CN1101335C - 一种大量制备单壁纳米碳管的氢弧放电方法 - Google Patents

一种大量制备单壁纳米碳管的氢弧放电方法 Download PDF

Info

Publication number
CN1101335C
CN1101335C CN99113022A CN99113022A CN1101335C CN 1101335 C CN1101335 C CN 1101335C CN 99113022 A CN99113022 A CN 99113022A CN 99113022 A CN99113022 A CN 99113022A CN 1101335 C CN1101335 C CN 1101335C
Authority
CN
China
Prior art keywords
anode
hydrogen
carbon nanotube
walled carbon
single walled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN99113022A
Other languages
English (en)
Other versions
CN1277937A (zh
Inventor
刘畅
丛洪涛
成会明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN99113022A priority Critical patent/CN1101335C/zh
Priority to US09/588,568 priority patent/US6517800B1/en
Priority to DE60028869T priority patent/DE60028869T2/de
Priority to AT00305131T priority patent/ATE330905T1/de
Priority to EP00305131A priority patent/EP1061044B1/en
Publication of CN1277937A publication Critical patent/CN1277937A/zh
Application granted granted Critical
Publication of CN1101335C publication Critical patent/CN1101335C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0816Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes involving moving electrodes
    • B01J2219/082Sliding electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0822The electrode being consumed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0839Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/844Growth by vaporization or dissociation of carbon source using a high-energy heat source, e.g. electric arc, laser, plasma, e-beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • Y10S977/896Chemical synthesis, e.g. chemical bonding or breaking

Abstract

一种大量制备单壁纳米碳管的氢弧放电方法,采用阴、阳极在压力气氛下电弧放电的方式,阳极为由石墨、催化剂混合物组成的消耗阳极,催化剂选自铁、钴、镍、钇中的一种或多种,加入量为2.5~5.0at%,其特征在于:(1)反应气氛为50~400乇氢气;(2)阴极与阳极间成30~80°的角度;(3)构成阳极的反应物中加入0.5~1at%的硫或固体硫化物作生长促进剂。本发明可以半连续地低成本、大量、高纯度地生产单壁纳米管。

Description

一种大量制备单壁纳米碳管的氢弧放电方法
本发明涉及纳米碳管的制备技术,特别提供了一种在氢气压力下电弧放电大量生产单壁纳米碳管的方法。
纳米碳管自1991年被发现以来,已在全世界范围内引起了各国学者的广泛关注和极大兴趣。理论计算表明纳米碳管具有极高的强度和弹性模量,被称为超级纤维,可用于高级复合材料的增强体;纳米碳管具有独特的电子带结构,是理想的一维量子导线;此外,纳米碳管用作发射极、吸波材料、储氢材料等也极具潜力。正是因为具有众多的优异性能和广阔的应用前景,纳米碳管激起了科学家们的极大研究热情。大量制备出高纯度的纳米碳管是对其进行结构观察、性能测试以及进一步研究和应用的前提,所以纳米碳管的制备至关重要。近年来,纳米碳管的制备一直处于发展和进步之中。多壁纳米碳管(MWNT)的合成技术已较为成熟,并可以实现定向生长,单壁纳米碳管(SWNT)的制备方法则主要有电弧法、激光法和炭氢化合物催化分解法等。传统的电弧法是在充有一定压力惰性气体的反应室内,在两根石墨电极棒间通过高频或接触起弧产生高温,蒸发石墨电极,同时在催化剂的作用下碳原子结构重排,可以制得单壁纳米碳管。1993年日本学者Iijima就是用这种方法首次获得了单壁纳米碳管,但其含量很低。1997年,C.Journet等人通过变换催化剂种类及调整反应器内气体压力的方法,取得了较好的结果。其实验条件为:反应气氛660乇氦气;阴极和阳极分别是一根石墨棒,其尺寸为阴极Φ16×40mm,阳极Φ16×100mm,又在阳极棒中间钻有一个Φ3.5×40mm深的孔,孔中充填催化剂(钇、镍)和石墨粉的混合物;阴极和阳极垂直相对,其间距为~3mm,反应时间为~2分钟。获得产物有以下几种形态:a.在反应室内壁上生成大量的橡胶状烟炙;b.在阴极与器壁间形成的网状结构;c.在阴极末端形成的柱状沉积物;d.在柱状沉积物周围出现的一个多孔、轻质环状物。其中胶状烟炙中含单壁纳米碳管最少,而环状物中纳米碳管的含量最高(体积百分含量~80%),此后没有采用电弧法制备单壁纳米碳管获得新进展的相关报道。传统电弧法制备单壁纳米碳管存在着以下缺陷:受电极及反应器尺寸的限制,产量有限;无法实现连续生产;无定形炭等杂质的含量较高。
本发明的目的在于提供一种大量制备单壁纳米碳管的氢弧放电方法,其可以半连续地低成本、大量、高纯度地生产单壁纳米管。
本发明提供了一种大量制备单壁纳米碳管的氢弧放电方法,采用阴、阳极在压力气氛下电弧放电的方式,阳极为由石墨和催化剂的混合物组成的消耗阳极,催化剂选自铁、钴、镍、钇中的一种或多种,加入量为混合物总量的2.5~5.0at%,其特征在于:
(1)反应气氛为50~400乇氢气;
(2)阴极与阳极间成30~80°的角度;
(3)阳极中加入占混合物总量的0.5~1at%的硫或固体硫化物作生长促进剂。
本发明中所述阳极可以为一石墨盘,其上钻孔,孔内填充石墨粉与催化剂、生长促进剂的混合物;或者所述阳极为由石墨粉、催化剂和生长促进剂的混合物压制成型的原料靶。
此外,本发明氢气氛中可以加入氩气,加入量不超过20vol%。
本发明与现有技术的区别在于:传统电弧法是以氦气作为介质气体,且采用较高压力(660乇)。本发明用氢气作为介质,其价格远比氦气低廉,而且气体压力较低(50~400乇),这就大大地降低了成本。同时,氢自身的一些特性也有利于单壁纳米碳管的合成:氢气的热导率高,对等离子流有较好的冷却效果,能产生较大的温度梯度,利于单壁纳米碳管的生长;氢气可以选择性地刻蚀反应中生成的无定形碳(生成烷烃),提高产物质量;氢还能促进金属催化剂的蒸出,并防止其被毒化等,起弧电流低,可大幅降低能耗。
对制备装置的改进则提供了大量、半连续生产单壁纳米碳管的可能性。本发明阳极与阴极构成一角度,从而带来在反应过程中气体的流动,使特大反应室成为可能,本发明反应室是圆柱形的,直径600mm,高400mm,大的反应室容积对于大量制备轻质、大相对体积的单壁纳米碳管是十分必要的。在阳极圆盘上挖孔蓄装反应物,使得石墨粉与催化剂的蒸出更加均匀,阳极的可转动性使本发明能够实现制备的半连续化,而将反应原料粉末压制成型制成原料靶后,操作更为方便。
含硫生长促进剂的加入极为关键。没有含硫生长促进剂存在的情况下,几乎没有单壁纳米碳管生成;而只要加入适当数量的含硫生长促进剂,就能获得大量、高纯度的纳米碳管。
总之,本发明选用氢气替代氦气作为介质气体制备单壁纳米碳管,既能降低成本又可以提高产物质量;通过改进实验装置,实现了制备的半连续化,在半小时内可以制得产物约1.0g。氢弧放电半连续法制备单壁纳米碳管具有连续性好、成本低、大量、高纯度等特点,有着良好的商业化生产应用前景。
下面结合附图详述本发明。
附图1为氢弧放电半连续、大量制备单壁纳米碳管的装置示意图I。
附图2为氢弧放电半连续、大量制备单壁纳米碳管的装置示意图II。
附图3为制备单壁纳米碳管的扫描电镜照片。
附图4为制备单壁纳米碳管的透射电镜照片。
附图5为制备单壁纳米碳管的拉曼测试图谱。
实施例1
装置如附图1。
在阳极圆盘的一个孔中填充反应物2.0g,其中含有2.6at%Ni,0.7at%Fe,0.7at%Co,0.75at%FeS,其余成分为石墨粉。反应器内充入200乇氢气,起弧电流为150A直流,两电极间保持~2mm的距离,反应时间3分钟,获薄膜状及网状产物计180毫克。
实施例2
装置如附图1。
在阳板圆盘的一个孔中填充反应物2.0g,其中含有2.6at%Ni,1.0at%Co,0.75at%FeS,其余成分为石墨粉。反应器内充入200乇氢气,起弧电流为150A直流,两电极间保持~2mm的距离,反应时间3分钟,获薄膜状及网状产物计165毫克。
实施例3
装置如附图1。
在阳极圆盘的一个孔中填充反应物2.0g,其中含有2.6at%Ni,1.0at%Y,0.75at%FeS,其余成分为石墨粉。反应器内充入200乇氢气,起弧电流为150A直流,两电极间保持~2mm的距离,反应时间3分钟,获薄膜状及网状产物计175毫克。
实施例4
装置如附图1。
在阳极圆盘的一个孔中填充反应物2.0g,其中含有2.6at%Ni,1.0at%Fe,0.75at%FeS,其余成分为石墨粉。反应器内充入200乇氢气,起弧电流为150A直流,两电极间保持~2mm的距离,反应时间3分钟,获薄膜状及网状产物计160毫克。
实施例5
装置如附图1。
在阳极圆盘的一个孔中填充反应物2.0g,其中含有2.6at%Ni,0.7at%Fe,0.7at%Co,1.0at%S,其余成分为石墨粉。反应器内充入200乇氢气,起弧电流为150A直流,两电极间保持~2mm的距离,反应时间3分钟,获薄膜状及网状产物计170毫克。
实施例6
装置如附图1。
在阳极圆盘的一个孔中填充反应物2.0g,其中含有2.6at%Ni, 0.7at%Fe,0.7at%Co,0.75at%FeS,其余成分为石墨粉。反应器内充入200乇氢气和50乇氩气,起弧电流为150A直流,两电极间保持~2mm的距离,反应时间3分钟,获薄膜状及网状产物计170毫克。
实施例7
装置如附图1。
在阳极圆盘的一个孔中填充反应物2.0g,其中含有2.6at%Ni,0.7at%Fe,0.7at%Co,0.75at%FeS,其余成分为石墨粉。反应器内充入300乇氢气,起弧电流为150A直流,两电极间保持~2mm的距离,反应时间3分钟,获薄膜状及网状产物计175毫克。
实施例8
装置如附图1。
在阳极圆盘的一个孔中填充反应物2.0g,其中含有2.6at%Ni,0.7at%Fe,0.7at%Co,0.75at%FeS,其余成分为石墨粉。反应器内充入200乇氢气和50乇氩气,起弧电流为150A直流,两电极间保持~2mm的距离,反应时间3分钟,获薄膜状及网状产物计167毫克。
实施例9
装置如附图1。
在阳极圆盘的五个孔中各填充反应物2.0g,其中含有2.6at%Ni,0.7at%Fe,0.7at%Co,0.75at%FeS,其余成分为石墨粉。反应器内充入200乇氢气,超弧电流为150A直流,两电极间保持~2mm的距离,每个孔反应时间3分钟,之后更换反应室内气体,旋转阳极圆盘,蒸发下一个孔内的反应物。总反应时间30分钟,计获得薄膜状及网状产物计940毫克。
实施例10
装置如附图2。
将2.6at%Ni,0.7at%Fe,0.7at%Co,0.75at%FeS,和石墨粉的混合物充分混合均匀并压制成型,制成反应物圆盘作为阳极。反应器内充入200乇氢气,起弧电流为150A直流,两电极间保持~2mm的距离。每反应3分钟后,更换反应室内气体,旋转阳极圆盘,蒸发另一处的反应物。总反应时间30分钟,计获得薄膜状及网状产物980毫克。

Claims (4)

1.一种大量制备单壁纳米碳管的氢弧放电方法,采用阴、阳极在压力气氛下电弧放电的方式,阳极为由石墨和催化剂的混合物组成的消耗阳极,催化剂选自铁、钴、镍、钇中的一种或多种,加入量为混合物总量的2.5~5.0at%,其特征在于:
(1)反应气氛为50~400乇氢气;
(2)阴极与阳极间成30~80°的角度;
(3)阳极中加入占混合物总量0.5~1at%的硫或固体硫化物作生长促进剂。
2.按照权利要求1所述大量制备单壁纳米碳管的氢弧放电方法,其特征在于:所述阳极为一石墨盘,其上钻孔,孔内填充石墨粉与催化剂、生长促进剂的混合物。
3.按照权利要求1所述大量制备单壁纳米碳管的氢弧放电方法,其特征在于:所述阳极为由石墨粉、催化剂、生长促进剂的混合物压制成型的原料靶。
4.按照权利要求1所述大量制备单壁纳米碳管的氩弧放电方法,其特征在于:氢气氛中加入氩气,加入量不超过20vol%。
CN99113022A 1999-06-16 1999-06-16 一种大量制备单壁纳米碳管的氢弧放电方法 Expired - Fee Related CN1101335C (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN99113022A CN1101335C (zh) 1999-06-16 1999-06-16 一种大量制备单壁纳米碳管的氢弧放电方法
US09/588,568 US6517800B1 (en) 1999-06-16 2000-06-07 Production of single-walled carbon nanotubes by a hydrogen arc discharge method
DE60028869T DE60028869T2 (de) 1999-06-16 2000-06-16 Herstellung von einwandigen Kohlenstoffnanoröhren
AT00305131T ATE330905T1 (de) 1999-06-16 2000-06-16 Herstellung von einwandigen kohlenstoffnanoröhren
EP00305131A EP1061044B1 (en) 1999-06-16 2000-06-16 Production of single-walled carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN99113022A CN1101335C (zh) 1999-06-16 1999-06-16 一种大量制备单壁纳米碳管的氢弧放电方法

Publications (2)

Publication Number Publication Date
CN1277937A CN1277937A (zh) 2000-12-27
CN1101335C true CN1101335C (zh) 2003-02-12

Family

ID=5276260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99113022A Expired - Fee Related CN1101335C (zh) 1999-06-16 1999-06-16 一种大量制备单壁纳米碳管的氢弧放电方法

Country Status (2)

Country Link
US (1) US6517800B1 (zh)
CN (1) CN1101335C (zh)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861481B2 (en) * 2000-09-29 2005-03-01 Solvay Engineered Polymers, Inc. Ionomeric nanocomposites and articles therefrom
ATE479630T1 (de) 2000-10-06 2010-09-15 Mat & Electrochem Res Corp Doppelwandige kohlenstoffnanoröhren und verfahren zur herstellung, sowie anwendungen
EP1209714A3 (en) * 2000-11-21 2005-09-28 Futaba Corporation Method for manufacturing nano-tube, nano-tube manufactured thereby, apparatus for manufacturing nano-tube, method for patterning nano-tube, nano-tube material patterned thereby, and electron emission source
US7052667B2 (en) * 2001-10-30 2006-05-30 Materials And Electrochemical Research (Mer) Corporation RF plasma method for production of single walled carbon nanotubes
KR100468845B1 (ko) * 2002-01-30 2005-01-29 삼성전자주식회사 탄소나노튜브 제조방법
CN1234604C (zh) * 2002-11-27 2006-01-04 清华大学 一种碳纳米管、其制备方法和制备装置
US20040142203A1 (en) * 2003-01-07 2004-07-22 Woolley Christopher P. Hydrogen storage medium
US7241479B2 (en) * 2003-08-22 2007-07-10 Clemson University Thermal CVD synthesis of nanostructures
US8211593B2 (en) * 2003-09-08 2012-07-03 Intematix Corporation Low platinum fuel cells, catalysts, and method for preparing the same
US7163967B2 (en) * 2003-12-01 2007-01-16 Cryovac, Inc. Method of increasing the gas transmission rate of a film
US7335327B2 (en) * 2003-12-31 2008-02-26 Cryovac, Inc. Method of shrinking a film
US7491263B2 (en) * 2004-04-05 2009-02-17 Technology Innovation, Llc Storage assembly
US7425232B2 (en) * 2004-04-05 2008-09-16 Naturalnano Research, Inc. Hydrogen storage apparatus comprised of halloysite
US20060163160A1 (en) * 2005-01-25 2006-07-27 Weiner Michael L Halloysite microtubule processes, structures, and compositions
WO2005116650A2 (en) * 2004-04-19 2005-12-08 Sdc Materials, Llc High throughput discovery of materials through vapor phase synthesis
CN100340477C (zh) * 2004-05-17 2007-10-03 西安交通大学 一种采用温控电弧炉批量生产单壁碳纳米管的方法
CN1309659C (zh) * 2004-06-10 2007-04-11 清华大学 碳纳米管的制备方法
CN1299980C (zh) * 2004-06-15 2007-02-14 南开大学 单壁碳纳米管的电弧合成方法
US20060076354A1 (en) * 2004-10-07 2006-04-13 Lanzafame John F Hydrogen storage apparatus
JP4885863B2 (ja) * 2004-10-08 2012-02-29 エスディーシー マテリアルズ インコーポレイテッド 抽出装置、分離装置及び抽出方法
KR20060047144A (ko) * 2004-11-15 2006-05-18 삼성에스디아이 주식회사 카본나노튜브, 이를 포함한 전자 방출원 및 이를 구비한전자 방출 소자
US7400490B2 (en) 2005-01-25 2008-07-15 Naturalnano Research, Inc. Ultracapacitors comprised of mineral microtubules
US20080277092A1 (en) * 2005-04-19 2008-11-13 Layman Frederick P Water cooling system and heat transfer system
KR100745752B1 (ko) * 2005-06-28 2007-08-02 삼성전자주식회사 탄소나노튜브의 탄화질 불순물의 정제방법
JP2009521535A (ja) * 2005-08-08 2009-06-04 キャボット コーポレイション ナノチューブを含むポリマー組成物
US7678841B2 (en) * 2005-08-19 2010-03-16 Cryovac, Inc. Increasing the gas transmission rate of a film comprising fullerenes
CN100408472C (zh) * 2005-12-15 2008-08-06 兰州理工大学 纳米碳管管束的制备方法及制备装置
CN1986894B (zh) 2005-12-21 2011-06-15 中国科学院上海应用物理研究所 一种产氢储氢一体化方法和装置
JP2010512939A (ja) 2006-12-21 2010-04-30 ネーデルランド オルガニサティ フォール トウゲパストナチュールウェテンスカッペリューク オンデルツォイック ティーエヌオー 血液から毒性物質を除去するための装置
CN101311110B (zh) * 2007-05-25 2010-08-04 北京大学 一种直接制备不含金属杂质碳纳米管的方法
US8575059B1 (en) 2007-10-15 2013-11-05 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
KR100903857B1 (ko) 2007-11-28 2009-06-24 충남대학교산학협력단 탄소나노튜브 전계 방출 소자의 제조방법 및 이로부터 제조된 탄소나노튜브 전계 방출 소자
EP2072117A1 (en) 2007-12-19 2009-06-24 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Sorbent material
USD627900S1 (en) 2008-05-07 2010-11-23 SDCmaterials, Inc. Glove box
JP5647435B2 (ja) * 2009-06-11 2014-12-24 Dowaホールディングス株式会社 カーボンナノチューブおよびその製造方法
US9149797B2 (en) * 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US9039916B1 (en) 2009-12-15 2015-05-26 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for copper copper-oxide
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
WO2011084534A1 (en) * 2009-12-15 2011-07-14 Sdcmaterials Llc Advanced catalysts for fine chemical and pharmaceutical applications
US8557727B2 (en) * 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9133032B2 (en) * 2010-08-06 2015-09-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fine-grained targets for laser synthesis of carbon nanotubes
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
MX2014001718A (es) 2011-08-19 2014-03-26 Sdcmaterials Inc Sustratos recubiertos para uso en catalisis y convertidores cataliticos y metodos para recubrir sustratos con composiciones de recubrimiento delgado.
JP5779721B2 (ja) 2011-09-16 2015-09-16 エンパイア テクノロジー ディベロップメント エルエルシー グラフェン欠陥を修正するための方法及びシステム
KR101405256B1 (ko) * 2011-09-16 2014-06-10 엠파이어 테크놀로지 디벨롭먼트 엘엘씨 그래핀 결함 변경
CN102530918B (zh) * 2012-01-09 2013-08-07 中国科学院金属研究所 一种具有小管束尺寸的单/双壁碳纳米管结构的制备方法
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
CN105592921A (zh) 2013-07-25 2016-05-18 Sdc材料公司 用于催化转化器的洗涂层和经涂覆基底及其制造和使用方法
KR20160074574A (ko) 2013-10-22 2016-06-28 에스디씨머티리얼스, 인코포레이티드 희박 NOx 트랩의 조성물
MX2016004991A (es) 2013-10-22 2016-08-01 Sdcmaterials Inc Diseño de catalizador para motores de combustion diesel de servicio pesado.
WO2015143225A1 (en) 2014-03-21 2015-09-24 SDCmaterials, Inc. Compositions for passive nox adsorption (pna) systems
US11508498B2 (en) 2019-11-26 2022-11-22 Trimtabs Ltd Cables and methods thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865406A (ja) * 1994-08-16 1996-03-08 Matsushita Graphic Commun Syst Inc ファクシミリ装置
CN1193600A (zh) * 1997-02-04 1998-09-23 中国科学院金属研究所 一种纳米碳管的制备技术

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225366A (en) * 1990-06-22 1993-07-06 The United States Of America As Represented By The Secretary Of The Navy Apparatus for and a method of growing thin films of elemental semiconductors
US5458784A (en) 1990-10-23 1995-10-17 Catalytic Materials Limited Removal of contaminants from aqueous and gaseous streams using graphic filaments
JP3017161B2 (ja) * 1998-03-16 2000-03-06 双葉電子工業株式会社 単層カーボンナノチューブの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865406A (ja) * 1994-08-16 1996-03-08 Matsushita Graphic Commun Syst Inc ファクシミリ装置
CN1193600A (zh) * 1997-02-04 1998-09-23 中国科学院金属研究所 一种纳米碳管的制备技术

Also Published As

Publication number Publication date
CN1277937A (zh) 2000-12-27
US6517800B1 (en) 2003-02-11

Similar Documents

Publication Publication Date Title
CN1101335C (zh) 一种大量制备单壁纳米碳管的氢弧放电方法
Kibria et al. Electrochemical hydrogen storage behaviors of CVD, AD and LA grown carbon nanotubes in KOH medium
US8404209B2 (en) Double-walled carbon nanotubes and methods for production and application
Gundiah et al. Hydrogen storage in carbon nanotubes and related materials
Tao et al. Synthesis of multi-branched porous carbon nanofibers and their application in electrochemical double-layer capacitors
CN1751989A (zh) 制备碳纳米笼的方法
CN107973288B (zh) 一种氮掺杂碳纳米角的制备方法
Wang et al. In situ synthesis of super-long Cu nanowires inside carbon nanotubes with coal as carbon source
KR20050026372A (ko) 나노입자 및 나노튜브 제조용 장치 및 방법, 및 가스저장을 위한 이의 용도
US7955663B2 (en) Process for the simultaneous and selective preparation of single-walled and multi-walled carbon nanotubes
CN100340477C (zh) 一种采用温控电弧炉批量生产单壁碳纳米管的方法
CN1194889C (zh) 一种单壁纳米碳管的制备方法
CN1299980C (zh) 单壁碳纳米管的电弧合成方法
Shi et al. High yield synthesis and growth mechanism of carbon nanotubes
CN100522804C (zh) 一种电弧法合成可控单壁碳纳米管的方法
EP1061044A1 (en) Production of single-walled carbon nanotubes
Zhao et al. Optical emission spectra during carbon nanotube production by arc discharge in H2, CH4 or He gas
CN103241725A (zh) 以焦炭为原料制备碳纳米管的方法及其制得的碳纳米管
CN1261350C (zh) 一种制备非晶碳纳米管的温控电弧法
CN1133581C (zh) 一种使用硫生长促进剂大量制备纳米碳纤维的方法
Zhu Detonation of molecular precursors as a tool for the assembly of nano-sized materials
CN1923680A (zh) 一种无定形纳米碳管的制备方法及装置
CA2622580C (en) Double-walled carbon nanotubes and methods for production and application
Kim et al. Synthesis of High Purity Multiwalled and Singlewalled Carbon Nanotubes by Arc-discharge
Rao et al. Nanostructured forms of carbon: an overview

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030212

Termination date: 20110616