CN102544011A - 反熔丝存储器及电子系统 - Google Patents
反熔丝存储器及电子系统 Download PDFInfo
- Publication number
- CN102544011A CN102544011A CN2011104050985A CN201110405098A CN102544011A CN 102544011 A CN102544011 A CN 102544011A CN 2011104050985 A CN2011104050985 A CN 2011104050985A CN 201110405098 A CN201110405098 A CN 201110405098A CN 102544011 A CN102544011 A CN 102544011A
- Authority
- CN
- China
- Prior art keywords
- active region
- fuse memory
- fuse
- lines
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 95
- 229920005591 polysilicon Polymers 0.000 claims abstract description 95
- 239000004020 conductor Substances 0.000 claims abstract description 47
- 230000002093 peripheral effect Effects 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 15
- 125000006850 spacer group Chemical group 0.000 claims abstract description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 91
- 239000010703 silicon Substances 0.000 claims description 91
- 229910052710 silicon Inorganic materials 0.000 claims description 90
- 229910052751 metal Inorganic materials 0.000 claims description 73
- 239000002184 metal Substances 0.000 claims description 73
- 238000004519 manufacturing process Methods 0.000 claims description 41
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 28
- 239000007943 implant Substances 0.000 claims description 19
- 230000003647 oxidation Effects 0.000 claims description 15
- 238000007254 oxidation reaction Methods 0.000 claims description 15
- 239000000377 silicon dioxide Substances 0.000 claims description 14
- 235000012239 silicon dioxide Nutrition 0.000 claims description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 238000005516 engineering process Methods 0.000 claims description 11
- 238000002513 implantation Methods 0.000 claims description 9
- 229910044991 metal oxide Inorganic materials 0.000 claims description 7
- 150000004706 metal oxides Chemical class 0.000 claims description 7
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 abstract description 65
- 239000002019 doping agent Substances 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 77
- 238000003860 storage Methods 0.000 description 28
- 238000000151 deposition Methods 0.000 description 24
- 230000008021 deposition Effects 0.000 description 18
- 239000000853 adhesive Substances 0.000 description 16
- 230000001070 adhesive effect Effects 0.000 description 16
- 238000012545 processing Methods 0.000 description 11
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 10
- 230000012010 growth Effects 0.000 description 10
- 239000011229 interlayer Substances 0.000 description 10
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 238000002955 isolation Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229910021332 silicide Inorganic materials 0.000 description 6
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 3
- 238000001465 metallisation Methods 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- -1 diode structure Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B20/00—Read-only memory [ROM] devices
- H10B20/20—Programmable ROM [PROM] devices comprising field-effect components
- H10B20/25—One-time programmable ROM [OTPROM] devices, e.g. using electrically-fusible links
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C17/00—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
- G11C17/14—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
- G11C17/16—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/525—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
- H01L23/5252—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising anti-fuses, i.e. connections having their state changed from non-conductive to conductive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Semiconductor Memories (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
Abstract
一种反熔丝存储器及电子系统,反熔丝存储器积成于一集成电路中,包括:多个反熔丝元件,其中至少一个反熔丝元件建造在下列组合的交叉点上:多个主动区线掺有第一种类型的掺杂;多个多晶硅线掺有第二类的掺杂,且垂直于主动区线,其两侧无间隔的形成;主动区线和多晶硅线之间所制造的一层薄氧化膜;该反熔丝存储器的周边元件与该集成电路其他部分的核心逻辑或I/O元件相同,及该反熔丝存储器以第一个电源电压作用于主动区线上而第二个电源电压作用于多晶硅线上,用来击破交叉点上的薄氧化层时,如此配置,反熔丝存储器为可编程的。本发明基于两个相互垂直交叉导体之间的介电质击穿,且在标准CMOS逻辑工艺上以最少的外加步骤完成并适于嵌入式应用。
Description
技术领域
本发明涉及高密度的反熔丝储存元件和存储器,特别涉及,高密度的反熔丝储存元件于两个垂直交叉导体的介电质击穿应用,本应用适于标准互补式金氧半晶体管(CMOS)工艺下,增加最少的掩膜数量,以及减少储存元件的大小和成本。
背景技术
反熔丝是一次性可编程元件(OTP)的一种,此种元件只能编程一次。特别的是,反熔丝编程元件于制造后具有高阻抗状态,而编程后则具有低阻抗状态。相反来说,一个熔丝元件,于制造后具有低阻抗状态,而编程后则具有高阻抗状态。最常用的反熔丝元件是金氧半晶体管(MOS)栅极氧化层击穿,金属-介电质-金属击穿,金属-介电质-硅击穿,或硅-介电质-硅击穿等,二氧化硅(SiO2)是反熔丝元件最常用的击穿介电质。然而,氮氧化硅(SON),氮化硅(SiNx,或Si3N4),氮氧化物(ONO),或其他类型金属氧化物,如氧化铝(Al2O3),氧化镁(MgO),氧化铪(HfO2),或三氧化二铬(Cr2O3),均可以被使用。
金氧半晶体管(MOS)栅极氧化层击穿是应用高电压将栅极氧化层击穿,用以创建一个编程状态。然而,有一种机制被称为软击穿,与期望的硬击穿不同,这使得介电质膜看起来像是被击穿,但此介电质膜在多次使用之后或高温定时烤过之后,可能自行愈合。在实际应用上,此种机制的可靠性也许是被关注的焦点。
介电质击穿已经在制造上得到证实。如图1(a),图1(b),和图1(c)所示是反熔丝介电质击穿例子之一。此种反熔丝是利用金属氧化硅所构建成的一个二极管,也就是由P+与N+所形成的主动区为编程选择器。图1(a)所示的工艺步骤,通过使用第一个局部氧化(LOCOS)来定义一个N+长条带区(N+bar area)。图1(b)所示,进一步在垂直方向于每个N+长条带区定义主动区。如图所示元件图案是由两个LOCOS步骤所形成,而元件的大小是由在X和Y方向,主动区的彼此间离来决定。元件大小一般为4F2,其中F代表特征尺寸的大小。元件的主动区确定后,如图1(c)所示,再植入一个P型掺杂,成长上薄薄的二氧化硅层,然后在每个元件的上方成长上金属层。图1(d)所示,为反熔丝元件的等效电路图,它是由一个电容器串联一个在X和Y交叉点上的二极管所形成的。请参考Noriaki,et.Al,”A New Cell for HighCapacity Mask ROM by the Double LOCOS Techniques,”InternationalElectronics Device Meeting,Dec.,1983,pp.581-584。
反熔丝元件如图1(a),图1(b)和图1(c)在工艺上是非常复杂的,它比标准CMOS工艺还要多三层掩膜和两个LOCOS步骤。LOCOS需要一层局部氧化植入(Field implant)掩膜,和一层氮化物沉积掩膜,以及需要长期的热循环步骤用来成长一层厚局部氧化层。因而,需要有较兼容于标准CMOS工艺的一种反熔丝储存元件,如此可以节省生产成本。
发明内容
本发明涉及到一个反熔丝储存元件和存储器,是基于两个相互垂直交叉导体之间的介电质击穿,而且在标准CMOS逻辑工艺上,可以最少的外加步骤完成制作,并适用于嵌入式应用。
依据本发明的一目的,本发明提供一种反熔丝存储器,该反熔丝存储器积成于一集成电路中且包括:多个反熔丝元件,其中至少一个反熔丝元件建造在下列组合的交叉点上:多个主动区线掺有第一种类型的掺杂;多个多晶硅线掺有第二类的掺杂,且垂直于主动区线,其两侧无间隔的形成;主动区线和多晶硅线之间所制造的一层薄氧化膜;该反熔丝存储器的周边元件与该集成电路其他部分的核心逻辑或I/O元件相同,及该反熔丝存储器以第一个电源电压作用于主动区线上而第二个电源电压作用于多晶硅线上,用来击破交叉点上的薄氧化层时,如此配置,反熔丝存储器为可编程的。
依据本发明的一目的,本发明提供一种电子系统,包括:在多个电池中,至少有一个电池提供的电压在正常条件下为1.0至2.0V;与积成于一集成电路中的一反熔丝存储器,该反熔丝存储器被操作连接到电池且包含多个反熔丝元件,在下列条件中,至少有一个反熔丝元件建构在交叉点上:多个主动区线掺有第一种类型的掺杂;多个多晶硅线掺有第二种类型的掺杂,且垂直于主动区线,其两侧无间隔的形成;主动区和多晶硅线之间所制造的一层薄氧化膜;反熔丝存储器的周边元件与该集成电路其他部分的逻辑核心或I/O元件相同;及当第一个电压作用于主动区线而第二个电压作用于多晶硅线上,用来击破交叉点的薄膜氧化层时,如此配置,反熔丝存储器为可编程的。
依据本发明的一目的,本发明提供一种反熔丝存储器,该反熔丝存储器用于一集成电路且包括:多个反熔丝元件,在下列条件中,至少一个反熔丝元件被建造在交叉点上:多条导体线;多条金属线,且垂直于导体线;制造于金属与导体线之间的隔离氧化层;在金属与导体线交叉点上所开凿的多个接点;一硅二极管和一层薄氧化层,该氧化层是在放置金属线之前,制作于至少一个接点之内;反熔丝存储器的周边元件与在该集成电路的其他部分逻辑核心或I/O元件相同;及当第一个电压作用于金属线而第二个电压作用于导体线上,用来击破薄膜氧化层时,如此配置,反熔丝存储器为可编程的。
依据本发明的一目的,本发明提供一种电子系统,包括:在多个电池中,至少有一个电池提供的电压在正常条件下为1.0至2.0V;反熔丝存储器集成于集成电路中,该反熔丝存储器被连接到电池上,且包括多个反熔丝元件,在下列条件中,至少有一个反熔丝元件建构在交叉点上:多个掺有第一种类型掺杂的导体线;多个金属线,且垂直于多晶硅线;一层在金属和导体线之间制造的间隔氧化层;在金属与导体线交叉点上所开凿的多个接点;一硅二极管和一层薄氧化层,该氧化层是在放置金属线之前,制作于至少一个接点之内;反熔丝存储器的周边元件与在该集成电路的其他部分逻辑核心或I/O元件相同;及当第一个电压作用于金属线而第二个电压作用于导体上,用以击破在交叉点的薄氧化层时,如此配置,反熔丝存储器为可编程的。
本发明的装置的一般结构为利用介电质膜(dielectric film)击破,而以一个二极管(diode)当编程选择器,此装置位于两个相互垂直交叉导体所形成的储存元件之中。有些实例也在本发明的范畴之中和精神内涵之内。介电质膜一般可以由二氧化硅(SiO2),氮化硅(SiNx,或Si3N4),氮氧化硅(SON),或氧化氮氧化物(ONO)。或者,其他类型金属氧化物,如氧化铝(Al2O3),氧化铪(HfO2),氧化镁(MgO)或氧化锆(ZrO2),都可以被使用。这些介电质膜也许会更昂贵,更难制造,并有较高的击穿电压。而二极管可以是硅片制成的介面二极管(junction diode),由多晶硅所构成的二极管,由硅片和多晶硅所构成的二极管,或是p-i-n型,由一原生层(intrinsic layer)夹杂于硅或多晶硅所构成的P型和N型之间的二极管。原生层意味着不是故意做P或N掺杂,由于粒子向外扩散或污染的关系,它可以是稍微N型或P型。介电质膜的形成可在二极管的N或P端点形成前,形成后,或是形成之时完成。两个相互垂直的导体在不同的实施方案中,可以两者都是主动区,主动区和多晶硅,多晶硅和金属,或是主动区和金属的组合。而交叉点的形成可以是两个相互垂直导体的交界点,或是两个相互垂直导体交界点内的接点。
本发明的另一个关键概念是可以使用一般反熔丝存储器的周边所使用的集成电路核心逻辑或I/O元件。在过去,反熔丝的编程电压非常高,大约需12V或18V,这需要在周边集成电路使用特高压的元件,来设计一个反熔丝存储器。因此,需要更多的掩膜层和更多的工艺步骤,这使得制作成本非常高。本项发明的一个实例,是避免使用高压元件,因而降低介电质膜的击穿电压,这使得集成电路的核心或输入输出元件均可被使用。另一种实例,是于两个垂直导体之中使用不同的电压组合方案,使得被选到要编程的储存元件操作于高电压范围,而未被选中的储存元件则操作于低电压范围之内。
虽然有许多不同的,而且,相当于本发明的实例,反熔丝储存元件的大小仍然是4F2,其中F代表特征尺寸的大小,是反熔丝元件导体的宽度或是间距。明显的,对于本领域技术人员,本发明的各种修改和变化,将都是在本发明之中,并未偏离本发明的精神或是本发明的范围之外。因此,本发明的意图为,若涉及本发明的附加要求和其等值的范围内,对本发明的修改和变化,将仍视同于本发明之内。
本发明可以实现在许多方面,包括一种方法,系统,设备,或仪器(包括图形使用界面和计算机可读媒介)。以下讨论几种发明的实例。
作为一种反熔丝的存储器,例如,其中一种实例为,一个储存单位包括多个反熔丝储存元件。至少一个反熔丝储存元件可以包括一个介电质膜,另一端接上第一个电压电源线,以及一个至少包括第一种硅和第二种硅的二极管。第一种硅能够掺第一种掺杂,而第二种硅能够掺第二种掺杂。一个原生层可以插入于第一种硅和第二种硅之间。第一种硅可以提供为一个二极管的第一端点,而第二种硅可以提供为此二极管的第二端点。第一种硅,可以接上介电质膜,而第二种硅可以接上第二条电压电源线。第一种硅和第二种硅可以制造在两个相互垂直的导线的交叉点上。导体线可为任意组合的金属,主动区,埋层或多晶硅。如果金属是导体线之一,而其他的是一个主动区,埋层或多晶硅,二极管需要明确的建在主动区,埋层或多晶硅上并有第一和第二类型的硅。如果两个相互垂直的导体线是埋层和多晶硅,一旦氧化膜被击穿二极管可以自然产生。当电压施加于第一条和第二条电源线上时,介电质膜能够配置变为可编程,因其电阻值随之改变,从而改变不同的逻辑状态。另外,在其他的实例上,介电质膜可以接到第二种硅上,或接在第一种硅和第二种硅之间。
作为一种电子系统,例如,其中一种实例为,至少包括一个处理器(processor),而反熔丝存储器连接到此处理器上。反熔丝存储器至少可以包括多个反熔丝储存元件,作为储存数据之用。每个反熔丝储存元件,至少包括一个介电质膜,接到第一条电压电源线,和一个至少包括第一种硅和第二种硅的二极管。第一种硅能够掺第一种掺杂,而第二种硅能够掺第二种掺杂。一个原生层可以插入于第一种硅和第二种硅之间。第一种硅可以提供为一个二极管的第一端点,而第二种硅可以提供为此二极管的第二端点。第一种硅,可以接上介电质膜,而第二种硅可以接在第二条电压电源线上。第一种硅和第二种硅可以制造在两个相互垂直的导线的交叉点上。导体线可为任意组合的金属,主动区,埋层或多晶硅。如果金属是导体线之一,而其他的是一个主动区,埋层或多晶硅,二极管需要明确的建在主动区,埋层或多晶硅上并有第一和第二类型的硅。如果两个相互垂直的导体线是埋层和多晶硅,一旦氧化膜被击穿二极管可以自然产生。当电压施加于第一条和第二条电源线上时,介电质膜能够配置变为可编程,因其电阻值随之改变,从而改变不同的逻辑状态。另外,在其他的实例上,介电质膜可以接到第二种硅上,或接在第一种硅和第二种硅之间。
作为提供一个反熔丝存储器的一个方法,例如,其中一种实例为,至少提供多个反熔丝储存元件,并施加电压于第一条和第二条电压线上,用以编程至少一个反熔丝储存元件的逻辑状态。至少一个反熔丝储存元件可以至少包括(i)介电质膜接于第一条电压电源线上,及(ii)二极管至少包括第一种硅和第二种硅。第一种硅能够掺第一种掺杂,而第二种硅能够掺第二种掺杂。一个原生层可以插入于第一种硅和第二种硅之间。第一种硅可以提供为一个二极管的第一端点,而第二种硅可以提供为此二极管的第二端点。第一种硅,可以接上介电质膜,而第二种硅可以接上第二条电压电源线。第一种硅和第二种硅可以制造在两个相互垂直的导线的交叉点上。导体线可为任意组合的金属,主动区,埋层或多晶硅。如果金属是导体线之一,而其他的是一个主动区,埋层或多晶硅,二极管需要明确的建在主动区,埋层或多晶硅上并有第一和第二类型的硅。如果两个相互垂直的导体线是埋层和多晶硅,一旦氧化膜被击穿二极管可以自然产生。当电压施加于第一条和第二条电源线上时,介电质膜能够配置变为可编程,因其电阻值随之改变,从而改变不同的逻辑状态。另外,在其他的实例上,介电质膜可以接到第二种硅上,或接在第一种硅和第二种硅之间。
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。
附图说明
图1(a)显示在一个现有技术反熔丝介电质击穿的第一个局部氧化(LOCOS)步骤;
图1(b)显示在一个现有技术反熔丝介电质击穿的第二个LOCOS步骤;
图1(c)显示现有技术金属氧化硅反熔丝二极管为编程选择器的一个截面图;
图1(d)所示为现有技术反熔丝元件的等效电路图;
图2(a)所示为,根据一个实例,定义在X和Y方向主动区的介电质击穿反熔丝元件的一个俯视图;
图2(b)显示定义在Y方向主动区的反熔丝介电质击穿元件的一个截面图;
图2(c)显示定义在X方向主动区的反熔丝介电质击穿元件的一个截面图;
图3(a)所示为定义在主动区的反熔丝介电质击穿元件的制造步骤(a)截面图(参见图2(a)-图2(c)),制造深埋N+层;
图3(b)所示为定义在主动区的反熔丝介电质击穿元件的制造步骤(b)截面图(参见图2(a)-图2(c)),植入场植入层(field implant);
图3(c)所示为定义在主动区的反熔丝介电质击穿元件的制造步骤(c)截面图(参见图2(a)-图2(c)),制造主动区隔离;
图3(d)所示为定义在主动区的反熔丝介电质击穿元件的制造步骤(d)截面图(参见图2(a)-图2(c)),植入一个为二极管P端的P+植入层;
图3(e)所示为定义在主动区的反熔丝介电质击穿元件的制造步骤(e)截面图(参见图2(a)-图2(c)),成长一个层间绝缘层和蚀刻接点;
图3(f)所示为定义在主动区的反熔丝介电质击穿元件的制造步骤(f)截面图(参见图2(a)-图2(c)),沉积一个为击穿用的薄绝缘层;
图3(g)所示为定义在主动区的反熔丝介电质击穿元件的制造步骤(g)截面图(参见图2(a)-图2(c)),沉积一个粘合剂层;
图3(h)所示为定义在主动区的反熔丝介电质击穿元件的制造步骤(h)截面图(参见图2(a)-图2(c)),沉积一个金属沉积层,作图案,和蚀刻金属层;
图4所示为,根据一个实例,定义在金属和多晶硅的另一种反熔丝介电质击穿元件的一个俯视图;
图5(a)所示为定义在金属和多晶硅的反熔丝介电质击穿元件的制造步骤(a)截面图(参见图4),沉积和硅化多晶硅层;
图5(b)所示为定义在金属和多晶硅的反熔丝介电质击穿元件的制造步骤(b)截面图(参见图4),成长一个层间绝缘层和蚀刻接点;
图5(c)所示为定义在金属和多晶硅的反熔丝介电质击穿元件的制造步骤(c)截面图(参见图4),沉积一层粘合剂层;
图5(d)所示为定义在金属和多晶硅的反熔丝介电质击穿元件的制造步骤(d)截面图(参见图4),在接点内成长一个p-i-n硅二极管;
图5(e):所示为定义在金属和多晶硅的反熔丝介电质击穿元件的制造步骤(e)截面图(参见图4),在硅二极管顶部成长一层氧化膜;
图5(f):所示为定义在金属和多晶硅的反熔丝介电质击穿元件的制造步骤(f)截面图(参见图4),再沉积一层粘合剂层;
图5(g):所示为定义在金属和多晶硅的反熔丝介电质击穿元件的制造步骤(g)截面图(参见图4),沉积一个金属沉积层,作图案,和蚀刻金属层;
图6所示为定义在金属和主动区的反熔丝元件里,使用闲置(redundant)的多晶硅用以增高接点高度截面图;
图7所示为,根据一个实例,定义在主动区和多晶硅的反熔丝介电质击穿元件的一个俯视图;
图8(a)所示为定义在主动区和多晶硅的反熔丝介电质击穿元件的制造步骤(a)截面图(参见图7),建造主动区的隔离岛;
图8(b)所示为定义在主动区和多晶硅的反熔丝介电质击穿元件的制造步骤(b)截面图(参见图7),制造深埋N+植入层;
图8(c)截面图所示为定义在主动区和多晶硅的反熔丝介电质击穿元件的制造步骤(d)截面图(参见图7),成长原生层和P型晶硅;
图8(d)所示为定义在主动区和多晶硅的反熔丝介电质击穿元件的制造步骤(e)截面图(参见图7),成长氧化层;
图8(e)所示为定义在主动区和多晶硅的反熔丝介电质击穿元件的制造步骤(e)截面图(参见图7),沉积和蚀刻多晶硅;
图9所示为一个定义在主动区和金属层之间反熔丝介电质击穿元件的俯视图,元件中,有一块多晶硅片于每个交叉点上;
图10(a)所示为定义在主动区和金属层的反熔丝介电质击穿元件的制造步骤(a)截面图(参见图9),建造深埋N+植入层和沉积栅极氧化层;
图10(b)所示为定义在主动区和金属层的反熔丝介电质击穿元件的制造步骤(b)截面图(参见图9),去掉栅极氧化层和沉积P型多晶硅;
图10(c)所示为定义在主动区和金属层的反熔丝介电质击穿元件的制造步骤(c)截面图(参见图9),沉积一个层间绝缘层,凿开接点和沉积一层粘合剂层;
图10(d)所示为定义在主动区和金属层的反熔丝介电质击穿元件的制造步骤(d)截面图(参见图9),成长晶或沉积一层氧化膜;
图10(e)所示为定义在主动区和金属层的反熔丝介电质击穿元件的制造步骤(e)截面图(参见图9),沉积另一层粘合剂层;
图10(f)所示为定义在主动区和金属层的反熔丝介电质击穿元件的制造步骤(f)截面图(参见图9),沉积一个金属沉积层,作图案,和蚀刻一个金属层;
图11(a)所示为,根据一个实例示意图,显示出一个高值电压和一个核心逻辑或输入/输出电压,作用于选中和未选中元件的垂直导体之间;
图11(b)所示为,根据一个实例示意图,显示出正电压和负电压,作用于选中和未选中元件的垂直导体之间;
图11(c)所示为,根据一个实例示意图,显示出高值电压和半值编程电压,作用于选中和未选中元件的垂直导体之间。
具体实施方式
本发明是关于一个反熔丝介电质击穿元件,它以一个定义在两个垂直方向交叉点上的二极管当编程选择器。本发明将披露有关介电质材料,二极管结构,导体类型,工艺步骤,所采用装置,和选择元件方式,各种实例都在本发明的范围之内。
图2(a)所示为,根据一个实例,显示出反熔丝介电质击穿元件10的一个俯视图。每个反熔丝元件15是定义在X和Y方向的主动区上。一个深埋N+植入线11阵列担任为字元线(wordline),它被建立在X方向且在12主动区形成之前运行。主动区在X和Y方向的隔离,可以使用LOCOS或浅沟槽隔离(STI)工艺来完成。在沉积一个层间绝缘层后,每个主动区可以蚀刻出一个接点13。然后,N型和P型掺杂随后植入到每个主动区的接点作为二极管的N和P的终端点。一个介电薄膜,如二氧化硅(SiO2),氮化硅(SiNx,或Si3N4),氮氧化硅(SON),或氧化氮氧化硅(ONO),沉积或植入于每个接点用以为编程的击破。一层金属层建立在最上方作为一条位元线(bitline)。
图2(b)所示为图2(a)反熔丝介电质击穿元件沿Y方向的横截面图30。深埋N+线34位于LOCOS或STI32之间,为连接沿X方向的主动区,并作为每个二极管的N端点用。连接主动区的深埋N+线应比隔离层更为深。然后,一个层间绝缘层31(通常是二氧化硅)被成长出来用以隔离上面导体层和主动区,然后蚀刻出接点。每个接点植入同于P型金氧半晶体管(PMOS)元件的源极和漏极所使用的P+掺杂植入33,作为二极管的P端点使用。图2(c)显示出如图2(a)和图2(b)相同的反熔丝介电质击穿元件沿X方向的截面图20。深埋N+线24位于LOCOS或STI 22之间,为连接沿X方向的主动区,并作为每个二极管的N端点用。然后,一个层间绝缘层21(通常是二氧化硅)被成长出来用以隔离上面导体层和主动区,然后蚀刻出接点。每个接点植入同于PMOS元件的源极和漏极所使用的P+掺杂植入23,作为二极管的P端点使用。深埋N+线可以一个或两个步骤制作完成。第一步,植入一个浓度深的N+线掺杂入晶硅中,将X方向的元件连接起来,和然后第二步是,于每个元件中植入一个较浅N型掺杂,并连接到此深埋N+线作为一个二极管的N端点使用。
图3(a)-图3(h)显示有关反熔丝介电质击穿元件如图2(a)-图2(c)所示部分工艺步骤的截面图40。此截面为沿Y方向的截面图。图3(a)所示为深埋N+线41植入并退火后的截面图。互连的N+线41,连接着X方向的元件,作为每个元件中二极管的N端点,是作为字元线使用。在主动区来说,N+线应比隔离层更为深和在底部附近较浓的掺杂效果也较好。理想的N+线,是类似一般CMOS工艺下的N型井(N well)的一种浅N型井。图3(b)所示,为在LOCOS内成长热氧化物或STI内蚀刻浅壕沟之前的局部氧化植入42步骤。如图3(c)所示,无论是使用局部氧化或浅沟槽隔离步骤,为主动区隔离后43的情形。另外,图3(a)的N+线41,在局部氧化或浅沟槽隔离43形成于图3(c)之后,可以植入于晶硅。图3(d)显示,为一个P+植入44之后的情形,此P+植入跟一个PMOS的源植入或漏植入是相同的,它被视为是每个元件中二极管的P端点。图3(e)所示,为沉积层间绝缘层45和蚀刻接点45A之后的情形。如图3(f)显示,沉积一个薄氧化膜,以为编程击破之后的情形。一般来说,二氧化硅的厚度在时,击穿电压为6-15V。图3(g)所示,为沉积一个粘接层之后的情形,其提供使跟上面的金属有更好的附着性。粘接层可以是的氮化锡膜或其他材料。图3(h)所示,为沉积一个金属层,作图案,然后作蚀刻,之后的情形。可能需要多加两层掩膜:一层用来定义和建立N+线和另一层用来成长击穿用的介电质膜。
图4所示为,根据一个实例,被金属线52和多晶硅线51所定义的反熔丝介电质击穿元件50,的俯视图。在金属接点53之内,多晶硅51和金属线52的交叉点上建立一个反熔丝元件55。元件大小是由X方向的金属间距和Y方向的多晶硅间距决定,所以元件大小是4F2。
图5(a)-图5(g)显示由金属和多晶硅所定义的反熔丝介电质击穿元件,如图4所示,部分工艺步骤的截面图60。此截面为沿Y方向的截面图。图5(a)所示,为多晶硅线61已建立和在上面植入硅化物层62后的截面图。多晶硅线连接在X方向的元件,作为字元线。上面的硅化物层降低多晶硅线的电阻。图5(b)所示,为沉积一个层间绝缘层64和蚀刻接点64A后的截面图。图5(c)所示,为在接点内沉积一层粘合剂层65。图5(d)显示,为硅二极管66,在掺入N型,原生型,P型掺杂后的截面图。硅二极管可以采用化学气相沉积(CVD)方式,在原生型内改变掺杂(即从N型,原生型,P型掺杂的CVD加工过程中改变掺杂)制造。二极管组成的一个实例,可以是原生型夹杂于P和N型硅中间,即所谓的p-i-n二极管。原生层是指没加入任何掺杂物和由于向外扩散或污染而为略N或P型。原生层的厚度决定了二极管的击穿电压,它应足够高,才能防止过早编程。另一个控制二极管击穿电压的实例,为在高浓度掺杂的P和N二极管端点之间使用较少掺杂的N或P型,而不是使用原生层。二极管的厚度大约是以符合金属接触点的高度。此外,p-i-n二极管的制造,可先沉积晶硅,然后在不同的步骤植入N或P型完成制造。图5(e)所示,为沉积一层薄薄的氧化物67作为一个反熔丝薄膜的截面图。介电质膜可以由二氧化硅(SiO2),氮化硅(SiNx,或Si3N4),氮氧化硅(SON),或氧化-氮氧化物(ONO)。或者其他类型的金属氧化物,如氧化铝(Al2O3,氧化铪(HfO2),或氧化锆(ZrO2),都可以被使用。如果使用二氧化硅,厚度在一般击穿电压为6-15V。被击穿的氧化物可以在一个二极管的P和N端点形成前,形成后,或形成之间制造。图5(f)所示,为沉积另一粘接层68后的截面图。图5(g)所示,为沉积一层金属层沉积69,作图案,和蚀刻后的截面图。行走于Y方向的金属是作为位元线使用。在此实例,需要额外一层掩膜来打接点,建立p-i-n或P/N硅二极管,和成长氧化层。粘接层的作用为让金属和在接点内的不同的材料之间有更好的附着力,粘接层可有一层,二层,或不须粘接层。
如图4所示的实例中,图5(a)-图5(g)是关于金属和多晶硅线所定义的反熔丝元件。在p-i-n二极管外部或二极管的P和N端点之间有一些实施方案可用于购建氧化膜。所需的处理制造步骤是大约相同的。但p-i-n二极管的击穿机制是硅晶和金属之间的氧化层击穿,而P硅晶-氧化物-N硅晶夹层结构的击穿机制是在P和N型氧化层击穿。硅晶和金属之间的击穿可能会比P和N型硅晶之间的击穿机制更为可靠。因此,p-i-n二极管比P型硅晶-氧化物-N型硅晶夹层结构是更为适合的一个结构。
多晶硅线可以很容易地取代为主动区线,而在另一实例上,其他垂直导体线是金属,它可以用为在外部有氧化膜的p-i-n二极管或为一个P型硅晶-氧化物-N型硅晶夹层结构所形成的反熔丝储存元件。图4和图5(a)-图5(g)所示,多晶硅线可以很容易取代为主动区线。使用多晶硅线,而不是主动区线,当成字元线是允许字元线可以偏压在负电压上,因为字元线由氧化层隔离出来,而P型/N型介面无法跟主动区隔开。
然而,在另一实例中,定义在金属和主动区线的反熔丝储存元件允许可以调整接点的高度,而这可于元件中在主动区与主动区之间放置闲置多晶硅来完成。图6显示了一个由金属和主动区线所定义的反熔丝储存元件的截面图80。主动区线81是成长在硅化物82的下方。闲置多晶硅线83和上方的硅化物84组合被放置在主动区线与主动区线之间,但在场氧化层的上方。由于闲置多晶硅层的厚度增加,也就是在硅表面上方的层间绝缘层85高度被多晶硅的厚度所提高,或约因此,接点的高度也跟着提高。这使得接点内部的p-i-n二极管或P型-氧化物-N型夹层结构更为深,从而提供更多可以改进的参数。
图7所示的实例中,是定义在主动区线92和多晶硅线91之间的反熔丝介电质击穿储存元件90的俯视图。在多晶硅91和主动区92的交接处建购反熔丝介电质击穿储存元件95。在每边的多晶硅91线无间隔(spacer)的形成,这使存储单元的尺寸可以更小。Spacer是一种CMOS元件的技术,它于下方形成一个轻源漏极植入(LDD)区域,用以纾缓短沟道效应(short channel effect)。元件大小是由在X方向的主动区间距和在Y方向的多晶硅间距决定的,因此元件大小是4F2。在构建氧化膜之前,主动区线92可先掺杂N型掺杂物而多晶硅91可掺杂P型掺杂物,以在氧化层被击穿后自然形成一个P/N二极管。其主动区线92可在掺杂N型掺杂物后再掺杂P型掺杂物来特别形成一个P/N二极管,或在掺杂N型掺杂物后再掺杂加入原生层以使氧化层被击穿后自然形成一个P-i-N二极管。原生层是指没加入任何掺杂物和由于向外扩散或污染而为略N或P型。
图8(a)-图8(e)所示,为定义在主动区和多晶硅线之间,如图7,反熔丝介电质击穿储存元件工艺步骤的一部分的截面图100。在此实例上,在主动区和多晶硅之间的栅极氧化层作为反熔丝储存元件的击破。截面图为沿X的方向。图8(a)显示了主动区间的隔离层(isolation),如局部氧化或浅沟槽隔离104,的截面图,本层是建立在标准CMOS工艺P型本体101之上的。然后,晶硅表面植入N+层106来产生深埋N+线作为如图8(b)的位元线之用。深埋N+线往往是于底部掺较浓的N+掺杂,而在表面附近掺较轻N+的掺杂,最上方则植入硅化物(silicide)用为减少位元线的电阻。通常也使用金属延固定的间隔跳接(strap)方式,以进一步减少位元线的电阻。图8(c)显示了一个P型植入107之后的一个截面图。P型掺杂和深埋N+层构成了一个P/N介面二极管。图8(d)所示为沉积或成长一层薄薄的氧化物108成为介电质层的截面图。然后,沉积多晶硅109,作图案,植入P+型掺杂,再蚀刻来作为储存元件的位元线之用,它运行在X方向,如图8(e)所示即是。多晶硅109可以硅化,用以减少电阻,且在每边无间隔(spacer)形成,致使储存单元可以变得更小。其余的工艺步骤则和标准CMOS工艺相同。如将适当的电压施加于深埋N+线和多晶硅线之间,使得多晶硅和深埋N+层的交叉点成为一个二极管的P和N端点,此时栅极氧化层可当为击破使用。需要多一层掩膜来建构深埋N+线和成长出深浓N+型植入。一种作法是减低P型掺杂剂的剂量。如果没有明确的P型植入来建立一个P/N二极管,图8(c),一个隐含的二极管,从P型多晶硅和N型深埋线路,在氧化层击穿之后也许仍然可能被创建。另一种实例,是在P型掺杂未形成之前,在硅表面上制造一层原生层来创建一个p-i-n二极管。原生意味着没有故意掺N或P型掺杂,由于向外扩散或污染关系,原生层可以稍微为N或P型。然而,另一种实例,是在多晶硅沉积和氧化物制成之前,在硅表面上没有任何P型掺杂时,先制成一层原生层。在图8(d)中,成长或沉积氧化物108的步骤也许可以省略。此步骤可以跟标准CMOS工艺的栅极氧化层的工艺一起制作。这是建立在交叉点上各种隐式或显式的P/N介面二极管的制作方式。
图9所示为,根据一个实例,定义在主动线111和金属线114上,而且多晶硅片112成长在交叉点上的一个反熔丝介电质击穿元件110的俯视图。在金属114和主动区111的交界处建立一个介电质击穿元件115,其中多晶硅和主动区作为一个二极管的P和N型的端点。元件大小是由X方向的主动区间距和Y方向的多晶硅间距决定,所以元件大小是4F2。
图10(a)-图10(f)所示,为定义在主动区和金属之间,而且在每个接触点上有一片多晶硅片,如图9,的反熔丝介电质击穿储存元件工艺步骤的一部分,的截面图120。在此实例上,在栅极氧化层去除之后一个由多晶硅补丁和主动线所建构的二极管就形成。然后一个氧化物薄膜生长出或沉积于接点内。这是沿Y方向的截面图。图10(a)所示为N型主动线121内置和栅极氧化层122成长在硅基体上方的截面图。主动线连接着在X方向的元件及作为位元线之用。图10(b)所示,为栅极氧化层去除后和多晶硅片123内置于主动区的截面图。多晶硅是P型的而主动区是N型的,以致于一个二极管形成,而为反熔丝元件的编程选择器之用。图10(c)所示为沉积一个层间绝缘层124,蚀刻接点124A,和沉积薄薄的粘合剂层125之后的截面图。图10(d)所示为氧化膜126制造后的截面图。氧化膜可以由二氧化硅(SiO2),氮化硅(Si3N4或SiNx),氮氧化硅(SON),氧化-氮氧化物(ONO)。或者其他类型的金属氧化物,都可以由氧化长出或是沉积出来。氧化层的厚度决定了反熔丝元件进行编程的击穿电压。如果使用二氧化硅厚度一般为击穿电压约为6-15V。图10(e)显示沉积另一层的粘接层128。图10(f)显示,为沉积金属层129,作图案,和蚀刻之后的情形。运行在Y方向的金属是作为一个位元线使用。在此实例,需要两层额外的掩膜来去除栅极氧化层和开凿接点用以建构二极管和氧化膜。如果工艺中提供一个以上的栅极氧化元件,栅极氧化层掩膜可以跟CMOS工艺共享。粘接层的作用是让金属和在接点内的不同的材料之间有更好的附着力,粘接层可有一层,二层,或没有粘接层。
虽然反熔丝可以在标准CMOS工艺的下多几层掩膜制造,如果考虑周边电路的高电压元件,因为元件的编程电压往往是非常高,约为10-15V,所以可能需要更多层掩膜。作为一个经验法则,SiO2薄膜的击穿电压是每为2V,例如,SiO2薄膜的击穿电压是6V左右。降低介电质膜的厚度可以降低编程电压,这使得周边电路不需要使用高压元件。新型半选择的方式,也有助于减轻使用高电压元件的需求,以至于在其他部分的核心逻辑或I/O集成电路能够使用于嵌入式应用中。
图11(a)显示了4x5的反熔丝阵列200,以纾缓在周边的高压电源要求的一个实例。假设周边电路和其余部分集成电路的电压是5V,而反熔丝编程电压为8V,两个垂直导体的电压摆幅分别为0-5V,5-8V。选定的元件202在水平线为0V和在垂直线为8V,以致于交叉点上被选到元件的编程电压为8V。然而,对于那些未被选到元件,电压则为5V,或3V,因此,不可能有编程发生。8V编程电压对周边装置来说,如维持在最大的编程时间内,是足够低的。通过这样做,不仅不需要高电压元件,而且内部电压发生器也不需要。这种元件的选择方案不需要任何负电压,若需负电压,可能需要额外的掩膜,因为需要从P本体中隔离N型金氧半晶体管(NMOS)出来。
图11(b)显示了另一种实例,一个4x5的反熔丝阵列300,用以纾缓在周边高压电源的要求。假设周边电路和其余部分集成电路的电压是4V,而反熔丝编程电压为8V,两个垂直导体的电压摆幅分别是0-4V,4-0V。选定的元件302在水平线为-4V和在垂直线为4V,以致于交叉点上被选到元件的编程电压为8V。然而,对于那些未被选到的元件,电压则为-4V,或4V,因此,编程不可能发生。如果8V的编程电压对周边装置难以维持或过高,这种正面和负面的供应电压也许是一个理想的结合。通过这样做,不仅不需要高电压元件,而且内部电压发生器也不需要。这种元件的选择方案需要负电压,可能需要额外的掩膜,让N型金属氧化电晶体(NMOS)从P本体中隔离出来。
图11(c)所示为行和列的电压摆幅在0至4V的另一半选择方式400。选定的元件402,应用于列的电压是8V而应用于行的电压为0V,以至于选定的元件402的编程电压是8V。另一方面,未被选到的元件401,行和列均为4V,或行或列一个为4V而另一个为0V,以至于产生的电压降为4V或0V,以防止元件被编程。在这个方案中,可能需要一个电压发生器用以产生编程电压的一半。
本发明的实例中有许多变化。例如,通过以上的讨论,本体可以是N型而不是P型。N型或P型掺杂可以互换,以至于p-i-n二极管和n-i-p二极管被认为是相同的。p-氧化物-n和n-氧化物-p夹层结构也是类似。一些工艺步骤,如粘合剂层,可以省略。制造氧化膜的步骤可以反过来和p-i-n或P/N二极管可能互换。击穿介电质膜可以在P型和N型二极管制作之前,之后或之间制作。多晶硅和主动区在一个旧的工艺中可能不被硅化。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
Claims (19)
1.一种反熔丝存储器,该反熔丝存储器积成于一集成电路中,其特征在于,包括:
多个反熔丝元件,其中至少一个反熔丝元件建造在下列组合的交叉点上:
多个主动区线掺有第一种类型的掺杂;
多个多晶硅线掺有第二类的掺杂,且垂直于主动区线,其两侧无间隔的形成;
主动区线和多晶硅线之间所制造的一层薄氧化膜;
该反熔丝存储器的周边元件与该集成电路其他部分的核心逻辑或I/O元件相同,及
该反熔丝存储器以第一个电源电压作用于主动区线上而第二个电源电压作用于多晶硅线上,用来击破交叉点上的薄氧化层时,如此配置,反熔丝存储器为可编程的。
2.根据权利要求1所述的反熔丝存储器,其特征在于,在该反熔丝元件中,主动区和多晶硅线之间的氧化层工艺与互补式金氧半晶体管栅极氧化层工艺相同。
3.根据权利要求1所述的反熔丝存储器,其特征在于,在该反熔丝元件中,主动区和多晶硅线之间的材料与互补式金氧半晶体管栅极氧化层工艺相同,但有不同厚度。
4.根据权利要求1所述的反熔丝存储器,其特征在于,在该反熔丝元件中,主动区线之间是由二氧化硅,硅或金属氧化层的材料来区隔。
5.根据权利要求1所述的反熔丝存储器,其特征在于,在该反熔丝元件中,主动区线植入第一种类型的掺杂先于互补式金氧半晶体管元件的源极或漏极植入。
6.根据权利要求1所述的反熔丝存储器,其特征在于,在该反熔丝元件中,硅化层成长在多晶硅线或主动区线之上。
8.根据权利要求1所述的反熔丝存储器,其特征在于,在该反熔丝元件中,主动区线于制造氧化膜之前先掺杂第二类型的掺杂。
9.根据权利要求1所述的反熔丝存储器,其特征在于,在该反熔丝元件中,一层非故意掺杂硅层制造,先于氧化膜制造而后于掺杂第一种类型掺杂的主动区线。
10.根据权利要求1所述的反熔丝存储器,其特征在于,在该反熔丝元件中,主动区线或多晶硅线以金属线每隔N元件跳接一次,其中N≥4。
11.根据权利要求1所述的反熔丝存储器,其特征在于,在该反熔丝元件中,主动区线或多晶硅线的电压摆幅,是编程电压的一半。
12.一种电子系统,其特征在于,包括:
在多个电池中,至少有一个电池提供的电压在正常条件下为1.0至2.0V;与积成于一集成电路中的一反熔丝存储器,该反熔丝存储器被操作连接到电池且包含多个反熔丝元件,在下列条件中,至少有一个反熔丝元件建构在交叉点上:
多个主动区线掺有第一种类型的掺杂;
多个多晶硅线掺有第二种类型的掺杂,且垂直于主动区线,其两侧无间隔的形成;
主动区和多晶硅线之间所制造的一层薄氧化膜;
反熔丝存储器的周边元件与该集成电路其他部分的逻辑核心或I/O元件相同;及
当第一个电压作用于主动区线而第二个电压作用于多晶硅线上,用来击破交叉点的薄膜氧化层时,如此配置,反熔丝存储器为可编程的。
13.一种反熔丝存储器,该反熔丝存储器用于一集成电路,其特征在于,包括:
多个反熔丝元件,在下列条件中,至少一个反熔丝元件被建造在交叉点上:
多条导体线;
多条金属线,且垂直于导体线;
制造于金属与导体线之间的隔离氧化层;
在金属与导体线交叉点上所开凿的多个接点;
一硅二极管和一层薄氧化层,该氧化层是在放置金属线之前,制作于至少一个接点之内;
反熔丝存储器的周边元件与在该集成电路的其他部分逻辑核心或I/O元件相同;及
当第一个电压作用于金属线而第二个电压作用于导体线上,用来击破薄膜氧化层时,如此配置,反熔丝存储器为可编程的。
14.根据权利要求13所述的反熔丝存储器,其特征在于,在该反熔丝元件中,导体线是多晶硅线。
15.根据权利要求13所述的反熔丝存储器,其特征在于,在该反熔丝元件中,导体线是主动区线,且有源极/漏极植入之前的一种浓度植入。
16.根据权利要求13所述的反熔丝存储器,其特征在于,在该反熔丝元件中,薄氧化层的制造是在每个接点中硅二极管制成之后制造的。
17.根据权利要求13所述的反熔丝存储器,其特征在于,在该反熔丝元件中,薄氧化层被制造于至少一个接点之内,该薄氧化层介于一个二极管的第一和第二部分,而此二极管的第一部分和第二部分有不同类型的掺杂,该第一部分及第二部分作为此二极管的P型和N型端点。
18.根据权利要求13所述的反熔丝存储器,其特征在于,在该反熔丝元件中,薄氧化层是二氧化硅,氮化硅,氮氧化硅,氧化氮氧化物。
19.一种电子系统,其特征在于,包括:
在多个电池中,至少有一个电池提供的电压在正常条件下为1.0至2.0V;
反熔丝存储器集成于集成电路中,该反熔丝存储器被连接到电池上,且包括多个反熔丝元件,在下列条件中,至少有一个反熔丝元件建构在交叉点上:
多个掺有第一种类型掺杂的导体线;
多个金属线,且垂直于多晶硅线;
一层在金属和导体线之间制造的间隔氧化层;
在金属线与导体线交叉点上所开凿的多个接点;
一硅二极管和一层薄氧化层,该氧化层是在放置金属线之前,制作于至少一个接点之内;
反熔丝存储器的周边元件与在该集成电路的其他部分逻辑核心或I/O元件相同;及
当第一个电压作用于金属线而第二个电压作用于导体线上,用以击破在交叉点的薄氧化层时,如此配置,反熔丝存储器为可编程的。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42118410P | 2010-12-08 | 2010-12-08 | |
US61/421,184 | 2010-12-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102544011A true CN102544011A (zh) | 2012-07-04 |
Family
ID=46199249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011104050985A Pending CN102544011A (zh) | 2010-12-08 | 2011-12-08 | 反熔丝存储器及电子系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9496265B2 (zh) |
CN (1) | CN102544011A (zh) |
TW (1) | TWI478168B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107785348A (zh) * | 2016-08-24 | 2018-03-09 | 中芯国际集成电路制造(上海)有限公司 | 反熔丝结构、半导体器件及电子装置 |
CN111384055A (zh) * | 2018-12-27 | 2020-07-07 | 南亚科技股份有限公司 | 半导体结构 |
Families Citing this family (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3935139B2 (ja) * | 2002-11-29 | 2007-06-20 | 株式会社東芝 | 半導体記憶装置 |
US9230813B2 (en) * | 2010-06-21 | 2016-01-05 | Kilopass Technology, Inc. | One-time programmable memory and method for making the same |
US9224496B2 (en) | 2010-08-11 | 2015-12-29 | Shine C. Chung | Circuit and system of aggregated area anti-fuse in CMOS processes |
US9431127B2 (en) | 2010-08-20 | 2016-08-30 | Shine C. Chung | Circuit and system of using junction diode as program selector for metal fuses for one-time programmable devices |
US9251893B2 (en) | 2010-08-20 | 2016-02-02 | Shine C. Chung | Multiple-bit programmable resistive memory using diode as program selector |
US9818478B2 (en) | 2012-12-07 | 2017-11-14 | Attopsemi Technology Co., Ltd | Programmable resistive device and memory using diode as selector |
US9042153B2 (en) | 2010-08-20 | 2015-05-26 | Shine C. Chung | Programmable resistive memory unit with multiple cells to improve yield and reliability |
US9824768B2 (en) | 2015-03-22 | 2017-11-21 | Attopsemi Technology Co., Ltd | Integrated OTP memory for providing MTP memory |
US9496033B2 (en) | 2010-08-20 | 2016-11-15 | Attopsemi Technology Co., Ltd | Method and system of programmable resistive devices with read capability using a low supply voltage |
US10229746B2 (en) | 2010-08-20 | 2019-03-12 | Attopsemi Technology Co., Ltd | OTP memory with high data security |
US9236141B2 (en) | 2010-08-20 | 2016-01-12 | Shine C. Chung | Circuit and system of using junction diode of MOS as program selector for programmable resistive devices |
US8644049B2 (en) | 2010-08-20 | 2014-02-04 | Shine C. Chung | Circuit and system of using polysilicon diode as program selector for one-time programmable devices |
US10916317B2 (en) | 2010-08-20 | 2021-02-09 | Attopsemi Technology Co., Ltd | Programmable resistance memory on thin film transistor technology |
US9019742B2 (en) | 2010-08-20 | 2015-04-28 | Shine C. Chung | Multiple-state one-time programmable (OTP) memory to function as multi-time programmable (MTP) memory |
US10249379B2 (en) | 2010-08-20 | 2019-04-02 | Attopsemi Technology Co., Ltd | One-time programmable devices having program selector for electrical fuses with extended area |
US9025357B2 (en) | 2010-08-20 | 2015-05-05 | Shine C. Chung | Programmable resistive memory unit with data and reference cells |
US9070437B2 (en) | 2010-08-20 | 2015-06-30 | Shine C. Chung | Circuit and system of using junction diode as program selector for one-time programmable devices with heat sink |
US8830720B2 (en) | 2010-08-20 | 2014-09-09 | Shine C. Chung | Circuit and system of using junction diode as program selector and MOS as read selector for one-time programmable devices |
US8488359B2 (en) | 2010-08-20 | 2013-07-16 | Shine C. Chung | Circuit and system of using junction diode as program selector for one-time programmable devices |
US9460807B2 (en) | 2010-08-20 | 2016-10-04 | Shine C. Chung | One-time programmable memory devices using FinFET technology |
US9711237B2 (en) | 2010-08-20 | 2017-07-18 | Attopsemi Technology Co., Ltd. | Method and structure for reliable electrical fuse programming |
US10923204B2 (en) | 2010-08-20 | 2021-02-16 | Attopsemi Technology Co., Ltd | Fully testible OTP memory |
US8804398B2 (en) | 2010-08-20 | 2014-08-12 | Shine C. Chung | Reversible resistive memory using diodes formed in CMOS processes as program selectors |
US8923085B2 (en) | 2010-11-03 | 2014-12-30 | Shine C. Chung | Low-pin-count non-volatile memory embedded in a integrated circuit without any additional pins for access |
US8913449B2 (en) | 2012-03-11 | 2014-12-16 | Shine C. Chung | System and method of in-system repairs or configurations for memories |
US9019791B2 (en) | 2010-11-03 | 2015-04-28 | Shine C. Chung | Low-pin-count non-volatile memory interface for 3D IC |
US8988965B2 (en) | 2010-11-03 | 2015-03-24 | Shine C. Chung | Low-pin-count non-volatile memory interface |
TWI478168B (zh) | 2010-12-08 | 2015-03-21 | Chien Shine Chung | 反熔絲記憶體及電子系統 |
US8557654B2 (en) * | 2010-12-13 | 2013-10-15 | Sandisk 3D Llc | Punch-through diode |
US10192615B2 (en) | 2011-02-14 | 2019-01-29 | Attopsemi Technology Co., Ltd | One-time programmable devices having a semiconductor fin structure with a divided active region |
US8848423B2 (en) | 2011-02-14 | 2014-09-30 | Shine C. Chung | Circuit and system of using FinFET for building programmable resistive devices |
US10586832B2 (en) | 2011-02-14 | 2020-03-10 | Attopsemi Technology Co., Ltd | One-time programmable devices using gate-all-around structures |
US8607019B2 (en) | 2011-02-15 | 2013-12-10 | Shine C. Chung | Circuit and method of a memory compiler based on subtractive approach |
US8741697B2 (en) * | 2011-09-14 | 2014-06-03 | Semiconductor Components Industries, Llc | Electronic device including a nonvolatile memory structure having an antifuse component and a process of forming the same |
US9136261B2 (en) | 2011-11-15 | 2015-09-15 | Shine C. Chung | Structures and techniques for using mesh-structure diodes for electro-static discharge (ESD) protection |
US8912576B2 (en) | 2011-11-15 | 2014-12-16 | Shine C. Chung | Structures and techniques for using semiconductor body to construct bipolar junction transistors |
US9324849B2 (en) | 2011-11-15 | 2016-04-26 | Shine C. Chung | Structures and techniques for using semiconductor body to construct SCR, DIAC, or TRIAC |
US8861249B2 (en) | 2012-02-06 | 2014-10-14 | Shine C. Chung | Circuit and system of a low density one-time programmable memory |
US8917533B2 (en) | 2012-02-06 | 2014-12-23 | Shine C. Chung | Circuit and system for testing a one-time programmable (OTP) memory |
US9007804B2 (en) | 2012-02-06 | 2015-04-14 | Shine C. Chung | Circuit and system of protective mechanisms for programmable resistive memories |
US9076526B2 (en) | 2012-09-10 | 2015-07-07 | Shine C. Chung | OTP memories functioning as an MTP memory |
US9183897B2 (en) | 2012-09-30 | 2015-11-10 | Shine C. Chung | Circuits and methods of a self-timed high speed SRAM |
US9324447B2 (en) | 2012-11-20 | 2016-04-26 | Shine C. Chung | Circuit and system for concurrently programming multiple bits of OTP memory devices |
US20140138777A1 (en) * | 2012-11-21 | 2014-05-22 | Qualcomm Incorporated | Integrated circuit device and method for making same |
KR101966278B1 (ko) * | 2012-12-28 | 2019-04-08 | 에스케이하이닉스 주식회사 | 반도체 소자의 안티 퓨즈 어레이 및 그 제조 방법 |
US9412473B2 (en) | 2014-06-16 | 2016-08-09 | Shine C. Chung | System and method of a novel redundancy scheme for OTP |
US9916903B2 (en) * | 2014-10-14 | 2018-03-13 | Globalfoundries Inc. | OTPROM for post-process programming using selective breakdown |
JP5756971B1 (ja) * | 2014-10-31 | 2015-07-29 | 株式会社フローディア | アンチヒューズメモリおよび半導体記憶装置 |
DE102016106691B4 (de) | 2016-04-12 | 2021-09-02 | Infineon Technologies Ag | Verfahren zum Erzeugen einer selbstausrichtenden Maskierschicht |
US9919915B2 (en) * | 2016-06-14 | 2018-03-20 | Invensense, Inc. | Method and system for MEMS devices with dual damascene formed electrodes |
US10529436B1 (en) | 2017-01-17 | 2020-01-07 | Synopsys, Inc. | One-time programmable bitcell with diode under anti-fuse |
US11615859B2 (en) | 2017-04-14 | 2023-03-28 | Attopsemi Technology Co., Ltd | One-time programmable memories with ultra-low power read operation and novel sensing scheme |
US11062786B2 (en) | 2017-04-14 | 2021-07-13 | Attopsemi Technology Co., Ltd | One-time programmable memories with low power read operation and novel sensing scheme |
US10726914B2 (en) | 2017-04-14 | 2020-07-28 | Attopsemi Technology Co. Ltd | Programmable resistive memories with low power read operation and novel sensing scheme |
US10535413B2 (en) | 2017-04-14 | 2020-01-14 | Attopsemi Technology Co., Ltd | Low power read operation for programmable resistive memories |
US10770160B2 (en) | 2017-11-30 | 2020-09-08 | Attopsemi Technology Co., Ltd | Programmable resistive memory formed by bit slices from a standard cell library |
CN108470676A (zh) * | 2018-04-04 | 2018-08-31 | 睿力集成电路有限公司 | 击穿式电熔丝结构及其形成方法、半导体器件 |
US11563054B2 (en) | 2019-03-21 | 2023-01-24 | International Business Machines Corporation | MJT based anti-fuses with low programming voltage |
US20230301073A1 (en) * | 2022-03-18 | 2023-09-21 | Nanya Technology Corporation | Semiconductor device with programmable element and method for fabricating the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5350710A (en) * | 1993-06-24 | 1994-09-27 | United Microelectronics Corporation | Device for preventing antenna effect on circuit |
US6803804B2 (en) * | 2002-05-24 | 2004-10-12 | Raminda U. Madurawe | Programmable latch array using antifuses |
US20050124116A1 (en) * | 2003-12-08 | 2005-06-09 | Tzu-Hsuan Hsu | 3D polysilicon ROM and method of fabrication thereof |
US20100127358A1 (en) * | 2008-11-21 | 2010-05-27 | Sandisk 3D Llc | Integration of damascene type diodes and conductive wires for memory device |
Family Cites Families (198)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3198670A (en) | 1961-03-09 | 1965-08-03 | Bunker Ramo | Multi-tunnel diode |
GB1328803A (en) | 1969-12-17 | 1973-09-05 | Mullard Ltd | Methods of manufacturing semiconductor devices |
US4148046A (en) | 1978-01-16 | 1979-04-03 | Honeywell Inc. | Semiconductor apparatus |
US4192059A (en) * | 1978-06-06 | 1980-03-11 | Rockwell International Corporation | Process for and structure of high density VLSI circuits, having inherently self-aligned gates and contacts for FET devices and conducting lines |
NL8302092A (nl) | 1983-06-13 | 1985-01-02 | Philips Nv | Halfgeleiderinrichting bevattende een veldeffekttransistor. |
US5192989A (en) | 1989-11-28 | 1993-03-09 | Nissan Motor Co., Ltd. | Lateral dmos fet device with reduced on resistance |
JPH03264814A (ja) | 1990-03-15 | 1991-11-26 | Pioneer Electron Corp | 車両用ナビゲーション装置 |
TW231343B (zh) | 1992-03-17 | 1994-10-01 | Hitachi Seisakusyo Kk | |
US5389552A (en) | 1993-01-29 | 1995-02-14 | National Semiconductor Corporation | Transistors having bases with different shape top surfaces |
US5355008A (en) | 1993-11-19 | 1994-10-11 | Micrel, Inc. | Diamond shaped gate mesh for cellular MOS transistor array |
US5446302A (en) | 1993-12-14 | 1995-08-29 | Analog Devices, Incorporated | Integrated circuit with diode-connected transistor for reducing ESD damage |
US5757046A (en) | 1994-01-07 | 1998-05-26 | Fuji Electric Company Ltd. | MOS type semiconductor device |
US5723890A (en) | 1994-01-07 | 1998-03-03 | Fuji Electric Co., Ltd. | MOS type semiconductor device |
JP3136885B2 (ja) | 1994-02-02 | 2001-02-19 | 日産自動車株式会社 | パワーmosfet |
US5962903A (en) * | 1995-06-08 | 1999-10-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Planarized plug-diode mask ROM structure |
US6008092A (en) | 1996-02-12 | 1999-12-28 | International Rectifier Corporation | Short channel IGBT with improved forward voltage drop and improved switching power loss |
EP0845815A3 (en) | 1996-11-28 | 1999-03-03 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device, method of designing the same and semiconductor integrated circuit device |
US5761148A (en) | 1996-12-16 | 1998-06-02 | Cypress Semiconductor Corp. | Sub-word line driver circuit for memory blocks of a semiconductor memory device |
JP3220055B2 (ja) | 1997-07-17 | 2001-10-22 | 松下電器産業株式会社 | 機械語命令列またはアセンブリ言語命令列を最適化する最適化装置、及び、高級言語で記載されたソースプログラムを機械語またはアセンブリ言語の命令列に変換するコンパイラ装置。 |
US6002156A (en) | 1997-09-16 | 1999-12-14 | Winbond Electronics Corp. | Distributed MOSFET structure with enclosed gate for improved transistor size/layout area ratio and uniform ESD triggering |
US20030075778A1 (en) | 1997-10-01 | 2003-04-24 | Patrick Klersy | Programmable resistance memory element and method for making same |
JP4321685B2 (ja) | 1997-12-25 | 2009-08-26 | 日本テキサス・インスツルメンツ株式会社 | アンチフューズ回路 |
JPH11204781A (ja) | 1998-01-07 | 1999-07-30 | Nec Yamagata Ltd | 半導体装置 |
US6405160B1 (en) | 1998-08-03 | 2002-06-11 | Motorola, Inc. | Memory compiler interface and methodology |
ATE557343T1 (de) | 1998-08-24 | 2012-05-15 | Microunity Systems Eng | Prozessor und verfahren zur durchführung eines breitschaltungsbefehls mit breitem operand |
US6054344A (en) | 1998-10-30 | 2000-04-25 | Taiwan Semiconductor Manufacturing Company | OTP (open trigger path) latchup scheme using buried-diode for sub-quarter micron transistors |
JP2000150634A (ja) | 1998-11-13 | 2000-05-30 | Mitsubishi Electric Corp | 半導体装置およびその製造方法 |
US6034882A (en) | 1998-11-16 | 2000-03-07 | Matrix Semiconductor, Inc. | Vertically stacked field programmable nonvolatile memory and method of fabrication |
US6400540B1 (en) | 1999-03-12 | 2002-06-04 | Sil.Able Inc. | Clamp circuit to prevent ESD damage to an integrated circuit |
US6413822B2 (en) | 1999-04-22 | 2002-07-02 | Advanced Analogic Technologies, Inc. | Super-self-aligned fabrication process of trench-gate DMOS with overlying device layer |
DE10004111A1 (de) | 2000-01-31 | 2001-08-09 | Infineon Technologies Ag | Bipolartransistor |
US6813705B2 (en) | 2000-02-09 | 2004-11-02 | Hewlett-Packard Development Company, L.P. | Memory disambiguation scheme for partially redundant load removal |
JP3367500B2 (ja) | 2000-03-15 | 2003-01-14 | 日本電気株式会社 | 半導体装置 |
US20010043449A1 (en) | 2000-05-15 | 2001-11-22 | Nec Corporation | ESD protection apparatus and method for fabricating the same |
CA2310295C (en) | 2000-05-31 | 2010-10-05 | Mosaid Technologies Incorporated | Multiple match detection circuit and method |
US6570805B2 (en) | 2000-12-20 | 2003-05-27 | Actel Corporation | Antifuse memory cell and antifuse memory cell array |
US7058788B2 (en) | 2001-02-23 | 2006-06-06 | Falconstor Software, Inc. | Dynamic allocation of computer memory |
JP2004528568A (ja) | 2001-05-14 | 2004-09-16 | デパートメント オブ アトミックエナジー、ガヴァメント オブ インディア | 低コストデジタルポケット線量計 |
US6646912B2 (en) | 2001-06-05 | 2003-11-11 | Hewlett-Packard Development Company, Lp. | Non-volatile memory |
US6483734B1 (en) | 2001-11-26 | 2002-11-19 | Hewlett Packard Company | Memory device having memory cells capable of four states |
US6597629B1 (en) | 2001-11-30 | 2003-07-22 | Virage Locic Corp. | Built-in precision shutdown apparatus for effectuating self-referenced access timing scheme |
US6707729B2 (en) | 2002-02-15 | 2004-03-16 | Micron Technology, Inc. | Physically alternating sense amplifier activation |
US6937528B2 (en) | 2002-03-05 | 2005-08-30 | Micron Technology, Inc. | Variable resistance memory and method for sensing same |
US6798684B2 (en) | 2002-04-04 | 2004-09-28 | Broadcom Corporation | Methods and systems for programmable memory using silicided poly-silicon fuses |
US7211843B2 (en) | 2002-04-04 | 2007-05-01 | Broadcom Corporation | System and method for programming a memory cell |
US6813182B2 (en) | 2002-05-31 | 2004-11-02 | Hewlett-Packard Development Company, L.P. | Diode-and-fuse memory elements for a write-once memory comprising an anisotropic semiconductor sheet |
US6850438B2 (en) | 2002-07-05 | 2005-02-01 | Aplus Flash Technology, Inc. | Combination nonvolatile memory using unified technology with byte, page and block write and simultaneous read and write operations |
US7196369B2 (en) | 2002-07-15 | 2007-03-27 | Macronix International Co., Ltd. | Plasma damage protection circuit for a semiconductor device |
US7179691B1 (en) | 2002-07-29 | 2007-02-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for four direction low capacitance ESD protection |
US6778420B2 (en) | 2002-09-25 | 2004-08-17 | Ovonyx, Inc. | Method of operating programmable resistant element |
JP4286634B2 (ja) | 2002-11-20 | 2009-07-01 | パナソニック株式会社 | メモリ故障救済回路 |
JP2004193282A (ja) * | 2002-12-10 | 2004-07-08 | Renesas Technology Corp | 不揮発性半導体記憶装置 |
US6995446B2 (en) | 2002-12-13 | 2006-02-07 | Ovonyx, Inc. | Isolating phase change memories with schottky diodes and guard rings |
US7660181B2 (en) | 2002-12-19 | 2010-02-09 | Sandisk 3D Llc | Method of making non-volatile memory cell with embedded antifuse |
US7800933B2 (en) | 2005-09-28 | 2010-09-21 | Sandisk 3D Llc | Method for using a memory cell comprising switchable semiconductor memory element with trimmable resistance |
US7652326B2 (en) | 2003-05-20 | 2010-01-26 | Fairchild Semiconductor Corporation | Power semiconductor devices and methods of manufacture |
US6897543B1 (en) | 2003-08-22 | 2005-05-24 | Altera Corporation | Electrically-programmable integrated circuit antifuses |
US7461371B2 (en) | 2003-09-11 | 2008-12-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | General purpose memory compiler system and associated methods |
DE10343681B4 (de) | 2003-09-18 | 2007-08-09 | Atmel Germany Gmbh | Halbleiterstruktur und deren Verwendung, insbesondere zum Begrenzen von Überspannungen |
US6944083B2 (en) | 2003-11-17 | 2005-09-13 | Sony Corporation | Method for detecting and preventing tampering with one-time programmable digital devices |
US6960807B2 (en) | 2003-11-25 | 2005-11-01 | Texas Instruments Incorporated | Drain extend MOS transistor with improved breakdown robustness |
US7027326B2 (en) | 2004-01-05 | 2006-04-11 | International Business Machines Corporation | 3T1D memory cells using gated diodes and methods of use thereof |
US7119401B2 (en) | 2004-01-07 | 2006-10-10 | International Business Machines Corporation | Tunable semiconductor diodes |
US7157782B1 (en) | 2004-02-17 | 2007-01-02 | Altera Corporation | Electrically-programmable transistor antifuses |
US7410838B2 (en) * | 2004-04-29 | 2008-08-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | Fabrication methods for memory cells |
WO2005109516A1 (en) | 2004-05-06 | 2005-11-17 | Sidense Corp. | Split-channel antifuse array architecture |
US7511982B2 (en) | 2004-05-06 | 2009-03-31 | Sidense Corp. | High speed OTP sensing scheme |
US7224598B2 (en) | 2004-09-02 | 2007-05-29 | Hewlett-Packard Development Company, L.P. | Programming of programmable resistive memory devices |
DE102004046697B4 (de) | 2004-09-24 | 2020-06-10 | Infineon Technologies Ag | Hochspannungsfestes Halbleiterbauelement mit vertikal leitenden Halbleiterkörperbereichen und einer Grabenstruktur sowie Verfahren zur Herstellung desselben |
US7212432B2 (en) | 2004-09-30 | 2007-05-01 | Infineon Technologies Ag | Resistive memory cell random access memory device and method of fabrication |
US7423897B2 (en) | 2004-10-01 | 2008-09-09 | Ovonyx, Inc. | Method of operating a programmable resistance memory array |
US7263027B2 (en) | 2004-10-14 | 2007-08-28 | Broadcom Corporation | Integrated circuit chip having non-volatile on-chip memories for providing programmable functions and features |
US7453716B2 (en) | 2004-10-26 | 2008-11-18 | Samsung Electronics Co., Ltd | Semiconductor memory device with stacked control transistors |
US8179711B2 (en) | 2004-10-26 | 2012-05-15 | Samsung Electronics Co., Ltd. | Semiconductor memory device with stacked memory cell and method of manufacturing the stacked memory cell |
US7102951B2 (en) | 2004-11-01 | 2006-09-05 | Intel Corporation | OTP antifuse cell and cell array |
US20060092689A1 (en) | 2004-11-04 | 2006-05-04 | Daniel Braun | Reference current source for current sense amplifier and programmable resistor configured with magnetic tunnel junction cells |
US7035141B1 (en) | 2004-11-17 | 2006-04-25 | Spansion Llc | Diode array architecture for addressing nanoscale resistive memory arrays |
US7391064B1 (en) | 2004-12-01 | 2008-06-24 | Spansion Llc | Memory device with a selection element and a control line in a substantially similar layer |
US7487320B2 (en) | 2004-12-15 | 2009-02-03 | International Business Machines Corporation | Apparatus and system for dynamically allocating main memory among a plurality of applications |
KR100688540B1 (ko) | 2005-03-24 | 2007-03-02 | 삼성전자주식회사 | 메모리 셀의 집적도를 향상시킨 반도체 메모리 장치 |
KR100621774B1 (ko) | 2005-04-08 | 2006-09-15 | 삼성전자주식회사 | 반도체 메모리 장치에서의 레이아웃구조 및 그에 따른레이아웃 방법 |
US8183665B2 (en) | 2005-11-15 | 2012-05-22 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US8217490B2 (en) | 2005-05-09 | 2012-07-10 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
EP2309516A1 (en) * | 2005-06-03 | 2011-04-13 | STMicroelectronics Srl | Method for multilevel programming of phase change memory cells using a percolation algorithm |
US7167397B2 (en) | 2005-06-21 | 2007-01-23 | Intel Corporation | Apparatus and method for programming a memory array |
US20070045697A1 (en) | 2005-08-31 | 2007-03-01 | International Business Machines Corporation | Body-contacted semiconductor structures and methods of fabricating such body-contacted semiconductor structures |
US7227233B2 (en) | 2005-09-12 | 2007-06-05 | International Business Machines Corporation | Silicon-on-insulator (SOI) Read Only Memory (ROM) array and method of making a SOI ROM |
US7433247B2 (en) | 2005-09-26 | 2008-10-07 | Macronix International Co., Ltd. | Method and circuit for reading fuse cells in a nonvolatile memory during power-up |
US7701038B2 (en) | 2005-10-31 | 2010-04-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | High-gain vertex lateral bipolar junction transistor |
US8115280B2 (en) | 2005-10-31 | 2012-02-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Four-terminal gate-controlled LVBJTs |
US7411844B2 (en) | 2005-11-30 | 2008-08-12 | Infineon Technologies Flash Gmbh & Co. Kg | Semiconductor memory device having a redundancy information memory directly connected to a redundancy control circuit |
US7265041B2 (en) | 2005-12-19 | 2007-09-04 | Micrel, Inc. | Gate layouts for transistors |
US7508693B2 (en) | 2006-03-24 | 2009-03-24 | Macronix International Co., Ltd. | One-time-programmable (OTP) memory device and method for testing the same |
US7369452B2 (en) | 2006-04-07 | 2008-05-06 | Freescale Semiconductor, Inc. | Programmable cell |
US7606055B2 (en) | 2006-05-18 | 2009-10-20 | Micron Technology, Inc. | Memory architecture and cell design employing two access transistors |
US7728384B2 (en) | 2006-05-30 | 2010-06-01 | Macronix International Co., Ltd. | Magnetic random access memory using single crystal self-aligned diode |
US7495947B2 (en) * | 2006-07-31 | 2009-02-24 | Sandisk 3D Llc | Reverse bias trim operations in non-volatile memory |
US7605431B2 (en) | 2006-09-20 | 2009-10-20 | Himax Technologies Limited | Electrostatic discharge protection apparatus for semiconductor devices |
WO2008035736A1 (fr) | 2006-09-22 | 2008-03-27 | Nissha Printing Co., Ltd. | Étui de boîtier, procédé de fabrication de l'étui de boîtier et insert en verre formant une filière utilisé dans le procédé |
US7439608B2 (en) | 2006-09-22 | 2008-10-21 | Intel Corporation | Symmetric bipolar junction transistor design for deep sub-micron fabrication processes |
KR100772904B1 (ko) | 2006-10-02 | 2007-11-05 | 삼성전자주식회사 | 가변저항 메모리 장치 및 그 제조 방법 |
JP4577695B2 (ja) * | 2006-11-07 | 2010-11-10 | エルピーダメモリ株式会社 | 半導体記憶装置及び半導体記憶装置の製造方法 |
US7436695B2 (en) | 2006-11-21 | 2008-10-14 | Infineon Technologies Ag | Resistive memory including bipolar transistor access devices |
US7471540B2 (en) | 2007-01-24 | 2008-12-30 | Kilopass Technology, Inc. | Non-volatile semiconductor memory based on enhanced gate oxide breakdown |
KR100845407B1 (ko) | 2007-02-16 | 2008-07-10 | 매그나칩 반도체 유한회사 | 원-타임-프로그래머블 셀 및 이를 구비하는 otp 메모리 |
US7447062B2 (en) | 2007-03-15 | 2008-11-04 | International Business Machines Corproation | Method and structure for increasing effective transistor width in memory arrays with dual bitlines |
CN101271881A (zh) | 2007-03-20 | 2008-09-24 | 联华电子股份有限公司 | 熔断后不会造成非线性电流的反熔丝及存储单元 |
US7573762B2 (en) | 2007-06-06 | 2009-08-11 | Freescale Semiconductor, Inc. | One time programmable element system in an integrated circuit |
JP4510057B2 (ja) | 2007-06-21 | 2010-07-21 | 株式会社東芝 | 不揮発性半導体記憶装置 |
US7830697B2 (en) | 2007-06-25 | 2010-11-09 | Sandisk 3D Llc | High forward current diodes for reverse write 3D cell |
JP5333814B2 (ja) | 2007-09-12 | 2013-11-06 | アイシン精機株式会社 | パワー半導体モジュール、インバータ装置、及びインバータ一体型モータ |
EP2195811B1 (en) | 2007-10-03 | 2012-05-16 | STMicroelectronics Crolles 2 SAS | Anti-fuse element |
US7609578B2 (en) | 2007-10-31 | 2009-10-27 | Broadcom Corporation | Quad SRAM based one time programmable memory |
JP2009117461A (ja) | 2007-11-02 | 2009-05-28 | Elpida Memory Inc | アンチヒューズ素子、およびアンチヒューズ素子の設定方法 |
US7802057B2 (en) | 2007-12-27 | 2010-09-21 | Intel Corporation | Priority aware selective cache allocation |
JP4482039B2 (ja) | 2008-01-11 | 2010-06-16 | 株式会社東芝 | 抵抗変化型メモリ |
US7859043B2 (en) | 2008-02-25 | 2010-12-28 | Tower Semiconductor Ltd. | Three-terminal single poly NMOS non-volatile memory cell |
US7876598B2 (en) | 2008-02-28 | 2011-01-25 | Qimonda Ag | Apparatus and method for determining a memory state of a resistive n-level memory cell and memory device |
US7859920B2 (en) | 2008-03-14 | 2010-12-28 | Qualcomm Incorporated | Advanced bit line tracking in high performance memory compilers |
US20090230446A1 (en) | 2008-03-17 | 2009-09-17 | Technology Alliance Group, Inc. | Semiconductor device and bypass capacitor module |
JP5371274B2 (ja) | 2008-03-27 | 2013-12-18 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
US8526254B2 (en) | 2008-04-03 | 2013-09-03 | Sidense Corp. | Test cells for an unprogrammed OTP memory array |
US8566377B2 (en) | 2008-05-23 | 2013-10-22 | Agere Systems Llc | Secure random number generator |
US8154005B2 (en) * | 2008-06-13 | 2012-04-10 | Sandisk 3D Llc | Non-volatile memory arrays comprising rail stacks with a shared diode component portion for diodes of electrically isolated pillars |
US8373254B2 (en) | 2008-07-29 | 2013-02-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure for reducing integrated circuit corner peeling |
US8031517B2 (en) | 2008-07-30 | 2011-10-04 | Samsung Electronics Co., Ltd. | Memory device, memory system having the same, and programming method of a memory cell |
WO2010026865A1 (en) | 2008-09-05 | 2010-03-11 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor memory device and semiconductor device |
EP2342750B1 (en) | 2008-10-08 | 2015-01-28 | The Regents of the University of Michigan | Silicon-based nanoscale resistive device with adjustable resistance |
US20100091546A1 (en) | 2008-10-15 | 2010-04-15 | Seagate Technology Llc | High density reconfigurable spin torque non-volatile memory |
US20100108980A1 (en) | 2008-11-03 | 2010-05-06 | Industrial Technology Research Institute | Resistive memory array |
KR20100064715A (ko) | 2008-12-05 | 2010-06-15 | 삼성전자주식회사 | 저항체를 이용한 비휘발성 메모리 장치 |
US7978496B2 (en) | 2008-12-18 | 2011-07-12 | Sandisk 3D Llc | Method of programming a nonvolatile memory device containing a carbon storage material |
US8089137B2 (en) | 2009-01-07 | 2012-01-03 | Macronix International Co., Ltd. | Integrated circuit memory with single crystal silicon on silicide driver and manufacturing method |
US8380768B2 (en) | 2009-01-30 | 2013-02-19 | Freescale Semiconductor, Inc. | Random number generator |
US8674454B2 (en) | 2009-02-20 | 2014-03-18 | Mediatek Inc. | Lateral bipolar junction transistor |
US8305790B2 (en) | 2009-03-16 | 2012-11-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Electrical anti-fuse and related applications |
JP2010225221A (ja) | 2009-03-23 | 2010-10-07 | Toshiba Corp | 半導体記憶装置 |
JP2010257551A (ja) | 2009-04-28 | 2010-11-11 | Renesas Electronics Corp | アンチヒューズメモリセル及び半導体記憶装置 |
US8488362B2 (en) | 2009-04-29 | 2013-07-16 | Macronix International Co., Ltd. | Graded metal oxide resistance based semiconductor memory device |
US8168538B2 (en) | 2009-05-26 | 2012-05-01 | Macronix International Co., Ltd. | Buried silicide structure and method for making |
US8415764B2 (en) | 2009-06-02 | 2013-04-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | High-voltage BJT formed using CMOS HV processes |
US8154904B2 (en) | 2009-06-19 | 2012-04-10 | Sandisk 3D Llc | Programming reversible resistance switching elements |
US8050129B2 (en) | 2009-06-25 | 2011-11-01 | Mediatek Inc. | E-fuse apparatus for controlling reference voltage required for programming/reading e-fuse macro in an integrated circuit via switch device in the same integrated circuit |
TWI514399B (zh) | 2009-07-27 | 2015-12-21 | Sidense Corp | 非揮發性記憶體之冗餘方法 |
US8174063B2 (en) | 2009-07-30 | 2012-05-08 | Ememory Technology Inc. | Non-volatile semiconductor memory device with intrinsic charge trapping layer |
JP2011040675A (ja) | 2009-08-18 | 2011-02-24 | Sumitomo Electric Ind Ltd | 半導体装置 |
US8207064B2 (en) | 2009-09-17 | 2012-06-26 | Sandisk 3D Llc | 3D polysilicon diode with low contact resistance and method for forming same |
US8357996B2 (en) | 2009-11-17 | 2013-01-22 | Cree, Inc. | Devices with crack stops |
KR20110061912A (ko) | 2009-12-02 | 2011-06-10 | 삼성전자주식회사 | 비휘발성 메모리 셀 및 이를 포함하는 비휘발성 메모리 장치 |
US8589851B2 (en) | 2009-12-15 | 2013-11-19 | Memoir Systems, Inc. | Intelligent memory system compiler |
US8198703B2 (en) | 2010-01-18 | 2012-06-12 | Freescale Semiconductor, Inc. | Zener diode with reduced substrate current |
KR20110102734A (ko) | 2010-03-11 | 2011-09-19 | 삼성전자주식회사 | 오티피 록 비트 레지스터를 구비한 불휘발성 반도체 메모리 장치 |
US20110297912A1 (en) | 2010-06-08 | 2011-12-08 | George Samachisa | Non-Volatile Memory Having 3d Array of Read/Write Elements with Vertical Bit Lines and Laterally Aligned Active Elements and Methods Thereof |
US8395927B2 (en) | 2010-06-18 | 2013-03-12 | Sandisk 3D Llc | Memory cell with resistance-switching layers including breakdown layer |
KR101174764B1 (ko) | 2010-08-05 | 2012-08-17 | 주식회사 동부하이텍 | 씨모스 제조기술에 기반한 바이폴라 접합 트랜지스터 |
US9224496B2 (en) | 2010-08-11 | 2015-12-29 | Shine C. Chung | Circuit and system of aggregated area anti-fuse in CMOS processes |
US8804398B2 (en) | 2010-08-20 | 2014-08-12 | Shine C. Chung | Reversible resistive memory using diodes formed in CMOS processes as program selectors |
US9025357B2 (en) | 2010-08-20 | 2015-05-05 | Shine C. Chung | Programmable resistive memory unit with data and reference cells |
US9818478B2 (en) | 2012-12-07 | 2017-11-14 | Attopsemi Technology Co., Ltd | Programmable resistive device and memory using diode as selector |
US9042153B2 (en) | 2010-08-20 | 2015-05-26 | Shine C. Chung | Programmable resistive memory unit with multiple cells to improve yield and reliability |
US9711237B2 (en) | 2010-08-20 | 2017-07-18 | Attopsemi Technology Co., Ltd. | Method and structure for reliable electrical fuse programming |
US9236141B2 (en) | 2010-08-20 | 2016-01-12 | Shine C. Chung | Circuit and system of using junction diode of MOS as program selector for programmable resistive devices |
US8830720B2 (en) | 2010-08-20 | 2014-09-09 | Shine C. Chung | Circuit and system of using junction diode as program selector and MOS as read selector for one-time programmable devices |
US20120047322A1 (en) | 2010-08-20 | 2012-02-23 | Chung Shine C | Method and System of Using One-Time Programmable Memory as Multi-Time Programmable in Code Memory of Processors |
US9019742B2 (en) | 2010-08-20 | 2015-04-28 | Shine C. Chung | Multiple-state one-time programmable (OTP) memory to function as multi-time programmable (MTP) memory |
US10249379B2 (en) | 2010-08-20 | 2019-04-02 | Attopsemi Technology Co., Ltd | One-time programmable devices having program selector for electrical fuses with extended area |
US9431127B2 (en) | 2010-08-20 | 2016-08-30 | Shine C. Chung | Circuit and system of using junction diode as program selector for metal fuses for one-time programmable devices |
US9251893B2 (en) | 2010-08-20 | 2016-02-02 | Shine C. Chung | Multiple-bit programmable resistive memory using diode as program selector |
US8488359B2 (en) | 2010-08-20 | 2013-07-16 | Shine C. Chung | Circuit and system of using junction diode as program selector for one-time programmable devices |
US9070437B2 (en) | 2010-08-20 | 2015-06-30 | Shine C. Chung | Circuit and system of using junction diode as program selector for one-time programmable devices with heat sink |
US8644049B2 (en) | 2010-08-20 | 2014-02-04 | Shine C. Chung | Circuit and system of using polysilicon diode as program selector for one-time programmable devices |
CN102412295A (zh) | 2010-09-21 | 2012-04-11 | 株式会社东芝 | 半导体装置及其制造方法 |
US9019791B2 (en) | 2010-11-03 | 2015-04-28 | Shine C. Chung | Low-pin-count non-volatile memory interface for 3D IC |
US8923085B2 (en) | 2010-11-03 | 2014-12-30 | Shine C. Chung | Low-pin-count non-volatile memory embedded in a integrated circuit without any additional pins for access |
US8913449B2 (en) | 2012-03-11 | 2014-12-16 | Shine C. Chung | System and method of in-system repairs or configurations for memories |
US8988965B2 (en) | 2010-11-03 | 2015-03-24 | Shine C. Chung | Low-pin-count non-volatile memory interface |
TWI478168B (zh) | 2010-12-08 | 2015-03-21 | Chien Shine Chung | 反熔絲記憶體及電子系統 |
US8848423B2 (en) | 2011-02-14 | 2014-09-30 | Shine C. Chung | Circuit and system of using FinFET for building programmable resistive devices |
US8607019B2 (en) | 2011-02-15 | 2013-12-10 | Shine C. Chung | Circuit and method of a memory compiler based on subtractive approach |
US8699259B2 (en) | 2011-03-02 | 2014-04-15 | Sandisk 3D Llc | Non-volatile storage system using opposite polarity programming signals for MIM memory cell |
US8436430B2 (en) | 2011-04-08 | 2013-05-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Diodes with embedded dummy gate electrodes |
KR20120126434A (ko) | 2011-05-11 | 2012-11-21 | 에스케이하이닉스 주식회사 | 비휘발성 메모리 장치 및 센싱 방법 |
US8680620B2 (en) | 2011-08-04 | 2014-03-25 | Analog Devices, Inc. | Bi-directional blocking voltage protection devices and methods of forming the same |
US8822311B2 (en) | 2011-12-22 | 2014-09-02 | Avogy, Inc. | Method of fabricating a GaN P-i-N diode using implantation |
US20140133056A1 (en) | 2012-11-15 | 2014-05-15 | Shine C. Chung | Structures and techniques for using mesh-structure diodes for electro-static discharge (esd) protection |
US9136261B2 (en) | 2011-11-15 | 2015-09-15 | Shine C. Chung | Structures and techniques for using mesh-structure diodes for electro-static discharge (ESD) protection |
US9324849B2 (en) | 2011-11-15 | 2016-04-26 | Shine C. Chung | Structures and techniques for using semiconductor body to construct SCR, DIAC, or TRIAC |
US8912576B2 (en) | 2011-11-15 | 2014-12-16 | Shine C. Chung | Structures and techniques for using semiconductor body to construct bipolar junction transistors |
US8917533B2 (en) | 2012-02-06 | 2014-12-23 | Shine C. Chung | Circuit and system for testing a one-time programmable (OTP) memory |
US9007804B2 (en) | 2012-02-06 | 2015-04-14 | Shine C. Chung | Circuit and system of protective mechanisms for programmable resistive memories |
US8861249B2 (en) | 2012-02-06 | 2014-10-14 | Shine C. Chung | Circuit and system of a low density one-time programmable memory |
US20130268526A1 (en) | 2012-04-06 | 2013-10-10 | Mark E. Johns | Discovery engine |
US9576621B2 (en) | 2012-07-09 | 2017-02-21 | Texas Instruments Incorporated | Read-current and word line delay path tracking for sense amplifier enable timing |
US9076526B2 (en) | 2012-09-10 | 2015-07-07 | Shine C. Chung | OTP memories functioning as an MTP memory |
US9183897B2 (en) | 2012-09-30 | 2015-11-10 | Shine C. Chung | Circuits and methods of a self-timed high speed SRAM |
US9006864B2 (en) | 2012-11-06 | 2015-04-14 | Texas Instruments Incorporated | Radiation induced diode structure |
US20140131710A1 (en) | 2012-11-15 | 2014-05-15 | Shine C. Chung | Structures and techniques for electro-static discharge (esd) protection using ring structured diodes |
US9324447B2 (en) | 2012-11-20 | 2016-04-26 | Shine C. Chung | Circuit and system for concurrently programming multiple bits of OTP memory devices |
-
2011
- 2011-12-08 TW TW100145395A patent/TWI478168B/zh not_active IP Right Cessation
- 2011-12-08 US US13/314,444 patent/US9496265B2/en active Active
- 2011-12-08 CN CN2011104050985A patent/CN102544011A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5350710A (en) * | 1993-06-24 | 1994-09-27 | United Microelectronics Corporation | Device for preventing antenna effect on circuit |
US6803804B2 (en) * | 2002-05-24 | 2004-10-12 | Raminda U. Madurawe | Programmable latch array using antifuses |
US20050124116A1 (en) * | 2003-12-08 | 2005-06-09 | Tzu-Hsuan Hsu | 3D polysilicon ROM and method of fabrication thereof |
US20100127358A1 (en) * | 2008-11-21 | 2010-05-27 | Sandisk 3D Llc | Integration of damascene type diodes and conductive wires for memory device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107785348A (zh) * | 2016-08-24 | 2018-03-09 | 中芯国际集成电路制造(上海)有限公司 | 反熔丝结构、半导体器件及电子装置 |
CN107785348B (zh) * | 2016-08-24 | 2019-12-10 | 中芯国际集成电路制造(上海)有限公司 | 反熔丝结构、半导体器件及电子装置 |
CN111384055A (zh) * | 2018-12-27 | 2020-07-07 | 南亚科技股份有限公司 | 半导体结构 |
Also Published As
Publication number | Publication date |
---|---|
US9496265B2 (en) | 2016-11-15 |
TWI478168B (zh) | 2015-03-21 |
TW201225094A (en) | 2012-06-16 |
US20120147653A1 (en) | 2012-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102544011A (zh) | 反熔丝存储器及电子系统 | |
US5242851A (en) | Programmable interconnect device and method of manufacturing same | |
US6251731B1 (en) | Method for fabricating high-density and high-speed nand-type mask roms | |
US4373248A (en) | Method of making high density semiconductor device such as floating gate electrically programmable ROM or the like | |
US7553704B2 (en) | Antifuse element and method of manufacture | |
KR100494520B1 (ko) | 반도체장치및그제조방법 | |
US7011999B2 (en) | Method of manufacturing an integrated circuit device including forming an oxidation resistant film over an isolation region and subsequently forming a gate insulating film of a misfet | |
TWI503825B (zh) | 低臨界電壓之反熔絲裝置 | |
US6765259B2 (en) | Non-volatile memory transistor array implementing “H” shaped source/drain regions and method for fabricating same | |
US5969382A (en) | EPROM in high density CMOS having added substrate diffusion | |
TWI575579B (zh) | 半導體裝置之製造方法及半導體裝置 | |
US4384349A (en) | High density electrically erasable floating gate dual-injection programmable memory device | |
US7575958B2 (en) | Programmable fuse with silicon germanium | |
US20050227440A1 (en) | Semiconductor device and its manufacturing method | |
CN104051343B (zh) | 具有通过栅植入的深n阱的晶体管 | |
US5675176A (en) | Semiconductor device and a method for manufacturing the same | |
KR100973275B1 (ko) | 상변화 기억 소자 및 그의 제조방법 | |
CN106024797A (zh) | 半导体器件及其制造方法 | |
TWI270211B (en) | Method for manufacturing a semiconductor device | |
CN105206532A (zh) | 用于处理载体的方法、载体和分裂栅极场效应晶体管结构 | |
KR20000062558A (ko) | 집적 회로 칩 및 그 형성 방법 | |
US5930613A (en) | Method of making EPROM in high density CMOS having metallization capacitor | |
US6723649B2 (en) | Method of fabricating a semiconductor memory device | |
US6468868B1 (en) | Method of forming high density multi-state mask ROM cells | |
JPH0368167A (ja) | 半導体装置の製造方法およびそれによって得られる半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120704 |