CN105990374B - 集成电路和用于制造晶体管的方法 - Google Patents

集成电路和用于制造晶体管的方法 Download PDF

Info

Publication number
CN105990374B
CN105990374B CN201510849966.7A CN201510849966A CN105990374B CN 105990374 B CN105990374 B CN 105990374B CN 201510849966 A CN201510849966 A CN 201510849966A CN 105990374 B CN105990374 B CN 105990374B
Authority
CN
China
Prior art keywords
transistor
area
layer
dielectric
buried insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510849966.7A
Other languages
English (en)
Other versions
CN105990374A (zh
Inventor
D·格兰斯基
G·比达尔
S·让诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Italy Semiconductor (krol 2) Co
Original Assignee
Italy Semiconductor (krol 2) Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Italy Semiconductor (krol 2) Co filed Critical Italy Semiconductor (krol 2) Co
Publication of CN105990374A publication Critical patent/CN105990374A/zh
Application granted granted Critical
Publication of CN105990374B publication Critical patent/CN105990374B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7838Field effect transistors with field effect produced by an insulated gate without inversion channel, e.g. buried channel lateral MISFETs, normally-on lateral MISFETs, depletion-mode lateral MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

一种集成电路包括用于第一晶体管的第一区和用于第二晶体管的第二区。晶体管由包括在掩埋绝缘层上的半导体膜的绝缘体上硅型的衬底支撑,所述掩埋绝缘层在载体衬底上。在第二区中,半导体膜已经被去除。在第二区中的第二晶体管包括置于所述载体衬底上的、由掩埋绝缘层的一部分形成的栅极电介质区域。第一区中的第一晶体管包括由半导体膜上的电介质层形成的栅极电介质区域。

Description

集成电路和用于制造晶体管的方法
相关申请的交叉引用
本申请要求2015年3月18日提交的法国专利申请No.1552244的优先权,其公开内容通过引用并入本文。
技术领域
本发明涉及集成电路,并且更具体地涉及从绝缘体上硅(SOI)并且更具体地从完全耗尽绝缘体上硅(FDSOI)型衬底制造能够保持高电压(例如2至5伏特或者更多)的晶体管,其中这些示例不是限制性的。
背景技术
绝缘体上硅型的衬底包括位于掩埋绝缘层(通常由首字母缩略词“BOX”(用于掩埋氧化物)指定)上的例如由硅或硅合金(例如,硅锗合金)制成的半导体膜,BOX自己在载体衬底(例如,半导体阱)上。
在完全耗尽SOI(FDSOI)技术中,半导体膜被完全耗尽,即,它由本征半导体组成。其厚度通常约若干纳米,例如7纳米。此外,掩埋绝缘层本身通常具有约二十纳米的小的厚度。
由于半导体膜的小的厚度,晶体管的源极和漏极区域包括相对于半导体膜抬升的部分,以便确保在这些区域与晶体管的沟道区域之间的充足的电连接。
通常通过外延获得这类抬升源极和漏极区域(本领域中通常由首字母缩略词“RSD”指定:用于抬升源极和漏极)。
此外,制造通常能够承受约多个伏特的高电压的晶体管,诸如例如延伸漏极MOS晶体管(本领域中已知为首字母缩略词“DRiftMOS”),需要形成厚的栅极氧化物。
然而,由于半导体膜的小的厚度,这证明,在SOI上并且特别是在FDSOI型衬底上进行实现是复杂的。
具体地,半导体膜将在制造这些厚氧化物期间被部分地消耗。此外,因为需要维持半导体膜的初始厚度(例如,7纳米),那么需要以较厚的半导体膜开始,由于半导体膜的预期消耗,该半导体膜的厚度必须被调整以获得精细的所述初始厚度。
发明内容
根据一种实施方法,提出从绝缘体上硅型的衬底制造具有厚栅极氧化物的晶体管而不增加半导体膜的初始厚度。
此外,就这点而言,有利地提出了使用绝缘体上硅型的衬底的掩埋绝缘层(BOX)的至少一部分来形成晶体管的栅极电介质区域的至少一部分,例如MOS晶体管或者甚至具有双栅极(浮置栅极和控制栅极)的晶体管,诸如合并在FLASH和EEPROM型存储器单元中的晶体管的类型。
根据一个方面,提供了一种集成电路,包括:在第一区中,绝缘体上硅型的衬底,其包括位于掩埋绝缘层上的半导体膜,掩埋绝缘层本身位于载体衬底上;以及,在已经去除所述半导体膜的第二区中,至少一个晶体管,其包括置于载体衬底上的栅极电介质区域并且包括所述掩埋绝缘层的一部分。
因此,掩埋绝缘层的氧化物的至少一部分作为栅极电介质的使用使得可以容易地调整栅极电介质区域的厚度,以便允许制造高电压晶体管,而不消耗在其中和其上可选地制造其他MOS晶体管的半导体膜。
根据一个实施例,集成电路还包括在所述第一区中的至少一个第一晶体管,所述至少一个晶体管具有置于所述半导体膜上并且比位于所述第二区中的所述至少一个晶体管的栅极电介质区域更薄的第一栅极电介质区域。
掩埋绝缘层的氧化物的至少一部分作为栅极电介质使用使得可以容易地调整栅极电介质区域的厚度,以便允许制造具有不同厚度的栅极氧化物的晶体管。
虽然在理论上可以使用任意厚度的掩埋绝缘层作为栅极氧化物,但是掩埋层的所述一部分的厚度通常小于绝缘体上硅型的衬底的掩埋绝缘层的厚度。
根据一个实施例,第一栅极电介质区域包括第一电介质材料的至少一层,并且位于所述第二区中的所述至少一个晶体管的栅极电介质区域包括在掩埋绝缘层的所述一部分上的所述第一电介质材料的至少一层。
第一电介质材料可以包括高相对介电常数的材料(高K材料),例如,其具有高于或等于15的相对介电常数K。
这种电介质可以例如从由HfO2、ZrO2、Al2O3、AlN、TiN、TiO2形成的组中选择。
根据一个实施例,集成电路可以在所述第二区中包括多个晶体管,其栅极电介质区域包括具有不同厚度的掩埋绝缘层的相应部分。
根据一个实施例,位于所述第二区中的所述至少一个晶体管是双栅极晶体管,包括浮置栅极第一区域和控制栅极第二区域,浮置栅极第一区域通过所述掩埋绝缘层的所述至少一部分置于载体衬底上,而控制栅极第二区域通过另一栅极电介质区域置于所述浮置栅极第一区域上。
根据另一方面,提供了一种用于制造在集成电路内的至少一个晶体管的工艺,所述集成电路在第一区中包括绝缘体上硅型的衬底,其包括在掩埋绝缘层上的半导体膜,掩埋绝缘层在载体衬底上,在集成电路的一个区中,该工艺包括,在集成电路的第二区中,去除所述半导体膜并且在载体衬底中和上制造至少一个晶体管,所述至少一个晶体管的栅极电介质区域置于所述载体衬底上并且包括所述掩埋绝缘层的一部分。
根据一种实施方法,该工艺还包括在所述第一区中制造在半导体膜中和上的至少一个第一晶体管并且处理置于所述半导体膜上且比位于所述第二区中的所述至少一个晶体管的栅极电介质区域更薄的第一栅极电介质区域。
根据一种实施方法,制造所述晶体管包括:在所述第一区中,对绝缘体上硅型的衬底进行掩模;在所述第二区中,刻蚀绝缘体上硅型的衬底,以便至少去除半导体膜并且留下所述掩埋绝缘层的至少一部分;在因此获得的结构上,形成包括至少一层电介质材料和至少一层栅极材料的多层;刻蚀所述多层,以便在所述第一区中针对所述至少一个第一晶体管形成置于所述半导体膜上的第一绝缘栅极区域,并且在所述第二区中针对所述至少一个晶体管形成置于掩埋绝缘层的所述至少一部分上的第二绝缘栅极区域;在所述第一栅极区域的侧翼上形成第一绝缘横向区域;在所述第二栅极区域的侧翼上形成第二绝缘横向区域;以及,刻蚀位于所述第二绝缘横向区域外部的掩埋绝缘层的所述至少一部分。
附图说明
在检查了对实施方法和实施例的完全非限制性方法的详细描述以及附图之后,本发明的其它特征和优点将变得显而易见,其中:
图1至图8示意性地图示了本发明的实施方法和实施例。
具体实施方式
在图1中,基准IC指代一种集成电路,在第一区Z1中,该集成电路包括完全耗尽绝缘体上硅(FDSOI)衬底,其包括在掩埋绝缘层2(BOX)(例如具有25纳米的厚度)上的半导体膜3(例如具有7纳米的厚度),掩埋绝缘层2本身由载体衬底1支撑,载体衬底1可以例如是半导体阱。
第一MOS晶体管T1例如以28纳米CMOS技术节点在半导体膜3中和上制造,并且通过隔离区域RIS与集成电路的其它部件隔离,隔离区域RIS例如包括浅沟槽隔离(STI)和深沟槽隔离(DTI)。
晶体管T1包括通过第一栅极电介质区域OX1与半导体膜3绝缘的第一栅极区域RG1,第一栅极电介质区域OX1在这里包括高相对介电常数K(通常高于15)的电介质材料的层。通过指示的方式,层OX1的厚度是约4纳米。
栅极区域RG1的侧翼为绝缘横向区域ESP1,在本领域中通常称为“间隔体”。
晶体管T1还包括源极S和漏极D区域,包括通常通过外延获得的抬升部分。
在载体衬底1中和上制造的第二MOS晶体管T2位于集成电路IC的第二区Z2中。
更确切地,晶体管T2包括通过第二栅极电介质区域与载体衬底1绝缘的第二栅极区域RG2,第二栅极电介质区域在这里包括电介质层OX1和掩埋绝缘层2的一部分200。因此,晶体管T2的第二栅极电介质区域的厚度大于晶体管T1的栅极电介质OX1的第一区域的厚度。
通常,为了制造能够承受3至5伏特的电压的晶体管,第二栅极电介质区域的总厚度约8纳米,其中层200的厚度约4纳米。
常规地,第二晶体管T2还包括在栅极区域RG2的侧翼上制造的间隔体ESP2以及在载体衬底1中注入的源极S和漏极D区域。
FDSOI衬底的掩埋绝缘层2的剩余部分因此允许非常简单地并且在不消耗半导体膜3的情况下制造具有厚栅极电介质区域的晶体管T2。
此外,如图2所示,还可以在区Z2上制造具有不同厚度的栅极电介质区域的多个晶体管T2、T3,所述栅极电介质区域通常利用具有不同厚度的掩埋绝缘层的剩余部分获得。
因此,如图2所示,晶体管T3具有栅极电介质区域,其包括具有大于晶体管T2的栅极电介质区域的一部分200的厚度的掩埋绝缘层部分201。
现在更确切地参考图3至图7,以便图示根据本发明的工艺的一种实施方法。
在图3中,工艺开始于绝缘体上硅衬底,其包括由掩埋绝缘层2(BOX)支撑的半导体膜3,掩埋绝缘层2本身由载体衬底1支撑。
在这里,集成电路的区Z1和Z2以本身已知的常规方式已经被隔离区域RIS界定。
此外,常规情况下,半导体膜3由本领域中通常称为“PADOX”的钝化层4所覆盖,钝化层4旨在在先前操作(例如,阱注入)期间保护半导体膜3的表面。
接着,第一区Z1由抗蚀剂掩模50保护,然后在集成电路的区Z2中执行刻蚀GV1,以便去除位于区Z2中的下面的钝化层4和半导体膜3,而留下掩埋绝缘层2的剩余部分20(在实施例中,其厚度小于例如在区Z1中的BOX 2的厚度)。
在去除在区Z1中的掩模50和钝化层4之后,获得图4中所图示的结构。
接着,以本身已知的常规方式,沉积栅极电介质材料(例如,高相对介电常数的材料)的至少一层4,并且然后沉积栅极材料(例如,多晶硅和/金属)的层5,其中这些示例不是限制性的(图5)。
接着,如图6所示,使用本身已知的常规刻蚀GV2来图案化栅极区域RG1和RG2以及栅极电介质OX1,从而限定栅极堆叠。
接着,以本身已知的常规方式在栅极堆叠的每一侧上形成绝缘横向区域ESP1和ESP2,并且使用刻蚀GV3去除掩埋绝缘层的剩余部分20的位于间隔体ESP2的外部的那部分,以便形成掩埋绝缘层部分200。
就区Z2的晶体管的源极和漏极区域的制造而言,多个变形是可能的。
根据第一变形,源极和漏极区域通过同时外延来制造,从而制造区Z1的晶体管的抬升的源极区域和漏极区域,这意味着区Z2的晶体管的源极和漏极区域也被抬升。
既然如此,特别是当区Z2的晶体管是高电压晶体管时,抬升源极和漏极区域的存在在大部分情况下是不需要的,这是因为在栅极区域与这些抬升源极和漏极区域之间的绝缘间隔体ESP2的击穿的风险,这具有限制器件的电压承受能力的风险。
因此,根据第二变形,在刻蚀掩埋绝缘层的所述剩余部分20之前,通过外延制造区Z1的晶体管的抬升源极和漏极区域。具体地,随后覆盖了区Z2中的整个载体衬底的该剩余掩埋绝缘层部分阻挡了区Z2中的源极和漏极区域的生长。
接着,在区Z1中形成抬升源极和漏极区域之后,使用刻蚀GV3去除掩埋绝缘层的剩余部分20的位于间隔体ESP2外部的那部分,从而形成掩埋绝缘层部分200,并且然后在载体衬底1中注入源极和漏极区域。
作为变形,还可以通过调整注入能量而穿过掩埋绝缘层的剩余部分20位于间隔体ESP2外部的那部分来注入源极和漏极区域。因此,并不绝对地需要在注入之前刻蚀GV3源极和漏极区域。
本发明不限于已经描述的实施方法和实施例而是包含其任何变形。
因此,如图8所示,可以在集成电路的区Z2中制造包括浮置栅极的晶体管T4,诸如在诸如FLASH或EEPROM单元之类的非易失性存储器单元中所使用的那些。
更确切地,如图8所示,存储器单元的晶体管T4包括通过作为掩埋绝缘层2的剩余部分的第一栅极氧化物204与载体衬底1分离的浮置栅极FG。
此外,晶体管T4包括通过电介质区域RD1(例如,氧化物-氮化物-氧化物多层)与浮置栅极FG分离的控制栅极CG。
两个栅极和电介质区域RD1和204的侧翼为横向间隔体ESP4。
使用通过刻蚀获得的掩埋绝缘层的剩余层使得可以精确且简单地调整栅极氧化物204的厚度,而不具有消耗半导体膜3的风险,例如以便获得约12纳米的厚度,该厚度非常适于使用Fowler Nordheim效应进行擦除。

Claims (16)

1.一种集成电路,包括:
第一区,包括绝缘体上硅型的衬底,所述绝缘体上硅型的衬底包括在掩埋绝缘层上的半导体膜,所述掩埋绝缘层在载体衬底上;
第二区,包括所述载体衬底和所述掩埋绝缘层但是不存在所述半导体膜;
第一晶体管,在所述第二区中,包括置于所述载体衬底上并且由所述掩埋绝缘层的一部分形成的第一栅极电介质区域;以及
在所述第一区中的第二晶体管,所述第二晶体管包括置于所述半导体膜上的第二栅极电介质区域,所述第二栅极电介质区域比所述第一栅极电介质区域更薄。
2.根据权利要求1所述的集成电路,其中所述掩埋绝缘层的所述一部分的厚度比所述绝缘体上硅型的衬底的所述掩埋绝缘层的厚度更薄。
3.根据权利要求1所述的集成电路,其中所述第二栅极电介质区域由至少一层第一电介质材料形成,并且其中所述第一晶体管进一步包括位于所述掩埋绝缘层的所述一部分上的所述至少一层第一电介质材料。
4.根据权利要求3所述的集成电路,其中所述第一电介质材料是高相对介电常数的材料。
5.根据权利要求1所述的集成电路,进一步包括:在所述第二区中,具有置于所述载体衬底上并且由所述掩埋绝缘层的另一部分形成的第二栅极电介质区域的第二晶体管,用于所述第一晶体管的所述掩埋绝缘层的所述一部分和用于所述第二晶体管的所述掩埋绝缘层的所述另一部分具有不同的厚度。
6.根据权利要求1所述的集成电路,其中位于所述第二区中的所述第一晶体管是双栅极晶体管,包括:
通过所述掩埋绝缘层的所述一部分与所述载体衬底分离的浮置栅极第一区域;以及
通过栅极电介质区域与所述浮置栅极第一区域分离的控制栅极第二区域。
7.一种用于制造在集成电路内的至少一个晶体管的方法,所述集成电路在第一区中包括绝缘体上硅型的衬底,所述绝缘体上硅型的衬底包括在掩埋绝缘层上的半导体膜,所述掩埋绝缘层在载体衬底上,所述方法包括:
在所述集成电路的第二区中,去除所述半导体膜并且在所述载体衬底中和在所述载体衬底上制造至少一个晶体管,所述至少一个晶体管具有置于所述载体衬底上并且包括所述掩埋绝缘层的一部分(200)的栅极电介质区域;以及
在所述第一区中制造在所述半导体膜中和在所述半导体膜上的至少一个附加晶体管,所述至少一个附加晶体管具有置于所述半导体膜上的第一栅极电介质区域,其中所述第一栅极电介质区域比位于所述第二区中的所述至少一个晶体管的所述栅极电介质区域更薄。
8.根据权利要求7所述的方法,其中制造所述至少一个晶体管和所述至少一个附加晶体管包括:
在所述第一区中,对所述绝缘体上硅型的衬底进行掩模;
在所述第二区中,刻蚀所述绝缘体上硅型的衬底,以便至少去除所述半导体膜并且留下所述掩埋绝缘层的至少一部分;
在因此获得的结构上,形成包括至少一层电介质材料和至少一层栅极材料的多层;
刻蚀所述多层,以便在所述第一区中针对所述至少一个附加晶体管形成置于所述半导体膜上的第一绝缘栅极区域,并且在所述第二区中针对所述至少一个晶体管形成置于所述掩埋绝缘层的所述至少一部分上的第二绝缘栅极区域;
在所述第一绝缘栅极区域的侧翼上形成第一绝缘横向区域;
在所述第二绝缘栅极区域的侧翼上形成第二绝缘横向区域;以及
刻蚀位于所述第二绝缘横向区域外部的所述掩埋绝缘层的所述至少一部分。
9.根据权利要求8所述的方法,其中所述电介质材料包括高相对介电常数的电介质材料。
10.一种用于在绝缘体上硅型的衬底上的晶体管制造的方法,所述绝缘体上硅型的衬底包括在掩埋绝缘层上的半导体膜,所述掩埋绝缘层在载体衬底上,所述方法包括:
针对第一晶体管栅极绝缘层,在所述衬底的第一区域中使用电介质层,所述电介质层置于所述半导体膜的顶上;以及
针对第二晶体管栅极绝缘层,在所述衬底的第二区域中使用所述掩埋绝缘层的一部分,所述衬底的第二区域缺乏所述半导体膜并且所述掩埋绝缘层的所述一部分置于所述载体衬底的顶上;
形成源极-漏极区域作为在所述半导体膜上的抬升外延结构;以及
形成源极-漏极区域作为在所述载体衬底中的注入剂。
11.根据权利要求10所述的方法,进一步包括:
在所述第一晶体管栅极绝缘层之上形成第一晶体管栅极;以及
在所述第二晶体管栅极绝缘层之上形成第二晶体管栅极。
12.根据权利要求11所述的方法,进一步包括在所述第二晶体管栅极绝缘层上沉积所述电介质层,并且其中形成所述第二晶体管栅极包括在所述电介质层上形成所述第二晶体管栅极。
13.根据权利要求10所述的方法,其中使用所述掩埋绝缘层的所述一部分包括对所述掩埋绝缘层进行减薄。
14.根据权利要求13所述的方法,其中经减薄的掩埋绝缘层比所述电介质层厚。
15.一种集成电路,包括:
绝缘体上硅型的衬底,包括在掩埋绝缘层上的半导体膜,所述掩埋绝缘层在载体衬底上;
所述衬底的第一区域,包括用于第一晶体管栅极绝缘层的在所述衬底的第一区域中的电介质层,所述电介质层置于所述半导体膜的顶上;
所述衬底的第二区域,缺少所述半导体膜并且包括用于第二晶体管栅极绝缘层的所述掩埋绝缘层的一部分,所述掩埋绝缘层的所述一部分置于所述载体衬底的顶上;
用于第一晶体管的第一栅极电极,在所述第一晶体管栅极绝缘层之上;
用于第二晶体管的第二栅极电极,在所述第二晶体管栅极绝缘层之上;以及
用于所述第一晶体管的源极-漏极区域,包括在所述半导体膜上的抬升外延结构;以及
用于所述第二晶体管的源极-漏极区域,包括在所述载体衬底中的注入剂。
16.根据权利要求15所述的集成电路,其中所述电介质层被定位在所述第二栅极电极与所述第二晶体管栅极绝缘层之间。
CN201510849966.7A 2015-03-18 2015-11-27 集成电路和用于制造晶体管的方法 Active CN105990374B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1552244 2015-03-18
FR1552244 2015-03-18

Publications (2)

Publication Number Publication Date
CN105990374A CN105990374A (zh) 2016-10-05
CN105990374B true CN105990374B (zh) 2019-07-16

Family

ID=53008782

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201520967415.6U Withdrawn - After Issue CN205177843U (zh) 2015-03-18 2015-11-27 集成电路
CN201510849966.7A Active CN105990374B (zh) 2015-03-18 2015-11-27 集成电路和用于制造晶体管的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201520967415.6U Withdrawn - After Issue CN205177843U (zh) 2015-03-18 2015-11-27 集成电路

Country Status (2)

Country Link
US (1) US9786755B2 (zh)
CN (2) CN205177843U (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9911665B2 (en) * 2014-12-30 2018-03-06 Globalfoundries Singapore Pte. Ltd. Integrated circuits, methods of forming the same, and methods of determining gate dielectric layer electrical thickness in integrated circuits
US9786755B2 (en) * 2015-03-18 2017-10-10 Stmicroelectronics (Crolles 2) Sas Process for producing, from an SOI and in particular an FDSOI type substrate, transistors having gate oxides of different thicknesses, and corresponding integrated circuit
US9871050B1 (en) * 2016-08-10 2018-01-16 Globalfoundries Inc. Flash memory device
FR3069702B1 (fr) * 2017-07-27 2020-01-24 Stmicroelectronics (Rousset) Sas Procede de fabrication simultanee de transistors soi et de transistors sur substrat massif
FR3076394A1 (fr) * 2018-01-04 2019-07-05 Stmicroelectronics (Rousset) Sas Espaceurs de transistors mos et leur procede de fabrication
FR3080486B1 (fr) * 2018-04-24 2020-03-27 X-Fab France Procede de formation d'un dispositif microelectronique
KR102495516B1 (ko) * 2018-05-08 2023-02-02 삼성전자주식회사 반도체 장치 및 그 제조 방법
US10608108B2 (en) * 2018-06-20 2020-03-31 Globalfoundries Singapore Pte. Ltd. Extended drain MOSFETs (EDMOS)
US11545570B2 (en) 2020-01-08 2023-01-03 Globalfoundries Singapore Pte. Ltd. High-voltage devices integrated on semiconductor-on-insulator substrate
CN114256346A (zh) * 2020-09-21 2022-03-29 上海华力集成电路制造有限公司 一种fdsoi器件结构及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354506A (zh) * 2000-11-20 2002-06-19 联华电子股份有限公司 完全耗尽绝缘层上有硅元件的制造方法与结构
CN1450658A (zh) * 2002-03-29 2003-10-22 株式会社东芝 半导体器件和半导体器件的制造方法
CN102683170A (zh) * 2011-03-11 2012-09-19 索泰克公司 用于制造半导体器件的多层结构和工艺
CN102931092A (zh) * 2012-10-26 2013-02-13 哈尔滨工程大学 一种自对准soi fd mosfet形成方法
CN205177843U (zh) * 2015-03-18 2016-04-20 意法半导体(克洛尔2)公司 集成电路

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3265569B2 (ja) * 1998-04-15 2002-03-11 日本電気株式会社 半導体装置及びその製造方法
FR2816108B1 (fr) 2000-10-30 2003-02-21 St Microelectronics Sa Procede de fabrication simultanee d'une paire de transistors a grilles isolees ayant respectivement un oxyde fin et un oxyde epais, et circuit integre correspondant comprenant une telle paire de transistors
US6828630B2 (en) * 2003-01-07 2004-12-07 International Business Machines Corporation CMOS device on ultrathin SOI with a deposited raised source/drain, and a method of manufacture
US7141459B2 (en) 2003-03-12 2006-11-28 Taiwan Semiconductor Manufacturing Company, Ltd. Silicon-on-insulator ULSI devices with multiple silicon film thicknesses
JP4619140B2 (ja) * 2005-01-20 2011-01-26 富士通セミコンダクター株式会社 Mos型電界効果トランジスタ及びその製造方法
JP4987309B2 (ja) * 2005-02-04 2012-07-25 セイコーインスツル株式会社 半導体集積回路装置とその製造方法
US7666735B1 (en) 2005-02-10 2010-02-23 Advanced Micro Devices, Inc. Method for forming semiconductor devices with active silicon height variation
US7501336B2 (en) * 2005-06-21 2009-03-10 Intel Corporation Metal gate device with reduced oxidation of a high-k gate dielectric
US8581260B2 (en) 2007-02-22 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a memory
US20080217686A1 (en) * 2007-03-09 2008-09-11 International Business Machines Corporation Ultra-thin soi cmos with raised epitaxial source and drain and embedded sige pfet extension
KR101435588B1 (ko) * 2008-06-23 2014-09-25 삼성전자주식회사 불휘발성 메모리 소자 및 그 제조방법
US8012814B2 (en) * 2008-08-08 2011-09-06 International Business Machines Corporation Method of forming a high performance fet and a high voltage fet on a SOI substrate
US20100109044A1 (en) 2008-10-30 2010-05-06 Tekleab Daniel G Optimized Compressive SiGe Channel PMOS Transistor with Engineered Ge Profile and Optimized Silicon Cap Layer
JP2010157570A (ja) * 2008-12-26 2010-07-15 Toshiba Corp 半導体装置の製造方法
EP2381470B1 (en) 2010-04-22 2012-08-22 Soitec Semiconductor device comprising a field-effect transistor in a silicon-on-insulator structure
US8916443B2 (en) * 2012-06-27 2014-12-23 International Business Machines Corporation Semiconductor device with epitaxial source/drain facetting provided at the gate edge
US8963228B2 (en) 2013-04-18 2015-02-24 International Business Machines Corporation Non-volatile memory device integrated with CMOS SOI FET on a single chip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354506A (zh) * 2000-11-20 2002-06-19 联华电子股份有限公司 完全耗尽绝缘层上有硅元件的制造方法与结构
CN1450658A (zh) * 2002-03-29 2003-10-22 株式会社东芝 半导体器件和半导体器件的制造方法
CN102683170A (zh) * 2011-03-11 2012-09-19 索泰克公司 用于制造半导体器件的多层结构和工艺
CN102931092A (zh) * 2012-10-26 2013-02-13 哈尔滨工程大学 一种自对准soi fd mosfet形成方法
CN205177843U (zh) * 2015-03-18 2016-04-20 意法半导体(克洛尔2)公司 集成电路

Also Published As

Publication number Publication date
CN205177843U (zh) 2016-04-20
US20160276451A1 (en) 2016-09-22
US9786755B2 (en) 2017-10-10
CN105990374A (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
CN105990374B (zh) 集成电路和用于制造晶体管的方法
US7767546B1 (en) Low cost fabrication of double box back gate silicon-on-insulator wafers with built-in shallow trench isolation in back gate layer
US9853124B2 (en) Method for fabricating a nanowire semiconductor transistor having an auto-aligned gate and spacers
CN103189987B (zh) 混合型有源-场间隙延伸漏极mos晶体管
US9337306B2 (en) Multi-phase source/drain/gate spacer-epi formation
CN101490822B (zh) 半导体器件及其制造方法
US9502566B2 (en) Method for producing a field effect transistor including forming a gate after forming the source and drain
US20110291184A1 (en) Semiconductor structure and method for manufacturing the same
US8680617B2 (en) Split level shallow trench isolation for area efficient body contacts in SOI MOSFETS
CN109216281A (zh) 在电子芯片中的半导体区域的制作
JP2015037191A (ja) 不揮発性メモリセル、高電圧トランジスタ、ならびに高k金属ゲートトランジスタの一体化
US20120098065A1 (en) Low resistance ldmos with reduced gate charge
EP1060510B1 (en) Method of forming dual field isolation structures
US20150340464A1 (en) Semiconductor device and manufacturing method thereof
CN106024698A (zh) 用于形成soi类型衬底的方法、对应衬底和集成电路
CN103762177A (zh) 具有嵌入式硅锗源漏区域的场效应晶体管中邻近效应的减少
JP2008071957A (ja) 半導体装置及びその製造方法
CN205282459U (zh) 集成电路
US9793396B2 (en) Method and structure of making enhanced UTBB FDSOI devices
KR20070050988A (ko) 반도체 디바이스 및 그 제조 방법
JP5719381B2 (ja) 低寄生容量ボディ・コンタクト・トランジスタ
TWI631662B (zh) 在絕緣體上半導體基板上形成隔離結構之方法
US10636911B1 (en) Fin structure and method for manufacturing the same
JP2006202950A (ja) Mos型電界効果トランジスタ及びその製造方法
TW201431007A (zh) 半導體裝置結構及形成互補式金屬氧化物半導體積體電路結構之方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant