WO2010074053A1 - 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法 - Google Patents
電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法 Download PDFInfo
- Publication number
- WO2010074053A1 WO2010074053A1 PCT/JP2009/071282 JP2009071282W WO2010074053A1 WO 2010074053 A1 WO2010074053 A1 WO 2010074053A1 JP 2009071282 W JP2009071282 W JP 2009071282W WO 2010074053 A1 WO2010074053 A1 WO 2010074053A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper foil
- etching
- nickel
- circuit
- zinc
- Prior art date
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 373
- 239000011889 copper foil Substances 0.000 title claims abstract description 318
- 238000000034 method Methods 0.000 title claims description 73
- 238000005530 etching Methods 0.000 claims abstract description 295
- 239000011701 zinc Substances 0.000 claims abstract description 73
- 229910000990 Ni alloy Inorganic materials 0.000 claims abstract description 65
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 61
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 61
- 229910052802 copper Inorganic materials 0.000 claims abstract description 55
- 239000010949 copper Substances 0.000 claims abstract description 55
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 42
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 318
- 229910052759 nickel Inorganic materials 0.000 claims description 155
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 30
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 239000007864 aqueous solution Substances 0.000 claims description 20
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 20
- 239000011651 chromium Substances 0.000 claims description 19
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 16
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 16
- 239000010941 cobalt Substances 0.000 claims description 16
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 16
- 239000011733 molybdenum Substances 0.000 claims description 16
- 239000011574 phosphorus Substances 0.000 claims description 16
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 16
- 239000010937 tungsten Substances 0.000 claims description 16
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 15
- 239000011787 zinc oxide Substances 0.000 claims description 15
- 229910052804 chromium Inorganic materials 0.000 claims description 14
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 13
- 229910000077 silane Inorganic materials 0.000 claims description 13
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 12
- 229910017052 cobalt Inorganic materials 0.000 claims description 10
- 229960003280 cupric chloride Drugs 0.000 claims description 10
- 229910052721 tungsten Inorganic materials 0.000 claims description 10
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 9
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 claims description 9
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- 239000011888 foil Substances 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000002845 discoloration Methods 0.000 abstract description 81
- 238000010438 heat treatment Methods 0.000 abstract description 9
- 230000001590 oxidative effect Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 131
- 238000007747 plating Methods 0.000 description 86
- 229910001297 Zn alloy Inorganic materials 0.000 description 67
- 239000011347 resin Substances 0.000 description 57
- 229920005989 resin Polymers 0.000 description 57
- 230000008569 process Effects 0.000 description 53
- 230000003647 oxidation Effects 0.000 description 52
- 238000007254 oxidation reaction Methods 0.000 description 52
- 239000000758 substrate Substances 0.000 description 41
- 229910045601 alloy Inorganic materials 0.000 description 26
- 239000000956 alloy Substances 0.000 description 26
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 26
- 239000011248 coating agent Substances 0.000 description 23
- 238000000576 coating method Methods 0.000 description 23
- 230000000694 effects Effects 0.000 description 23
- 238000005259 measurement Methods 0.000 description 18
- 238000012360 testing method Methods 0.000 description 18
- 230000003746 surface roughness Effects 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 238000007665 sagging Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- 229910001182 Mo alloy Inorganic materials 0.000 description 7
- 229910001096 P alloy Inorganic materials 0.000 description 7
- 229910000531 Co alloy Inorganic materials 0.000 description 6
- 229910001080 W alloy Inorganic materials 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 230000002950 deficient Effects 0.000 description 5
- 150000002815 nickel Chemical class 0.000 description 5
- 238000003892 spreading Methods 0.000 description 5
- 230000007480 spreading Effects 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- PDTOKXNZSNUABX-UHFFFAOYSA-N [Zn].[B].[Ni] Chemical compound [Zn].[B].[Ni] PDTOKXNZSNUABX-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229910000521 B alloy Inorganic materials 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000007788 roughening Methods 0.000 description 3
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- XEMZLVDIUVCKGL-UHFFFAOYSA-N hydrogen peroxide;sulfuric acid Chemical compound OO.OS(O)(=O)=O XEMZLVDIUVCKGL-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- XYCQRIWVOKLIMW-UHFFFAOYSA-N [Co].[Ni].[Zn] Chemical compound [Co].[Ni].[Zn] XYCQRIWVOKLIMW-UHFFFAOYSA-N 0.000 description 1
- WJPZDRIJJYYRAH-UHFFFAOYSA-N [Zn].[Mo] Chemical compound [Zn].[Mo] WJPZDRIJJYYRAH-UHFFFAOYSA-N 0.000 description 1
- PNQUPLRMXIDHAA-UHFFFAOYSA-N [Zn].[W].[Ni] Chemical compound [Zn].[W].[Ni] PNQUPLRMXIDHAA-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- RJTANRZEWTUVMA-UHFFFAOYSA-N boron;n-methylmethanamine Chemical compound [B].CNC RJTANRZEWTUVMA-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000004649 discoloration prevention Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- -1 nickel - boron - nickel zinc Chemical compound 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 125000003396 thiol group Chemical class [H]S* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- 229940007718 zinc hydroxide Drugs 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
- C23F1/14—Aqueous compositions
- C23F1/16—Acidic compositions
- C23F1/18—Acidic compositions for etching copper or alloys thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/24—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/02—Local etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
- C23F1/14—Aqueous compositions
- C23F1/16—Acidic compositions
- C23F1/28—Acidic compositions for etching iron group metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
- C25D7/0614—Strips or foils
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/06—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/382—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
- H05K3/384—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/562—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
- C25D5/12—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0338—Layered conductor, e.g. layered metal substrate, layered finish layer or layered thin film adhesion layer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0355—Metal foils
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/07—Treatments involving liquids, e.g. plating, rinsing
- H05K2203/0703—Plating
- H05K2203/0723—Electroplating, e.g. finish plating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/06—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
- H05K3/067—Etchants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12229—Intermediate article [e.g., blank, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
Definitions
- the present invention relates to a rolled copper foil or electrolytic copper foil for an electronic circuit that forms a circuit by etching, and a method for forming an electronic circuit using these.
- Copper foil for printed circuits is widely used in electronic and electrical equipment, but this copper foil for printed circuits is generally used with a base material such as a synthetic resin board or film with or without an adhesive.
- a copper-clad laminate is produced by bonding under high temperature and high pressure, and then a circuit is printed by a resist coating and exposure process to form the desired circuit, followed by an etching process that removes unnecessary portions of the copper foil.
- various elements are soldered to form a printed circuit for an electro device.
- Copper foils used in such printed circuits are broadly divided into electrolytic copper foils and rolled copper foils depending on the type of manufacturing method, both of which are used according to the types of printed circuit boards and quality requirements. Yes. These copper foils have a surface to be bonded to the resin base material and a non-bonded surface, and are each subjected to a special surface treatment (treating treatment). In some cases, the copper foil used for the inner layer of the multilayer printed wiring board has a function of adhering to the resin on both sides (double treatment).
- electrolytic copper foil is produced by electrodepositing copper onto a rotating drum and continuously peeling it to produce a copper foil.
- the surface that contacts the rotating drum is a glossy surface and the opposite surface. Has many irregularities (rough surface).
- a thin plating layer may be formed in order to prevent such copper particles from falling off while enhancing such unevenness.
- a series of these steps is called roughening treatment.
- Such a roughening treatment is required not only for the electrolytic copper foil but also for the rolled copper foil, and the same roughening treatment is also carried out for the rolled copper foil.
- Copper-clad laminates are manufactured by hot pressing and continuous processes using the above copper foil.
- this laminated plate is produced by synthesize epoxy resin, impregnate paper substrate with phenol resin, and dry it to produce a prepreg, and further combine this prepreg and copper foil with a combination press. It is manufactured through processes such as hot pressing.
- the copper-clad laminate produced in this way is printed with a resist coating and exposure process to form the desired circuit, and further undergoes an etching process to remove unnecessary portions of the copper foil.
- an etching process to remove unnecessary portions of the copper foil.
- the present inventors have proposed a copper foil in which a metal or alloy layer having a slower etching rate than copper is formed on the copper foil on the etching surface side (see Patent Document 1).
- the metal or alloy includes nickel, cobalt, and alloys thereof.
- the etching solution penetrates from the resist coating side, that is, from the surface of the copper foil, so if there is a metal or alloy layer with a slow etching rate directly under the resist, the etching of the copper foil portion in the vicinity is suppressed. Since the etching of the copper foil portion progresses, the “sag” is reduced, and a circuit with a more uniform width can be formed. This result is a significant advance from the prior art.
- the nickel or nickel alloy layer As for the former, it is necessary to reduce the thickness of the nickel or nickel alloy layer as much as possible in order to shorten the etching removal time as much as possible and to remove it cleanly.
- the nickel or nickel alloy layer in order to receive heat, the nickel or nickel alloy layer is oxidized (discolored, so it is commonly called “yake”), and the resist coating properties (uniformity, adhesion)
- the resist coating properties uniformity, adhesion
- Patent Document 2 Patent Document 3
- Patent Document 5 Patent Document 6
- Patent Document 7 There is also a proposal of a method of coating nickel or a nickel alloy on the side to be bonded to the resin instead of the side to be etched.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2002-176242
- Patent Document 2 Japanese Patent Application Laid-Open No. 5-140765
- Patent Document 3 Japanese Patent Application Laid-Open No. 6-85416
- Patent Document 4 Japanese Patent Application Laid-Open No. 6-85417
- Patent Document 6 Japanese Patent Application Laid-Open No. 6-280047
- Patent Document 7 Japanese Patent Application Laid-Open No. 7-74464
- Patent Document 7 Japanese Patent Application Laid-Open No. 7-288883
- Patent Document 8 Japanese Patent Application Laid-Open No. 2005-15861
- Patent Document 9 Japanese Patent Application Laid-Open No. 2006-261270
- the present invention when forming a circuit by etching a copper foil of a copper-clad laminate, sagging due to etching can be prevented, a circuit having a uniform circuit width can be formed, and the time for forming the circuit by etching is reduced as much as possible. At the same time, the thickness of the nickel alloy layer can be reduced as much as possible, and it can be easily removed by soft etching. Further, the coating layer after etching is prevented from remaining undissolved, and oxidation is suppressed when heat is applied.
- the present inventors form a nickel alloy layer on the etched surface of rolled copper foil or electrolytic copper foil, and adjust the etching rate in the thickness direction of the copper foil to form a uniform circuit with no sagging circuit width. At the same time, it was found that when heat is applied, oxidation can be prevented to prevent discoloration called “burning” and other problems in designing electronic circuits can be solved simultaneously.
- the present invention is based on this finding. 1
- the rolled copper foil or the electrolytic copper foil includes a nickel alloy layer having a lower etching rate than copper formed on the etched surface side, The nickel alloy layer contains zinc or zinc oxide, and provides a rolled copper foil or an electrolytic copper foil for electronic circuits.
- the present invention also provides: 2
- the nickel alloy layer having an etching rate lower than that of the copper has a nickel ratio in the nickel alloy layer of more than 50 wt%.
- zinc content present as zinc or zinc oxide contained in the alloy layer, a metal zinc terms, a 30 ⁇ g / dm 2 ⁇ 1000 ⁇ g / dm 2, in the 1 or 2, characterized in that does not exceed the amount of nickel
- a rolled copper foil or an electrolytic copper foil for an electronic circuit as described is provided.
- the present invention also provides: 4 amount of nickel the included in the nickel alloy layer, rolled copper foil or electrolytic copper for electronic circuit according to any one of the above 1 to 3, characterized in that a 100 ⁇ g / dm 2 ⁇ 3000 ⁇ g / dm 2 Foil 5
- Foil or electrolytic copper foil 6 The rolled copper foil or electrolytic copper foil for electronic circuits according to 1 to 5, further comprising a chromium layer or a chromate layer and / or a silane treatment layer on the nickel alloy layer. ,I will provide a.
- the present invention also provides: 7 When the chromium layer or the chromate layer is provided, the amount of chromium is 100 ⁇ g / dm 2 or less in terms of metal chromium, and the rolled copper foil or the electrolytic copper foil for an electronic circuit according to 6 above, When the silane treatment layer is provided, the rolled copper foil or the electrolytic copper foil for an electronic circuit according to the above 6 to 7, characterized in that it is 20 ⁇ g / dm 2 or less in terms of silicon alone.
- the present invention also provides: 9 In the method of forming an electronic circuit by etching the copper foil of a copper-clad laminate made of rolled copper foil or electrolytic copper foil, a nickel alloy layer containing zinc or zinc oxide is formed on the etched surface side of the copper foil. After forming, the copper foil is etched using a ferric chloride aqueous solution or a cupric chloride aqueous solution, and unnecessary portions of the copper foil are removed to form a copper circuit. Method.
- the present invention provides 10.
- a method of forming an electronic circuit characterized in that a copper circuit is formed by etching the copper foil with a ferric aqueous solution or a cupric chloride aqueous solution to remove unnecessary portions of the copper foil.
- the present invention has an effect that when a circuit is formed by etching a copper foil of a copper-clad laminate, a circuit having a more uniform circuit width can be formed.
- yake discoloration
- the rolled copper foil or electrolytic copper foil for electronic circuits that form a circuit by etching according to the present invention is nickel, which is a metal or alloy having a slower etching rate than copper formed on the etched surface side of the rolled copper foil or electrolytic copper foil.
- An alloy layer is formed, and this nickel alloy layer suppresses the occurrence of sagging due to etching.
- the nickel alloy layer contains zinc or zinc oxide, and the nickel alloy layer has a function as a heat-resistant layer at the same time.
- This rolled copper foil or electrolytic copper foil is joined to a resin to obtain a copper-clad laminate. This copper foil can be applied to both electrolytic copper foil and rolled copper foil.
- the present invention can be similarly applied to a roughened surface (M surface) or a glossy surface (S surface). Normally, the glossy side is used.
- M surface roughened surface
- S surface glossy surface
- the glossy side is used.
- the rolled copper foils there are high-purity copper foils or alloy copper foils with improved strength, but the present invention encompasses all these copper foils.
- the nickel or nickel alloy that suppresses etching is located near the resist portion on the copper foil, and the etching speed of the copper foil on the resist side is suppressed by this nickel alloy layer, and conversely as it moves away from the nickel alloy layer. Copper etching proceeds at a normal rate. As a result, etching proceeds substantially vertically from the resist side of the side surface of the copper circuit toward the resin substrate side, and a rectangular copper foil circuit is formed.
- the nickel alloy layer contains zinc and zinc oxide as alloy components.
- the zinc or zinc oxide does not have the same function as nickel. Rather, zinc or zinc oxide is likely to be etched when designing a circuit, so that it seems to increase the “sag” as described above from the viewpoint of conventional technical common sense.
- Copper-clad laminates need to be treated at a high temperature in the process of attaching resin to form an electronic circuit.
- this is oxidized and the resist coatability is increased. It tends to cause defects in (uniformity and adhesion).
- the interface oxide formed during heating is likely to cause variations in etching, causing a short circuit or non-uniform circuit width.
- Patent Document 9 proposes a process for producing a copper-clad laminate that controls the oxygen concentration, and it is thought that oxidation resistance to high-temperature processing will be increasingly required in the future.
- zinc or zinc oxide contained in the nickel alloy layer of the present invention is a material having heat resistance oxidation resistance, the heat resistance oxidation and discoloration prevention are remarkably enhanced only by adding this as an alloying element. The effect is given.
- nickel or a nickel alloy is particularly effective as a metal layer having an etching rate lower than that of copper, but generally an etching solution (cupric chloride aqueous solution, used for forming an electronic circuit pattern on a copper-clad laminate).
- an etching solution cupric chloride aqueous solution, used for forming an electronic circuit pattern on a copper-clad laminate.
- the etching rate is the same as that of nickel, or even if it is large, it is smaller than copper, so it has the effect of improving the etching factor.
- nickel since zinc is a metal that is easily etched, it is necessary to reduce it in terms of quantity.
- the main purpose is to make the etching width of the circuit uniform and prevent “sag” from occurring, it is necessary to avoid a large amount of easily corroded metal such as zinc.
- nickel In this sense, nickel must be the main component in the nickel alloy layer.
- any alloy component included in the nickel alloy as an alloy having a slower etching rate than the rolled copper foil or electrolytic copper foil for electronic circuits can be used as long as it is a generally known alloy.
- an alloy with at least one selected from phosphorus, boron, molybdenum, tungsten, or cobalt has an effect of improving an etching factor because an etching rate is slower than that of copper.
- the alloy layer of the present invention is a nickel-zinc alloy containing nickel as a main component.
- phosphorus, boron, molybdenum, tungsten, or cobalt metal has an effect similar to that of nickel. It is possible to replace these metals.
- the total amount of these one component or two components can contain 5% or less of the nickel amount (wt%) in terms of nickel as required. Further, one component of molybdenum, tungsten or cobalt or the total amount of these two components or three components may contain 10% or less of the nickel amount (wt%) in terms of nickel as required.
- the alloy layer of the present invention is a nickel-zinc alloy containing nickel as a central component to the extent that it is necessary to add replaceable phosphorus, boron, molybdenum, tungsten or cobalt metal more than necessary (a large amount). This is not appropriate from the viewpoint of adjusting and improving the etching factor. Therefore, it is set as the above range.
- the zinc contained in the nickel alloy includes not only metallic zinc but also zinc hydroxide or zinc oxide.
- a chromium layer or a chromate layer and / or a silane treatment layer can be further formed on the nickel alloy layer.
- this amount it is possible to suppress the oxidation of the surface of the nickel alloy in the same manner.
- a pattern can be formed.
- the zinc content of the total contained in the nickel alloy layer is a metallic zinc terms, a 30 ⁇ g / dm 2 ⁇ 1000 ⁇ g / dm 2, the sum of nickel It is desirable not to exceed the amount. If it is less than 30 ⁇ g / dm 2 , there is no effect on oxidation resistance (improving burnability). If it exceeds 1000 [mu] g / dm 2, an effect is saturated, so would not offset the effect of nickel, a metal zinc terms, it is preferable to 30 ⁇ g / dm 2 ⁇ 1000 ⁇ g / dm 2.
- the amount of nickel contained in the nickel alloy layer is preferred to be 100 ⁇ g / dm 2 ⁇ 3000 ⁇ g / dm 2. This is an amount necessary to suppress the occurrence of sagging during circuit etching and to etch a uniform circuit. If it is less than 100 ⁇ g / dm 2 , the effect is not obtained. Preferably, it is 200 ⁇ g / dm 2 or more. The upper limit is set to 3000 ⁇ g / dm 2 . If the amount is too large, the load of the nickel or nickel alloy layer removal process becomes large during the soft etching, and a processing residue may occur in some cases, which hinders the design of the copper circuit. Therefore, it is necessary to set the above range.
- chromium amount when providing the said chromium layer or chromate layer, chromium amount shall be 100 microgram / dm ⁇ 2 > or less in conversion of metal chromium. Moreover, when forming the said silane treatment layer, it is desirable that it is 20 microgram / dm ⁇ 2 > or less in conversion of silicon simple substance. This is to suppress the difference in etching rate with respect to the pattern etching solution. However, a moderate amount is effective to prevent thermal oxidation of the nickel or nickel alloy layer.
- the present invention also relates to a method of forming an electronic circuit by etching a copper clad laminate made of rolled copper foil or electrolytic copper foil, and a metal having a slower etching rate than copper on the etched surface side of the copper foil.
- a method of forming an electronic circuit is provided, wherein the circuit is formed by etching the copper foil using a ferric chloride aqueous solution or a cupric chloride aqueous solution. can do. Any etching solution can be used, but an aqueous ferric chloride solution is particularly effective. This is because the fine circuit takes time to etch, but the ferric chloride aqueous solution has a higher etching rate than the cupric chloride aqueous solution.
- the present invention relates to a method for forming an electronic circuit by etching a copper-clad laminate comprising a rolled copper foil or an electrolytic copper foil, wherein the rolled copper foil or the electrolytic copper for electronic circuits as described in 1 to 9 above.
- a method of forming an electronic circuit comprising: forming a copper circuit by etching the copper foil using a ferric chloride aqueous solution or a cupric chloride aqueous solution and removing unnecessary portions of copper. , Provide. In this method, any of the above-described rolled copper foil or electrolytic copper foil for electronic circuits can be used.
- the rolled copper foil or electrolytic copper foil for electronic circuits as described in 1 to 9 above is chlorinated. It is possible to etch the copper foil with ferric aqueous solution or cupric chloride aqueous solution, remove unnecessary parts of copper, then remove the resist, and further remove the remaining nickel layer by soft etching It is.
- Nickel-zinc alloy plating part 1
- a plated film in a metal or alloy state is basically obtained.
- Zn consists of a zero-valent metal state and a divalent oxidation state (oxide or hydroxide), and the ratio of zinc in the zero-valent metal state in the total zinc in this nickel-zinc plating is 50 % Or less.
- the chemical state of Zn metal zinc / zinc oxide ratio
- Ni 50 to 100 g / L P: 1-25g / L HBO 3 : 0 to 30 g / L Zn: 3 to 20 g / L pH: 0.5-2.5 Temperature: normal temperature to 95 ° C Current density Dk: 5 to 40 A / dm 2 Time: 1-10 seconds
- Ni 5-25g / L Mo: 0.01-5 g / L Na 2 P 2 O 7 : 160 g / L Zn: 0.1 to 10 g / L pH: 8-9
- Temperature normal temperature to 40 ° C Current density Dk: 1 to 5 A / dm 2 Time: 1-10 seconds
- Ni 1-10g / L W: 20-50g / L
- Citric acid 60 g / L
- Zn 0.1 to 10 g / L pH: 8-9
- Temperature normal temperature to 50 ° C
- Current density Dk 0.1 to 5 A / dm 2 Time: 1-10 seconds
- Nickel sulfate 25-35g / L Zn: 0.5 g / L
- Dimethylamine borane 2 to 3 g / L
- Glycolic acid 25-35 g / L
- Acetic acid 15 g / L pH: 6-7
- Temperature 50 ° C to 70 ° C
- Current density Dk 1 to 10 A / dm 2 Time: 1-10 seconds
- K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ) Cr 40 to 300 g / liter H 2 SO 4 : 0.5 to 10.0 g / liter Bath temperature: 40 to 60 ° C Current density D k : 0.01 to 50 A / dm 2 Time: 1 to 100 seconds
- Anode Pt-Ti plate, stainless steel plate, lead plate, etc.
- Nickel and zinc adhesion amount analysis method In order to analyze the treated surfaces of nickel and zinc, the opposite surface is press-made with FR-4 resin and masked. The sample is dissolved in nitric acid with a concentration of 30% until the surface treatment film is dissolved, the solution in the beaker is diluted 10 times, and quantitative analysis of nickel is performed by atomic absorption analysis.
- Chromium adhesion analysis method In order to analyze the treated surface, the opposite surface is pressed with FR-4 resin and masked. The sample is boiled in hydrochloric acid having a concentration of 10% for 3 minutes to dissolve the treatment layer, and the solution is quantitatively analyzed for zinc and chromium by atomic absorption analysis.
- the aqueous solution is used with an aqueous cupric chloride solution or an aqueous ferric chloride solution.
- Etch the copper foil By etching under the above conditions, the etching factor can be 2 or more, that is, the inclination angle between the etching side surface of the copper foil circuit and the resin substrate can be 63 degrees or more. Desirably, it can be set to 70 degrees or more. A particularly desirable inclination angle is in the range of 85 to 90 degrees. Thereby, a rectangular etching circuit without sagging can be formed.
- Soft etching In general, the soft etching property is immersed in a sulfuric acid-hydrogen peroxide mixed system for 2 minutes, and the appearance is inspected to determine whether the plated product is removed.
- the soft etching solution for example, 165 g / L of sulfuric acid and 21 g / L of hydrogen peroxide are used. And it processes at 35 degreeC normally. In terms of appearance observation, the case of complete removal is evaluated as good, and the case of residual removal is evaluated as defective.
- a particularly important point in soft etching is the case where the Ni alloy layer remains. If such a Ni alloy layer remains, the plating property may change. From this point of view, it is necessary to pay attention to the soft etching property.
- Example 1 A 5 ⁇ m electrolytic copper foil was used. The surface roughness Rz of this electrolytic copper foil was 3 ⁇ m. A 390 ⁇ g / dm 2 nickel-zinc alloy plating layer was formed on the glossy (S) surface of this electrolytic copper foil under the above nickel-zinc alloy plating conditions (Part 1). In this case, as shown in Table 1, the nickel content of the nickel / zinc alloy plating layer was 350 ⁇ g / dm 2 and the zinc content was 40 ⁇ g / dm 2 . The nickel ratio was 90 wt%. The copper foil was bonded to the resin substrate with the opposite side of the surface provided with the nickel-zinc alloy plating layer as the bonding surface.
- Etching conditions Ferric chloride aqueous solution: (37 wt%, Baume degree: 40 °) Liquid temperature: 50 ° C Spray pressure: 0.15 MPa
- the etching factor is defined as the point of intersection between the perpendicular line from the upper surface of the copper foil and the resin substrate, assuming that the circuit is etched vertically when etching is performed in a divergent manner (when sagging occurs).
- the ratio of this a to the thickness b of the copper foil: b / a is shown.
- the larger this value the greater the inclination angle and the etching. It means that no residue remains and dripping is reduced.
- Etching was performed under the above conditions. As a result, etching progressed substantially vertically from the resist side of the side surface of the copper circuit toward the resin substrate side, and a rectangular copper foil circuit was formed. Next, the inclination angle of the etched copper foil was measured (note that this is the minimum value of the inclination angle at a circuit length of 100 ⁇ m). In addition, the etching factor and oxidation discoloration (discoloration) of the nickel-zinc alloy plated surface were examined. The results are shown in Table 1.
- the average value of the left and right inclination angles was 72 degrees, and a substantially rectangular copper foil circuit was formed.
- the etching factor was 3.0 at a pitch of 30 ⁇ m. As a result, a good etching circuit was obtained.
- no oxidation discoloration (discoloration) was observed on the nickel-zinc alloy plated surface. This is presumably because the nickel-zinc alloy plating layer on the copper foil prevented the oxidative discoloration on the nickel-zinc alloy plating layer side due to heating during the bonding process with the resin. Furthermore, the presence of zinc in the alloy did not degrade the etching factor, which is noteworthy.
- Example 2 A rolled copper foil having a foil thickness of 18 ⁇ m was used. The surface roughness Rz of this rolled copper foil was 0.7 ⁇ m.
- a nickel-zinc alloy plating layer of 2150 ⁇ g / dm 2 was formed under the above-mentioned nickel-zinc alloy (part 2) plating conditions. As shown in Table 1, the nickel content in this nickel-zinc alloy plating layer was 1500 ⁇ g / dm 2 and the zinc content was 650 ⁇ g / dm 2 . In this case, the nickel ratio was 70 wt%. Further, the copper foil was bonded to the resin substrate with the opposite side of the surface provided with the nickel-zinc alloy plating layer as the bonding surface.
- Example 2 ten circuits were printed by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. Except for the circuit formation conditions, the etching conditions, the measurement conditions for the etching factor, and the burn test were performed in the same manner as in Example 1. Description of the same conditions as in Example 1 is omitted.
- Etching was performed under the above conditions. As a result, etching progressed substantially vertically from the resist side of the side surface of the copper circuit toward the resin substrate side, and a rectangular copper foil circuit was formed. Next, the inclination angle of the etched copper foil was measured (note that this is the minimum value of the inclination angle at a circuit length of 100 ⁇ m). In addition, the etching factor and oxidation discoloration (discoloration) of the nickel-zinc alloy plated surface were examined. The results are shown in Table 1.
- the average value of the left and right inclination angles was 74 degrees, and a substantially rectangular copper foil circuit was formed.
- the etching factor was 3.4 at a pitch of 50 ⁇ m. As a result, a good etching circuit was obtained.
- no oxidation discoloration (discoloration) was observed on the nickel-zinc alloy plated surface. This is probably because the nickel-zinc alloy plating layer on the copper foil prevented oxidation discoloration due to heating during the bonding process with the resin. Further, the presence of zinc in this alloy did not deteriorate the etching factor as in Example 1.
- Example 3 A rolled copper foil having a foil thickness of 18 ⁇ m was used. The surface roughness Rz of this rolled copper foil was 0.7 ⁇ m. A nickel / cobalt / zinc alloy plating layer was formed on the rolled copper foil under the nickel / cobalt / zinc alloy plating conditions. In this case, the cobalt replacement amount was 8% of the nickel amount (wt%) in terms of nickel. As shown in Table 1, the nickel amount of the nickel-cobalt-zinc alloy layer is 2500 g / dm 2, the zinc amount was 300 [mu] g / dm 2. In this case, the nickel ratio was 89 wt%. In addition, this nickel ratio is the nickel conversion amount of the total amount of cobalt and nickel. Furthermore, the copper foil was bonded to the resin substrate with the opposite side of the surface provided with the nickel / cobalt / zinc alloy plating layer as the bonding surface.
- Example 2 ten circuits were printed by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. Except for the circuit formation conditions, the etching conditions, the measurement conditions for the etching factor, and the burn test were performed in the same manner as in Example 1. Description of the same conditions as in Example 1 is omitted.
- Etching was performed under the above conditions. As a result, etching progressed substantially vertically from the resist side of the side surface of the copper circuit toward the resin substrate side, and a rectangular copper foil circuit was formed. Next, the inclination angle of the etched copper foil was measured (note that this is the minimum value of the inclination angle at a circuit length of 100 ⁇ m). In addition, the etching factor and oxidation discoloration (discoloration) on the nickel plating surface were examined. The results are shown in Table 1.
- the average value of the left and right inclination angles was 74 degrees, and a substantially rectangular copper foil circuit was formed.
- the etching factor was 3.5 at a pitch of 50 ⁇ m. As a result, a good etching circuit was obtained. Further, no oxidation discoloration (discoloration) was observed on the nickel / cobalt / zinc alloy plated surface. This is considered that the nickel / cobalt / zinc alloy plating layer on the copper foil prevented oxidation discoloration due to heating during the bonding process with the resin. Further, the presence of zinc in this alloy did not deteriorate the etching factor as in Example 1. In addition, if cobalt addition was 10% or less of nickel amount (wt%) in nickel conversion, the same effect could be acquired.
- Example 4 A 5 ⁇ m electrolytic copper foil was used. The surface roughness Rz of this electrolytic copper foil was 3 ⁇ m.
- a nickel / phosphorus / zinc alloy plating layer was formed on the gloss (S) surface of the electrolytic copper foil under the nickel / phosphorus / zinc alloy plating conditions.
- the nickel content of the nickel / phosphorus / zinc alloy plating layer was 110 ⁇ g / dm 2
- the zinc content was 40 ⁇ g / dm 2
- the phosphorus substitute amount was 3% of the nickel amount (wt%) in terms of nickel.
- the nickel ratio was 74 wt%. In addition, this nickel ratio is the nickel conversion amount of the total amount of phosphorus and nickel.
- the copper foil was bonded to the resin substrate with the opposite side of the surface provided with the nickel / phosphorus / zinc alloy plating layer as the bonding surface.
- Example 2 ten circuits were printed by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. Except for the circuit formation conditions, the etching conditions, the measurement conditions for the etching factor, and the burn test were performed in the same manner as in Example 1. Description of the same conditions as in Example 1 is omitted.
- Etching was performed under the above conditions. As a result, etching progressed substantially vertically from the resist side of the side surface of the copper circuit toward the resin substrate side, and a rectangular copper foil circuit was formed. Next, the inclination angle of the etched copper foil was measured (note that this is the minimum value of the inclination angle at a circuit length of 100 ⁇ m). In addition, the etching factor and oxidation discoloration (discoloration) on the nickel plating surface were examined. The results are shown in Table 1.
- the average value of the left and right inclination angles was 70 degrees, and a substantially rectangular copper foil circuit was formed.
- the etching factor was 2.8 at a pitch of 30 ⁇ m. As a result, a good etching circuit was obtained.
- no oxidation discoloration (discoloration) was observed on the nickel / phosphorus / zinc alloy plated surface. This is considered that the nickel / phosphorus / zinc alloy plating layer on the copper foil prevented oxidation discoloration due to heating during the bonding process with the resin. Further, the presence of zinc in this alloy did not deteriorate the etching factor as in Example 1.
- the same effect could be acquired if phosphorus addition was 5% or less of nickel amount (wt%) in nickel conversion.
- Example 5 A 9 ⁇ m rolled copper foil was used. The surface roughness Rz of this rolled copper foil was 0.5 ⁇ m. A nickel / molybdenum / zinc alloy plating layer was formed on the surface of the rolled copper foil under the nickel / molybdenum / zinc alloy plating conditions. As shown in Tables 1 and 2, nickel in the nickel / molybdenum / zinc alloy plating layer was 250 ⁇ g / dm 2 and zinc was 50 ⁇ g / dm 2 . In this case, the molybdenum replacement amount was 9% of the nickel amount (wt%) in terms of nickel. The nickel ratio was 84 wt%.
- this nickel ratio is the nickel conversion amount of the total amount of molybdenum and nickel.
- Example 2 ten circuits were printed by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. Except for the circuit formation conditions, the etching conditions, the measurement conditions for the etching factor, and the burn test were performed in the same manner as in Example 1. Description of the same conditions as in Example 1 is omitted.
- Etching was performed under the above conditions. As a result, etching progressed substantially vertically from the resist side of the side surface of the copper circuit toward the resin substrate side, and a rectangular copper foil circuit was formed. Next, the inclination angle of the etched copper foil was measured (note that this is the minimum value of the inclination angle at a circuit length of 100 ⁇ m). In addition, the etching factor and the oxidation discoloration (discoloration) of the nickel / molybdenum / zinc alloy plated surface were examined. The results are shown in Table 1.
- the average value of the left and right inclination angles was 63 degrees, and a substantially rectangular copper foil circuit was formed.
- the etching factor was 2.0 at a pitch of 30 ⁇ m.
- a usable etching circuit was obtained.
- no oxidation discoloration (discoloration) was observed on the nickel / molybdenum-zinc alloy plating surface. This is probably because the nickel / molybdenum / zinc alloy plating layer on the copper foil prevented oxidation discoloration due to heating during the bonding process with the resin. Further, the presence of zinc in this alloy did not deteriorate the etching factor as in Example 1. In addition, the same effect could be acquired if molybdenum addition was 10% or less of nickel amount (wt%) in nickel conversion.
- Example 6 9 ⁇ m rolled copper foil was used.
- a nickel / tungsten / zinc alloy plating layer was formed on the surface of the rolled copper foil under the above nickel / tungsten / zinc alloy plating conditions.
- nickel of the nickel-tungsten-zinc alloy plating layer is 920 ⁇ g / dm 2
- zinc was 550 ⁇ g / dm 2.
- the tungsten replacement amount was 6% of the nickel amount (wt%) in terms of nickel.
- the nickel ratio was 65 wt%. In addition, this nickel ratio is the nickel conversion amount of the total amount of tungsten and nickel.
- the copper foil was bonded to the resin substrate with the opposite side of the surface provided with the nickel / tungsten / zinc alloy plating layer as the bonding surface.
- Example 2 ten circuits were printed by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. Except for the circuit formation conditions, the etching conditions, the measurement conditions for the etching factor, and the burn test were performed in the same manner as in Example 1. Description of the same conditions as in Example 1 is omitted.
- Etching was performed under the above conditions. As a result, etching progressed substantially vertically from the resist side of the side surface of the copper circuit toward the resin substrate side, and a rectangular copper foil circuit was formed. Next, the inclination angle of the etched copper foil was measured (note that this is the minimum value of the inclination angle at a circuit length of 100 ⁇ m). In addition, the etching factor and oxidation discoloration (discoloration) of the nickel / tungsten / zinc alloy plated surface were examined. The results are shown in Table 1.
- the average value of the left and right inclination angles was 72 degrees, and a substantially rectangular copper foil circuit was formed.
- the etching factor was 3.0 at a pitch of 30 ⁇ m. As a result, a good etching circuit was obtained. Further, no oxidation discoloration (discoloration) was observed on the nickel / tungsten / zinc alloy plated surface. This is considered that the nickel / tungsten / zinc alloy plating layer on the copper foil prevented oxidation discoloration due to heating during the bonding process with the resin. Further, the presence of zinc in this alloy did not deteriorate the etching factor as in Example 1. In the above examples, soft etching was performed and the plating residue was observed. However, since the total amount of Ni was within an appropriate range, no residue was found and good results were obtained. In addition, the same effect could be acquired if tungsten addition was 10% or less of nickel amount (wt%) in nickel conversion.
- Example 7 In Example 7, 18 ⁇ m rolled copper foil was used. A nickel / boron / zinc alloy layer was formed on the surface of the rolled copper foil under the above nickel-boron-zinc alloy plating conditions. As shown in Table 1, the nickel - boron - nickel zinc alloy plating layer is 800 [mu] g / dm 2, zinc was 200 [mu] g / dm 2. In this case, the boron substitute amount was 4% of the nickel amount (wt%) in terms of nickel. The nickel ratio was 81 wt%. In addition, this nickel ratio is the nickel conversion amount of the total amount of boron and nickel.
- the copper foil was bonded to the resin substrate with the opposite side of the surface provided with the nickel / boron / zinc alloy plating layer as the bonding surface.
- Example 2 ten circuits were printed by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. Except for the circuit formation conditions, the etching conditions, the measurement conditions for the etching factor, and the burn test were performed in the same manner as in Example 1. Description of the same conditions as in Example 1 is omitted.
- Etching was performed under the above conditions. As a result, etching progressed substantially vertically from the resist side of the side surface of the copper circuit toward the resin substrate side, and a rectangular copper foil circuit was formed. Next, the inclination angle of the etched copper foil was measured (note that this is the minimum value of the inclination angle at a circuit length of 100 ⁇ m). In addition, the etching factor and oxidation discoloration (discoloration) of the nickel-boron-zinc alloy plated surface were examined. The results are shown in Table 1.
- the average value of the left and right inclination angles was 72 degrees, and a substantially rectangular copper foil circuit was formed.
- the etching factor was 3.1 at a pitch of 50 ⁇ m. As a result, a good etching circuit was obtained.
- no oxidation discoloration (discoloration) was observed on the nickel-boron-zinc alloy plated surface. This is probably because the nickel-boron-zinc alloy plating layer on the copper foil prevented oxidation discoloration due to heating during the bonding process with the resin. Further, the presence of zinc in this alloy did not deteriorate the etching factor as in Example 1.
- soft etching was performed and the plating residue was observed. However, since the total amount of Ni was within an appropriate range, no residue was found and good results were obtained. In addition, the same effect could be acquired if addition of boron was 5% or less of nickel amount (wt%) in nickel conversion.
- Comparative Example 1 A 9 ⁇ m rolled copper foil was used. Nickel plating was performed under the above conditions. The surface roughness Rz of this rolled copper foil was 0.5 ⁇ m. As shown in Table 1, a 550 ⁇ g / dm 2 nickel plating layer was formed on the rolled copper foil under the above nickel plating conditions without performing galvanization. Further, the copper foil was bonded to the resin substrate with the opposite side of the surface provided with the nickel plating layer as the bonding surface.
- Example 2 ten circuits were printed by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. Except for the circuit formation conditions, the etching conditions, the measurement conditions for the etching factor, and the burn test were performed in the same manner as in Example 1. Description of the same conditions as in Example 1 is omitted.
- Etching was performed under the above conditions. As a result, the etching progressed almost vertically from the resist side to the resin substrate side of the side surface of the copper circuit, but a copper foil circuit was formed slightly wider. Next, the inclination angle of the etched copper foil was measured (note that this is the minimum value of the inclination angle at a circuit length of 100 ⁇ m). In addition, the etching factor and oxidation discoloration (discoloration) on the nickel plating surface were examined. The above results are similarly shown in Table 1.
- the average value of the left and right inclination angles was 68 degrees, and a substantially rectangular copper foil circuit was formed.
- the etching factor was 2.5 at 30 ⁇ m pitch. As a result, a slightly better etching circuit was obtained. However, oxidation discoloration (discoloration) on the nickel plating surface appeared greatly. This may cause a subsequent etching failure in pattern etching, a short circuit, and a circuit width failure.
- Etching was performed under the above conditions. As a result, the etching progressed from the resist side to the resin substrate side of the side surface of the copper circuit, but a copper foil circuit was formed spreading out at the end. Next, the inclination angle of the etched copper foil was measured (note that this is the minimum value of the inclination angle at a circuit length of 100 ⁇ m). In addition, the etching factor and oxidation discoloration (discoloration) on the nickel plating surface were examined. The above results are similarly shown in Table 1. As shown in Table 1, the average value of the left and right inclination angles was 48 degrees, and a trapezoidal copper foil circuit having poor etching properties was formed. The etching factor was 1.1 at a 50 ⁇ m pitch, resulting in failure. However, there was no oxidation discoloration (discoloration) on the copper foil surface.
- Etching was performed under the above conditions. As a result, the etching progressed from the resist side to the resin substrate side of the side surface of the copper circuit, but a copper foil circuit was formed spreading out at the end. Next, the inclination angle of the etched copper foil was measured (note that this is the minimum value of the inclination angle at a circuit length of 100 ⁇ m). In addition, the etching factor and oxidation discoloration (discoloration) on the nickel plating surface were examined. The above results are similarly shown in Table 1. As shown in Table 1, the average value of the left and right inclination angles was 54 degrees, and a trapezoidal copper foil circuit with poor etching properties was formed. The etching factor was 1.4 at 30 ⁇ m pitch, which was poor. However, there was no oxidation discoloration (discoloration) on the copper foil surface.
- Etching was performed under the above conditions. As a result, the etching progressed from the resist side to the resin substrate side of the side surface of the copper circuit, but a copper foil circuit was formed spreading out at the end. Next, the inclination angle of the etched copper foil was measured (note that this is the minimum value of the inclination angle at a circuit length of 100 ⁇ m). In addition, the etching factor and oxidation discoloration (discoloration) on the nickel plating surface were examined. The above results are similarly shown in Table 1. As shown in Table 1, the average value of the left and right inclination angles was 52 degrees, and a trapezoidal copper foil circuit with poor etching properties was formed. The etching factor was 1.3 at a pitch of 30 ⁇ m, resulting in a failure. However, there was no oxidation discoloration (discoloration) on the copper foil surface.
- Example 2 ten circuits were printed by a resist coating and exposure process, and an etching process for removing unnecessary portions of the copper foil was performed. Except for the circuit formation conditions, the etching conditions, the measurement conditions for the etching factor, and the burn test were performed in the same manner as in Example 1. Description of the same conditions as in Example 1 is omitted.
- Etching was performed under the above conditions. As a result, the etching progressed from the resist side to the resin substrate side of the side surface of the copper circuit, but a copper foil circuit was formed spreading out at the end. Next, the inclination angle of the etched copper foil was measured (note that this is the minimum value of the inclination angle at a circuit length of 100 ⁇ m). In addition, the etching factor and oxidation discoloration (discoloration) on the nickel plating surface were examined. The above results are similarly shown in Table 1. As shown in Table 1, the average value of the left and right inclination angles was 52 degrees, and a trapezoidal copper foil circuit with poor etching properties was formed.
- the etching factor was 1.9 at a pitch of 50 ⁇ m, resulting in a failure. This is because the total amount of zinc is larger than the amount of Ni, which is considered to cause etching failure. Therefore, the amount of zinc needs to be appropriately limited. There was no oxidation discoloration (discoloration) on the copper foil surface.
- a nickel alloy layer having a lower etching rate than copper formed on the copper foil and a heat-resistant layer made of zinc or zinc alloy or an oxide thereof formed thereon are provided.
- a substantially rectangular copper foil circuit was formed, and an extremely good etching circuit was obtained.
- those that did not meet the conditions of the present invention had large sagging and formed a trapezoidal copper foil circuit, which was defective in etching.
- production of a burn was seen in the thing which does not provide a zinc or zinc alloy layer.
- Example 6 A 9 ⁇ m rolled copper foil was used. The surface roughness Rz of this rolled copper foil was 0.5 ⁇ m. As shown in Table 1, a nickel alloy plating layer of 2250 ⁇ g / dm 2 was formed on this rolled copper foil. In this case, the nickel content of the nickel alloy layer is 650 ⁇ g / dm 2, the zinc content was 1600 ⁇ g / dm 2. The nickel ratio was 29 wt%. The copper foil was bonded to the resin substrate with the opposite side of the surface on which the nickel alloy plating layer was formed as the bonding surface.
- Etching was performed under the above conditions. As a result, the etching progressed from the resist side to the resin substrate side of the side surface of the copper circuit, but a copper foil circuit was formed spreading out at the end. Next, the inclination angle of the etched copper foil was measured (note that this is the minimum value of the inclination angle at a circuit length of 100 ⁇ m). In addition, the etching factor and oxidation discoloration (discoloration) on the nickel plating surface were examined. The above results are similarly shown in Table 1. As shown in Table 1, the average value of the left and right inclination angles was 52 degrees, and a trapezoidal copper foil circuit with poor etching properties was formed. The etching factor was 1.3 at a pitch of 30 ⁇ m, resulting in a failure. However, there was no oxidation discoloration (discoloration) on the copper foil surface.
- Example 7 A 5 ⁇ m electrolytic copper foil was used. The surface roughness Rz of this electrolytic copper foil was 0.5 ⁇ m. On this electrolytic copper foil, as shown in Table 1, a nickel zinc alloy plating layer of 4100 ⁇ g / dm 2 was formed. In this case, the nickel content in the nickel alloy layer was 3500 ⁇ g / dm 2 and the zinc content was 600 ⁇ g / dm 2 . The nickel ratio was 85 wt%. The copper foil was bonded to the resin substrate with the opposite side of the surface on which the nickel alloy plating layer was formed as the bonding surface.
- Etching was performed under the above conditions. As a result, etching progressed from the resist side of the side surface of the copper circuit toward the resin substrate side, and a copper foil circuit was formed. Next, the inclination angle of the etched copper foil was measured (note that this is the minimum value of the inclination angle at a circuit length of 100 ⁇ m). In addition, the etching factor and oxidation discoloration (discoloration) on the nickel plating surface were examined. The above results are similarly shown in Table 1. As shown in Table 1, the average value of the left and right inclination angles was 76 degrees, and the etching property was good. The etching factor was 3.9 at a pitch of 30 ⁇ m. Although there was no oxidation discoloration (discoloration) on the copper foil surface, the soft etching property was poor. This was thought to be due to the presence of excess nickel.
- Comparative Example 8 In this comparative example, 18 ⁇ m rolled copper foil was used. The surface roughness Rz of this rolled copper foil was 0.5 ⁇ m. As shown in Table 1, a 130 ⁇ g / dm 2 nickel-zinc alloy plating layer was formed on the rolled copper foil. In this case, the nickel content in the nickel alloy layer was 80 ⁇ g / dm 2 and the zinc content was 50 ⁇ g / dm 2 . The nickel ratio was 62 wt%. The copper foil was bonded to the resin substrate with the opposite side of the surface on which the nickel alloy plating layer was formed as the bonding surface.
- Etching was performed under the above conditions. As a result, etching progressed from the resist side of the side surface of the copper circuit toward the resin substrate side, and a copper foil circuit was formed. Next, the inclination angle of the etched copper foil was measured (note that this is the minimum value of the inclination angle at a circuit length of 100 ⁇ m). In addition, the etching factor and oxidation discoloration (discoloration) on the nickel plating surface were examined. The above results are similarly shown in Table 1. As shown in Table 1, the average value of the left and right inclination angles was 56 degrees, and the etching was widened, and the etching property was poor. The etching factor was 1.6 at a 50 ⁇ m pitch. There was no oxidation discoloration (discoloration) on the copper foil surface.
- Comparative Example 9 In this comparative example, 9 ⁇ m rolled copper foil was used. The surface roughness Rz of this rolled copper foil was 0.5 ⁇ m. As shown in Table 1, a nickel zinc alloy plating layer of 570 ⁇ g / dm 2 was formed on this rolled copper foil. In this case, the nickel content of the nickel alloy layer is 550 ⁇ g / dm 2, the zinc content was 20 [mu] g / dm 2. The nickel ratio was 96 wt%. The copper foil was bonded to the resin substrate with the opposite side of the surface on which the nickel alloy plating layer was formed as the bonding surface.
- Etching was performed under the above conditions. As a result, etching progressed from the resist side of the side surface of the copper circuit toward the resin substrate side, and a copper foil circuit was formed. Next, the inclination angle of the etched copper foil was measured (note that this is the minimum value of the inclination angle at a circuit length of 100 ⁇ m). In addition, the etching factor and oxidation discoloration (discoloration) on the nickel plating surface were examined. The above results are similarly shown in Table 1. As shown in Table 1, the average value of the left and right inclination angles was 68 degrees, and the etching property was good. The etching factor was 2.5 at 30 ⁇ m pitch. However, oxidation discoloration (discoloration) occurred on the copper foil surface. This was thought to be due to the small amount of zinc.
- Comparative Example 10 In this comparative example, 5 ⁇ m electrolytic copper foil was used. The surface roughness Rz of this electrolytic copper foil was 0.5 ⁇ m. As shown in Table 1, a 730 ⁇ g / dm 2 nickel-zinc alloy plating layer was formed on this electrolytic copper foil. In this case, the nickel content of the nickel alloy layer is 330 ⁇ g / dm 2, the zinc content was 400 [mu] g / dm 2. The nickel ratio was 45 wt%. The copper foil was bonded to the resin substrate with the opposite side of the surface on which the nickel alloy plating layer was formed as the bonding surface.
- Etching was performed under the above conditions. As a result, etching progressed from the resist side of the side surface of the copper circuit toward the resin substrate side, and a copper foil circuit was formed. Next, the inclination angle of the etched copper foil was measured (note that this is the minimum value of the inclination angle at a circuit length of 100 ⁇ m). In addition, the etching factor and oxidation discoloration (discoloration) on the nickel plating surface were examined. The above results are similarly shown in Table 1. As shown in Table 1, the average value of the left and right inclination angles was 56 degrees, and the etching was widened, and the etching property was poor. The etching factor was 1.5 at 30 ⁇ m pitch. However, there was no oxidation discoloration (discoloration) on the copper foil surface, but the poor etching property was thought to be due to the low nickel ratio.
- the present invention has an effect that a circuit with a desired circuit width can be formed more uniformly when forming a circuit by etching a copper foil, preventing the occurrence of sagging due to etching, and reducing the time for circuit formation by etching. It is possible to shorten the thickness of the nickel alloy layer as much as possible, and further suppresses oxidation when heat is applied and prevents discoloration, commonly referred to as “yake”. Have. This can improve the etching performance in pattern etching and prevent the occurrence of short circuits and circuit width defects, so it can be used as a copper-clad laminate (for rigid and flexible) and used for the formation of electronic circuits on printed circuit boards. It is.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Laminated Bodies (AREA)
- ing And Chemical Polishing (AREA)
- Manufacturing Of Printed Circuit Boards (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
これらの銅箔は、樹脂基材と接着される面と非接着面があり、それぞれ特殊な表面処理(トリート処理)が施されている。また、多層プリント配線板の内層に使用する銅箔のように両面に樹脂との接着機能をもつようにされる(ダブルトリート処理)場合もある。
さらに、このような凹凸を増強した上に銅粒子の脱落を防止するために薄いめっき層を形成する場合もある。これらの一連の工程を粗化処理と呼んでいる。このような粗化処理は、電解銅箔に限らず圧延銅箔でも要求されることであり、同様な粗化処理が圧延銅箔においても実施されている。
それは、エッチング後の銅箔回路の銅部分が、銅箔の表面から下に向かって、すなわち樹脂層に向かって、末広がりにエッチングされる(ダレを発生する)ことである。大きな「ダレ」が発生した場合には、樹脂基板近傍で銅回路が短絡し、不良品となる場合もある。
しかし、この場合は、すでに所定の幅寸法に至っている箇所があると、そこがさらにエッチングされることになるので、その銅箔部分の回路幅がそれだけ狭くなり、回路設計上目的とする均一な線幅(回路幅)が得られず、特にその部分(細線化された部分)で発熱し、場合によっては断線するという問題が発生する。
電子回路のファインパターン化がさらに進行する中で、現在もなお、このようなエッチング不良による問題がより強く現れ、回路形成上で、大きな問題となっている。
回路設計に際しては、レジスト塗布側、すなわち銅箔の表面からエッチング液が浸透するので、レジスト直下にエッチング速度が遅い金属又は合金層があれば、その近傍の銅箔部分のエッチングが抑制され、他の銅箔部分のエッチングが進行するので、「ダレ」が減少し、より均一な幅の回路が形成できるという効果をもたらした。この結果は、従来技術から見ると、大きな進歩があった。
特許文献2:特開平5-140765号公報
特許文献3:特開平6-85416号公報
特許文献4:特開平6-85417号公報
特許文献5:特開平6-280047号公報
特許文献6:特開平7-74464号公報
特許文献7:特開平7-278883号公報
特許文献8:特開2005-15861号公報
特許文献9:特開2006-261270号公報
1 エッチングにより回路形成を行う電子回路用の圧延銅箔又は電解銅箔において、該圧延銅箔又は電解銅箔は、エッチング面側に形成された銅よりもエッチングレートの低いニッケル合金層を備え、該ニッケル合金層は亜鉛又は亜鉛酸化物を含有することを特徴とする電子回路用の圧延銅箔又は電解銅箔、を提供する。
2 前記銅よりもエッチングレートの低いニッケル合金層は、該ニッケル合金層中のニッケル比率が50wt%を超えることを特徴とする上記1記載の電子回路用の圧延銅箔又は電解銅箔
3 前記ニッケル合金層に含まれる亜鉛又は亜鉛酸化物として存在する亜鉛含有量が、金属亜鉛換算で、30μg/dm2~1000μg/dm2であり、ニッケル量を超えないことを特徴とする上記1又は2に記載の電子回路用の圧延銅箔又は電解銅箔、を提供する。
4 前記ニッケル合金層に含まれるニッケル量が、100μg/dm2~3000μg/dm2であることを特徴とする上記1~3のいずれか一項に記載の電子回路用の圧延銅箔又は電解銅箔
5 前記ニッケル合金層に、リン、ホウ素、モリブデン、タングステン又はコバルトの1種又は2種以上を含有することを特徴とする上記1~4のいずれか一項に記載の電子回路用の圧延銅箔又は電解銅箔
6 前記ニッケル合金層上に、さらにクロム層若しくはクロメート層及び又はシラン処理層を備えていることを特徴とする上記1~5記載の電子回路用の圧延銅箔又は電解銅箔、を提供する。
7 前記クロム層若しくはクロメート層を備える場合において、クロム量が金属クロム換算で、100μg/dm2以下であることを特徴とする上記6に記載の電子回路用の圧延銅箔又は電解銅箔
8 前記シラン処理層を備える場合において、シリコン単体換算で、20μg/dm2以下であることを特徴とする上記6~7に記載の電子回路用の圧延銅箔又は電解銅箔、を提供する。
9 圧延銅箔又は電解銅箔からなる銅張り積層板の、該銅箔をエッチングし電子回路を形成する方法において、銅箔のエッチング面側に、亜鉛又は亜鉛酸化物を含有するニッケル合金層を形成した後、塩化第二鉄水溶液又は塩化第二銅水溶液を用いて該銅箔をエッチングし、銅箔の不必要部分を取り除いて、銅の回路を形成することを特徴とする電子回路の形成方法、を提供する。
10 圧延銅箔又は電解銅箔からなる銅張り積層板の、該銅箔をエッチングし電子回路を形成する方法において、上記1~8の電子回路用の圧延銅箔又は電解銅箔を、塩化第二鉄水溶液又は塩化第二銅水溶液を用いて該銅箔をエッチングし、銅箔の不必要部分を取り除いて、銅の回路を形成することを特徴とする電子回路の形成方法、を提供する。
これによってパターンエッチングでのエッチング性の向上、ショートや回路幅の不良の発生を防止できる電子回路用の圧延銅箔又は電解銅箔を提供することができ、優れた電子回路の形成方法を提供することができるという効果を有する。
この圧延銅箔又は電解銅箔を樹脂と接合して銅張り積層板とする。この銅箔は、電解銅箔及び圧延銅箔のいずれにも適用できる。また、粗化面(M面)又は光沢面(S面)にも同様に適用できる。通常は、光沢面側を使用する。圧延銅箔の中には高純度銅箔又は強度を向上させた合金銅箔も存在するが、本件発明はこれらの銅箔の全てを包含する。
しかし、予想外に、銅箔の上に形成したエッチングレートの遅い金属であるニッケル層の中に、亜鉛又は亜鉛酸化物を含有させ、ニッケル合金層とすることにより、ヤケを防止することができる上に、目的とする回路幅の均一な回路を形成できるという確証を得た。これは、極めて大きな効果を有するものである。
ここで、本願発明のニッケル合金層に含有される亜鉛若しくは亜鉛酸化物は、耐熱酸化性を有する材料なので、これを付加的に合金元素として含有させただけで、耐熱酸化、変色防止を著しく高めるという効果を与えるものである。
ところが、ニッケルに亜鉛若しくは亜鉛酸化物を含有させることにより、耐熱性を著しく高めることができるので、ニッケル合金層の厚さを軽減することができるという、さらに大きな効果を得ることができる。
これによって、ソフトエッチングによるニッケル合金層の除去が、はるかに容易になるという効果が得られた。
その量は、リンとホウ素については、これらの1成分又は2成分の合計量をニッケル換算でニッケル量(wt%)の5%以下を、必要に応じて含有させることができる。
また、モリブデン、タングステン又はコバルトの1成分又はこれらの2成分又は3成分の合計量をニッケル換算でニッケル量(wt%)の10%以下を、必要に応じて含有させることができる。
しかし、本発明の合金層は、あくまでもニッケルを中心成分とするニッケル亜鉛合金であり、代替可能なリン、ホウ素、モリブデン、タングステン又はコバルト金属を必要以上(多量)に添加するのは、合金層の調整と上記エッチングファクターの改善効果を得る点からみて適当ではない。したがって、上記の範囲とする。
30μg/dm2未満では、耐酸化性(焼け性改善)に効果がない。また、1000μg/dm2を超えると、効果が飽和すると共に、ニッケルの効果を減殺させてしまうので、金属亜鉛換算で、30μg/dm2~1000μg/dm2とすることが好ましい。
しかしながら、適度な量は、ニッケル又はニッケル合金層の、熱酸化を防止するのに有効である。
エッチング液は、いずれも使用可能であるが、特に塩化第二鉄水溶液が有効である。これは、微細回路はエッチングに時間が掛かるが、塩化第二鉄水溶液の方が塩化第二銅水溶液よりもエッチング速度が速いという理由による。
(ニッケル-亜鉛合金めっき、その1)
この場合は、基本的に金属、合金状態のめっき膜が得られる。
Ni:5~40g/L
Zn:0.5~25g/L
pH:3~3.7
温度:常温~60°C
電流密度Dk:2~50A/dm2
時間:1~4秒
この場合は、Znは0価の金属状態と2価の酸化状態(酸化物又は水酸化物)からなり、このニッケル-亜鉛めっきにおける、総亜鉛中の0価の金属状態の亜鉛の比率は50%以下である。また、めっき後1~20秒程度、浴中に保持することで、Znの化学状態(金属亜鉛/酸化亜鉛比)を制御できる。
Ni:10~40g/L
Zn:0.5~7g/L
H2SO4:2~20g/L
温度:常温~60°C
電流密度Dk:10~50A/dm2
時間:1~4秒
Ni:1~20g/L
Co:1~20g/L
Zn:0.1~10g/L
pH:2.5~3.5
温度:常温~60°C
電流密度Dk:1~15A/dm2
時間:1~10秒
Ni:50~100g/L
P:1~25g/L
HBO3:0~30g/L
Zn:3~20g/L
pH:0.5~2.5
温度:常温~95°C
電流密度Dk:5~40A/dm2
時間:1~10秒
Ni:5~25g/L
Mo:0.01~5g/L
Na2P2O7:160g/L
Zn:0.1~10g/L
pH:8~9
温度:常温~40°C
電流密度Dk:1~5A/dm2
時間:1~10秒
Ni:1~10g/L
W:20~50g/L
クエン酸:60g/L
Zn:0.1~10g/L
pH:8~9
温度:常温~50°C
電流密度Dk:0.1~5A/dm2
時間:1~10秒
硫酸ニッケル:25~35g/L
Zn:0.5g/L
ジメチルアミンボラン:2~3g/L
グリコール酸:25~35g/L
酢酸:15g/L
pH:6~7
温度:50℃~70°C
電流密度Dk:1~10A/dm2
時間:1~10秒
Ni:10~40g/L
pH:2.5~3.5
温度:常温~60°C
電流密度Dk:2~50A/dm2
時間:1~4秒
Zn:1~20g/L
pH:3~3.7
温度:常温~60°C
電流密度Dk:1~15A/dm2
時間:1~10秒
K2Cr2O7(Na2Cr2O7或いはCrO3)
Cr:40~300g/リットル
H2SO4 :0.5~10.0g/リットル
浴温:40~60°C
電流密度Dk :0.01~50A/dm2
時間:1~100秒
アノード:Pt-Ti 板、ステンレス鋼板、鉛板等
(a)浸漬クロメート処理の例
CrO3又はK2Cr2O7:1~12g/L
Zn(OH)2又はZnSO4・7H2O:0(0.05)~10g/L
Na2SO4:0(0.05)~20g/L
pH:2.5~12.5
温度:20~60°C
時間:0.5~20秒
(b)電解クロメート処理の例
CrO3又はK2Cr2O7:1~12g/L
Zn(OH)2又はZnSO4・7H2O:0(0.05)~10g/L
Na2SO4:0(0.05)~20g/L
pH:2.5~12.5
温度:20~60°C
電流密度:0.5~5A/dm2
時間:0.5~20秒
下記のような色々な系列のシランから選択。
濃度は0.01wt%~5wt%
種類:オレフィン系シラン、エポキシ系シラン、アクリル系シラン、アミノ系シラン、メルカプト系シラン
アルコールに溶解したシランを所定の濃度まで水で希釈し、銅箔表面へ塗布
するもの。
ニッケル、亜鉛の処理面を分析するため、反対面をFR-4樹脂でプレス作製し、マスキングする。そのサンプルを濃度30%の硝酸にて表面処理被膜が溶けるまで溶解させ、ビーカー中の溶解液を10倍に稀釈し、原子吸光分析によりニッケルの定量分析を行う。
処理面を分析するため、反対面をFR-4樹脂でプレス作製し、マスキングする。そのサンプルを濃度10%の塩酸にて3分間煮沸して処理層を溶解させ、その溶液を原子吸光分析により亜鉛、クロムの定量分析を行う。
銅張り積層板(CCL)の製造の段階で、銅箔に熱がかかる。この熱によって、銅箔表層に設けられたエッチング改善処理層は銅層へ拡散する。そのため、当初期待したエッチング改善効果が減退し、エッチングファクターは減少する傾向がある。このことから、拡散していない状態と同等の効果を出すには、CCL作製時の銅箔にかかる熱量を考慮して、改善処理層の付着量を1.1~2倍程度増やすことが必要である。
上記の条件でエッチングすることにより、エッチングファクターを2以上、すなわち銅箔回路のエッチング側面と樹脂基板との間の傾斜角度を63度以上とすることができる。望ましくは70度以上とすることができる。特に望ましい傾斜角度は85~90度の範囲である。これによって、ダレのない矩形のエッチング回路が形成できる。
一般に、ソフトエッチング性は、硫酸-過酸化水素混合系に2分間浸漬し、めっき物が除去されているか外観で検査する。ソフトエッチング液の例として、例えば硫酸165g/L、過酸化水素21g/Lを用いる。そして通常35°Cで処理する。外観観察としては、完全除去の場合は良好とし、除去残が見られた場合には不良と評価する。
ソフトエッチングで特に、注意すべき点はNi合金層が残るケースである。このようなNi合金層が残存すると、めっき性が変化する虞がある。このような観点から、ソフトエッチング性にも注意を払う必要である。
5μm電解銅箔を用いた。この電解銅箔の表面粗さRz:3μmであった。この電解銅箔の光沢(S)面に、上記ニッケル-亜鉛合金めっき条件(その1)で、390μg/dm2のニッケル-亜鉛合金めっき層を形成した。
この場合、表1に示すように、ニッケル・亜鉛合金めっき層のニッケル含有量を350μg/dm2、亜鉛含有量を40μg/dm2とした。ニッケル比は90wt%であった。このニッケル-亜鉛合金めっき層を設けた面の逆側を接着面として銅箔を樹脂基板に接着した。
(エッチング条件)
塩化第二鉄水溶液:(37wt%、ボーメ度:40°)
液温:50°C
スプレー圧:0.15MPa
回路ピッチ:30μmピッチ、50μmピッチの2種であるが、銅箔の厚みによって変更する。本実施例1の場合は、5μm厚の銅箔を用いたので、次の条件である。
(30μmピッチ回路形成)
本実施例2の場合は、5μm厚の銅箔を用いたので、次の条件である。
レジストL/S=25μm/5μm、仕上がり回路トップ(上部)幅:10μm、エッチング時間:48秒前後
エッチングファクターは、末広がりにエッチングされた場合(ダレが発生した場合)、回路が垂直にエッチングされたと仮定した場合の、銅箔上面からの垂線と樹脂基板との交点をP点とし、このP点からのダレの長さの距離をaとした場合において、このaと銅箔の厚さbとの比:b/aを示すものであり、この数値が大きいほど、傾斜角は大きくなり、エッチング残渣が残らず、ダレが小さくなることを意味する。
エッチングファクター(EF)の計算方法の概略を図1に示す。この図1に示すように、EF=b/aとして計算する。このエッチングファクターを用いることにより、エッチング性の良否を簡単に判定できる。
大気雰囲気下で、240°Cに10分間保持して、変色の有無で確認する。このニッケル-亜鉛合金めっき層を設けた銅箔をエッチング側として樹脂基板に接着し、銅張り積層板とする条件を想定した条件である。
硫酸-過酸化水素混合溶液(硫酸165g/L、過酸化水素水21g/L)、35°C、2分間浸漬・攪拌し、Ni層が除去されているかどうか、外観観察を実施した。外観観察としては、完全除去の場合は良好とし、除去残が見られた場合には不良と評価した。
また、エッチングファクター及びニッケル-亜鉛合金めっき面の酸化変色(ヤケ)を調べた。以上の結果を、表1に示す。
この結果、良好なエッチング回路が得られた。また、ニッケル-亜鉛合金めっき面の酸化変色(ヤケ)は、全く認められなかった。これは、銅箔上のニッケル-亜鉛合金めっき層により、樹脂との接着工程時の加熱によるニッケル-亜鉛合金めっき層側の酸化変色が防止できたと考えられる。
さらに、この合金中の亜鉛の存在により、エッチングファクターが悪くなることはなかったが、このことは特筆すべきことである。
箔厚18μmの圧延銅箔を用いた。この圧延銅箔の表面粗さRz:0.7μmであった。この圧延銅箔に、上記ニッケル-亜鉛合金(その2)のめっき条件で、2150μg/dm2のニッケル-亜鉛合金めっき層を形成した。
表1に示すように、このニッケル-亜鉛合金めっき層中のニッケル量は1500μg/dm2であり、亜鉛量は650μg/dm2とした。この場合、ニッケル比は70wt%であった。
さらに、このニッケル-亜鉛合金めっき層を設けた面の逆側を接着面として銅箔を樹脂基板に接着した。
回路形成条件を除き、エッチング条件、エッチングファクターの測定条件、ヤケ試験は、実施例1と同様にして実施した。実施例1と同様の条件については、記載を省略する。
レジストL/S=33μm/17μm、仕上がり回路トップ(上部)幅:15μm、エッチング時間:105秒前後
また、エッチングファクター及びニッケル-亜鉛合金めっき面の酸化変色(ヤケ)を調べた。以上の結果を、表1に示す。
この結果、良好なエッチング回路が得られた。また、ニッケル-亜鉛合金めっき面の酸化変色(ヤケ)は、全く認められなかった。これは、銅箔上のニッケル-亜鉛合金めっき層により、樹脂との接着工程時の加熱による酸化変色が防止できたと考えられる。
さらに、この合金中の亜鉛の存在により、実施例1と同様に、エッチングファクターが悪くなることはなかった。
箔厚18μmの圧延銅箔を用いた。この圧延銅箔の表面粗さRz:0.7μmであった。この圧延銅箔に、上記ニッケル・コバルト・亜鉛合金めっき条件でニッケル・コバルト・亜鉛合金めっき層を形成した。この場合、コバルト代替量は、ニッケル換算でニッケル量(wt%)の8%とした。
表1に示すように、このニッケル・コバルト・亜鉛合金層中のニッケル量は2500μg/dm2であり、亜鉛量は300μg/dm2とした。この場合、ニッケル比率は89wt%となった。なお、このニッケル比率は、コバルトとニッケルの合計量のニッケル換算量である。
さらに、このニッケル・コバルト・亜鉛合金めっき層を設けた面の逆側を接着面として銅箔を樹脂基板に接着した。
回路形成条件を除き、エッチング条件、エッチングファクターの測定条件、ヤケ試験は、実施例1と同様にして実施した。実施例1と同様の条件については、記載を省略する。
レジストL/S=33μm/17μm、仕上がり回路トップ(上部)幅:15μm、エッチング時間:105秒前後
また、エッチングファクター及びニッケルめっき面の酸化変色(ヤケ)を調べた。以上の結果を、表1に示す。
この結果、良好なエッチング回路が得られた。また、ニッケル・コバルト・亜鉛合金めっき面の酸化変色(ヤケ)は、全く認められなかった。これは、銅箔上のニッケル・コバルト・亜鉛合金めっき層により、樹脂との接着工程時の加熱による酸化変色が防止できたと考えられる。
さらに、この合金中の亜鉛の存在によっても、実施例1と同様に、エッチングファクターが悪くなることはなかった。なお、コバルト添加は、ニッケル換算で、ニッケル量(wt%)の10%以下であれば、同様の効果を得ることができた。
5μm電解銅箔を用いた。この電解銅箔の表面粗さRz:3μmであった。この電解銅箔の光沢(S)面に、上記ニッケル・リン・亜鉛合金めっき条件でニッケル・リン・亜鉛合金めっき層を形成した。この場合、表1に示すように、ニッケル・リン・亜鉛合金めっき層のニッケル含有量を110μg/dm2、亜鉛含有量を40μg/dm2とした。この場合、リン代替量は、ニッケル換算でニッケル量(wt%)の3%とした。ニッケル比率は74wt%であった。なお、このニッケル比率は、リンとニッケルの合計量のニッケル換算量である。このニッケル・リン・亜鉛合金めっき層を設けた面の逆側を接着面として銅箔を樹脂基板に接着した。
回路形成条件を除き、エッチング条件、エッチングファクターの測定条件、ヤケ試験は、実施例1と同様にして実施した。実施例1と同様の条件については、記載を省略する。
本実施例2の場合は、5μm厚の銅箔を用いたので、次の条件である。
レジストL/S=25μm/5μm、仕上がり回路トップ(上部)幅:10μm、エッチング時間:48秒前後
また、エッチングファクター及びニッケルめっき面の酸化変色(ヤケ)を調べた。以上の結果を、表1に示す。
この結果、良好なエッチング回路が得られた。また、ニッケル・リン・亜鉛合金めっき面の酸化変色(ヤケ)は、全く認められなかった。これは、銅箔上のニッケル・リン・亜鉛合金めっき層により、樹脂との接着工程時の加熱による酸化変色が防止できたと考えられる。
さらに、この合金中の亜鉛の存在によっても、実施例1と同様に、エッチングファクターが悪くなることはなかった。なお、リン添加は、ニッケル換算で、ニッケル量(wt%)の5%以下であれば、同様の効果を得ることができた。
9μm圧延銅箔を用いた。この圧延銅箔の表面粗さRzは0.5μmであった。この圧延銅箔の面に、上記ニッケル・モリブデン・亜鉛合金めっき条件で、ニッケル・モリブデン・亜鉛合金めっき層を形成した。
表1及び表2に示すように、このニッケル・モリブデン・亜鉛合金めっき層中のニッケルは250μg/dm2であり、亜鉛は50μg/dm2とした。この場合、モリブデン代替量は、ニッケル換算でニッケル量(wt%)の9%とした。ニッケル比率は84wt%であった。なお、このニッケル比率は、モリブデンとニッケルの合計量のニッケル換算量である。このニッケル・モリブデン・亜鉛合金めっき層を設けた面の逆側を接着面として銅箔を樹脂基板に接着した。
回路形成条件を除き、エッチング条件、エッチングファクターの測定条件、ヤケ試験は、実施例1と同様にして実施した。実施例1と同様の条件については、記載を省略する。
レジストL/S=25μm/5μm、仕上がり回路トップ(上部)幅:10μm、エッチング時間:48秒前後
また、エッチングファクター及びニッケル・モリブデン・亜鉛合金めっき面の酸化変色(ヤケ)を調べた。以上の結果を、表1に示す。
この結果、使用可能なエッチング回路が得られた。また、ニッケル・モリブデン-亜鉛合金めっき面の酸化変色(ヤケ)は、全く認められなかった。これは、銅箔上のニッケル・モリブデン・亜鉛合金めっき層により、樹脂との接着工程時の加熱による酸化変色が防止できたと考えられる。
さらに、この合金中の亜鉛の存在により、実施例1と同様に、エッチングファクターが悪くなることはなかった。なお、モリブデン添加は、ニッケル換算で、ニッケル量(wt%)の10%以下であれば、同様の効果を得ることができた。
本実施例6では、9μm圧延銅箔を用いた。この圧延銅箔の面に、上記ニッケル・タングステン・亜鉛合金めっき条件でニッケル・タングステン・亜鉛合金めっき層を形成した。
表1に示すように、このニッケル・タングステン・亜鉛合金めっき層中のニッケルは920μg/dm2であり、亜鉛は550μg/dm2とした。
この場合、タングステン代替量は、ニッケル換算でニッケル量(wt%)の6%とした。ニッケル比率は65wt%であった。なお、このニッケル比率は、タングステンとニッケルの合計量のニッケル換算量である。
このニッケル・タングステン・亜鉛合金めっき層を設けた面の逆側を接着面として銅箔を樹脂基板に接着した。
回路形成条件を除き、エッチング条件、エッチングファクターの測定条件、ヤケ試験は、実施例1と同様にして実施した。実施例1と同様の条件については、記載を省略する。
レジストL/S=25μm/5μm、仕上がり回路トップ(上部)幅:10μm、エッチング時間:76秒前後
また、エッチングファクター及びニッケル・タングステン・亜鉛合金めっき面の酸化変色(ヤケ)を調べた。以上の結果を、表1に示す。
この結果、良好なエッチング回路が得られた。また、ニッケル・タングステン・亜鉛合金めっき面の酸化変色(ヤケ)は、全く認められなかった。これは、銅箔上のニッケル・タングステン・亜鉛合金めっき層により、樹脂との接着工程時の加熱による酸化変色が防止できたと考えられる。
さらに、この合金中の亜鉛の存在により、実施例1と同様に、エッチングファクターが悪くなることはなかった。
なお、上記実施例において、ソフトエッチングを実施し、めっき残渣を観察したが、Niの合計量が適正な範囲であったため、いずれも残渣が見られず、良好な結果が得られた。なお、タングステン添加は、ニッケル換算で、ニッケル量(wt%)の10%以下であれば、同様の効果を得ることができた。
本実施例7では、18μm圧延銅箔を用いた。この圧延銅箔の面に、上記ニッケル-ホウ素-亜鉛合金めっき条件で、ニッケル・ホウ素・亜鉛合金層を形成した。
表1に示すように、このニッケル-ホウ素-亜鉛合金めっき層中のニッケルは800μg/dm2であり、亜鉛は200μg/dm2とした。この場合、ホウ素代替量は、ニッケル換算でニッケル量(wt%)の4%とした。ニッケル比率は81wt%であった。なお、このニッケル比率は、ホウ素とニッケルの合計量のニッケル換算量である。このニッケル・ホウ素・亜鉛合金めっき層を設けた面の逆側を接着面として銅箔を樹脂基板に接着した。
回路形成条件を除き、エッチング条件、エッチングファクターの測定条件、ヤケ試験は、実施例1と同様にして実施した。実施例1と同様の条件については、記載を省略する。
レジストL/S=25μm/5μm、仕上がり回路トップ(上部)幅:10μm、エッチング時間:76秒前後
また、エッチングファクター及びニッケル-ホウ素-亜鉛合金めっき面の酸化変色(ヤケ)を調べた。以上の結果を、表1に示す。
この結果、良好なエッチング回路が得られた。また、ニッケル-ホウ素-亜鉛合金めっき面の酸化変色(ヤケ)は、全く認められなかった。これは、銅箔上のニッケル-ホウ素-亜鉛合金めっき層により、樹脂との接着工程時の加熱による酸化変色が防止できたと考えられる。
さらに、この合金中の亜鉛の存在により、実施例1と同様に、エッチングファクターが悪くなることはなかった。
なお、上記実施例において、ソフトエッチングを実施し、めっき残渣を観察したが、Niの合計量が適正な範囲であったため、いずれも残渣が見られず、良好な結果が得られた。なお、ホウ素の添加は、ニッケル換算で、ニッケル量(wt%)の5%以下であれば、同様の効果を得ることができた。
9μm圧延銅箔を用いた。上記の条件でニッケルめっきを施した。この圧延銅箔の表面粗さRz:0.5μmであった。この圧延銅箔に、表1に示すように、亜鉛めっきを実施することなく、上記ニッケルめっき条件で、550μg/dm2のニッケルめっき層を形成した。さらに、このニッケルめっき層を設けた面の逆側を接着面として銅箔を樹脂基板に接着した。
回路形成条件を除き、エッチング条件、エッチングファクターの測定条件、ヤケ試験は、実施例1と同様にして実施した。実施例1と同様の条件については、記載を省略する。
レジストL/S=25μm/5μm、仕上がり回路トップ(上部)幅:10μm、エッチング時間:76秒前後
また、エッチングファクター及びニッケルめっき面の酸化変色(ヤケ)を調べた。以上の結果を、同様に表1に示す。
この結果、やや良好なエッチング回路が得られた。しかしながら、ニッケルめっき面の酸化変色(ヤケ)が大きく現われた。これは、その後の処置である、パターンエッチングでのエッチング性の不良、ショートや回路幅の不良を発生させる原因となる可能性があった。
18μm圧延銅箔を使用した。この圧延銅箔の表面粗さRz:0.7μmであった。この圧延銅箔に、表1に示すように、270μg/dm2の亜鉛めっき層を形成した。ニッケルめっき層は形成せずに、この亜鉛めっき層を形成した面の逆側を接着面として銅箔を樹脂基板に接着した。
回路形成条件を除き、エッチング条件、エッチングファクターの測定条件、ヤケ試験は、実施例1と同様にして実施した。実施例1と同様の条件については、記載を省略する。
(50μmピッチ回路形成)
レジストL/S=33μm/17μm、仕上がり回路トップ(上部)幅:15μm、エッチング時間:105秒前後
また、エッチングファクター及びニッケルめっき面の酸化変色(ヤケ)を調べた。以上の結果を、同様に表1に示す。表1に示すように、左右の傾斜角の平均値は48度となり、エッチング性が悪い台形状の銅箔回路が形成された。エッチングファクターは50μmピッチで1.1となり、不良となった。しかしながら、銅箔面の酸化変色(ヤケ)はなかった。
5μm電解銅箔を用いた。この電解銅箔の表面粗さRz:3μmであった。この電解銅箔の光沢(S)面に、表1に示すように、240μg/dm2の亜鉛めっき層を形成した。この上にニッケルめっき層は形成せずに、亜鉛めっき層を形成した面の逆側を接着面として銅箔を樹脂基板に接着した。
回路形成条件を除き、エッチング条件、エッチングファクターの測定条件、ヤケ試験は、実施例1と同様にして実施した。実施例1と同様の条件については、記載を省略する。
(30μmピッチ回路形成)
レジストL/S=25μm/5μm、仕上がり回路トップ(上部)幅:15μm、エッチング時間:48秒前後
また、エッチングファクター及びニッケルめっき面の酸化変色(ヤケ)を調べた。以上の結果を、同様に表1に示す。表1に示すように、左右の傾斜角の平均値は54度となり、エッチング性が悪い台形状の銅箔回路が形成された。エッチングファクターは30μmピッチで1.4となり、不良となった。しかしながら、銅箔面の酸化変色(ヤケ)はなかった。
9μm圧延銅箔を用いた。この圧延銅箔の表面粗さRz:3μmであった。この圧延銅箔に、表1に示すように、270μg/dm2の亜鉛めっき層を形成した。この上にニッケルめっき層は形成せずに、亜鉛めっき層を形成した面の逆側を接着面として銅箔を樹脂基板に接着した。
回路形成条件を除き、エッチング条件、エッチングファクターの測定条件、ヤケ試験は、実施例1と同様にして実施した。実施例1と同様の条件については、記載を省略する。
(30μmピッチ回路形成)
レジストL/S=25μm/5μm、仕上がり回路トップ(上部)幅:10μm、エッチング時間:76秒前後
また、エッチングファクター及びニッケルめっき面の酸化変色(ヤケ)を調べた。以上の結果を、同様に表1に示す。表1に示すように、左右の傾斜角の平均値は52度となり、エッチング性が悪い台形状の銅箔回路が形成された。エッチングファクターは30μmピッチで1.3となり、不良となった。しかしながら、銅箔面の酸化変色(ヤケ)はなかった。
18μm圧延銅箔を用いた。この圧延銅箔の表面粗さRz:0.7μmであった。この圧延銅箔に、表1及び表2に示すように、1500μg/dm2のニッケル-亜鉛合金(但し、ニッケル量は1000μg/dm2、亜鉛量は500μg/dm2)の層を形成し、さらにこの上に、1250μg/dm2の亜鉛めっき層を形成した。ニッケル比は36wt%であった。このニッケル-亜鉛合金と亜鉛めっき層を形成した面の逆側を接着面として銅箔を樹脂基板に接着した。
回路形成条件を除き、エッチング条件、エッチングファクターの測定条件、ヤケ試験は、実施例1と同様にして実施した。実施例1と同様の条件については、記載を省略する。
レジストL/S=33μm/17μm、仕上がり回路トップ(上部)幅:15μm、エッチング時間:105秒前後
また、エッチングファクター及びニッケルめっき面の酸化変色(ヤケ)を調べた。以上の結果を、同様に表1に示す。表1に示すように、左右の傾斜角の平均値は52度となり、エッチング性が悪い台形状の銅箔回路が形成された。エッチングファクターは50μmピッチで1.9となり、不良となった。
これは、亜鉛の合計量が、Ni量よりも多く、これが原因となって、エッチング不良を発生したと考えられる。したがって、亜鉛量は、適度に制限する必要がある。銅箔面の酸化変色(ヤケ)はなかった。
これに対して、本願発明の条件に合わないものは、ダレが大きく台形状の銅箔回路が形成され、エッチング不良であった。また、亜鉛又は亜鉛合金層を設けないものは、ヤケの発生が見られた。
9μm圧延銅箔を用いた。この圧延銅箔の表面粗さRz:0.5μmであった。この圧延銅箔に、表1に示すように、2250μg/dm2のニッケル合金めっき層を形成した。この場合、ニッケル合金層中のニッケル含有量は650μg/dm2であり、亜鉛含有量は1600μg/dm2であった。ニッケル比は、29wt%であった。このニッケル合金めっき層を形成した面の逆側を接着面として銅箔を樹脂基板に接着した。
回路形成条件を除き、エッチング条件、エッチングファクターの測定条件、ヤケ試験は、実施例1と同様にして実施した。実施例1と同様の条件については、記載を省略する。
(30μmピッチ回路形成)
レジストL/S=25μm/5μm、仕上がり回路トップ(上部)幅:10μm、エッチング時間:76秒前後
また、エッチングファクター及びニッケルめっき面の酸化変色(ヤケ)を調べた。以上の結果を、同様に表1に示す。表1に示すように、左右の傾斜角の平均値は52度となり、エッチング性が悪い台形状の銅箔回路が形成された。エッチングファクターは30μmピッチで1.3となり、不良となった。しかしながら、銅箔面の酸化変色(ヤケ)はなかった。
5μm電解銅箔を用いた。この電解銅箔の表面粗さRz:0.5μmであった。この電解銅箔に、表1に示すように、4100μg/dm2のニッケル亜鉛合金めっき層を形成した。この場合、ニッケル合金層中のニッケル含有量は3500μg/dm2であり、亜鉛含有量は600μg/dm2であった。ニッケル比は、85wt%であった。このニッケル合金めっき層を形成した面の逆側を接着面として銅箔を樹脂基板に接着した。
回路形成条件を除き、エッチング条件、エッチングファクターの測定条件、ヤケ試験は、実施例1と同様にして実施した。実施例1と同様の条件については、記載を省略する。
(30μmピッチ回路形成)
レジストL/S=25μm/5μm、仕上がり回路トップ(上部)幅:10μm、エッチング時間:76秒前後
また、エッチングファクター及びニッケルめっき面の酸化変色(ヤケ)を調べた。以上の結果を、同様に表1に示す。表1に示すように、左右の傾斜角の平均値は76度となり、エッチング性は良好であった。エッチングファクターは30μmピッチで3.9となった。銅箔面の酸化変色(ヤケ)はなかったが、ソフトエッチング性が悪かった。これはニッケルが過剰に存在することが原因と考えられた。
本比較例では、18μmの圧延銅箔を用いた。この圧延銅箔の表面粗さRz:0.5μmであった。この圧延銅箔に、表1に示すように、130μg/dm2のニッケル亜鉛合金めっき層を形成した。この場合、ニッケル合金層中のニッケル含有量は80μg/dm2であり、亜鉛含有量は50μg/dm2であった。ニッケル比は、62wt%であった。このニッケル合金めっき層を形成した面の逆側を接着面として銅箔を樹脂基板に接着した。
回路形成条件を除き、エッチング条件、エッチングファクターの測定条件、ヤケ試験は、実施例1と同様にして実施した。実施例1と同様の条件については、記載を省略する。
(50μmピッチ回路形成)
レジストL/S=25μm/5μm、仕上がり回路トップ(上部)幅:10μm、エッチング時間:76秒前後
また、エッチングファクター及びニッケルめっき面の酸化変色(ヤケ)を調べた。以上の結果を、同様に表1に示す。表1に示すように、左右の傾斜角の平均値は56度となり末広がりにエッチングされ、エッチング性は不良であった。エッチングファクターは50μmピッチで1.6となった。銅箔面の酸化変色(ヤケ)はなかった。
本比較例では、9μmの圧延銅箔を用いた。この圧延銅箔の表面粗さRz:0.5μmであった。この圧延銅箔に、表1に示すように、570μg/dm2のニッケル亜鉛合金めっき層を形成した。この場合、ニッケル合金層中のニッケル含有量は550μg/dm2であり、亜鉛含有量は20μg/dm2であった。ニッケル比は、96wt%であった。このニッケル合金めっき層を形成した面の逆側を接着面として銅箔を樹脂基板に接着した。
回路形成条件を除き、エッチング条件、エッチングファクターの測定条件、ヤケ試験は、実施例1と同様にして実施した。実施例1と同様の条件については、記載を省略する。
(30μmピッチ回路形成)
レジストL/S=25μm/5μm、仕上がり回路トップ(上部)幅:10μm、エッチング時間:76秒前後
また、エッチングファクター及びニッケルめっき面の酸化変色(ヤケ)を調べた。以上の結果を、同様に表1に示す。表1に示すように、左右の傾斜角の平均値は68度となり、エッチング性は良好であった。エッチングファクターは30μmピッチで2.5となった。しかしながら、銅箔面の酸化変色(ヤケ)が発生した。これは亜鉛量が少ないのが原因と考えられた。
本比較例では、5μmの電解銅箔を用いた。この電解銅箔の表面粗さRz:0.5μmであった。この電解銅箔に、表1に示すように、730μg/dm2のニッケル亜鉛合金めっき層を形成した。この場合、ニッケル合金層中のニッケル含有量は330μg/dm2であり、亜鉛含有量は400μg/dm2であった。ニッケル比は、45wt%であった。このニッケル合金めっき層を形成した面の逆側を接着面として銅箔を樹脂基板に接着した。
回路形成条件を除き、エッチング条件、エッチングファクターの測定条件、ヤケ試験は、実施例1と同様にして実施した。実施例1と同様の条件については、記載を省略する。
(30μmピッチ回路形成)
レジストL/S=25μm/5μm、仕上がり回路トップ(上部)幅:10μm、エッチング時間:76秒前後
また、エッチングファクター及びニッケルめっき面の酸化変色(ヤケ)を調べた。以上の結果を、同様に表1に示す。表1に示すように、左右の傾斜角の平均値は56度となり末広がりにエッチングされ、エッチング性は不良であった。エッチングファクターは30μmピッチで1.5となった。しかしながら、銅箔面の酸化変色(ヤケ)はなかったが、エッチング性が悪いのはニッケル比が低いことが原因と考えられた。
Claims (10)
- エッチングにより回路形成を行う電子回路用の圧延銅箔又は電解銅箔において、該圧延銅箔又は電解銅箔は、エッチング面側に形成された銅よりもエッチングレートの低いニッケル合金層を備え、該ニッケル合金層は亜鉛又は亜鉛酸化物を含有することを特徴とする電子回路用の圧延銅箔又は電解銅箔。
- 前記銅よりもエッチングレートの低いニッケル合金層は、該ニッケル合金層中のニッケル比率が50wt%を超えることを特徴とする請求項1記載の電子回路用の圧延銅箔又は電解銅箔。
- 前記ニッケル合金層に含まれる亜鉛又は亜鉛酸化物として存在する亜鉛含有量が、金属亜鉛換算で、30μg/dm2~1000μg/dm2であり、ニッケル量を超えないことを特徴とする請求項1又は2に記載の電子回路用の圧延銅箔又は電解銅箔。
- 前記ニッケル合金層に含まれるニッケル量が、100μg/dm2~3000μg/dm2であることを特徴とする請求項1~3のいずれか一項に記載の電子回路用の圧延銅箔又は電解銅箔。
- 前記ニッケル合金層に、リン、ホウ素、モリブデン、タングステン又はコバルトの1種又は2種以上を含有することを特徴とする上記1~4のいずれか一項に記載の電子回路用の圧延銅箔又は電解銅箔。
- 前記ニッケル合金層上に、さらにクロム層若しくはクロメート層及び又はシラン処理層を備えていることを特徴とする請求項1~5記載の電子回路用の圧延銅箔又は電解銅箔。
- 前記クロム層若しくはクロメート層を備える場合において、クロム量が金属クロム換算で、100μg/dm2以下であることを特徴とする請求項6に記載の電子回路用の圧延銅箔又は電解銅箔。
- 前記シラン処理層を備える場合において、シリコン単体換算で、20μg/dm2以下であることを特徴とする請求項6又は7に記載の電子回路用の圧延銅箔又は電解銅箔。
- 圧延銅箔又は電解銅箔からなる銅張り積層板の、該銅箔をエッチングし電子回路を形成する方法において、銅箔のエッチング面側に、亜鉛又は亜鉛酸化物を含有するニッケル合金層を形成した後、塩化第二鉄水溶液又は塩化第二銅水溶液を用いて該銅箔をエッチングし、銅箔の不必要部分を取り除いて、銅の回路を形成することを特徴とする電子回路の形成方法。
- 圧延銅箔又は電解銅箔からなる銅張り積層板の、該銅箔をエッチングし電子回路を形成する方法において、請求項1~8の電子回路用の圧延銅箔又は電解銅箔を、塩化第二鉄水溶液又は塩化第二銅水溶液を用いて該銅箔をエッチングし、銅箔の不必要部分を取り除いて、銅の回路を形成することを特徴とする電子回路の形成方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010544066A JP5358586B2 (ja) | 2008-12-26 | 2009-12-22 | 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法 |
EP20090834854 EP2371995A1 (en) | 2008-12-26 | 2009-12-22 | Rolled copper foil or electrolytic copper foil for electronic circuit and method of forming electronic circuit using same |
US13/142,024 US20110259848A1 (en) | 2008-12-26 | 2009-12-22 | Rolled Copper Foil or Electrolytic Copper Foil for Electronic Circuit, and Method of Forming Electronic Circuit Using Same |
KR1020117014578A KR101295472B1 (ko) | 2008-12-26 | 2009-12-22 | 전자 회로용 압연 동박 또는 전해 동박 및 이들을 사용한 전자 회로의 형성 방법 |
CN200980152806XA CN102264951A (zh) | 2008-12-26 | 2009-12-22 | 电子电路用的压延铜箔或电解铜箔及使用它们形成电子电路的方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-334443 | 2008-12-26 | ||
JP2008334443 | 2008-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010074053A1 true WO2010074053A1 (ja) | 2010-07-01 |
Family
ID=42287662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/071282 WO2010074053A1 (ja) | 2008-12-26 | 2009-12-22 | 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20110259848A1 (ja) |
EP (1) | EP2371995A1 (ja) |
JP (1) | JP5358586B2 (ja) |
KR (1) | KR101295472B1 (ja) |
CN (2) | CN105578776A (ja) |
MY (1) | MY152533A (ja) |
TW (1) | TWI482177B (ja) |
WO (1) | WO2010074053A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012124424A1 (ja) * | 2011-03-14 | 2012-09-20 | Jx日鉱日石金属株式会社 | 電子回路形成方法、電子回路及び電子回路形成用銅張積層板 |
JP2016084533A (ja) * | 2014-10-22 | 2016-05-19 | Jx金属株式会社 | 表面処理金属材、キャリア付金属箔、コネクタ、端子、積層体、シールドテープ、シールド材、プリント配線板、金属加工部材、電子機器の製造方法、及び、プリント配線板の製造方法 |
JP2019081913A (ja) * | 2017-10-27 | 2019-05-30 | Jx金属株式会社 | 表面処理銅箔、銅張積層板及びプリント配線板 |
WO2019188837A1 (ja) * | 2018-03-27 | 2019-10-03 | 三井金属鉱業株式会社 | 表面処理銅箔、銅張積層板、及びプリント配線板の製造方法 |
WO2019208520A1 (ja) * | 2018-04-27 | 2019-10-31 | Jx金属株式会社 | 表面処理銅箔、銅張積層板及びプリント配線板 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4955105B2 (ja) | 2008-12-26 | 2012-06-20 | Jx日鉱日石金属株式会社 | 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法 |
CN107263959A (zh) * | 2009-06-05 | 2017-10-20 | 吉坤日矿日石金属株式会社 | 半导体封装基板用铜箔及半导体封装用基板 |
JP6111017B2 (ja) * | 2012-02-03 | 2017-04-05 | Jx金属株式会社 | プリント配線板用銅箔及びそれを用いた積層体、プリント配線板及び電子部品 |
KR102568740B1 (ko) * | 2017-03-31 | 2023-08-21 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | 압연동박의 표면처리액 및 표면처리방법 그리고 압연동박의 제조방법 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05140765A (ja) | 1991-11-15 | 1993-06-08 | Nikko Guurudo Foil Kk | 印刷回路用銅箔の表面処理方法 |
JPH0681172A (ja) * | 1992-09-01 | 1994-03-22 | Hitachi Cable Ltd | 微細パターンの形成方法 |
JPH0685416A (ja) | 1992-08-28 | 1994-03-25 | Nikko Guurudo Foil Kk | 印刷回路用銅箔の表面処理方法 |
JPH0685417A (ja) | 1992-08-28 | 1994-03-25 | Nikko Guurudo Foil Kk | 印刷回路用銅箔の表面処理方法 |
JPH06280047A (ja) | 1993-03-29 | 1994-10-04 | Japan Energy Corp | 印刷回路用銅箔及びその製造方法 |
JPH0774464A (ja) | 1993-08-31 | 1995-03-17 | Japan Energy Corp | 印刷回路用銅箔及びその製造方法 |
JPH07278883A (ja) | 1994-04-15 | 1995-10-24 | Fukuda Metal Foil & Powder Co Ltd | 印刷回路用銅箔およびその表面処理方法 |
JPH08120499A (ja) * | 1994-10-20 | 1996-05-14 | Nikko Gould Foil Kk | 液中集電法によるプリント回路用銅箔表面処理方法 |
JP2002176242A (ja) | 2000-12-05 | 2002-06-21 | Nikko Materials Co Ltd | 電子回路用銅箔及び電子回路の形成方法 |
JP2005015861A (ja) | 2003-06-26 | 2005-01-20 | Nikko Materials Co Ltd | 銅箔及びその製造方法 |
JP2005039097A (ja) * | 2003-07-16 | 2005-02-10 | Matsushita Electric Ind Co Ltd | 銅箔の配線形成方法と配線転写基材及び配線基板 |
JP2005344174A (ja) * | 2004-06-03 | 2005-12-15 | Mitsui Mining & Smelting Co Ltd | 表面処理銅箔及びその表面処理銅箔を用いて製造したフレキシブル銅張積層板並びにフィルムキャリアテープ |
JP2006261270A (ja) | 2005-03-16 | 2006-09-28 | Nippon Steel Chem Co Ltd | フレキシブルプリント配線板用積層体およびその製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW230290B (ja) * | 1991-11-15 | 1994-09-11 | Nikko Guruder Foreer Kk | |
JP3142259B2 (ja) * | 1998-11-30 | 2001-03-07 | 三井金属鉱業株式会社 | 耐薬品性および耐熱性に優れたプリント配線板用銅箔およびその製造方法 |
TW511408B (en) * | 2000-09-18 | 2002-11-21 | Nippon Denkai Kk | Method of producing copper foil for fine wiring |
JP2003051673A (ja) * | 2001-08-06 | 2003-02-21 | Mitsui Mining & Smelting Co Ltd | プリント配線板用銅箔及びそのプリント配線板用銅箔を用いた銅張積層板 |
US6984456B2 (en) * | 2002-05-13 | 2006-01-10 | Mitsui Mining & Smelting Co., Ltd. | Flexible printed wiring board for chip-on flexibles |
JP4570070B2 (ja) * | 2004-03-16 | 2010-10-27 | 三井金属鉱業株式会社 | 絶縁層形成用の樹脂層を備えたキャリア箔付電解銅箔、銅張積層板、プリント配線板、多層銅張積層板の製造方法及びプリント配線板の製造方法 |
WO2006051864A1 (ja) * | 2004-11-10 | 2006-05-18 | Hitachi Chemical Co., Ltd. | 接着補助剤付金属箔及びそれを用いたプリント配線板 |
CN101074484A (zh) * | 2007-03-29 | 2007-11-21 | 上海大学 | 印制电路板用压延铜箔表面处理的方法 |
-
2009
- 2009-12-22 CN CN201610048388.1A patent/CN105578776A/zh active Pending
- 2009-12-22 KR KR1020117014578A patent/KR101295472B1/ko active IP Right Grant
- 2009-12-22 EP EP20090834854 patent/EP2371995A1/en not_active Withdrawn
- 2009-12-22 WO PCT/JP2009/071282 patent/WO2010074053A1/ja active Application Filing
- 2009-12-22 CN CN200980152806XA patent/CN102264951A/zh active Pending
- 2009-12-22 US US13/142,024 patent/US20110259848A1/en not_active Abandoned
- 2009-12-22 MY MYPI2011002933A patent/MY152533A/en unknown
- 2009-12-22 JP JP2010544066A patent/JP5358586B2/ja active Active
- 2009-12-25 TW TW098144891A patent/TWI482177B/zh active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05140765A (ja) | 1991-11-15 | 1993-06-08 | Nikko Guurudo Foil Kk | 印刷回路用銅箔の表面処理方法 |
JPH0685416A (ja) | 1992-08-28 | 1994-03-25 | Nikko Guurudo Foil Kk | 印刷回路用銅箔の表面処理方法 |
JPH0685417A (ja) | 1992-08-28 | 1994-03-25 | Nikko Guurudo Foil Kk | 印刷回路用銅箔の表面処理方法 |
JPH0681172A (ja) * | 1992-09-01 | 1994-03-22 | Hitachi Cable Ltd | 微細パターンの形成方法 |
JPH06280047A (ja) | 1993-03-29 | 1994-10-04 | Japan Energy Corp | 印刷回路用銅箔及びその製造方法 |
JPH0774464A (ja) | 1993-08-31 | 1995-03-17 | Japan Energy Corp | 印刷回路用銅箔及びその製造方法 |
JPH07278883A (ja) | 1994-04-15 | 1995-10-24 | Fukuda Metal Foil & Powder Co Ltd | 印刷回路用銅箔およびその表面処理方法 |
JPH08120499A (ja) * | 1994-10-20 | 1996-05-14 | Nikko Gould Foil Kk | 液中集電法によるプリント回路用銅箔表面処理方法 |
JP2002176242A (ja) | 2000-12-05 | 2002-06-21 | Nikko Materials Co Ltd | 電子回路用銅箔及び電子回路の形成方法 |
JP2005015861A (ja) | 2003-06-26 | 2005-01-20 | Nikko Materials Co Ltd | 銅箔及びその製造方法 |
JP2005039097A (ja) * | 2003-07-16 | 2005-02-10 | Matsushita Electric Ind Co Ltd | 銅箔の配線形成方法と配線転写基材及び配線基板 |
JP2005344174A (ja) * | 2004-06-03 | 2005-12-15 | Mitsui Mining & Smelting Co Ltd | 表面処理銅箔及びその表面処理銅箔を用いて製造したフレキシブル銅張積層板並びにフィルムキャリアテープ |
JP2006261270A (ja) | 2005-03-16 | 2006-09-28 | Nippon Steel Chem Co Ltd | フレキシブルプリント配線板用積層体およびその製造方法 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012124424A1 (ja) * | 2011-03-14 | 2012-09-20 | Jx日鉱日石金属株式会社 | 電子回路形成方法、電子回路及び電子回路形成用銅張積層板 |
JP2016084533A (ja) * | 2014-10-22 | 2016-05-19 | Jx金属株式会社 | 表面処理金属材、キャリア付金属箔、コネクタ、端子、積層体、シールドテープ、シールド材、プリント配線板、金属加工部材、電子機器の製造方法、及び、プリント配線板の製造方法 |
JP2019081913A (ja) * | 2017-10-27 | 2019-05-30 | Jx金属株式会社 | 表面処理銅箔、銅張積層板及びプリント配線板 |
JP7017369B2 (ja) | 2017-10-27 | 2022-02-08 | Jx金属株式会社 | 表面処理銅箔、銅張積層板及びプリント配線板 |
JPWO2019188837A1 (ja) * | 2018-03-27 | 2020-12-10 | 三井金属鉱業株式会社 | 表面処理銅箔、銅張積層板、及びプリント配線板の製造方法 |
WO2019188837A1 (ja) * | 2018-03-27 | 2019-10-03 | 三井金属鉱業株式会社 | 表面処理銅箔、銅張積層板、及びプリント配線板の製造方法 |
CN111902570B (zh) * | 2018-03-27 | 2022-11-08 | 三井金属矿业株式会社 | 表面处理铜箔、覆铜层叠板及印刷电路板的制造方法 |
CN111902570A (zh) * | 2018-03-27 | 2020-11-06 | 三井金属矿业株式会社 | 表面处理铜箔、覆铜层叠板及印刷电路板的制造方法 |
JPWO2019208522A1 (ja) * | 2018-04-27 | 2021-06-10 | Jx金属株式会社 | 表面処理銅箔、銅張積層板及びプリント配線板 |
JPWO2019208521A1 (ja) * | 2018-04-27 | 2021-06-10 | Jx金属株式会社 | 表面処理銅箔、銅張積層板及びプリント配線板 |
WO2019208521A1 (ja) * | 2018-04-27 | 2019-10-31 | Jx金属株式会社 | 表面処理銅箔、銅張積層板及びプリント配線板 |
JPWO2019208520A1 (ja) * | 2018-04-27 | 2021-06-17 | Jx金属株式会社 | 表面処理銅箔、銅張積層板及びプリント配線板 |
WO2019208522A1 (ja) * | 2018-04-27 | 2019-10-31 | Jx金属株式会社 | 表面処理銅箔、銅張積層板及びプリント配線板 |
US11337314B2 (en) | 2018-04-27 | 2022-05-17 | Jx Nippon Mining & Metals Corporation | Surface treated copper foil, copper clad laminate, and printed circuit board |
US11337315B2 (en) | 2018-04-27 | 2022-05-17 | Jx Nippon Mining & Metals Corporation | Surface treated copper foil, copper clad laminate, and printed circuit board |
US11375624B2 (en) | 2018-04-27 | 2022-06-28 | Jx Nippon Mining & Metals Corporation | Surface treated copper foil, copper clad laminate, and printed circuit board |
US11382217B2 (en) | 2018-04-27 | 2022-07-05 | Jx Nippon Mining & Metals Corporation | Surface treated copper foil, copper clad laminate, and printed circuit board |
WO2019208520A1 (ja) * | 2018-04-27 | 2019-10-31 | Jx金属株式会社 | 表面処理銅箔、銅張積層板及びプリント配線板 |
JP7330172B2 (ja) | 2018-04-27 | 2023-08-21 | Jx金属株式会社 | 表面処理銅箔、銅張積層板及びプリント配線板 |
JP7546482B2 (ja) | 2018-04-27 | 2024-09-06 | Jx金属株式会社 | 表面処理銅箔、銅張積層板及びプリント配線板 |
Also Published As
Publication number | Publication date |
---|---|
US20110259848A1 (en) | 2011-10-27 |
TWI482177B (zh) | 2015-04-21 |
CN102264951A (zh) | 2011-11-30 |
EP2371995A1 (en) | 2011-10-05 |
TW201034032A (en) | 2010-09-16 |
KR20110096134A (ko) | 2011-08-29 |
CN105578776A (zh) | 2016-05-11 |
MY152533A (en) | 2014-10-15 |
JPWO2010074053A1 (ja) | 2012-06-21 |
JP5358586B2 (ja) | 2013-12-04 |
KR101295472B1 (ko) | 2013-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5358586B2 (ja) | 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法 | |
JP5937652B2 (ja) | 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法 | |
JP4955106B2 (ja) | 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法 | |
JP5367613B2 (ja) | プリント配線板用銅箔 | |
JP4955104B2 (ja) | 電子回路の形成方法 | |
JP4955105B2 (ja) | 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法 | |
WO2011086972A1 (ja) | 電子回路及びその形成方法並びに電子回路形成用銅張積層板 | |
JP5738964B2 (ja) | 電子回路及びその形成方法並びに電子回路形成用銅張積層板 | |
JP2013028823A (ja) | 積層体及びこれを用いたプリント配線板 | |
JP2011210988A (ja) | エッチング性に優れたプリント配線板用銅箔及び積層体 | |
JP2011207092A (ja) | エッチング性に優れたプリント配線板用銅箔又は銅層と絶縁基板との積層体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980152806.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09834854 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2010544066 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009834854 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12011501310 Country of ref document: PH |
|
ENP | Entry into the national phase |
Ref document number: 20117014578 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13142024 Country of ref document: US |