CN102738239A - 沟槽栅场效应晶体管及其制造方法 - Google Patents

沟槽栅场效应晶体管及其制造方法 Download PDF

Info

Publication number
CN102738239A
CN102738239A CN2012101580753A CN201210158075A CN102738239A CN 102738239 A CN102738239 A CN 102738239A CN 2012101580753 A CN2012101580753 A CN 2012101580753A CN 201210158075 A CN201210158075 A CN 201210158075A CN 102738239 A CN102738239 A CN 102738239A
Authority
CN
China
Prior art keywords
groove
gate groove
region
gate
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101580753A
Other languages
English (en)
Inventor
哈姆扎·耶尔马兹
丹尼尔·卡拉菲特
克里斯托弗·博古斯瓦·科考恩
史蒂文·P·萨普
迪安·E·普罗布斯特
内森·L·克拉夫特
托马斯·E·格雷布斯
罗德尼·S·里德利
加里·M·多尔尼
布鲁斯·D·马钱特
约瑟夫·A·叶季纳科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fairchild Semiconductor Corp
Original Assignee
Fairchild Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fairchild Semiconductor Corp filed Critical Fairchild Semiconductor Corp
Publication of CN102738239A publication Critical patent/CN102738239A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明涉及沟槽栅效应晶体管及其制造方法。本发明涉及一种场效应晶体管,包括:栅沟槽,延伸进入外延层;栅极,置于栅沟槽中;源极区,掺杂有掺杂物并邻近栅沟槽的侧壁;导电材料,置于栅极上方的栅沟槽中并通过栅沟槽的侧壁与源极区电性接触;以及隔离层,置于栅极和导电材料之间。本发明改进了沟槽栅FET的物理和执行特性。

Description

沟槽栅场效应晶体管及其制造方法
本发明是申请日2006年5月24日、标题为″沟槽栅场效应晶体管及其制造方法″申请号200680018443.7的分案申请。
相关专利的交叉参考
本申请要求于2005年5月26日提交的美国临时专利申请第60/685,727号的权益,将其全部内容结合于此作为参考。
将共同转让的于2004年12月29日提交的美国专利申请第11/026,276的全部内容结合于此作为参考。
技术领域
本发明涉及半导体功率器件,更确切地说,涉及改良的沟槽栅功率器件和其制造方法。
背景技术
图1为传统沟槽栅金属氧化物半导体场效应晶体管(MOSFET)100的横截面图,该传统MOSFET具有已知的物理和执行特性以及,例如单元间距(cell pitch)、击穿电压能力、导通电阻(Rdson)、晶体管耐用度的局限。沟槽栅105延伸穿过P型阱106并且在n型外延层区104中终止。沟槽栅105包括沟槽侧壁和底部内衬的栅电介质114,以及凹进的栅极112。电介质层116和118将栅极112与相互连接的重叠源极隔离开。
图2为传统双栅沟槽金属氧化物半导体场效应晶体管(MOSFET)200(也被称为保护沟槽栅金属氧化物半导体场效应晶体管)的横截面图,其改进了图1的沟槽-栅沟槽MOSFET的某些特性。沟槽205包括通过保护电介质层222与漂移区204隔离开的保护电极220。沟槽205还包括在保护电极220之上并且通过多晶硅层间电介质层(inter-poly dielectric layer)224与保护电极220隔离开的栅极212。保护电极220降低栅-源电容(Cgd)并且提高击穿电压。但是,单栅晶体管100和双栅晶体管200的一个缺点是漂移区占到总导通电阻(Rdson)的大约40%,严重限制了导通电阻的改进。对于双栅沟槽结构,更深的沟槽需要甚至更厚的漂移区从而使这个问题更加严重。沟槽栅晶体管100和200的另一个缺点是沟槽底部的高电场由于底部沟槽的弯曲限制了几种性能参数的改进,例如击穿电压和晶体管耐用度。一些应用要求将肖特基二极管与功率MOSFET进行集成。但是,这样的集成通常需要复杂的、具有多个程序和掩模步骤的工艺技术。
因此,存在着对节省成本的结构和制造沟槽栅FET、单片集成二极管和MOSFET结构,以及消除或最小化与现有技术相关的缺点的终端结构的方法的需要,这样就可以实质上改进沟槽栅FET的物理和执行特性。
发明内容
场效应晶体管包括在第二传导类型的半导体区之上的第一传导类型的主体区。栅沟槽延伸穿过该主体区并且在半导体区中终止。至少一个导电保护电极被置于栅沟槽中。栅极被置于至少一个导电保护电极之上的并且与其隔离开的栅沟槽中。保护电介质层将该至少一个导电保护电极与该半导体区隔离开。栅极电介质层将栅极与主体区隔离开。形成保护电介质层,以使其向外张开并且在主体区之下直接延伸。
在一个具体实施方式中,半导体区包括衬底区和该衬底区之上的漂移区。主体区在漂移区之上延伸,并且具有比衬底区低的掺杂浓度。栅沟槽延伸穿过该漂移区并且在该衬底区内终止。
根据本发明的另外一个具体实施方式,场效应晶体管的形成如下所述。形成延伸到半导体内的第一深度的上沟槽部分。上沟槽部分的侧壁内衬以保护层材料,以使沿着至少上沟槽部分的部分底部壁的半导体区保持暴露。下沟槽部分延伸穿过上沟槽部分的暴露的底部壁形成,同时具有保护上沟槽部分的侧壁的保护层材料。上沟槽部分的宽度比下沟槽部分的宽度大。
在一个具体实施方式中,保护电介质层沿着下沟槽部分的侧壁和底部壁形成。保护层材料被去除。沿着上沟槽部分的侧壁形成第二隔离层(绝缘层),第一隔离层的厚度比第二隔离层的厚度大。
在另外一个具体实施方式中,第一隔离层通过硅局部氧化(LOCOS)形成。
在另外一个具体实施方式中,导电保护电极形成在下沟槽部分中。多晶硅层间介质体(interpoly dielectric)形成在导电保护电极之上,并且栅极形成在多晶硅层间介质体之上。
根据本发明的另外一个具体实施方式,场效应晶体管包括在第二传导类型的半导体区内的第一传导类型的主体区。栅沟槽延伸穿过该主体区并且在该半导体区内终止。第二传导类型的源极区在邻近栅沟槽的主体区内,以使该源极区以及主体区和半导体区之间的分界面限定了沿着栅沟槽侧壁延伸的通道区。第二传导类型的通道增强区邻近该栅沟槽。通道增强区部分延伸进入通道区的下部,从而降低通道区的电阻。
在一个具体实施方式中,栅极置于栅沟槽中,并且通道增强区与沿着该沟槽栅侧壁的栅极重叠。
在另外一个具体实施方式中,至少一个导电保护电极安置于栅沟槽中。栅极安置于在至少一个的导电保护电极之上但是与其隔离开的栅沟槽中。保护电介质层将至少一个导电保护电极与半导体区隔离开。栅电介质层将栅极与主体区隔离开。
根据本发明的另外一个具体实施方式,场效应晶体管的形成如以下所述。在半导体区中形成沟槽。在沟槽中形成保护电极。进行第一传导类型的杂质的成角侧壁注入,以形成邻近沟槽的通道增强区。在半导体区中形成第二传导类型的主体区。第一传导类型的源极区在主体区中这样形成,以使源极区以及主体区和半导体区之间的界面限定了沿着栅沟槽侧壁延伸的通道区。通道增强区部分延伸入该通道区的下部,从而降低该通道区的电阻。
在一个具体实施方式中,栅极在保护电极之上形成但是与该保护电极隔离开。
在另外一个具体实施方式中,通道增强区自对准保护电极。
根据本发明的另外一个具体实施方式,场效应晶体管包括延伸进入半导体区的栅沟槽。该栅沟槽具有置于其内的凹进(凹陷)的栅极。半导体区中的源极区与该栅沟槽的每侧相接。用导电材料填充该栅沟槽的上部使得与该源极区沿着每个源极区的至少一个侧壁电性接触,导电材料与凹进的栅极隔离开。
根据本发明的另外一个具体实施方式,场效应晶体管按以下所述形成。在半导体区内形成沟槽。在该沟槽内形成凹进的栅极。双通道成角注入杂质,以在沟槽的每一侧上形成源极区。电介质层在凹进的栅极之上形成。用导电材料填充沟槽,以使导电材料与该源极区电性接触。
在一个具体实施方式中,导电材料包含掺杂质的多晶硅。
本发明涉及一种场效应晶体管,包括:
栅沟槽,延伸进入外延层;
栅极,置于栅沟槽中;
源极区,掺杂有掺杂物并邻近栅沟槽的侧壁;
导电材料,置于栅极上方的栅沟槽中并通过栅沟槽的侧壁与源极区电性接触;以及
隔离层,置于栅极和导电材料之间。
在一种具体实施方式中,隔离层是包括压差式填充的电介质层。
在一种具体实施方式中,该场效应晶体管进一步包括:
置于外延层中的主体区,主体区掺杂有与源极区的掺杂物具有相反传导类型的掺杂物;
至少一个导电保护电极,置于栅极之下的栅沟槽中;
多晶硅层间介质体,置于栅极与至少一个导电保护电极之间;以及
栅电介质层,将栅极与主体区隔离开。
在一种具体实施方式中,导电材料包括多晶硅,场效应晶体管进一步包括:
在衬底之上的漂移区,漂移区掺杂有与源极区的掺杂物具有相同传导类型的掺杂物。
在一种具体实施方式中,导电材料具有与源极区的顶部表面基本共平面的顶部表面。
在一种具体实施方式中,该场效应晶体管进一步包括:
衬底,置于外延层之下;以及
漂移区,包括在外延层中并置于衬底之上,栅沟槽延伸穿过漂移区并在衬底内终止。
在一种具体实施方式中,该场效应晶体管进一步包括:
衬底,置于外延层之下;以及
漂移区,包括在外延层中并置于衬底之上,栅沟槽延伸进入漂移区并在漂移区内终止。
在一种具体实施方式中,该场效应晶体管进一步包括:
漂移区,置于衬底之上;以及
保护电极,置于栅沟槽中在栅极之下,并且与漂移区和衬底竖直重叠。
在一种具体实施方式中,该场效应晶体管进一步包括:
漂移区,置于衬底之上;以及
保护电极,置于栅沟槽中在栅极之下,并且与沿着漂移区和衬底之间的界面对齐的平面相交。
在一种具体实施方式中,栅极是凹陷的栅极。
在一种具体实施方式中,该场效应晶体管进一步包括:
顶部金属,与源极区和导电材料接触。
在一种具体实施方式中,源极区具有沿栅沟槽的侧壁延伸的竖直长度和与竖直长度垂直延伸的侧向宽度,竖直长度大于侧向宽度。
在一种具体实施方式中,栅极是凹陷的栅极,具有与沿栅沟槽的侧壁的源极区的竖直长度对应的顶部表面。
在一种具体实施方式中,该场效应晶体管进一步包括:
通道增强区,与栅沟槽的侧壁接触。
在一种具体实施方式中,该场效应晶体管进一步包括:
通道增强区,构造成降低沿着栅沟槽侧壁的通道区的电阻。
在一种具体实施方式中,该场效应晶体管进一步包括:
通道增强区,与栅沟槽的侧壁接触;
主体区,置于外延层中,主体区掺杂有与源极区的掺杂物具有相反传导类型的掺杂物;
保护电极,置于栅极之下;以及
保护电介质层,具有在主体区之下延伸的向外张开部分。
在一种具体实施方式中,本发明涉及一种场效应晶体管,包括:
栅沟槽,延伸进入外延层;
栅极,置于栅沟槽中;
源极区,掺杂有掺杂物并邻近栅沟槽的侧壁;
第一隔离层,置于栅极的顶部上;
第二隔离层,置于栅极与栅沟槽的侧壁之间;以及
导电材料,置于栅沟槽中并通过栅沟槽的侧壁与源极区
电性接触,导电材料与第一隔离层和第二隔离层接触。
在一种具体实施方式中,第一隔离层置于栅极与导电材料之间。
在一种具体实施方式中,源极区具有沿栅沟槽的侧壁延伸的竖直长度和与竖直长度垂直延伸的侧向宽度,竖直长度大于侧向宽度。
在一种具体实施方式中,导电材料具有与源极区的顶部表面基本共平面的顶部表面。
在一种具体实施方式中,该场效应晶体管进一步包括:
置于外延层中的主体区,主体区掺杂有与源极区的掺杂物具有相反传导类型的掺杂物;
保护电极,置于栅极之下;以及
保护电介质层,具有在主体区之下延伸的向外张开部分。
在一种具体实施方式中,该场效应晶体管进一步包括:
通道增强区,与栅沟槽的侧壁接触。
本发明涉及一种形成场效应晶体管的方法,包括:
在半导体区中形成栅沟槽;
在栅沟槽中形成凹陷的栅极;
形成多个源极区使得多个源极区的至少一个源极区置于栅沟槽的每个边上;
在凹陷的栅极之上形成电介质层;以及
用导电材料填充栅沟槽的至少部分,以使导电材料与多个源极区的源极区电性接触。
在一种具体实施方式中,多个源极区使用双通道成角注入至少一种杂质而形成。
在一种具体实施方式中,该方法进一步包括:
在形成凹陷的栅极之前,沿着栅沟槽的下侧壁或栅沟槽的底部中的至少一个形成保护电介质层;
在栅沟槽中形成导电保护电极,导电保护电极通过保护电介质层与半导体区隔离开;
在导电保护电极之上形成多晶硅层间介质体,用于将凹陷的栅极和导电保护电极彼此隔离开;以及
沿着栅沟槽的上侧壁形成栅电介质层,栅电介质层将凹陷的栅极与半导体区隔离开。
在一种具体实施方式中,电介质层是第一电介质层,进一步包括:
在栅沟槽的上部上形成电介质层;以及
在用导电材料填充栅沟槽的至少部分之前,蚀刻栅沟槽的上部上的电介质层的至少部分。
在一种具体实施方式中,导电材料包括掺杂的多晶硅。
在一种具体实施方式中,电介质层包括压差式填充,方法进一步包括:
在进行填充之前均匀蚀刻电介质层。
在一种具体实施方式中,该方法进一步包括:
在形成多个源极区之前,在半导体区中形成主体区,主体区具有与多个源极区相反的传导类型。
在一种具体实施方式中,在双通道成角注入期间,形成多个源极区包括穿过沿栅沟槽的上侧壁延伸的电介质层将掺杂物注入栅沟槽的上侧壁。
在一种具体实施方式中,导电材料具有与多个源极区基本共平面的顶部表面。
在一种具体实施方式中,半导体区包括在衬底之上延伸的漂移区,漂移区具有与源极区相同传导类型,栅沟槽延伸穿过漂移区并在衬底内终止。
在一种具体实施方式中,半导体区包括在衬底之上延伸的漂移区,漂移区具有与源极区相同传导类型,栅沟槽延伸进入漂移区并在漂移区内终止。
在一种具体实施方式中,半导体区包括在衬底之上延伸的漂移区,
方法进一步包括:
在栅沟槽中并竖直重叠漂移区和衬底形成保护电极。
在一种具体实施方式中,该进一步包括:
形成与多个源极区和导电材料接触的源极互连。
在一种具体实施方式中,多个源极区的至少一个源极区具有沿栅沟槽的侧壁延伸的竖直长度和与竖直长度垂直延伸的侧向宽度,竖直长度大于侧向宽度。
本发明涉及一种形成保护栅场效应晶体管的方法,包括:
在硅区上方形成硬掩模,硬掩模包括保护层;
图案化硬掩模以限定其中的开口;
通过在硬掩模中的开口来蚀刻硅区,从而形成延伸进入硅区的沟槽;
内衬于每个沟槽的侧壁和底部形成保护电介质层;
在每个沟槽的底部形成保护电极,保护电极通过保护电介质层与硅区隔离开;
沿每个沟槽的上侧壁形成保护间隙壁;
在每个沟槽中保护电极之上形成电极间电介质,保护间隙壁和硬掩膜的保护层防止电极间电介质沿每个沟槽的上侧壁和邻近每个沟槽的台面表面之上形成;
在每个沟槽中并在电极间电介质之上形成栅极。
在一种具体实施方式中,硬掩模的保护层、或保护间隙壁中的至少一个包括氮化物。
在一种具体实施方式中,硬掩模包含氧化物-氮化物-氧化物复合层。
在一种具体实施方式中,形成电极间电介质包括进行热氧化。
在一种具体实施方式中,形成保护间隙壁包括形成内衬于每个沟槽的上侧壁并在沟槽之间的台面区之上延伸的氮化物层,以及各向异性蚀刻氮化物层从而去除氮化物层的水平延伸部分。
在一种具体实施方式中,该方法进一步包括:
在形成栅极之前,去除保护间隙壁;以及
用栅电介质层内衬每个沟槽的上侧壁。
在一种具体实施方式中,该方法进一步包括:
在硅区中形成主体区,主体区和硅区具有相反的传导类型;以及
在主体区中形成源极区,源极区和主体区具有相反的传导类型。
在一种具体实施方式中,在形成沟槽之前形成主体区。
在一种具体实施方式中,该方法进一步包括:
在硅区中形成主体区,主体区和硅区具有相反的传导类型;
在各个栅极之上形成电介质帽,使得在每两个相邻沟槽上方的电介质帽限定其间的主体区的暴露表面;
使在每两个相邻电介质帽之间的主体区的暴露表面凹陷;以及
进行重主体注入以形成沿主体区的各个凹陷表面的重主体区,重主体区和硅区具有相反的传导类型。
在一种具体实施方式中,该方法进一步包括:
在硅区形成主体区,主体区和硅区具有相反的传导类型;
进行源极注入以形成在每两个相邻沟槽之间的主体区中延伸的高掺杂区,高掺杂区和主体区具有相反的传导类型;
在各个栅极之上形成电介质帽,使得在每两个相邻沟槽上方的电介质帽限定其间的高掺杂区的暴露表面;
使在每两个相邻电介质帽之间的高掺杂区的暴露表面凹陷到低于高掺杂区的深度,使得各个高掺杂区的剩余部分形成源极区;以及
进行重主体注入以形成沿主体区的各个凹陷表面的重主体区,重主体区和硅区具有相反的传导类型。
在一种具体实施方式中,保护电极和栅极包括多晶硅。
本发明涉及一种形成保护栅场效应晶体管的方法,包括:
在硅区上方形成硬掩模,硬掩模包括氧化物-氮化物-氧化物复合层;
图案化硬掩模以限定其中的开口;
通过在硬掩模中的开口来蚀刻硅区,从而形成延伸进入硅区的沟槽;
内衬于每个沟槽的侧壁和底部形成保护电介质层;
在每个沟槽的底部形成保护电极,保护电极通过保护电介质层与硅区隔离开;
沿每个沟槽的上侧壁形成氮化物间隙壁;
在每个沟槽中保护电极之上进行热氧化以形成热氧化物层,氮化物间隙壁和硬掩模防止热氧化物层沿每个沟槽的上侧壁和邻近每个沟槽的台面表面之上形成;以及
在每个沟槽中并在热氧化物层之上形成栅极。
在一种具体实施方式中,硅区包括衬底和在衬底之上的外延层,外延层和衬底具有相同的传导类型,外延层具有比衬底低的掺杂浓度,
方法进一步包括:
在外延层中形成主体区,主体区和外延层具有相反的传导类型;以及在主体区中形成源极区,源极区和主体区具有相反的传导类型。
本发明涉及一种形成场效应晶体管的方法,包括:
在半导体区中形成包括沟槽侧壁的沟槽;
在沟槽中形成保护电极;
进行第一传导类型的杂质的成角侧壁注入以形成邻近沟槽的通道增强区;
在半导体区中形成第二传导类型的主体区;以及
在主体区中形成第一传导类型的源极区,源极区以及主体区和半导体区之间的界面限定了它们之间的通道区,通道区沿着沟槽侧壁延伸,通道增强区部分延伸进入通道区的下部从而降低通道区的电阻。
在一种具体实施方式中,该方法进一步包括:
形成在保护电极之上但是与其隔离开的栅极。
在一种具体实施方式中,通道增强区与沿着沟槽侧壁的栅极重叠。
在一种具体实施方式中,通道增强区自对准保护电极。
在一种具体实施方式中,半导体区包括在衬底之上延伸的第二传导类型的漂移区。
在一种具体实施方式中,沟槽延伸穿过漂移区并在衬底内终止。
在一种具体实施方式中,通道增强区部分延伸进入主体区并部分延伸进入漂移区。
在一种具体实施方式中,半导体区包括在衬底之上延伸的第二传导类型的漂移区,并且保护电极与漂移区和衬底竖直重叠。
在一种具体实施方式中,该方法进一步包括:
在进行成角侧壁注入之前,沿沟槽侧壁的上部形成氧化物层。
在一种具体实施方式中,各个源极区以及在主体区和半导体区之间的界面限定了它们之间的通道区,通道区沿相应的沟槽侧壁延伸。
本发明涉及一种场效应晶体管,包括:
第一传导类型的主体区,与第二传导类型的半导体区形成PN结;
栅沟槽,延伸穿过主体区并且在半导体区内终止;
邻近栅沟槽的第二传导类型的源极区,源极区以及主体区与半导体区之间的界面限定了它们之间的通道区,通道区沿着栅沟槽的沟槽侧壁延伸;以及
邻近栅沟槽的第二传导类型的通道增强区,通道增强区部分延伸进入通道区的下部从而降低通道区的电阻。
在一种具体实施方式中,该场效应晶体管还包括置于栅沟槽中的栅极,通道增强区与沿着沟槽侧壁的栅极重叠。
在一种具体实施方式中,该场效应晶体管进一步包括:
置于栅沟槽中的至少一个导电保护电极;
置于在至少一个导电保护电极之上但是与至少一个导电保护电极隔离开的栅沟槽中的栅极;
将至少一个导电保护电极与半导体区隔离开的保护电介质层;以及
将栅极与主体区隔离开的栅极电介质层。
在一种具体实施方式中,半导体区包括在衬底之上延伸的第二传导类型的漂移区。
在一种具体实施方式中,栅沟槽延伸穿过漂移区并在衬底内终止。
在一种具体实施方式中,通道增强区部分延伸进入主体区并部分延伸进入漂移区。
在一种具体实施方式中,半导体区包括在衬底之上延伸的第二传导类型的漂移区,并且保护电极与漂移区和衬底竖直重叠。
本发明涉及一种保护栅场效应晶体管,包括:
在第二传导类型的半导体区中延伸的第一传导类型的主体区;
被主体区分隔开的栅沟槽;
置于各个栅沟槽中的至少一个导电保护电极;
置于至少一个导电保护电极之上但是与至少一个导电保护电极隔离开的各个栅沟槽中的栅极;
将至少一个导电保护电极与半导体区隔离开的保护电介质层;
使各个栅极与邻近主体区隔离开的栅电介质层;
在邻近栅沟槽的主体区中延伸的第二传导类型的源极区,各个源极区以及相应主体区与半导体区之间的界面限定了它们之间的通道区,各个通道区沿着相应栅沟槽的侧壁延伸;以及
邻近各个栅沟槽的第二传导类型的通道增强区,通道增强区部分延伸进入相应通道区的下部从而降低通道区的电阻。
在一种具体实施方式中,通道增强区与沿着相应沟槽栅侧壁的相应栅极重叠。
本发明涉及一种双栅沟槽场效应晶体管,包括:
有源区和终端区,有源区包括延伸进入半导体区的栅沟槽,终端区包括延伸进入半导体区的终端沟槽,栅沟槽包括与终端沟槽侧向隔开的最外侧栅沟槽;
保护电介质层,内衬于各个栅沟槽的下侧壁以及终端沟槽的下侧壁和上侧壁;
保护电极,置于各个栅沟槽中和终端沟槽中,在各个栅沟槽中的保护电极在栅沟槽的下部延伸,在终端沟槽中的保护电极延伸穿过终端沟槽的上部和下部;
栅电介质层,内衬于各个栅沟槽的上侧壁;
栅极,置于各个栅沟槽中,各个栅极通过侧向延伸的电介质层与下方的保护电极隔离;以及
主体区,在(i)之间以及(ii)之间延伸并邻接(i)、(ii)的侧壁:(i)至少两个相邻的栅沟槽;以及(ii)最外侧栅沟槽和终端沟槽,在两个相邻栅沟槽之间延伸的各个主体区包括邻近相应栅沟槽侧壁的源极区,在最外侧栅沟槽和终端沟槽之间延伸的主体区包括邻近最外侧栅沟槽的侧壁的源极区,其中主体区和源极区具有相反的传导类型。
在一种具体实施方式中,栅沟槽和终端沟槽具有基本上相同的深度和宽度。
在一种具体实施方式中,在终端沟槽中的保护电极基本上填满终端沟槽。
在一种具体实施方式中,保护电介质层比栅电介质层厚。
在一种具体实施方式中,半导体区包括:
衬底区,以及
在衬底区之上的漂移区,主体区在漂移区之上延伸,漂移区比衬底低的掺杂浓度。
在一种具体实施方式中,栅沟槽和终端沟槽延伸进入衬底并在衬底内终止。
在一种具体实施方式中,每两个相邻栅沟槽延伸的各个主体区以及在最外侧栅沟槽和终端沟槽之间延伸的主体区包括比主体区更高浓度的重主体区。
在一种具体实施方式中,该双栅沟槽场效应晶体管进一步包括与源极区和主体区电性接触的源极互连。
在一种具体实施方式中,没有主体区邻接终端沟槽外侧壁。
在一种具体实施方式中,各个栅极凹陷在相应栅沟槽中,在终端沟槽中的保护电极没有凹陷在终端沟槽中。
本发明涉及一种双栅沟槽场效应晶体管,包括:
有源区和终端区,有源区包括延伸进入半导体区的栅沟槽,终端区包括延伸进入半导体区的终端沟槽,栅沟槽包括与终端沟槽侧向隔开的最外侧栅沟槽,其中栅沟槽和终端沟槽具有基本上相同的深度和宽度;
保护电介质层,内衬于各个栅沟槽的下侧壁以及终端沟槽的下侧壁和上侧壁;
保护电极,置于各个栅沟槽中和终端沟槽中,在各个栅沟槽中的保护电极在栅沟槽的下部延伸,在终端沟槽中的保护电极延伸穿过终端沟槽的上部和下部;
栅电介质层,内衬于各个栅沟槽的上侧壁;其中保护电介质层比栅电介质层厚;
栅极,置于各个栅沟槽中而不是终端沟槽,各个栅极通过侧向延伸的电介质层与下方的保护电极隔离;以及
主体区,在(i)之间以及(ii)之间延伸并邻接(i)、(ii)的侧壁:(i)每两个相邻栅沟槽;以及(ii)最外侧栅沟槽和终端沟槽,在两个相邻栅沟槽之间延伸的各个主体区包括邻近相应栅沟槽侧壁的源极区,在最外侧栅沟槽和终端沟槽之间延伸的主体区包括邻近最外侧栅沟槽的侧壁的源极区,其中主体区和源极区具有相反的传导类型。
本发明涉及一种装置,包括:
双栅沟槽MOSFET,包括:
栅沟槽,延伸进入外延层;
栅极,置于栅沟槽中;以及
源极区,掺杂有掺杂物并邻近栅沟槽的侧壁;以及
沟槽MOS肖特基势垒(TMBS)二极管,与双栅沟槽MOSFET单片集成。
在一种具体实施方式中,TMBS二极管包括栅极或保护电极中的至少一个以及多个沟槽。
在一种具体实施方式中,TMBS二极管包括与栅沟槽的结构具有基本相同结构的沟槽。
在一种具体实施方式中,TMBS二极管包括:包括肖特基势垒金属的源极互连,肖特基势垒金属接触源极区、重主体区或邻近TMBS二极管的沟槽的轻度掺杂区中的至少一个。
在一种具体实施方式中,双栅沟槽MOSFET进一步包括:
导电材料,置于栅极上方的栅沟槽中并通过栅沟槽的侧壁与源极区电性接触;以及
隔离层,置于栅极和导电材料之间。
在一种具体实施方式中,双栅沟槽MOSFET进一步包括:
置于外延层中的主体区,主体区掺杂有与源极区的掺杂物具有相反传导类型的掺杂物;
至少一个导电保护电极,置于栅极之下的栅沟槽中;
多晶硅层间介质体,置于栅极与至少一个导电保护电极之间;以及
栅电介质层,将栅极与主体区隔离开。
在一种具体实施方式中,双栅沟槽MOSFET进一步包括:
衬底,置于外延层之下;以及
漂移区,包括在外延层中并置于衬底之上,栅沟槽延伸穿过漂移区并在衬底内终止。
在一种具体实施方式中,双栅沟槽MOSFET进一步包括:
衬底,置于外延层之下;以及
漂移区,包括在外延层中并置于衬底之上,栅沟槽延伸进入漂移区并在漂移区内终止。
在一种具体实施方式中,双栅沟槽MOSFET进一步包括:
漂移区,置于衬底之上;以及
保护电极,置于栅沟槽中在栅极之下,并且与漂移区和衬底竖直重叠。
在一种具体实施方式中,双栅沟槽MOSFET进一步包括:
漂移区,置于衬底之上;以及
保护电极,置于栅沟槽中在栅极之下,并且与沿着漂移区和衬底之间的界面对齐的平面相交。
在一种具体实施方式中,双栅沟槽MOSFET的源极区具有沿栅沟槽的侧壁延伸的竖直长度和与竖直长度垂直延伸的侧向宽度,竖直长度大于侧向宽度。
在一种具体实施方式中,双栅沟槽MOSFET进一步包括:
通道增强区,与栅沟槽的侧壁接触。
在一种具体实施方式中,双栅沟槽MOSFET进一步包括:
通道增强区,构造成降低沿着栅沟槽的侧壁的通道区的电阻。
在一种具体实施方式中,双栅沟槽MOSFET进一步包括:
通道增强区,与栅沟槽的侧壁接触;
主体区,置于外延层中,主体区掺杂有与源极区的掺杂物具有相反传导类型的掺杂物;
保护电极,置于栅极之下;以及
保护电介质层,具有在主体区之下延伸的向外张开部分。
通过以下的详细描述和附图可以更好地理解本发明的特性和优势。
附图说明
图1是传统单栅沟槽MOSFET的横截面图。
图2是传统双栅沟槽MOSFET的横截面图。
图3是根据本发明的一个具体实施方式的具有延伸入衬底的栅沟槽保护电极的双栅沟槽MOSFET的横截面图。
图4是根据本发明的另外一个具体实施方式的其中使用LOCOS方法形成保护电介质双栅沟槽MOSFET的横截面图,;
图5是根据本发明的另外一个具体实施方式的具有侧壁增强型通道区的双栅沟槽MOSFET的横截面图;
图6是根据本发明的另外一个具体实施方式的具有源极插件区(source plug region)的双栅沟槽MOSFET的横截面图。
图7是根据本发明的另外一个具体实施方式的具有侧壁通道增强区、源极插件区和LOCOS保护电介质的双栅沟槽的横截面图;
图8是根据本发明的另外一个具体实施方式的与肖特基二极管单片集成的双栅沟槽MOSFET的横截面图;
图9是根据本发明的另外一个具体实施方式的与双栅沟槽MOSFET集成的紧密边缘终端结构;
图10A-10E是根据本发明的另外一个具体实施方式的用于形成图4的MOSFET400的处理模块的不同工艺步骤的横截面图;
图11是根据本发明的另外一个具体实施方式的对应于用于形成图5的MOSFET500的处理模块的横截面图;
图12A-12D是根据本发明的另外一个具体实施方式的用于形成图6的MOSFET600的处理模块的不同工艺步骤的横截面图;和
图13A-13L是根据本发明的一个具体实施方式的形成双栅沟槽MOSFET的示例性制造过程的不同步骤的横截面图。
具体实施方式
通过图13A-13L中的横截面图描述的工艺次序是形成本发明的一个具体实施方式的双栅沟槽MOSFET的示例性程序。这个加工次序会被用作基础程序,其会被进行修改以包括形成以下所披露的不同的单元结构的各种处理模块。请注意,这里所披露的处理模块也可以集成其它基础程序,并不限于图13A-13L所描述的程序。接下来会披露图13A-13L的加工次序。
图13A中,n型外延层1302在n型重掺杂衬底(未示出)之上形成。注入P型导电掺杂物以在外延层1302中形成主体区1304。硬掩模1306,例如包含氧化物-氮化物-氧化物(ONO)复合层,用于限定并且蚀刻延伸穿过主体区1304并且进入外延层1302的沟槽1308。
图13B中,使用传统技术,保护电介质层1310(例如包含氧化物)形成了沟槽侧壁和底部的内衬并且延伸到硬掩模1306之上。在图13C中,保护电极1312的通过沉积多晶硅层以填充沟槽1308,然后回蚀多晶硅使多晶硅深凹入沟槽1308中形成。然后,保护电介质1310凹陷,在沟槽侧壁上留下电介质薄层1313。保护电极1312进一步凹陷使它的顶部表面与凹陷保护电介质的顶部表面在一个水平上。
图13D中,氮化物层沉积,然后被各向异性蚀刻,使得只有沿着沟槽侧壁延伸的氮化物层的部分1314保留。在图13E中,多晶硅层间介质体(IPD)1316通过进行热氧化形成。氧化物层只在保护电极1312之上形成,因为所有的其它硅表面都被氮化物或氧化物所覆盖。在一个可替换的具体实施方式中,工艺次序进行了修改以适于使用双氧化层形成IPD层。首先,在保护电极之上形成热氧化物层,然后使用SACVD沉积氧化物保形层以便获得均一的IPD层。
在图13F中,进行氧化蚀刻以除去ONO复合层1306的顶部氧化物层以及沿着沟槽侧壁的氮化物层之上形成的任何氧化物。然后,剥去此时所暴露的ONO复合层的氮化物层以及沿着沟槽侧壁的氮化物层1314。再进行另外一氧化蚀刻以沿着沟槽侧壁以及ONO复合层1306的底部氧化层除去电介质层1313,使得沿着沟槽侧壁和图13F中所示的邻近沟槽的台面区的硅被暴露出来。在图13G中,使用已知的技术形成沿着沟槽侧壁延伸、经过多晶硅层间介质体并且在邻近沟槽的台面区之上的栅电介质层1318。在图13H中,沉积填充沟槽的多晶硅层,然后多晶硅层被回蚀以在沟槽中形成凹陷的栅极1320。
在图13I中,在台面之上的栅极电介质被回蚀到合适于源极注入(source implant)的厚度。进行在作用区中的覆盖源极注入(blanketsource implant)以形成在台面区中的邻近沟槽之间延伸的n型区1322。在图13J中,使用传统方法在沟槽和台面之上形成BPSG层1324A。在图13K中,使用掩模层(未示出),除去除了在沟槽和n型区1322a之上的1324B部分的BPSG层1324A。这样,邻近BPSG部分1324的硅台面表面被暴露。然后进行硅蚀刻使暴露的硅表面凹陷到低于n型区1322a的深度,这样就形成接触开口1326。硅的凹陷除去了每个n型区1322a的一部分,留下了后面的自对准源极区1322b。在图13L中,进行重主体注入(heavy body implant)以在主体区1304中形成p型传导的自对准重主体区1329。进行BPSG回流以获得接触窗口的更好的纵横比以及随后形成对于源极互连层1330的更好的阶梯覆盖。源极互连(source interconnect)1330电性接触重主体区1329和源极区1322。
各种单元结构,它们相对应的处理模块以及这些处理模块与图13A-13L所描述的工艺流程相结合的方式会随后进行披露。图3显示了双栅沟槽MOSFET 300的横截面图,其除了栅305和保护电极320延伸进入衬底302中,与图13L中的双栅MOSFET结构相似。这有利地可使漂移区的厚度大体上被降低从而提高Rdsom。另外,衬底的高掺杂浓度将电位降转移到保护氧化物中,这样就消除了与传统沟槽结构相关的曲率极限击穿(curvature-limited breakdown)问题。这也改进了装置的耐用度,因为雪崩点(即最大碰撞电离率)转移到晶体管台面的中心并且远离与引起耐用度丧失相关的寄生双极性元件(parasitic bipolar elements)。图13A-13L中的工艺次序唯一需要进行的修改是图13A中需要在衬底之上形成薄外延层使得沟槽延伸到衬底中。
图4显示了根据本发明的一个具体实施方式的使用LOCOS工艺形成保护电介质422的双栅沟槽MOSFET400的横截面图。虚线表示沟槽605的轮廓。在形成保护电介质422中,LOCOS工艺导致邻近沟槽605的硅的消耗从而造成保护电介质433向外张开并且直接在主体区406之下延伸。LOCOS工艺是形成保护电介质422并且还产生均匀薄膜的有利的、节省成本的方法。MOSFET 400的上部与图3中的MOSFET 300的上部相似。当沟槽605和保护电极420被显示延伸到衬底402中时,它们可以类似于图2的MOSFET200中示出的二者选一地在N-区404中终止。在一个具体实施方式中,通过将图10A-10E的横截面图所描述的处理模块与随后的图13A-13L的工艺流程结合来形成MOSFET 400。
对应于图13A-13L的工序被对应于图10A-10E的工序所代替。除了在图10A中形成正好经过主体区1004延伸的较浅的沟槽1008,对应于图10A的工序与对应于图13A的工序相同。在图10B中,氮化物间隙壁(隔离层,spacer)1010沿着沟槽侧壁形成。在图10C中,进行硅蚀刻(自对准氮化物间隙壁1010)从而将沟槽1008更深入延伸到硅区1002中。这样,栅沟槽具有了更宽的上部1008和更窄的下部1012。在图10D中,进行LOCOS工艺,从而使保护电极1014的自对准层沿着暴露的硅表面,即在下沟槽部1012中形成。LOCOS工艺消耗部分所示(虚线表示下沟槽部1012的轮廓)的硅区1002。在图10E中,通过沉积多晶硅层在沟槽中形成保护电极1016,然后回蚀多晶硅使多晶硅深凹进沟槽中。接下来进行对应于图13E-13L的工序来完成单元结构。图中的不同的层和区的厚度和尺寸可能是不按规定比例的。例如,在图10D中,氮化物间隙壁1010在实际中可以是比它们看起来薄的,以使LOCOS保护电介质1014的部分向外张开并且直接在主体区1004之下延伸。
图5示出了根据本发明的另外一个具体实施方式的双栅沟槽MOSFET 500的横截面图,其除了在MOSFET 500中结成一体的侧壁通道增强区526,与图3中的MOSFET 300相似。通道增强区526沿着MOSFET 500的每个通道区的底部形成以校正通道区中的掺杂浓度分布曲线的尾部。从而,沟道长度和沟道电阻被有利地降低。因为通道区中的掺杂浓度峰值正好出现在源极区510之下(即远离通道区的底部),附加通道增强区526不会反向影响晶体管的阈值电压。假设MOSFET 500为n-沟道,通道增强区526则为n型。正如前面的具体实施方式中,MOSFET 500可以进行修改,使得沟槽505终止在漂移区504中而不是在衬底502中。在一个具体实施方式中,通过将图11的横截面图所描述的处理模块与随后的图13A-13L的工艺流程结合来形成MOSFET 500。
对应于图11的处理模块需要在图13F之后但是在图13G之前进行。也就是,在进行完对应于图13A-13F的步骤之后,如图11所示沿着沟槽侧壁形成氧化物层(screen oxide)1112。氧化物层1112的厚度要适合于穿过其注入掺杂物。在图11中,以预先确定的角度进行n型掺杂物的通道增强注入1113以形成沿着一个沟槽侧壁的通道增强区,并且以图11所示的相对的角度进行第二通道增强注入以形成沿着相对的沟道侧壁的通道增强区。通道增强区可以是自对准在前面步骤中形成的IPD 1124。然后进行对应于图13G-13L的工序以完成单元结构。在一个具体实施方式中,主体区在通道增强注入1113之前形成,在可替换的具体实施方式中,主体区是在通道增强注入1113之后形成。
图6示出了根据本发明的另外一个具体实施方式的具有源极插件区630的双栅沟槽MOSFET 600的横截面图。取代形成如图3中所完成的在栅极614之上的电介质圆顶,在栅极614之上形成薄电介质层628并且电介质层628之上的沟槽605的其余部分被源极插件630(例如,包含多晶硅)填充。源极插件630电性连接栅沟槽605侧面的源极区610。MOSFET 600具有提供用于形成顶部金属的平坦表面的优点。另外,源极插件能够在沟槽侧面的非常狭窄的源极区形成,从而降低单元间距(cell pitch)而不会反向影响源极电阻。通过在形成源极插件630之前进行双通道成角注入形成狭窄的源极区610。MOSFET 600可以进行修改,使得沟槽605在漂移区604中终止而不是在衬底602中。源极插件630可以以相似的方式结合到例如图1中的传统沟槽栅FET中。在一个具体实施方式中,通过将图12A-12D的横截面图所描述的处理模块与随后的图13A-13L的工艺流程结合来形成MOSFET 600。
对应于图13H-13L的工序被对应于图12A-12D的工序所取代。也就是,在进行对应的13A-13G的步骤之后,除了如图12A所示的沉积的栅极多晶硅深凹进沟槽中,栅极以与图13H中相似的方式形成。在图12A中,进行n型掺杂物的双通道成角注入以形成沿着沟槽1205的暴露的上侧壁的源极区1210。接下来,如图12B所示,电介质层1216a(例如,包含氧化物)利用压差式填充(differentialfill)来沉积,使得在沟槽中的栅极1212之上形成比在邻近的台面之上更厚的氧化物。在图12C中,均匀地蚀刻电介质层1216a,从而电介质薄层1216b留在了栅极1212之上的沟槽中。在图12C中,沟槽1205被填充掺杂的多晶硅1217。然后,可以用传统技术来形成重主体区(未示出)、源极互连(未示出)、其它区和层以完成单元结构。源极插件1217可以通过将图12A-12D表示的处理模块结合到传统的形成沟槽栅FET 100的工艺次序中,以相似的方式被结合到图1中的沟槽栅FET 100中。
图7示出了复合双栅沟槽MOSFET 700的横截面图,其中结合了图4-6中的结构的有利部件。如图所示,n型通道增强区726、源极插件730和LOCOS保护电介质722被结合到MOSFET700中。请注意,根据设计的目的和性能要求,这3个部件中的任意两个可以结合,而不是三个都结合。以上所讨论的每一个MOSFET 400、500和600的可替代具体实施方式也可以应用于MOSFET 700。由于本公开,需要在图13A-13L中的工艺流程进行以形成MOSFET700的修改对于所属领域的一般技术人员是显而易见的。
图8示出了单片集成肖特基二极管以获得集成MOSFET-肖特基二极管结构800的双栅沟槽MOSFET的横截面图。正如所看到的,虽然图4-7中的任何MOSFET都可以代替使用,该MOSFET结构与图3中的相似。在图8中,源极互连(未示出)包括肖特基势垒金属,其不仅接触源极区810和重主体区808,而且在肖特基二极管区之上延伸并且与N-区804b电性接触。与轻度掺杂区804b接触的肖特基势垒金属形成肖特基二极管。肖特基二极管区中的沟槽的结构与MOSFET区中的沟槽结构相同。必须将肖特基二极管结构频繁地结合到作用区中以达到理想的MOSFET与肖特基面积的比率。
图9示出了与双栅沟槽MOSFET集成的紧密边缘终端结构。正如所看到的,作用区终止在终端沟槽905b中,该终端沟槽包括作为沟槽侧壁和底部内衬的保护电介质以及填充沟槽的保护电极920。正如所看到的,虽然图4-7中的任何MOSFET都可以代替使用,作用区中的MOSFET结构与图3中的相似。
这里所披露的本发明的各种具体实施方式,可以与以上所引用的、共同转让的美国专利申请第11/026,276中所披露的一个或多个具体实施方式(尤其是保护栅沟槽结构和方法)进行结合以获得具有出众特性的功率器件。
虽然以上提供了本发明各种具体实施方式的详细披露,多种代替、修改和等同替换是可以的。例如,以上的工艺次序和处理模块是在双栅(保护栅)沟槽结构的环境进行披露的,但是这里所公开的各种具体实施方式的有利特性也可以在如图1中所示的传统沟槽栅TEF的环境中实现。另外,应理解这里所提供的所有材料都只是基于说明的目的。而且,这里所披露的具体实施方式中的一种或多种不同的电介质层可以包含低介电常数或高介电常数的介电材料。例如,在第一次多晶硅沉积之前形成的一个或多个电介质层可以包含高介电常数的介电材料,而在最后的多晶硅沉积之后形成的一个或多个电介质层可以包含低介电常数的介电材料。基于这种和其它原因,因此,以上的披露不能被认为限定了本发明的范围,本发明的范围由所附的权利要求进行限定。

Claims (31)

1.一种场效应晶体管,包括:
栅沟槽,延伸进入外延层;
栅极,置于所述栅沟槽中;
源极区,掺杂有掺杂物并邻近所述栅沟槽的侧壁;
导电材料,置于所述栅极上方的所述栅沟槽中并通过所述栅沟槽的所述侧壁与所述源极区电性接触;以及
隔离层,置于所述栅极和所述导电材料之间。
2.根据权利要求1所述的场效应晶体管,其中所述隔离层是包括压差式填充的电介质层。
3.根据权利要求1所述的场效应晶体管,进一步包括:
置于所述外延层中的主体区,所述主体区掺杂有与所述源极区的掺杂物具有相反传导类型的掺杂物;
至少一个导电保护电极,置于所述栅极之下的所述栅沟槽中;
多晶硅层间介质体,置于所述栅极与所述至少一个导电保护电极之间;以及
栅电介质层,将所述栅极与所述主体区隔离开。
4.根据权利要求1所述的场效应晶体管,其中所述导电材料包括多晶硅,
所述场效应晶体管进一步包括:
在衬底之上的漂移区,所述漂移区掺杂有与所述源极区的掺杂物具有相同传导类型的掺杂物。
5.根据权利要求1所述的场效应晶体管,其中所述导电材料具有与所述源极区的顶部表面基本共平面的顶部表面。
6.根据权利要求1所述的场效应晶体管,进一步包括:
衬底,置于所述外延层之下;以及
漂移区,包括在所述外延层中并置于所述衬底之上,所述栅沟槽延伸穿过所述漂移区并在所述衬底内终止。
7.根据权利要求1所述的场效应晶体管,进一步包括:
衬底,置于所述外延层之下;以及
漂移区,包括在所述外延层中并置于所述衬底之上,所述栅沟槽延伸进入所述漂移区并在所述漂移区内终止。
8.根据权利要求1所述的场效应晶体管,进一步包括:
漂移区,置于衬底之上;以及
保护电极,置于栅沟槽中在所述栅极之下,并且与所述漂移区和所述衬底竖直重叠。
9.根据权利要求1所述的场效应晶体管,进一步包括:
漂移区,置于衬底之上;以及
保护电极,置于栅沟槽中在所述栅极之下,并且与沿着所述漂移区和所述衬底之间的界面对齐的平面相交。
10.根据权利要求1所述的场效应晶体管,其中所述栅极是凹陷的栅极。
11.根据权利要求1所述的场效应晶体管,进一步包括:
顶部金属,与所述源极区和所述导电材料接触。
12.根据权利要求1所述的场效应晶体管,其中所述源极区具有沿所述栅沟槽的所述侧壁延伸的竖直长度和与所述竖直长度垂直延伸的侧向宽度,所述竖直长度大于所述侧向宽度。
13.根据权利要求1所述的场效应晶体管,其中所述栅极是凹陷的栅极,具有与沿所述栅沟槽的所述侧壁的所述源极区的竖直长度对应的顶部表面。
14.根据权利要求1所述的场效应晶体管,进一步包括:
通道增强区,与所述栅沟槽的所述侧壁接触。
15.根据权利要求1所述的场效应晶体管,进一步包括:
通道增强区,构造成降低沿着所述栅沟槽侧壁的通道区的电阻。
16.根据权利要求1所述的场效应晶体管,进一步包括:
通道增强区,与所述栅沟槽的所述侧壁接触;
主体区,置于所述外延层中,所述主体区掺杂有与所述源极区的所述掺杂物具有相反传导类型的掺杂物;
保护电极,置于所述栅极之下;以及
保护电介质层,具有在所述主体区之下延伸的向外张开部分。
17.一种场效应晶体管,包括:
栅沟槽,延伸进入外延层;
栅极,置于所述栅沟槽中;
源极区,掺杂有掺杂物并邻近所述栅沟槽的侧壁;
第一隔离层,置于所述栅极的顶部上;
第二隔离层,置于所述栅极与所述栅沟槽的所述侧壁之间;以及
导电材料,置于所述栅沟槽中并通过所述栅沟槽的所述侧壁与所述源极区电性接触,所述导电材料与所述第一隔离层和所述第二隔离层接触。
18.根据权利要求17所述的场效应晶体管,其中所述第一隔离层置于所述栅极与所述导电材料之间。
19.根据权利要求17所述的场效应晶体管,其中所述源极区具有沿所述栅沟槽的所述侧壁延伸的竖直长度和与所述竖直长度垂直延伸的侧向宽度,所述竖直长度大于所述侧向宽度。
20.根据权利要求17所述的场效应晶体管,其中所述导电材料具有与所述源极区的顶部表面基本共平面的顶部表面。
21.根据权利要求17所述的场效应晶体管,进一步包括:
置于所述外延层中的主体区,所述主体区掺杂有与所述源极区的掺杂物具有相反传导类型的掺杂物;
保护电极,置于所述栅极之下;以及
保护电介质层,具有在所述主体区之下延伸的向外张开部分。
22.根据权利要求17所述的场效应晶体管,进一步包括:
通道增强区,与所述栅沟槽的所述侧壁接触。
23.一种形成场效应晶体管的方法,包括:
在半导体区中形成栅沟槽;
在所述栅沟槽中形成凹陷的栅极;
形成多个源极区使得所述多个源极区的至少一个源极区置于所述栅沟槽的每个边上;
在所述凹陷的栅极之上形成电介质层;以及
用导电材料填充所述栅沟槽的至少部分,以使所述导电材料与所述多个源极区的源极区电性接触。
24.一种形成保护栅场效应晶体管的方法,包括:
在硅区上方形成硬掩模,所述硬掩模包括保护层;
图案化所述硬掩模以限定其中的开口;
通过在所述硬掩模中的所述开口来蚀刻所述硅区,从而形成延伸进入所述硅区的沟槽;
内衬于每个所述沟槽的侧壁和底部形成保护电介质层;
在每个所述沟槽的底部形成保护电极,所述保护电极通过所述保护电介质层与所述硅区隔离开;
沿每个所述沟槽的上侧壁形成保护间隙壁;
在每个所述沟槽中所述保护电极之上形成电极间电介质,所述保护间隙壁和所述硬掩膜的保护层防止电极间电介质沿每个所述沟槽的所述上侧壁和邻近每个所述沟槽的台面表面之上形成;
在每个所述沟槽中并在所述电极间电介质之上形成栅极。
25.一种形成保护栅场效应晶体管的方法,包括:
在硅区上方形成硬掩模,所述硬掩模包括氧化物-氮化物-氧化物复合层;
图案化所述硬掩模以限定其中的开口;
通过在所述硬掩模中的所述开口来蚀刻所述硅区,从而形成延伸进入所述硅区的沟槽;
内衬于每个所述沟槽的侧壁和底部形成保护电介质层;
在每个所述沟槽的底部形成保护电极,所述保护电极通过所述保护电介质层与所述硅区隔离开;
沿每个所述沟槽的上侧壁形成氮化物间隙壁;
在每个所述沟槽中所述保护电极之上进行热氧化以形成热氧化物层,所述氮化物间隙壁和所述硬掩模防止热氧化物层沿每个所述沟槽的所述上侧壁和邻近每个所述沟槽的台面表面之上形成;以及
在每个所述沟槽中并在所述热氧化物层之上形成栅极。
26.一种形成场效应晶体管的方法,包括:
在半导体区中形成包括沟槽侧壁的沟槽;
在所述沟槽中形成保护电极;
进行第一传导类型的杂质的成角侧壁注入以形成邻近所述沟槽的通道增强区;
在所述半导体区中形成第二传导类型的主体区;以及
在所述主体区中形成第一传导类型的源极区,所述源极区以及所述主体区和所述半导体区之间的界面限定了它们之间的通道区,所述通道区沿着所述沟槽侧壁延伸,所述通道增强区部分延伸进入所述通道区的下部从而降低所述通道区的电阻。
27.一种场效应晶体管,包括:
第一传导类型的主体区,与第二传导类型的半导体区形成PN结;
栅沟槽,延伸穿过所述主体区并且在所述半导体区内终止;
邻近所述栅沟槽的所述第二传导类型的源极区,所述源极区以及所述主体区与所述半导体区之间的界面限定了它们之间的通道区,所述通道区沿着所述栅沟槽的沟槽侧壁延伸;以及
邻近所述栅沟槽的所述第二传导类型的通道增强区,所述通道增强区部分延伸进入所述通道区的下部从而降低所述通道区的电阻。
28.一种保护栅场效应晶体管,包括:
在第二传导类型的半导体区中延伸的第一传导类型的主体区;
被所述主体区分隔开的栅沟槽;
置于各个栅沟槽中的至少一个导电保护电极;
置于所述至少一个导电保护电极之上但是与所述至少一个导电保护电极隔离开的各个栅沟槽中的栅极;
将所述至少一个导电保护电极与所述半导体区隔离开的保护电介质层;
使各个栅极与邻近主体区隔离开的栅电介质层;
在邻近所述栅沟槽的所述主体区中延伸的所述第二传导类型的源极区,各个源极区以及相应主体区与所述半导体区之间的界面限定了它们之间的通道区,各个通道区沿着相应栅沟槽的侧壁延伸;以及
邻近各个栅沟槽的所述第二传导类型的通道增强区,所述通道增强区部分延伸进入相应通道区的下部从而降低所述通道区的电阻。
29.一种双栅沟槽场效应晶体管,包括:
有源区和终端区,所述有源区包括延伸进入半导体区的栅沟槽,所述终端区包括延伸进入所述半导体区的终端沟槽,所述栅沟槽包括与所述终端沟槽侧向隔开的最外侧栅沟槽;
保护电介质层,内衬于各个栅沟槽的下侧壁以及所述终端沟槽的下侧壁和上侧壁;
保护电极,置于各个栅沟槽中和所述终端沟槽中,在各个栅沟槽中的所述保护电极在所述栅沟槽的下部延伸,在所述终端沟槽中的所述保护电极延伸穿过所述终端沟槽的上部和下部;
栅电介质层,内衬于各个栅沟槽的上侧壁;
栅极,置于各个栅沟槽中,各个栅极通过侧向延伸的电介质层与下方的保护电极隔离;以及
主体区,在(i)之间以及(ii)之间延伸并邻接(i)、(ii)的侧壁:(i)至少两个相邻的栅沟槽;以及(ii)最外侧栅沟槽和所述终端沟槽,在两个相邻栅沟槽之间延伸的各个所述主体区包括邻近相应栅沟槽侧壁的源极区,在所述最外侧栅沟槽和所述终端沟槽之间延伸的所述主体区包括邻近所述最外侧栅沟槽的侧壁的源极区,其中所述主体区和源极区具有相反的传导类型。
30.一种双栅沟槽场效应晶体管,包括:
有源区和终端区,所述有源区包括延伸进入半导体区的栅沟槽,所述终端区包括延伸进入所述半导体区的终端沟槽,所述栅沟槽包括与所述终端沟槽侧向隔开的最外侧栅沟槽,其中所述栅沟槽和所述终端沟槽具有基本上相同的深度和宽度;
保护电介质层,内衬于各个栅沟槽的下侧壁以及所述终端沟槽的下侧壁和上侧壁;
保护电极,置于各个栅沟槽中和所述终端沟槽中,在各个栅沟槽中的所述保护电极在所述栅沟槽的下部延伸,在所述终端沟槽中的所述保护电极延伸穿过所述终端沟槽的上部和下部;
栅电介质层,内衬于各个栅沟槽的上侧壁;其中所述保护电介质层比所述栅电介质层厚;
栅极,置于各个栅沟槽中而不是所述终端沟槽,各个栅极通过侧向延伸的电介质层与下方的保护电极隔离;以及
主体区,在(i)之间以及(ii)之间延伸并邻接(i)、(ii)的侧壁:(i)每两个相邻栅沟槽;以及(ii)最外侧栅沟槽和所述终端沟槽,在两个相邻栅沟槽之间延伸的各个所述主体区包括邻近相应栅沟槽侧壁的源极区,在所述最外侧栅沟槽和所述终端沟槽之间延伸的所述主体区包括邻近所述最外侧栅沟槽的侧壁的源极区,其中所述主体区和源极区具有相反的传导类型。
31.一种装置,包括:
双栅沟槽MOSFET,包括:
栅沟槽,延伸进入外延层;
栅极,置于所述栅沟槽中;以及
源极区,掺杂有掺杂物并邻近所述栅沟槽的侧壁;以及
沟槽MOS肖特基势垒(TMBS)二极管,与所述双栅沟槽MOSFET单片集成。
CN2012101580753A 2005-05-26 2006-05-24 沟槽栅场效应晶体管及其制造方法 Pending CN102738239A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US68572705P 2005-05-26 2005-05-26
US60/685,727 2005-05-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2006800184437A Division CN101542731B (zh) 2005-05-26 2006-05-24 沟槽栅场效应晶体管及其制造方法

Publications (1)

Publication Number Publication Date
CN102738239A true CN102738239A (zh) 2012-10-17

Family

ID=37452846

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2012101580753A Pending CN102738239A (zh) 2005-05-26 2006-05-24 沟槽栅场效应晶体管及其制造方法
CN2006800184437A Expired - Fee Related CN101542731B (zh) 2005-05-26 2006-05-24 沟槽栅场效应晶体管及其制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2006800184437A Expired - Fee Related CN101542731B (zh) 2005-05-26 2006-05-24 沟槽栅场效应晶体管及其制造方法

Country Status (8)

Country Link
US (6) US7504303B2 (zh)
JP (1) JP2008546189A (zh)
KR (1) KR101254835B1 (zh)
CN (2) CN102738239A (zh)
AT (1) AT504289A2 (zh)
DE (1) DE112006001318T5 (zh)
TW (1) TWI395294B (zh)
WO (1) WO2006127914A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638011A (zh) * 2015-01-23 2015-05-20 无锡同方微电子有限公司 一种沟槽mosfet器件及其制作方法
CN105321945A (zh) * 2014-05-30 2016-02-10 德克萨斯仪器股份有限公司 具有减小的栅极电荷的沟槽式mosfet
CN105895516A (zh) * 2016-04-29 2016-08-24 深圳尚阳通科技有限公司 具有屏蔽栅的沟槽栅mosfet的制造方法
CN109216449A (zh) * 2017-06-30 2019-01-15 帅群微电子股份有限公司 沟槽式功率半导体元件及其制造方法
CN116053139A (zh) * 2023-01-09 2023-05-02 深圳吉华微特电子有限公司 一种沟槽型双栅结构半导体器件制造方法

Families Citing this family (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838722B2 (en) 2002-03-22 2005-01-04 Siliconix Incorporated Structures of and methods of fabricating trench-gated MIS devices
WO2006127914A2 (en) 2005-05-26 2006-11-30 Fairchild Semiconductor Corporation Trench-gate field effect transistors and methods of forming the same
WO2006135746A2 (en) * 2005-06-10 2006-12-21 Fairchild Semiconductor Corporation Charge balance field effect transistor
TWI400757B (zh) * 2005-06-29 2013-07-01 Fairchild Semiconductor 形成遮蔽閘極場效應電晶體之方法
US7635637B2 (en) * 2005-07-25 2009-12-22 Fairchild Semiconductor Corporation Semiconductor structures formed on substrates and methods of manufacturing the same
US7807536B2 (en) * 2006-02-10 2010-10-05 Fairchild Semiconductor Corporation Low resistance gate for power MOSFET applications and method of manufacture
US7446374B2 (en) 2006-03-24 2008-11-04 Fairchild Semiconductor Corporation High density trench FET with integrated Schottky diode and method of manufacture
JP2007311574A (ja) * 2006-05-18 2007-11-29 Nec Electronics Corp 半導体装置及びその製造方法
JP4735414B2 (ja) * 2006-05-24 2011-07-27 トヨタ自動車株式会社 絶縁ゲート型半導体装置
US7319256B1 (en) 2006-06-19 2008-01-15 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes being connected together
US7804150B2 (en) * 2006-06-29 2010-09-28 Fairchild Semiconductor Corporation Lateral trench gate FET with direct source-drain current path
DE102006030631B4 (de) * 2006-07-03 2011-01-05 Infineon Technologies Austria Ag Halbleiterbauelementanordnung mit einem Leistungsbauelement und einem Logikbauelement
DE102007020249B4 (de) * 2007-04-30 2015-01-08 Infineon Technologies Austria Ag Halbleiterbauelement, Halbleitersensorstruktur sowie Vorrichtung und Verfahren zum Herstellen eines Halbleiterbauelement
US20080296673A1 (en) * 2007-05-29 2008-12-04 Alpha & Omega Semiconductor, Ltd Double gate manufactured with locos techniques
KR100890256B1 (ko) * 2007-05-29 2009-03-24 삼성전자주식회사 리세스 채널 영역을 갖는 트랜지스터를 채택하는 반도체소자 및 그 제조 방법
JP2009016368A (ja) * 2007-06-29 2009-01-22 Ricoh Co Ltd メモリーデバイス
US8497549B2 (en) * 2007-08-21 2013-07-30 Fairchild Semiconductor Corporation Method and structure for shielded gate trench FET
US8928077B2 (en) 2007-09-21 2015-01-06 Fairchild Semiconductor Corporation Superjunction structures for power devices
US8101500B2 (en) 2007-09-27 2012-01-24 Fairchild Semiconductor Corporation Semiconductor device with (110)-oriented silicon
US20090085107A1 (en) * 2007-09-28 2009-04-02 Force-Mos Technology Corp. Trench MOSFET with thick bottom oxide tub
US8207037B2 (en) * 2007-10-31 2012-06-26 Semiconductor Components Industries, Llc Method for manufacturing a semiconductor component that includes a field plate
US7825465B2 (en) * 2007-12-13 2010-11-02 Fairchild Semiconductor Corporation Structure and method for forming field effect transistor with low resistance channel region
US7932556B2 (en) * 2007-12-14 2011-04-26 Fairchild Semiconductor Corporation Structure and method for forming power devices with high aspect ratio contact openings
US20100013009A1 (en) * 2007-12-14 2010-01-21 James Pan Structure and Method for Forming Trench Gate Transistors with Low Gate Resistance
US8003522B2 (en) 2007-12-19 2011-08-23 Fairchild Semiconductor Corporation Method for forming trenches with wide upper portion and narrow lower portion
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US7807576B2 (en) * 2008-06-20 2010-10-05 Fairchild Semiconductor Corporation Structure and method for forming a thick bottom dielectric (TBD) for trench-gate devices
US7872305B2 (en) * 2008-06-26 2011-01-18 Fairchild Semiconductor Corporation Shielded gate trench FET with an inter-electrode dielectric having a nitride layer therein
US7936009B2 (en) * 2008-07-09 2011-05-03 Fairchild Semiconductor Corporation Shielded gate trench FET with an inter-electrode dielectric having a low-k dielectric therein
US8039877B2 (en) * 2008-09-09 2011-10-18 Fairchild Semiconductor Corporation (110)-oriented p-channel trench MOSFET having high-K gate dielectric
US8278702B2 (en) * 2008-09-16 2012-10-02 Fairchild Semiconductor Corporation High density trench field effect transistor
US8552535B2 (en) 2008-11-14 2013-10-08 Semiconductor Components Industries, Llc Trench shielding structure for semiconductor device and method
US7897462B2 (en) 2008-11-14 2011-03-01 Semiconductor Components Industries, L.L.C. Method of manufacturing semiconductor component with gate and shield electrodes in trenches
US8415739B2 (en) * 2008-11-14 2013-04-09 Semiconductor Components Industries, Llc Semiconductor component and method of manufacture
US8362548B2 (en) * 2008-11-14 2013-01-29 Semiconductor Components Industries, Llc Contact structure for semiconductor device having trench shield electrode and method
US7915672B2 (en) * 2008-11-14 2011-03-29 Semiconductor Components Industries, L.L.C. Semiconductor device having trench shield electrode structure
WO2010065427A2 (en) * 2008-12-01 2010-06-10 Maxpower Semiconductor Inc. Power device structures and methods
US8174067B2 (en) 2008-12-08 2012-05-08 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US8304829B2 (en) 2008-12-08 2012-11-06 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
KR20100065895A (ko) * 2008-12-09 2010-06-17 주식회사 동부하이텍 트렌치형 mosfet 소자의 게이트 및 게이트 형성방법
US8227855B2 (en) 2009-02-09 2012-07-24 Fairchild Semiconductor Corporation Semiconductor devices with stable and controlled avalanche characteristics and methods of fabricating the same
US8148749B2 (en) 2009-02-19 2012-04-03 Fairchild Semiconductor Corporation Trench-shielded semiconductor device
US7989293B2 (en) * 2009-02-24 2011-08-02 Maxpower Semiconductor, Inc. Trench device structure and fabrication
US8049276B2 (en) 2009-06-12 2011-11-01 Fairchild Semiconductor Corporation Reduced process sensitivity of electrode-semiconductor rectifiers
US7952141B2 (en) 2009-07-24 2011-05-31 Fairchild Semiconductor Corporation Shield contacts in a shielded gate MOSFET
TWI380448B (en) * 2009-09-16 2012-12-21 Anpec Electronics Corp Overlapping trench gate semiconductor device and manufacturing method thereof
US8105903B2 (en) * 2009-09-21 2012-01-31 Force Mos Technology Co., Ltd. Method for making a trench MOSFET with shallow trench structures
US8187939B2 (en) 2009-09-23 2012-05-29 Alpha & Omega Semiconductor Incorporated Direct contact in trench with three-mask shield gate process
CN102034822B (zh) * 2009-09-25 2013-03-27 力士科技股份有限公司 一种具有台阶状沟槽栅和改进的源体接触性能的沟槽mosfet及其制造方法
US9425305B2 (en) 2009-10-20 2016-08-23 Vishay-Siliconix Structures of and methods of fabricating split gate MIS devices
US9419129B2 (en) * 2009-10-21 2016-08-16 Vishay-Siliconix Split gate semiconductor device with curved gate oxide profile
US8021947B2 (en) * 2009-12-09 2011-09-20 Semiconductor Components Industries, Llc Method of forming an insulated gate field effect transistor device having a shield electrode structure
US8247296B2 (en) 2009-12-09 2012-08-21 Semiconductor Components Industries, Llc Method of forming an insulated gate field effect transistor device having a shield electrode structure
CN102103998B (zh) * 2009-12-18 2012-12-12 上海华虹Nec电子有限公司 沟槽mos晶体管的结构及其制备方法
US8558305B2 (en) 2009-12-28 2013-10-15 Stmicroelectronics S.R.L. Method for manufacturing a power device being integrated on a semiconductor substrate, in particular having a field plate vertical structure and corresponding device
CN102130055A (zh) * 2010-01-20 2011-07-20 上海华虹Nec电子有限公司 改善沟槽型双层栅mos器件的击穿电压的方法
CN102130006B (zh) * 2010-01-20 2013-12-18 上海华虹Nec电子有限公司 沟槽型双层栅功率mos晶体管的制备方法
US20110198689A1 (en) * 2010-02-17 2011-08-18 Suku Kim Semiconductor devices containing trench mosfets with superjunctions
EP2543072B1 (en) 2010-03-02 2021-10-06 Vishay-Siliconix Structures and methods of fabricating dual gate devices
US8367501B2 (en) 2010-03-24 2013-02-05 Alpha & Omega Semiconductor, Inc. Oxide terminated trench MOSFET with three or four masks
US8394702B2 (en) 2010-03-24 2013-03-12 Alpha And Omega Semiconductor Incorporated Method for making dual gate oxide trench MOSFET with channel stop using three or four masks process
US8779510B2 (en) * 2010-06-01 2014-07-15 Alpha And Omega Semiconductor Incorporated Semiconductor power devices manufactured with self-aligned processes and more reliable electrical contacts
US9252239B2 (en) * 2014-05-31 2016-02-02 Alpha And Omega Semiconductor Incorporated Semiconductor power devices manufactured with self-aligned processes and more reliable electrical contacts
CN102299108B (zh) * 2010-06-22 2014-03-26 茂达电子股份有限公司 重叠沟槽式栅极半导体组件及其制作方法
TWI458022B (zh) * 2010-07-23 2014-10-21 Great Power Semiconductor Corp 低閘極電荷的溝槽式功率半導體製造方法
US20120037983A1 (en) * 2010-08-10 2012-02-16 Force Mos Technology Co., Ltd. Trench mosfet with integrated schottky rectifier in same cell
US8435853B2 (en) * 2010-08-30 2013-05-07 Infineon Technologies Ag Method for forming a semiconductor device, and a semiconductor with an integrated poly-diode
JP5246302B2 (ja) * 2010-09-08 2013-07-24 株式会社デンソー 半導体装置
US8362550B2 (en) * 2011-01-20 2013-01-29 Fairchild Semiconductor Corporation Trench power MOSFET with reduced on-resistance
US8461646B2 (en) * 2011-02-04 2013-06-11 Vishay General Semiconductor Llc Trench MOS barrier schottky (TMBS) having multiple floating gates
US8823090B2 (en) 2011-02-17 2014-09-02 International Business Machines Corporation Field-effect transistor and method of creating same
JP2012204395A (ja) * 2011-03-23 2012-10-22 Toshiba Corp 半導体装置およびその製造方法
JP5729331B2 (ja) 2011-04-12 2015-06-03 株式会社デンソー 半導体装置の製造方法及び半導体装置
US8502302B2 (en) 2011-05-02 2013-08-06 Alpha And Omega Semiconductor Incorporated Integrating Schottky diode into power MOSFET
US8274113B1 (en) * 2011-05-12 2012-09-25 Force Mos Technology Co., Ltd. Trench MOSFET having shielded electrode integrated with trench Schottky rectifier
CN107482054B (zh) 2011-05-18 2021-07-20 威世硅尼克斯公司 半导体器件
US8492903B2 (en) 2011-06-29 2013-07-23 International Business Machines Corporation Through silicon via direct FET signal gating
JP2013062344A (ja) * 2011-09-13 2013-04-04 Toshiba Corp 半導体装置およびその製造方法
US10032878B2 (en) 2011-09-23 2018-07-24 Infineon Technologies Ag Semiconductor device with a semiconductor via and laterally connected electrode
US9324829B2 (en) * 2011-09-23 2016-04-26 Infineon Technologies Ag Method of forming a trench electrode device with wider and narrower regions
CN103022155B (zh) * 2011-09-26 2017-05-17 盛况 一种沟槽mos结构肖特基二极管及其制备方法
CN103094118B (zh) * 2011-11-01 2015-06-03 上海华虹宏力半导体制造有限公司 制作双层栅沟槽mos的工艺方法
CN103094115B (zh) * 2011-11-01 2015-04-08 上海华虹宏力半导体制造有限公司 制作双层栅沟槽mos的工艺方法
KR20130055981A (ko) * 2011-11-21 2013-05-29 에스케이하이닉스 주식회사 반도체 소자의 제조 방법
US9082746B2 (en) * 2012-01-16 2015-07-14 Infineon Technologies Austria Ag Method for forming self-aligned trench contacts of semiconductor components and a semiconductor component
US8697520B2 (en) * 2012-03-02 2014-04-15 Alpha & Omega Semiconductor Incorporationed Method of forming an asymmetric poly gate for optimum termination design in trench power MOSFETS
CN103325682A (zh) * 2012-03-20 2013-09-25 上海华虹Nec电子有限公司 双层多晶栅沟槽型mos晶体管的制备方法
JP5718265B2 (ja) * 2012-03-27 2015-05-13 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
KR20150003775A (ko) * 2012-04-30 2015-01-09 비쉐이-실리코닉스 반도체 장치
US9029215B2 (en) * 2012-05-14 2015-05-12 Semiconductor Components Industries, Llc Method of making an insulated gate semiconductor device having a shield electrode structure
US8642425B2 (en) 2012-05-29 2014-02-04 Semiconductor Components Industries, Llc Method of making an insulated gate semiconductor device and structure
US8969955B2 (en) * 2012-06-01 2015-03-03 Taiwan Semiconductor Manufacturing Company, Ltd. Power MOSFET and methods for forming the same
US8896060B2 (en) * 2012-06-01 2014-11-25 Taiwan Semiconductor Manufacturing Company, Ltd. Trench power MOSFET
US8648412B1 (en) * 2012-06-04 2014-02-11 Semiconductor Components Industries, Llc Trench power field effect transistor device and method
US8802530B2 (en) 2012-06-06 2014-08-12 Alpha And Omega Semiconductor Incorporated MOSFET with improved performance through induced net charge region in thick bottom insulator
TWI470790B (zh) 2012-07-13 2015-01-21 Ubiq Semiconductor Corp 溝渠式閘極金氧半場效電晶體
US8829562B2 (en) * 2012-07-24 2014-09-09 Infineon Technologies Ag Semiconductor device including a dielectric structure in a trench
CN103579320A (zh) * 2012-07-31 2014-02-12 上海华虹Nec电子有限公司 沟槽型栅极及制造方法
US8951867B2 (en) 2012-12-21 2015-02-10 Alpha And Omega Semiconductor Incorporated High density trench-based power MOSFETs with self-aligned active contacts and method for making such devices
US8753935B1 (en) 2012-12-21 2014-06-17 Alpha And Omega Semiconductor Incorporated High frequency switching MOSFETs with low output capacitance using a depletable P-shield
US8809948B1 (en) * 2012-12-21 2014-08-19 Alpha And Omega Semiconductor Incorporated Device structure and methods of making high density MOSFETs for load switch and DC-DC applications
JP6062269B2 (ja) * 2013-01-31 2017-01-18 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US9105494B2 (en) 2013-02-25 2015-08-11 Alpha and Omega Semiconductors, Incorporated Termination trench for power MOSFET applications
US9202906B2 (en) 2013-03-14 2015-12-01 Northrop Grumman Systems Corporation Superlattice crenelated gate field effect transistor
CN104051524B (zh) * 2013-03-15 2017-12-05 英飞凌科技奥地利有限公司 半导体器件
JP5799046B2 (ja) 2013-03-22 2015-10-21 株式会社東芝 半導体装置
CN104078342B (zh) * 2013-03-25 2017-04-12 英飞凌科技股份有限公司 沟槽电极布置
KR20150030799A (ko) 2013-09-12 2015-03-23 매그나칩 반도체 유한회사 반도체 소자 및 그 제조 방법
US20150108568A1 (en) * 2013-10-21 2015-04-23 Vishay-Siliconix Semiconductor structure with high energy dopant implantation
KR102156130B1 (ko) * 2014-04-10 2020-09-15 삼성전자주식회사 반도체 소자 형성 방법
JP2016004847A (ja) * 2014-06-14 2016-01-12 株式会社東芝 半導体装置及びその製造方法
JP2014225693A (ja) * 2014-08-04 2014-12-04 株式会社東芝 半導体装置およびその製造方法
EP3183753A4 (en) 2014-08-19 2018-01-10 Vishay-Siliconix Electronic circuit
US9397213B2 (en) 2014-08-29 2016-07-19 Freescale Semiconductor, Inc. Trench gate FET with self-aligned source contact
US9553184B2 (en) * 2014-08-29 2017-01-24 Nxp Usa, Inc. Edge termination for trench gate FET
US9171949B1 (en) * 2014-09-24 2015-10-27 Alpha And Omega Semiconductor Incorporated Semiconductor device including superjunction structure formed using angled implant process
US9368621B1 (en) * 2014-11-26 2016-06-14 Sinopower Semiconductor, Inc. Power semiconductor device having low on-state resistance
US9680003B2 (en) 2015-03-27 2017-06-13 Nxp Usa, Inc. Trench MOSFET shield poly contact
CN104900704A (zh) * 2015-05-15 2015-09-09 四川广义微电子股份有限公司 一种纵向dmos器件
DE102015118616B3 (de) 2015-10-30 2017-04-13 Infineon Technologies Austria Ag Latchup-fester Transistor
CN105742185B (zh) * 2016-02-23 2019-06-11 深圳尚阳通科技有限公司 屏蔽栅功率器件及其制造方法
JP2017162969A (ja) 2016-03-09 2017-09-14 株式会社東芝 半導体装置
US10854759B2 (en) * 2016-04-01 2020-12-01 Diodes Incorporated Trenched MOS gate controlled rectifier
TWI615889B (zh) * 2016-05-18 2018-02-21 杰力科技股份有限公司 功率金氧半導體場效電晶體的製造方法
CN106057674B (zh) * 2016-05-31 2019-04-09 上海华虹宏力半导体制造有限公司 屏蔽栅沟槽mosfet的制造方法
CN107785426B (zh) * 2016-08-31 2020-01-31 无锡华润上华科技有限公司 一种半导体器件及其制造方法
US9741825B1 (en) * 2016-12-08 2017-08-22 Taiwan Semiconductor Co., Ltd. Method for manufacturing field effect transistor having widened trench
KR102335489B1 (ko) * 2016-12-13 2021-12-03 현대자동차 주식회사 반도체 소자 및 그 제조 방법
JP6967352B2 (ja) * 2017-02-07 2021-11-17 ローム株式会社 半導体装置および半導体装置の製造方法、ならびに、半導体ウエハ構造物
TWI663725B (zh) * 2017-04-26 2019-06-21 國立清華大學 溝槽式閘極功率金氧半場效電晶體之結構
US20190081147A1 (en) * 2017-09-13 2019-03-14 Polar Semiconductor, Llc Mosfet with vertical variation of gate-pillar separation
US10522677B2 (en) 2017-09-26 2019-12-31 Nxp Usa, Inc. Field-effect transistor and method therefor
US10600911B2 (en) 2017-09-26 2020-03-24 Nxp Usa, Inc. Field-effect transistor and method therefor
US10424646B2 (en) 2017-09-26 2019-09-24 Nxp Usa, Inc. Field-effect transistor and method therefor
US11081554B2 (en) * 2017-10-12 2021-08-03 Semiconductor Components Industries, Llc Insulated gate semiconductor device having trench termination structure and method
US10332992B1 (en) * 2018-01-22 2019-06-25 Sanken Electric Co., Ltd. Semiconductor device having improved trench, source and gate electrode structures
US10522620B2 (en) 2018-02-02 2019-12-31 Kabushiki Kaisha Toshiba Semiconductor device having a varying length conductive portion between semiconductor regions
US10600879B2 (en) 2018-03-12 2020-03-24 Nxp Usa, Inc. Transistor trench structure with field plate structures
US10304933B1 (en) * 2018-04-24 2019-05-28 Semiconductor Components Industries, Llc Trench power MOSFET having a trench cavity
TWI750375B (zh) * 2018-05-16 2021-12-21 力智電子股份有限公司 溝槽閘極金氧半場效電晶體及其製造方法
JP7250473B2 (ja) * 2018-10-18 2023-04-03 三菱電機株式会社 半導体装置
US10833174B2 (en) 2018-10-26 2020-11-10 Nxp Usa, Inc. Transistor devices with extended drain regions located in trench sidewalls
US10749023B2 (en) 2018-10-30 2020-08-18 Nxp Usa, Inc. Vertical transistor with extended drain region
US10749028B2 (en) 2018-11-30 2020-08-18 Nxp Usa, Inc. Transistor with gate/field plate structure
EP3690952A1 (en) * 2019-01-29 2020-08-05 Nexperia B.V. Trench gate semiconductor device and method of manufacture
CN113519054B (zh) * 2019-03-01 2024-03-26 艾鲍尔半导体 制造屏蔽栅极沟槽mosfet装置的方法
TWI704606B (zh) * 2019-04-24 2020-09-11 帥群微電子股份有限公司 溝槽式功率半導體元件及其製造方法
US10892320B2 (en) * 2019-04-30 2021-01-12 Vanguard International Semiconductor Corporation Semiconductor devices having stacked trench gate electrodes overlapping a well region
US11217541B2 (en) 2019-05-08 2022-01-04 Vishay-Siliconix, LLC Transistors with electrically active chip seal ring and methods of manufacture
US10930774B2 (en) * 2019-07-16 2021-02-23 Nami MOS CO., LTD. Shielded gate trench MOSFETs with floating trenched gates and channel stop trenched gates in termination
US11218144B2 (en) 2019-09-12 2022-01-04 Vishay-Siliconix, LLC Semiconductor device with multiple independent gates
US11387348B2 (en) 2019-11-22 2022-07-12 Nxp Usa, Inc. Transistor formed with spacer
US11329156B2 (en) 2019-12-16 2022-05-10 Nxp Usa, Inc. Transistor with extended drain region
JP7249269B2 (ja) * 2019-12-27 2023-03-30 株式会社東芝 半導体装置およびその製造方法
US11217675B2 (en) 2020-03-31 2022-01-04 Nxp Usa, Inc. Trench with different transverse cross-sectional widths
US11075110B1 (en) 2020-03-31 2021-07-27 Nxp Usa, Inc. Transistor trench with field plate structure
CN111627820B (zh) * 2020-06-05 2022-07-15 绍兴中芯集成电路制造股份有限公司 屏蔽栅场效应晶体管及其制备方法
CN111739936B (zh) * 2020-08-07 2020-11-27 中芯集成电路制造(绍兴)有限公司 一种半导体器件及其形成方法
CN112309976B (zh) * 2020-10-27 2023-06-20 杭州士兰微电子股份有限公司 双向功率器件的制造方法
TWI773029B (zh) * 2020-12-17 2022-08-01 國立清華大學 具有溝槽式接面蕭基位障二極體的半導體結構
CN115148812A (zh) * 2021-03-30 2022-10-04 无锡华润上华科技有限公司 半导体器件及其制造方法
CN113782446A (zh) * 2021-09-30 2021-12-10 深圳市芯电元科技有限公司 一种屏蔽栅mosfet的制造方法
CN114420564A (zh) * 2022-03-28 2022-04-29 深圳市美浦森半导体有限公司 一种分离栅沟槽mos器件及其制造方法
TWI838929B (zh) * 2022-10-28 2024-04-11 世界先進積體電路股份有限公司 半導體裝置及其製造方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941026A (en) * 1986-12-05 1990-07-10 General Electric Company Semiconductor devices exhibiting minimum on-resistance
US4893160A (en) * 1987-11-13 1990-01-09 Siliconix Incorporated Method for increasing the performance of trenched devices and the resulting structure
US5283201A (en) * 1988-05-17 1994-02-01 Advanced Power Technology, Inc. High density power device fabrication process
US5688725A (en) * 1994-12-30 1997-11-18 Siliconix Incorporated Method of making a trench mosfet with heavily doped delta layer to provide low on-resistance
US5821583A (en) * 1996-03-06 1998-10-13 Siliconix Incorporated Trenched DMOS transistor with lightly doped tub
DE69739206D1 (de) * 1996-07-19 2009-02-26 Siliconix Inc Hochdichte-graben-dmos-transistor mit grabenbodemimplantierung
US5907776A (en) * 1997-07-11 1999-05-25 Magepower Semiconductor Corp. Method of forming a semiconductor structure having reduced threshold voltage and high punch-through tolerance
US5998833A (en) * 1998-10-26 1999-12-07 North Carolina State University Power semiconductor devices having improved high frequency switching and breakdown characteristics
US6621121B2 (en) * 1998-10-26 2003-09-16 Silicon Semiconductor Corporation Vertical MOSFETs having trench-based gate electrodes within deeper trench-based source electrodes
JP2001085685A (ja) * 1999-09-13 2001-03-30 Shindengen Electric Mfg Co Ltd トランジスタ
JP4924781B2 (ja) * 1999-10-13 2012-04-25 株式会社豊田中央研究所 縦型半導体装置
JP2001230414A (ja) 2000-02-16 2001-08-24 Toyota Central Res & Dev Lab Inc 縦型半導体装置およびその製造方法
US6376315B1 (en) * 2000-03-31 2002-04-23 General Semiconductor, Inc. Method of forming a trench DMOS having reduced threshold voltage
EP1170803A3 (en) * 2000-06-08 2002-10-09 Siliconix Incorporated Trench gate MOSFET and method of making the same
JP4528460B2 (ja) * 2000-06-30 2010-08-18 株式会社東芝 半導体素子
US6870220B2 (en) * 2002-08-23 2005-03-22 Fairchild Semiconductor Corporation Method and apparatus for improved MOS gating to reduce miller capacitance and switching losses
US7345342B2 (en) * 2001-01-30 2008-03-18 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US6683346B2 (en) 2001-03-09 2004-01-27 Fairchild Semiconductor Corporation Ultra dense trench-gated power-device with the reduced drain-source feedback capacitance and Miller charge
US6657254B2 (en) * 2001-11-21 2003-12-02 General Semiconductor, Inc. Trench MOSFET device with improved on-resistance
TWI248136B (en) * 2002-03-19 2006-01-21 Infineon Technologies Ag Method for fabricating a transistor arrangement having trench transistor cells having a field electrode
AU2003228073A1 (en) 2002-05-31 2003-12-19 Koninklijke Philips Electronics N.V. Trench-gate semiconductor device,corresponding module and apparatus ,and method of operating the device
CN100437942C (zh) 2002-05-31 2008-11-26 Nxp股份有限公司 沟槽栅半导体器件及制造方法
US6918689B2 (en) 2003-07-17 2005-07-19 Deere & Company Pivoting auxiliary vehicle light assembly
JP2005116649A (ja) * 2003-10-06 2005-04-28 Matsushita Electric Ind Co Ltd 縦型ゲート半導体装置およびその製造方法
EP1708276A4 (en) * 2003-12-22 2008-04-16 Matsushita Electric Ind Co Ltd VERTICAL GATE SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD THEREFOR
JP2005302925A (ja) * 2004-04-09 2005-10-27 Toshiba Corp 半導体装置
US7183610B2 (en) * 2004-04-30 2007-02-27 Siliconix Incorporated Super trench MOSFET including buried source electrode and method of fabricating the same
JP4491638B2 (ja) * 2004-05-20 2010-06-30 日本電気株式会社 バックライト用他励式インバータ回路および駆動方法
US7080591B2 (en) 2004-09-14 2006-07-25 Hamilton Sundstrand Non-symmetrical seal plate and valve housing
WO2006127914A2 (en) * 2005-05-26 2006-11-30 Fairchild Semiconductor Corporation Trench-gate field effect transistors and methods of forming the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105321945A (zh) * 2014-05-30 2016-02-10 德克萨斯仪器股份有限公司 具有减小的栅极电荷的沟槽式mosfet
CN105321945B (zh) * 2014-05-30 2020-12-25 德克萨斯仪器股份有限公司 具有减小的栅极电荷的沟槽式mosfet
CN104638011A (zh) * 2015-01-23 2015-05-20 无锡同方微电子有限公司 一种沟槽mosfet器件及其制作方法
CN104638011B (zh) * 2015-01-23 2018-05-11 无锡同方微电子有限公司 一种沟槽mosfet器件及其制作方法
CN105895516A (zh) * 2016-04-29 2016-08-24 深圳尚阳通科技有限公司 具有屏蔽栅的沟槽栅mosfet的制造方法
CN105895516B (zh) * 2016-04-29 2018-08-31 深圳尚阳通科技有限公司 具有屏蔽栅的沟槽栅mosfet的制造方法
CN109216449A (zh) * 2017-06-30 2019-01-15 帅群微电子股份有限公司 沟槽式功率半导体元件及其制造方法
CN109216449B (zh) * 2017-06-30 2021-07-30 帅群微电子股份有限公司 沟槽式功率半导体元件及其制造方法
CN116053139A (zh) * 2023-01-09 2023-05-02 深圳吉华微特电子有限公司 一种沟槽型双栅结构半导体器件制造方法

Also Published As

Publication number Publication date
US7923776B2 (en) 2011-04-12
CN101542731B (zh) 2012-07-11
WO2006127914A2 (en) 2006-11-30
US8043913B2 (en) 2011-10-25
US8441069B2 (en) 2013-05-14
US8884365B2 (en) 2014-11-11
US20110177662A1 (en) 2011-07-21
US7504303B2 (en) 2009-03-17
WO2006127914A3 (en) 2009-05-22
AT504289A2 (de) 2008-04-15
JP2008546189A (ja) 2008-12-18
CN101542731A (zh) 2009-09-23
US20060273386A1 (en) 2006-12-07
TW200703561A (en) 2007-01-16
DE112006001318T5 (de) 2008-04-17
US20090230465A1 (en) 2009-09-17
KR20080015863A (ko) 2008-02-20
US20130248991A1 (en) 2013-09-26
US20120104490A1 (en) 2012-05-03
TWI395294B (zh) 2013-05-01
KR101254835B1 (ko) 2013-04-15
US20100258862A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
CN101542731B (zh) 沟槽栅场效应晶体管及其制造方法
US10763351B2 (en) Vertical trench DMOSFET having integrated implants forming enhancement diodes in parallel with the body diode
US8227315B2 (en) Inverted-trench grounded-source FET structure using conductive substrates, with highly doped substrates
US9911840B2 (en) Self aligned trench MOSFET with integrated diode
US7767524B2 (en) Method and structure for forming a shielded gate field effect transistor
US20230045954A1 (en) Schottky diode integrated into superjunction power mosfets
US20130075809A1 (en) Semiconductor power device with embedded diodes and resistors using reduced mask processes
CN103762179A (zh) 形成用于沟槽栅器件的厚的底部电介质(tbd)的结构和方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121017