CN102656696A - 具有弧形栅极氧化物轮廓的分栅式半导体装置 - Google Patents

具有弧形栅极氧化物轮廓的分栅式半导体装置 Download PDF

Info

Publication number
CN102656696A
CN102656696A CN2010800562155A CN201080056215A CN102656696A CN 102656696 A CN102656696 A CN 102656696A CN 2010800562155 A CN2010800562155 A CN 2010800562155A CN 201080056215 A CN201080056215 A CN 201080056215A CN 102656696 A CN102656696 A CN 102656696A
Authority
CN
China
Prior art keywords
semiconductor device
grid
dielectric layer
region
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800562155A
Other languages
English (en)
Other versions
CN102656696B (zh
Inventor
Y.高
K-I.陈
K.特里尔
S.史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vishay Siliconix Inc
Original Assignee
Vishay Siliconix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vishay Siliconix Inc filed Critical Vishay Siliconix Inc
Publication of CN102656696A publication Critical patent/CN102656696A/zh
Application granted granted Critical
Publication of CN102656696B publication Critical patent/CN102656696B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66621Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

分栅式半导体装置包括沟槽式栅极,其具有第一电极区和第二电极区,该第一电极区和第二电极区通过栅极氧化层和相邻的电介质层彼此分开。该栅极氧化层和电介质层的边界是弧形的,以避免在栅极氧化层交会沟槽侧壁处为尖锐转角。

Description

具有弧形栅极氧化物轮廓的分栅式半导体装置
技术领域
依据本发明的实施例大体上属于半导体装置。
背景技术
为了节约功率,降低晶体管中功率损耗是很重要的。在金属氧化物半导体场效应晶体管(MOSFET)装置中,并且尤其在被熟知为功率MOSFET的MOSFET种类中,可通过降低装置的漏极到源极的接通电阻(Rdson)来降低功率损耗。
分栅式功率MOSFET,也被公知为屏蔽栅极沟槽式MOSFET,利用外延层中较大的掺杂浓度来降低Rdson。分栅式功率MOSFET结合沟槽式栅极,该沟槽式栅极包括第一电极(例如,多晶硅,或多晶硅-1),其通过隔离层(例如,差分氧化层)与第二电极(例如,多晶硅,或多晶硅-2)分开。从制造的观点看,适当形成隔离层可能是具有挑战性的。
在一种常规的制造处理中,隔离层是在形成栅极氧化物的同时,在暴露的第一多晶硅(多晶硅-1)区上生长的。但是,隔离层在多晶硅-1顶部上比沿多晶硅-1区的侧壁生长快得多。结果,当用于第二电极的多晶硅(多晶硅-2)沉积到隔离层上时,形成了尖锐转角。由于点放电效应,锐角转角可能会影响隔离层的可靠性,并且还可能会增加在栅极到源极与栅极到漏极之间的重叠部分,因此增加了Ciss(栅-源电容和栅-漏电容的总和)。而且,因为隔离层符合下面的多晶硅-1区的轮廓,在多晶硅-1表面上的任何空缺或瑕疵将被转化为变形的氧化物轮廓,这可能显著地降低多晶硅-1/多晶硅-2的击穿。此外,由于隔离层和栅极氧化物是同时形成的,它们的厚度高度相关。因此,不能使隔离层更厚来补偿缺陷或其它制造问题,而不使栅极氧化物也更厚。
在另一个常规的制造处理中,用于第一电极的侧壁氧化物和多晶硅沉积在沟槽中。然后第一多晶硅区被蚀刻成凹处,而沟槽被重新填充以具有与侧壁氧化物类似的蚀刻速率的电介质材料。在平坦化以后,电介质材料和侧壁氧化物被回蚀以形成隔离层。但是,要针对电介质和氧化物获得一致的蚀刻速率可能是较困难的。蚀刻速率的差异可影响隔离层的均匀性,这可能影响装置的接通电阻以及输入电容。而且,在进行蚀刻之后,在沟槽中的剩余材料交会沟槽侧壁处形成锐角转角。锐角转角可明显延迟栅极氧化物的厚度,这继而明显降低了栅极氧化物的击穿。
发明内容
据此,避免以上所描述的缺陷的半导体装置,和产生这样的装置的可行方法,将是有利的。
在依据本发明的一个实施例中,分栅式半导体装置(例如,功率MOSFET)包括具有第一电极(例如,多晶硅-1)区和第二电极(例如,多晶硅-2)区的沟槽式栅极,该第一电极区和第二电极区通过栅极氧化层和相邻的电介质层彼此分开。栅极氧化层和电介质层的边界是弧形的,以避免在栅极氧化层交会沟槽侧壁处具有锐角转角。
在一个实施例中,在制作过程中,多晶硅-1区被蚀刻成凹处,且侧壁氧化物被蚀刻掉。使用电介质材料重新填充凹处,并且凹处被平坦化;因此,在多晶硅-1区以上的区包含相同类型的材料(电介质材料)。然后电介质材料被回蚀;由于在整个区上存在相同的材料,避免了针对不同材料试图达到一致蚀刻速率的问题。对电介质区进行蚀刻以形成弧形(例如,凹进)的轮廓。当形成了过氧化层时,其将符合电介质区的形状,并因此也将具有弧形的轮廓。从而避免了在电介质区和氧化层交会沟槽侧壁处的锐角转角。
相对于常规方法,在栅极到源极和栅极到漏极之间的重叠部分较少,这降低了Ciss。当用电介质重新填充凹处时,在多晶硅-1表面上的任何瑕疵或空缺将被填满,因此,获得了适当的轮廓,而不是变形的轮廓。没有锐角转角解决了与常规方法相关的栅极氧化延迟的问题。
在阅读以下在不同的附图中说明的详细描述之后,那些本领域技术人员将认识到本发明的这些以及其它目的和优点。
附图说明
被结合在本说明书中并成为本说明书的一部分的附图说明了本发明的实施例,并且,与本说明书一起用于揭示本发明的原理。贯穿附图和说明,相似的编号指代相似的元件。
图1A、图1B,和图1C说明了依据本发明的实施例,在制作半导体器件时使用的处理的流程图;
图2、图3、图4、图5、图6、图7、图8、图9、图10、图11、图12、图13、图14、图15、图16、图17和图18依据本发明的实施例,示出在制作半导体装置过程中选定阶段的横截面视图;
图19是示出在依据本发明的实施例中的半导体装置元件的横截面视图。
具体实施方式
在以下对本发明的详细说明中,为了提供对本发明的透彻理解,阐述了多个特定细节。但是,一个本领域的技术人员将认识到,没有这些特定细节或使用其等同物也可以实现本发明。在其它情况下,为了不使本发明的方面没有必要地难以理解,而没有详细地描述熟知的方法、过程、部件,和电路。
下面的详细说明的一些部分将以用于制作半导体装置的操作的过程、逻辑框、处理和其它符号表达的方式来表达。这些说明和表达是那些半导体装置制作领域的技术人员使用的手段,以将他们的工作的实质最有效地传达给其它本领域技术人员。在本申请中,过程、逻辑框、处理或类似物,被认为是导致所期望的结果的步骤或指令的前后一致序列。这些步骤是对于物理量所需的物理操纵。但是,应该记得,所有这些的和类似的术语与适当的物理量关联,并且仅是应用于这些量的简易的标签。除非根据以下讨论显而易见地特地做出其它陈述,否则可体会到,贯穿本申请,利用诸如“形成”、“执行”、“产生”、“沉积”、“生长”、“蚀刻”或类似术语的讨论涉及了对半导体装置制作的行为和处理(例如,图1A、图1B和图1C中的流程图100)。
附图并未按比例描绘,并且仅是结构的一部分,以及形成那些结构的不同的层,可在附图中被示出。而且,制作过程和步骤可连同在此所讨论的过程和步骤执行;也就是说,在此示出和描述的步骤之前、之间和/或之后,可能还存在许多处理步骤。重要的是,依据本发明的实施例可结合其它(可能是常规的)处理和步骤被实现,而不会产生明显干扰。大体上说,依据本发明的实施例,可替代常规处理的部分,而不明显影响外围的处理和步骤。
正如在此所使用的,字母“n”是指n型掺杂剂而字母“p”是指p型掺杂剂,加号“+”或减号“-”分别用于表达相对高或相对低的掺杂剂浓度。
在此以普遍使用的方式使用术语“沟道”。即,在沟道中电流在FET之内从源极连接移动到漏极连接。沟道可由n型或p型半导体材料制成;相应地,FET被指定为n型沟道或p型沟道装置。其中一些附图是在n型沟道装置(特别是n型沟道功率MOSFET)的上下文中讨论的;但是,依据本发明的实施例并没有受到这样的限制。即,在此所描述的特征也能够在p型沟道装置中使用。通过用p型掺杂剂和材料取代相应的n型掺杂剂和材料,对n型沟道装置的讨论能够容易地映射到p型装置,反之亦然。
图1A、1B,和1C说明了一种用于制造半导体装置(如图19中部分说明的装置)的处理的一个实施例的流程图100。虽然在流程图100中揭示了特定的步骤,但是这样的步骤是示范性的。也就是说,依据本发明的实施例可适合于执行各种其它步骤或在流程图100中记载的步骤的变型。结合图2至图18讨论了流程图100,图2至图18示出了依据本发明的实施例,在半导体装置的制造中选定阶段的横截面视图。
在图1A的框102中,同时参考图2,在基板202上(这在后续图中可能未示出)生长外延(epi)层204。在n型沟道装置中,外延层包括p型掺杂剂,并且其在n+型基板上生长。该结构包括在基板202底部表面上的漏极区203。
在图1A的框104中,同时参考图3,在epi层204的选定部分上形成光阻材料(photoresist)掩膜306。然后,将epi层204的暴露部分蚀刻掉以形成沟槽式腔,其被称为沟槽308。然后如图4所示,去除掩膜306。
在图1A的框106中,同时参考图5,在epi层204上以及沿沟槽308的侧壁和底部表面产生(生长)热氧化层510。在一个实施例中,热氧化层的厚度为大致300埃(Angstrom,A)。
在框108中,在热氧化层510上形成电介质层512(在此也称为第一电介质层),其如图5所示,沿沟槽308的侧壁和底部延伸到沟槽308中。在一个实施例中,电介质层512包括次大气压非掺杂硅玻璃(SAUSG)。在一个这样的实施例中,电介质层的厚度为大致1300A。
在图1A的框110中,同时参考图6,在电介质层512上,并且在沟槽308中形成第一多晶硅层614(在图6和后续图中,电介质层512和热氧化层510可被表示为单个层511)。第一多晶硅层在此也可被称为多晶硅-1。
在图1A的框112中,同时参考图7,使用例如化学机械平坦化或抛光(CMP)处理去除多晶硅-1。还可将剩余的多晶硅-1区714进行相对少量地回蚀(例如,大约0.1微米),使得多晶硅-1的暴露的(例如,顶部)表面相对于层511稍微凹进。
在图1B的框114中,同时参考图8,在选定的多晶硅-1区上形成PR掩膜816,也就是说,使该结构的核心区仍旧暴露,同时用掩膜816覆盖该结构的拾取或终止区。在施加掩膜之后,回蚀(凹进蚀刻)暴露的多晶硅-1以在核心区中形成多晶硅-1区818,其将沟槽308填充到比在拾取或终止区中的多晶硅-1区714低的高度。
在图1B的框116中,同时参考图8,PR掩膜816被去除,并且然后执行薄层缓冲氧化蚀刻(blanket buffered oxide etch,BOE)以去除层511的多个部分。更特定地,沿epi层204的台面(mesa),并从沟槽308的侧壁去除层511,使多晶硅-1区714和818的侧面局部暴露出,如图9所示。将层511去除成高度稍低于区714和818的高度。
在图1B的框118中,通过使用例如次大气压化学蒸汽沉积(SACVD)处理在epi层204的暴露的表面上并在沟槽308中沉积电介质层1020,如图10所示。在一个实施例中,电介质层1020包括被浓密化的SAUSG(例如,6K SAUSG)。当使用电介质重新填充凹进处时,在多晶硅-1区714和818的表面上的任何缺损或孔隙将被填充,因此获得适当的轮廓,而不是变形的轮廓。
在图1B的框120中,例如通过使用CMP处理去除电介质层1020的一部分,并且通过使用干燥蚀刻去除电介质层的剩余部分,以便使epi层204和电介质层1020的暴露表面平坦化,正如图11中示出的。因此,在多晶硅-1区818之上的区中为同一类型的材料(例如,SAUSG)。
在图1B的框122中,在该结构的拾取或终止区上形成PR掩膜1222,使核心区仍暴露,如图12所示。然后执行有专利权的氧化物蚀刻,以去除电介质层1020的一部分,以形成电介质层1226(在此也称为第二电介质层)。由于在整个电介质层1020中存在相同材料,避免了试图针对不同材料获得一致蚀刻速率的问题。
明显地,电介质层1226的表面1224是弧形的。在图12中说明了该结构的横截面;在三个维度中,电介质层1226的表面1224是凹进的。因为表面1224是弧形的,从而避免了在电介质层1226与沟槽侧壁1228交会处的尖锐转角。
在图1B的框124中,除去了PR掩膜1222,并且在epi层204、电介质层1226和电介质层1020的暴露表面上产生(生长出)栅极氧化层1330,正如图13中所示出的。因为表面1224是弧形的,在电介质层1226之上栅极氧化层1330也将是弧形的(腔型)。因此,避免了与在常规方法中尖锐转角的存在相关联的栅极氧化延迟问题。而且,相对于常规方法,在栅极到源极和栅极到漏极之间的重叠更小,这降低了Ciss。
在图1C的框126中,接着在栅极氧化层1330上形成第二多晶硅层1332。在本文中第二多晶硅层也可能被称为多晶硅-2。
在图1C的框128中,同时参考图14,使用例如CMP处理除去多晶硅-2,以形成多晶硅-2区1434。还可相对少量地回蚀多晶硅-2区1434,使得多晶硅-2的暴露表面(例如,顶部表面)相对于栅极氧化层1330稍微凹进。多晶硅-1区818和多晶硅-2区1434对应于分栅式功率MOSFET中的分裂式栅极的第一和第二电极。分栅式功率MOSFET也称为屏蔽栅式沟槽式MOSFET。
在图1C的框130中,同时参考图15,执行体注入以形成体区1536。在n型沟道装置中,例如,体区1536包括p型(p-)掺杂剂。然后可形成掩膜(未示出)以屏蔽拾取或终止区,并且然后实行源极注入以形成源极区1538。在n型沟道装置中,例如源极区1538包括n型(n+)掺杂剂。然后除去掩膜。
在图1C的框132中,低温氧化(LTO)层沉积之后,沉积硼磷硅玻璃(BPSG)层,在图16中这些层总体被标识为层1640。
在图1C的框134中,同时参考图17,掩膜(未示出)被用于选择性地除去层1640、源极区1538和体区1536的一部分,形成开口1742。在n型沟道装置中,在开口底部处,然后将掺杂剂注入以形成p型(p+)接触区1744。
在图1C的框136中,可在选定区域上形成另一个掩膜(未示出),并且可将材料除去到掩膜的开口之下,以形成对多晶硅-1区818和714以及多晶硅-2区1434的拾取器(pickup)(未示出)。在该结构上可沉积金属层1846,正如图18所示,并且然后可形成另一掩膜(未示出)以选择性地除去金属层的多个部分,以形成电连接。可选地可以沉积钝化层(未示出),并且然后,可施加另一掩膜(未示出),以对钝化层进行蚀刻,从而定义栅极和源极衬垫。
图19说明了沟槽或分裂式栅极1900的实施例。栅极1900包括第一电极(例如,多晶硅,多晶硅-1)区818和第二电极(例如,多晶硅,多晶硅-2)区1434,第一电极区和第二电极区通过与第二电介质层1226相邻的栅极氧化层1330被彼此分开。第二电介质层1226形成在第一电介质层512之后,并且将第一电介质层512与栅极氧化层1330分开。
显然,栅极氧化层1330和第二电介质层1226的边界1224是弧形的。边界1224贯穿栅极沟槽308的宽度。更具体而言,该边界在形状上相对于下面的电介质层1226为凹进型(并且因此在形状上相对于栅极氧化层1330为凸起的)。
避免了在第二电介质层1226与栅极氧化层1330交会沟槽308的侧壁处存在尖锐转角,因此,解决了与常规方法相关联的栅极氧化延迟问题。而且,相对常规方法来说,在栅极到源极以及栅极到漏极之间的重叠减小,从而降低了Ciss。
综上所述,说明了功率MOSFET装置的实施例,以及用于制作这样的装置的方法的实施例。对本发明的特定实施例的前述说明是为了说明和描述的目的提供的。它们并非旨在是穷举性地或是将本发明限制成所揭示的精确形式,并且依照以上教导,还可能有许多修正和变形。选择和描述实施例是为了最好地解释本发明的原理以及其实际应用,以因此能够使本领域其它技术人员能够通过各种变形最好地利用本发明和不同实施例,正如适合于所预期的特定应用。期望的是,本发明的范围通过随附的权利要求书以及它们的等同物来限定。
概念:
本文至少揭示了以下概念:
概念1.一种半导体装置,包括:
源极区;
漏极区;和
沟槽式栅极,其包括通过与电介质层相邻的栅极氧化层被彼此分开的第一电极区和第二电极区,其中,所述栅极氧化层和所述电介质层的边界是弧形的。
概念2.如概念1所述的半导体装置,其中,所述第一电极区和所述第二电极区包括多晶硅。
概念3.如概念1所述的半导体装置,其中,所述电介质层包括第二电介质层,其中,所述第二电介质层形成于第一电介质层之后,并且将所述第一电介质层和所述栅极氧化层分开。
概念4.如概念1所述的半导体装置,其中,所述边界相对于所述电介质层是凹进的,并且相对于所述栅极氧化层是凸起的。
概念5.如概念1所述的半导体装置,其中,所述电介质层包括次大气压未掺杂硅玻璃(SAUSG)。
概念6.如概念1所述的半导体装置,包括功率金属氧化物半导体场效应晶体管(MOSFET)装置。
概念7.如概念1所述的半导体装置,其中,所述栅极氧化层还将所述第二电极区域与所述源极区分开。
概念8.一种半导体装置,包括:
源极区;
漏极区;以及
栅极,其在所述半导体装置中的沟槽式腔中形成,其中,所述栅极包括:
第一电极区;
第二电极区;以及
电介质区,其表面横贯所述第一和第二电极区之间的所述栅极的宽度,其中,所述表面为凹进的。
概念9.如概念8所述的半导体装置,其中,所述第一电极区和所述第二电极区包括多晶硅。
概念10.如概念8所述的半导体装置,进一步包括栅极氧化层,其将所述电介质区域与所述第二电极区分开。
概念11.如概念10所述的半导体装置,其中,所述电介质区包括第二电介质层,该第二电介质层形成于第一电介质层之后,并且将所述第一电介质层与所述栅极氧化层分开。
概念12.如概念8所述的半导体装置,其中,所述电介质区包括次大气压未掺杂硅玻璃(SAUSG)。
概念13.如概念8所述的半导体装置,包括功率金属氧化物半导体场效应晶体管(MOSFET)装置。
概念14.如概念1所述的半导体装置,其中,所述栅极氧化层还将所述第二电极区与所述源极区分开。
概念15.一种制作在半导体装置中的分裂式栅极的方法,所述方法包括:
在所述半导体装置中,沿沟槽式腔的侧壁形成第一电介质区;
在所述腔内形成第一栅极电极区;
在所述腔内形成第二电介质区;
回蚀所述第二电介质区,以形成凹进表面;以及
在所述腔内形成第二栅极电极区。
概念16.如概念15所述的方法,进一步包括,在形成所述第二电介质区之前,回蚀所述第一电介质区。
概念17.如概念15所述的方法,进一步包括,在形成所述第二栅极电极区之前,在所述凹进表面上并沿所述侧壁产生栅极氧化层。
概念18.如概念15所述的方法,进一步包括,在形成所述第一电介质区之前,沿所述侧壁产生热氧化层。
概念19.如概念15所述的方法,进一步包括,形成源极和漏极区。
概念20.如概念15所述的方法,其中,所述半导体装置包括功率金属氧化物半导体场效应晶体管(MOSFET)装置。

Claims (20)

1.一种半导体装置,包括:
源极区;
漏极区;和
沟槽式栅极,其包括第一电极区和第二电极区,该第一电极区和第二电极区通过与电介质层相邻的栅极氧化层彼此分开,其中,所述栅极氧化层和所述电介质层的边界是弧形的。
2.如权利要求1所述的半导体装置,其中,所述第一电极区和所述第二电极区包括多晶硅。
3.如权利要求1所述的半导体装置,其中,所述电介质层包括第二电介质层,其中,所述第二电介质层形成于第一电介质层之后,并将所述第一电介质层与所述栅极氧化层分开。
4.如权利要求1所述的半导体装置,其中,所述边界相对于所述电介质层是凹进的,并且相对于所述栅极氧化层是凸起的。
5.如权利要求1所述的半导体装置,其中,所述电介质层包括次大气压未掺杂硅玻璃(SAUSG)。
6.如权利要求1所述的半导体装置,包括功率金属氧化物半导体场效应晶体管(MOSFET)装置。
7.如权利要求1所述的半导体装置,其中,所述栅极氧化层还将所述第二电极区与所述源极区分开。
8.一种半导体装置,包括:
源极区;
漏极区;和
栅极,其在所述半导体装置中的沟槽式腔中形成,其中所述栅极包括:
第一电极区;
第二电极区;以及
电介质区,其具有横贯在所述第一和第二电极区之间的所述栅极的宽度的表面,其中,所述表面是凹进的。
9.如权利要求8所述的半导体,其中,所述第一电极区和所述第二电极区包括多晶硅。
10.如权利要求8所述的半导体装置,进一步包括栅极氧化层,其将所述电介质区与所述第二电极区分开。
11.如权利要求10所述的半导体装置,其中,所述电介质区包括第二电介质层,其形成于第一电介质层之后,并且将所述第一电介质层与所述栅极氧化层分开。
12.如权利要求8所述的半导体装置,其中,所述电介质区包括次大气压未掺杂硅玻璃(SAUSG)。
13.如权利要求8所述的半导体装置,包括功率金属氧化物半导体场效应晶体管(MOSFET)装置。
14.如权利要求1所述的半导体装置,其中,所述栅极氧化层还将所述第二电极区和所述源极区分开。
15.一种制作在半导体装置中的分裂式栅极的方法,所述方法包括:
沿所述半导体装置中的沟槽式腔的侧壁形成第一电介质区;
在所述腔中形成第一栅极电极区;
在所述腔中形成第二电介质区;
回蚀所述第二电介质区,以形成凹进表面;以及
在所述腔中形成第二栅极电极区。
16.如权利要求15所述的方法,进一步包括,在形成所述第二电介质区之前,回蚀所述第一电介质区。
17.如权利要求15所述的方法,进一步包括,在形成所述第二栅极电极区之前,在所述凹进表面上并沿所述侧壁产生栅极氧化层。
18.如权利要求15所述的方法,进一步包括,在形成所述第一电介质区之前,沿所述侧壁产生热氧化层。
19.如权利要求15所述的方法,进一步包括,形成源极和漏极区。
20.如权利要求15所述的方法,其中,所述半导体装置包括功率金属氧化物半导体场效应晶体管(MOSFET)装置。
CN201080056215.5A 2009-10-21 2010-10-21 具有弧形栅极氧化物轮廓的分栅式半导体装置 Active CN102656696B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/603,028 2009-10-21
US12/603,028 US9419129B2 (en) 2009-10-21 2009-10-21 Split gate semiconductor device with curved gate oxide profile
PCT/US2010/053617 WO2011050207A2 (en) 2009-10-21 2010-10-21 Split gate semiconductor device with curved gate oxide profile

Publications (2)

Publication Number Publication Date
CN102656696A true CN102656696A (zh) 2012-09-05
CN102656696B CN102656696B (zh) 2015-09-30

Family

ID=43878636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080056215.5A Active CN102656696B (zh) 2009-10-21 2010-10-21 具有弧形栅极氧化物轮廓的分栅式半导体装置

Country Status (6)

Country Link
US (2) US9419129B2 (zh)
EP (1) EP2491593B1 (zh)
JP (1) JP5932651B2 (zh)
KR (1) KR101493680B1 (zh)
CN (1) CN102656696B (zh)
WO (1) WO2011050207A2 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701148A (zh) * 2013-12-04 2015-06-10 和舰科技(苏州)有限公司 分裂栅的制造方法
CN105957811A (zh) * 2016-04-27 2016-09-21 上海华虹宏力半导体制造有限公司 具有屏蔽栅的沟槽栅功率器件的制造方法
CN108417637A (zh) * 2018-03-09 2018-08-17 香港商莫斯飞特半导体股份有限公司 一种多沟槽半导体功率器件及其制备方法
CN110047759A (zh) * 2019-04-28 2019-07-23 矽力杰半导体技术(杭州)有限公司 沟槽型mosfet器件制造方法
CN111081540A (zh) * 2019-12-30 2020-04-28 广州粤芯半导体技术有限公司 屏蔽栅沟槽功率器件的制造方法
CN111681963A (zh) * 2020-08-11 2020-09-18 中芯集成电路制造(绍兴)有限公司 一种屏蔽栅场效应晶体管及其形成方法
CN112509979A (zh) * 2020-11-30 2021-03-16 中芯集成电路制造(绍兴)有限公司 具有屏蔽栅沟槽结构的半导体器件及其制造方法
CN112509980A (zh) * 2020-11-30 2021-03-16 中芯集成电路制造(绍兴)有限公司 具有屏蔽栅沟槽结构的半导体器件及其制造方法
CN112701043A (zh) * 2020-12-28 2021-04-23 广州粤芯半导体技术有限公司 一种半导体器件的制造方法
CN113053738A (zh) * 2019-12-27 2021-06-29 华润微电子(重庆)有限公司 一种分裂栅型沟槽mos器件及其制备方法
CN113130633A (zh) * 2019-12-30 2021-07-16 华润微电子(重庆)有限公司 沟槽型场效应晶体管结构及其制备方法
CN114496762A (zh) * 2022-04-13 2022-05-13 杭州芯迈半导体技术有限公司 一种制造沟槽mosfet的方法
CN114975126A (zh) * 2022-07-29 2022-08-30 威晟半导体科技(广州)有限公司 一种降低栅电荷的屏蔽栅沟槽型mosfet制造方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838722B2 (en) * 2002-03-22 2005-01-04 Siliconix Incorporated Structures of and methods of fabricating trench-gated MIS devices
US9425305B2 (en) 2009-10-20 2016-08-23 Vishay-Siliconix Structures of and methods of fabricating split gate MIS devices
US9419129B2 (en) 2009-10-21 2016-08-16 Vishay-Siliconix Split gate semiconductor device with curved gate oxide profile
WO2011109559A2 (en) 2010-03-02 2011-09-09 Kyle Terrill Structures and methods of fabricating dual gate devices
TWI453831B (zh) 2010-09-09 2014-09-21 台灣捷康綜合有限公司 半導體封裝結構及其製造方法
CN107482054B (zh) 2011-05-18 2021-07-20 威世硅尼克斯公司 半导体器件
DE112013002267T5 (de) * 2012-04-30 2015-03-12 Vishay-Siliconix Halbleiterbauelement
WO2013166079A1 (en) * 2012-04-30 2013-11-07 Vishay-Siliconix Integrated circuit design
US9589929B2 (en) 2013-03-14 2017-03-07 Vishay-Siliconix Method for fabricating stack die package
US9966330B2 (en) 2013-03-14 2018-05-08 Vishay-Siliconix Stack die package
JP5784665B2 (ja) * 2013-03-22 2015-09-24 株式会社東芝 半導体装置の製造方法
JP6177154B2 (ja) * 2013-07-16 2017-08-09 株式会社東芝 半導体装置
CN204102904U (zh) 2013-09-20 2015-01-14 三垦电气株式会社 半导体装置
JP6173987B2 (ja) 2013-09-20 2017-08-02 サンケン電気株式会社 半導体装置
JP2016040820A (ja) 2013-09-20 2016-03-24 サンケン電気株式会社 半導体装置
CN107078161A (zh) 2014-08-19 2017-08-18 维西埃-硅化物公司 电子电路
US9425304B2 (en) 2014-08-21 2016-08-23 Vishay-Siliconix Transistor structure with improved unclamped inductive switching immunity
DE102014112338A1 (de) 2014-08-28 2016-03-03 Infineon Technologies Austria Ag Halbleiterbauelement und Verfahren zum Herstellen eines Halbleiterbauelements
TWI577010B (zh) 2016-05-18 2017-04-01 杰力科技股份有限公司 功率金氧半導體場效電晶體
TWI615889B (zh) 2016-05-18 2018-02-21 杰力科技股份有限公司 功率金氧半導體場效電晶體的製造方法
CN106298945A (zh) * 2016-09-30 2017-01-04 上海华虹宏力半导体制造有限公司 屏蔽栅沟槽型mosfet工艺方法
CN107731923B (zh) * 2017-09-02 2019-09-03 西安交通大学 一种低导通电阻、小栅电荷的碳化硅超结mosfet器件与制备方法
CN107799602A (zh) * 2017-10-24 2018-03-13 贵州芯长征科技有限公司 能节省终端面积的屏蔽栅mosfet器件及其制备方法
CN107910267B (zh) * 2017-11-17 2023-09-08 杭州士兰集成电路有限公司 功率半导体器件及其制造方法
CN107910270B (zh) * 2017-11-17 2024-05-31 杭州士兰集成电路有限公司 功率半导体器件及其制造方法
CN109037337A (zh) * 2018-06-28 2018-12-18 华为技术有限公司 一种功率半导体器件及制造方法
US11217541B2 (en) 2019-05-08 2022-01-04 Vishay-Siliconix, LLC Transistors with electrically active chip seal ring and methods of manufacture
US11218144B2 (en) 2019-09-12 2022-01-04 Vishay-Siliconix, LLC Semiconductor device with multiple independent gates
CN113192825A (zh) * 2021-04-26 2021-07-30 广州粤芯半导体技术有限公司 分裂栅沟槽功率器件的制造方法
CN113471278A (zh) * 2021-06-24 2021-10-01 无锡新洁能股份有限公司 屏蔽栅沟槽型半导体器件及其制造方法
CN114420637B (zh) * 2021-12-22 2023-12-29 深圳深爱半导体股份有限公司 半导体器件结构及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050151190A1 (en) * 2003-11-14 2005-07-14 Infineon Technologies Ag Power transistor arrangement and method for fabricating it
CN101180737A (zh) * 2003-12-30 2008-05-14 飞兆半导体公司 功率半导体器件及制造方法
CN101238581A (zh) * 2005-08-09 2008-08-06 飞兆半导体公司 在屏蔽的栅极场效应晶体管中形成多晶硅层间电介质的结构和方法
US20090050959A1 (en) * 2007-08-21 2009-02-26 Madson Gordon K Method and Structure for Shielded Gate Trench FET

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2570742B2 (ja) 1987-05-27 1997-01-16 ソニー株式会社 半導体装置
US5283201A (en) 1988-05-17 1994-02-01 Advanced Power Technology, Inc. High density power device fabrication process
JPH03211885A (ja) 1990-01-17 1991-09-17 Matsushita Electron Corp 半導体装置及びその製造方法
JP3082522B2 (ja) 1993-07-27 2000-08-28 日産自動車株式会社 絶縁電極およびその製造方法
JP3481287B2 (ja) 1994-02-24 2003-12-22 三菱電機株式会社 半導体装置の製造方法
JP3307785B2 (ja) 1994-12-13 2002-07-24 三菱電機株式会社 絶縁ゲート型半導体装置
JPH10173175A (ja) 1996-12-09 1998-06-26 Toshiba Corp 半導体装置及び半導体装置の製造方法
US6281547B1 (en) 1997-05-08 2001-08-28 Megamos Corporation Power transistor cells provided with reliable trenched source contacts connected to narrower source manufactured without a source mask
JPH1168102A (ja) 1997-08-21 1999-03-09 Toshiba Corp 半導体装置の製造方法
US6031265A (en) 1997-10-16 2000-02-29 Magepower Semiconductor Corp. Enhancing DMOS device ruggedness by reducing transistor parasitic resistance and by inducing breakdown near gate runners and termination area
US6429481B1 (en) 1997-11-14 2002-08-06 Fairchild Semiconductor Corporation Field effect transistor and method of its manufacture
US6242775B1 (en) 1998-02-24 2001-06-05 Micron Technology, Inc. Circuits and methods using vertical complementary transistors
KR100295063B1 (ko) 1998-06-30 2001-08-07 김덕중 트렌치게이트구조의전력반도체장치및그제조방법
FR2785090B1 (fr) 1998-10-23 2001-01-19 St Microelectronics Sa Composant de puissance portant des interconnexions
US5998833A (en) 1998-10-26 1999-12-07 North Carolina State University Power semiconductor devices having improved high frequency switching and breakdown characteristics
US6621121B2 (en) 1998-10-26 2003-09-16 Silicon Semiconductor Corporation Vertical MOSFETs having trench-based gate electrodes within deeper trench-based source electrodes
US6255683B1 (en) 1998-12-29 2001-07-03 Infineon Technologies Ag Dynamic random access memory
EP1151478B1 (de) 1999-01-11 2002-08-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mos-leistungsbauelement und verfahren zum herstellen desselben
JP2000223705A (ja) 1999-01-29 2000-08-11 Nissan Motor Co Ltd 半導体装置
US6351018B1 (en) 1999-02-26 2002-02-26 Fairchild Semiconductor Corporation Monolithically integrated trench MOSFET and Schottky diode
US6404007B1 (en) * 1999-04-05 2002-06-11 Fairchild Semiconductor Corporation Trench transistor with superior gate dielectric
US6413822B2 (en) 1999-04-22 2002-07-02 Advanced Analogic Technologies, Inc. Super-self-aligned fabrication process of trench-gate DMOS with overlying device layer
US6291298B1 (en) * 1999-05-25 2001-09-18 Advanced Analogic Technologies, Inc. Process of manufacturing Trench gate semiconductor device having gate oxide layer with multiple thicknesses
US6518621B1 (en) 1999-09-14 2003-02-11 General Semiconductor, Inc. Trench DMOS transistor having reduced punch-through
US6548860B1 (en) 2000-02-29 2003-04-15 General Semiconductor, Inc. DMOS transistor structure having improved performance
JP3949869B2 (ja) 2000-03-22 2007-07-25 セイコーインスツル株式会社 縦形mosトランジスタ及びその製造方法
JP4581179B2 (ja) 2000-04-26 2010-11-17 富士電機システムズ株式会社 絶縁ゲート型半導体装置
EP1170803A3 (en) 2000-06-08 2002-10-09 Siliconix Incorporated Trench gate MOSFET and method of making the same
US6784486B2 (en) 2000-06-23 2004-08-31 Silicon Semiconductor Corporation Vertical power devices having retrograded-doped transition regions therein
US6309929B1 (en) 2000-09-22 2001-10-30 Industrial Technology Research Institute And Genetal Semiconductor Of Taiwan, Ltd. Method of forming trench MOS device and termination structure
US6653691B2 (en) 2000-11-16 2003-11-25 Silicon Semiconductor Corporation Radio frequency (RF) power devices having faraday shield layers therein
US6710403B2 (en) 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
US7132712B2 (en) 2002-11-05 2006-11-07 Fairchild Semiconductor Corporation Trench structure having one or more diodes embedded therein adjacent a PN junction
US7345342B2 (en) * 2001-01-30 2008-03-18 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US6870220B2 (en) 2002-08-23 2005-03-22 Fairchild Semiconductor Corporation Method and apparatus for improved MOS gating to reduce miller capacitance and switching losses
US6683346B2 (en) 2001-03-09 2004-01-27 Fairchild Semiconductor Corporation Ultra dense trench-gated power-device with the reduced drain-source feedback capacitance and Miller charge
TW484213B (en) 2001-04-24 2002-04-21 Ememory Technology Inc Forming method and operation method of trench type separation gate nonvolatile flash memory cell structure
JP4823435B2 (ja) 2001-05-29 2011-11-24 三菱電機株式会社 半導体装置及びその製造方法
JP2002373989A (ja) 2001-06-13 2002-12-26 Toshiba Corp 半導体装置
US7009247B2 (en) 2001-07-03 2006-03-07 Siliconix Incorporated Trench MIS device with thick oxide layer in bottom of gate contact trench
US6882000B2 (en) 2001-08-10 2005-04-19 Siliconix Incorporated Trench MIS device with reduced gate-to-drain capacitance
US6489204B1 (en) 2001-08-20 2002-12-03 Episil Technologies, Inc. Save MOS device
US6621107B2 (en) 2001-08-23 2003-09-16 General Semiconductor, Inc. Trench DMOS transistor with embedded trench schottky rectifier
US6573142B1 (en) 2002-02-26 2003-06-03 Taiwan Semiconductor Manufacturing Company Method to fabricate self-aligned source and drain in split gate flash
DE10212149B4 (de) 2002-03-19 2007-10-04 Infineon Technologies Ag Transistoranordnung mit Schirmelektrode außerhalb eines aktiven Zellenfeldes und reduzierter Gate-Drain-Kapazität
JP3960091B2 (ja) 2002-03-20 2007-08-15 富士電機ホールディングス株式会社 半導体装置およびその製造方法
US6838722B2 (en) 2002-03-22 2005-01-04 Siliconix Incorporated Structures of and methods of fabricating trench-gated MIS devices
US6858494B2 (en) 2002-08-20 2005-02-22 Taiwan Semiconductor Manufacturing Company Structure and fabricating method with self-aligned bit line contact to word line in split gate flash
US7576388B1 (en) 2002-10-03 2009-08-18 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
JP2004241413A (ja) 2003-02-03 2004-08-26 Toshiba Corp 半導体装置
US7638841B2 (en) 2003-05-20 2009-12-29 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
JP4626131B2 (ja) 2003-07-11 2011-02-02 富士電機システムズ株式会社 絶縁ゲート型半導体装置
JP4945055B2 (ja) 2003-08-04 2012-06-06 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
DE10339455B3 (de) * 2003-08-27 2005-05-04 Infineon Technologies Ag Vertikales Halbleiterbauelement mit einer eine Feldelektrode aufweisenden Driftzone und Verfahren zur Herstellung einer solchen Driftzone
GB0327791D0 (en) 2003-11-29 2003-12-31 Koninkl Philips Electronics Nv Trench insulated gate field effect transistor
GB0327793D0 (en) 2003-11-29 2003-12-31 Koninkl Philips Electronics Nv Trench mosfet
JP4398719B2 (ja) 2003-12-25 2010-01-13 株式会社東芝 半導体装置
US6906380B1 (en) 2004-05-13 2005-06-14 Vishay-Siliconix Drain side gate trench metal-oxide-semiconductor field effect transistor
DE102004029435B4 (de) 2004-06-18 2017-02-16 Infineon Technologies Ag Feldplattentrenchtransistor
JP4913336B2 (ja) 2004-09-28 2012-04-11 ルネサスエレクトロニクス株式会社 半導体装置
JP2006202931A (ja) 2005-01-20 2006-08-03 Renesas Technology Corp 半導体装置およびその製造方法
US7453119B2 (en) 2005-02-11 2008-11-18 Alphs & Omega Semiconductor, Ltd. Shielded gate trench (SGT) MOSFET cells implemented with a schottky source contact
US7494876B1 (en) 2005-04-21 2009-02-24 Vishay Siliconix Trench-gated MIS device having thick polysilicon insulation layer at trench bottom and method of fabricating the same
KR101047945B1 (ko) 2005-05-24 2011-07-12 비쉐이-실리코닉스 트렌치 금속 산화막 반도체 전계 효과 트랜지스터
CN102738239A (zh) 2005-05-26 2012-10-17 飞兆半导体公司 沟槽栅场效应晶体管及其制造方法
US20070004116A1 (en) 2005-06-06 2007-01-04 M-Mos Semiconductor Sdn. Bhd. Trenched MOSFET termination with tungsten plug structures
CN103094348B (zh) 2005-06-10 2016-08-10 飞兆半导体公司 场效应晶体管
DE102005041322B4 (de) 2005-08-31 2017-03-16 Infineon Technologies Ag Trenchtransistorstruktur mit Feldelektrodenanordnung und Herstellungsverfahren hierfür
DE102005052734B4 (de) 2005-10-06 2012-02-23 Infineon Technologies Ag Halbleiterstruktur, Verfahren zum Betreiben einer Halbleiterstruktur und Verfahren zum Herstellen einer Halbleiterstruktur
US7449354B2 (en) 2006-01-05 2008-11-11 Fairchild Semiconductor Corporation Trench-gated FET for power device with active gate trenches and gate runner trench utilizing one-mask etch
US7446374B2 (en) 2006-03-24 2008-11-04 Fairchild Semiconductor Corporation High density trench FET with integrated Schottky diode and method of manufacture
WO2007129261A2 (en) 2006-05-05 2007-11-15 Nxp B.V. Trench field effect transistors
US7319256B1 (en) 2006-06-19 2008-01-15 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes being connected together
US7544571B2 (en) 2006-09-20 2009-06-09 Fairchild Semiconductor Corporation Trench gate FET with self-aligned features
US7750398B2 (en) 2006-09-26 2010-07-06 Force-Mos Technology Corporation Trench MOSFET with trench termination and manufacture thereof
DE102006045441B4 (de) 2006-09-26 2008-09-25 Infineon Technologies Austria Ag Verfahren zur Herstellung einer Halbleiterbauelementanordnung mit einer Trenchtransistorstruktur
WO2008039459A1 (en) 2006-09-27 2008-04-03 Maxpower Semiconductor, Inc. Power mosfet with recessed field plate
US7732842B2 (en) 2006-12-06 2010-06-08 Fairchild Semiconductor Corporation Structure and method for forming a planar schottky contact
US8659074B2 (en) 2007-01-09 2014-02-25 Maxpower Semiconductor, Inc. Semiconductor device
US8035159B2 (en) 2007-04-30 2011-10-11 Alpha & Omega Semiconductor, Ltd. Device structure and manufacturing method using HDP deposited source-body implant block
US8686493B2 (en) 2007-10-04 2014-04-01 Fairchild Semiconductor Corporation High density FET with integrated Schottky
JP2009135360A (ja) 2007-12-03 2009-06-18 Renesas Technology Corp 半導体装置およびその製造方法
JP5604029B2 (ja) 2007-12-04 2014-10-08 ローム株式会社 半導体装置およびその製造方法
KR101396124B1 (ko) 2007-12-21 2014-05-19 삼성전자주식회사 트렌치 형성 방법 및 이를 이용한 반도체 소자의 제조 방법
US7910439B2 (en) 2008-06-11 2011-03-22 Maxpower Semiconductor Inc. Super self-aligned trench MOSFET devices, methods, and systems
US7936009B2 (en) * 2008-07-09 2011-05-03 Fairchild Semiconductor Corporation Shielded gate trench FET with an inter-electrode dielectric having a low-k dielectric therein
WO2010120704A2 (en) 2009-04-13 2010-10-21 Maxpower Semiconductor Inc. Power semiconductor devices, methods, and structures with embedded dielectric layers containing permanent charges
US9425305B2 (en) 2009-10-20 2016-08-23 Vishay-Siliconix Structures of and methods of fabricating split gate MIS devices
US9419129B2 (en) 2009-10-21 2016-08-16 Vishay-Siliconix Split gate semiconductor device with curved gate oxide profile
US8354711B2 (en) 2010-01-11 2013-01-15 Maxpower Semiconductor, Inc. Power MOSFET and its edge termination
JP5569162B2 (ja) 2010-06-10 2014-08-13 富士電機株式会社 半導体装置および半導体装置の製造方法
JP5580150B2 (ja) 2010-09-09 2014-08-27 株式会社東芝 半導体装置
US8587059B2 (en) 2011-04-22 2013-11-19 Infineon Technologies Austria Ag Transistor arrangement with a MOSFET
US9385132B2 (en) 2011-08-25 2016-07-05 Micron Technology, Inc. Arrays of recessed access devices, methods of forming recessed access gate constructions, and methods of forming isolation gate constructions in the fabrication of recessed access devices
US9070585B2 (en) 2012-02-24 2015-06-30 Semiconductor Components Industries, Llc Electronic device including a trench and a conductive structure therein and a process of forming the same
WO2013166079A1 (en) 2012-04-30 2013-11-07 Vishay-Siliconix Integrated circuit design
DE112013002267T5 (de) 2012-04-30 2015-03-12 Vishay-Siliconix Halbleiterbauelement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050151190A1 (en) * 2003-11-14 2005-07-14 Infineon Technologies Ag Power transistor arrangement and method for fabricating it
CN101180737A (zh) * 2003-12-30 2008-05-14 飞兆半导体公司 功率半导体器件及制造方法
CN101238581A (zh) * 2005-08-09 2008-08-06 飞兆半导体公司 在屏蔽的栅极场效应晶体管中形成多晶硅层间电介质的结构和方法
US20090050959A1 (en) * 2007-08-21 2009-02-26 Madson Gordon K Method and Structure for Shielded Gate Trench FET

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701148B (zh) * 2013-12-04 2017-11-24 和舰科技(苏州)有限公司 分裂栅的制造方法
CN104701148A (zh) * 2013-12-04 2015-06-10 和舰科技(苏州)有限公司 分裂栅的制造方法
CN105957811A (zh) * 2016-04-27 2016-09-21 上海华虹宏力半导体制造有限公司 具有屏蔽栅的沟槽栅功率器件的制造方法
CN108417637A (zh) * 2018-03-09 2018-08-17 香港商莫斯飞特半导体股份有限公司 一种多沟槽半导体功率器件及其制备方法
CN110047759A (zh) * 2019-04-28 2019-07-23 矽力杰半导体技术(杭州)有限公司 沟槽型mosfet器件制造方法
CN113053738A (zh) * 2019-12-27 2021-06-29 华润微电子(重庆)有限公司 一种分裂栅型沟槽mos器件及其制备方法
CN113130633A (zh) * 2019-12-30 2021-07-16 华润微电子(重庆)有限公司 沟槽型场效应晶体管结构及其制备方法
CN111081540A (zh) * 2019-12-30 2020-04-28 广州粤芯半导体技术有限公司 屏蔽栅沟槽功率器件的制造方法
CN113130633B (zh) * 2019-12-30 2022-11-22 华润微电子(重庆)有限公司 沟槽型场效应晶体管结构及其制备方法
CN111681963B (zh) * 2020-08-11 2020-11-20 中芯集成电路制造(绍兴)有限公司 一种屏蔽栅场效应晶体管及其形成方法
CN111681963A (zh) * 2020-08-11 2020-09-18 中芯集成电路制造(绍兴)有限公司 一种屏蔽栅场效应晶体管及其形成方法
CN112509979A (zh) * 2020-11-30 2021-03-16 中芯集成电路制造(绍兴)有限公司 具有屏蔽栅沟槽结构的半导体器件及其制造方法
CN112509980A (zh) * 2020-11-30 2021-03-16 中芯集成电路制造(绍兴)有限公司 具有屏蔽栅沟槽结构的半导体器件及其制造方法
CN112509980B (zh) * 2020-11-30 2022-06-03 绍兴中芯集成电路制造股份有限公司 具有屏蔽栅沟槽结构的半导体器件及其制造方法
CN112509979B (zh) * 2020-11-30 2022-08-09 绍兴中芯集成电路制造股份有限公司 具有屏蔽栅沟槽结构的半导体器件及其制造方法
CN112701043A (zh) * 2020-12-28 2021-04-23 广州粤芯半导体技术有限公司 一种半导体器件的制造方法
CN114496762A (zh) * 2022-04-13 2022-05-13 杭州芯迈半导体技术有限公司 一种制造沟槽mosfet的方法
CN114975126A (zh) * 2022-07-29 2022-08-30 威晟半导体科技(广州)有限公司 一种降低栅电荷的屏蔽栅沟槽型mosfet制造方法
CN114975126B (zh) * 2022-07-29 2022-10-25 威晟半导体科技(广州)有限公司 一种降低栅电荷的屏蔽栅沟槽型mosfet制造方法

Also Published As

Publication number Publication date
WO2011050207A2 (en) 2011-04-28
EP2491593A2 (en) 2012-08-29
US20160359018A1 (en) 2016-12-08
WO2011050207A3 (en) 2011-08-18
KR101493680B1 (ko) 2015-02-16
US20110089485A1 (en) 2011-04-21
JP5932651B2 (ja) 2016-06-08
US9893168B2 (en) 2018-02-13
CN102656696B (zh) 2015-09-30
JP2013508984A (ja) 2013-03-07
EP2491593B1 (en) 2018-03-21
EP2491593A4 (en) 2014-03-26
US9419129B2 (en) 2016-08-16
KR20120089679A (ko) 2012-08-13

Similar Documents

Publication Publication Date Title
CN102656696A (zh) 具有弧形栅极氧化物轮廓的分栅式半导体装置
US8383490B2 (en) Borderless contact for ultra-thin body devices
US8067800B2 (en) Super-junction trench MOSFET with resurf step oxide and the method to make the same
US11282846B2 (en) Mask design for embedded memory
CN102859699A (zh) 制造双栅极装置的结构和方法
CN105990374B (zh) 集成电路和用于制造晶体管的方法
CN202405267U (zh) 用于增强mis结构的电绝缘和动态性能的结构
CN104465404B (zh) 射频ldmos器件的制造方法
CN104485286A (zh) 包含中压sgt结构的mosfet及其制作方法
CN114038751A (zh) 一种上下结构的屏蔽栅mosfet器件的制作方法
CN104658901A (zh) 一种分裂栅型沟槽mosfet的制备方法
US8026133B2 (en) Method of fabricating a semiconductor device with a non-uniform gate insulating film
CN106024607A (zh) 屏蔽栅功率mosfet的制造方法
US8018003B2 (en) Leakage power reduction in CMOS circuits
US20120256255A1 (en) Recessed trench gate structure and method of fabricating the same
US20140299880A1 (en) Layer formation with reduced channel loss
US9666670B2 (en) Method and structure of making enhanced UTBB FDSOI devices
CN114927575A (zh) 一种屏蔽栅器件结构及其制作方法
CN114284149A (zh) 一种屏蔽栅沟槽场效应晶体管的制备方法
CN104347507A (zh) 半导体器件的形成方法
CN113643981B (zh) 具有双金属控制栅的半浮栅晶体管的制造方法
CN117894847A (zh) 半导体器件及其形成方法
US20210327902A1 (en) Semiconductor wafer with devices having different top layer thicknesses
CN117690795A (zh) 一种新型屏蔽栅沟槽场效应晶体管及其制备方法
CN117912955A (zh) 屏蔽栅mosfet的形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant