solid electrolytes |
JP3956437B2 (ja) | 1996-09-26 | 2007-08-08 | マツダ株式会社 | 排気ガス浄化用触媒 |
JP3605969B2 (ja) | 1996-10-31 | 2004-12-22 | 石川島播磨重工業株式会社 | 防食用チタン酸化膜の作製方法および防食用チタン酸化膜 |
DE69733660T2 (de) | 1996-11-04 | 2006-05-18 | Materials Modification, Inc. | Mikrowellenplasma chemischen synthese von ultrafeinen pulvern |
US6117376A (en) | 1996-12-09 | 2000-09-12 | Merkel; Michael | Method of making foam-filled composite products |
US6322756B1 (en) | 1996-12-31 | 2001-11-27 | Advanced Technology And Materials, Inc. | Effluent gas stream treatment system having utility for oxidation treatment of semiconductor manufacturing effluent gases |
WO1998036888A1 (en) | 1997-02-24 | 1998-08-27 | Superior Micropowders Llc | Aerosol method and apparatus, particulate products, and electronic devices made therefrom |
JPH10249198A (ja) * | 1997-03-10 | 1998-09-22 | Toyota Central Res & Dev Lab Inc | 排ガス浄化用触媒及びその製造方法 |
US5993967A (en) | 1997-03-28 | 1999-11-30 | Nanophase Technologies Corporation | Siloxane star-graft polymers, ceramic powders coated therewith and method of preparing coated ceramic powders |
US6093306A (en) | 1997-04-07 | 2000-07-25 | Solar Reactor Technologies Inc. | Comprehensive system for utility load leveling, hydrogen production, stack gas cleanup, greenhouse gas abatement, and methanol synthesis |
US5989648A (en) | 1997-05-06 | 1999-11-23 | The Penn State Research Foundation | Plasma generation of supported metal catalysts |
US6093378A (en) | 1997-05-07 | 2000-07-25 | Engelhard Corporation | Four-way diesel exhaust catalyst and method of use |
US5928806A (en) | 1997-05-07 | 1999-07-27 | Olah; George A. | Recycling of carbon dioxide into methyl alcohol and related oxygenates for hydrocarbons |
GB9711876D0 (en) | 1997-06-10 | 1997-08-06 | Secr Defence | Dispersion-strengthened aluminium alloy |
US6213049B1 (en) * | 1997-06-26 | 2001-04-10 | General Electric Company | Nozzle-injector for arc plasma deposition apparatus |
US6576906B1 (en) * | 1999-10-08 | 2003-06-10 | Symyx Technologies, Inc. | Method and apparatus for screening combinatorial libraries for semiconducting properties |
US20020068026A1 (en) | 1997-08-08 | 2002-06-06 | Lawrence L. Murrell | Reactor |
DE19734974A1 (de) | 1997-08-13 | 1999-02-25 | Hoechst Ag | Verfahren zur Herstellung von porös geträgerten Metall-Nanopartikel-haltigen Katalysatoren, insbesondere für die Gasphasenoxidation von Ethylen und Essigsäure zu Vinylacetat |
US6514453B2 (en) | 1997-10-21 | 2003-02-04 | Nanoproducts Corporation | Thermal sensors prepared from nanostructureed powders |
IL122015A (en) | 1997-10-22 | 2003-04-10 | Clue As | Scrubber for the treatment of flue gases |
GB9723762D0 (en) | 1997-11-12 | 1998-01-07 | Rolls Royce Plc | A method of coating a component |
US6012647A (en) * | 1997-12-01 | 2000-01-11 | 3M Innovative Properties Company | Apparatus and method of atomizing and vaporizing |
DE19753738A1 (de) | 1997-12-04 | 1999-06-10 | Degussa | Verfahren zur Herstellung eines Katalysators |
EP1044057A1 (en) | 1997-12-24 | 2000-10-18 | Engelhard Corporation | Catalytic converter system for internal combustion engine powere d vehicles |
US6076597A (en) | 1997-12-31 | 2000-06-20 | Flowserve Management Company | Helical coil heat exchanger with removable end plates |
GB9803554D0 (en) | 1998-02-20 | 1998-04-15 | Johnson Matthey Plc | Improvements in automotive catalysts |
US6084197A (en) | 1998-06-11 | 2000-07-04 | General Electric Company | Powder-fan plasma torch |
US6524662B2 (en) * | 1998-07-10 | 2003-02-25 | Jin Jang | Method of crystallizing amorphous silicon layer and crystallizing apparatus thereof |
US6362449B1 (en) | 1998-08-12 | 2002-03-26 | Massachusetts Institute Of Technology | Very high power microwave-induced plasma |
US6416818B1 (en) | 1998-08-17 | 2002-07-09 | Nanophase Technologies Corporation | Compositions for forming transparent conductive nanoparticle coatings and process of preparation therefor |
US6379419B1 (en) * | 1998-08-18 | 2002-04-30 | Noranda Inc. | Method and transferred arc plasma system for production of fine and ultrafine powders |
US6576214B2 (en) | 2000-12-08 | 2003-06-10 | Hydrocarbon Technologies, Inc. | Catalytic direct production of hydrogen peroxide from hydrogen and oxygen feeds |
US6267864B1 (en) | 1998-09-14 | 2001-07-31 | Nanomaterials Research Corporation | Field assisted transformation of chemical and material compositions |
US6531704B2 (en) * | 1998-09-14 | 2003-03-11 | Nanoproducts Corporation | Nanotechnology for engineering the performance of substances |
US6214195B1 (en) * | 1998-09-14 | 2001-04-10 | Nanomaterials Research Corporation | Method and device for transforming chemical compositions |
US6716525B1 (en) * | 1998-11-06 | 2004-04-06 | Tapesh Yadav | Nano-dispersed catalysts particles |
US6395214B1 (en) | 1998-11-30 | 2002-05-28 | Rutgers, The State University Of New Jersey | High pressure and low temperature sintering of nanophase ceramic powders |
WO2000038831A1 (en) * | 1998-12-31 | 2000-07-06 | Hexablock, Inc. | Magneto absorbent |
US20010004009A1 (en) | 1999-01-25 | 2001-06-21 | Mackelvie Winston | Drainwater heat recovery system |
JP2000220978A (ja) | 1999-01-27 | 2000-08-08 | Mitsubishi Cable Ind Ltd | 蓄冷式熱交換器 |
US6168694B1 (en) | 1999-02-04 | 2001-01-02 | Chemat Technology, Inc. | Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications |
DE19908394A1 (de) | 1999-02-26 | 2000-08-31 | Degussa | Katalysatormaterial und Verfahren zu seiner Herstellung |
US6413781B1 (en) | 1999-04-06 | 2002-07-02 | Massachusetts Institute Of Technology | Thermophoretic pump and concentrator |
EP1043067A3 (en) | 1999-04-09 | 2002-03-27 | Denso Corporation | A ceramic support capable of supporting a catalyst, a catalyst-ceramic body and processes for producing same |
JP2002542015A (ja) | 1999-04-19 | 2002-12-10 | エンゲルハード・コーポレーシヨン | セリアと白金族金属を含んで成る触媒組成物 |
US6399030B1 (en) | 1999-06-04 | 2002-06-04 | The Babcock & Wilcox Company | Combined flue gas desulfurization and carbon dioxide removal system |
JP3940546B2 (ja) | 1999-06-07 | 2007-07-04 | 株式会社東芝 | パターン形成方法およびパターン形成材料 |
WO2000077792A1 (en) * | 1999-06-15 | 2000-12-21 | Yong Soo Kim | An effective dry etching process of actinide oxides and their mixed oxides in cf4/o2/n2 plasma |
CN1101335C (zh) * | 1999-06-16 | 2003-02-12 | 中国科学院金属研究所 | 一种大量制备单壁纳米碳管的氢弧放电方法 |
US6468490B1 (en) | 2000-06-29 | 2002-10-22 | Applied Materials, Inc. | Abatement of fluorine gas from effluent |
US6972115B1 (en) | 1999-09-03 | 2005-12-06 | American Inter-Metallics, Inc. | Apparatus and methods for the production of powders |
US6190627B1 (en) | 1999-11-30 | 2001-02-20 | Engelhard Corporation | Method and device for cleaning the atmosphere |
EP1242183A1 (en) | 1999-12-28 | 2002-09-25 | Corning Incorporated | Zeolite/alumina catalyst support compositions and method of making the same |
CA2399138C (en) * | 2000-02-10 | 2009-12-01 | South African Nuclear Energy Corporation Limited | Treatment of fluorocarbon feedstocks |
EP1134302A1 (en) | 2000-03-17 | 2001-09-19 | Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, C.S.G.I | New process for the production of nanostructured solid powders and nano-particles films by compartimentalised solution thermal spraying (CSTS) |
US7834349B2 (en) | 2000-03-29 | 2010-11-16 | Georgia Tech Research Corporation | Silicon based nanospheres and nanowires |
CA2405743C (en) | 2000-04-10 | 2009-09-15 | Tetronics Limited | Twin plasma torch apparatus |
US7338515B2 (en) * | 2000-04-10 | 2008-03-04 | Arizant Healthcare Inc. | System, combination and method for controlling airflow in convective treatment |
GB2358629B (en) | 2000-05-18 | 2001-12-19 | Mark William Youds | Formulae, methods and apparatus for the: treatment of; processing of; pasteurisation; dissociating water in; and the communication of: materials; |
JP2003535255A (ja) | 2000-06-01 | 2003-11-25 | ブルー プラネット カンパニー リミテッド | ディーゼルエンジン排出ガスの煤煙と窒素酸化物の除去装置 |
DE60117990D1 (de) * | 2000-06-30 | 2006-05-11 | Ngimat Co | Verfahren zur abscheidung von materialien |
US6261484B1 (en) | 2000-08-11 | 2001-07-17 | The Regents Of The University Of California | Method for producing ceramic particles and agglomerates |
JP3908447B2 (ja) * | 2000-08-11 | 2007-04-25 | 株式会社荏原製作所 | エジェクタ |
AU2001283076A1 (en) | 2000-08-14 | 2002-02-25 | Chevron U.S.A. Inc. | Use of microchannel reactors in combinatorial chemistry |
JP2002088486A (ja) | 2000-09-13 | 2002-03-27 | Chubu Electric Power Co Inc | 高周波誘導熱プラズマ装置 |
KR100814702B1 (ko) | 2000-09-28 | 2008-03-18 | 롬 앤드 하스 캄파니 | 불포화 니트릴 제조방법 |
US6862970B2 (en) | 2000-11-21 | 2005-03-08 | M Cubed Technologies, Inc. | Boron carbide composite bodies, and methods for making same |
US6896958B1 (en) | 2000-11-29 | 2005-05-24 | Nanophase Technologies Corporation | Substantially transparent, abrasion-resistant films containing surface-treated nanocrystalline particles |
US6464919B2 (en) | 2000-12-22 | 2002-10-15 | Husky Injection Molding Systems, Ltd. | Device and method for temperature adjustment of an object |
US7591957B2 (en) | 2001-01-30 | 2009-09-22 | Rapt Industries, Inc. | Method for atmospheric pressure reactive atom plasma processing for surface modification |
JP2002263496A (ja) * | 2001-03-13 | 2002-09-17 | Honda Motor Co Ltd | 触媒組成物、その製造方法及びカーボンナノファイバーの製造方法 |
JP4677679B2 (ja) | 2001-03-27 | 2011-04-27 | 株式会社デンソー | 製品の製造プロセスにおける特性調整方法 |
DE10117457A1 (de) | 2001-04-06 | 2002-10-17 | T Mobile Deutschland Gmbh | Verfahren zur Anzeige von standardisierten großformatigen Internet-Seiten mit beispielsweise HTML-Protokoll in Einhandendgeräten mit Mobilfunkanschluss |
US6444009B1 (en) | 2001-04-12 | 2002-09-03 | Nanotek Instruments, Inc. | Method for producing environmentally stable reactive alloy powders |
US6994837B2 (en) | 2001-04-24 | 2006-02-07 | Tekna Plasma Systems, Inc. | Plasma synthesis of metal oxide nanopowder and apparatus therefor |
DE10122491A1 (de) | 2001-05-10 | 2002-11-14 | Bayer Ag | Vorrichtung und Verfahren zur parallelen Durchführung von Experimenten |
US6652822B2 (en) | 2001-05-17 | 2003-11-25 | The Regents Of The University Of California | Spherical boron nitride particles and method for preparing them |
JP2002336688A (ja) | 2001-05-18 | 2002-11-26 | Tdk Corp | 粉末の処理方法、無機粉末の製造方法および被処理物の処理装置 |
US6506995B1 (en) * | 2001-06-21 | 2003-01-14 | General Electric Company | Conforming welding torch shroud |
US7622693B2 (en) | 2001-07-16 | 2009-11-24 | Foret Plasma Labs, Llc | Plasma whirl reactor apparatus and methods of use |
JP5153988B2 (ja) | 2001-08-02 | 2013-02-27 | スリーエム イノベイティブ プロパティズ カンパニー | セラミック材料およびその製造方法 |
US6855426B2 (en) * | 2001-08-08 | 2005-02-15 | Nanoproducts Corporation | Methods for producing composite nanoparticles |
US6891319B2 (en) | 2001-08-29 | 2005-05-10 | Motorola, Inc. | Field emission display and methods of forming a field emission display |
US6596187B2 (en) | 2001-08-29 | 2003-07-22 | Motorola, Inc. | Method of forming a nano-supported sponge catalyst on a substrate for nanotube growth |
DE60205493T2 (de) | 2001-08-31 | 2006-06-01 | Apit Corp. Sa | Verfahren und vorrichtung zur herstellung von pulver aus verbundmaterial |
JP3543149B2 (ja) * | 2001-09-03 | 2004-07-14 | 島津工業有限会社 | プラズマ溶射用のトーチヘッド |
US7049226B2 (en) | 2001-09-26 | 2006-05-23 | Applied Materials, Inc. | Integration of ALD tantalum nitride for copper metallization |
EP1433036A4 (en) | 2001-10-01 | 2008-10-22 | Entegris Inc | DEVICE FOR CONDITIONING THE TEMPERATURE OF A FLUID |
US6693253B2 (en) | 2001-10-05 | 2004-02-17 | Universite De Sherbrooke | Multi-coil induction plasma torch for solid state power supply |
JP2005511521A (ja) * | 2001-10-10 | 2005-04-28 | ベーリンガー インゲルハイム ファーマシューティカルズ インコーポレイテッド | 加圧ガス状流体による粉末処理 |
US7166663B2 (en) * | 2001-11-03 | 2007-01-23 | Nanophase Technologies Corporation | Nanostructured compositions |
JP3854134B2 (ja) | 2001-12-04 | 2006-12-06 | 本田技研工業株式会社 | 内燃機関用排気ガス浄化装置 |
US20030108459A1 (en) | 2001-12-10 | 2003-06-12 | L. W. Wu | Nano powder production system |
US6623559B2 (en) | 2001-12-10 | 2003-09-23 | Nanotek Instruments, Inc. | Method for the production of semiconductor quantum particles |
US6689192B1 (en) * | 2001-12-13 | 2004-02-10 | The Regents Of The University Of California | Method for producing metallic nanoparticles |
US6706660B2 (en) * | 2001-12-18 | 2004-03-16 | Caterpillar Inc | Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems |
JP4356313B2 (ja) * | 2001-12-19 | 2009-11-04 | 住友金属鉱山株式会社 | 金属化合物微粉末の製造方法 |
US7119418B2 (en) * | 2001-12-31 | 2006-10-10 | Advanced Technology Materials, Inc. | Supercritical fluid-assisted deposition of materials on semiconductor substrates |
JP4404961B2 (ja) * | 2002-01-08 | 2010-01-27 | 双葉電子工業株式会社 | カーボンナノ繊維の製造方法。 |
US6680279B2 (en) | 2002-01-24 | 2004-01-20 | General Motors Corporation | Nanostructured catalyst particle/catalyst carrier particle system |
EP1483111B1 (en) | 2002-02-15 | 2013-01-30 | Nanophase Technologies Corporation | Composite nanoparticle materials and method of making the same |
EP1476397A4 (en) | 2002-02-19 | 2008-03-05 | Tal Materials | MIXED METAL OXIDE PARTICLES BY LIQUID SUPPLY FLAME SPREADING HYPERROLYSIS OF OXID FILLERS IN OXYGENIZED SOLVENTS |
US6635357B2 (en) | 2002-02-28 | 2003-10-21 | Vladimir S. Moxson | Bulletproof lightweight metal matrix macrocomposites with controlled structure and manufacture the same |
US7147894B2 (en) | 2002-03-25 | 2006-12-12 | The University Of North Carolina At Chapel Hill | Method for assembling nano objects |
US6579446B1 (en) | 2002-04-04 | 2003-06-17 | Agrimond, Llc | Multi-process disinfectant delivery control system |
US6625246B1 (en) | 2002-04-12 | 2003-09-23 | Holtec International, Inc. | System and method for transferring spent nuclear fuel from a spent nuclear fuel pool to a storage cask |
KR100483886B1 (ko) * | 2002-05-17 | 2005-04-20 | (주)엔피씨 | 나노분말 양산용 고주파 유도 플라즈마 반응로 |
US6738452B2 (en) | 2002-05-28 | 2004-05-18 | Northrop Grumman Corporation | Gasdynamically-controlled droplets as the target in a laser-plasma extreme ultraviolet light source |
US6777639B2 (en) * | 2002-06-12 | 2004-08-17 | Nanotechnologies, Inc. | Radial pulsed arc discharge gun for synthesizing nanopowders |
US6669823B1 (en) | 2002-06-17 | 2003-12-30 | Nanophase Technologies Corporation | Process for preparing nanostructured materials of controlled surface chemistry |
EP1378489A1 (en) | 2002-07-03 | 2004-01-07 | Eidgenössische Technische Hochschule Zürich | Metal oxides prepared by flame spray pyrolysis |
FR2842125B1 (fr) | 2002-07-09 | 2006-03-31 | Sicat | Methode de preparation par impregnation biphasique de nouveaux catalyseurs pour catalyse heterogene, et utilisation desdits catalyseurs |
US7357910B2 (en) * | 2002-07-15 | 2008-04-15 | Los Alamos National Security, Llc | Method for producing metal oxide nanoparticles |
US7557324B2 (en) | 2002-09-18 | 2009-07-07 | Volvo Aero Corporation | Backstream-preventing thermal spraying device |
US20040065171A1 (en) | 2002-10-02 | 2004-04-08 | Hearley Andrew K. | Soild-state hydrogen storage systems |
US6902699B2 (en) | 2002-10-02 | 2005-06-07 | The Boeing Company | Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom |
US6838072B1 (en) * | 2002-10-02 | 2005-01-04 | The United States Of America As Represented By The United States Department Of Energy | Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries |
DE60335394D1 (de) | 2002-10-09 | 2011-01-27 | Nat Inst For Materials Science | Verfahren zur herstellung eines metall berzugs mit einer hvof-spritzpistole und vorrichtung zum thermischen spritzen |
RU2005115063A (ru) | 2002-10-16 | 2005-10-10 | КонокоФиллипс Кампэни (US) | Способ изготовления носителя для катализатора из стабилизированного переходного оксида алюминия (варианты), способ изготовления катализатора фишера-тропша и способ синтеза парафиновых углеводородов из синтез-газа |
US20040077494A1 (en) * | 2002-10-22 | 2004-04-22 | Labarge William J. | Method for depositing particles onto a catalytic support |
US20060068989A1 (en) * | 2002-10-28 | 2006-03-30 | Mitsubishi Rayon Co., Ltd. | Carbon-intersticed metallic palladium, palladium catalyst and method for preparation thereof, and method for producing alpha,beta-unsaturated carboxylic acid |
EP3412696A1 (en) | 2002-10-30 | 2018-12-12 | Sumitomo Chemical Company, Limited | High-molecular compounds and polymer light emitting devices made by using the same |
US6913740B2 (en) | 2002-11-14 | 2005-07-05 | Catalytic Materials, Inc. | Graphite nanocatalysts |
GB0227081D0 (en) | 2002-11-20 | 2002-12-24 | Exxonmobil Res & Eng Co | Methods for preparing catalysts |
WO2005015579A2 (en) | 2002-12-02 | 2005-02-17 | North Carolina State University | Methods of forming three-dimensional nanodot arrays in a matrix |
US6824585B2 (en) | 2002-12-03 | 2004-11-30 | Adrian Joseph | Low cost high speed titanium and its alloy production |
EP1638676A2 (en) | 2002-12-17 | 2006-03-29 | E.I. du Pont de Nemours and Company | Method of producing nanoparticles using a evaporation-condensation process with a reaction chamber plasma reactor system |
EP1433745A2 (en) * | 2002-12-26 | 2004-06-30 | Matsushita Electric Industrial Co., Ltd. | Catalyst for the removal of carbon monoxide, its method of manufacture and its uses |
DE10262106C5 (de) * | 2002-12-30 | 2011-03-31 | Gerhard Dr. Meyer | Leucit-Glaskeramik-Pulver |
JP2004233007A (ja) | 2003-01-31 | 2004-08-19 | Sumitomo Chem Co Ltd | ベントガスコンデンサー |
CA2418836A1 (en) | 2003-02-12 | 2004-08-12 | Resorption Canada Ltd. | Multiple plasma generator hazardous waste processing system |
JP4227816B2 (ja) | 2003-02-20 | 2009-02-18 | 日本ニューマチック工業株式会社 | 粉体熱処理装置 |
US20040167009A1 (en) | 2003-02-26 | 2004-08-26 | The Regents Of The University Of California, A California Corporation | Ceramic materials reinforced with metal and single-wall carbon nanotubes |
US20040176246A1 (en) | 2003-03-05 | 2004-09-09 | 3M Innovative Properties Company | Catalyzing filters and methods of making |
CN1514243A (zh) | 2003-04-30 | 2004-07-21 | 成都夸常科技有限公司 | 对目标物进行定性和/或定量分析的方法、装置和标记物及检测试剂盒 |
US7070342B2 (en) | 2003-03-24 | 2006-07-04 | Aurora Instruments, Inc. | Low profile system for joining optical fiber waveguides |
JP4396811B2 (ja) | 2003-03-25 | 2010-01-13 | Tdk株式会社 | 複合粒子の製造方法、球状複合粒子の製造方法 |
US7073559B2 (en) * | 2003-07-02 | 2006-07-11 | Ati Properties, Inc. | Method for producing metal fibers |
US20040235657A1 (en) * | 2003-05-21 | 2004-11-25 | Fina Technology, Inc. | Freeze dry process for the preparation of a high surface area and high pore volume catalyst |
US7279655B2 (en) | 2003-06-11 | 2007-10-09 | Plasmet Corporation | Inductively coupled plasma/partial oxidation reformation of carbonaceous compounds to produce fuel for energy production |
TWI242465B (en) * | 2003-07-21 | 2005-11-01 | Ind Tech Res Inst | Carbon nanocapsule as catalyst support |
EP1689519B1 (en) | 2003-08-28 | 2012-06-20 | Tekna Plasma Systems Inc. | Process for the synthesis, separation and purification of powder materials |
RU2242532C1 (ru) | 2003-09-09 | 2004-12-20 | Гуревич Сергей Александрович | Способ получения наночастиц |
US7217407B2 (en) | 2003-09-11 | 2007-05-15 | E. I. Du Pont De Nemours And Company | Plasma synthesis of metal oxide nanoparticles |
US20050066805A1 (en) * | 2003-09-17 | 2005-03-31 | Park Andrew D. | Hard armor composite |
US7278265B2 (en) | 2003-09-26 | 2007-10-09 | Siemens Power Generation, Inc. | Catalytic combustors |
US6877552B1 (en) * | 2003-10-14 | 2005-04-12 | Komax Systems, Inc | Static mixer-heat exchanger |
US7541310B2 (en) | 2003-10-16 | 2009-06-02 | Conocophillips Company | Silica-alumina catalyst support, catalysts made therefrom and methods of making and using same |
JP4342266B2 (ja) | 2003-10-20 | 2009-10-14 | トヨタ自動車株式会社 | 減圧装置 |
US7282167B2 (en) | 2003-12-15 | 2007-10-16 | Quantumsphere, Inc. | Method and apparatus for forming nano-particles |
US20050133121A1 (en) | 2003-12-22 | 2005-06-23 | General Electric Company | Metallic alloy nanocomposite for high-temperature structural components and methods of making |
WO2005066069A1 (ja) | 2003-12-25 | 2005-07-21 | Mitsui Mining & Smelting Co., Ltd. | 微粒子の製造方法及び製造装置 |
JP3912377B2 (ja) | 2003-12-25 | 2007-05-09 | 日産自動車株式会社 | 排ガス浄化用触媒粉末の製造方法 |
US7285312B2 (en) | 2004-01-16 | 2007-10-23 | Honeywell International, Inc. | Atomic layer deposition for turbine components |
US7547418B2 (en) | 2004-01-23 | 2009-06-16 | Gm Global Technology Operations, Inc. | Fluidized-bed reactor system |
US7494527B2 (en) * | 2004-01-26 | 2009-02-24 | Tekna Plasma Systems Inc. | Process for plasma synthesis of rhenium nano and micro powders, and for coatings and near net shape deposits thereof and apparatus therefor |
JP4420690B2 (ja) | 2004-02-04 | 2010-02-24 | ホソカワミクロン株式会社 | 微粒子製造方法及び微粒子製造装置 |
US7604843B1 (en) | 2005-03-16 | 2009-10-20 | Nanosolar, Inc. | Metallic dispersion |
US7612013B2 (en) | 2004-02-24 | 2009-11-03 | Japan Oil, Gas And Metals National Corporation | Hydrocarbon-producing catalyst, process for producing the same, and process for producing hydrocarbons using the catalyst |
US6886545B1 (en) | 2004-03-05 | 2005-05-03 | Haldex Hydraulics Ab | Control scheme for exhaust gas circulation system |
US7208126B2 (en) * | 2004-03-19 | 2007-04-24 | E. I. Du Pont De Nemours And Company | Titanium dioxide nanopowder manufacturing process |
JP4199691B2 (ja) | 2004-03-25 | 2008-12-17 | 田中貴金属工業株式会社 | 触媒 |
JP4513384B2 (ja) | 2004-03-31 | 2010-07-28 | 日産自動車株式会社 | 高耐熱性排ガス浄化用触媒及びその製造方法 |
CA2503655C (en) | 2004-04-06 | 2013-08-06 | Universite De Sherbrooke | Carbon sequestration and dry reforming process and catalysts to produce same |
WO2005116650A2 (en) | 2004-04-19 | 2005-12-08 | Sdc Materials, Llc | High throughput discovery of materials through vapor phase synthesis |
JP4624006B2 (ja) | 2004-06-02 | 2011-02-02 | 財団法人電力中央研究所 | 球状複合粒子の製造方法およびその製造装置 |
US7736582B2 (en) | 2004-06-10 | 2010-06-15 | Allomet Corporation | Method for consolidating tough coated hard powders |
JP4649586B2 (ja) | 2004-06-16 | 2011-03-09 | 独立行政法人物質・材料研究機構 | 窒素プラズマによるSiCナノ粒子の製造法 |
US7446335B2 (en) * | 2004-06-18 | 2008-11-04 | Regents Of The University Of Minnesota | Process and apparatus for forming nanoparticles using radiofrequency plasmas |
GB0413767D0 (en) | 2004-06-21 | 2004-07-21 | Johnson Matthey Plc | Metal oxide sols |
FR2872061B1 (fr) | 2004-06-23 | 2007-04-27 | Toulouse Inst Nat Polytech | Composition solide divisee formee de grains a depot metallique atomique continu et son procede d'obtention |
US7541012B2 (en) | 2004-07-07 | 2009-06-02 | The Hong Kong University Of Science And Technology | Catalytic material and method of production thereof |
US7465430B2 (en) | 2004-07-20 | 2008-12-16 | E. I. Du Pont De Nemours And Company | Apparatus for making metal oxide nanopowder |
DE102004037752A1 (de) | 2004-08-04 | 2006-03-16 | Cognis Deutschland Gmbh & Co. Kg | Ausgerüstete Fasern und textile Flächengebilde |
US7713908B2 (en) * | 2004-08-30 | 2010-05-11 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Porous composite metal oxide and method of producing the same |
WO2006025136A1 (ja) | 2004-09-01 | 2006-03-09 | Shibaura Mechatronics Corporation | プラズマ処理装置及びプラズマ処理方法 |
JP4988164B2 (ja) | 2005-03-08 | 2012-08-01 | 株式会社日清製粉グループ本社 | 微粒子の製造方法と装置 |
KR101207602B1 (ko) * | 2004-09-07 | 2012-12-03 | 닛신 엔지니어링 가부시키가이샤 | 미립자의 제조방법 및 장치 |
TW200611449A (en) | 2004-09-24 | 2006-04-01 | Hon Hai Prec Ind Co Ltd | A catalyst layer of a fuel cell, a method for fabricating the same and a fuel cell utilizing the same |
CA2583486C (en) | 2004-10-08 | 2016-02-09 | Sdc Materials, Llc | An apparatus for and method of sampling and collecting powders flowing in a gas stream |
US7601671B2 (en) | 2004-10-28 | 2009-10-13 | Umicore Ag & Co. Kg | Drying method for exhaust gas catalyst |
JP4282586B2 (ja) | 2004-11-02 | 2009-06-24 | Spsシンテックス株式会社 | ナノ精密焼結システム |
US7632775B2 (en) * | 2004-11-17 | 2009-12-15 | Headwaters Technology Innovation, Llc | Multicomponent nanoparticles formed using a dispersing agent |
US7750265B2 (en) | 2004-11-24 | 2010-07-06 | Vladimir Belashchenko | Multi-electrode plasma system and method for thermal spraying |
DE102004059375A1 (de) | 2004-12-09 | 2006-06-22 | Consortium für elektrochemische Industrie GmbH | Auf nanoskaligem Titandioxid geträgerte Platin-Katalysatoren, deren Verwendung in der Hydrosilylierung, ein Hydrosilylierungsverfahren mit solchen Katalysatoren und Zusammensetzungen enthaltend solche Katalysatoren |
EP1839749B1 (en) * | 2004-12-14 | 2014-10-08 | Nissan Motor Co., Ltd. | Catalyst, exhaust gas clarifying catalyst, and method for producing catalyst |
US20060153728A1 (en) | 2005-01-10 | 2006-07-13 | Schoenung Julie M | Synthesis of bulk, fully dense nanostructured metals and metal matrix composites |
KR101129610B1 (ko) | 2005-01-28 | 2012-05-15 | 테크나 플라즈마 시스템 인코포레이티드 | 나노분말의 유도 플라즈마 합성 |
US7618919B2 (en) | 2005-01-28 | 2009-11-17 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Catalyst support and method of producing the same |
WO2006091613A2 (en) * | 2005-02-24 | 2006-08-31 | Rutgers, The State University Of New Jersey | Nanocomposite ceramics and process for making the same |
US7332454B2 (en) | 2005-03-16 | 2008-02-19 | Sud-Chemie Inc. | Oxidation catalyst on a substrate utilized for the purification of exhaust gases |
JP2006260385A (ja) | 2005-03-18 | 2006-09-28 | Osaka Gas Co Ltd | 整圧器及びその処理方法 |
US7799111B2 (en) | 2005-03-28 | 2010-09-21 | Sulzer Metco Venture Llc | Thermal spray feedstock composition |
WO2006122794A2 (en) | 2005-05-17 | 2006-11-23 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Materials purification by treatment with hydrogen-based plasma |
KR100711967B1 (ko) | 2005-08-08 | 2007-05-02 | 삼성전기주식회사 | 금속 나노 입자의 제조방법 및 도전성 잉크 |
JP2007044585A (ja) * | 2005-08-08 | 2007-02-22 | Toyota Central Res & Dev Lab Inc | 複合金属酸化物多孔体の製造方法 |
US7695705B2 (en) * | 2005-08-26 | 2010-04-13 | Ppg Industries Ohio, Inc. | Method and apparatus for the production of ultrafine silica particles from solid silica powder and related coating compositions |
US20080026041A1 (en) | 2005-09-12 | 2008-01-31 | Argonide Corporation | Non-woven media incorporating ultrafine or nanosize powders |
CN1931423A (zh) * | 2005-09-13 | 2007-03-21 | 鸿富锦精密工业(深圳)有限公司 | 纳米粒子合成装置及其合成方法 |
US20080031806A1 (en) | 2005-09-16 | 2008-02-07 | John Gavenonis | Continuous process for making nanocrystalline metal dioxide |
US7342197B2 (en) * | 2005-09-30 | 2008-03-11 | Phoenix Solutions Co. | Plasma torch with corrosive protected collimator |
US8063315B2 (en) | 2005-10-06 | 2011-11-22 | Endicott Interconnect Technologies, Inc. | Circuitized substrate with conductive paste, electrical assembly including said circuitized substrate and method of making said substrate |
US7678955B2 (en) * | 2005-10-13 | 2010-03-16 | Exxonmobil Chemical Patents Inc | Porous composite materials having micro and meso/macroporosity |
US7615097B2 (en) | 2005-10-13 | 2009-11-10 | Plasma Processes, Inc. | Nano powders, components and coatings by plasma technique |
TWI402117B (zh) * | 2005-10-17 | 2013-07-21 | Nisshin Seifun Group Inc | 超微粒子的製造方法 |
US7935655B2 (en) | 2005-11-04 | 2011-05-03 | Kent State University | Nanostructured core-shell electrocatalysts for fuel cells |
JP4959717B2 (ja) | 2005-12-31 | 2012-06-27 | 中国科学院物理研究所 | 磁性メモリセル、磁気ランダムアクセスメモリ、および、そのアクセス記憶方法 |
US9005642B2 (en) * | 2006-01-24 | 2015-04-14 | No-Burn Investments, L.L.C. | Intumescent fire retardant paint with insecticide |
JP4565191B2 (ja) | 2006-01-30 | 2010-10-20 | 国立大学法人山梨大学 | 微粒子触媒の製造方法、微粒子触媒、及び改質装置 |
US7402899B1 (en) | 2006-02-03 | 2008-07-22 | Pacesetter, Inc. | Hermetically sealable silicon system and method of making same |
CN101415489B (zh) * | 2006-04-03 | 2012-06-27 | 日产自动车株式会社 | 废气净化催化剂及其制造方法 |
WO2008008104A2 (en) | 2006-04-05 | 2008-01-17 | Foret Plasma Labs, Llc | System, method and apparatus for treating liquids with wave energy from plasma |
FR2899594A1 (fr) | 2006-04-10 | 2007-10-12 | Commissariat Energie Atomique | Procede d'assemblage de substrats avec traitements thermiques a basses temperatures |
WO2008054867A2 (en) * | 2006-05-01 | 2008-05-08 | Warwick Mills, Inc. | Mosaic extremity protection system with transportable solid elements |
EP2015859A4 (en) | 2006-05-05 | 2010-09-29 | Plascoenergy Ip Holdings Slb | GAS CONDITIONING SYSTEM |
MX2008013987A (es) | 2006-05-08 | 2008-11-12 | Bp Corp North America Inc | Proceso para la produccion de acidos carboxilicos aromaticos en agua. |
US7541309B2 (en) | 2006-05-16 | 2009-06-02 | Headwaters Technology Innovation, Llc | Reforming nanocatalysts and methods of making and using such catalysts |
US7417008B2 (en) | 2006-05-31 | 2008-08-26 | Exxonmobil Chemical Patents Inc. | Supported polyoxometalates and process for their preparation |
US7576031B2 (en) | 2006-06-09 | 2009-08-18 | Basf Catalysts Llc | Pt-Pd diesel oxidation catalyst with CO/HC light-off and HC storage function |
US7803210B2 (en) | 2006-08-09 | 2010-09-28 | Napra Co., Ltd. | Method for producing spherical particles having nanometer size, crystalline structure, and good sphericity |
KR20140120360A (ko) | 2006-08-19 | 2014-10-13 | 우미코레 아게 운트 코 카게 | 촉매적으로 피복된 디젤 입자 필터, 이의 제조방법 및 이의 용도 |
KR100756025B1 (ko) | 2006-08-28 | 2007-09-07 | 희성엥겔하드주식회사 | 내연기관 배기가스 정화용 삼중층 촉매시스템 |
ES2534215T3 (es) * | 2006-08-30 | 2015-04-20 | Oerlikon Metco Ag, Wohlen | Dispositivo de pulverización de plasma y un método para la introducción de un precursor líquido en un sistema de gas de plasma |
US7758784B2 (en) | 2006-09-14 | 2010-07-20 | Iap Research, Inc. | Method of producing uniform blends of nano and micron powders |
JP2008100152A (ja) | 2006-10-18 | 2008-05-01 | Cataler Corp | 排ガス浄化用触媒 |
JP5052291B2 (ja) | 2006-11-02 | 2012-10-17 | 株式会社日清製粉グループ本社 | 合金超微粒子、およびその製造方法 |
US8030592B2 (en) | 2006-11-22 | 2011-10-04 | Reintjes Marine Surface Technologies, Llc | Apparatus and method for applying antifoulants to marine vessels |
US8258070B2 (en) | 2006-11-27 | 2012-09-04 | WGCH Technology Limited | Engine exhaust catalysts containing palladium-gold |
KR20080047950A (ko) | 2006-11-27 | 2008-05-30 | 나노스텔라 인코포레이티드 | 팔라듐-금을 포함하는 엔진 배기가스 촉매 |
US7534738B2 (en) | 2006-11-27 | 2009-05-19 | Nanostellar, Inc. | Engine exhaust catalysts containing palladium-gold |
US20080125313A1 (en) | 2006-11-27 | 2008-05-29 | Fujdala Kyle L | Engine Exhaust Catalysts Containing Palladium-Gold |
US7709414B2 (en) | 2006-11-27 | 2010-05-04 | Nanostellar, Inc. | Engine exhaust catalysts containing palladium-gold |
US8267001B2 (en) | 2006-12-04 | 2012-09-18 | Battelle Memorial Institute | Composite armor and method for making composite armor |
US20080207858A1 (en) | 2007-01-18 | 2008-08-28 | Ruth Mary Kowaleski | Catalyst, its preparation and use |
EP1952876A1 (en) * | 2007-01-25 | 2008-08-06 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst and manufacturing method thereof |
US8679291B2 (en) | 2007-03-13 | 2014-03-25 | Heartland Technology Partners Llc | Compact wastewater concentrator using waste heat |
US8124043B2 (en) | 2007-03-16 | 2012-02-28 | Honda Motor Co., Ltd. | Method of preparing carbon nanotube containing electrodes |
US7635218B1 (en) | 2007-04-19 | 2009-12-22 | Vortex Systems (International) Ci | Method for dust-free low pressure mixing |
JP5125202B2 (ja) | 2007-04-24 | 2013-01-23 | トヨタ自動車株式会社 | Niナノ粒子の製造方法 |
US7772150B2 (en) | 2007-05-01 | 2010-08-10 | Ut-Battelle, Llc | Method to prepare nanoparticles on porous mediums |
EP2150637A1 (en) | 2007-05-04 | 2010-02-10 | Principle Energy Solutions, Inc. | Production of hydrocarbons from carbon and hydrogen sources |
US20080277264A1 (en) | 2007-05-10 | 2008-11-13 | Fluid-Quip, Inc. | Alcohol production using hydraulic cavitation |
US20090010801A1 (en) | 2007-05-15 | 2009-01-08 | Murphy Oliver J | Air cleaner |
AU2008276180B2 (en) | 2007-07-13 | 2011-08-04 | University Of Southern California | Electrolysis of carbon dioxide in aqueous media to carbon monoxide and hydrogen for production of methanol |
US8900420B2 (en) | 2007-08-20 | 2014-12-02 | 3M Innovative Properties Company | Catalyst production process |
US20090092887A1 (en) | 2007-10-05 | 2009-04-09 | Quantumsphere, Inc. | Nanoparticle coated electrode and method of manufacture |
KR100831069B1 (ko) | 2007-10-10 | 2008-05-22 | 한국과학기술원 | 나노크기의 금속분화 촉매 및 그의 제조방법 |
US8575059B1 (en) | 2007-10-15 | 2013-11-05 | SDCmaterials, Inc. | Method and system for forming plug and play metal compound catalysts |
US20100183497A1 (en) | 2007-11-06 | 2010-07-22 | Quantumsphere, Inc. | System and method for ammonia synthesis |
US7759212B2 (en) | 2007-12-26 | 2010-07-20 | Stats Chippac, Ltd. | System-in-package having integrated passive devices and method therefor |
JP5228495B2 (ja) | 2008-01-11 | 2013-07-03 | 富士通セミコンダクター株式会社 | 半導体装置の製造方法 |
US20120171098A1 (en) | 2008-01-22 | 2012-07-05 | Ppg Industries Ohio, Inc | Method of consolidating ultrafine metal carbide and metal boride particles and products made therefrom |
CN101983087B (zh) | 2008-02-08 | 2013-04-17 | Peat国际公司 | 处理废物的方法和设备 |
US20090208367A1 (en) | 2008-02-19 | 2009-08-20 | Rosario Sam Calio | Autoclavable bucketless cleaning system |
CA2718882C (en) | 2008-03-20 | 2013-12-24 | University Of Akron | Ceramic nanofibers containing nanosize metal catalyst particles and medium thereof |
KR101407650B1 (ko) | 2008-04-04 | 2014-06-13 | 성균관대학교산학협력단 | 나노입자 제조방법, 나노입자 및 이를 포함한 전극을구비한 리튬 전지 |
US8431102B2 (en) | 2008-04-16 | 2013-04-30 | The Regents Of The University Of California | Rhenium boride compounds and uses thereof |
US8716165B2 (en) | 2008-04-30 | 2014-05-06 | Corning Incorporated | Catalysts on substrates and methods for providing the same |
US20090324468A1 (en) | 2008-06-27 | 2009-12-31 | Golden Stephen J | Zero platinum group metal catalysts |
US8168561B2 (en) | 2008-07-31 | 2012-05-01 | University Of Utah Research Foundation | Core shell catalyst |
US8484918B2 (en) * | 2008-10-15 | 2013-07-16 | Merkel Composite Technologies, Inc. | Composite structural elements and method of making same |
TWI363357B (en) | 2008-12-09 | 2012-05-01 | Univ Nat Pingtung Sci & Tech | Method for manufacturing composite metal conductive particules |
WO2010067344A1 (en) | 2008-12-11 | 2010-06-17 | Robin Ernest Fossey | An autoclave |
WO2010077843A2 (en) | 2008-12-29 | 2010-07-08 | Basf Catalysts Llc | Oxidation catalyst with low co and hc light-off and systems and methods |
US8211392B2 (en) | 2009-01-16 | 2012-07-03 | Basf Corporation | Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion |
US8329607B2 (en) | 2009-01-16 | 2012-12-11 | Basf Corporation | Layered diesel oxidation catalyst composites |
US8252258B2 (en) | 2009-01-16 | 2012-08-28 | Basf Corporation | Diesel oxidation catalyst with layer structure for improved hydrocarbon conversion |
GB0903262D0 (en) | 2009-02-26 | 2009-04-08 | Johnson Matthey Plc | Filter |
EP2247366A4 (en) | 2009-03-10 | 2011-04-20 | Calera Corp | SYSTEMS AND METHODS FOR CO2 TREATMENT |
WO2010127344A2 (en) | 2009-05-01 | 2010-11-04 | The Regents Of The University Of Michigan | In-situ plasma/laser hybrid scheme |
US8309489B2 (en) | 2009-06-18 | 2012-11-13 | University Of Central Florida Research Foundation, Inc. | Thermally stable nanoparticles on supports |
US8557727B2 (en) * | 2009-12-15 | 2013-10-15 | SDCmaterials, Inc. | Method of forming a catalyst with inhibited mobility of nano-active material |
US8803025B2 (en) | 2009-12-15 | 2014-08-12 | SDCmaterials, Inc. | Non-plugging D.C. plasma gun |
US9149797B2 (en) | 2009-12-15 | 2015-10-06 | SDCmaterials, Inc. | Catalyst production method and system |
US8652992B2 (en) | 2009-12-15 | 2014-02-18 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
US20110143930A1 (en) | 2009-12-15 | 2011-06-16 | SDCmaterials, Inc. | Tunable size of nano-active material on nano-support |
US9126191B2 (en) | 2009-12-15 | 2015-09-08 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US8470112B1 (en) | 2009-12-15 | 2013-06-25 | SDCmaterials, Inc. | Workflow for novel composite materials |
WO2011084534A1 (en) | 2009-12-15 | 2011-07-14 | Sdcmaterials Llc | Advanced catalysts for fine chemical and pharmaceutical applications |
US8124798B2 (en) | 2009-12-17 | 2012-02-28 | Lyondell Chemical Technology, Lp | Direct epoxidation catalyst and process |
DE102011010106A1 (de) | 2010-02-01 | 2011-08-04 | Johnson Matthey Public Limited Company | Extrudiertes SCR-Filter |
US8080495B2 (en) | 2010-04-01 | 2011-12-20 | Cabot Corporation | Diesel oxidation catalysts |
US8734743B2 (en) | 2010-06-10 | 2014-05-27 | Basf Se | NOx storage catalyst with improved hydrocarbon conversion activity |
US8349761B2 (en) | 2010-07-27 | 2013-01-08 | Toyota Motor Engineering & Manufacturing North America, Inc. | Dual-oxide sinter resistant catalyst |
US8845974B2 (en) | 2010-11-24 | 2014-09-30 | Basf Corporation | Advanced catalyzed soot filters and method of making and using the same |
US8491860B2 (en) | 2011-08-17 | 2013-07-23 | Ford Global Technologies, Llc | Methods and systems for an engine emission control system |
CA2845129A1 (en) | 2011-08-19 | 2013-02-28 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
-
2010
- 2010-12-07 US US12/962,508 patent/US8557727B2/en not_active Expired - Fee Related
- 2010-12-09 CA CA2784518A patent/CA2784518A1/en not_active Abandoned
- 2010-12-09 MX MX2012006989A patent/MX2012006989A/es unknown
- 2010-12-09 WO PCT/US2010/059761 patent/WO2011081833A1/en active Application Filing
- 2010-12-09 AU AU2010337188A patent/AU2010337188B2/en not_active Ceased
- 2010-12-09 JP JP2012544651A patent/JP5837886B2/ja not_active Expired - Fee Related
- 2010-12-09 KR KR1020127018435A patent/KR20120112563A/ko not_active Application Discontinuation
- 2010-12-09 CN CN2010800638277A patent/CN102811809A/zh active Pending
- 2010-12-09 EP EP10841473.1A patent/EP2512657A4/en not_active Withdrawn
- 2010-12-09 BR BR112012015882A patent/BR112012015882A2/pt not_active IP Right Cessation
-
2012
- 2012-06-13 IL IL220389A patent/IL220389A/en not_active IP Right Cessation
- 2012-07-09 ZA ZA2012/05097A patent/ZA201205097B/en unknown
-
2013
- 2013-09-13 US US14/027,086 patent/US8865611B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7022305B2 (en) * | 2000-07-21 | 2006-04-04 | Leibniz-Institut Fuer Neue Materialien Gemeinnuetzige Gmbh | Nanoscale corundum powders, sintered compacts produced from these powders and method for producing the same |
JP2003126694A (ja) * | 2001-10-25 | 2003-05-07 | Toyota Motor Corp | 排ガス浄化用触媒 |
US20080277267A1 (en) * | 2005-04-19 | 2008-11-13 | Sdc Materials, Inc. | Highly turbulent quench chamber |
CN101400441A (zh) * | 2005-11-01 | 2009-04-01 | 日产自动车株式会社 | 废气净化用催化剂及其制造方法 |
US20080206562A1 (en) * | 2007-01-12 | 2008-08-28 | The Regents Of The University Of California | Methods of generating supported nanocatalysts and compositions thereof |
CN101301610A (zh) * | 2007-01-25 | 2008-11-12 | 日产自动车株式会社 | 废气净化催化剂及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
IL220389A0 (en) | 2012-08-30 |
MX2012006989A (es) | 2012-11-23 |
JP5837886B2 (ja) | 2015-12-24 |
ZA201205097B (en) | 2014-01-29 |
CA2784518A1 (en) | 2011-07-07 |
BR112012015882A2 (pt) | 2019-09-24 |
KR20120112563A (ko) | 2012-10-11 |
EP2512657A4 (en) | 2014-06-04 |
IL220389A (en) | 2017-06-29 |
WO2011081833A1 (en) | 2011-07-07 |
AU2010337188B2 (en) | 2015-06-04 |
US8865611B2 (en) | 2014-10-21 |
US20110143926A1 (en) | 2011-06-16 |
JP2013513483A (ja) | 2013-04-22 |
US8557727B2 (en) | 2013-10-15 |
AU2010337188A1 (en) | 2012-07-26 |
EP2512657A1 (en) | 2012-10-24 |
US20140018230A1 (en) | 2014-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102811809A (zh) | 纳米活性材料的具有抑制的迁移性的催化剂的形成方法 | |
RU2567859C2 (ru) | Способ формирования катализатора с ингибированной подвижностью наноактивного материала | |
US9332636B2 (en) | Sandwich of impact resistant material | |
KR20050085704A (ko) | 반응 챔버 플라스마 반응기 시스템으로 증발-응축 방법을사용하는 나노입자의 제조 방법 | |
US8956724B2 (en) | Spherical molybdenum disulfide powders, molybdenum disulfide coatings, and methods for producing same | |
KR20090108004A (ko) | 유동층 시스템 및 2차 가스 유동을 포함하는 방법 | |
CN104942300B (zh) | 空心或实心球形金属粉体的制备方法 | |
CN1767893A (zh) | 输送细粒固体的方法和装置 | |
CN110981445A (zh) | 一种激光3d打印用氧化物陶瓷粉末的制备方法 | |
CN109852917B (zh) | C/C、C/SiC复合材料表面钼钛锆构件真空等离子喷涂成形制备方法 | |
Hu et al. | A novel process for fully automatic mass-production of Li2TiO3 ceramic pebbles with uniform structure and size | |
CN112744851B (zh) | 树莓型氧化物微球及其制备方法和应用 | |
CN205856396U (zh) | 一种混合乳化装置 | |
CN109455727A (zh) | 一种微纳复合粒子及其机械载荷嵌入制备工艺 | |
CN109437215A (zh) | 一种微纳复合粒子及其真空负压嵌入制备工艺 | |
CN108993338A (zh) | 一种用于合成四氧化三铁纳米粉体的微反应装置及方法 | |
CN115121200A (zh) | 一种基于微型膜反应器连续制备烷基铝氧烷的方法 | |
CN106994322A (zh) | 一种离心场和声场协同增强纳米颗粒流化的装置 | |
CN109603783A (zh) | 一种微纳复合粒子及其高温重构插入制备工艺 | |
CN109679144A (zh) | 一种微纳复合粒子及其多转子物理连续改性制备工艺 | |
Khor et al. | Granulation of Al-alloy composite powders for cold isostatic pressing | |
Kamiya | Fine and Nanoparticle Adhesion and Aggregation Behaviour Characterisation and Control | |
KR20240161087A (ko) | 분무 건조기 | |
CN117299011A (zh) | 一种微纳分散强化流化床反应装置及反应方法 | |
CN106179688A (zh) | 一种具有实时流量监控功能的浆料生产线 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20121205 |