WO2019208520A1 - 表面処理銅箔、銅張積層板及びプリント配線板 - Google Patents
表面処理銅箔、銅張積層板及びプリント配線板 Download PDFInfo
- Publication number
- WO2019208520A1 WO2019208520A1 PCT/JP2019/017091 JP2019017091W WO2019208520A1 WO 2019208520 A1 WO2019208520 A1 WO 2019208520A1 JP 2019017091 W JP2019017091 W JP 2019017091W WO 2019208520 A1 WO2019208520 A1 WO 2019208520A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper foil
- treatment layer
- surface treatment
- atm
- layer
- Prior art date
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 165
- 239000011889 copper foil Substances 0.000 title claims abstract description 127
- 239000010949 copper Substances 0.000 title claims abstract description 82
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 60
- 238000004544 sputter deposition Methods 0.000 claims abstract description 56
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 40
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 38
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 26
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 22
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 21
- 239000002335 surface treatment layer Substances 0.000 claims description 166
- 239000010410 layer Substances 0.000 claims description 116
- 238000005530 etching Methods 0.000 claims description 88
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 99
- 239000011701 zinc Substances 0.000 description 83
- 239000000243 solution Substances 0.000 description 71
- 238000007747 plating Methods 0.000 description 50
- 238000011282 treatment Methods 0.000 description 44
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 39
- 230000000694 effects Effects 0.000 description 32
- 238000009713 electroplating Methods 0.000 description 31
- 239000011651 chromium Substances 0.000 description 30
- 230000001965 increasing effect Effects 0.000 description 29
- 238000000034 method Methods 0.000 description 27
- 239000000203 mixture Substances 0.000 description 27
- 239000006087 Silane Coupling Agent Substances 0.000 description 20
- 239000000758 substrate Substances 0.000 description 18
- 238000005259 measurement Methods 0.000 description 17
- 238000007788 roughening Methods 0.000 description 17
- 239000000126 substance Substances 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 9
- 238000010168 coupling process Methods 0.000 description 9
- 229910000077 silane Inorganic materials 0.000 description 9
- 238000004381 surface treatment Methods 0.000 description 9
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 230000008878 coupling Effects 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 8
- 230000006872 improvement Effects 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 238000007654 immersion Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 4
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 230000003449 preventive effect Effects 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- ZDDUSDYMEXVQNJ-UHFFFAOYSA-N 1H-imidazole silane Chemical compound [SiH4].N1C=NC=C1 ZDDUSDYMEXVQNJ-UHFFFAOYSA-N 0.000 description 1
- HKHOJUXNSUWOTC-UHFFFAOYSA-N 2-(dimethoxysilylmethyl)butane-1,4-diamine Chemical compound NCCC(C[SiH](OC)OC)CN HKHOJUXNSUWOTC-UHFFFAOYSA-N 0.000 description 1
- NLSFWPFWEPGCJJ-UHFFFAOYSA-N 2-methylprop-2-enoyloxysilicon Chemical compound CC(=C)C(=O)O[Si] NLSFWPFWEPGCJJ-UHFFFAOYSA-N 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910018605 Ni—Zn Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- VDGMIGHRDCJLMN-UHFFFAOYSA-N [Cu].[Co].[Ni] Chemical compound [Cu].[Co].[Ni] VDGMIGHRDCJLMN-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- ZGDWHDKHJKZZIQ-UHFFFAOYSA-N cobalt nickel Chemical compound [Co].[Ni].[Ni].[Ni] ZGDWHDKHJKZZIQ-UHFFFAOYSA-N 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 1
- CMMUKUYEPRGBFB-UHFFFAOYSA-L dichromic acid Chemical compound O[Cr](=O)(=O)O[Cr](O)(=O)=O CMMUKUYEPRGBFB-UHFFFAOYSA-L 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical compound S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/382—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
- H05K3/384—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/12—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/14—Layered products comprising a layer of metal next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/02—Local etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
- C23F1/14—Aqueous compositions
- C23F1/16—Acidic compositions
- C23F1/18—Acidic compositions for etching copper or alloys thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
- C25D5/12—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
- C25D5/12—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
- C25D5/14—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/605—Surface topography of the layers, e.g. rough, dendritic or nodular layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/627—Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
- C25D7/0614—Strips or foils
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
- C25D9/08—Electrolytic coating other than with metals with inorganic materials by cathodic processes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/022—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/06—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/06—Coating on the layer surface on metal layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/20—Inorganic coating
- B32B2255/205—Metallic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/028—Paper layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/206—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/538—Roughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/748—Releasability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/38—Chromatising
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/04—Electroplating: Baths therefor from solutions of chromium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/12—Electroplating: Baths therefor from solutions of nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/562—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0338—Layered conductor, e.g. layered metal substrate, layered finish layer or layered thin film adhesion layer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0355—Metal foils
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/03—Metal processing
- H05K2203/0307—Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12431—Foil or filament smaller than 6 mils
Definitions
- This disclosure relates to a surface-treated copper foil, a copper clad laminate, and a printed wiring board.
- circuit patterns also called “conductor patterns” for printed wiring boards mounted on electronic devices.
- various methods such as a subtractive method and a semi-additive method are known.
- the subtractive method an insulating base material is bonded to a copper foil to form a copper-clad laminate, and then a resist is applied to the copper foil surface and exposed to form a predetermined resist pattern.
- the circuit pattern is formed by removing the unexposed portion (unnecessary portion) by etching.
- Patent Document 1 discloses that a surface of a copper foil is subjected to a roughening process by copper-cobalt-nickel alloy plating, and then a cobalt-nickel alloy plating layer is formed. It is described that a surface-treated copper foil capable of making a fine pitch circuit pattern can be obtained by forming a zinc-nickel alloy plating layer.
- the conventional surface-treated copper foil has a slower etching rate of the surface treatment layer (plating layer) than the etching rate of the copper foil, so it spreads from the copper foil surface (top) toward the insulating substrate (bottom) side. As a result, the etching factor of the circuit pattern is lowered. If the etching factor of the circuit pattern is low, it is necessary to widen the space between adjacent circuits, so that it is difficult to make the circuit pattern fine pitch. Thus, the conventional surface-treated copper foil has a problem that the circuit formability is not sufficient.
- Embodiments of the present invention have been made to solve the above-described problems, and an object of the present invention is to provide a surface-treated copper foil and a copper-clad laminate that are excellent in circuit formability. Another object of the present invention is to provide a printed wiring board having a circuit pattern with a fine pitch.
- the present inventors have controlled the Ni concentration obtained from the XPS depth profile within a specific range in the surface treatment layer formed on one surface of the copper foil. As a result, it has been found that the circuit formability can be improved, and the present invention has been achieved.
- the embodiment of the present invention has a copper foil and a first surface treatment layer formed on one surface of the copper foil, and the first surface treatment layer has a sputtering rate in an XPS depth profile.
- the Ni concentration is 0.1 to 15 with respect to the total amount of elements of C, N, O, Zn, Cr, Ni, Co, Si and Cu when sputtering is performed at 2.5 nm / min (SiO 2 conversion) for 1 minute.
- embodiment of this invention is related with a copper clad laminated board provided with the said surface treatment copper foil and the insulating base material adhere
- embodiment of this invention is related with a printed wiring board provided with the circuit pattern formed by etching the said surface-treated copper foil of the said copper clad laminated board.
- the embodiment of the present invention it is possible to provide a surface-treated copper foil and a copper clad laminate excellent in circuit formability. Moreover, according to the embodiment of the present invention, it is possible to provide a printed wiring board having a circuit pattern with a fine pitch.
- FIG. 1 is a cross-sectional view of a copper clad laminate using a surface-treated copper foil according to an embodiment of the present invention.
- the surface-treated copper foil 1 has a copper foil 2 and a first surface-treated layer 3 formed on one surface of the copper foil 2.
- the copper clad laminate 10 includes a surface-treated copper foil 1 and an insulating base material 11 bonded to the first surface-treated layer 3 of the surface-treated copper foil 1.
- the first surface treatment layer 3 is C, N, O, Zn, Cr, Ni, Co, Si when sputtering is performed for 1 minute at a sputtering rate of 2.5 nm / min (in terms of SiO 2 ) in the XPS depth profile.
- the Ni concentration with respect to the total amount of Cu elements is 0.1 to 15.0 atm%.
- the first surface treatment layer 3 of the surface-treated copper foil 1 according to the embodiment of the present invention was sputtered with Ar + accelerated at 3 kV under high vacuum.
- This Ni concentration is the Ni concentration at a depth of 2.5 nm from the surface of the first surface treatment layer 3, and serves as an index of the ratio of Ni in the vicinity of the outermost layer of the first surface treatment layer 3.
- the Ni concentration is preferably controlled to 10.0 atm% or less, more preferably 5.0 atm% or less, and further preferably 3.5 atm% or less.
- Ni is a component that provides effects such as heat resistance
- effects such as heat resistance can be ensured by controlling the Ni concentration to 0.1 atm% or more.
- the Ni concentration is preferably controlled to 0.5 atm% or more, more preferably 1.0 atm% or more, and further preferably 1.5 atm% or more.
- the first surface treatment layer 3 is C, N, O, Zn, Cr, Ni, Co, Si when sputtering is performed for 1 minute at a sputtering rate of 2.5 nm / min (in terms of SiO 2 ) in the XPS depth profile.
- the Zn concentration with respect to the total amount of elements of Cu and Cu is preferably 5.0 to 40.0 atm%. This Zn concentration is the Zn concentration at a depth of 2.5 nm from the surface of the first surface treatment layer 3 and is an index of the ratio of Zn in the vicinity of the outermost layer of the first surface treatment layer 3.
- the Zn concentration is preferably controlled to 10.0 atm% or more, more preferably 15.0 atm% or more.
- Zn is a component that provides effects such as heat resistance and chemical resistance, but if the concentration is too high, the effects may be reduced.
- this Zn concentration is controlled to 40.0 atm% or less from the viewpoint of preventing circuit peeling and the like while ensuring effects such as heat resistance and chemical resistance by Zn. From the viewpoint of stably obtaining the effect, the Zn concentration is preferably controlled to 35 atm% or less, more preferably 30 atm% or less.
- the first surface treatment layer 3 has C, N, O, Zn, Cr, Ni for 1 minute to 2 minutes when sputtering is performed at a sputtering rate of 2.5 nm / min (in terms of SiO 2 ) in the XPS depth profile.
- the integrated value of the Ni concentration with respect to the total amount of elements of Co, Si, and Cu is preferably 0.1 to 18.0 atm%. This integrated value of Ni concentration is the integrated value of Ni concentration at a depth of 2.5 to 5.0 nm from the surface of the first surface treatment layer 3, and the ratio of Ni in the vicinity of the outermost surface layer of the first surface treatment layer 3 It becomes an index.
- the integrated value of the Ni concentration is preferably controlled to 15.0 atm% or less, more preferably 10.0 atm% or less, and even more preferably 8.0 atm% or less.
- the integrated value of the Ni concentration is preferably controlled to 0.5 atm% or more, more preferably 1.0 atm% or more, and further preferably 1.5 atm% or more.
- the first surface treatment layer 3 has C, N, O, Zn, Cr, Ni for 1 minute to 2 minutes when sputtering is performed at a sputtering rate of 2.5 nm / min (in terms of SiO 2 ) in the XPS depth profile.
- the integrated value of Zn concentration with respect to the total amount of elements of Co, Si, and Cu is preferably 5.0 to 40.0 atm%. This integrated value of Zn concentration is the integrated value of Zn concentration at a depth of 2.5 to 5.0 nm from the surface of the first surface treatment layer 3, and the ratio of Zn in the vicinity of the outermost surface layer of the first surface treatment layer 3 It becomes an index.
- the integrated value of the Zn concentration is preferably controlled to 10.0 atm% or more, more preferably 12.0 atm% or more.
- effects such as heat resistance and chemical resistance can be secured by controlling the integrated value of Zn concentration to 40.0 atm% or less.
- the integrated value of the Zn concentration is preferably controlled to 38 atm% or less, more preferably 35 atm% or less.
- the first surface treatment layer 3 has C, N, O, Zn, Cr, Ni for 1 minute to 2 minutes when sputtering is performed at a sputtering rate of 2.5 nm / min (in terms of SiO 2 ) in the XPS depth profile.
- the sum of the integrated values of Ni and Zn with respect to the total amount of elements of Co, Si, and Cu (hereinafter also simply referred to as “sum of integrated values of Ni and Zn”) is 10.0 to 45.0 atm%. Preferably there is.
- the sum of the integral values is an index of the ratio of Ni and Zn in the vicinity of the outermost surface layer of the first surface treatment layer 3.
- the sum of the integral values is preferably controlled to 15.0 atm% or more, more preferably 20.0 atm% or more.
- the etching factor can be stably increased while providing effects such as heat resistance and chemical resistance.
- the sum of the integral values is preferably controlled to 40 atm% or less, more preferably 38 atm% or less.
- the first surface treatment layer 3 has C, N, O, Zn, Cr, Ni, Co, Si when sputtering is performed at a sputtering rate of 2.5 nm / min (in terms of SiO 2 ) for 7 minutes in the XPS depth profile.
- the Cu concentration with respect to the total amount of Cu elements is preferably 70 to 98 atm%. This Cu concentration is a Cu concentration at a depth of 17.5 nm from the surface of the first surface treatment layer 3, and serves as an index of the ratio of copper at this depth.
- the Cu concentration is preferably controlled to 80 atm% or more, more preferably 90 atm% or more.
- the Cu concentration is preferably controlled to 97 atm% or less, more preferably 96 atm% or less.
- the first surface treatment copper foil 1 is etched first.
- Etching of the surface treatment layer 3 proceeds rapidly, but the sum of the integrated values of Ni and Zn, which is the ratio of Ni and Zn in the vicinity of the outermost surface layer of the first surface treatment layer 3, is 10.0 to 45.0 atm%, preferably Is controlled to be 15.0 atm% to 40 atm%, more preferably 20.0 atm% to 38 atm%, thereby ensuring a high level of both high etching factor and ensuring heat resistance and chemical resistance. .
- the peel strength with the insulating base material 11 can be maintained even after heating. Furthermore, by reducing the content of magnetic metal (Ni, Co, etc.) in the first surface treatment layer 3, the surface-treated copper foil 1 for forming a high-frequency signal circuit whose use is expanding in recent years Can also be suitably used.
- the first surface treatment layer 3 preferably has a ten-point average roughness Rz defined by JIS B0601: 1994 of 0.4 to 1.2 ⁇ m. By controlling the ten-point average roughness Rz within this range, it is possible to improve both the adhesion of the first surface treatment layer 3 to the insulating substrate 11 and the etching factor. From the viewpoint of stably enhancing this effect, the Rz of the first surface treatment layer 3 is more preferably 0.5 to 0.9 ⁇ m.
- the first surface treatment layer 3 preferably has a root mean square height Sq of 0.32 ⁇ m or less, and more preferably 0.30 ⁇ m or less.
- the root mean square height Sq is an index representing the average amplitude in the height direction of the surface.
- the lower limit of the root mean square height Sq is not particularly limited, but is preferably 0.20 ⁇ m or more.
- the first surface treatment layer 3 preferably has a protruding valley depth Svk of 0.38 ⁇ m or less, and more preferably 0.35 ⁇ m or less.
- the protruding valley depth Svk is an index representing the average depth of the protruding valley.
- Svk of the first surface treatment layer 3 is related to etching residue.
- the etching residue is a residue on the insulating substrate 11 remaining around the circuit pattern after the circuit pattern is formed by etching, and can be confirmed by an SEM image (3000 times) of the circuit pattern as shown in FIG. it can.
- SEM image 3000 times
- the first surface treatment layer 3 preferably has an average length RSm of roughness curve elements based on JIS B0601: 2013 of 5 to 10 ⁇ m.
- RSm is an index representing the average interval of the uneven shape on the surface.
- the size of the particles forming the first surface treatment layer 3 is increased, the surface irregularity interval is increased, and thus RSm is increased.
- RSm increases, the adhesive strength of the surface-treated copper foil 1 to the insulating base material increases, but a portion that remains undissolved by the etching process tends to occur. That is, the etching process tends to form a trapezoidal circuit pattern with the bottom portion having a skirt, and the etching factor tends to decrease.
- the etching factor is improved, but the adhesive strength of the surface-treated copper foil 1 to the insulating base material tends to be reduced. Therefore, in order to achieve both improvement in adhesion to the insulating substrate and improvement in etching property, it is preferable to control the RSm of the first surface treatment layer 3 within the above range. By controlling RSm like this, the surface of the first surface treatment layer 3 can be made into a surface shape suitable for achieving both improved adhesion to an insulating substrate and improved etching properties.
- the uneven shape on the surface of the first surface treatment layer 3 is formed with an appropriate balance, the etching factor of the circuit pattern and the adhesion to the insulating substrate can be enhanced. From the viewpoint of stably obtaining such an effect, it is preferable to control RSm to 5 to 9 ⁇ m.
- the first surface treatment layer 3 preferably has an average length AR of a roughness motif based on JIS B0631: 2000 of 6 to 20 ⁇ m.
- AR is an index representing a fine uneven shape on the surface.
- the size of the particles forming the first surface treatment layer 3 is increased, the surface irregularities are increased, and thus the AR is increased.
- AR becomes large the adhesive force of the surface-treated copper foil 1 to the insulating base material becomes strong, but a portion that remains undissolved by the etching process tends to occur. That is, the etching process tends to form a trapezoidal circuit pattern with the bottom portion having a skirt, and the etching factor tends to decrease.
- the size of the particles forming the first surface treatment layer 3 is small, the tendency tends to be opposite to the above. That is, the etching factor is improved, but the adhesive strength of the surface-treated copper foil 1 to the insulating base material tends to be reduced. Therefore, it is preferable to control the AR of the first surface treatment layer 3 in the above range in order to achieve both improvement in adhesion to the insulating substrate and improvement in etching property. By performing such AR control, the surface of the first surface treatment layer 3 can be made into a surface shape suitable for achieving both improved adhesion to the insulating substrate and improved etching properties.
- the uneven shape on the surface of the first surface treatment layer 3 is formed with an appropriate balance, the etching factor of the circuit pattern and the adhesion to the insulating substrate can be enhanced. From the viewpoint of stably obtaining such an effect, it is preferable to control AR to 7 to 18 ⁇ m.
- the first surface treatment layer 3 has a CIE L * a * b * colorimetric system a * (hereinafter also referred to as “a * ”) measured from JIS Z8730: 2009 based on geometric condition C of 3.0 to 3.0. It is preferably 28.0.
- a * is a value expressing red, and copper exhibits a color close to red. Therefore, by controlling a * within the above range, the amount of copper in the first surface treatment layer 3 can be adjusted to a range in which the solubility in the etching solution is good. Factor can be increased. From the viewpoint of stably obtaining such an effect, it is preferable to control a * to 5.0 to 23.0.
- the first surface treatment layer 3 has a CIE L * a * b * color system L * (hereinafter also referred to as “L * ”) measured from the geometric condition C of JIS Z8730: 2009 of 39.0 to It is preferably 94.0.
- L * is an index mainly related to black and white, and is related to the amount of Zn that controls heat resistance. Since Zn has a characteristic that it is more easily dissolved in an etchant than Ni, as will be described later, by controlling L * within the above range, an appropriate amount of Zn having an effect on heat resistance and etching factor can be obtained. Can be adjusted to the range. Therefore, the etching factor of the circuit pattern can be increased. From the viewpoint of stably obtaining such an effect, L * is preferably controlled to 44.0 to 84.0, and more preferably 54.0 to 70.0.
- the first surface treatment layer 3 preferably contains at least Ni and Zn as adhesion elements. Since Ni is a component that is difficult to dissolve in the etching solution, the first surface treatment layer 3 is easily dissolved in the etching solution by controlling the Ni adhesion amount of the first surface treatment layer 3 to 200 ⁇ g / dm 2 or less. As a result, the etching factor of the circuit pattern can be increased. From the viewpoint of stably increasing the etching factor, the Ni adhesion amount of the first surface treatment layer 3 is preferably controlled to 180 ⁇ g / dm 2 or less, more preferably 100 ⁇ g / dm 2 or less.
- the Ni adhesion amount of the first surface treatment layer 3 is controlled to 20 ⁇ g / dm 2 or more.
- surface treatment such as gold plating may be performed after the circuit pattern is formed.
- Soft etchant may permeate.
- Ni has an effect of suppressing the penetration of the soft etching solution.
- the Ni adhesion amount of the first surface treatment layer 3 is preferably controlled to 30 ⁇ g / dm 2 or more, and more preferably 40 ⁇ g / dm 2 or more.
- the Zn adhesion amount of the first surface treatment layer 3 is preferably controlled to 700 ⁇ g / dm 2 or less, more preferably 600 ⁇ g / dm 2 or less.
- the Zn adhesion amount of the first surface treatment layer 3 is 20 ⁇ g / dm 2 or more, preferably 100 ⁇ g / dm 2 or more, more preferably controlled to 300 [mu] g / dm 2 or more.
- Zn has a barrier effect that prevents thermal diffusion of copper, it is possible to suppress the roughened particles and copper in the copper foil from appearing on the surface layer due to thermal diffusion.
- a chemical solution such as a soft etching solution, it is possible to prevent the soft etching solution from penetrating into the edge portion of the circuit pattern.
- the first surface treatment layer 3 can further contain elements such as Co and Cr in addition to Ni and Zn as an adhering element.
- Co deposition amount of the first surface treatment layer 3 is not particularly limited since it depends on the type of the first surface treatment layer 3, preferably 1500 [mu] g / dm 2 or less, more preferably 500 [mu] g / dm 2 or less, more preferably 100 ⁇ g / Dm 2 or less, particularly preferably 30 ⁇ g / dm 2 or less.
- the lower limit of the amount of deposited Co is not particularly limited, but is typically 0.1 ⁇ g / dm 2 , preferably 0.5 ⁇ g / dm 2 . Further, since Co is a magnetic metal, printed wiring having excellent high-frequency characteristics can be obtained by suppressing the amount of Co deposited on the first surface treatment layer 3 to 100 ⁇ g / dm 2 or less, preferably 0.5 to 100 ⁇ g / dm 2. A surface-treated copper foil 1 capable of producing a plate can be obtained.
- the Cr adhesion amount of the first surface treatment layer 3 is not particularly limited because it depends on the type of the first surface treatment layer 3, but is preferably 500 ⁇ g / dm 2 or less, more preferably 0.5 to 300 ⁇ g / dm 2 , Preferably, it is 1 to 100 ⁇ g / dm 2 .
- the kind of 1st surface treatment layer 3 is not specifically limited, Various surface treatment layers well-known in the said technical field can be used.
- the surface treatment layer used for the first surface treatment layer 3 include a roughening treatment layer, a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer. These layers can be used singly or in combination of two or more.
- the first surface treatment layer 3 preferably has a roughening treatment layer from the viewpoint of adhesiveness with the insulating base material 11.
- the “roughening treatment layer” is a layer formed by roughening treatment, and includes a layer of roughening particles.
- normal copper plating or the like may be performed as a pretreatment, or normal copper plating or the like may be performed as a finishing treatment to prevent dropping of roughened particles.
- the “roughening treatment layer” in the book includes layers formed by these pretreatments and finishing treatments.
- grains It forms from the single-piece
- the roughening treatment layer can be formed by electroplating.
- the conditions are not particularly limited, but typical conditions are as follows. Electroplating may be performed in two stages. Plating solution composition: 10 to 20 g / L Cu, 50 to 100 g / L sulfuric acid Plating solution temperature: 25 to 50 ° C. Electroplating conditions: current density 1 to 60 A / dm 2 , time 1 to 10 seconds
- a heat resistant layer may function also as a rust preventive layer, you may form one layer which has a function of both a heat resistant layer and a rust preventive layer as a heat resistant layer and a rust preventive layer.
- nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, tantalum It may be a layer containing one or more elements selected from (which may be in any form of metal, alloy, oxide, nitride, sulfide, etc.).
- the heat-resistant layer and / or the rust-preventing layer include a layer containing a nickel-zinc alloy.
- the heat resistant layer and the rust preventive layer can be formed by electroplating.
- the conditions are not particularly limited, but the conditions for a typical heat-resistant layer (Ni—Zn layer) are as follows.
- Plating solution composition 1-30 g / L Ni, 1-30 g / L Zn Plating solution pH: 2-5
- Plating solution temperature 30-50 ° C
- Electroplating conditions current density 1 to 10 A / dm 2 , time 0.1 to 5 seconds
- the “chromate treatment layer” means a layer formed of a liquid containing chromic anhydride, chromic acid, dichromic acid, chromate or dichromate.
- Chromate treatment layer can be any element such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic, titanium (metal, alloy, oxide, nitride, sulfide, etc.
- the layer may be in the form).
- chromate treatment layer examples include a chromate treatment layer treated with chromic anhydride or a potassium dichromate aqueous solution, a chromate treatment layer treated with a treatment solution containing anhydrous chromic acid or potassium dichromate and zinc, and the like.
- the chromate treatment layer can be formed by a known method such as immersion chromate treatment or electrolytic chromate treatment. Although those conditions are not specifically limited, For example, the conditions of a typical immersion chromate treatment layer are as follows. Chromate solution composition: 1 to 10 g / L K 2 Cr 2 O 7 , 0.01 to 10 g / L Zn Chromate solution pH: 2-5 Chromate solution temperature: 30-50 ° C
- silane coupling treatment layer means a layer formed of a silane coupling agent. It does not specifically limit as a silane coupling agent, A well-known thing can be used in the said technical field.
- silane coupling agents include amino silane coupling agents, epoxy silane coupling agents, mercapto silane coupling agents, methacryloxy silane coupling agents, vinyl silane coupling agents, and imidazole silane coupling agents. And triazine-based silane coupling agents. Among these, amino silane coupling agents and epoxy silane coupling agents are preferable. The above silane coupling agents can be used alone or in combination of two or more.
- silane coupling agent can be manufactured by a well-known method, you may use a commercial item.
- examples of commercially available products that can be used as silane coupling agents include KBM series and KBE series manufactured by Shin-Etsu Chemical Co., Ltd.
- a commercially available silane coupling agent may be used alone, but from the viewpoint of adhesion (peel strength) between the first surface treatment layer 3 and the insulating substrate 11, a mixture of two or more silane coupling agents.
- a preferable mixture of silane coupling agents is a mixture of KBM603 (N-2- (aminoethyl) -3-aminopropyltrimethoxysilane) and KBM503 (3-methacryloxypropyltrimethoxysilane), KBM602 (N- A mixture of 2- (aminoethyl) -3-aminopropyldimethoxysilane) and KBM503 (3-methacryloxypropyltrimethoxysilane), KBM603 (N-2- (aminoethyl) -3-aminopropyltrimethoxysilane) and A mixture of KBE503 (3-methacryloxypropyltriethoxysilane), KBM602 (N-2- (aminoethyl) -3-aminopropyldimethoxysilane) and KBE503 (3-methacryloxypropyltriethoxysilane),
- the surface treatment copper foil 1 can further have the 2nd surface treatment layer 4 formed in the other surface of the copper foil 2, as shown in FIG.
- the kind of the 2nd surface treatment layer 4 is not specifically limited, Like the 1st surface treatment layer 3, various surface treatment layers well-known in the said technical field can be used.
- the type of the second surface treatment layer 4 may be the same as or different from that of the first surface treatment layer 3.
- the 2nd surface treatment layer 4 can contain elements, such as Ni, Zn, Cr, as an adhesion element.
- the ratio of the Ni adhesion amount of the first surface treatment layer 3 to the Ni adhesion amount of the second surface treatment layer 4 is preferably 0.01 to 2.5, more preferably 0.6 to 2.2. Since Ni is a component that is difficult to dissolve in the etching solution, the first surface treatment layer that becomes the bottom side of the circuit pattern when the copper clad laminate 10 is etched by setting the ratio of the Ni adhesion amount within the above range. 3 is promoted, and dissolution of the second surface treatment layer 4 on the top side of the circuit pattern can be suppressed. Therefore, a circuit pattern having a small difference between the top width and the bottom width and a high etching factor can be obtained.
- the amount of Ni deposited on the second surface treatment layer 4 is not particularly limited because it depends on the type of the second surface treatment layer 4, but is preferably 0.1 to 500 ⁇ g / dm 2 , more preferably 0.5 to 200 ⁇ g / dm. 2 and more preferably 1 to 100 ⁇ g / dm 2 .
- the etching factor of the circuit pattern can be stably increased.
- the amount of Zn deposited on the second surface treatment layer 4 is not particularly limited because it depends on the type of the second surface treatment layer 4, but preferably 10 to 1000 ⁇ g / dm when the second surface treatment layer 4 contains Zn. 2 , more preferably 50 to 500 ⁇ g / dm 2 , still more preferably 100 to 300 ⁇ g / dm 2 .
- the Cr adhesion amount of the second surface treatment layer 4 is not particularly limited because it depends on the type of the second surface treatment layer 4, but when Cr is contained in the second surface treatment layer 4, it preferably exceeds 0 ⁇ g / dm 2. 500 ⁇ g / dm 2 or less, more preferably 0.1 to 100 ⁇ g / dm 2 , still more preferably 1 to 50 ⁇ g / dm 2 .
- the Cr adhesion amount of the second surface treatment layer 4 is not particularly limited because it depends on the type of the second surface treatment layer 4, but when Cr is contained in the second surface treatment layer 4, it preferably exceeds 0 ⁇ g / dm 2. 500 ⁇ g / dm 2 or less, more preferably 0.1 to 100 ⁇ g / dm 2 , still more preferably 1 to 50 ⁇ g / dm 2 .
- the copper foil 2 is not particularly limited, and may be either an electrolytic copper foil or a rolled copper foil.
- the electrolytic copper foil is generally manufactured by electrolytically depositing copper on a titanium or stainless steel drum from a copper sulfate plating bath. The flat S surface (shine surface) formed on the drum side, And an M surface (mat surface) formed on the opposite side.
- the M surface of the electrolytic copper foil has irregularities, by forming the first surface treatment layer 3 on the M surface of the electrolytic copper foil and the second surface treatment layer 4 on the S surface of the electrolytic copper foil, Adhesiveness between the first surface treatment layer 3 and the insulating substrate 11 can be enhanced.
- the tough pitch copper JIS H3100 alloy number C1100
- an oxygen free copper JIS H3100 High purity copper
- a copper alloy such as copper containing Sn, copper containing Ag, a copper alloy added with Cr, Zr, Mg, or the like, or a Corson copper alloy added with Ni, Si, or the like can also be used.
- the “copper foil 2” is a concept including a copper alloy foil.
- the thickness of the copper foil 2 is not particularly limited, but may be, for example, 1 to 1000 ⁇ m, alternatively 1 to 500 ⁇ m, alternatively 1 to 300 ⁇ m, alternatively 3 to 100 ⁇ m, alternatively 5 to 70 ⁇ m, alternatively 6 to 35 ⁇ m, alternatively 9 to 18 ⁇ m. it can.
- the surface-treated copper foil 1 having the above-described configuration can be manufactured according to a method known in the technical field.
- the ratio of the Ni adhesion amount and the Ni adhesion amount of the first surface treatment layer 3 and the second surface treatment layer 4 can be controlled, for example, by changing the type and thickness of the surface treatment layer to be formed.
- Rz of the 1st surface treatment layer 3 can be controlled by adjusting the formation conditions of the 1st surface treatment layer 3, etc., for example.
- the copper clad laminate 10 can be manufactured by adhering an insulating base material 11 to the first surface treatment layer 3 of the surface-treated copper foil 1.
- the insulating substrate 11 is not particularly limited, and those known in the technical field can be used.
- the insulating base material 11 include a paper base phenol resin, a paper base epoxy resin, a synthetic fiber cloth base epoxy resin, a glass cloth / paper composite base epoxy resin, a glass cloth / glass non-woven composite base epoxy resin, A glass cloth base epoxy resin, a polyester film, a polyimide film, a liquid crystal polymer, a fluororesin, etc. are mentioned.
- the method for adhering the surface-treated copper foil 1 and the insulating base material 11 is not particularly limited, and can be performed according to a method known in the technical field.
- the surface-treated copper foil 1 and the insulating base material 11 may be laminated and thermocompression bonded.
- the copper clad laminate 10 manufactured as described above can be used for manufacturing a printed wiring board. It does not specifically limit as a manufacturing method of a printed wiring board, Well-known methods, such as a subtractive method and a semiadditive method, can be used. Among them, the copper clad laminate 10 is optimal for use in the subtractive method.
- FIG. 4 is a cross-sectional view for explaining a method of manufacturing a printed wiring board by a subtractive method.
- a predetermined resist pattern 20 is formed by applying, exposing and developing a resist on the surface of the surface-treated copper foil 1 of the copper clad laminate 10 (step (a)).
- the surface-treated copper foil 1 in a portion where the resist pattern 20 is not formed (unnecessary portion) is removed by etching (step (b)).
- step (c) the various conditions in this subtractive method are not specifically limited, It can carry out according to a well-known condition in the said technical field.
- Example 1 Prepare a rolled copper foil with a thickness of 12 ⁇ m (HA-V2 foil manufactured by JX Metals). On one side, a roughening layer, a heat-resistant layer, a chromate layer and a silane coupling layer are sequentially formed as the first surface treatment layer. While forming, a heat-resistant layer and a chromate treatment layer were sequentially formed as a second surface treatment layer on the other surface to obtain a surface-treated copper foil. The conditions for forming each layer are as follows.
- Plating solution composition 23.5 g / L Ni, 4.5 g / L Zn Plating solution pH: 3.6
- Plating solution temperature 40 ° C
- Electroplating conditions current density 1.1 A / dm 2 , time 0.7 seconds
- ⁇ Silane coupling treatment layer of first surface treatment layer> A silane coupling treatment layer is applied by applying a 1.2 volume% aqueous solution (pH: 10) of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (KBM603 manufactured by Shin-Etsu Chemical Co., Ltd.) and drying. Formed.
- Plating solution composition 23.5 g / L Ni, 4.5 g / L Zn Plating solution pH: 3.6
- Plating solution temperature 40 ° C
- Electroplating conditions current density 2.8 A / dm 2 , time 0.7 seconds
- Chromate solution composition 3.0 g / L K 2 Cr 2 O 7 , 0.33 g / L Zn Chromate solution pH: 3.6
- Example 2 A surface-treated copper foil was obtained in the same manner as in Example 1 except that the conditions for forming the heat-resistant layer of the first surface-treated layer were changed as follows. ⁇ Heat resistant layer of the first surface treatment layer> A heat-resistant layer was formed by electroplating. Plating solution composition: 23.5 g / L Ni, 4.5 g / L Zn Plating solution pH: 3.6 Plating solution temperature: 40 ° C Electroplating conditions: current density 2.6 A / dm 2 , time 0.7 seconds
- Example 3 A surface-treated copper foil was obtained in the same manner as in Example 1 except that the conditions for forming the heat-resistant layer of the first surface-treated layer were changed as follows. ⁇ Heat resistant layer of the first surface treatment layer> A heat-resistant layer was formed by electroplating. Plating solution composition: 23.5 g / L Ni, 4.5 g / L Zn Plating solution pH: 3.6 Plating solution temperature: 40 ° C Electroplating conditions: current density 4.2 A / dm 2 , time 0.7 seconds
- Example 4 A surface-treated copper foil was obtained in the same manner as in Example 1 except that the formation conditions of the heat-resistant layers of the first surface treatment layer and the second surface treatment layer were changed as follows. ⁇ Heat resistant layer of the first surface treatment layer> A heat-resistant layer was formed by electroplating. Plating solution composition: 23.5 g / L Ni, 4.5 g / L Zn Plating solution pH: 3.6 Plating solution temperature: 40 ° C Electroplating conditions: current density 2.1 A / dm 2 , time 0.7 seconds ⁇ heat-resistant layer of second surface treatment layer> A heat-resistant layer was formed by electroplating.
- Plating solution composition 23.5 g / L Ni, 4.5 g / L Zn Plating solution pH: 3.6 Plating solution temperature: 40 ° C Electroplating conditions: current density 2.8 A / dm 2 , time 0.7 seconds
- Comparative Example 1 Prepare a rolled copper foil with a thickness of 12 ⁇ m (HA-V2 foil manufactured by JX Metals). On one side, a roughening layer, a heat-resistant layer, a chromate layer and a silane coupling layer are sequentially formed as the first surface treatment layer. While forming, a heat-resistant layer and a chromate treatment layer were sequentially formed as a second surface treatment layer on the other surface to obtain a surface-treated copper foil. The conditions for forming each layer are as follows. ⁇ Roughening treatment layer of first surface treatment layer> A roughening treatment layer was formed by electroplating.
- Plating solution composition 15 g / L Cu, 7.5 g / L Co, 9.5 g / L Ni Plating solution pH: 2.4 Plating solution temperature: 36 ° C
- Electroplating conditions current density 31.5 A / dm 2 , time 1.8 seconds
- a heat-resistant layer (1) was formed by electroplating.
- Plating solution composition 3 g / L Co, 13 g / L Ni Plating solution pH: 2.0 Plating solution temperature: 50 ° C
- Electroplating conditions current density 19.1 A / dm 2 , time 0.4 seconds
- a heat-resistant layer (2) was formed by electroplating.
- Plating solution composition 23.5 g / L Ni, 4.5 g / L Zn Plating solution pH: 3.6
- Plating solution temperature 40 ° C
- Electroplating conditions current density 3.5 A / dm 2 , time 0.4 seconds
- Chromate solution composition 3.0 g / L K 2 Cr 2 O 7 , 0.33 g / L Zn Chromate solution pH: 3.6
- ⁇ Silane coupling treatment layer of first surface treatment layer> A silane coupling treatment layer is applied by applying a 1.2 volume% aqueous solution (pH: 10) of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (KBM603 manufactured by Shin-Etsu Chemical Co., Ltd.) and drying. Formed.
- Plating solution composition 23.5 g / L Ni, 4.5 g / L Zn Plating solution pH: 3.6
- Plating solution temperature 40 ° C
- Electroplating conditions current density 4.1 A / dm 2 , time 0.4 seconds
- Chromate solution composition 3.0 g / L K 2 Cr 2 O 7 , 0.33 g / L Zn Chromate solution pH: 3.6
- the adhesion amount of Ni, Zn and Co is determined by dissolving each surface treatment layer in nitric acid having a concentration of 20% by mass, and performing quantitative analysis by atomic absorption spectrometry using an atomic absorption spectrophotometer (model: AA240FS) manufactured by VARIAN. Was measured.
- the amount of Cr deposited was measured by dissolving each surface-treated layer in hydrochloric acid having a concentration of 7% by mass and performing quantitative analysis by atomic absorption in the same manner as described above.
- Ni concentration, the Zn concentration, and the Cu concentration at a predetermined depth of the first surface treatment layer were measured. Further, based on the measured values, an integrated value of Ni concentration and an integrated value of Zn concentration were calculated.
- the Ni concentration and the Zn concentration are obtained when XPS analysis is performed in the depth direction with respect to the first surface treatment layer of the surface-treated copper foil, and sputtering is performed for 1 minute at a sputtering rate of 2.5 nm / minute (SiO 2 conversion). It calculated
- Cu concentration is an element to be measured when XPS analysis is performed in the depth direction with respect to the first surface treatment layer of the surface-treated copper foil, and sputtering is performed for 7 minutes at a sputtering rate of 2.5 nm / min (in terms of SiO 2 ). It was determined by measuring the concentration of Cu with respect to the total amount.
- the integrated values of Ni concentration and Zn concentration are obtained when XPS analysis is performed in the depth direction with respect to the first surface treatment layer of the surface-treated copper foil, and sputtering is performed at a sputtering rate of 2.5 nm / min (in terms of SiO 2 ).
- Ni concentration and the Zn concentration with respect to the total amount of the element to be measured for 1 to 2 minutes were measured, and the integral values were calculated by the methods described later.
- a specific example of this will be described by taking the calculation method of the integrated value of Ni concentration as an example, but the integrated value of Zn concentration was also calculated by the same method.
- a Ni concentration was obtained by XPS analysis every 0.2 minutes of sputtering time, and a graph was created in which the sputtering time was plotted on the horizontal axis and the Ni concentration was plotted on the vertical axis. Next, after creating a figure approximated to a trapezoid using this graph, the integrated value of the Ni concentration when sputtering for 1 to 2 minutes was calculated by calculating the area.
- the obtained Ni concentration value was calculated up to a value of 10 ⁇ 4 .
- FIG. 5 An example of a figure approximating a trapezoid is shown in FIG. In FIG. 5, the shaded area is the area of the portion corresponding to the integrated value of the Ni concentration when sputtering is performed for 1 to 2 minutes.
- FIG. 5 is merely a diagram for explaining a method of calculating the integrated value of Ni concentration, and is not a measurement result of the examples described in this specification.
- Rz (10-point average roughness) was measured according to JIS B0601: 1994 using a contact roughness meter Surfcorder SE-3C manufactured by Kosaka Laboratory.
- the measurement reference length is 0.8 mm
- the evaluation length is 4 mm
- the cutoff value is 0.25 mm
- the feed rate is 0.1 mm / second
- the measurement position is changed in the width direction of the surface-treated copper foil. 10 times, and the average of the 10 measurements was taken as the evaluation result.
- a MiniScan (registered trademark) EZ Model 4000L manufactured by HunterLab was used as a measuring instrument, and a * and L * of the CIE L * a * b * color system were measured according to JIS Z8730: 2009.
- the first surface treatment layer of the surface-treated copper foil obtained in the above examples and comparative examples was pressed against the photosensitive part of the measuring device, and a * was measured while preventing light from entering from the outside. .
- a * and L * were measured based on the geometric condition C of JIS Z8722.
- the main conditions of the measuring instrument are as follows.
- a polyimide substrate was laminated on the first surface-treated layer of the surface-treated copper foil, and heated at 300 ° C. for 1 hour for pressure bonding to produce a copper-clad laminate.
- the widths L and S of the circuit pattern are the widths of the bottom surface of the circuit, that is, the surface in contact with the polyimide substrate.
- Etching was performed under the following conditions using spray etching.
- Etching solution Copper chloride etching solution (copper chloride (II) dihydrate 400 g / L, 200 ml as 35% hydrochloric acid) Liquid temperature: 45 ° C Spray pressure: 0.18 MPa
- EF circuit height / ⁇ (circuit bottom width ⁇ circuit top width) / 2 ⁇
- the value of EF is an average value of the results of five experiments for each example and comparative example.
- Etching residue was obtained by taking a SEM image of a circuit pattern and evaluating its generation state from a 3000 times SEM image. Specifically, as shown in FIG. 2, the etching residue is evaluated by drawing a straight line perpendicular to the circuit pattern and obtaining the maximum value of the distance from the bottom of the circuit pattern to the portion where the etching residue is generated. did. In this evaluation, a case where the maximum value of the distance is 1 ⁇ m or less is represented by “ ⁇ ”, and a case where the maximum value of the distance exceeds 1 ⁇ m is represented by “X”.
- the 90 degree peel strength was measured in accordance with JIS C6471: 1995. Specifically, the width of the circuit (surface-treated copper foil) was 3 mm, and the commercially available base material (FR-4 prepreg) and the surface-treated copper foil were peeled off at an angle of 90 degrees at a speed of 50 mm / min. When strength was measured. The measurement was performed twice, and the average value was taken as the peel strength result. If the peel strength is 0.5 kgf / cm or more, it can be said that the adhesion between the conductor and the substrate is good.
- the circuit width was adjusted by a normal subtractive etching method using a copper chloride etchant. The peel strength was evaluated under two conditions after the initial stage (immediately after etching) and after a thermal history corresponding to solder reflow (260 ° C., 20 seconds).
- Embodiments of the present invention can also take the following aspects.
- ⁇ 1> Having a copper foil and a first surface treatment layer formed on one surface of the copper foil,
- the first surface treatment layer has C, N, O, Zn, Cr, Ni, Co, Si when sputtering is performed at a sputtering rate of 2.5 nm / min (in terms of SiO 2 ) for 1 minute in an XPS depth profile.
- a surface-treated copper foil having a Ni concentration of 0.1 to 15.0 atm% with respect to the total amount of Cu elements.
- ⁇ 2> The surface-treated copper foil according to ⁇ 1>, wherein the Ni concentration is 1.0 to 3.5 atm%.
- the first surface treatment layer has C, N, O, Zn, Cr, Ni, Co, Si when sputtering is performed at a sputtering rate of 2.5 nm / min (in terms of SiO 2 ) for 1 minute in an XPS depth profile.
- the first surface treatment layer has C, N, O, Zn, Cr, Ni for 1 minute to 2 minutes when sputtering is performed at a sputtering rate of 2.5 nm / minute (in terms of SiO 2 ).
- the first surface treatment layer has C, N, O, Zn, Cr, Ni for 1 minute to 2 minutes when sputtering is performed at a sputtering rate of 2.5 nm / minute (in terms of SiO 2 ).
- the first surface treatment layer has C, N, O, Zn, Cr, Ni for 1 minute to 2 minutes when sputtering is performed at a sputtering rate of 2.5 nm / minute (in terms of SiO 2 ).
- the first surface treatment layer has C, N, O, Zn, Cr, Ni, Co, Si when sputtering is performed at a sputtering rate of 2.5 nm / min (in terms of SiO 2 ) for 7 minutes in an XPS depth profile.
- ⁇ 9> The surface according to any one of the above ⁇ 1> to ⁇ 8>, wherein the first surface treatment layer has a ten-point average roughness Rz defined by JIS B0601: 1994 of 0.4 to 1.2 ⁇ m. Treated copper foil.
- ⁇ 11> The surface-treated copper foil according to any one of the above ⁇ 1> to ⁇ 10>, wherein the copper foil is a rolled copper foil.
- ⁇ 12> A copper-clad laminate comprising the surface-treated copper foil according to any one of the above ⁇ 1> to ⁇ 11> and an insulating base material adhered to the first surface-treated layer of the surface-treated copper foil.
- ⁇ 13> A printed wiring board provided with the circuit pattern formed by etching the said surface-treated copper foil of the copper clad laminated board as described in said ⁇ 12>.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Electroplating Methods And Accessories (AREA)
- Laminated Bodies (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Physical Vapour Deposition (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
プリント配線板の製造方法としては、サブトラクティブ法、セミアディティブ法などの様々な方法が知られている。その中でもサブトラクティブ法では、銅箔に絶縁基材を接着させて銅張積層板を形成した後、銅箔表面にレジストを塗布及び露光して所定のレジストパターンを形成し、レジストパターンが形成されていない部分(不要部)をエッチングにて除去することによって回路パターンが形成される。
また、本発明の実施形態は、ファインピッチ化された回路パターンを有するプリント配線板を提供することを目的とする。
また、本発明の実施形態は、前記表面処理銅箔と、前記表面処理銅箔の第一表面処理層に接着された絶縁基材とを備える銅張積層板に関する。
さらに、本発明の実施形態は、前記銅張積層板の前記表面処理銅箔をエッチングして形成された回路パターンを備えるプリント配線板に関する。
また、本発明の実施形態によれば、ファインピッチ化された回路パターンを有するプリント配線板を提供することができる。
表面処理銅箔1は、銅箔2と、銅箔2の一方の面に形成された第一表面処理層3とを有する。また、銅張積層板10は、表面処理銅箔1と、表面処理銅箔1の第一表面処理層3に接着された絶縁基材11とを有する。
このNi濃度は、第一表面処理層3の表面からの深さ2.5nmにおけるNi濃度であり、第一表面処理層3の最表層近傍におけるNiの比率の指標となる。このNi濃度を15.0atm%以下に制御することにより、第一表面処理層3がエッチング液に溶解し易くなり、回路パターンのエッチングファクタを高めることが可能になる。エッチングファクタを安定して高める観点からは、このNi濃度を、好ましくは10.0atm%以下、より好ましくは5.0atm%以下、さらに好ましくは3.5atm%以下に制御する。一方、Niは、耐熱性などの効果を与える成分であるため、このNi濃度を0.1atm%以上に制御することにより、耐熱性などの効果を確保することができる。当該効果を安定して確保する観点からは、このNi濃度を、好ましくは0.5atm%以上、より好ましくは1.0atm%以上、さらに好ましくは1.5atm%以上に制御する。
このZn濃度は、第一表面処理層3の表面からの深さ2.5nmにおけるZn濃度であり、第一表面処理層3の最表層近傍におけるZnの比率の指標となる。このZn濃度を5.0atm%以上に制御することにより、第一表面処理層3がエッチング液に溶解し易くなり、回路パターンのエッチングファクタを高めることが可能になる。エッチングファクタを安定して高める観点からは、このZn濃度を、好ましくは10.0atm%以上、より好ましくは15.0atm%以上に制御する。一方、Znは、耐熱性、耐薬品性などの効果を与える成分であるが、濃度が高すぎると、当該効果が低下してしまう恐れがある。また、Znは塩酸に比較的溶け易い成分であるため、塩酸系である塩化銅エッチング液により、回路ボトム(表面処理銅箔1の第一表面処理層3と絶縁基材11との間)に染み込む可能性がある。その結果、銅回路と絶縁基材11との密着性が低下し、回路剥がれなどの不具合が発生する可能性がある。そのため、Znによる耐熱性、耐薬品性などの効果を確保しつつ回路剥がれなどを防止する観点からは、このZn濃度を40.0atm%以下に制御する。当該効果を安定して得る観点からは、このZn濃度を、好ましくは35atm%以下、より好ましくは30atm%以下に制御する。
このNi濃度の積分値は、第一表面処理層3の表面からの深さ2.5~5.0nmにおけるNi濃度の積分値であり、第一表面処理層3の最表層近傍におけるNiの比率の指標となる。このNi濃度の積分値を18.0atm%以下に制御することにより、第一表面処理層3がエッチング液に溶解し易くなり、回路パターンのエッチングファクタを高めることが可能になる。エッチングファクタを安定して高める観点からは、このNi濃度の積分値を、好ましくは15.0atm%以下、より好ましくは10.0atm%以下、さらに好ましくは8.0atm%以下に制御する。一方、このNi濃度の積分値を0.1atm%以上に制御することにより、耐熱性などの効果を確保することができる。当該効果を安定して確保する観点からは、このNi濃度の積分値を、好ましくは0.5atm%以上、より好ましくは1.0atm%以上、さらに好ましくは1.5atm%以上に制御する。
このZn濃度の積分値は、第一表面処理層3の表面からの深さ2.5~5.0nmにおけるZn濃度の積分値であり、第一表面処理層3の最表層近傍におけるZnの比率の指標となる。このZn濃度の積分値を5.0atm%以上に制御することにより、第一表面処理層3がエッチング液に溶解し易くなり、回路パターンのエッチングファクタを高めることが可能になる。エッチングファクタを安定して高める観点からは、このZn濃度の積分値を、好ましくは10.0atm%以上、より好ましくは12.0atm%以上に制御する。一方、Zn濃度の積分値を40.0atm%以下に制御することにより、耐熱性、耐薬品性などの効果を確保することができる。当該効果を安定して確保する観点からは、このZn濃度の積分値を、好ましくは38atm%以下、より好ましくは35atm%以下に制御する。
この積分値の和は、第一表面処理層3の最表層近傍におけるNi及びZnの比率の指標となる。この積分値の和を10.0atm%以上に制御することにより、耐熱性、耐薬品性などの効果を確保することができる。この効果を安定して確保する観点から、この積分値の和を、好ましくは15.0atm%以上、より好ましくは20.0atm%以上に制御する。一方、この積分値の和を45.0atm%以下に制御することにより、耐熱性、耐薬品性などの効果を付与しつつ、エッチングファクタを安定して高めることができる。この効果を安定して確保する観点から、この積分値の和を、好ましくは40atm%以下、より好ましくは38atm%以下に制御する。
このCu濃度は、第一表面処理層3の表面からの深さ17.5nmにおけるCu濃度であり、この深さにおける銅の比率の指標となる。このCu濃度を70atm%以上に制御することにより、エッチング液への溶解性が高まり、エッチングファクタを高くする効果を得ることができる。この効果を安定して確保する観点から、このCu濃度を、好ましくは80atm%以上、より好ましくは90atm%以上に制御する。一方、このCu濃度を98atm%以下に制御することにより、耐熱性、耐薬品性などの特性の低下を防止することができる。この効果を安定して確保する観点から、このCu濃度を、好ましくは97atm%以下、より好ましくは96atm%以下に制御する。
ここで、RSmは、表面の凹凸形状の平均間隔を表す指標である。一般的に、第一表面処理層3を形成する粒子のサイズが大きくなると、表面の凹凸間隔が広くなるためRSmが大きくなる。RSmが大きくなると、表面処理銅箔1の絶縁基材に対する接着力は強くなるが、エッチング処理で溶け残る部分が発生し易くなる。すなわち、エッチング処理によってボトム部が裾を引いたような台形形状の回路パターンになり易く、エッチングファクタが低下する傾向にある。一方、第一表面処理層3を形成する粒子のサイズが小さくなると、上記と逆の傾向になり易い。すなわち、エッチングファクタは向上するが、表面処理銅箔1の絶縁基材に対する接着力が低下する傾向にある。
そこで、絶縁基材に対する接着性の向上とエッチング性の向上とを両立させるために、第一表面処理層3のRSmを上記の範囲に制御することが好ましい。このようなRSmの制御を行うことにより、第一表面処理層3の表面を、絶縁基材に対する接着性の向上とエッチング性の向上とを両立させるのに適した表面形状にすることができる。具体的には、第一表面処理層3の表面の凹凸形状が適切なバランスで形成されるため、回路パターンのエッチングファクタ及び絶縁基材に対する接着性を高めることができる。このような効果を安定して得る観点からは、RSmを5~9μmに制御することが好ましい。
ここで、ARは、表面の微細な凹凸形状を表す指標である。一般的に、第一表面処理層3を形成する粒子のサイズが大きくなると、表面の凹凸間隔が広くなるためARが大きくなる。ARが大きくなると、表面処理銅箔1の絶縁基材に対する接着力は強くなるが、エッチング処理で溶け残る部分が発生し易くなる。すなわち、エッチング処理によってボトム部が裾を引いたような台形形状の回路パターンになり易く、エッチングファクタが低下する傾向にある。一方、第一表面処理層3を形成する粒子のサイズが小さくなると、上記と逆の傾向になり易い。すなわち、エッチングファクタは向上するが、表面処理銅箔1の絶縁基材に対する接着力が低下する傾向にある。
そこで、絶縁基材に対する接着性の向上とエッチング性の向上とを両立させるために、第一表面処理層3のARを上記の範囲に制御することが好ましい。このようなARの制御を行うことにより、第一表面処理層3の表面を、絶縁基材に対する接着性の向上とエッチング性の向上とを両立させるのに適した表面形状にすることができる。具体的には、第一表面処理層3の表面の凹凸形状が適切なバランスで形成されるため、回路パターンのエッチングファクタ及び絶縁基材に対する接着性を高めることができる。このような効果を安定して得る観点からは、ARを7~18μmに制御することが好ましい。
Niはエッチング液に溶解し難い成分であるため、第一表面処理層3のNi付着量を200μg/dm2以下に制御することにより、第一表面処理層3がエッチング液に溶解し易くなる。その結果、回路パターンのエッチングファクタを高めることが可能になる。このエッチングファクタを安定して高める観点からは、第一表面処理層3のNi付着量を、好ましくは180μg/dm2以下、より好ましくは100μg/dm2以下に制御する。一方、第一表面処理層3による所定の効果(例えば、耐熱性など)を確保する観点から、第一表面処理層3のNi付着量を20μg/dm2以上に制御する。
また、回路パターンを形成した後には金めっきなどの表面処理が行われることがあるが、その前処理として、回路パターンの表面から不要な物質を取り除くソフトエッチングを行うと、回路パターンのエッジ部にソフトエッチング液が染み込むことがある。Niは、このソフトエッチング液の染み込みを抑制する効果がある。この効果を十分に確保する観点からは、第一表面処理層3のNi付着量を、30μg/dm2以上に制御することが好ましく、40μg/dm2以上に制御することがより好ましい。
第一表面処理層3のCo付着量は、第一表面処理層3の種類に依存するため特に限定されないが、好ましくは1500μg/dm2以下、より好ましくは500μg/dm2以下、さらに好ましくは100μg/dm2以下、特に好ましくは30μg/dm2以下である。第一表面処理層3のCo付着量を上記範囲内とすることにより、回路パターンのエッチングファクタを安定して高めることができる。なお、Co付着量の下限は、特に限定されないが、典型的に0.1μg/dm2、好ましくは0.5μg/dm2である。
また、Coは磁性金属であるため、第一表面処理層3のCo付着量を特に100μg/dm2以下、好ましくは0.5~100μg/dm2に抑えることにより、高周波特性に優れたプリント配線板を作製可能な表面処理銅箔1を得ることができる。
ここで、本明細書において「粗化処理層」とは、粗化処理によって形成される層であり、粗化粒子の層を含む。また、粗化処理では、前処理として通常の銅メッキなどが行われたり、仕上げ処理として粗化粒子の脱落を防止するために通常の銅メッキなどが行われたりする場合があるが、本明細書における「粗化処理層」は、これらの前処理及び仕上げ処理によって形成される層を含む。
めっき液組成:10~20g/LのCu、50~100g/Lの硫酸
めっき液温度:25~50℃
電気めっき条件:電流密度1~60A/dm2、時間1~10秒
耐熱層及び/又は防錆層としては、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選択される1種以上の元素(金属、合金、酸化物、窒化物、硫化物などのいずれの形態であってもよい)を含む層であることができる。耐熱層及び/又は防錆層の例としては、ニッケル-亜鉛合金を含む層が挙げられる。
めっき液組成:1~30g/LのNi、1~30g/LのZn
めっき液pH:2~5
めっき液温度:30~50℃
電気めっき条件:電流密度1~10A/dm2、時間0.1~5秒
ここで、本明細書において「クロメート処理層」とは、無水クロム酸、クロム酸、二クロム酸、クロム酸塩又は二クロム酸塩を含む液で形成された層を意味する。クロメート処理層は、コバルト、鉄、ニッケル、モリブデン、亜鉛、タンタル、銅、アルミニウム、リン、タングステン、錫、砒素、チタンなどの元素(金属、合金、酸化物、窒化物、硫化物などのいずれの形態であってもよい)を含む層であることができる。クロメート処理層の例としては、無水クロム酸又は二クロム酸カリウム水溶液で処理したクロメート処理層、無水クロム酸又は二クロム酸カリウム及び亜鉛を含む処理液で処理したクロメート処理層などが挙げられる。
クロメート液組成:1~10g/LのK2Cr2O7、0.01~10g/LのZn
クロメート液pH:2~5
クロメート液温度:30~50℃
ここで、本明細書において「シランカップリング処理層」とは、シランカップリング剤で形成された層を意味する。
シランカップリング剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。シランカップリング剤の例としては、アミノ系シランカップリング剤、エポキシ系シランカップリング剤、メルカプト系シランカップリング剤、メタクリロキシ系シランカップリング剤、ビニル系シランカップリング剤、イミダゾール系シランカップリング剤、トリアジン系シランカップリング剤などが挙げられる。これらの中でも、アミノ系シランカップリング剤、エポキシ系シランカップリング剤が好ましい。上述のシランカップリング剤は、単独又は2種以上を組み合わせて用いることができる。
2種以上のシランカップリング剤の混合物とする場合、その混合比率は、特に限定されず、使用するシランカップリング剤の種類に応じて適宜調整すればよい。
第二表面処理層4の種類は、特に限定されず、第一表面処理層3と同様に、当該技術分野において公知の各種表面処理層を用いることができる。また、第二表面処理層4の種類は、第一表面処理層3と同一であっても異なっていてもよい。
第二表面処理層4のNi付着量に対する第一表面処理層3のNi付着量の比は、好ましくは0.01~2.5、より好ましくは0.6~2.2である。Niはエッチング液に溶解し難い成分であるため、Ni付着量の比を上記の範囲とすることにより、銅張積層板10をエッチングする際に、回路パターンのボトム側となる第一表面処理層3の溶解を促進すると共に、回路パターンのトップ側となる第二表面処理層4の溶解を抑制することができる。そのため、トップ幅とボトム幅との差が小さく、エッチングファクタが高い回路パターンを得ることが可能になる。
絶縁基材11としては、特に限定されず、当該技術分野において公知のものを用いることができる。絶縁基材11の例としては、紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂、ガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム、液晶ポリマー、フッ素樹脂などが挙げられる。
図4において、まず、銅張積層板10の表面処理銅箔1の表面にレジストを塗布、露光及び現像することによって所定のレジストパターン20を形成する(工程(a))。次に、レジストパターン20が形成されていない部分(不要部)の表面処理銅箔1をエッチングによって除去する(工程(b))。最後に、表面処理銅箔1上のレジストパターン20を除去する(工程(c))。
なお、このサブトラクティブ法における各種条件は、特に限定されず、当該技術分野において公知の条件に準じて行うことができる。
厚さ12μmの圧延銅箔(JX金属社製HA-V2箔)を準備し、一方の面に第一表面処理層として粗化処理層、耐熱層、クロメート処理層及びシランカップリング処理層を順次形成すると共に、他方の面に第二表面処理層として耐熱層及びクロメート処理層を順次形成することによって表面処理銅箔を得た。各層を形成するための条件は下記の通りである。
電気めっきによって粗化処理層を形成した。電気めっきは2段階に分けて行った。
(1段目の条件)
めっき液組成:11g/LのCu、50g/Lの硫酸
めっき液温度:25℃
電気めっき条件:電流密度42.7A/dm2、時間1.4秒
(2段目の条件)
めっき液組成:20g/LのCu、100g/Lの硫酸
めっき液温度:50℃
電気めっき条件:電流密度3.8A/dm2、時間2.8秒
電気めっきによって耐熱層を形成した。
めっき液組成:23.5g/LのNi、4.5g/LのZn
めっき液pH:3.6
めっき液温度:40℃
電気めっき条件:電流密度1.1A/dm2、時間0.7秒
電気めっきによってクロメート処理層を形成した。
めっき液組成:3.0g/LのK2Cr2O7、0.33g/LのZn
めっき液pH:3.6
めっき液温度:50℃
電気めっき条件:電流密度2.1A/dm2、時間1.4秒
N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(信越化学工業株式会社製 KBM603)の1.2体積%水溶液(pH:10)を塗布し、乾燥させることでシランカップリング処理層を形成した。
電気めっきによって耐熱層を形成した。
めっき液組成:23.5g/LのNi、4.5g/LのZn
めっき液pH:3.6
めっき液温度:40℃
電気めっき条件:電流密度2.8A/dm2、時間0.7秒
浸漬クロメート処理によってクロメート処理層を形成した。
クロメート液組成:3.0g/LのK2Cr2O7、0.33g/LのZn
クロメート液pH:3.6
クロメート液温度:50℃
第一表面処理層の耐熱層の形成条件を下記の通りに変更したこと以外は実施例1と同様にして表面処理銅箔を得た。
<第一表面処理層の耐熱層>
電気めっきによって耐熱層を形成した。
めっき液組成:23.5g/LのNi、4.5g/LのZn
めっき液pH:3.6
めっき液温度:40℃
電気めっき条件:電流密度2.6A/dm2、時間0.7秒
第一表面処理層の耐熱層の形成条件を下記の通りに変更したこと以外は実施例1と同様にして表面処理銅箔を得た。
<第一表面処理層の耐熱層>
電気めっきによって耐熱層を形成した。
めっき液組成:23.5g/LのNi、4.5g/LのZn
めっき液pH:3.6
めっき液温度:40℃
電気めっき条件:電流密度4.2A/dm2、時間0.7秒
第一表面処理層及び第二表面処理層の耐熱層の形成条件を下記の通りに変更したこと以外は実施例1と同様にして表面処理銅箔を得た。
<第一表面処理層の耐熱層>
電気めっきによって耐熱層を形成した。
めっき液組成:23.5g/LのNi、4.5g/LのZn
めっき液pH:3.6
めっき液温度:40℃
電気めっき条件:電流密度2.1A/dm2、時間0.7秒
<第二表面処理層の耐熱層>
電気めっきによって耐熱層を形成した。
めっき液組成:23.5g/LのNi、4.5g/LのZn
めっき液pH:3.6
めっき液温度:40℃
電気めっき条件:電流密度2.8A/dm2、時間0.7秒
厚さ12μmの圧延銅箔(JX金属社製HA-V2箔)を準備し、一方の面に第一表面処理層として粗化処理層、耐熱層、クロメート処理層及びシランカップリング処理層を順次形成すると共に、他方の面に第二表面処理層として耐熱層及びクロメート処理層を順次形成することによって表面処理銅箔を得た。各層を形成するための条件は下記の通りである。
<第一表面処理層の粗化処理層>
電気めっきによって粗化処理層を形成した。
めっき液組成:15g/LのCu、7.5g/LのCo、9.5g/LのNi
めっき液pH:2.4
めっき液温度:36℃
電気めっき条件:電流密度31.5A/dm2、時間1.8秒
電気めっきによって耐熱層(1)を形成した。
めっき液組成:3g/LのCo、13g/LのNi
めっき液pH:2.0
めっき液温度:50℃
電気めっき条件:電流密度19.1A/dm2、時間0.4秒
電気めっきによって耐熱層(2)を形成した。
めっき液組成:23.5g/LのNi、4.5g/LのZn
めっき液pH:3.6
めっき液温度:40℃
電気めっき条件:電流密度3.5A/dm2、時間0.4秒
浸漬クロメート処理によってクロメート処理層を形成した。
クロメート液組成:3.0g/LのK2Cr2O7、0.33g/LのZn
クロメート液pH:3.6
クロメート液温度:50℃
N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(信越化学工業株式会社製 KBM603)の1.2体積%水溶液(pH:10)を塗布し、乾燥させることでシランカップリング処理層を形成した。
電気めっきによって耐熱層を形成した。
めっき液組成:23.5g/LのNi、4.5g/LのZn
めっき液pH:3.6
めっき液温度:40℃
電気めっき条件:電流密度4.1A/dm2、時間0.4秒
浸漬クロメート処理によってクロメート処理層を形成した。
クロメート液組成:3.0g/LのK2Cr2O7、0.33g/LのZn
クロメート液pH:3.6
クロメート液温度:50℃
<第一表面処理層及び第二表面処理層における各元素の付着量の測定>
Ni、Zn及びCoの付着量は、各表面処理層を濃度20質量%の硝酸に溶解し、VARIAN社製の原子吸光分光光度計(型式:AA240FS)を用いて原子吸光法で定量分析を行うことによって測定した。また、Crの付着量は各表面処理層を濃度7質量%の塩酸に溶解し、上記と同様に原子吸光法で定量分析を行うことによって測定した。
この評価では、第一表面処理層の所定の深さにおけるNi濃度、Zn濃度及びCu濃度を測定した。また、前記の測定値をもとに、Ni濃度の積分値及びZn濃度の積分値を算出した。
Ni濃度及びZn濃度は、表面処理銅箔の第一表面処理層に対して深さ方向にXPS分析を行い、スパッタリングレート2.5nm/分(SiO2換算)で1分スパッタリングを行ったときの測定対象元素の合計量に対するNi及びZnの濃度をそれぞれ測定することによって求めた。
Cu濃度は、表面処理銅箔の第一表面処理層に対して深さ方向にXPS分析を行い、スパッタリングレート2.5nm/分(SiO2換算)で7分スパッタリングを行ったときの測定対象元素の合計量に対するCuの濃度を測定することによって求めた。
Ni濃度及びZn濃度の積分値は、表面処理銅箔の第一表面処理層に対して深さ方向にXPS分析を行い、スパッタリングレート2.5nm/分(SiO2換算)でスパッタリングを行ったときの1分~2分間の測定対象元素の合計量に対するNi濃度及びZn濃度を測定し、後述の方法で積分値をそれぞれ算出した。その具体例を、Ni濃度の積分値の算出方法を例に説明するが、Zn濃度の積分値も同様の手法によって算出した。
スパッタタイム0.2分毎にXPS分析でNi濃度を取得し、横軸にスパッタタイム、縦軸にNi濃度をプロットしたグラフを作成した。次に、このグラフを用いて台形に近似した図を作成した後、その面積を求めることによって、1~2分のスパッタリングを行った際のNi濃度の積分値を算出した。その際、取得したNi濃度の値は10-4の値まで取得して計算した。台形に近似した図の一例を図5に示す。図5において、斜線部が、1~2分のスパッタリングを行った際のNi濃度の積分値に相当する部分の面積である。なお、図5はNi濃度の積分値の計算方法の説明のための図に過ぎず、本明細書に記載の実施例の測定結果ではない。
装置:アルバック・ファイ株式会社製5600MC
到達真空度:5.7×10-7Pa
励起源:単色化 MgKα
出力:400W
検出面積:800μmφ
入射角:81°
取り出し角:45°
中和銃なし
測定対象元素:C、N、O、Zn、Cr、Ni、Co、Si及びCu
<スパッタ条件>
イオン種:Ar+
加速電圧:3kV
掃引領域:3mm×3mm
株式会社小坂研究所製の接触粗さ計Surfcorder SE-3Cを用い、JIS B0601:1994に準拠してRz(十点平均粗さ)を測定した。この測定は、測定基準長さを0.8mm、評価長さを4mm、カットオフ値を0.25mm、送り速さを0.1mm/秒とし、表面処理銅箔の幅方向に測定位置を変えて10回行い、10回の測定値の平均値を評価結果とした。
オリンパス株式会社製のレーザー顕微鏡(LEXT OLS4000)を用い、Sq(二乗平均平方根高さ)、Svk(突出谷部深さ)、RSm(粗さ曲線要素の平均長さ)及びAR(粗さモチーフの平均長さ)を測定した。RSm及びARの測定は、JIS B0601:2013及びJIS B0631:2000にそれぞれ準拠して行った。また、Sq、Svk、RSm及びARは、任意の10か所で測定した値の平均値を測定結果とした。なお、測定時の温度は23~25℃とした。また、レーザー顕微鏡における主要な設定条件は下記の通りである。
対物レンズ:MPLAPON50LEXT(倍率:50倍、開口数:0.95、液浸タイプ:空気、機械的鏡筒長:∞、カバーガラス厚:0、視野数:FN18)
走査モード:XYZ高精度(高さ分解能:10nm)
取込み画像サイズ[画素数]:横257μm×縦258μm[1024×1024]
(横方向に測定するため、評価長さとしては257μmに相当)
DIC:オフ
マルチレイヤー:オフ
レーザー強度:100
オフセット:0
コンフォーカルレベル:0
ビーム径絞り:オフ
画像平均:1回
ノイズリダクション:オン
輝度むら補正:オン
光学的ノイズフィルタ:オン
カットオフ:無し(λc、λs、λf全て無し)
フィルタ:ガウシアンフィルタ
ノイズ除去:測定前処理
傾き補正:実施
最少高さの識別値:Rzに対する比の10%
モチーフパラメータ:粗さモチーフの上限高さA/うねりモチーフの上限高さB=0.1mm/0.5mm
測定器としてHunterLab社製のMiniScan(登録商標)EZ Model 4000Lを用い、JIS Z8730:2009に準拠してCIE L*a*b*表色系のa*及びL*の測定を行った。具体的には、上記の実施例及び比較例で得られた表面処理銅箔の第一表面処理層を測定器の感光部に押し当て、外から光が入らないようにしつつa*を測定した。また、a*及びL*の測定は、JIS Z8722の幾何条件Cに基づいて行った。なお、測定器の主な条件は下記の通りである。
光学系 d/8°、積分球サイズ 63.5mm、観察光源 D65
測定方式 反射
照明径 25.4mm
測定径 20.0mm
測定波長・間隔 400~700nm・10nm
光源 パルスキセノンランプ・1発光/測定
トレーサビリティ標準 CIE 44及びASTM E259に基づく、米国標準技術研究所(NIST)準拠校正
標準観察者 10°
また、測定基準となる白色タイルは、下記の物体色のものを使用した。
D65/10°にて測定した場合に、CIE XYZ表色系での値がX:81.90、Y:87.02、Z:93.76(これは、CIE L*a*b*表色系に数値を変換すると、L*:94.8、a*:-1.6、b*:0.7に相当する)である。
表面処理銅箔の第一表面処理層上にポリイミド基板を積層して300℃で1時間加熱して圧着させることによって銅張積層板を作製した。次に、表面処理銅箔の第二表面処理層上に感光性レジストを塗布して露光及び現像することにより、L/S=29μm/21μm幅のレジストパターンを形成した。その後、表面処理銅箔の露出部(不要部)をエッチングによって除去することにより、L/S=25μm/25μm幅の銅の回路パターンを有するプリント配線板を得た。なお、前記回路パターンのL及びSの幅は、回路のボトム面、すなわちポリイミド基板に接している面の幅である。エッチングはスプレーエッチングを用いて下記の条件にて行った。
エッチング液:塩化銅エッチング液(塩化銅(II)2水和物400g/L、35%塩酸として200ml/L)
液温:45℃
スプレー圧:0.18MPa
次に、形成された回路パターンをSEM観察し、下記の式に基づいてエッチングファクタ(EF)を求めた。
EF=回路高さ/{(回路ボトム幅-回路トップ幅)/2}
エッチングファクタは、数値が大きいほど回路側面の傾斜角が大きいことを意味する。
EFの値は各実施例及び比較例につき5回実験した結果の平均値である。
90度ピール強度の測定は、JIS C6471:1995に準拠して行った。具体的には、回路(表面処理銅箔)幅を3mmとし、90度の角度で50mm/分の速度で市販の基材(FR-4プリプレグ)と表面処理銅箔との間を引き剥がしたときの強度を測定した。測定は2回行い、その平均値をピール強度の結果とした。なお、ピール強度は、0.5kgf/cm以上であれば、導体と基材との接着性が良好であるといえる。
なお、回路幅の調整は、塩化銅エッチング液を用いる通常のサブトラクティブエッチング方法によって行った。また、ピール強度の評価は、初期(エッチング直後)、及びはんだリフロー相当の熱履歴(260℃、20秒)後の2条件で評価した。
<1>
銅箔と、前記銅箔の一方の面に形成された第一表面処理層とを有し、
前記第一表面処理層は、XPSのデプスプロファイルにおいて、スパッタリングレート2.5nm/分(SiO2換算)で1分スパッタリングを行ったときのC、N、O、Zn、Cr、Ni、Co、Si及びCuの元素の合計量に対するNi濃度が0.1~15.0atm%である表面処理銅箔。
<2>
前記Ni濃度が1.0~3.5atm%である、上記<1>に記載の表面処理銅箔。
<3>
前記第一表面処理層は、XPSのデプスプロファイルにおいて、スパッタリングレート2.5nm/分(SiO2換算)で1分スパッタリングを行ったときのC、N、O、Zn、Cr、Ni、Co、Si及びCuの元素の合計量に対するZn濃度が5.0~40.0atm%である、上記<1>又は<2>に記載の表面処理銅箔。
前記Zn濃度が10.0~30.0atm%である、上記<3>に記載の表面処理銅箔。
<5>
前記第一表面処理層は、XPSのデプスプロファイルにおいて、スパッタリングレート2.5nm/分(SiO2換算)でスパッタリングを行ったときの1分~2分間のC、N、O、Zn、Cr、Ni、Co、Si及びCuの元素の合計量に対するNi濃度の積分値が0.1~18.0atm%である、上記<1>~<4>のいずれか一つに記載の表面処理銅箔。
<6>
前記第一表面処理層は、XPSのデプスプロファイルにおいて、スパッタリングレート2.5nm/分(SiO2換算)でスパッタリングを行ったときの1分~2分間のC、N、O、Zn、Cr、Ni、Co、Si及びCuの元素の合計量に対するZn濃度の積分値が5.0~40.0atm%である、上記<1>~<5>のいずれか一つに記載の表面処理銅箔。
<7>
前記第一表面処理層は、XPSのデプスプロファイルにおいて、スパッタリングレート2.5nm/分(SiO2換算)でスパッタリングを行ったときの1分~2分間のC、N、O、Zn、Cr、Ni、Co、Si及びCuの元素の合計量に対するNi及びZn濃度の積分値の和が10.0~45.0atm%である、上記<1>~<6>のいずれか一つに記載の表面処理銅箔。
前記第一表面処理層は、XPSのデプスプロファイルにおいて、スパッタリングレート2.5nm/分(SiO2換算)で7分スパッタリングを行ったときのC、N、O、Zn、Cr、Ni、Co、Si及びCuの元素の合計量に対するCu濃度が70~98atm%である、上記<1>~<7>のいずれか一つに記載の表面処理銅箔。
<9>
前記第一表面処理層は、JIS B0601:1994に規定される十点平均粗さRzが0.4~1.2μmである、上記<1>~<8>のいずれか一つに記載の表面処理銅箔。
<10>
前記第一表面処理層は、以下の(A)~(E)の少なくとも1つを満たす、上記<1>~<9>のいずれか一つに記載の表面処理銅箔。
(A)二乗平均平方根高さSqが0.20~0.32μmである
(B)突出谷部深さSvkが0.31~0.38μmである
(C)JIS B0601:2013に基づく粗さ曲線要素の平均長さRSmが5~10μmである
(D)JIS B0631:2000に基づく粗さモチーフの平均長さARが6~20μmである
(E)JIS Z8730:2009の幾何条件Cに基づき測定されるCIE L*a*b*表色系のL*が39.0~94.0である
前記銅箔が圧延銅箔である、上記<1>~<10>のいずれか一つに記載の表面処理銅箔。
<12>
上記<1>~<11>のいずれか一つに記載の表面処理銅箔と、前記表面処理銅箔の第一表面処理層に接着された絶縁基材とを備える銅張積層板。
<13>
上記<12>に記載の銅張積層板の前記表面処理銅箔をエッチングして形成された回路パターンを備えるプリント配線板。
2 銅箔
3 第一表面処理層
4 第二表面処理層
10 銅張積層板
11 絶縁基材
20 レジストパターン
Claims (13)
- 銅箔と、前記銅箔の一方の面に形成された第一表面処理層とを有し、
前記第一表面処理層は、XPSのデプスプロファイルにおいて、スパッタリングレート2.5nm/分(SiO2換算)で1分スパッタリングを行ったときのC、N、O、Zn、Cr、Ni、Co、Si及びCuの元素の合計量に対するNi濃度が0.1~15.0atm%である表面処理銅箔。 - 前記Ni濃度が1.0~3.5atm%である、請求項1に記載の表面処理銅箔。
- 前記第一表面処理層は、XPSのデプスプロファイルにおいて、スパッタリングレート2.5nm/分(SiO2換算)で1分スパッタリングを行ったときのC、N、O、Zn、Cr、Ni、Co、Si及びCuの元素の合計量に対するZn濃度が5.0~40.0atm%である、請求項1又は2に記載の表面処理銅箔。
- 前記Zn濃度が10.0~30.0atm%である、請求項3に記載の表面処理銅箔。
- 前記第一表面処理層は、XPSのデプスプロファイルにおいて、スパッタリングレート2.5nm/分(SiO2換算)でスパッタリングを行ったときの1分~2分間のC、N、O、Zn、Cr、Ni、Co、Si及びCuの元素の合計量に対するNi濃度の積分値が0.1~18.0atm%である、請求項1~4のいずれか一項に記載の表面処理銅箔。
- 前記第一表面処理層は、XPSのデプスプロファイルにおいて、スパッタリングレート2.5nm/分(SiO2換算)でスパッタリングを行ったときの1分~2分間のC、N、O、Zn、Cr、Ni、Co、Si及びCuの元素の合計量に対するZn濃度の積分値が5.0~40.0atm%である、請求項1~5のいずれか一項に記載の表面処理銅箔。
- 前記第一表面処理層は、XPSのデプスプロファイルにおいて、スパッタリングレート2.5nm/分(SiO2換算)でスパッタリングを行ったときの1分~2分間のC、N、O、Zn、Cr、Ni、Co、Si及びCuの元素の合計量に対するNi及びZn濃度の積分値の和が10.0~45.0atm%である、請求項1~6のいずれか一項に記載の表面処理銅箔。
- 前記第一表面処理層は、XPSのデプスプロファイルにおいて、スパッタリングレート2.5nm/分(SiO2換算)で7分スパッタリングを行ったときのC、N、O、Zn、Cr、Ni、Co、Si及びCuの元素の合計量に対するCu濃度が70~98atm%である、請求項1~7のいずれか一項に記載の表面処理銅箔。
- 前記第一表面処理層は、JIS B0601:1994に規定される十点平均粗さRzが0.4~1.2μmである、請求項1~8のいずれか一項に記載の表面処理銅箔。
- 前記第一表面処理層は、以下の(A)~(E)の少なくとも1つを満たす、請求項1~9のいずれか一項に記載の表面処理銅箔。
(A)二乗平均平方根高さSqが0.20~0.32μmである
(B)突出谷部深さSvkが0.31~0.38μmである
(C)JIS B0601:2013に基づく粗さ曲線要素の平均長さRSmが5~10μmである
(D)JIS B0631:2000に基づく粗さモチーフの平均長さARが6~20μmである
(E)JIS Z8730:2009の幾何条件Cに基づき測定されるCIE L*a*b*表色系のL*が39.0~94.0である - 前記銅箔が圧延銅箔である、請求項1~10のいずれか一項に記載の表面処理銅箔。
- 請求項1~11のいずれか一項に記載の表面処理銅箔と、前記表面処理銅箔の第一表面処理層に接着された絶縁基材とを備える銅張積層板。
- 請求項12に記載の銅張積層板の前記表面処理銅箔をエッチングして形成された回路パターンを備えるプリント配線板。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19791996.2A EP3786315A4 (en) | 2018-04-27 | 2019-04-22 | SURFACE TREATED COPPER FOIL, COPPER COATED LAMINATE AND CIRCUIT BOARD |
US16/498,010 US11382217B2 (en) | 2018-04-27 | 2019-04-22 | Surface treated copper foil, copper clad laminate, and printed circuit board |
KR1020207029286A KR102394732B1 (ko) | 2018-04-27 | 2019-04-22 | 표면 처리 동박, 동장 적층판 및 프린트 배선판 |
CN201980026041.9A CN111989425B (zh) | 2018-04-27 | 2019-04-22 | 表面处理铜箔、覆铜积层板及印刷配线板 |
JP2020516355A JPWO2019208520A1 (ja) | 2018-04-27 | 2019-04-22 | 表面処理銅箔、銅張積層板及びプリント配線板 |
PH12020551364A PH12020551364A1 (en) | 2018-04-27 | 2020-08-26 | Surface treated copper foil, copper clad laminate, and printed circuit board |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018087554 | 2018-04-27 | ||
JP2018-087554 | 2018-04-27 | ||
JP2018-087551 | 2018-04-27 | ||
JP2018087551A JP2019081943A (ja) | 2017-10-27 | 2018-04-27 | 表面処理銅箔、銅張積層板及びプリント配線板 |
JP2018-105116 | 2018-05-31 | ||
JP2018105116 | 2018-05-31 | ||
JP2018136096 | 2018-07-19 | ||
JP2018-136096 | 2018-07-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019208520A1 true WO2019208520A1 (ja) | 2019-10-31 |
Family
ID=68294063
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/017091 WO2019208520A1 (ja) | 2018-04-27 | 2019-04-22 | 表面処理銅箔、銅張積層板及びプリント配線板 |
PCT/JP2019/017093 WO2019208522A1 (ja) | 2018-04-27 | 2019-04-22 | 表面処理銅箔、銅張積層板及びプリント配線板 |
PCT/JP2019/017096 WO2019208525A1 (ja) | 2018-04-27 | 2019-04-22 | 表面処理銅箔、銅張積層板及びプリント配線板 |
PCT/JP2019/017092 WO2019208521A1 (ja) | 2018-04-27 | 2019-04-22 | 表面処理銅箔、銅張積層板及びプリント配線板 |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/017093 WO2019208522A1 (ja) | 2018-04-27 | 2019-04-22 | 表面処理銅箔、銅張積層板及びプリント配線板 |
PCT/JP2019/017096 WO2019208525A1 (ja) | 2018-04-27 | 2019-04-22 | 表面処理銅箔、銅張積層板及びプリント配線板 |
PCT/JP2019/017092 WO2019208521A1 (ja) | 2018-04-27 | 2019-04-22 | 表面処理銅箔、銅張積層板及びプリント配線板 |
Country Status (8)
Country | Link |
---|---|
US (4) | US11375624B2 (ja) |
EP (4) | EP3786316A4 (ja) |
JP (6) | JP7330172B2 (ja) |
KR (4) | KR102394732B1 (ja) |
CN (4) | CN112041485B (ja) |
PH (4) | PH12020551282A1 (ja) |
TW (6) | TWI701361B (ja) |
WO (4) | WO2019208520A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210395452A1 (en) * | 2018-10-05 | 2021-12-23 | Panasonic Intellectual Property Management Co., Ltd. | Metal-clad laminate, wiring board, metal foil provided with resin, and resin composition |
WO2022255468A1 (ja) * | 2021-06-03 | 2022-12-08 | パナソニックIpマネジメント株式会社 | 銅張積層板 |
US20230094806A1 (en) * | 2019-10-25 | 2023-03-30 | Panasonic Intellectual Property Management Co., Ltd. | Metal-clad laminate, wiring board, resin-including metal foil, and resin composition |
WO2023181627A1 (ja) * | 2022-03-22 | 2023-09-28 | 三井化学株式会社 | 構造体、構造体の製造方法及び接合体 |
WO2024070246A1 (ja) * | 2022-09-28 | 2024-04-04 | Jx金属株式会社 | 表面処理銅箔、銅張積層板及びプリント配線板 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11375624B2 (en) | 2018-04-27 | 2022-06-28 | Jx Nippon Mining & Metals Corporation | Surface treated copper foil, copper clad laminate, and printed circuit board |
JP7114500B2 (ja) * | 2019-01-30 | 2022-08-08 | Jx金属株式会社 | 表面処理銅箔、銅張積層板及びプリント配線板 |
JP2023040316A (ja) * | 2020-02-21 | 2023-03-23 | 三井金属鉱業株式会社 | 表面処理金属箔及び金属張積層板 |
KR102496228B1 (ko) | 2020-06-11 | 2023-02-06 | 미쓰이금속광업주식회사 | 양면 동장 적층판 |
CN115997047A (zh) * | 2020-07-16 | 2023-04-21 | 三井金属矿业株式会社 | 覆铜层叠板及印刷电路板的制造方法 |
KR20230038643A (ko) * | 2020-07-16 | 2023-03-21 | 미쓰이금속광업주식회사 | 동장 적층판 및 프린트 배선판 |
JP7014884B1 (ja) * | 2020-12-23 | 2022-02-01 | Jx金属株式会社 | 表面処理銅箔、銅張積層板及びプリント配線板 |
CN113540470B (zh) * | 2021-06-08 | 2022-10-28 | 浙江工业大学 | 一种双面粗糙铜箔及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2849059B2 (ja) | 1995-09-28 | 1999-01-20 | 日鉱グールド・フォイル株式会社 | 印刷回路用銅箔の処理方法 |
WO2010074061A1 (ja) * | 2008-12-26 | 2010-07-01 | 日鉱金属株式会社 | 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法 |
WO2010074053A1 (ja) * | 2008-12-26 | 2010-07-01 | 日鉱金属株式会社 | 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法 |
WO2010074072A1 (ja) * | 2008-12-26 | 2010-07-01 | 日鉱金属株式会社 | 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法 |
WO2010147013A1 (ja) * | 2009-06-19 | 2010-12-23 | Jx日鉱日石金属株式会社 | 銅箔及びその製造方法 |
WO2016038923A1 (ja) * | 2014-09-09 | 2016-03-17 | 古河電気工業株式会社 | プリント配線板用銅箔及び銅張積層板 |
Family Cites Families (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW230290B (ja) * | 1991-11-15 | 1994-09-11 | Nikko Guruder Foreer Kk | |
JPH0787270B2 (ja) * | 1992-02-19 | 1995-09-20 | 日鉱グールド・フォイル株式会社 | 印刷回路用銅箔及びその製造方法 |
US5552234A (en) | 1993-03-29 | 1996-09-03 | Japan Energy Corporation | Copper foil for printed circuits |
JP3032514B1 (ja) | 1998-12-14 | 2000-04-17 | 株式会社日鉱マテリアルズ | 光沢面の耐酸化性に優れた銅箔及びその製造方法 |
US6497806B1 (en) * | 2000-04-25 | 2002-12-24 | Nippon Denkai, Ltd. | Method of producing a roughening-treated copper foil |
JP3258308B2 (ja) * | 2000-02-03 | 2002-02-18 | 株式会社日鉱マテリアルズ | レーザー穴開け性に優れた銅箔及びその製造方法 |
TW511408B (en) | 2000-09-18 | 2002-11-21 | Nippon Denkai Kk | Method of producing copper foil for fine wiring |
JP4144711B2 (ja) * | 2002-06-04 | 2008-09-03 | 三井金属鉱業株式会社 | 低誘電性基材用表面処理銅箔及びそれを用いた銅張積層板並びにプリント配線板 |
JP2008279663A (ja) * | 2007-05-10 | 2008-11-20 | Nikko Kinzoku Kk | 銅張り積層板用Al被膜付き銅箔及び銅張り積層板 |
CN103266335B (zh) * | 2007-09-28 | 2016-08-10 | Jx日矿日石金属株式会社 | 印刷电路用铜箔及覆铜箔层压板 |
CN101981230B (zh) * | 2008-06-17 | 2013-01-16 | Jx日矿日石金属株式会社 | 印刷电路板用铜箔及印刷电路板用包铜层压板 |
JP5638951B2 (ja) | 2008-07-22 | 2014-12-10 | 古河電気工業株式会社 | フレキシブル銅張積層板 |
CN102224281B (zh) * | 2008-11-25 | 2014-03-26 | 吉坤日矿日石金属株式会社 | 印刷电路用铜箔 |
US8357307B2 (en) | 2008-12-26 | 2013-01-22 | Jx Nippon Mining & Metals Corporation | Method of forming electronic circuit |
JP5457374B2 (ja) | 2009-01-29 | 2014-04-02 | Jx日鉱日石金属株式会社 | 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法 |
JP5282675B2 (ja) | 2009-06-23 | 2013-09-04 | 日立電線株式会社 | プリント配線板用銅箔およびその製造方法 |
CN102124823B (zh) | 2009-06-30 | 2013-03-06 | Jx日矿日石金属株式会社 | 印刷布线板用铜箔 |
SG181631A1 (en) | 2009-12-24 | 2012-07-30 | Jx Nippon Mining & Metals Corp | Surface-treated copper foil |
JP4927963B2 (ja) | 2010-01-22 | 2012-05-09 | 古河電気工業株式会社 | 表面処理銅箔、その製造方法及び銅張積層基板 |
MY162078A (en) * | 2010-02-24 | 2017-05-31 | Jx Nippon Mining & Metals Corp | Copper foil for printed circuit board and copper-clad laminate for printed circuit board |
KR101328235B1 (ko) | 2010-05-07 | 2013-11-14 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | 인쇄 회로용 동박 |
JP2012204267A (ja) | 2011-03-28 | 2012-10-22 | Fujifilm Corp | 面状照明装置 |
JP5794806B2 (ja) * | 2011-03-30 | 2015-10-14 | 古河電気工業株式会社 | 表面処理銅箔、および、該表面処理銅箔を用いた銅張積層基板、並びにプリント配線基板 |
CN103443335B (zh) | 2011-03-30 | 2016-09-21 | 吉坤日矿日石金属株式会社 | 印刷电路用铜箔 |
JP5654416B2 (ja) | 2011-06-07 | 2015-01-14 | Jx日鉱日石金属株式会社 | 液晶ポリマー銅張積層板及び当該積層板に用いる銅箔 |
CN103733094B (zh) | 2011-07-26 | 2016-02-03 | 木本股份有限公司 | 静电电容式触摸面板、防眩性膜以及显示装置 |
JP6111017B2 (ja) | 2012-02-03 | 2017-04-05 | Jx金属株式会社 | プリント配線板用銅箔及びそれを用いた積層体、プリント配線板及び電子部品 |
CN102586831B (zh) * | 2012-03-12 | 2014-11-19 | 山东金宝电子股份有限公司 | 一种降低电解铜箔粗糙度的表面处理工艺 |
JP5204908B1 (ja) | 2012-03-26 | 2013-06-05 | Jx日鉱日石金属株式会社 | キャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板用キャリア付銅箔及びプリント配線板 |
KR101824828B1 (ko) | 2012-03-29 | 2018-02-01 | 제이엑스금속주식회사 | 표면 처리 동박 |
WO2013147116A1 (ja) * | 2012-03-29 | 2013-10-03 | Jx日鉱日石金属株式会社 | 表面処理銅箔 |
JP5362921B1 (ja) | 2012-11-09 | 2013-12-11 | Jx日鉱日石金属株式会社 | 表面処理銅箔及びそれを用いた積層板 |
JP5362898B1 (ja) | 2012-11-09 | 2013-12-11 | Jx日鉱日石金属株式会社 | 表面処理銅箔及びそれを用いた積層板、プリント配線板並びに銅張積層板 |
JP5362924B1 (ja) | 2012-11-09 | 2013-12-11 | Jx日鉱日石金属株式会社 | 表面処理銅箔及びそれを用いた積層板 |
JP6140480B2 (ja) * | 2013-03-05 | 2017-05-31 | Jx金属株式会社 | キャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板、プリント回路板、銅張積層板、及び、プリント配線板の製造方法 |
JP6266907B2 (ja) * | 2013-07-03 | 2018-01-24 | 新光電気工業株式会社 | 配線基板及び配線基板の製造方法 |
JP5706026B1 (ja) | 2013-07-30 | 2015-04-22 | 古河電気工業株式会社 | 配線板用銅箔及び配線板 |
JP5751399B1 (ja) | 2013-11-07 | 2015-07-22 | 旭硝子株式会社 | 離型フィルム、および半導体パッケージの製造方法 |
JP5710737B1 (ja) | 2013-11-29 | 2015-04-30 | Jx日鉱日石金属株式会社 | 表面処理銅箔、積層板、プリント配線板、プリント回路板及び電子機器 |
MY183425A (en) | 2013-12-10 | 2021-02-18 | Jx Nippon Mining & Metals Corp | Surface treated copper foil, copper clad laminate, printed wiring board, electronic apparatus and method for manufacturing printed wiring board |
JP2015124426A (ja) * | 2013-12-27 | 2015-07-06 | 株式会社Shカッパープロダクツ | 表面処理銅箔及び積層板 |
JP2015134953A (ja) * | 2014-01-17 | 2015-07-27 | Jx日鉱日石金属株式会社 | 表面処理銅箔、キャリア付銅箔、プリント配線板、プリント回路板、銅張積層板及びプリント配線板の製造方法 |
TWI616122B (zh) * | 2014-05-28 | 2018-02-21 | Jx Nippon Mining & Metals Corp | 表面處理銅箔、附載體銅箔、積層體、印刷配線板、電子機器、表面處理銅箔的製造方法及印刷配線板的製造方法 |
KR101895256B1 (ko) | 2014-09-02 | 2018-09-05 | 미쓰이금속광업주식회사 | 흑색화 표면 처리 동박 및 캐리어박 부착 동박 |
JP6248020B2 (ja) | 2014-09-29 | 2017-12-13 | 積水化成品工業株式会社 | 繊維強化複合体の製造方法 |
JP6023367B1 (ja) | 2015-06-17 | 2016-11-09 | Jx金属株式会社 | キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法 |
JP6193534B2 (ja) * | 2015-07-03 | 2017-09-06 | 三井金属鉱業株式会社 | 粗化処理銅箔、銅張積層板及びプリント配線板 |
JP6064308B2 (ja) * | 2015-07-03 | 2017-01-25 | Toto株式会社 | ボンディングキャピラリ |
JP6006445B1 (ja) | 2015-07-27 | 2016-10-12 | Jx金属株式会社 | キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法 |
JP6058182B1 (ja) | 2015-07-27 | 2017-01-11 | Jx金属株式会社 | キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法 |
JP6339636B2 (ja) * | 2015-08-06 | 2018-06-06 | Jx金属株式会社 | キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法 |
TWI597390B (zh) * | 2015-11-10 | 2017-09-01 | Jx Nippon Mining & Metals Corp | Electrolytic copper foil, manufacturing method of electrolytic copper foil, copper clad laminated board, printed wiring board, the manufacturing method of a printed wiring board, and the manufacturing method of an electronic device |
US10495788B2 (en) | 2016-05-17 | 2019-12-03 | Canon Kabushiki Kaisha | Resin molded product, interchangeable lens for camera, and method of manufacturing resin molded product |
US10820414B2 (en) | 2016-12-05 | 2020-10-27 | Jx Nippon Mining & Metals Corporation | Surface treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device |
CN108400338B (zh) | 2017-02-03 | 2021-11-30 | Jx金属株式会社 | 表面处理铜箔以及使用其的集电体、电极及电池 |
JP7033905B2 (ja) | 2017-02-07 | 2022-03-11 | Jx金属株式会社 | 表面処理銅箔、キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法 |
JP2018145519A (ja) | 2017-03-03 | 2018-09-20 | Jx金属株式会社 | 表面処理銅箔、キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法 |
JP7055049B2 (ja) | 2017-03-31 | 2022-04-15 | Jx金属株式会社 | 表面処理銅箔及びそれを用いた積層板、キャリア付銅箔、プリント配線板、電子機器、並びに、プリント配線板の製造方法 |
TWI652163B (zh) * | 2017-11-15 | 2019-03-01 | 財團法人工業技術研究院 | 高頻電路用銅箔及其製造方法 |
US11375624B2 (en) | 2018-04-27 | 2022-06-28 | Jx Nippon Mining & Metals Corporation | Surface treated copper foil, copper clad laminate, and printed circuit board |
-
2019
- 2019-04-22 US US16/498,003 patent/US11375624B2/en active Active
- 2019-04-22 KR KR1020207029286A patent/KR102394732B1/ko active IP Right Grant
- 2019-04-22 US US16/498,010 patent/US11382217B2/en active Active
- 2019-04-22 CN CN201980028017.9A patent/CN112041485B/zh active Active
- 2019-04-22 EP EP19793296.5A patent/EP3786316A4/en active Pending
- 2019-04-22 EP EP19793376.5A patent/EP3786317A4/en active Pending
- 2019-04-22 CN CN201980026041.9A patent/CN111989425B/zh active Active
- 2019-04-22 WO PCT/JP2019/017091 patent/WO2019208520A1/ja active Application Filing
- 2019-04-22 CN CN201980025877.7A patent/CN111971421B/zh active Active
- 2019-04-22 EP EP19791996.2A patent/EP3786315A4/en active Pending
- 2019-04-22 US US16/497,996 patent/US11337314B2/en active Active
- 2019-04-22 WO PCT/JP2019/017093 patent/WO2019208522A1/ja active Application Filing
- 2019-04-22 EP EP19793637.0A patent/EP3786318A4/en active Pending
- 2019-04-22 CN CN201980025253.5A patent/CN111971420B/zh active Active
- 2019-04-22 JP JP2020516357A patent/JP7330172B2/ja active Active
- 2019-04-22 KR KR1020207033189A patent/KR102520812B1/ko active IP Right Grant
- 2019-04-22 WO PCT/JP2019/017096 patent/WO2019208525A1/ja active Application Filing
- 2019-04-22 US US16/498,032 patent/US11337315B2/en active Active
- 2019-04-22 KR KR1020207029313A patent/KR102393826B1/ko active IP Right Grant
- 2019-04-22 JP JP2020516358A patent/JP7526093B2/ja active Active
- 2019-04-22 WO PCT/JP2019/017092 patent/WO2019208521A1/ja active Application Filing
- 2019-04-22 KR KR1020207033187A patent/KR102499096B1/ko active IP Right Grant
- 2019-04-22 JP JP2020516355A patent/JPWO2019208520A1/ja active Pending
- 2019-04-22 JP JP2020516356A patent/JP7546482B2/ja active Active
- 2019-04-25 TW TW108114434A patent/TWI701361B/zh active
- 2019-04-25 TW TW108114428A patent/TWI776049B/zh active
- 2019-04-25 TW TW108114431A patent/TW201945598A/zh unknown
- 2019-04-25 TW TW111147252A patent/TW202314056A/zh unknown
- 2019-04-25 TW TW108114432A patent/TWI707071B/zh active
- 2019-04-25 TW TW112120131A patent/TW202340543A/zh unknown
-
2020
- 2020-08-19 PH PH12020551282A patent/PH12020551282A1/en unknown
- 2020-08-26 PH PH12020551363A patent/PH12020551363A1/en unknown
- 2020-08-26 PH PH12020551364A patent/PH12020551364A1/en unknown
- 2020-10-19 PH PH12020551737A patent/PH12020551737A1/en unknown
-
2023
- 2023-07-14 JP JP2023116118A patent/JP2023143918A/ja not_active Abandoned
- 2023-07-21 JP JP2023119346A patent/JP2023133413A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2849059B2 (ja) | 1995-09-28 | 1999-01-20 | 日鉱グールド・フォイル株式会社 | 印刷回路用銅箔の処理方法 |
WO2010074061A1 (ja) * | 2008-12-26 | 2010-07-01 | 日鉱金属株式会社 | 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法 |
WO2010074053A1 (ja) * | 2008-12-26 | 2010-07-01 | 日鉱金属株式会社 | 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法 |
WO2010074072A1 (ja) * | 2008-12-26 | 2010-07-01 | 日鉱金属株式会社 | 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法 |
WO2010147013A1 (ja) * | 2009-06-19 | 2010-12-23 | Jx日鉱日石金属株式会社 | 銅箔及びその製造方法 |
WO2016038923A1 (ja) * | 2014-09-09 | 2016-03-17 | 古河電気工業株式会社 | プリント配線板用銅箔及び銅張積層板 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210395452A1 (en) * | 2018-10-05 | 2021-12-23 | Panasonic Intellectual Property Management Co., Ltd. | Metal-clad laminate, wiring board, metal foil provided with resin, and resin composition |
US20230094806A1 (en) * | 2019-10-25 | 2023-03-30 | Panasonic Intellectual Property Management Co., Ltd. | Metal-clad laminate, wiring board, resin-including metal foil, and resin composition |
WO2022255468A1 (ja) * | 2021-06-03 | 2022-12-08 | パナソニックIpマネジメント株式会社 | 銅張積層板 |
WO2023181627A1 (ja) * | 2022-03-22 | 2023-09-28 | 三井化学株式会社 | 構造体、構造体の製造方法及び接合体 |
WO2024070246A1 (ja) * | 2022-09-28 | 2024-04-04 | Jx金属株式会社 | 表面処理銅箔、銅張積層板及びプリント配線板 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019208520A1 (ja) | 表面処理銅箔、銅張積層板及びプリント配線板 | |
JP2023009304A (ja) | 表面処理銅箔、銅張積層板及びプリント配線板 | |
JP2023009305A (ja) | 表面処理銅箔、銅張積層板及びプリント配線板 | |
WO2023281773A1 (ja) | 表面処理銅箔、銅張積層板及びプリント配線板 | |
WO2022153580A1 (ja) | 表面処理銅箔、銅張積層板及びプリント配線板 | |
WO2024070248A1 (ja) | 表面処理銅箔、銅張積層板及びプリント配線板 | |
WO2024070246A1 (ja) | 表面処理銅箔、銅張積層板及びプリント配線板 | |
WO2024070245A1 (ja) | 表面処理銅箔、銅張積層板及びプリント配線板 | |
WO2024070247A1 (ja) | 表面処理銅箔、銅張積層板及びプリント配線板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19791996 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020516355 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207029286 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019791996 Country of ref document: EP |