JP4342266B2 - 減圧装置 - Google Patents

減圧装置 Download PDF

Info

Publication number
JP4342266B2
JP4342266B2 JP2003359417A JP2003359417A JP4342266B2 JP 4342266 B2 JP4342266 B2 JP 4342266B2 JP 2003359417 A JP2003359417 A JP 2003359417A JP 2003359417 A JP2003359417 A JP 2003359417A JP 4342266 B2 JP4342266 B2 JP 4342266B2
Authority
JP
Japan
Prior art keywords
pressure
proportional
decompression
reducing
pressure reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003359417A
Other languages
English (en)
Other versions
JP2005122621A (ja
Inventor
信夫 小林
誠 都築
雅彦 金原
Original Assignee
トヨタ自動車株式会社
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 株式会社豊田自動織機 filed Critical トヨタ自動車株式会社
Priority to JP2003359417A priority Critical patent/JP4342266B2/ja
Publication of JP2005122621A publication Critical patent/JP2005122621A/ja
Application granted granted Critical
Publication of JP4342266B2 publication Critical patent/JP4342266B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/04Control of fluid pressure without auxiliary power
    • G05D16/10Control of fluid pressure without auxiliary power the sensing element being a piston or plunger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

本発明は、高圧の流体を低圧の流体に減圧して回路上で使用する減圧装置に関するものである。

種々の流体回路上で使用する減圧装置には、供給源から供給される流体の圧力を精度良く減圧する減圧性能が要求される。例えば、水素ガスと酸素ガスとの反応で電力を出力する燃料電池システムでは、高圧の水素タンクから低圧の水素ガスを取り出す必要があるため、水素タンクから燃料電池までの間の回路上に、減圧弁が使用されている。この減圧弁では、水素ガスが水素タンク内に充満した状態から空の状態に至るまで、減圧弁に入力する圧力の変動幅(レンジ)が非常に大きい。一般に、構造上の制約から受圧面積等がある程度決まってしまう減圧弁では、入力(1次)圧が低下すると出力(2次)圧は上昇する傾向にあり、幅広いレンジの1次圧に対応して2次圧を精度良く一定に保つことが困難であった。

従来から、こうしたシステムでは2次圧の精度を向上するため、2つの減圧弁を直列に用いていた。回路の上流側に配置した減圧弁で水素タンクからの高圧ガスを大きく減圧し、回路の下流側に配置した減圧弁に入力する圧力の変動幅を抑えることで、2次圧の精度を向上していた(例えば、特許文献1参照)。

特開2003−100335号公報

しかしながら、減圧弁を2段用いるシステムでは、下流側に配置した減圧弁の2次圧の精度を向上するためには、上流側の減圧弁で大きく圧力を低下させておかなければならず、上流側に配置した減圧弁に高い耐圧性能が必要となるという問題があった。つまり、上流側の減圧弁にかかる入力‐出力間の圧力差が高いため、この差圧を受ける減圧弁内部の部材には、高いシール性能が要求されることとなる。したがって、上流側の減圧弁の耐圧性能(シール性能)と下流側の減圧弁の2次圧精度の向上とのバランスを取ることが困難であった。

他方、上流側の減圧弁による減圧の程度を小さくすると、例えば、流体の供給が高圧タンクなどにより行なわれる場合、高圧タンク内の流体を十分に使い切ることができないという課題を招致する。例えば、タンク内の圧力P、上流側減圧弁の2次圧M、下流側の減圧弁の2次圧Qとすると、上流側の減圧弁にかかる差圧ΔM=P−M、下流側の減圧弁にかかる差圧ΔQ=M−Qによって、各減圧弁の要求耐圧性能は決定される。上流側の減圧弁にかかる負担を少なくするため、差圧ΔMを小さくしようとすると、上流側減圧弁の2次圧Mは高くなり、タンク内の圧力Pが2次圧M程度まで低下後、タンクからは流体を流出することができない。つまり、上流側の減圧弁で低下した圧力値よりも大きな圧力が高圧タンクに残存した状態となり、その残存圧力に比例する流量の流体が高圧タンクから流出しないこととなっていた。

本発明は、こうした問題の少なくとも一部を解決し、2次圧精度を保ちつつ、シールの信頼性を確保する減圧装置を提供することを目的とする。

本発明の第1の減圧装置は、上記課題の少なくとも一部を解決するため、以下の手法をとった。すなわち、流体の回路に使用し、流体の高圧力を低圧力に減圧する減圧装置であって、前記回路の上流に、前記流体が流入し、該流入した流体の圧力を減圧し、該圧力に比例した圧力で流出させる比例減圧手段を設け、前記回路の下流に、前記比例減圧手段から流出した前記流体の圧力を所定の圧力に減圧する減圧手段を設け、前記比例減圧手段は、ハウジングの内部に軸方向に移動可能なピストンを設け、前記ピストンは、該ピストンの一端面に第1の受圧面と、他端面に該第1の受圧面より面積の大きな第2の受圧面を備え、前記第1の受圧面側に入力室を、前記第2の受圧面側に出力室を設け、前記ピストン内部に、前記入力室と前記出力室とを連通する連通路を有し、前記連通路の一端で、前記第1の受圧面側に、前記ピストンが軸方向に移動することで前記連通路を開閉する弁を設け、前記連通路を閉弁する方向に、前記ピストンを付勢するスプリングを備えて構成し、前記比例減圧手段と前記減圧手段とを一体構造としたことを要旨としている。

本発明の第1の減圧装置によれば、高圧の流体は、上流の比例減圧手段の入力室に流入し、ピストンの第1の受圧面に圧力を及ぼし、ピストンを移動させる。出力室に流入した流体は、ピストンの連通路を介して、ピストンの第2の受圧面に圧力を及ぼす。ピストンは第1の受圧面と第2の受圧面とにかかる2つの力が釣り合う位置に移動し、出力室の圧力は、入力室の圧力に2つの受圧面の面積比を乗じた値となる。比例減圧手段の下流に位置する減圧手段には、減圧された圧力の流体が流入し、一定の圧力に減圧される。したがって、上流に比例減圧手段を設けることで、減圧手段にかかる圧力差は低減され、耐圧性能の低い減圧手段でも高圧流体の回路にて使用することができる。加えて、減圧手段に要求される減圧性能を低く抑えることができ、減圧手段の出力圧力の精度を向上することができる。

本発明の第2の減圧装置は、高圧のタンクを有する燃料電池システムに使用し、該高圧タンクからの高圧ガスを低圧に減圧する減圧装置であって、前記ガスの流れの上流に、前記ガスが流入し、該流入したガスの圧力を減圧し、該圧力に比例した圧力で流出させる比例減圧手段を設け、前記ガスの流れの下流に、前記比例減圧手段から流出した前記ガスの圧力を所定の圧力に減圧する減圧手段を設け、前記比例減圧手段と前記減圧手段とを一体構造としたことを要旨としている。

本発明の第2の減圧装置によれば、燃料電池システムの高圧タンクから放出される高圧ガスは、上流の比例減圧手段に流入するガスの圧力に比例して減圧され、減圧手段には減圧された圧力のガスが流入する。したがって、耐圧性能の低い減圧手段でも高圧流体の回路にて使用することができる。加えて、減圧手段に要求される減圧性能を低く抑えることができ、減圧手段の出力圧力の精度を向上することができる。さらに、比例減圧手段を用いるため、タンクからの放出圧力が低圧になっても、入力圧力に比例した圧力を出力する。例えば、減圧手段の出力側(2次)圧力を0.3MPa、減圧手段での圧力損失を0.1MPaとすると、比例減圧手段の2次圧力が0.4MPaとなる。ここで比例減圧手段の減圧能力を1/2とすれば、比例減圧手段の入力側(1次)圧力は、0.8MPaとなり、タンク内部に残る残圧は、0.8MPa程度となる。タンク内の燃料残量は、容積が一定のタンクでは圧力に比例するため、タンク残圧が高いほど多量の燃料が残存する。従来の減圧弁を2段用いるシステムでは、最大タンク圧35MPa程度の場合にタンク残圧は2〜3MPaとなっていた。本発明の減圧装置では、比例減圧手段の入力側(1次)圧力を、減圧手段の出力側(2次)圧力近傍程度まで低下することができ、従来にシステムに比べてタンク内部に放出されずに残る燃料を低減することができる。

上記の構成を有する減圧装置であって、比例減圧手段は、該比例減圧手段に流入する前記ガスの圧力を、1/3から2/3の範囲に減圧する手段である減圧装置とすることができる。かかる減圧装置によれば、タンク残圧を低減することができるため、比例減圧手段と減圧手段とで負担する減圧能力をバランス良く分配することができる。かかる範囲に減圧することで、比例減圧手段および減圧手段にかかる差圧を低減し、耐圧性能を向上することができる。特に、タンク残圧の低減要求から上流側の減圧弁で大きく減圧せざるをえない2段の減圧弁システムの上流側減圧弁に比べ、比例減圧手段にかかる差圧を低減できる。

上記の構成を有する減圧装置の比例減圧手段は、ハウジングの内部に軸方向に移動可能なピストンを設け、前記ピストンは、該ピストンの一端面に第1の受圧面と、他端面に該第1の受圧面より面積の大きな第2の受圧面を備え、前記第1の受圧面側に入力室を、前記第2の受圧面側に出力室を設け、前記ピストン内部に、前記入力室と前記出力室とを連通する連通路を有し、前記連通路の一端で、前記第1の受圧面側に、前記ピストンが軸方向に移動することで前記連通路を開閉する弁を設け、前記連通路を閉弁する方向に、前記ピストンを付勢するスプリングを備えた手段とすることができる。

かかる減圧装置によれば、高圧ガスは、上流の比例減圧手段の入力室に流入し、ピストンの第1の受圧面に圧力を及ぼし、ピストンを移動させる。連通路を介して、出力室に流入した流体は、ピストンの第2の受圧面に圧力を及ぼす。出力室の圧力は、この2つの受圧面の面積差に比例して入力室の圧力を減圧した値となる。比例減圧手段の下流に位置する減圧手段には、減圧された圧力の流体が流入し、一定の圧力に減圧される。したがって、第1の受圧面および第2の受圧面の面積比を調整することで、下流の減圧手段にかかる圧力を設定することができる。

前記減圧手段は、バルブを有し、前記比例減圧手段と前記減圧手段は、前記比例減圧手段の前記スプリングが、前記比例減圧手段の前記ピストンと、前記減圧手段の前記バルブとの間に配置された一体構造を有していてもよい。
上記の構成を有する減圧装置の比例減圧手段は、前記ハウジングの内部に設けた前記ピストンの軸方向の移動用の空間である中間室を形成し、前記減圧手段により減圧された圧力の流体が流入する空間と前記中間室とを連通する導入路を備えるものとしても良い。かかる減圧装置によれば、減圧手段により減圧された流体は、導入路を介して中間室に流入し、減圧装置の内部は同一の流体で満たされる。したがって、ハウジングとピストンとの隙間から中間室に流体が漏れた場合でも、中間室から直接外部へ流体が放出されることはない。

上記の構成を有する減圧装置の弁は、前記ピストンの移動による開弁によらず、前記連通路の前記第1の受圧面側に接続する第2の流路が形成され、前記第2の流路上に、前記比例減圧手段に流入した流体が前記減圧手段から流出する方向への該第2の流路の流れを止める逆止手段を備えるものとしても良い。

かかる減圧装置によれば、第2の流路に設けた逆止手段は、減圧装置の入力側から出力側への方向には第2の流路内に流体を流さず、出力側から入力側への方向には流体を流す。つまり、第2の流路を利用することで、減圧装置の出力側のポートから(下流側から上流側へ)流体を流すことができる。例えば、減圧装置の出力側から上流のタンクに燃料を充填する場合に、減圧装置の出力ポートを充填時の入力ポートとして使用することができる。

上記の構成を有する減圧装置は、比例減圧手段を、少なくとも2つ以上、シリーズに組み合わせて多段比例減圧手段として構成し、前記逆止手段は、前記第2の流路を開口または閉口する弁体と、該弁体を閉口方向に付勢する第2のスプリングとを備え、前記多段比例減圧手段の隣接する2つの前記比例減圧手段の中、下流の該比例減圧手段の前記弁体を閉口方向に付勢する機能と、上流の該比例減圧手段の前記ピストンを閉弁方向に付勢する機能とを合わせ持つ第3のスプリングを前記隣接する比例減圧手段の間に介装するものとしても良い。

かかる減圧装置によれば、上流の多段に重ねた比例減圧手段により、高圧の流体は段階的に減圧されて、下流の減圧手段に入力する。したがって、耐圧性能はそのままで、より大きな入力圧にも対応することが可能となる。また、上流の比例減圧手段のピストンを閉弁方向に付勢するスプリングと下流の比例減圧手段の逆止手段の第2のスプリングとを第3のスプリングで共有するため、部品点数を減らすことができる。

上記の構成を有する減圧装置は、比例減圧手段を、少なくとも2つ以上、シリーズに組み合わせて多段比例減圧手段として構成するものとしても良い。かかる減圧装置によれば、上流の多段に重ねた比例減圧手段により、高圧の流体は段階的に減圧されて、下流の減圧手段に入力する。したがって、耐圧性能はそのままで、より大きな入力圧にも対応することが可能となる。また、段階的に減圧するため、各段のピストンの受圧面積差を小さくすることができ、減圧装置全体を径方向に小さくすることができる。

以下、本発明の減圧装置を燃料電池システムに搭載した一実施例について説明する。図1は、本発明の減圧装置を搭載した車両の燃料電池システムの概略構成図である。このシステムは、水素と酸素の電気化学反応により発電する燃料電池システムであり、燃料電池により発電した電力を車両の動力源としている。図1に示すように、この燃料電池システムは、主に、燃料電池スタック10、エアライン20、燃料ライン30から構成されている。

燃料電池スタック10は、水素極(以下、アノードと呼ぶ)と酸素極(以下、カソードと呼ぶ)とを備えた単一セルを複数重ね合わせた積層体として形成されている。この単一セルは、セパレータ、アノード、電解質膜、カソード、セパレータをこの順に重ね合わせた構造であり、セパレータに設けた溝を介して供給される水素ガスおよび空気に含まれる酸素の電気化学反応により発電する。なお、本実施例では、電解質膜に固体高分子膜を用いた固体高分子型燃料電池を使用しているが、例えば、リン酸型、アルカリ型、固体電解質型など種々の燃料電池を用いても良い。

この電気化学反応に使用される酸素の流路であるエアライン20は、フィルタ100、コンプレッサ110、加湿器120等とこうした機器を接続する配管とから構成されている。外部からフィルタ100を通して取り込まれた空気は、コンプレッサ110にて圧縮され、加湿器120により水分を含んだ状態で燃料電池スタック10のカソードに供給される。燃料電池スタック10での反応に使用された後の排気は、スタック下流の排気管から外部へ排出される。

他方、燃料である水素ガスの流路である燃料ライン30は、水素タンク130、減圧装置140、シャットバルブ150等とこうした機器を接続する配管とから構成されている。高圧の水素タンク130に貯留された水素ガスは、減圧装置140により低圧に減圧され、燃料電池スタック10のアノードに供給される。水素タンク130内は、多量の燃料を貯留するため非常に高圧となっている。減圧装置140は、こうした水素ガスの高圧力を大きく減圧することにより、電解質膜に過大な圧力が加わらないようにしている。燃料電池スタック10での反応に使用された後の排気には、反応で消費しなかった水素が含まれる。この水素は、水素循環ポンプ160により再び燃料ライン30へ戻される。

こうして供給された水素と酸素とを用いて燃料電池スタック10が発電した電力は、インバータ170等に出力され、車両の走行モータ180の駆動に使用される。また、車両の走行に必要な電力が発電量に対して少ない場合には、余剰分をDC/DCコンバータ50等を介して蓄電池60に蓄電し、急加速時など、必要な電力が大きい場合に、その不足分を蓄電池60から補う。

以上の構成の燃料電池システムで使用される減圧装置140の構造について、図2を用いて説明する。図2は、本発明の一実施例としての減圧装置140の縦断面図である。図示するように、この減圧装置140は、大きく、燃料ライン30の流路上流に位置する比例減圧部200と、比例減圧部200の下流に位置する減圧部300との2つの部分から構成されている。

比例減圧部200は、主に、ハウジング210、弁部220、比例ピストン230、スプリング240とからなり、入力圧(1次圧)を減圧して、入力圧に比例した出力圧(2次圧)とする。ハウジング210は、略円柱外形をしており、減圧部300との接合面上に4箇所のタップ穴212、比例ピストン230を嵌合する段付きの凹部214、減圧部300との接合面の反対側の面に、円柱外形の軸方向に弁部220を取り付けるネジ穴部217、凹部214と外部とを連通する入力ポート218、中間ポート219を備えている。

ハウジング210内部に形成される凹部214は、ハウジング210の減圧部300との接合面からネジ穴部217方向に、所定の深さを有する大径内円筒215と、その底面から更に所定の深さを有する小径内円筒216とからなる。入力ポート218は、小径内円筒216の底面付近の周壁に、中間ポート219は、大径内円筒215の底面付近の周壁に、それぞれ連通している。なお、入力ポート218には、外部の配管と接続するテーパネジを設けている。

弁部220は、大きく、円柱部分222と、その径よりも小径である円錐部分224とからなり、円柱部分222の端面に円錐部分224を有する形状をしている。円柱部分222の外周には、ハウジング210のネジ穴部217と係合する雄ネジ部226を設けている。

比例ピストン230は、大径円柱部分231と小径円柱部分232とからなり、円柱高さ方向に円中心軸を貫通する貫通流路233を設けている。大径円柱部分231の端面には、段つきの穴を有し、貫通流路233と同心円であり、かつ、後述する減圧部300のバルブが遊嵌する径を有する1段目の穴と、1段目の穴よりさらに深いスプリング240固定用の2段目の穴とが設けてある。大径円柱部分231および小径円柱部分232の外周には、Oリングを係合する溝がそれぞれ備えてある。

この比例減圧部200は、ハウジング210の内部の凹部214に比例ピストン230を挿入し、外部から弁部220をハウジング210に螺設し、比例ピストン230の2段目の穴にスプリング240を配置して組み立てられる。螺設した弁部220の円錐部分は、ハウジング210内部の小径内円筒216の底面から突出する。突出した弁部220の円錐部分は、比例ピストン230の貫通流路233に係合し、比例ピストン230を支えている。こうしてハウジング210の凹部214の内空間には、比例ピストン230で仕切られた3つの部屋が形成される。以下、ハウジング210の小径内円筒216の底面と比例ピストン230の小径円柱部分232の端面とを相対する2面とする部屋を入力室250、ハウジング210の大径内円筒215の底面と比例ピストン230の大径円柱部分231の弁部220方向の端面とを相対する2面とする部屋を中間室260、比例ピストン230の大径円柱部分231の端面と後述する減圧部300とで形成される部屋を出口室270と呼ぶ。

入力室250は、ハウジング210の入力ポート218に連通し、中間室260は、ハウジング210の中間ポート219に連通する。中間ポート219は大気に開放されており、中間室260内部には大気圧が働く。この大気圧による比例ピストン230に働く貫通流路233の開弁方向の力は、スプリング240の閉弁方向への付勢力により相殺される。このスプリング240の付勢力により、初期状態での比例ピストン230は、弁部220に接し、貫通流路233を閉弁している。なお、挿入する比例ピストン230には、Oリング235,236が2箇所設けられ、入力室250及び出口室270に流入するガスの外部への漏れをそれぞれ防止している。また、螺設する弁部220には、パッキン280を共締めし、係合するネジの隙間からのガスの漏れを防止している。

比例減圧部200の下流に位置する減圧部300は、主に、ケース310、減圧ピストン330、バルブ320、バネ340、バネ調整部分350とからなり、変動する比例減圧部200の出口室270の圧力を入力してほぼ一定の出力圧力に減圧する。ケース310は、前述の比例減圧部200の凹部214に係合する円筒外形の係合部分312と、比例減圧部200と同外形のフランジ部分316と、フランジ部分316より小径である円筒形状部分318とを有している。

係合部分312は、比例減圧部200の出口室270のガスを導く導入路313と、ガスを減圧する絞り流路315と、その外周にOリング用の溝とを設けている。フランジ部分316は、比例減圧部200との締結ボルト370を挿入する4箇所の挿入孔311と、減圧されたガスを外部へ出力する出力ポート317とを設けている。円筒形状部分318は、その円周壁面に外部の大気に連通する大気孔319と、フランジ部分316と反対方向の端面にバネ調整部分350を締結するネジ係合穴部345を、それぞれ設けている。

減圧ピストン330は、バネ340の当接する座面を有し、ケース310内円筒に挿入可能な略円柱形状をしている。減圧ピストン330は、その外周にはOリング用の溝を有し、Oリング380を装着した状態でケース310内部に挿入される。減圧ピストン330の座面の反対面は、後述する連結部321と当接している。

バルブ320は、円筒形状部分と円錐形状部分とその頂点から突出した連結部321とからなる。連結部321は、ケース310の絞り流路315を貫通し、ケース310内部に挿入した減圧ピストン330に当接する。ケース310の絞り流路315を挟んで配置されるバルブ320と減圧ピストン330とは、一体となって連結部321の軸方向に進退する。

減圧ピストン330とバルブ320を組み込んだ減圧部300は、ケース310内部の減圧ピストン330の座面にバネ340を設置し、バネ調整部分350をケース310に締結して組み立てられる。バネ調整部分350には、調整ボルトが組み込まれ、このボルトをねじ込むことで、バネ340の付勢力を調整することができる。

この減圧部300は、バルブ320の円錐形状部分の連結部321の軸方向への進退により、絞り流路315の開弁量を調整し、ケース310内円筒と減圧ピストン330とで囲まれた空間(以下、この空間を出力室390と呼ぶ)の圧力を調整する。なお、出力室390に連通する出力ポート317は、テーパネジを介して、配管継手と接続している。

減圧装置140は、減圧部300の係合部分312にOリング360を装着して比例減圧部200に嵌合し、締結ボルト370で締結することで組み付けられる。この減圧装置140の初期状態は、比例減圧部200の弁部220は閉弁状態、減圧部300のバルブ320は開弁状態となっている。減圧装置140の入力ポート218は、図1に示す水素タンク130からの配管に接続され、出力ポート317は、シャットバルブ150を介して燃料電池スタック10に接続される。

水素タンク130からの高圧の水素ガスが減圧装置140の入力室250に流入すると、比例ピストン230の小径円柱部分232の端面は水素ガスによる高い圧力を受け、比例ピストン230は貫通流路233を開弁する方向へ移動する。開弁と同時に、比例ピストン230内部の貫通流路233を通過したガスが出口室270に流入する。ガスの流入により出口室270の圧力は上昇し、比例ピストン230の大径円柱部分231の端面は圧力を受け、比例ピストン230は貫通流路233を閉弁する方向へ移動する。相対する方向に圧力を受ける比例ピストン230は、2つの圧力のバランスする位置に移動し、入力室250の圧力に対応して出口室270の圧力は調整される。

この比例ピストン230の入力室250側の受圧面積(小径円柱部分232の端面の面積)は、出口室270側の受圧面積(大径円柱部分231の端面の面積)の約1/2であるため、出口室270の圧力は、入力室250の圧力の約1/2に減圧される。この比例減圧部200のスプリング240は、中間室260の大気圧が比例ピストン230を開弁方向へ押し上げるのに抗する程度の付勢力しか有していないため、比例ピストン230は入力室250への水素ガスの流入とほぼ同時に開弁方向へ移動を始める。したがって、スプリング240の影響等はほとんど無く、比例減圧部200の減圧量は、受圧面の面積比に起因する。こうした構造により、水素タンク130が満タン状態である高圧から、タンクがほぼ空の状態である低圧まで、入力圧力を約1/2に比例減圧する。

こうして入力圧力の約1/2の圧力に減圧された水素ガスは、導入路313、絞り流路315を経て、出力室390に流入する。水素ガスの流入により出力室390の圧力は上昇する。出力室390の圧力が、バネ340の設定値以上に上昇すると、減圧ピストン330の受圧面にかかる圧力がバネ340の付勢力に勝って、減圧ピストン330を押し上げる。この動作に伴って、減圧ピストン330と一体で進退するバルブ320が、絞り流路315の閉弁方向に移動し、出力室390に流入する水素ガスを絞る。絞りを受けた水素ガスの流入する出力室390の圧力は低下し、バネ340の付勢力により、再びバルブ320は開弁方向に移動する。こうした動作原理によるバルブ320の絞りによって、出力室390の圧力をほぼ一定に保持する。

以上の構造の減圧装置140では、比例減圧部200により入力圧を約1/2に比例減圧し、減圧部300によりその圧力を一定の低圧に減圧する。例えば、水素タンク130からの最大圧力70MPaを0.3MPaに減圧する必要がある場合、比例減圧部200の入力室250は70MPa、出口室270は35MPa、減圧部への入力圧は35MPa、出力室390は0.3MPaとなる。この場合、比例減圧部200と減圧部300とには、共に約35MPaの差圧がかかることになり、それぞれにかかる最大圧力差を入力圧の半分に抑えることができる。したがって、従来の耐圧技術を用いて、2倍の入力圧力に対応可能となる。特に、本実施例では、車両の運転の停止等により出力ポート317が遮断された場合、出力室390の内部圧力は上昇し、バルブ320は絞り流路315を閉弁する。こうした場合にも、バルブ320と絞り流路315との接触部分の前後にかかる差圧を小さくすることができるため、主に圧力差に起因するバルブの内部リークによる出力室390の圧力上昇はほとんど無く、再始動時にも安全に使用することができる。

さらに、図3に示すように、一般の減圧弁では2次圧力が1次圧力の影響を受ける構造であるため、入力圧力の増加に対し出力圧力が減少する傾向にある。こうした減圧弁の出力圧力を所定の値Pzに設定し、入力圧力を高圧Paから減少して行くと、入力圧力の低圧付近での出力圧力はPxとなり、出力圧力には、最大Px−Pzの誤差が生じる。この誤差は、例えば、一定圧力の工場用圧縮空気源を減圧して機器に使用するような場合には、元圧の圧力が変化しないため発生しないが、車載用の高圧タンクから燃料を消費する際には、特に問題となる。本実施例の減圧装置140は、入力圧力を高圧Paから減少しても、比例減圧部200の作用により減圧部300の入力圧力はPa/2からの減少となる。入力圧力をPa/2から減少して行くと、減圧部300の出力圧力には、最大Px-Pyの誤差が生じ(入力圧力Pa/2の時の出力圧力をPyとする)、減圧弁の誤差の約1/2程度の誤差となる。したがって、減圧部300への入力圧力を比例減圧部200により低減することで、減圧部300の出力精度を向上することができる。

こうした一般の減圧弁は所定の圧力を持って入力する流体が絞りを受けることで減圧されるため、減圧弁下流の圧力を制御するには、2次側(出力側)の設定圧力よりわずかに高い1次側(入力側)の圧力(圧力損失分)が必要となる。例えば、高圧タンクからの減圧回路にこのような減圧弁を使用し、減圧弁を直列に2段使用する場合において、高圧側の減圧弁の出口圧力を高く設定すると、入力圧力にはその出口圧力以上の圧力が必要になる。つまり、タンク内の圧力が減圧弁の設定した出口圧力まで低下すると、それ以上は放出されず、結果的に、タンク内部に放出されない燃料が多量に残ることになる。これに対して、本実施例の減圧装置140では、上流に設ける減圧弁に代えて、比例減圧部200を設けている。上流の減圧機器を通過する流体は、減圧弁で一定値に減圧されるのではなく、比例減圧部200の受圧面積比によって、高圧から低圧までの入力圧力の変化に比例した圧力に減圧される。つまり、タンクに残る残圧は、減圧部300の出力圧力の下限値にわずかな減圧部300の圧力損失分を加えた値に、比例した値(比例減圧部200の入力圧力)程度となり、低い値とすることができる。したがって、タンク内部の残圧を低減することができる。

なお、こうした減圧装置140は、比例減圧部200と減圧部300とを一体構成とすることなく、独立の部品としても良い。例えば、図4(a)に示すように、比例減圧部200をそのまま独立部品とした比例減圧装置290としても良いし、図4(b)に示すように、比例ピストン230の構造を変えた比例減圧装置400としても良い。図4(b)の比例減圧装置400は、ハウジング410、比例ピストン430、弁部420、スプリング440等から構成されている。各構成部品の役割は、上述の比例減圧部200で説明した構成部品の役割と同様であるため、詳細な説明は省略する。

この比例減圧装置400の比例ピストン430は、略円柱形状をしており、内部に入力室450と、入力室450に連通する入力通路436とを備えている。このように、入力室450を比例ピストン430内部に設けることで、配管の接続に対する自由度が増す。つまり、図4(a)の比例減圧装置290では、入力室250、中間室260、出口室270の順に配置したのに対して、図4(b)の比例減圧装置400では、その順序を中間室460、入力室450、出口室470の順に配置している。したがって、接続する配管の位置に合わせた比例減圧装置290,400を使用することができる。

次に、本発明の第2実施例の減圧装置について説明する。第2実施例の減圧装置は、第1実施例の減圧装置140の比例減圧部200に代えて、比例減圧部200を2段備えた多段比例減圧部500を組み込んで構成されている。したがって、第1実施例と同様である減圧部300についての説明を省略し、以下、比例減圧部200の1段目の部品には添え字「a」を、2段目の部品には添え字「b」を付けて、多段比例減圧部500について説明する。なお、第2実施例の減圧装置を搭載するシステムの構成についても、図1に示した第1実施例の燃料電池システムと同様であるため、説明を省略する。

図5には、第2実施例の減圧装置の縦断面図を示した。この減圧装置の多段比例減圧部500は、図示するように、ケーシング510と、ケーシング510内部の1段目の比例減圧部200a,2段目の比例減圧部200bとから構成されている。

ケーシング510は、減圧部300との締結用のタップ穴を備えたフランジ512と、比例減圧部200a,200bを挿入可能な内径を有する円筒514とから構成されており、円筒514の高さ方向に、円筒514の肉厚内に収まる連通孔515を備えている。この連通孔515の一端は、ケーシング510内部に挿入する2つの比例減圧部200a,200bの中間室260a,260bに連通し、他端は、減圧装置の外部に連通している。ケーシング510のフランジ512面と反対側の端面には、フランジ512側から挿入した1段目の比例減圧部200aの抜け止め機能と外部配管との接続機能とを兼ねた入口ポート用穴部516を備えている。

1段目および2段目の比例減圧部200a,200bの構成部品は、第1実施例とほぼ同様であり、ハウジング210a,210b、弁部220a,220b、比例ピストン230a,230b、スプリング240a,240b等からなる。比例ピストン230a,230bの外形形状は、小径円柱部分232a,232bと大径円柱部分231a,231bとを備え、その内部に貫通流路233a,233bを有している。1段目の大径円柱部分231aの外径は、2段目の大径円柱部分231bの外径と同径であり、1段目の小径円柱部分232aの外径は、2段目の小径円柱部分232bの外径よりも大外径としている。ハウジング210a,210bは、円柱の外形形状をしており、その外周には2箇所のOリング用の溝が設けてある。1段目のハウジング210aと2段目のハウジング210bとは同じ外径であり、ハウジング210a,210b内部に形成される凹部は、それぞれに挿入する比例ピストン230a,230bの外径に対応した内径となっている。なお、弁部220a,220b、スプリング240a,240b、ハウジング210a,210bや比例ピストン230a,230bの他の部分については、前述の通り、第1実施例とほぼ同様であるため、詳細な説明は省略する。

こうした部品からなる比例減圧部200a,200bは、それぞれの外周にOリングを装着し、1段目の比例減圧部200aに2段目の比例減圧部200bを積み重ねる構成で、ケーシング510内部に挿入される。このケーシング510のフランジ512面に、第1実施例で示した減圧部300を締結することで、減圧装置は組み立てられる。減圧装置の入口ポート用穴部516には、図示しない高圧配管が接続され、この配管と水素タンク130とが接続している。

水素タンク130からの水素ガスは、1段目の比例減圧部200aに流入し、1段目の比例ピストン230aの受圧面積比に応じて減圧され、2段目の比例減圧部200bに流入する。水素ガスは、2段目の比例ピストン230bの受圧面積比に応じて更に減圧され、減圧部300に流入してほぼ一定の低圧力で出力される。第2実施例では、1段目の比例ピストン230aの入力室250a側の受圧面積は、出口室270a側の受圧面積の約2/3に設定し、2段目の比例ピストン230bの入力室250b側の受圧面積は、出口室270b側の受圧面積の約1/2に設定している。

こうした構造の減圧装置では、例えば、水素タンク130からの最大圧力70MPaを0.3MPaに減圧する必要がある場合、1段目の入力室250aは70MPa、出口室270aは46MPa、2段目の入力室250bは46MPa、出口室270bは23MPa、減圧部300への入力圧は23MPa、出力室390は0.3MPaとなる。この場合、各比例減圧部200a,200bおよび減圧部300にかかる差圧は、共に最大で約23MPaであり、入力圧の1/3程度に抑えることができる。したがって、減圧装置に入力する圧力が高圧でも、各比例減圧部200a,200bおよび減圧部300にかかる圧力差を低減することができるため、例えば、可動部分等からの漏れはなく、耐圧に関する信頼性が向上する。

なお、第2実施例では、1段目で約2/3、2段目で約1/2に受圧面積を設定したが、この比率に限らず、用途に応じて比例ピストン230a,230bの受圧面積比を調整しても良い。例えば、1段目、2段目とも約1/2の受圧面積を設定することで、減圧部300の入力圧力の変動幅を更に抑え、減圧部300からの出力精度を向上することができる。また、比例減圧部200を3段以上の複数段重ねる構成としても良い。こうすることで、現状の耐圧技術で更に高い入力圧力を低圧に減圧することが可能となる。

第2実施例では、多段比例減圧部500のケーシング510に設けた連通孔515の一端は、外部に連通する構成としたが、図6に示すように、その一端を減圧部300の出力室390に連通する構成としても良い。図6に示す減圧装置は、図5で示した減圧部300のケース310に、ケース310内部とケーシング510に設けた連通孔515の一端とを接続する接続通路395を設け、出力室390の減圧された水素ガスが各比例減圧部200a,200bの中間室260a,260bに流入する構造である。

この減圧装置の内部は、水素ガスで満たされた状態となる。したがって、例えば比例ピストン230a,230bのOリングが劣化して入力室250a,250bの水素ガスが中間室260a,260bに漏れたとしても、水素ガスが大気中に放出されることはない。

こうした減圧装置には、水素タンク130からの高圧水素ガスを流入し、低圧水素ガスとして放出する一連の流路があるが、図7に示すように、減圧装置内部に、この一連の流路とは別の充填用の通路を設けるものとしても良い。図7に示す減圧装置は、第2実施例の多段比例減圧部500の弁部220a,220bに、充填用の充填通路720a,720bを設け、その充填通路720a,720bを開閉する鋼球730a,730bを追加した構成である。

1段目および2段目の比例減圧部200a,200bを構成する弁部220a,220bは、その軸方向に比例ピストン230a,230bの貫通流路233a,233bよりも小径である充填通路720a,720bを備え、弁部220a,220bの円錐部分とは反対側の端面に、鋼球730a,730bと接して充填通路720a,720bを遮断する略円錐形状の窪みを有している。比例減圧部200a,200bを挿入するケーシング710は、その円筒内部の端面から入口ポート711方向に段付凹部715を有し、1段目の弁部220aの充填通路720aを遮断する鋼球730aとその鋼球730aを付勢するスプリング740aとを備えている。なお、2段目の弁部220bの充填通路720bを遮断する鋼球730bを付勢するスプリング740bは、1段目の比例ピストン230aを閉弁方向に付勢するスプリングの役目も果たしている。

以上の構造の減圧装置では、入口ポート711からの高圧の水素ガスは、1段目および2段目の比例ピストン230a,230bを押し上げて、減圧部300の出力ポート317から出力される。この順方向では、スプリング740a,740bの付勢力を受ける鋼球730a,730bと弁部220a,220bの窪みとでシールされることで、弁部220a,220bに設けた充填通路720a,720bは遮断され、水素ガスがこの通路を流れることはない。

他方、減圧部300の出力ポート317に充填用の高圧水素ガスを接続すると、水素ガスは逆方向に流れ、出力ポート317からの水素ガスは、バルブ320が開弁状態の絞り流路315を通過して、2段目の比例減圧部200bの出口室270bへ流入する。水素ガスは、その圧力により2段目の比例ピストン230bを弁部220bに押し付けて、比例ピストン230bと弁部220bとの隙間の流路を閉口し、比例ピストン230bの貫通流路233bを通過して弁部220bの充填通路720bに流入する。充填通路720b内の水素ガスの圧力が、鋼球730bで通路を遮断しているスプリング740bの付勢力に勝ると、充填通路720b内の水素ガスは、鋼球730bを押しのけて1段目の比例減圧部200aの出口室270aへ流入する。以下、同様にして、1段目の弁部220aの充填通路720aを通過した水素ガスは、減圧装置の入口ポート711に到達する。こうして水素ガスを逆方向に流すことができるため、タンクからの水素ガスの放出、充填を一つの装置を介して行なうことができる。

この減圧装置では、双方向のうち一方向の流れを遮断するチェック機能を設けることで、放出して空になった水素タンク130に水素ガスを充填する場合にも使用できる。すなわち、減圧装置の出力ポート317を、水素タンク130への水素ガスの充填用入力ポートとしても使用できることになる。

以上、本発明の実施の形態について説明したが、本発明はこうした実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲において様々な形態で実施し得ることは勿論である。本実施例では、比例減圧部のスプリングの力は、中間室の大気圧による比例ピストンにかかる力を相殺する程度の力としたが、例えば、構造上の理由からタンク内部に所定の圧力をかけておく必要がある場合には、このスプリングを調整することでタンク圧をかけるように構成しても良い。

本発明の減圧装置を搭載した車両の燃料電池システムの概略構成図である。 第1実施例の減圧装置の縦断面図である。 減圧弁の入力圧力と出力圧力の関係図である。 独立した比例減圧装置の縦断面図である。 第2実施例の多段比例減圧部を有する減圧装置の断面図である。 中間室と出口室とを連通した減圧装置の縦断面図である。 充填用の通路およびチェック機能を有する減圧装置の縦断面図である。

符号の説明

10...燃料電池スタック
20...エアライン
30...燃料ライン
50...DC/DCコンバータ
60...蓄電池
100...フィルタ
110...コンプレッサ
120...加湿器
130...水素タンク
140...減圧装置
150...シャットバルブ
160...水素循環ポンプ
170...インバータ
180...走行モータ
200,200a,200b...比例減圧部
210,210a,210b,410...ハウジング
212...タップ穴
214...凹部
215...大径内円筒
216...小径内円筒
217...ネジ穴部
218...入力ポート
219...中間ポート
220,220a,220b,420...弁部
222...円柱部分
224...円錐部分
226...雄ネジ部
230,230a,230b,430...比例ピストン
231,231a,231b...大径円柱部分
232,232a,232b...小径円柱部分
233,233a,233b...貫通流路
235,236,360,380...Oリング
240,240a,240b,440,740a,740b...スプリング
250,250a,250b,450...入力室
260,260a,260b,460...中間室
270,270a,270b,470...出口室
280...パッキン
290,400...比例減圧装置
300...減圧部
310...ケース
311...挿入孔
312...係合部分
313...導入路
315...絞り流路
316...フランジ部分
317...出力ポート
318...円筒形状部分
319...大気孔
320...バルブ
321...連結部
330...減圧ピストン
340...バネ
345...ネジ係合穴部
350...バネ調整部分
370...締結ボルト
390...出力室
395...接続通路
436...入力通路
500...多段比例減圧部
510,710...ケーシング
512...フランジ
514...円筒
515...連通孔
516...入口ポート用穴部
711...入口ポート
715...段付凹部
720a,720b...充填通路
730a,730b...鋼球

Claims (9)

  1. 流体の回路に使用し、流体の高圧力を低圧力に減圧する減圧装置であって、
    前記回路の上流に、前記流体が流入し、該流入した流体の圧力を減圧し、該圧力に比例した圧力で流出させる比例減圧手段を設け、
    前記回路の下流に、前記比例減圧手段から流出した前記流体の圧力を所定の圧力に減圧する減圧手段を設け、
    前記比例減圧手段は、
    ハウジングの内部に軸方向に移動可能なピストンを設け、
    前記ピストンは、該ピストンの一端面に第1の受圧面と、他端面に該第1の受圧面より面積の大きな第2の受圧面を備え、
    前記第1の受圧面側に入力室を、前記第2の受圧面側に出力室を設け、
    前記ピストン内部に、前記入力室と前記出力室とを連通する連通路を有し、
    前記連通路の一端で、前記第1の受圧面側に、前記ピストンが軸方向に移動することで前記連通路を開閉する弁を設け、
    前記連通路を閉弁する方向に、前記ピストンを付勢するスプリングを備えて構成し、
    前記比例減圧手段と前記減圧手段とを一体構造とした
    減圧装置。
  2. 高圧のタンクを有する燃料電池システムに使用し、該高圧タンクからの高圧ガスを低圧に減圧する減圧装置であって、
    前記ガスの流れの上流に、前記ガスが流入し、該流入したガスの圧力を減圧し、該圧力に比例した圧力で流出させる比例減圧手段を設け、
    前記ガスの流れの下流に、前記比例減圧手段から流出した前記ガスの圧力を所定の圧力に減圧する減圧手段を設け、
    前記比例減圧手段と前記減圧手段とを一体構造とした
    減圧装置。
  3. 請求項2に記載の減圧装置であって、
    前記比例減圧手段は、該比例減圧手段に流入する前記ガスの圧力を、1/3から2/3の範囲に減圧する手段である減圧装置。
  4. 請求項2または請求項3に記載の減圧装置であって、
    前記比例減圧手段は、
    ハウジングの内部に軸方向に移動可能なピストンを設け、
    前記ピストンは、該ピストンの一端面に第1の受圧面と、他端面に該第1の受圧面より面積の大きな第2の受圧面を備え、
    前記第1の受圧面側に入力室を、前記第2の受圧面側に出力室を設け、
    前記ピストン内部に、前記入力室と前記出力室とを連通する連通路を有し、
    前記連通路の一端で、前記第1の受圧面側に、前記ピストンが軸方向に移動することで前記連通路を開閉する弁を設け、
    前記連通路を閉弁する方向に、前記ピストンを付勢するスプリングを備えた手段である
    減圧装置。
  5. 請求項1または4に記載の減圧装置であって、
    前記比例減圧手段は、前記ハウジングの内部に設けた前記ピストンの軸方向の移動用の空間である中間室を形成し、
    前記減圧手段により減圧された圧力の流体が流入する空間と前記中間室とを連通する導入路を備えた減圧装置。
  6. 請求項5に記載の減圧装置であって、
    前記弁には、前記ピストンの移動による開弁によらず、前記連通路の前記第1の受圧面側と接続する第2の流路が形成され、
    前記第2の流路上に、前記比例減圧手段に流入した流体が前記減圧手段から流出する方向への該第2の流路の流れを止める逆止手段を備えた
    減圧装置。
  7. 請求項6に記載の減圧装置であって、
    前記比例減圧手段を、少なくとも2つ以上、シリーズに組み合わせて多段比例減圧手段として構成し、
    前記逆止手段は、前記第2の流路を開口または閉口する弁体と、該弁体を閉口方向に付勢する第2のスプリングとを備え、
    前記多段比例減圧手段の隣接する2つの前記比例減圧手段の中、下流の該比例減圧手段の前記弁体を閉口方向に付勢する機能と、上流の該比例減圧手段の前記ピストンを閉弁方向に付勢する機能とを合わせ持つ第3のスプリングを前記隣接する比例減圧手段の間に介装した
    減圧装置。
  8. 請求項1ないし6のいずれかに記載の減圧装置であって、
    前記比例減圧手段を、少なくとも2つ以上、シリーズに組み合わせて多段比例減圧手段として構成する減圧装置。
  9. 請求項1に記載の減圧装置であって、
    前記減圧手段は、バルブを有し、
    前記比例減圧手段と前記減圧手段は、前記比例減圧手段の前記スプリングが、前記比例減圧手段の前記ピストンと、前記減圧手段の前記バルブとの間に配置された一体構造を有する、
    減圧装置。
JP2003359417A 2003-10-20 2003-10-20 減圧装置 Expired - Fee Related JP4342266B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003359417A JP4342266B2 (ja) 2003-10-20 2003-10-20 減圧装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003359417A JP4342266B2 (ja) 2003-10-20 2003-10-20 減圧装置

Publications (2)

Publication Number Publication Date
JP2005122621A JP2005122621A (ja) 2005-05-12
JP4342266B2 true JP4342266B2 (ja) 2009-10-14

Family

ID=34615653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359417A Expired - Fee Related JP4342266B2 (ja) 2003-10-20 2003-10-20 減圧装置

Country Status (1)

Country Link
JP (1) JP4342266B2 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714008B2 (ja) * 2005-11-24 2011-06-29 本田技研工業株式会社 圧力調整器
JP2007234501A (ja) * 2006-03-03 2007-09-13 Toyota Motor Corp 調圧弁および燃料電池システム
WO2008143792A1 (en) 2007-05-11 2008-11-27 Sdc Materials, Inc. Formation of catalytic regions within porous structures using supercritical phase processing
JP2009002432A (ja) * 2007-06-21 2009-01-08 Yamaha Motor Co Ltd ガス残量算出装置
US8507401B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
JP5040826B2 (ja) * 2008-06-17 2012-10-03 株式会社ジェイテクト 弁装置
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US9039916B1 (en) 2009-12-15 2015-05-26 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for copper copper-oxide
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
AU2012299065B2 (en) 2011-08-19 2015-06-04 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
EP3024571B1 (en) 2013-07-25 2020-05-27 Umicore AG & Co. KG Washcoats and coated substrates for catalytic converters
MX2016004991A (es) 2013-10-22 2016-08-01 Sdcmaterials Inc CATALYST DESIGN FOR HEAVY SERVICE DIESEL COMBUSTION ENGINES.
KR20160074574A (ko) 2013-10-22 2016-06-28 에스디씨머티리얼스, 인코포레이티드 희박 NOx 트랩의 조성물
JP2015140814A (ja) * 2014-01-27 2015-08-03 川崎重工業株式会社 減圧弁
CN106470752A (zh) 2014-03-21 2017-03-01 Sdc材料公司 用于被动nox吸附(pna)系统的组合物
KR101574729B1 (ko) * 2014-06-26 2015-12-04 동방테크 주식회사 감압용 레귤레이터

Also Published As

Publication number Publication date
JP2005122621A (ja) 2005-05-12

Similar Documents

Publication Publication Date Title
US9739387B2 (en) Fluid regulator
KR100989383B1 (ko) 연료 전지 시스템, 연료 전지 시스템이 탑재된 이동체, 및연료 전지 시스템의 이상 판단 방법
US7441560B2 (en) Solenoid valve for fuel cell
US7338728B2 (en) Fuel cell block including a water separator
US6913448B2 (en) Load-regulating device for scroll type compressors
KR100907328B1 (ko) 에어 오퍼레이팅 밸브
CN101415980B (zh) 定流量阀
KR100903663B1 (ko) 가스용기용 밸브 어셈블리
JP5290285B2 (ja) 圧力レギュレータ
US6595280B2 (en) Submersible well pumping system with an improved hydraulically actuated switching mechanism
KR101126665B1 (ko) 연료전지 시스템
JP4404692B2 (ja) 圧力調整器
US8999593B2 (en) Ejector apparatus for fuel cell
US8387665B2 (en) Combination spring and gas filled accumulator
CN103003605B (zh) 气体用调压阀
KR100900037B1 (ko) 연료탱크시스템
US8323852B2 (en) Ejector and fuel cell system using the same
US8017275B2 (en) Fuel cell system
KR100983066B1 (ko) 물 분사식 스크루 압축기 요소
CA2814463C (en) Fuel gas supplying and filling system
JP4552399B2 (ja) 複数タンクからなるタンクシステムおよびその制御方法
JP2006153218A (ja) 燃料電池用電磁弁
KR20070024345A (ko) 펌프 기기
US20110135509A1 (en) Scroll compressor capacity modulation with hybrid solenoid and fluid control
JP2006049103A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees