WO2013147116A1 - 表面処理銅箔 - Google Patents

表面処理銅箔 Download PDF

Info

Publication number
WO2013147116A1
WO2013147116A1 PCT/JP2013/059455 JP2013059455W WO2013147116A1 WO 2013147116 A1 WO2013147116 A1 WO 2013147116A1 JP 2013059455 W JP2013059455 W JP 2013059455W WO 2013147116 A1 WO2013147116 A1 WO 2013147116A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
concentration
layer
treatment
treated
Prior art date
Application number
PCT/JP2013/059455
Other languages
English (en)
French (fr)
Inventor
亮 福地
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to KR1020147030308A priority Critical patent/KR101658722B1/ko
Priority to CN201380018060.XA priority patent/CN104246013B/zh
Priority to JP2014508074A priority patent/JP5886417B2/ja
Priority to KR1020167016480A priority patent/KR101824827B1/ko
Publication of WO2013147116A1 publication Critical patent/WO2013147116A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Definitions

  • the present invention relates to a surface-treated copper foil for a copper clad laminate for producing a flexible printed wiring board (FPC) capable of efficiently transmitting a high-frequency electric signal.
  • FPC flexible printed wiring board
  • a flexible printed wiring board is manufactured by etching a copper foil of a substrate to form various wiring patterns, and connecting and mounting electronic components with solder.
  • Copper foils are classified into electrolytic copper foils and rolled copper foils because of their production methods, and rolled copper foils having excellent bending resistance have been used favorably as copper foils for flexible substrates.
  • electronic devices such as personal computers and mobile communications, with the increase in communication speed and capacity, the frequency of electrical signals is increasing, and printed wiring boards and copper foils that can cope with this are demanded. .
  • the frequency of electrical signals is high, but when the frequency of electrical signals exceeds 1 GHz, the effect of the skin effect in which current flows only on the surface of the conductor becomes noticeable. The effect of changing the current transmission path and increasing the conductor loss cannot be ignored. Also from this point, it is desired that the surface roughness of the copper foil is small.
  • the surface of the electrolytic copper foil of the raw foil is formed by electrodeposition of copper, and the surface of the rolled copper foil of the raw foil is formed by contact with a rolling roll. Therefore, generally the surface roughness of the rolled copper foil of raw foil is smaller than the surface roughness of the electrolytic copper foil.
  • the electrodeposited particles in the roughening treatment are finer in the rolled copper foil. From this meaning, it can be said that the rolled copper foil is excellent as a copper foil for a high-frequency circuit.
  • the conductor side tends to shift to a copper foil with a small surface roughness
  • the resin side tends to shift from polyimide to liquid crystal polymer.
  • the most desirable from the viewpoint of the skin effect is considered to be a copper foil with small roughness that does not form a roughening treatment.
  • the loss (attenuation) of signal power in an electronic circuit can be roughly divided into two.
  • One of them is a conductor loss, that is, a loss due to copper foil
  • the second is a dielectric loss, that is, loss due to a substrate.
  • the conductor loss there is a skin effect in a high frequency region, and current has a characteristic that the current flows on the surface of the conductor. For this reason, if the copper foil surface is rough, a current flows along a complicated path.
  • the conductor loss tends to be small.
  • a liquid crystal polymer is a polymer that exhibits optical anisotropy in a liquid phase (molten or solution), and needs to be laminated without an adhesive with a copper foil.
  • the wholly aromatic polyester-based liquid crystal polymer is a halogen-free material that exhibits molecular orientation even in the molten state and maintains this state even in the solid state and exhibits thermoplasticity.
  • liquid crystal polymer (LCP) has a low dielectric constant and a low dielectric loss tangent.
  • the relative dielectric constant of LCP is 3.3
  • the relative dielectric constant of polyimide is 3.5
  • the dielectric loss tangent is 0.002 for LCP
  • that of polyimide is 0.01. Therefore, the liquid crystal polymer (LCP) is superior in characteristics.
  • the liquid crystal polymer (LCP) has a feature of low water absorption and low moisture absorption, and has a great advantage that there is little change in electrical characteristics and little change in dimensions.
  • Japanese Patent Laid-Open No. 2003-19311 Japanese Examined Patent Publication No. 61-54592 Japanese Patent Publication No. 3-34679 Japanese Patent Publication No. 7-10564 Japanese Patent Laid-Open No. 5-55746
  • the present invention has been made in view of the above-described problems, and its object is to provide copper for a flexible printed circuit board (FPC) in which a copper foil is laminated on a liquid crystal polymer (LCP) suitable for high frequency applications.
  • FPC flexible printed circuit board
  • LCP liquid crystal polymer
  • the present inventors have found that transmission loss can be reduced for the following reason.
  • One of them is that it is greatly influenced by the surface of the copper foil in the high frequency region. As the surface roughness increases, transmission loss increases. Therefore, it is effective to adjust the surface roughness of the copper foil as small as possible.
  • the second is the use of a liquid crystal polymer (LCP) laminated substrate.
  • LCP liquid crystal polymer
  • peel strength it is necessary to increase the adhesive strength (peel strength) with the copper foil.
  • FPC flexible printed circuit board
  • a surface-treated copper foil characterized by having an Si concentration of 2.0% or more and an N concentration of 2.0% or more in XPS survey measurement on the surface of the copper foil.
  • the normal peel strength at 90 degrees when bonded to a flexible printed circuit board made of a liquid crystal polymer is 0.3 kg / cm or more, according to any one of 1) to 4) above Surface treated copper foil.
  • a surface-treated copper foil that can be used for high-frequency circuit applications can be produced, and the adhesive strength (peel strength) can be increased by applying the copper foil to a liquid crystal polymer (LCP) laminated substrate.
  • LCP liquid crystal polymer
  • the surface-treated copper foil that can be used for high-frequency circuit applications is characterized in that the Si concentration is 2.0% or more and the N concentration is 2.0% or more in the XPS survey measurement on the surface of the copper foil.
  • silane treatment of the copper foil surface can be mentioned.
  • the Si concentration is less than 2.0% and the N concentration is less than 2.0%, the adhesive strength is not sufficient.
  • the Si concentration is If it exceeds 20.0% and the N concentration exceeds 40.0%, foaming occurs during lamination with LCP.
  • the silane coating method may be any of spraying of a silane coupling agent solution, coating with a coater, dipping, pouring and the like. Since these are already known techniques (see, for example, Japanese Patent Publication No. 60-15654), details are omitted.
  • the surface spectrum of the bonded surface of the copper foil with the resin was measured by XPS to obtain the Si concentration and the N concentration on the outermost surface.
  • the analysis conditions are shown below.
  • the copper foil with increased adhesive strength is a copper foil for a high-frequency circuit that is optimal for a flexible printed circuit board made of a liquid crystal polymer. That is, the 90 degree normal peel strength when bonded to a flexible printed circuit board made of a liquid crystal polymer can be 0.3 kg / cm or more.
  • the adhesive strength of the copper foil can be increased, it can be applied to a rolled copper foil and an electrolytic copper foil having a small surface roughness (less conductor loss), and an optimum copper foil for high-frequency circuits can be obtained. it can.
  • the copper foil for high-frequency circuits makes it possible to produce a flexible printed circuit board that can be used under a high frequency exceeding 1 GHz.
  • the surface-treated copper foil according to the present invention comprises a roughening treatment layer and / or a heat treatment treatment layer and / or a rust prevention treatment layer and / or a chromate treatment layer and / or a plating treatment layer and / or a silane coupling treatment layer. You may have.
  • the roughening treatment layer is not particularly limited, and any roughening treatment layer or a known roughening treatment layer can be applied.
  • the heat-resistant treatment layer is not particularly limited, and any heat-resistant treatment layer or a known heat-resistant treatment layer can be applied.
  • the rust prevention treatment layer is not particularly limited, and any rust prevention treatment layer or a known rust prevention treatment layer can be applied.
  • the plating layer is not particularly limited, and any plating layer or a known plating layer can be applied.
  • the chromate treatment layer is not particularly limited, and any chromate treatment layer or a known chromate treatment layer can be applied.
  • the surface-treated copper foil according to the invention of the present application may be provided with a roughened layer on the surface by performing a roughening treatment for improving the adhesion to the insulating substrate, for example.
  • the roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy.
  • the roughening process may be fine.
  • the roughening layer is a layer made of any single element selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, cobalt, and zinc, or an alloy containing one or more of them. Also good.
  • a roughening treatment can be performed in which secondary particles or tertiary particles are further formed of nickel, cobalt, copper, zinc alone or an alloy.
  • a heat-resistant treatment layer or a rust-proof treatment layer may be formed of nickel, cobalt, copper, zinc alone or an alloy, and the surface may be further subjected to a treatment such as a chromate treatment or a silane coupling treatment.
  • heat treatment layer or rust prevention layer is formed with nickel, cobalt, copper, zinc alone or alloy without roughening treatment, and the surface is further treated with chromate treatment, silane coupling treatment, etc. May be.
  • one or more layers selected from the group consisting of a heat-resistant treatment layer, a rust-proof treatment layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface of the roughening treatment layer.
  • One or more layers selected from the group consisting of a heat-resistant treatment layer, a rust prevention treatment layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface of the foil.
  • the above-mentioned heat-resistant layer, rust prevention treatment layer, chromate treatment treatment layer, and silane coupling treatment layer may each be formed of a plurality of layers (for example, two or more layers, three or more layers, etc.).
  • the “rust prevention treatment layer” includes a “chromate treatment layer”.
  • the primary particle layer of copper and the secondary particle layer which consists of a ternary system alloy which consists of copper, cobalt, and nickel are formed on this primary particle layer. More preferably, the average particle size of the primary particle layer is 0.25 to 0.45 ⁇ m, and the average particle size of the secondary particle layer is 0.05 to 0.25 ⁇ m.
  • Ni—Co plating> Ni—Co alloy plating (Liquid composition) Co: 1 to 20 g / L, Ni: 1 to 20 g / L (PH) 1.5 to 3.5 (Liquid temperature) 30 ⁇ 80 °C (Current density) 1-20A / dm 2 (Energization time) 0.5-4 seconds
  • ⁇ Cu—Zn plating> Cu—Zn alloy plating (Liquid composition) NaCN: 10 to 30 g / L, NaOH: 40 to 100 g / L, Cu: 60 to 120 g / L, Zn: 1 to 10 g / L (Liquid temperature) 60-80 ° C (Current density) 1-10 A / dm 2 (Energization time) 1 to 10 seconds
  • ⁇ Electrolytic chromate> (Liquid composition) Chromic anhydride, chromic acid, or potassium dichromate: 1 to 10 g / L, zinc (added in the form of zinc sulfate when added): 0 to 5 g / L (PH) 0.5-10 (Liquid temperature) 40-60 ° C (Current density) 0.1 to 2.6 A / dm 2 (Coulomb amount) 0.5 to 90 As / dm 2 (Energization time) 1-30 seconds
  • ⁇ Immersion chromate> (Liquid composition) Chromic anhydride, chromic acid, or potassium dichromate: 1 to 10 g / L, zinc (added in the form of zinc sulfate when added): 0 to 5 g / L (PH) 2-10 (Liquid temperature) 20-60 ° C (Processing time) 1-30 seconds
  • silane coupling process when Si and N are adhered to the surface of the copper foil in the silane coupling process, aminosilane is used for the silane coupling process. And it is necessary to perform a silane coupling process by making the density
  • the drying after the silane coupling treatment is performed, for example, at a drying temperature of 90 to 110 ° C., preferably 95 ° C. to 105 ° C., and a drying time of 1 to 10 seconds, preferably 1 to 5 seconds.
  • a silane containing one or more amino groups and / or imino groups can be used as the aminosilane.
  • the number of amino groups and imino groups contained in aminosilane can be, for example, 1 to 4, preferably 1 to 3, more preferably 1 to 2, respectively. In a preferred embodiment, the number of amino groups and imino groups contained in aminosilane can be one each.
  • aminosilane in which the total number of amino groups and imino groups contained in the aminosilane is 1, particularly monoaminosilane, 2 aminosilanes in particular, diaminosilane, and 3 aminosilanes in particular can be called triaminosilane.
  • Monoaminosilane and diaminosilane can be preferably used in the present invention.
  • monoaminosilane containing one amino group can be used as aminosilane.
  • the aminosilane may comprise at least one, for example one amino group, at the end of the molecule, preferably at the end of a linear or branched chain molecule.
  • aminosilane examples include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 1- Aminopropyltrimethoxysilane, 2-aminopropyltrimethoxysilane, 1,2-diaminopropyltrimethoxysilane, 3-amino-1-propenyltrimethoxysilane, 3-amino-1-propynyltrimethoxysilane, 3- Aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl- 3-a
  • a silane having the following structural formula I for the silane coupling treatment.
  • Formula I H 2 N—R 1 —Si (OR 2 ) 2 (R 3 ) (Formula I) (However, in the above formula I, R1 is a linear or branched, saturated or unsaturated, substituted or unsubstituted, cyclic or acyclic, heterocyclic or non-heterocyclic, C1-C12 hydrocarbon. A divalent group, R2 is a C1-C5 alkyl group, R3 is a C1-C5 alkyl group or a C1-C5 alkoxy group. )
  • R1 is a substituted or unsubstituted C1-C12 linear saturated hydrocarbon divalent group, a substituted or unsubstituted C1-C12 branched saturated hydrocarbon divalent group, substituted or unsubstituted C1-C12 linear unsaturated hydrocarbon divalent group, substituted or unsubstituted C1-C12 branched unsaturated hydrocarbon divalent group, substituted or unsubstituted C1-C12 ring
  • R1 is — (CH 2 ) n —, — (CH 2 ) n — (CH) m — (CH 2 ) j ⁇ 1 —, — (CH 2 ) n — (CC) — (CH 2 ) n -1 -,-(CH 2 ) n -NH- (CH 2 ) m -,-(CH 2 ) n -NH- (CH 2 ) m -NH- (CH 2 ) j -,-(CH 2 ) n -1- (CH) NH 2- (CH 2 ) m-1 -,-(CH 2 ) n-1- (CH) NH 2- (CH 2 ) m-1 -NH- (CH 2 ) m-1 -NH- (CH 2 ) j- It is preferable that the group is a group selected from the group consisting of (where n, m, and j are integers of 1 or more).
  • R1 is preferably — (CH 2 ) n — or — (CH 2 ) n —NH— (CH 2 ) m —. It is preferable that n, m and j are each independently 1, 2 or 3.
  • R2 is preferably a methyl group or an ethyl group.
  • R3 is preferably a methyl group, an ethyl group, a methoxy group or an ethoxy group.
  • a layer containing Si and N may be provided on the surface of the copper foil by dry plating such as sputtering, CVD, and PDV. Thereafter, heating may be performed at a heating temperature of 150 to 250 ° C. for 1 to 300 seconds. This is because Si and N existing in the surface layer are diffused to the copper foil side by heating, so that the concentration of Si and N on the surface of the copper foil can be easily controlled within a predetermined range.
  • sputtering conditions An example of sputtering conditions is shown below.
  • Example 1 An ingot in which 1200 ppm of Sn was added to oxygen-free copper was melted, and the ingot was hot-rolled from 900 ° C. to obtain a plate having a thickness of 10 mm. Then, cold rolling and annealing were repeated, and finally cold rolled into a 9 ⁇ m thick copper foil. The surface roughness of the rolled copper foil was Rz 0.63 ⁇ m.
  • Ni plating was implemented on the said rolled copper foil on the following conditions (roughening process was not implemented).
  • the balance of the Ni plating solution is water. Further, the rest of the liquid used in the roughening treatment, plating, silane treatment, heat resistance treatment, rust prevention treatment and the like described in the present application was water unless otherwise specified.
  • Ni ion 10-40g / L Temperature: 30-70 ° C Current density: 1-9A / dm 2 Plating time: 0.1 to 3.0 seconds pH: 1.0 to 5.0
  • Silane type N-2- (aminoethyl) -3-aminopropyltrimethoxysilane Silane concentration: 1.5 vol% Temperature: 10-60 ° C Treatment time: 1-5 seconds Drying after silane treatment: 100 ° C x 3 seconds
  • the copper foil surface roughness Rz (ten-point average roughness) after the silane coupling treatment was 0.63 ⁇ m.
  • Rz was measured using a contact roughness meter Surfcorder SE-3C stylus type roughness meter manufactured by Kosaka Laboratory Co., Ltd. in accordance with JIS B0601-1982.
  • the Si concentration and N concentration on the copper foil surface the XPS survey showed that the Si concentration was 2.2%, the N concentration was 5.0%, and the high frequency characteristics were also good. Note that the Si concentration and N concentration measured by XPS survey measurement are atomic concentrations (atom%).
  • Si and N are detected by this measurement, it can determine with the silane coupling process layer by aminosilane existing in surface treatment copper foil.
  • the silane-treated rolled copper foil thus produced was bonded to a resin of liquid crystal polymer (Kuraray, Vecstar CT-Z) having a thickness of 50 ⁇ m by a press.
  • the 90-degree peel strength was measured using the sample thus obtained.
  • the peel strength is when the circuit width is 3 mm and the resin and the copper foil are peeled off at an angle of 90 degrees at a speed of 50 mm / min. It measured twice and it was set as the average value.
  • Example 1 The measurement of the peel strength is based on JIS C6471-1995 (the same applies hereinafter). As a result, the 90 degree peel strength was 0.32 kg / cm. The results are shown in Table 1. As shown in Example 1, it can be seen that the surface-treated rolled copper foil of Example 1 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • a microstrip line structure was formed in order to examine high frequency characteristics.
  • the circuit was formed so that the characteristic impedance was 50 ⁇ .
  • the transmission loss was measured using this circuit, and when the transmission loss at a frequency of 30 GHz was smaller than ⁇ 0.6, the high frequency characteristic was expressed as “ ⁇ ”. Further, -0.6 to -0.8 is indicated by ⁇ , -0.8 to -1.2 is indicated by ⁇ , and when the transmission loss is larger than -1.2, ⁇ is indicated. In addition, this measured value is shown as reference and does not limit the range.
  • Example 2 The silane treatment conditions in Example 1 were changed (silane concentration was 1.7 vol%), and other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.61 ⁇ m.
  • Example 2 the Si concentration and the N concentration on the copper foil surface were determined. As a result, the Si concentration was 3.7%, the N concentration was 8.5%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. Furthermore, the high frequency characteristics were also good. As a result, a 90 degree peel strength of 0.48 kg / cm was obtained. These are shown in Table 1. As shown in Example 2, it can be seen that the surface-treated rolled copper foil of Example 2 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 3 The silane treatment conditions in Example 1 were changed (silane concentration was 2.0 vol%), and other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.61 ⁇ m.
  • Example 1 the Si concentration and the N concentration on the surface of the copper foil were obtained. As a result, the Si concentration was 5.7%, the N concentration was 10.7%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. Furthermore, the high frequency characteristics were also good. As a result, a 90 degree peel strength of 0.55 kg / cm was obtained. These are shown in Table 1. As shown in Example 3, it can be seen that the surface-treated rolled copper foil of Example 3 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 4 The silane treatment conditions in Example 1 were changed (silane concentration: 3.0 vol%), and other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.67 ⁇ m.
  • Example 1 the Si concentration and the N concentration on the copper foil surface were determined. As a result, the Si concentration was 5.5%, the N concentration was 10.1%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. Furthermore, the high frequency characteristics were also good. As a result, a 90 degree peel strength of 0.63 kg / cm was obtained. These are shown in Table 1. As shown in Example 4, it can be seen that the surface-treated rolled copper foil of Example 4 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 5 The silane treatment conditions in Example 1 were changed (silane concentration 4.0 vol%), and other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.65 ⁇ m.
  • Example 1 the Si concentration and the N concentration on the surface of the copper foil were determined. As a result, the Si concentration was 6.6%, the N concentration was 10.8%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. Furthermore, the high frequency characteristics were also good. As a result, a 90 degree peel strength of 0.63 kg / cm was obtained. These are shown in Table 1. As shown in Example 5, it can be seen that the surface-treated rolled copper foil of Example 5 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 6 The silane treatment conditions in Example 1 were changed (silane concentration was 5.0 vol%), and other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.61 ⁇ m.
  • Example 1 the Si concentration and the N concentration on the copper foil surface were determined. As a result, the Si concentration was 8.5%, the N concentration was 14.1%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. Furthermore, the high frequency characteristics were also good. As a result, a 90 degree peel strength of 0.77 kg / cm was obtained. These are shown in Table 1. As shown in Example 6, it can be seen that the surface-treated rolled copper foil of Example 6 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 7 The conditions for silane treatment in Example 1 were changed (silane concentration was 6.5 vol%), and other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.60 ⁇ m.
  • Example 7 the Si concentration and the N concentration on the copper foil surface were determined. As a result, the Si concentration was 9.0%, the N concentration was 12.1%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. Furthermore, the high frequency characteristics were also good. As a result, a 90 degree peel strength of 0.83 kg / cm was obtained. These are shown in Table 1. As shown in Example 7, it can be seen that the surface-treated rolled copper foil of Example 7 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 8 Roughening treatment was performed before nickel plating in Example 1, heat treatment and rust prevention treatment were performed thereafter, and the silane treatment conditions were changed (silane concentration was 5.0 vol%). Other conditions were the same as in Example 1. (That is, the rolled copper foil of Example 1 which was cold-rolled to a thickness of 9 ⁇ m was subjected to roughening treatment, heat and rust prevention treatment, immersion chromate treatment, and silane treatment. Nickel plating was not performed.) As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.90 ⁇ m.
  • An example of roughening treatment conditions is given below. In this example, roughening treatment (roughening plating) was performed under the following plating conditions. In addition, this plating condition shows a suitable example to the last, and even if it is plating conditions other than displaying below, there is no problem.
  • Liquid composition Copper 10-20 g / L, sulfuric acid 50-100 g / L Liquid temperature: 25-50 ° C Current density: 1 to 58 A / dm 2 Plating time: 0.1 to 10 seconds
  • Liquid composition Copper 10-20 g / L, Nickel 5-15 g / L, Cobalt 5-15 g / L pH: 2-3 Liquid temperature: 30-50 ° C Current density: 24 to 50 A / dm 2 Plating time: 0.5-4 seconds
  • Example 1 the Si concentration and the N concentration on the surface of the copper foil were determined. As a result, the Si concentration was 7.2%, the N concentration was 15.2%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. Furthermore, although slightly inferior to Examples 1 to 7, the high frequency characteristics were also good. As a result, a 90 degree peel strength of 0.95 kg / cm was obtained. These are shown in Table 1. As shown in Example 8, it can be seen that the surface-treated rolled copper foil of Example 8 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 9 A roughening treatment was performed before the nickel plating in Example 1, followed by heat resistance and rust prevention treatment, and the silane treatment conditions were changed (silane concentration was 7.5 vol%). Other conditions were the same as in Example 1. (That is, the rolled copper foil of Example 1 which was cold-rolled to a thickness of 9 ⁇ m was subjected to roughening treatment, heat and rust prevention treatment, immersion chromate treatment, and silane treatment. Nickel plating was not performed.) As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.92 ⁇ m. In this example, roughening treatment (roughening plating) was performed under the same plating conditions as in Example 8.
  • Example 1 the Si concentration and the N concentration on the copper foil surface were determined. As a result, the Si concentration was 9.9%, the N concentration was 22.4%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. Furthermore, although slightly inferior to Examples 1 to 7, the high frequency characteristics were also good. As a result, 90 degree peel strength was 1.13 kg / cm. These are shown in Table 1. As shown in Example 9, it can be seen that the surface-treated rolled copper foil of Example 9 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 10 A roughening treatment was performed before the nickel plating in Example 1, followed by heat resistance and rust prevention treatment, and the silane treatment conditions were changed (silane concentration was 7.5 vol%). Other conditions were the same as in Example 1. (That is, the rolled copper foil of Example 1 which was cold-rolled to a thickness of 9 ⁇ m was subjected to roughening treatment, heat and rust prevention treatment, immersion chromate treatment, and silane treatment. Nickel plating was not performed.) As a result, the copper foil surface roughness Rz after the silane coupling treatment was 1.48 ⁇ m.
  • Example 1 the Si concentration and the N concentration on the copper foil surface were determined. As a result, the Si concentration was 14.6%, the N concentration was 25.3%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. Further, although slightly inferior to Examples 1 to 7, the high-frequency characteristics were at a normal level and were not particularly problematic. As a result, a 90-degree peel strength of 1.31 kg / cm was obtained. These are shown in Table 1. As shown in Example 10, it can be seen that the surface-treated rolled copper foil of Example 10 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 11 The type and conditions of silane treatment in Example 1 were changed (N-2-aminoethyl-3-aminopropylmethyldimethoxysilane, silane concentration was 5.0 vol%), and other conditions were the same as in Example 1. did. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.62 ⁇ m.
  • Example 1 the Si concentration and the N concentration on the surface of the copper foil were obtained. As a result, the Si concentration was 10.1%, the N concentration was 19.8%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. Furthermore, the high frequency characteristics were also good. As a result, a 90 degree peel strength of 0.71 kg / cm was obtained. These are shown in Table 1. As shown in Example 11, it can be seen that the surface-treated rolled copper foil of Example 11 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 12 The type and conditions of the silane treatment in Example 1 were changed (3-aminopropylmethoxysilane, silane concentration 7.0 vol%), and other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.65 ⁇ m.
  • Example 1 the Si concentration and the N concentration on the copper foil surface were determined. As a result, the Si concentration was 12.3%, the N concentration was 11.9%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. Furthermore, the high frequency characteristics were also good. As a result, a 90 degree peel strength of 0.81 kg / cm was obtained. These are shown in Table 1. As shown in the present Example 12, it turns out that the surface-treated rolled copper foil of Example 12 has industrially sufficient surface performance as a raw material of the circuit board for high frequency.
  • Example 13 The type and conditions of silane treatment in Example 1 were changed (3-triethoxysilyl-N-1, 3dimethyl-butylidenepropylamine, silane concentration 5.5 vol%), and other conditions were as in Example 1. And the same. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.64 ⁇ m.
  • Example 1 the Si concentration and the N concentration on the surface of the copper foil were obtained. As a result, the Si concentration was 8.3%, the N concentration was 8.5%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. Furthermore, the high frequency characteristics were also good. As a result, a 90 degree peel strength of 0.71 kg / cm was obtained. These are shown in Table 1. As shown in Example 13, it can be seen that the surface-treated rolled copper foil of Example 13 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 14 The type and conditions of silane treatment in Example 1 were changed (N-phenyl-3-aminopropylmethoxysilane, silane concentration was 7.5 vol%), and other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.60 ⁇ m.
  • Example 14 the Si concentration and the N concentration on the surface of the copper foil were obtained. As a result, the Si concentration was 18.5%, the N concentration was 16.5%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. Furthermore, the high frequency characteristics were also good. As a result, a 90 degree peel strength of 0.79 kg / cm was obtained. These are shown in Table 1. As shown in this Example 14, it turns out that the surface-treated rolled copper foil of Example 14 has industrially sufficient surface performance as a raw material of the high frequency circuit board.
  • Example 1 The silane treatment conditions in Example 1 were changed (silane concentration 0.5 vol%), and 90 degree peel strength was measured in the same manner. Other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.60 ⁇ m.
  • the Si concentration and the N concentration on the surface of the copper foil were obtained.
  • the Si concentration was 1.1%
  • the N concentration was 3.3%
  • the Si concentration was 2.0% or more. It was outside the scope of the present invention that the N concentration was 2.0% or more.
  • the 90 degree peel strength was as low as 0.11 kg / cm.
  • Example 2 The silane treatment conditions in Example 1 were changed (silane concentration was 1.0 vol%), and 90 degree peel strength was measured in the same manner. Other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.61 ⁇ m.
  • the Si concentration and the N concentration on the copper foil surface were determined. As a result, the Si concentration was 1.4%, the N concentration was 3.5%, and the Si concentration was 2.0% or more. It was outside the scope of the present invention that the N concentration was 2.0% or more. As a result, the 90 degree peel strength was as low as 0.12 kg / cm. These are shown in Table 1. As shown in Comparative Example 2, the surface-treated rolled copper foil of Comparative Example 2 could not have industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 3 The silane treatment in Example 1 was not performed. Accordingly, there is no Si or N on the surface of the copper foil. And 90 degree
  • Example 4 Roughening treatment was performed before nickel plating in Example 1, and then heat resistance and rust prevention treatment was performed, but silane treatment was not performed. (That is, the rolled copper foil of Example 1 which was cold-rolled to a thickness of 9 ⁇ m was subjected to roughening treatment, heat resistance and rust prevention treatment, and immersion chromate treatment. Nickel plating was not performed.) Therefore, the copper foil There is no Si or N on the surface. And 90 degree
  • the Si concentration on the copper foil surface was 2.0% or more, and the N concentration was 2.0% or more, which was outside the scope of the present invention.
  • the 90 degree peel strength was as low as 0.32 kg / cm.
  • Example 5 Roughening treatment was performed before nickel plating in Example 1, and then heat resistance and rust prevention treatment was performed, but silane treatment was not performed. (That is, the rolled copper foil of Example 1 which was cold-rolled to a thickness of 9 ⁇ m was subjected to roughening treatment, heat resistance and rust prevention treatment, and immersion chromate treatment. Nickel plating was not performed.) Therefore, the copper foil There is no Si or N on the surface. And 90 degree
  • Example 6 Roughening treatment was performed before nickel plating in Example 1, and then heat resistance and rust prevention treatment was performed, but silane treatment was not performed. (That is, the rolled copper foil of Example 1 which was cold-rolled to a thickness of 9 ⁇ m was subjected to roughening treatment, heat resistance and rust prevention treatment, and immersion chromate treatment. Nickel plating was not performed.) Therefore, the copper foil There is no Si or N on the surface. And 90 degree
  • the Si concentration on the copper foil surface was 2.0% or more, and the N concentration was 2.0% or more, which was outside the scope of the present invention.
  • the 90-degree peel strength was 0.89 kg / cm. These are shown in Table 1. Compared with other comparative examples, the peel strength is high, but this is a physical effect due to the rough surface roughness. However, as described above, since the loss is large due to the skin effect when the roughness is large, this copper Foil could not be said to have industrially optimal surface performance as a material for high-frequency circuit boards.
  • Example 7 Roughening treatment was performed before nickel plating in Example 1, and then heat resistance and rust prevention treatment was performed, but the conditions for silane treatment were further changed (silane concentration was 10.0 vol%). Other conditions were the same as in Example 1. (That is, the rolled copper foil of Example 1 which was cold-rolled to a thickness of 9 ⁇ m was subjected to roughening treatment, heat and rust prevention treatment, immersion chromate treatment, and silane treatment. Nickel plating was not performed.) As a result, the copper foil surface roughness Rz after the silane coupling treatment was 1.51 ⁇ m. In this example, roughening treatment (roughening plating) was performed under the same plating conditions as in Example 10.
  • the Si concentration and the N concentration on the surface of the copper foil were determined. As a result, the Si concentration was 20.6%, the N concentration was 40.1%, and the Si concentration was 2.0% or more. Although it was within the scope of the present invention that the N concentration was 2.0% or more, the presence of a large amount had a problem, and foaming occurred during lamination with a liquid crystal polymer (LCP). Therefore, the peel strength is not measured for this copper foil. These are shown in Table 1. As shown in Comparative Example 7, the surface-treated rolled copper foil of Comparative Example 7 could not have industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 8 The silane treatment conditions in Example 1 were changed (glycidoxypropyltrimethoxysilane was used and the concentration was 1.5 vol%), and other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.62 ⁇ m.
  • the Si concentration and the N concentration on the surface of the copper foil were determined. As a result, the Si concentration was 2.2%, the N concentration was 0.0%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was not satisfied. As a result, the 90 degree peel strength was as low as 0.13 kg / cm. These are shown in Table 1. As shown in Comparative Example 8, the surface-treated rolled copper foil of Comparative Example 8 could not have industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 9 The silane treatment conditions in Example 1 were changed (glycidoxypropyltrimethoxysilane was used and the concentration was 5.0 vol%), and other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.63 ⁇ m.
  • the Si concentration and the N concentration on the surface of the copper foil were obtained.
  • the Si concentration was 9.5%
  • the N concentration was 0.0%
  • the Si concentration was 2.0% or more.
  • the condition of the present invention that the N concentration was 2.0% or more was not satisfied.
  • the 90 degree peel strength was as low as 0.19 kg / cm.
  • Example 10 Comparative Example 10
  • the silane treatment conditions in Example 1 were changed (3-methacryloxypropyltrimethoxysilane was used and the concentration was 2.0 vol%), and other conditions were the same as in Example 1.
  • the copper foil surface roughness Rz after the silane coupling treatment was 0.67 ⁇ m.
  • the Si concentration and the N concentration on the surface of the copper foil were obtained.
  • the Si concentration was 5.2%
  • the N concentration was 0.0%
  • the Si concentration was 2.0% or more.
  • the condition of the present invention that the N concentration was 2.0% or more was not satisfied.
  • the 90 degree peel strength was extremely low at 0.04 kg / cm.
  • Example 11 The conditions for silane treatment in Example 1 were changed (vinyltrimethoxysilane was used and the concentration was 0.5 vol%), and other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.65 ⁇ m.
  • the Si concentration and the N concentration on the copper foil surface were determined. As a result, the Si concentration was 1.4%, the N concentration was 0.0%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was not satisfied. As a result, the 90 degree peel strength was extremely low at 0.07 kg / cm. These are shown in Table 1. As shown in Comparative Example 11, the surface-treated rolled copper foil of Comparative Example 11 could not have industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 12 The silane treatment conditions in Example 1 were changed (vinyltrimethoxysilane was used and the concentration was 2.0 vol%), and other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.65 ⁇ m.
  • the Si concentration and the N concentration on the surface of the copper foil were obtained.
  • the Si concentration was 5.8%
  • the N concentration was 0.0%
  • the Si concentration was 2.0% or more.
  • the condition of the present invention that the N concentration was 2.0% or more was not satisfied.
  • the 90 degree peel strength was extremely low at 0.09 kg / cm.
  • Example 13 The conditions for silane treatment in Example 1 were changed (vinyltrimethoxysilane was used and the concentration was 5.0 vol%), and other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.65 ⁇ m.
  • the Si concentration and the N concentration on the copper foil surface were determined. As a result, the Si concentration was 11.1%, the N concentration was 0.0%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was not satisfied. As a result, the 90 degree peel strength was extremely low at 0.11 kg / cm. These are shown in Table 1. As shown in Comparative Example 13, the surface-treated rolled copper foil of Comparative Example 13 could not have industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 14 The silane treatment conditions in Example 1 were changed (3-mercaptopropyltrimethoxysilane was used and the concentration was 2.0 vol%), and other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.64 ⁇ m.
  • the Si concentration and the N concentration on the surface of the copper foil were determined. As a result, the Si concentration was 5.6%, the N concentration was 0.0%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was not satisfied. As a result, the 90 degree peel strength was extremely low at 0.07 kg / cm. These are shown in Table 1. As shown in Comparative Example 14, the surface-treated rolled copper foil of Comparative Example 14 could not have industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 15 The conditions for silane treatment in Example 1 were changed (tetramethoxysilane was used and the concentration was 2.0 vol%), and other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.67 ⁇ m.
  • the Si concentration and the N concentration on the surface of the copper foil were obtained.
  • the Si concentration was 5.7%
  • the N concentration was 0.0%
  • the Si concentration was 2.0% or more.
  • the condition of the present invention that the N concentration was 2.0% or more was not satisfied.
  • the 90 degree peel strength was extremely low at 0.07 kg / cm.
  • Example 16 The silane treatment conditions in Example 1 were changed (using tetramethoxysilane and 3-mercaptopropyltrimethoxysilane mixed, concentration 0.2 + 0.5 vol%). Other conditions were the same as in Example 1. did. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.64 ⁇ m.
  • the Si concentration and the N concentration on the surface of the copper foil were determined. As a result, the Si concentration was 3.2%, the N concentration was 0.0%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was not satisfied. As a result, the 90 degree peel strength was extremely low at 0.05 kg / cm. These are shown in Table 1. As shown in Comparative Example 16, the surface-treated rolled copper foil of Comparative Example 16 could not have industrially sufficient surface performance as a material for a high-frequency circuit board.
  • This example includes examples in which heat-resistant treatment and / or rust-proofing treatment is not performed (Examples 28, 29, 31 to 33).
  • N-2- (aminoethyl) -3-aminopropyltrimethoxysilane was used as the silane, and the silane concentration was 5.0 vol%. Drying after silane treatment was 100 ° C. ⁇ 3 seconds.
  • the heat treatment is not limited as long as the heat resistance can be ensured when the copper foil and the liquid crystal polymer (LCP) are laminated.
  • Examples include single or alloy plating of Zn, Ni, Co, Mo, P, Cr, W or the like. In addition, the heat-resistant process layer which does not contain Zn may be sufficient.
  • the production conditions and evaluation (peel strength) methods of Examples 21 to 33 and Comparative Examples 21 to 27 below are the same as those of Example 1 except that they are described individually.
  • the treatment conditions for Ni—Co plating treatment, Zn—Ni plating treatment, Ni—Mo plating treatment, Cu—Zn plating treatment, electrolytic chromate treatment, and immersion chromate treatment were as described above.
  • the conditions for the immersion chromate treatment were the same as in Example 1.
  • Example 21 A rolled copper foil having a plate thickness of 6 ⁇ m was subjected to a roughening treatment, and a Ni—Co plating treatment was performed as a heat treatment. Moreover, the electrolytic chromate process was performed as a rust prevention process. Further, silane treatment was performed thereon. The silane concentration was 5.0 vol%. Other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.82 ⁇ m. Table 2 shows the processing conditions.
  • Example 3 the Si concentration and the N concentration on the surface of the copper foil were obtained. As a result, the Si concentration was 6.6%, the N concentration was 8.2%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. As a result, the 90 degree peel strength was as high as 0.88 kg / cm. These results are shown in Table 3. As shown in Example 21, it can be seen that the surface-treated rolled copper foil of Example 21 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 22 The rolled copper foil having a plate thickness of 12 ⁇ m was subjected to a roughening treatment, and a Zn—Ni plating treatment was carried out as a heat treatment. Moreover, the immersion chromate process as a rust prevention process was performed. Further, silane treatment was performed thereon. The silane concentration was 5.0 vol%. Other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.90 ⁇ m. Table 2 shows the processing conditions.
  • Example 2 the Si concentration and the N concentration on the surface of the copper foil were determined. As a result, the Si concentration was 6.8%, the N concentration was 9.0%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. As a result, the 90 degree peel strength was as high as 0.93 kg / cm. These results are shown in Table 3. As shown in Example 22, it can be seen that the surface-treated rolled copper foil of Example 22 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 23 The rolled copper foil having a plate thickness of 35 ⁇ m was subjected to a roughening treatment, and a Ni—Mo plating treatment was performed as a heat treatment. Moreover, the immersion chromate process as a rust prevention process was performed. Further, silane treatment was performed thereon. The silane concentration was 5.0 vol%.
  • Example 2 shows the processing conditions.
  • Example 3 the Si concentration and the N concentration on the surface of the copper foil were obtained. As a result, the Si concentration was 5.5%, the N concentration was 7.3%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. As a result, the 90 degree peel strength was as high as 1.30 kg / cm. These results are shown in Table 3. As shown in this Example 23, it turns out that the surface-treated rolled copper foil of Example 23 has industrially sufficient surface performance as a raw material of the high frequency circuit board.
  • Example 24 A rolled copper foil having a plate thickness of 18 ⁇ m was subjected to a roughening treatment, and a Cu—Zn plating treatment was carried out as a heat treatment. Moreover, the electrolytic chromate process as a rust prevention process was performed. Further, silane treatment was performed thereon. The silane concentration was 5.0 vol%. Other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.81 ⁇ m. Table 2 shows the processing conditions.
  • Example 3 the Si concentration and the N concentration on the surface of the copper foil were obtained. As a result, the Si concentration was 3.8%, the N concentration was 4.3%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. As a result, the 90 degree peel strength was as high as 0.85 kg / cm. These results are shown in Table 3. As shown in Example 24, it can be seen that the surface-treated rolled copper foil of Example 24 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 25 The glossy surface of the electrolytic copper foil having a plate thickness of 18 ⁇ m was roughened, and Ni—Co plating was performed as a heat treatment. Moreover, the electrolytic chromate process as a rust prevention process was performed. Further, silane treatment was performed thereon. The silane concentration was 5.0 vol%. Other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 1.62 ⁇ m. Table 2 shows the processing conditions.
  • Example 3 the Si concentration and the N concentration on the surface of the copper foil were obtained. As a result, the Si concentration was 4.6%, the N concentration was 8.9%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. As a result, the 90 degree peel strength was as high as 1.29 kg / cm. These results are shown in Table 3. As shown in Example 25, it can be seen that the surface-treated electrolytic copper foil of Example 25 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 26 The glossy surface of the electrolytic copper foil having a thickness of 5 ⁇ m was subjected to a roughening treatment, and a Zn—Ni plating treatment was performed as a heat treatment. Moreover, the immersion chromate process as a rust prevention process was performed. Further, silane treatment was performed thereon. The silane concentration was 5.0 vol%. Other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 1.31 ⁇ m. Table 2 shows the processing conditions.
  • Example 3 the Si concentration and the N concentration on the surface of the copper foil were obtained. As a result, the Si concentration was 5.2%, the N concentration was 5.9%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. As a result, the 90 degree peel strength was as high as 1.01 kg / cm. These results are shown in Table 3. As shown in Example 26, it can be seen that the surface-treated electrolytic copper foil of Example 26 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 27 A rough surface was applied to the glossy surface of the electrolytic copper foil having a thickness of 12 ⁇ m, and Ni—Mo plating was performed as a heat-resistant treatment. Moreover, the immersion chromate process as a rust prevention process was performed. Further, silane treatment was performed thereon. The silane concentration was 5.0 vol%. Other conditions were the same as in Example 1. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 1.42 ⁇ m. Table 2 shows the processing conditions.
  • Example 3 the Si concentration and the N concentration on the surface of the copper foil were obtained. As a result, the Si concentration was 5.4%, the N concentration was 6.4%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. As a result, the 90 degree peel strength was as high as 1.18 kg / cm. These results are shown in Table 3. As shown in Example 27, it can be seen that the surface-treated electrolytic copper foil of Example 27 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • N-2- (aminoethyl) -3-aminopropyltrimethoxysilane was used as the silane, and the silane concentration was 0.5 vol%. Drying after silane treatment was 100 ° C. ⁇ 3 seconds.
  • the type of base material and the conditions of the roughening treatment, rust prevention treatment, and chromate treatment were the same as those in Examples 21 to 27, and only the silane concentration was changed.
  • An example of (necessarily changing the adhesion amount of Si and N) is shown.
  • Example 28 A rolled copper foil having a thickness of 9 ⁇ m (tough pitch copper (JIS H3100 alloy number C1100) manufactured by JX Nippon Mining & Metals Co., Ltd.) was subjected to a roughening treatment under the following conditions, followed by a silane coupling treatment.
  • the roughening process was performed by performing the process which provides the primary particle of copper on the surface of the said rolled copper foil, and then performs the process which provides a secondary particle.
  • N-2- (aminoethyl) -3-aminopropyltrimethoxysilane was used as the silane-treated silane, and the silane concentration was 5.0 vol%.
  • the copper foil surface roughness Rz after the silane coupling treatment was 0.91 ⁇ m.
  • ⁇ Roughening treatment conditions > (Copper primary particle plating conditions) Liquid composition: Copper 10-20 g / L, sulfuric acid 50-100 g / L Liquid temperature: 25-50 ° C Current density: 1 to 58 A / dm 2 Plating time: 0.1 to 10 seconds
  • Liquid composition Copper 10-20 g / L, Nickel 5-15 g / L, Cobalt 5-15 g / L pH: 2-3 Liquid temperature: 30-50 ° C Current density: 24 to 50 A / dm 2 Plating time: 0.5-4 seconds
  • the Si concentration and the N concentration on the surface of the copper foil were obtained.
  • the Si concentration was 7.3%
  • the N concentration was 15.1%
  • the Si concentration was 2.0% or more.
  • the condition of the present invention that the N concentration was 2.0% or more was achieved.
  • a 90 degree peel strength of 0.95 kg / cm was obtained.
  • the surface of the surface-treated copper foil after silane treatment was photographed using a scanning electron microscope (SEM). And the particle
  • the average particle size of the primary particle layer of copper was 0.25 to 0.45 ⁇ m
  • the average particle size of the secondary particle layer was 0.05 to 0.25 ⁇ m.
  • the diameter of the smallest circle surrounding the particles was measured as the particle diameter, and the average particle diameter was calculated.
  • Example 29 A rolled copper foil having a thickness of 9 ⁇ m (tough pitch copper (JIS H3100 alloy number C1100) manufactured by JIS Nippon Mining & Metals Co., Ltd.) is subjected to a roughening treatment under the following conditions, followed by an electrolytic chromate treatment, and then a silane coupling treatment. went.
  • the roughening process was performed by performing the process which provides the primary particle of copper on the surface of the said rolled copper foil, and then performs the process which provides a secondary particle.
  • N-2- (aminoethyl) -3-aminopropyltrimethoxysilane was used as the silane-treated silane, and the silane concentration was 5.0 vol%.
  • the copper foil surface roughness Rz after the silane coupling treatment was 0.91 ⁇ m.
  • ⁇ Roughening treatment conditions > (Copper primary particle plating conditions) Liquid composition: Copper 10-20 g / L, sulfuric acid 50-100 g / L Liquid temperature: 25-50 ° C Current density: 1 to 58 A / dm 2 Plating time: 0.1 to 10 seconds
  • Liquid composition Copper 10-20 g / L, Nickel 5-15 g / L, Cobalt 5-15 g / L pH: 2-3 Liquid temperature: 30-50 ° C Current density: 24 to 50 A / dm 2 Plating time: 0.5-4 seconds
  • the Si concentration and the N concentration on the surface of the copper foil were obtained.
  • the Si concentration was 7.5%
  • the N concentration was 15.4%
  • the Si concentration was 2.0% or more.
  • the condition of the present invention that the N concentration was 2.0% or more was achieved.
  • a 90 degree peel strength of 0.96 kg / cm was obtained.
  • the surface of the surface-treated copper foil after silane treatment was photographed using a scanning electron microscope (SEM). And the particle
  • the average particle size of the primary particle layer of copper was 0.25 to 0.45 ⁇ m
  • the average particle size of the secondary particle layer was 0.05 to 0.25 ⁇ m.
  • the diameter of the smallest circle surrounding the particles was measured as the particle diameter, and the average particle diameter was calculated.
  • Example 30 A rolled copper foil with a thickness of 9 ⁇ m (tough pitch copper (JIS H3100 alloy number C1100) manufactured by JIS Nippon Mining & Metals Co., Ltd.) is subjected to a roughening treatment under the following conditions, followed by a Ni—Co plating treatment, followed by an electrolytic chromate treatment. After that, silane coupling treatment was performed. In addition, the said roughening process was performed by performing the process which provides the primary particle of copper on the surface of the said rolled copper foil, and then performs the process which provides a secondary particle.
  • tough pitch copper JIS H3100 alloy number C1100 manufactured by JIS Nippon Mining & Metals Co., Ltd.
  • N-2- (aminoethyl) -3-aminopropyltrimethoxysilane was used as the silane-treated silane, and the silane concentration was 5.0 vol%.
  • the copper foil surface roughness Rz after the silane coupling treatment was 0.90 ⁇ m.
  • ⁇ Roughening treatment conditions > (Copper primary particle plating conditions) Liquid composition: Copper 10-20 g / L, sulfuric acid 50-100 g / L Liquid temperature: 25-50 ° C Current density: 1 to 58 A / dm 2 Plating time: 0.1 to 10 seconds
  • Liquid composition Copper 10-20 g / L, Nickel 5-15 g / L, Cobalt 5-15 g / L pH: 2-3 Liquid temperature: 30-50 ° C Current density: 24 to 50 A / dm 2 Plating time: 0.5-4 seconds
  • the Si concentration and the N concentration on the surface of the copper foil were obtained.
  • the Si concentration was 7.6%
  • the N concentration was 15.6%
  • the Si concentration was 2.0% or more.
  • the condition of the present invention that the N concentration was 2.0% or more was achieved.
  • a 90 degree peel strength of 0.96 kg / cm was obtained.
  • the surface of the surface-treated copper foil after silane treatment was photographed using a scanning electron microscope (SEM). And the particle
  • the average particle size of the primary particle layer of copper was 0.25 to 0.45 ⁇ m
  • the average particle size of the secondary particle layer was 0.05 to 0.25 ⁇ m.
  • the diameter of the smallest circle surrounding the particles was measured as the particle diameter, and the average particle diameter was calculated.
  • Electrolytic chromate treatment was performed on a rolled copper foil having a thickness of 12 ⁇ m (Tough pitch copper (JIS H3100 alloy number C1100) manufactured by JIS Nippon Mining & Metals Co., Ltd.), followed by silane coupling treatment.
  • N-2- (aminoethyl) -3-aminopropyltrimethoxysilane was used as the silane-treated silane, and the silane concentration was 5.0 vol%.
  • the copper foil surface roughness Rz after the silane coupling treatment was 0.62 ⁇ m.
  • Example 3 the Si concentration and the N concentration on the surface of the copper foil were obtained. As a result, the Si concentration was 8.4%, the N concentration was 14.0%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. As a result, a 90 degree peel strength of 0.67 kg / cm was obtained. These are shown in Table 3. As shown in Example 31, it can be seen that the surface-treated copper foil of Example 31 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 32 A silane coupling treatment was performed on a high gloss rolled copper foil having a thickness of 12 ⁇ m (tough pitch copper (JIS H3100 alloy number C1100) manufactured by JX Nippon Mining & Metals Co., Ltd., 60 ° specular gloss of 500% or more). N-2- (aminoethyl) -3-aminopropyltrimethoxysilane was used as the silane-treated silane, and the silane concentration was 5.0 vol%. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.31 ⁇ m.
  • Example 3 the Si concentration and the N concentration on the surface of the copper foil were obtained. As a result, the Si concentration was 8.2%, the N concentration was 13.8%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. As a result, a 90 degree peel strength of 0.61 kg / cm was obtained. These are shown in Table 3. As shown in Example 32, it can be seen that the surface-treated copper foil of Example 32 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 33 A SiN film is formed on a high gloss rolled copper foil having a thickness of 12 ⁇ m (tough pitch copper (JIS H3100 alloy number C1100), 60 ° specular gloss of 500% or more manufactured by JIS Nippon Mining & Metals Co., Ltd.) under the following sputtering conditions, and then 200 ° C. For 5 minutes.
  • the copper foil surface roughness Rz after sputtering was 0.30 ⁇ m.
  • Output DC50W (Argon pressure) 0.2 Pa
  • Example 3 the Si concentration and the N concentration on the surface of the copper foil were obtained. As a result, the Si concentration was 8.5%, the N concentration was 11.3%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was achieved. As a result, a 90 degree peel strength of 0.65 kg / cm was obtained. These are shown in Table 3. As shown in Example 33, it can be seen that the surface-treated copper foil of Example 33 has industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 21 A rolled copper foil having a plate thickness of 6 ⁇ m was subjected to a roughening treatment, and a Ni—Co plating treatment was performed as a heat treatment. Moreover, the electrolytic chromate process was performed as a rust prevention process. Further, silane treatment was performed thereon. The silane concentration was 0.5 vol%. The silane concentration of 0.5 vol% is a concentration generally set by silane treatment. Moreover, since the specific gravity of silane is about 1.0, 0.5 vol% means about 0.5 wt%. Other conditions were the same as in Example 1. Table 2 shows the processing conditions. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.82 ⁇ m.
  • the Si concentration and the N concentration on the surface of the copper foil were determined. As a result, the Si concentration was 0.3%, the N concentration was 0.4%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was not satisfied. As a result, the 90-degree peel strength decreased to 0.29 kg / cm. These results are shown in Table 3. As shown in Comparative Example 21, the surface-treated rolled copper foil of Comparative Example 21 did not have the industrially sufficient surface performance expected as a material for a high-frequency circuit board.
  • Example 22 The rolled copper foil having a plate thickness of 12 ⁇ m was subjected to a roughening treatment, and a Zn—Ni plating treatment was carried out as a heat treatment. Moreover, the immersion chromate process as a rust prevention process was performed. Further, silane treatment was performed thereon. The silane concentration was 0.5 vol%. Other conditions were the same as in Example 1. Table 2 shows the processing conditions. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.90 ⁇ m.
  • the Si concentration and the N concentration on the surface of the copper foil were determined. As a result, the Si concentration was 0.3%, the N concentration was 0.5%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was not satisfied. As a result, the 90-degree peel strength was 0.32 kg / cm, which was reduced. These results are shown in Table 3. As shown in Comparative Example 22, the surface-treated rolled copper foil of Comparative Example 22 did not have the industrially sufficient surface performance expected as a material for the high-frequency circuit board.
  • Example 23 The rolled copper foil having a plate thickness of 35 ⁇ m was subjected to a roughening treatment, and a Ni—Mo plating treatment was performed as a heat treatment. Moreover, the immersion chromate process as a rust prevention process was performed. Further, silane treatment was performed thereon. The silane concentration was 0.5 vol%. Other conditions were the same as in Example 1. Table 2 shows the processing conditions. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 1.55 ⁇ m.
  • the Si concentration and the N concentration on the surface of the copper foil were determined. As a result, the Si concentration was 0.7%, the N concentration was 0.8%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was not satisfied. As a result, the 90-degree peel strength decreased to 0.70 kg / cm. These results are shown in Table 3. As shown in Comparative Example 23, the surface-treated rolled copper foil of Comparative Example 23 did not have the industrially sufficient surface performance expected as a material for the high-frequency circuit board.
  • Example 24 A rolled copper foil having a plate thickness of 18 ⁇ m was subjected to a roughening treatment, and a Cu—Zn plating treatment was carried out as a heat treatment. Moreover, the electrolytic chromate process as a rust prevention process was performed. Further, silane treatment was performed thereon. The silane concentration was 0.5 vol%. Other conditions were the same as in Example 1. Table 2 shows the processing conditions. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.81 ⁇ m.
  • Example 2 the Si concentration and the N concentration on the surface of the copper foil were obtained. As a result, the Si concentration was 0.4%, the N concentration was 0.7%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was not satisfied. As a result, the 90-degree peel strength was significantly reduced to 0.30 kg / cm. These results are shown in Table 3. As shown in Comparative Example 24, the surface-treated rolled copper foil of Comparative Example 24 did not have industrially sufficient surface performance as a material for a high-frequency circuit board.
  • Example 25 The glossy surface of the electrolytic copper foil having a plate thickness of 18 ⁇ m was roughened, and Ni—Co plating was performed as a heat treatment. Moreover, the electrolytic chromate process as a rust prevention process was performed. Further, silane treatment was performed thereon. The silane concentration was 0.5 vol%. Other conditions were the same as in Example 1. Table 2 shows the processing conditions. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 1.62 ⁇ m.
  • the Si concentration and the N concentration on the surface of the copper foil were obtained.
  • the Si concentration was 1.0%
  • the N concentration was 1.1%
  • the Si concentration was 2.0% or more.
  • the condition of the present invention that the N concentration was 2.0% or more was not satisfied.
  • the 90-degree peel strength decreased to 0.65 kg / cm.
  • Example 26 The electrolytic copper foil having a thickness of 5 ⁇ m was subjected to a roughening treatment, and a Zn—Ni plating treatment was performed as a heat treatment. Moreover, the immersion chromate process as a rust prevention process was performed. Further, silane treatment was performed thereon. The silane concentration was 0.5 vol%. Other conditions were the same as in Example 1. Table 2 shows the processing conditions. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 1.31 ⁇ m.
  • Example 2 the Si concentration and the N concentration on the surface of the copper foil were obtained. As a result, the Si concentration was 0.8%, the N concentration was 1.3%, and the Si concentration was 2.0% or more. The condition of the present invention that the N concentration was 2.0% or more was not satisfied. As a result, the 90-degree peel strength was lowered to 0.44 kg / cm. These results are shown in Table 3. As shown in Comparative Example 26, the surface-treated electrolytic copper foil of Comparative Example 26 did not have the industrially sufficient surface performance expected as a material for a high-frequency circuit board.
  • Example 27 The electrolytic copper foil having a plate thickness of 12 ⁇ m was subjected to a roughening treatment, and a Ni—Mo plating treatment was performed as a heat treatment. Moreover, the immersion chromate process as a rust prevention process was performed. Further, silane treatment was performed thereon. The silane concentration was 0.5 vol%. Other conditions were the same as in Example 1. Table 2 shows the processing conditions. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 1.42 ⁇ m.
  • the Si concentration and the N concentration on the surface of the copper foil were obtained.
  • the Si concentration was 1.1%
  • the N concentration was 1.1%
  • the Si concentration was 2.0% or more.
  • the condition of the present invention that the N concentration was 2.0% or more was not satisfied.
  • the 90-degree peel strength decreased to 0.45 kg / cm.
  • Example 28 The glossy surface of the electrolytic copper foil having a plate thickness of 12 ⁇ m was subjected to Ni—Zn plating treatment as a heat treatment. Moreover, the electrolytic chromate process as a rust prevention process was performed. Further, silane treatment was performed thereon. The silane concentration was 0.5 vol%. Other conditions were the same as in Example 1. Table 2 shows the processing conditions. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.60 ⁇ m. The coating weight of Ni and Zn in this case was the 600 [mu] g / dm 2 and 90 [mu] g / dm 2, respectively.
  • the Si concentration and the N concentration on the surface of the copper foil were obtained.
  • the Si concentration was 0.7%
  • the N concentration was 0.9%
  • the Si concentration was 2.0% or more.
  • the condition of the present invention that the N concentration was 2.0% or more was not satisfied.
  • the 90 degree peel strength was as low as 0.10 kg / cm.
  • Example 29 The electrolytic copper foil having a plate thickness of 12 ⁇ m was subjected to a roughening treatment, and a Ni—Mo plating treatment was performed as a heat treatment. Moreover, the immersion chromate process as a rust prevention process was performed. Further, silane treatment was performed thereon. The silane concentration was 0.5 vol%. Other conditions were the same as in Example 1. Table 2 shows the processing conditions. As a result, the copper foil surface roughness Rz after the silane coupling treatment was 0.61 ⁇ m. At this time, the adhesion amounts of Ni and Zn were 2850 ⁇ g / dm 2 and 190 ⁇ g / dm 2 , respectively.
  • the Si concentration and the N concentration on the surface of the copper foil were obtained.
  • the Si concentration was 0.9%
  • the N concentration was 1.3%
  • the Si concentration was 2.0% or more.
  • the condition of the present invention that the N concentration was 2.0% or more was not satisfied.
  • the 90 degree peel strength was as low as 0.11 kg / cm.
  • a copper foil for a high frequency circuit can be manufactured, and by applying the copper foil to a liquid crystal polymer (LCP) laminated substrate, it is possible to increase the adhesive strength (peel strength) and exceed 1 GHz.
  • LCP liquid crystal polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

銅箔表面のXPS survey 測定において、Si濃度が2.0%以上であり、N濃度が2.0%以上であることを特徴とする表面処理銅箔。高周波用途に好適な液晶ポリマー(LCP)に銅箔を積層したフレキシブルプリント基板(FPC)用銅箔を提供するに際して、ピール強度を向上させた銅箔を得ることを課題とする。

Description

表面処理銅箔
本発明は、高周波電気信号の効率の良い伝送が可能なフレキシブルプリント配線板(FPC)を製造するための銅張積層板用表面処理銅箔に関する。
フレキシブルプリント配線板は、基板の銅箔をエッチングして種々の配線パターンを形成し、電子部品をハンダで接続して実装することにより製造される。銅箔はその製造方法から電解銅箔と圧延銅箔に分類され、フレキシブル基板用銅箔には、耐屈曲性に優れる圧延銅箔が好んで用いられてきた。また、パソコンや移動体通信等の電子機器では、通信の高速化、大容量化に伴い、電気信号の高周波化が進んでおり、これに対応可能なプリント配線板及び銅箔が求められている。
パソコンや移動体通信等の電子機器では電気信号が高周波化しているが、電気信号の周波数が1GHz以上になると、電流が導体の表面にだけ流れる表皮効果の影響が顕著になり、表面の凹凸で電流伝送経路が変化して導体損失が増大する影響が無視できなくなる。この点からも銅箔の表面粗さが小さいことが望まれる。
生箔の電解銅箔の表面は銅の電着粒によって形成され、生箔の圧延銅箔の表面は圧延ロールとの接触によって形成される。そのため、一般的に生箔の圧延銅箔の表面粗さは電解銅箔の表面粗さより小さい。また、粗化処理における電着粒子は、圧延銅箔の方が微細である。この意味から、圧延銅箔は高周波回路用銅箔として優れていると言える。
一方、高周波になるほどデータ輸送量は大きくなるが、信号電力の損失(減衰)も大きくなり、データが読み取れなくなるため、FPCの回路長さが制限される。このような信号電力の損失(減衰)を減らすために、導体側は、銅箔の表面粗さが小さいものへ、また樹脂側としては、ポリイミドから液晶ポリマーへと移行する傾向にある。なお、表皮効果の観点から最も望ましいのは、粗化処理を形成しない、粗さの小さい銅箔であると考えられる。
電子回路における信号電力の損失(減衰)は大きく二つに分けることができる。その一つは、導体損失すなわち銅箔による損失であり、その二は、誘電体損失すなわち基板による損失である。導体損失では、高周波域では、表皮効果があり、電流は導体の表面を流れるという特性を有する。このため、銅箔表面が粗いと複雑な経路を辿って、電流が流れることになる。上記に述べたように、圧延銅箔は電解銅箔に比べて粗さが小さいので、導体損失が少ないという傾向がある。
他方、液晶ポリマー(LCP)は、液相(溶融又は溶液)で光学的な異方性を示すポリマーであり、銅箔とは接着剤なしで積層することが必要となる。全芳香族ポリエステル系液晶ポリマーは、溶融状態でも分子の配向性を示し、固体状態でもこの状態が保持され、熱可塑性を示すハロゲンフリーの材料である。
液晶ポリマー(LCP)の特徴は、低誘電率、低誘電正接であることである。因みにLCPの比誘電率は3.3であるのに対して、ポリイミドの比誘電率は3.5であり、誘電正接はLCPが0.002であるのに対して、ポリイミドのそれは0.01であるので、液晶ポリマー(LCP)の方が、特性的に優れている。また、液晶ポリマー(LCP)は、低吸水性であり、かつ低吸湿率である特徴を有し、電気特性の変化が少なく、また寸法変化が少ないという大きな利点を持つ。
圧延銅箔においては、ハンドリング性を保つ目的から、最終焼鈍後に圧延するという圧延上がり材が最適である(例えば、特許文献1参照)という特徴を有する。
しかしながら、液晶ポリマー(LCP)はポリイミドと比較して強度が弱く、銅箔を積層した材料はピール強度が出難いという大きな問題を有している。銅箔の粗さを大きくすると、物理的なアンカー効果が得られることからピール強度は高くなる傾向にあるが、前述の表皮効果の影響によって、高周波における電気特性が悪化してしまう。
また、高周波回路用銅箔の提案がいくつかあるが(例えば、特許文献2、3、4、5参照)、圧延銅箔の製造工程の簡素化と高周波伝送損失を減少させるという観点から、有効な技術がないのが現状である。
特開2003-193211号公報 特公昭61-54592号公報 特公平3-34679号公報 特公平7-10564号公報 特開平5-55746号公報
本発明は、上記のような問題点に鑑みてなされたものであり、その目的とするところは、高周波用途に好適な液晶ポリマー(LCP)に銅箔を積層したフレキシブルプリント基板(FPC)用銅箔を提供するに際して、ピール強度を向上させた銅箔を得ることを課題とする。
本発明者らは、次の理由により、伝送損失を低下することができることを見出した。
その一は、高周波領域において銅箔の表面に大きく影響されるということである。表面粗さが大きくなると伝送損失は大きくなる。したがって、銅箔の表面粗さを、できるだけ小さく調整することが有効である。
その二は、液晶ポリマー(LCP)積層基板の利用である。しかしこのためには、銅箔との接着強度(ピール強度)を高める必要がある。
以上の問題を解決することによって、信号電力損失(減衰)を抑制したフレキシブルプリント基板(FPC)を提供することができるという知見を得た。
 上記の知見から、本願発明は、以下の発明を提供する。
1)銅箔表面のXPS survey 測定において、Si濃度が2.0%以上であり、N濃度が2.0%以上であることを特徴とする表面処理銅箔。
2)フレキシブルプリント回路基板用銅箔であることを特徴とする上記1)に記載の表面処理銅箔。
3)銅箔が圧延銅箔又は電解銅箔であることを特徴とする上記1)~2)のいずれか一項に記載の表面処理銅箔。
4)液晶ポリマーからなるフレキシブルプリント回路基板に接合される銅箔であることを特徴とする上記1)~3)のいずれか一項に記載の表面処理銅箔。
5)液晶ポリマーからなるフレキシブルプリント回路基板に接合された場合の90度の常態ピール強度が0.3kg/cm以上であることを特徴とする上記1)~4)のいずれか一項に記載の表面処理銅箔。
6)1GHzを超える高周波数下での使用が可能なフレキシブルプリント回路板に接合されることを特徴とする上記1)~5)のいずれか一項に記載の表面処理銅箔。
本発明によって、高周波回路用途に用いることができる表面処理銅箔が製造可能であり、該銅箔を液晶ポリマー(LCP)積層基板に適用することにより、接着強度(ピール強度)を高めることが可能であり、かつ1GHzを超える高周波数下での使用が可能なフレキシブルプリント回路板が実現できるという優れた効果が得られる。
高周波回路用途に用いることができる表面処理銅箔は、銅箔表面のXPS survey 測定において、Si濃度が2.0%以上であり、N濃度が2.0%以上であることを特徴とする。これによって、銅箔を液晶ポリマー(LCP)積層基板に接着する際に、接着強度(ピール強度)を高めることが可能となる。なお、上記銅箔表面のSi濃度とN濃度を達成する1つの手段として、銅箔表面をシラン処理することが挙げられる。また、本願の表面処理銅箔を高周波回路用銅箔に用いることは有効である。
銅箔表面のXPS survey 測定において、Si濃度が2.0%未満で、N濃度が2.0%未満であると、接着強度は十分でなく、銅箔表面のXPS survey 測定において、Si濃度が20.0%を超え、N濃度が40.0%以上を超える場合には、LCPとの積層の際に発泡が起こるので、多すぎるのは好ましくないと言える。
なお、シラン塗布方法はシランカップリング剤溶液のスプレーふきつけ、コーター塗布、浸漬、流しかけ等いずれでも良い。これらについては、既に公知の技術なので(例えば、特公昭60-15654号参照)、詳細は省略する。
銅箔表面のSiおよびNの濃度については、表面処理された銅箔の樹脂との張り合わせ面を、XPSでsurveyスペクトルを測定し、最表面のSi濃度とN濃度を求めた。分析条件を以下に示す。
装置:アルバック・ファイ株式会社製5600MC
 到達真空度:2.0×10-9 Torr
 励起源:単色化 AlKα
 出力:210 W
 検出面積:800 μmφ
 入射角:45°度
 取り出し角:45°度
 中和銃なし
接着強度を高めた銅箔は、液晶ポリマーからなるフレキシブルプリント回路基板用として最適な高周波回路用銅箔となる。すなわち、液晶ポリマーからなるフレキシブルプリント回路基板に接合された場合の90度の常態ピール強度が0.3kg/cm以上とすることが可能となる。
また、銅箔の接着強度を高めることができるので、銅箔の表面粗さが少ない(導体損失の少ない)圧延銅箔及び電解銅箔に適用でき、最適な高周波回路用銅箔を得ることができる。高周波回路用銅箔は、1GHzを超える高周波数下での使用が可能なフレキシブルプリント回路板を製造可能とする。
なお、本願の発明にかかる表面処理銅箔は粗化処理層および/または耐熱処理層および/または防錆処理層および/またはクロメート処理層および/またはめっき処理層および/またはシランカップリング処理層を有しても良い。前記粗化処理層は特に限定はされず、あらゆる粗化処理層や公知の粗化処理層を適用することが出来る。前記耐熱処理層は特に限定はされず、あらゆる耐熱処理層や公知の耐熱処理層を適用することが出来る。前記防錆処理層は特に限定はされず、あらゆる防錆処理層や公知の防錆処理層を適用することが出来る。前記めっき処理層は特に限定はされず、あらゆるめっき処理層や公知のめっき処理層を適用することが出来る。前記クロメート処理層は特に限定はされず、あらゆるクロメート処理層や公知のクロメート処理層を適用することが出来る。
例えば、本願の発明にかかる表面処理銅箔はその表面に、例えば絶縁基板との密着性を良好にすること等のための粗化処理を施すことにより粗化処理層を設けてもよい。粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理は微細なものであっても良い。粗化処理層は、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層などであってもよい。
また、銅又は銅合金で粗化粒子を形成した後、更にニッケル、コバルト、銅、亜鉛の単体または合金等で二次粒子や三次粒子を設ける粗化処理を行うこともできる。その後に、ニッケル、コバルト、銅、亜鉛の単体または合金等で耐熱処理層または防錆処理層を形成しても良く、更にその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。または粗化処理を行わずに、ニッケル、コバルト、銅、亜鉛の単体または合金等で耐熱処理層又は防錆処理層を形成し、さらにその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。
すなわち、粗化処理層の表面に、耐熱処理層、防錆処理層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよく、表面処理銅箔の表面に、耐熱処理層、防錆処理層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよい。なお、上述の耐熱層、防錆処理層、クロメート処理処理層、シランカップリング処理層はそれぞれ複数の層で形成されてもよい(例えば2層以上、3層以上など)。なお、本発明において「防錆処理層」は「クロメート処理層」を含む。
なお、樹脂との密着性を考慮すると、表面処理銅箔の最外層にシランカップリング処理層を設けることが好ましい。
 なお、粗化処理層としては銅の一次粒子層と、該一次粒子層の上に、銅、コバルト及びニッケルからなる3元系合金からなる二次粒子層とが形成されていることが好ましい。
 また、該一次粒子層の平均粒子径が0.25-0.45μmであり、該二次粒子層の平均粒子径が0.05-0.25μmであることがより好ましい。
また、防錆処理またはクロメート処理として以下の処理を用いることができる。
<Ni-Coめっき>:Ni-Co合金めっき
 (液組成)Co:1~20g/L、Ni:1~20g/L
 (pH)1.5~3.5
 (液温)30~80℃
 (電流密度)1~20A/dm2
 (通電時間)0.5~4秒
<Zn-Niめっき>:Zn-Ni合金めっき
(液組成)Zn:10~30g/L、Ni:1~10g/L
 (pH)3~4
 (液温)40~50℃
 (電流密度)0.5~5A/dm2
 (通電時間)1~3秒
<Ni-Moめっき>:Ni-Mo合金めっき
(液組成)硫酸ニッケル:270~280g/L、塩化ニッケル:35~45g/L、酢酸ニッケル:10~20g/L、モリブデン(モリブデン酸ナトリウムとして添加):0.1~10g/L、クエン酸三ナトリウム:15~25g/L、光沢剤:サッカリン、ブチンジオール等、ドデシル硫酸ナトリウム:55~75ppm
 (pH)4~6
 (液温)55~65℃
 (電流密度)1~11A/dm2
 (通電時間)1~20秒
<Cu-Znめっき>:Cu-Zn合金めっき
 (液組成)NaCN:10~30g/L、NaOH:40~100g/L、Cu:60~120g/L、Zn:1~10g/L
 (液温)60~80℃
 (電流密度)1~10A/dm2
 (通電時間)1~10秒
<電解クロメート>
 (液組成)無水クロム酸、クロム酸、または重クロム酸カリウム:1~10g/L、亜鉛(添加する場合は硫酸亜鉛の形で添加):0~5g/L
 (pH)0.5~10
 (液温)40~60℃
 (電流密度)0.1~2.6A/dm2
 (クーロン量)0.5~90As/dm2
 (通電時間)1~30秒
<浸漬クロメート>
 (液組成)無水クロム酸、クロム酸、または重クロム酸カリウム:1~10g/L、亜鉛(添加する場合は硫酸亜鉛の形で添加):0~5g/L
 (pH)2~10
 (液温)20~60℃
 (処理時間)1~30秒
 また、シランカップリング処理において、銅箔の表面にSiとNを付着させる場合には、シランカップリング処理にはアミノシランを用いる。そして、シランカップリング処理液中のシランカップリング剤の濃度を従来よりも高濃度(例えば、1.5vol%以上)として、シランカップリング処理を行うことが必要である。また、シランカップリング処理後の乾燥温度を高くしすぎず、また乾燥時間を長くしすぎないことが必要である。乾燥温度を高くしすぎたり、乾燥時間を長くしすぎた場合、銅箔表面に存在するシランカップリング剤が脱離する場合があるからである。
 シランカップリング処理後の乾燥は例えば乾燥温度90~110℃、好ましくは95℃~105℃で、乾燥時間1~10秒間好ましくは1~5秒間で行うことが好ましい。
 また、好ましい実施の態様において、アミノシランとして、1以上のアミノ基及び/又はイミノ基を含むシランを使用することができる。アミノシランに含まれるアミノ基及びイミノ基の数は、例えばそれぞれ1~4個、好ましくはそれぞれ1~3個、さらに好ましくは1~2個とすることができる。好適な実施の態様において、アミノシランに含まれるアミノ基及びイミノ基の数は、それぞれ1個とすることができる。
アミノシランに含まれるアミノ基及びイミノ基の数の合計が、1個であるアミノシランは特にモノアミノシラン、2個であるアミノシランは特にジアミノシラン、3個であるアミノシランは特にトリアミノシランと、呼ぶことができる。モノアミノシラン、ジアミノシランは、本発明において好適に使用することができる。好適な実施の態様において、アミノシランとして、アミノ基1個を含むモノアミノシランを使用することができる。好適な実施の態様において、アミノシランは、少なくとも1個、例えば1個のアミノ基を、分子の末端に、好ましくは直鎖状又は分枝状の鎖状分子の末端に、含むものとすることができる。
 アミノシランとしては、例えば、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、1-アミノプロピルトリメトキシシラン、2-アミノプロピルトリメトキシシラン、1、2-ジアミノプロピルトリメトキシシラン、3-アミノ‐1‐プロぺニルトリメトキシシラン、3-アミノ‐1‐プロピニルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン、3- アミノプロピルトリエトキシシラン、3- アミノプロピルトリメトキシシラン、N-(2- アミノエチル)-3- アミノプロピルトリメトキシシラン、N-(2- アミノエチル)-3- アミノプロピルメチルジメトキシシラン、3-(N- フェニル) アミノプロピルトリメトキシシランをあげることできる。
また、好ましい実施の態様において、シランカップリング処理には以下の式Iの構造式を有するシランを用いることが好ましい。
 式I:   H2N-R1-Si(OR22(R3)    (式I)
(ただし、上記式Iにおいて、
 R1は、直鎖状又は分枝を有する、飽和又は不飽和の、置換又は非置換の、環式又は非環式の、複素環を有する又は複素環を有しない、C1~C12の炭化水素の二価基であり、
 R2は、C1~C5のアルキル基であり、
 R3は、C1~C5のアルキル基、又はC1~C5のアルコキシ基である。)
R1が、置換又は非置換の、C1~C12の直鎖状飽和炭化水素の二価基、置換又は非置換の、C1~C12の分枝状飽和炭化水素の二価基、置換又は非置換の、C1~C12の直鎖状不飽和炭化水素の二価基、置換又は非置換の、C1~C12の分枝状不飽和炭化水素の二価基、置換又は非置換の、C1~C12の環式炭化水素の二価基、置換又は非置換の、C1~C12の複素環式炭化水素の二価基、置換又は非置換の、C1~C12の芳香族炭化水素の二価基、からなる群から選択された基であることが好ましい。
また、R1が、-(CH2n-、-(CH2n-(CH)m-(CH2j-1-、-(CH2n-(CC)-(CH2n-1-、-(CH2n-NH-(CH2m-、-(CH2n-NH-(CH2m-NH-(CH2j-、-(CH2n-1-(CH)NH2-(CH2m-1-、-(CH2n-1-(CH)NH2-(CH2m-1-NH-(CH2j- からなる群から選択された基である(ただし、n、m、jは、1以上の整数である)ことが好ましい。
 R1が、-(CH2n-、又は-(CH2n-NH-(CH2m-であることが好ましい。
 n、m、jが、それぞれ独立に、1、2又は3であることが好ましい。
 R2が、メチル基又はエチル基であることが好ましい。
 R3が、メチル基、エチル基、メトキシ基又はエトキシ基であることが好ましい。
また、別の実施の形態においてはスパッタリング、CVD及びPDVなどの乾式めっきによって銅箔の表面にSiとNを含む層を設けてもよい。そして、その後加熱温度150~250℃で1秒~300秒で加熱してもよい。加熱することで表層に存在するSiとNが銅箔側へ拡散させることで、銅箔表面のSiとNの濃度を所定の範囲に制御しやすくなるからである。
以下にスパッタリングの条件の一例を示す。
(ターゲット):Si15~65mass%、N25~55mass%、Si濃度とN濃度との合計が50mass%以上。残部は任意の元素でよい。
(装置)株式会社アルバック製のスパッタ装置
(出力)DC50W
(アルゴン圧力)0.2Pa
以下、実施例により本発明を説明する。なお、本実施例は好適な一例を示すもので、本発明はこれらの実施例に限定されるものではない。したがって、本発明の技術思想に含まれる変形、他の実施例又は態様は、全て本発明に含まれる。なお、本発明との対比のために、比較例を併記する。
(実施例1)
無酸素銅に1200ppmのSnを添加したインゴットを溶製し、このインゴットを900°Cから熱間圧延し、厚さ10mmの板を得た。その後、冷間圧延と焼鈍を繰り返し、最終的に9μm厚の銅箔に冷間圧延した。この圧延銅箔の表面粗さはRz0.63μmであった。
次に、前記圧延銅箔に、次の条件でNiめっきを実施した(粗化処理は実施せず)。
なお、Niめっき液の残部は水である。また本願に記載されている、粗化処理、めっき、シラン処理、耐熱処理、防錆処理などに用いられる液の残部も特に記載が無い限り水とした。
   Niイオン:10~40g/L
温度:30~70°C
電流密度:1~9A/dm
めっき時間:0.1~3.0秒
pH:1.0~5.0
  次に、前記Niめっきをした圧延銅箔に、次の条件で浸漬クロメート処理を実施した。
   KCr:1~10g/L
温度:20~60°C
  処理時間:1~5秒
  次に、表1に示すシランカップリング処理を実施した。
  シランの種類:N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン
  シラン濃度:1.5vol%
  温度:10~60°C
  処理時間:1~5秒
  シラン処理後の乾燥:100°C×3秒
 この結果、シランカップリング処理後の銅箔表面粗さRz(十点平均粗さ)は0.63μmとなった。なお、RzはJIS B0601-1982に準拠して、株式会社小阪研究所製接触粗さ計Surfcorder SE-3C触針式粗度計を用いて測定した。銅箔表面のSi濃度とN濃度については、XPS survey 測定により、Si濃度は2.2%、N濃度は5.0%となり、さらに高周波特性も良好であった。なお、XPS survey 測定により測定されるSi濃度、N濃度は原子濃度(atom%)である。なお、本測定でSiおよびNが検出された場合には、表面処理銅箔にアミノシランによるシランカップリング処理層が存在すると判定できる。
以下の実施例及び比較例の、銅箔表面のSi濃度及びN濃度の測定法(評価方法)については、同様にして実施しているので、この操作方法は、煩雑さを避けるために、説明を省略することとする。
以上の結果は、銅箔表面のXPS survey 測定において、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという本願発明の条件を達成していた。
このようにして製造したシラン処理した圧延銅箔を、厚さ50μmの液晶ポリマー(Kuraray製、Vecstar CT-Z)の樹脂にプレスにて貼り合わせた。このようにして得た試料を用いて90度ピール強度を測定した。
ピール強度は、回路幅3mmとし、90度の角度で50mm/minの速度で樹脂と銅箔を引き剥がした場合である。2回測定し、その平均値とした。
このピール強度の測定は、JIS C6471-1995に準拠するものである(以下、同様である)。この結果、90度ピール強度は0.32kg/cmが得られた。この結果を、表1に示す。本実施例1に示す通り、実施例1の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
また、この銅箔を50μmの液晶ポリマーに張り合わせた後、高周波特性を調べるために、マイクロストリップライン構造を形成した。このとき、特性インピーダンスは50Ωになるよう回路形成を行った。この回路を用いて伝送損失の測定を行い、30GHzの周波数における伝送損失が-0.6より小さい場合、高周波特性を◎と表記した。
また、-0.6~-0.8を○、-0.8~-1.2を△、-1.2より伝送損失が大きい場合は×とした。なお、この測定値は参考として示すものであり、範囲を限定するものではない。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 前記実施例1におけるシラン処理の条件を変更(シラン濃度を1.7vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.61μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は3.7%、N濃度は8.5%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。さらに高周波特性も良好であった。
以上の結果、90度ピール強度は0.48kg/cmが得られた。これらを、表1に示す。本実施例2に示す通り、実施例2の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例3)
 前記実施例1におけるシラン処理の条件を変更(シラン濃度を2.0vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.61μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は5.7%、N濃度は10.7%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。さらに高周波特性も良好であった。
以上の結果、90度ピール強度は0.55kg/cmが得られた。これらを、表1に示す。本実施例3に示す通り、実施例3の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例4)
 前記実施例1におけるシラン処理の条件を変更(シラン濃度を3.0vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.67μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は5.5%、N濃度は10.1%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。さらに高周波特性も良好であった。
 以上の結果、90度ピール強度は0.63kg/cmが得られた。これらを、表1に示す。本実施例4に示す通り、実施例4の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例5)
 前記実施例1におけるシラン処理の条件を変更(シラン濃度を4.0vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.65μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は6.6%、N濃度は10.8%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。さらに高周波特性も良好であった。
以上の結果、90度ピール強度は0.63kg/cmが得られた。これらを、表1に示す。本実施例5に示す通り、実施例5の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例6)
 前記実施例1におけるシラン処理の条件を変更(シラン濃度を5.0vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.61μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は8.5%、N濃度は14.1%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。さらに高周波特性も良好であった。
以上の結果、90度ピール強度は0.77kg/cmが得られた。これらを、表1に示す。本実施例6に示す通り、実施例6の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例7)
 前記実施例1におけるシラン処理の条件を変更(シラン濃度を6.5vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.60μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は9.0%、N濃度は12.1%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。さらに高周波特性も良好であった。
以上の結果、90度ピール強度は0.83kg/cmが得られた。これらを、表1に示す。本実施例7に示す通り、実施例7の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例8)
 前記実施例1のニッケルめっき前に粗化処理を施し、その後耐熱および防錆処理を行い、さらにシラン処理の条件を変更(シラン濃度を5.0vol%)した。他の条件は、 実施例1と同様とした。(すなわち、前記実施例1の冷間圧延して9μm厚とした圧延銅箔に粗化処理、耐熱および防錆処理、浸漬クロメート処理、シラン処理を行った。ニッケルめっきは行っていない。)この結果、シランカップリング処理後の銅箔表面粗さRzは0.90μmとなった。下記に粗化処理条件の一例を挙げる。なお、本実施例は下記のめっき条件で粗化処理(粗化処理めっき)を行った。
なお、このめっき条件はあくまで好適な例を示すものであり、下記に表示する以外のめっき条件であっても問題はない。
(銅の一次粒子のめっき条件)
 液組成  :銅10~20g/L、硫酸50~100g/L
 液温   :25~50℃
 電流密度 :1~58A/dm2
 めっき時間:0.1~10秒
(二次粒子のめっき条件)
 液組成 :銅10~20g/L、ニッケル5~15g/L、コバルト5~15g/L
 pH   :2~3
 液温   :30~50℃
 電流密度 :24~50A/dm2
 めっき時間:0.5~4秒
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は7.2%、N濃度は15.2%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。さらに実施例1~7よりは、若干劣るものの、高周波特性も良好であった。
以上の結果、90度ピール強度は0.95kg/cmが得られた。これらを、表1に示す。本実施例8に示す通り、実施例8の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例9)
 前記実施例1のニッケルめっき前に粗化処理を施し、その後耐熱および防錆処理を行い、さらにシラン処理の条件を変更(シラン濃度を7.5vol%)した。他の条件は、実施例1と同様とした。(すなわち、前記実施例1の冷間圧延して9μm厚とした圧延銅箔に粗化処理、耐熱および防錆処理、浸漬クロメート処理、シラン処理を行った。ニッケルめっきは行っていない。)この結果、シランカップリング処理後の銅箔表面粗さRzは0.92μmとなった。なお、本実施例では実施例8と同様のめっき条件で粗化処理(粗化処理めっき)を行った。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は9.9%、N濃度は22.4%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。さらに実施例1~7よりは、若干劣るものの、高周波特性も良好であった。
以上の結果、90度ピール強度は1.13kg/cmが得られた。これらを、表1に示す。本実施例9に示す通り、実施例9の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例10)
 前記実施例1のニッケルめっき前に粗化処理を施し、その後耐熱および防錆処理を行い、さらにシラン処理の条件を変更(シラン濃度を7.5vol%)した。他の条件は、実施例1と同様とした。(すなわち、前記実施例1の冷間圧延して9μm厚とした圧延銅箔に粗化処理、耐熱および防錆処理、浸漬クロメート処理、シラン処理を行った。ニッケルめっきは行っていない。)この結果、シランカップリング処理後の銅箔表面粗さRzは1.48μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は14.6%、N濃度は25.3%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。さらに実施例1~7よりは、やや劣るものの、高周波特性も普通レベルであり、特に問題となるものではなかった。
以上の結果、90度ピール強度は1.31kg/cmが得られた。これらを表1に示す。本実施例10に示す通り、実施例10の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例11)
 前記実施例1におけるシラン処理の種類と条件を変更(N-2-アミノエチル-3-アミノプロピルメチルジメトキシシラン、シラン濃度を5.0vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.62μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は10.1%、N濃度は19.8%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。さらに高周波特性も良好であった。
以上の結果、90度ピール強度は0.71kg/cmが得られた。これらを、表1に示す。本実施例11に示す通り、実施例11の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。 
(実施例12)
 前記実施例1におけるシラン処理の種類と条件を変更(3-アミノプロピルメトキシシラン、シラン濃度を7.0vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.65μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は12.3%、N濃度は11.9%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。さらに高周波特性も良好であった。
以上の結果、90度ピール強度は0.81kg/cmが得られた。これらを表1に示す。本実施例12に示す通り、実施例12の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。 
(実施例13)
 前記実施例1におけるシラン処理の種類と条件を変更(3-トリエトキシシリル-N-1、3ジメチル-ブチリデンプロピルアミン、シラン濃度を5.5vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.64μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は8.3%、N濃度は8.5%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。さらに高周波特性も良好であった。
以上の結果、90度ピール強度は0.71kg/cmが得られた。これらを表1に示す。本実施例13に示す通り、実施例13の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例14)
 前記実施例1におけるシラン処理の種類と条件を変更(N-フェニル-3-アミノプロピルメトキシシラン、シラン濃度を7.5vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.60μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は18.5%、N濃度は16.5%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。さらに高周波特性も良好であった。
以上の結果、90度ピール強度は0.79kg/cmが得られた。これらを表1に示す。本実施例14に示す通り、実施例14の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(比較例1)
 前記実施例1におけるシラン処理の条件を変更(シラン濃度を0.5vol%)し、同様に90度ピール強度を測定した。他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.60μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は1.1%、N濃度は3.3%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の範囲外であった。
以上の結果、90度ピール強度は0.11kg/cmと低かった。これらを、表1に示す。本比較例1に示す通り、比較例1の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことができなかった。
(比較例2)
 前記実施例1におけるシラン処理の条件を変更(シラン濃度を1.0vol%)し、同様に90度ピール強度を測定した。他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.61μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は1.4%、N濃度は3.5%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の範囲外であった。
以上の結果、90度ピール強度は0.12kg/cmと低かった。これらを、表1に示す。本比較例2に示す通り、比較例2の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことができなかった。
(比較例3)
 前記実施例1におけるシラン処理を実施しなかった。したがって、銅箔表面のSi、Nも存在しない。そして、同様に90度ピール強度を測定した。他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.61μmとなった。
銅箔表面のSi、Nも存在しないので、銅箔表面のSi濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の範囲外であった。
以上の結果、90度ピール強度は0.03kg/cmと著しく低かった。これらを、表1に示す。本比較例3に示す通り、銅箔表面にSi、Nが存在しない圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことができなかった。
(比較例4)
 前記実施例1のニッケルめっき前に粗化処理を施し、その後耐熱および防錆処理を行ったが、シラン処理は実施しなかった。(すなわち、前記実施例1の冷間圧延して9μm厚とした圧延銅箔に粗化処理、耐熱および防錆処理、浸漬クロメート処理を行った。ニッケルめっきは行っていない。)したがって、銅箔表面のSi、Nも存在しない。そして、同様に90度ピール強度を測定した。他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.92μmとなった。なお、本実施例では実施例8と同様のめっき条件で粗化処理(粗化処理めっき)を行った。
銅箔表面のSi、Nも存在しないので、銅箔表面のSi濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の範囲外であった。
以上の結果、90度ピール強度は0.32kg/cmと低かった。これらを、表1に示す。実施例8および9と比較すると、銅箔表面にSi、Nが存在しない圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことができなかった。
(比較例5)
 前記実施例1のニッケルめっき前に粗化処理を施し、その後耐熱および防錆処理を行ったが、シラン処理は実施しなかった。(すなわち、前記実施例1の冷間圧延して9μm厚とした圧延銅箔に粗化処理、耐熱および防錆処理、浸漬クロメート処理を行った。ニッケルめっきは行っていない。)したがって、銅箔表面のSi、Nも存在しない。そして、同様に90度ピール強度を測定した。他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは1.53μmとなった。なお、本実施例では実施例10と同様のめっき条件で粗化処理(粗化処理めっき)を行った。
銅箔表面のSi、Nも存在しないので、銅箔表面のSi濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の範囲外であった。
以上の結果、90度ピール強度は0.66kg/cmとなった。これらを、表1に示す。実施例10と比較すると、銅箔表面にSi、Nが存在しない圧延銅箔は、高周波用回路基板の素材として工業的に最適な表面性能であるとは言えなかった。
(比較例6)
 前記実施例1のニッケルめっき前に粗化処理を施し、その後耐熱および防錆処理を行ったが、シラン処理は実施しなかった。(すなわち、前記実施例1の冷間圧延して9μm厚とした圧延銅箔に粗化処理、耐熱および防錆処理、浸漬クロメート処理を行った。ニッケルめっきは行っていない。)したがって、銅箔表面のSi、Nも存在しない。そして、同様に90度ピール強度を測定した。他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは3.21μmとなった。
銅箔表面のSi、Nも存在しないので、銅箔表面のSi濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の範囲外であった。
以上の結果、90度ピール強度は0.89kg/cmとなった。これらを、表1に示す。他の比較例と比較するとピール強度は高いが、これは表面粗さが粗いことによる物理的な効果であるが、前述の通り、粗さが大きいと表皮効果によって損失が大きくなるため、この銅箔は高周波用回路基板の素材として工業的に最適な表面性能を持つとは言えなかった。
(比較例7)
 前記実施例1のニッケルめっき前に粗化処理を施し、その後耐熱および防錆処理を行ったが、さらにシラン処理の条件を変更(シラン濃度を10.0vol%)した。他の条件は、実施例1と同様とした。(すなわち、前記実施例1の冷間圧延して9μm厚とした圧延銅箔に粗化処理、耐熱および防錆処理、浸漬クロメート処理、シラン処理を行った。ニッケルめっきは行っていない。)この結果、シランカップリング処理後の銅箔表面粗さRzは1.51μmとなった。なお、本実施例では実施例10と同様のめっき条件で粗化処理(粗化処理めっき)を行った。
実施例1と同様にして、銅箔表面のSi濃度およびN濃度を求めた結果、Si濃度は20.6%、N濃度は40.1%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の範囲にはあったが、多量の存在は問題があり、液晶ポリマー(LCP)との積層の際に発泡が起こってしまった。そのため、この銅箔についてはピール強度を測定していない。これらを、表1に示す。本比較例7に示す通り、比較例7の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことができなかった。
(比較例8)
 前記実施例1におけるシラン処理の条件を変更(グリシドキシプロピルトリメトキシシランを使用し、濃度を1.5vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.62μmとなった。
実施例1と同様にして、銅箔表面のSi濃度およびN濃度を求めた結果、Si濃度は2.2%、N濃度は0.0%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.13kg/cmと低かった。これらを、表1に示す。本比較例8に示す通り、比較例8の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことができなかった。
(比較例9)
 前記実施例1におけるシラン処理の条件を変更(グリシドキシプロピルトリメトキシシランを使用し、濃度を5.0vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.63μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は9.5%、N濃度は0.0%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.19kg/cmと低かった。これらを、表1に示す。本比較例9に示す通り、比較例9の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことができなかった。
(比較例10)
 前記実施例1におけるシラン処理の条件を変更(3-メタクリロキシプロピルトリメトキシシランを使用し、濃度を2.0vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.67μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は5.2%、N濃度は0.0%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.04kg/cmと著しく低かった。これらを、表1に示す。本比較例10に示す通り、比較例10の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことができなかった。
(比較例11)
 前記実施例1におけるシラン処理の条件を変更(ビニルトリメトキシシランを使用し、濃度を0.5vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.65μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は1.4%、N濃度は0.0%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.07kg/cmと著しく低かった。これらを、表1に示す。本比較例11に示す通り、比較例11の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことができなかった。
(比較例12)
 前記実施例1におけるシラン処理の条件を変更(ビニルトリメトキシシランを使用し、濃度を2.0vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.65μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は5.8%、N濃度は0.0%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.09kg/cmと著しく低かった。これらを、表1に示す。本比較例12に示す通り、比較例12の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことができなかった。
(比較例13)
 前記実施例1におけるシラン処理の条件を変更(ビニルトリメトキシシランを使用し、濃度を5.0vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.65μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は11.1%、N濃度は0.0%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.11kg/cmと著しく低かった。これらを、表1に示す。本比較例13に示す通り、比較例13の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことができなかった。
(比較例14)
 前記実施例1におけるシラン処理の条件を変更(3-メルカプトプロピルトリメトキシシランを使用し、濃度を2.0vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.64μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は5.6%、N濃度は0.0%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.07kg/cmと著しく低かった。これらを、表1に示す。本比較例14に示す通り、比較例14の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことができなかった。
(比較例15)
 前記実施例1におけるシラン処理の条件を変更(テトラメトキシシランを使用し、濃度を2.0vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.67μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は5.7%、N濃度は0.0%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.07kg/cmと著しく低かった。これらを、表1に示す。本比較例15に示す通り、比較例15の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことができなかった。
(比較例16)
 前記実施例1におけるシラン処理の条件を変更(テトラメトキシシラン、3-メルカプトプロピルトリメトキシシラン混合を使用し、濃度を0.2+0.5vol%)し、他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.64μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は3.2%、N濃度は0.0%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.05kg/cmと著しく低かった。これらを、表1に示す。本比較例16に示す通り、比較例16の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことができなかった。
 次に、銅箔の種類及び粗化処理、耐熱処理、防錆処理を替えた場合の例を示す。本例には耐熱処理および/または防錆処理を行わない例も含まれる(実施例28、29、31~33)。この場合、シランには、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシランを使用し、シラン濃度を5.0vol%とした。シラン処理後の乾燥は、全て100°C×3秒とした。なお、耐熱処理は銅箔と液晶ポリマー(LCP)の積層の際に耐熱性を確保出来ていればよく、金属種は問わない。
例として、Zn、Ni、Co、Mo、P、Cr、W等の単一もしくは合金めっきが挙げられる。なお、Znを含まない耐熱処理層でもよい。下記の実施例21~実施例33及び比較例21~比較例27までの製造条件と評価(ピール強度の)方法は、各個別に記載する以外は、実施例1と同様である。なお、Ni-Coめっき処理、Zn-Niめっき処理、Ni-Moめっき処理、Cu-Znめっき処理、電解クロメート処理および浸漬クロメート処理の処理条件は上述の通りとした。なお、浸漬クロメート処理の条件は実施例1と同じ条件とした。
(実施例21)
 板厚が6μmである圧延銅箔に粗化処理を施し、耐熱処理としてNi-Coめっき処理を行った。また、防錆処理として電解クロメート処理を行った。さらにこの上にシラン処理を行った。シラン濃度は5.0vol%とした。他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.82μmとなった。この処理条件を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は6.6%、N濃度は8.2%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。
以上の結果、90度ピール強度は0.88kg/cmの高い値が得られた。
 これらの結果を、表3に示す。本実施例21に示す通り、実施例21の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
Figure JPOXMLDOC01-appb-T000003
(実施例22)
 板厚が12μmである圧延銅箔に粗化処理を施し、耐熱処理としてZn-Niめっき処理を実施した。また、防錆処理としての浸漬クロメート処理を行った。さらにこの上にシラン処理を行った。シラン濃度は5.0vol%とした。
他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.90μmとなった。この処理条件を、表2に示す。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は6.8%、N濃度は9.0%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。
以上の結果、90度ピール強度は0.93kg/cmの高い値が得られた。これらの結果を、表3に示す。本実施例22に示す通り、実施例22の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例23)
 板厚が35μmである圧延銅箔に粗化処理を施し、耐熱処理としてNi-Moめっき処理を実施した。また、防錆処理としての浸漬クロメート処理を行った。さらにこの上にシラン処理を行った。シラン濃度は5.0vol%とした。
他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは1.55μmとなった。この処理条件を、表2に示す。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は5.5%、N濃度は7.3%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。
以上の結果、90度ピール強度は1.30kg/cmの高い値が得られた。これらの結果を、表3に示す。本実施例23に示す通り、実施例23の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例24)
  板厚が18μmである圧延銅箔に粗化処理を施し、耐熱処理としてCu-Znめっき処理を実施した。また、防錆処理としての電解クロメート処理を行った。さらにこの上にシラン処理を行った。シラン濃度は5.0vol%とした。
他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.81μmとなった。この処理条件を、表2に示す。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は3.8%、N濃度は4.3%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。
以上の結果、90度ピール強度は0.85kg/cmの高い値が得られた。これらの結果を、表3に示す。本実施例24に示す通り、実施例24の表面処理された圧延銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例25)
  板厚が18μmである電解銅箔の光沢面に粗化処理を施し、耐熱処理としてNi-Coめっき処理を実施した。また、防錆処理としての電解クロメート処理を行った。さらにこの上にシラン処理を行った。シラン濃度は5.0vol%とした。
他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは1.62μmとなった。この処理条件を、表2に示す。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は4.6%、N濃度は8.9%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。
以上の結果、90度ピール強度は1.29kg/cmの高い値が得られた。これらの結果を、表3に示す。本実施例25に示す通り、実施例25の表面処理された電解銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例26)
 板厚が5μmである電解銅箔の光沢面に粗化処理を施し、耐熱処理としてZn-Niめっき処理を実施した。また、防錆処理としての浸漬クロメート処理を行った。さらにこの上にシラン処理を行った。シラン濃度は5.0vol%とした。
他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは1.31μmとなった。この処理条件を、表2に示す。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は5.2%、N濃度は5.9%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。
以上の結果、90度ピール強度は1.01kg/cmの高い値が得られた。これらの結果を、表3に示す。本実施例26に示す通り、実施例26の表面処理された電解銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例27)
 板厚が12μm電解銅箔の光沢面に粗化処理を施し、耐熱処理としてNi-Moめっき処理を実施した。また、防錆処理としての浸漬クロメート処理を行った。さらにこの上にシラン処理を行った。シラン濃度は5.0vol%とした。
他の条件は、実施例1と同様とした。この結果、シランカップリング処理後の銅箔表面粗さRzは1.42μmとなった。この処理条件を、表2に示す。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は5.4%、N濃度は6.4%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。
以上の結果、90度ピール強度は1.18kg/cmの高い値が得られた。これらの結果を、表3に示す。本実施例27に示す通り、実施例27の表面処理された電解銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
 次に、銅箔の種類及び粗化処理、耐熱処理、防錆処理を替えた場合の例を示す。この場合、シランには、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシランを使用し、シラン濃度を0.5vol%とした。シラン処理後の乾燥は、全て100°C×3秒とした。
 さらに比較例21~比較例27については、基材の種類及び粗化処理、防錆処理、クロメート処理の条件は、実施例21~実施例27と同一条件であり、シラン濃度のみ変化させた場合(必然的に、SiおよびNの付着量が変化する)の例を示す。
(実施例28)
  厚み9μmの圧延銅箔(JX日鉱日石金属株式会社製 タフピッチ銅(JIS H3100 合金番号C1100))に下記の条件で粗化処理を施し、その後シランカップリング処理を行った。なお、粗化処理は前記圧延銅箔の表面に、銅の一次粒子を設ける処理を行い、その後、二次粒子を設ける処理を行うことにより行った。また、シラン処理のシランにはN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランを用い、シラン濃度は5.0vol%とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.91μmとなった。
<粗化処理条件>
(銅の一次粒子のめっき条件)
 液組成  :銅10~20g/L、硫酸50~100g/L
 液温   :25~50℃
 電流密度 :1~58A/dm2
 めっき時間:0.1~10秒
(二次粒子のめっき条件)
 液組成 :銅10~20g/L、ニッケル5~15g/L、コバルト5~15g/L
 pH   :2~3
 液温   :30~50℃
 電流密度 :24~50A/dm2
 めっき時間:0.5~4秒
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は7.3%、N濃度は15.1%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。以上の結果、90度ピール強度は0.95kg/cmが得られた。
また、シラン処理後の表面処理銅箔の表面について、走査型電子顕微鏡(SEM)を用いて写真撮影を行った。そして当該写真を用いて粗化処理の粒子の観察を行った。その結果、銅の一次粒子層の平均粒子径は0.25~0.45μmであり、二次粒子層の平均粒子径は0.05~0.25μmであった。なお、粒子を取り囲む最小円の直径を粒子径として測定し、平均粒子径を算出した。
これらを、表3に示す。本実施例28に示す通り、実施例28の表面処理された銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例29)
  厚み9μmの圧延銅箔(JX日鉱日石金属株式会社製 タフピッチ銅(JIS H3100 合金番号C1100))に下記の条件で粗化処理を施し、その後電解クロメート処理を行い、さらにその後シランカップリング処理を行った。なお、粗化処理は前記圧延銅箔の表面に、銅の一次粒子を設ける処理を行い、その後、二次粒子を設ける処理を行うことにより行った。また、シラン処理のシランにはN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランを用い、シラン濃度は5.0vol%とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.91μmとなった。
<粗化処理条件>
(銅の一次粒子のめっき条件)
 液組成  :銅10~20g/L、硫酸50~100g/L
 液温   :25~50℃
 電流密度 :1~58A/dm2
 めっき時間:0.1~10秒
(二次粒子のめっき条件)
 液組成 :銅10~20g/L、ニッケル5~15g/L、コバルト5~15g/L
 pH   :2~3
 液温   :30~50℃
 電流密度 :24~50A/dm2
 めっき時間:0.5~4秒
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は7.5%、N濃度は15.4%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。以上の結果、90度ピール強度は0.96kg/cmが得られた。
また、シラン処理後の表面処理銅箔の表面について、走査型電子顕微鏡(SEM)を用いて写真撮影を行った。そして当該写真を用いて粗化処理の粒子の観察を行った。その結果、銅の一次粒子層の平均粒子径は0.25~0.45μmであり、二次粒子層の平均粒子径は0.05~0.25μmであった。なお、粒子を取り囲む最小円の直径を粒子径として測定し、平均粒子径を算出した。
これらを、表3に示す。本実施例29に示す通り、実施例29の表面処理された銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例30)
  厚み9μmの圧延銅箔(JX日鉱日石金属株式会社製 タフピッチ銅(JIS H3100 合金番号C1100))に下記の条件で粗化処理を施し、その後、Ni-Coめっき処理を行い、その後電解クロメート処理を行い、さらにその後シランカップリング処理を行った。なお、前記粗化処理は前記圧延銅箔の表面に、銅の一次粒子を設ける処理を行い、その後、二次粒子を設ける処理を行うことにより行った。また、シラン処理のシランにはN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランを用い、シラン濃度は5.0vol%とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.90μmとなった。
<粗化処理条件>
(銅の一次粒子のめっき条件)
 液組成  :銅10~20g/L、硫酸50~100g/L
 液温   :25~50℃
 電流密度 :1~58A/dm2
 めっき時間:0.1~10秒
(二次粒子のめっき条件)
 液組成 :銅10~20g/L、ニッケル5~15g/L、コバルト5~15g/L
 pH   :2~3
 液温   :30~50℃
 電流密度 :24~50A/dm2
 めっき時間:0.5~4秒
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は7.6%、N濃度は15.6%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。以上の結果、90度ピール強度は0.96kg/cmが得られた。
また、シラン処理後の表面処理銅箔の表面について、走査型電子顕微鏡(SEM)を用いて写真撮影を行った。そして当該写真を用いて粗化処理の粒子の観察を行った。その結果、銅の一次粒子層の平均粒子径は0.25~0.45μmであり、二次粒子層の平均粒子径は0.05~0.25μmであった。なお、粒子を取り囲む最小円の直径を粒子径として測定し、平均粒子径を算出した。
これらを、表3に示す。本実施例30に示す通り、実施例30の表面処理された銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例31)
  厚み12μmの圧延銅箔(JX日鉱日石金属株式会社製 タフピッチ銅(JIS H3100 合金番号C1100))に電解クロメート処理を行い、さらにその後シランカップリング処理を行った。シラン処理のシランにはN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランを用い、シラン濃度は5.0vol%とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.62μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は8.4%、N濃度は14.0%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。以上の結果、90度ピール強度は0.67kg/cmが得られた。
これらを、表3に示す。本実施例31に示す通り、実施例31の表面処理された銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例32)
  厚み12μmの高光沢圧延銅箔(JX日鉱日石金属株式会社製 タフピッチ銅(JIS H3100 合金番号C1100)、60度鏡面光沢度500%以上)にシランカップリング処理を行った。シラン処理のシランにはN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランを用い、シラン濃度は5.0vol%とした。この結果、シランカップリング処理後の銅箔表面粗さRzは0.31μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は8.2%、N濃度は13.8%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。以上の結果、90度ピール強度は0.61kg/cmが得られた。
これらを、表3に示す。本実施例32に示す通り、実施例32の表面処理された銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(実施例33)
  厚み12μmの高光沢圧延銅箔(JX日鉱日石金属株式会社製 タフピッチ銅(JIS H3100 合金番号C1100)、60度鏡面光沢度500%以上)に下記スパッタリング条件でSiN膜を形成し、その後200℃で5分間加熱を行った。スパッタリング後の銅箔表面粗さRzは0.30μmとなった。
(ターゲット):Si59.5mass%以上、N39.5mass%以上。
(装置)株式会社アルバック製のスパッタ装置
(出力)DC50W
(アルゴン圧力)0.2Pa
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は8.5%、N濃度は11.3%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を達成していた。以上の結果、90度ピール強度は0.65kg/cmが得られた。
これらを、表3に示す。本実施例33に示す通り、実施例33の表面処理された銅箔は、高周波用回路基板の素材として工業的に十分な表面性能を持つことが分かる。
(比較例21)
 板厚が6μmである圧延銅箔に粗化処理を施し、耐熱処理としてNi-Coめっき処理を行った。また、防錆処理として電解クロメート処理を行った。さらにこの上にシラン処理を行った。シラン濃度は0.5vol%とした。なお、シラン濃度0.5vol%は一般的にシラン処理で設定される濃度である。また、シランの比重は約1.0であるため、0.5vol%は約0.5wt%を意味する。
他の条件は、実施例1と同様とした。この処理条件を、表2に示す。この結果、シランカップリング処理後の銅箔表面粗さRzは0.82μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は0.3%、N濃度は0.4%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.29kg/cmと低下した。これらの結果を、表3に示す。本比較例21に示す通り、比較例21の表面処理された圧延銅箔は、高周波用回路基板の素材として、期待する工業的に十分な表面性能を持つには至らなかった。
(比較例22)
 板厚が12μmである圧延銅箔に粗化処理を施し、耐熱処理としてZn-Niめっき処理を実施した。また、防錆処理としての浸漬クロメート処理を行った。さらにこの上にシラン処理を行った。シラン濃度は0.5vol%とした。
他の条件は、実施例1と同様とした。この処理条件を、表2に示す。この結果、シランカップリング処理後の銅箔表面粗さRzは0.90μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は0.3%、N濃度は0.5%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.32kg/cmとなり、低下した。これらの結果を、表3に示す。本比較例22に示す通り、比較例22の表面処理された圧延銅箔は、高周波用回路基板の素材として、期待する工業的に十分な表面性能を持つには至らなかった。
(比較例23)
 板厚が35μmである圧延銅箔に粗化処理を施し、耐熱処理としてNi-Moめっき処理を実施した。また、防錆処理としての浸漬クロメート処理を行った。さらにこの上にシラン処理を行った。シラン濃度は0.5vol%とした。
 他の条件は、実施例1と同様とした。この処理条件を、表2に示す。この結果、シランカップリング処理後の銅箔表面粗さRzは1.55μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は0.7%、N濃度は0.8%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.70kg/cmと低下した。これらの結果を、表3に示す。本比較例23に示す通り、比較例23の表面処理された圧延銅箔は、高周波用回路基板の素材として、期待する工業的に十分な表面性能を持つには至らなかった。
(比較例24)
 板厚が18μmである圧延銅箔に粗化処理を施し、耐熱処理としてCu-Znめっき処理を実施した。また、防錆処理としての電解クロメート処理を行った。さらにこの上にシラン処理を行った。シラン濃度は0.5vol%とした。
他の条件は、実施例1と同様とした。この処理条件を、表2に示す。この結果、シランカップリング処理後の銅箔表面粗さRzは0.81μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は0.4%、N濃度は0.7%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.30kg/cmと著しく低下した。これらの結果を、表3に示す。本比較例24に示す通り、比較例24の表面処理された圧延銅箔は、高周波用回路基板の素材として、工業的に十分な表面性能を持っていなかった。
(比較例25)
 板厚が18μmである電解銅箔の光沢面に粗化処理を施し、耐熱処理としてNi-Coめっき処理を実施した。また、防錆処理としての電解クロメート処理を行った。さらにこの上にシラン処理を行った。シラン濃度は0.5vol%とした。
他の条件は、実施例1と同様とした。この処理条件を、表2に示す。この結果、シランカップリング処理後の銅箔表面粗さRzは1.62μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は1.0%、N濃度は1.1%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.65kg/cmと低下した。これらの結果を、表3に示す。本比較例25に示す通り、比較例25の表面処理された電解銅箔は、高周波用回路基板の素材として、期待する工業的に十分な表面性能を持つには至らなかった。
(比較例26)
 板厚が5μmである電解銅箔に粗化処理を施し、耐熱処理としてZn-Niめっき処理を実施した。また、防錆処理としての浸漬クロメート処理を行った。さらにこの上にシラン処理を行った。シラン濃度は0.5vol%とした。
他の条件は、実施例1と同様とした。この処理条件を、表2に示す。この結果、シランカップリング処理後の銅箔表面粗さRzは1.31μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は0.8%、N濃度は1.3%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.44kg/cmと低下した。これらの結果を、表3に示す。本比較例26に示す通り、比較例26の表面処理された電解銅箔は、高周波用回路基板の素材として、期待する工業的に十分な表面性能を持つには至らなかった。
(比較例27)
 板厚が12μmである電解銅箔に粗化処理を施し、耐熱処理としてNi-Moめっき処理を実施した。また、防錆処理としての浸漬クロメート処理を行った。さらにこの上にシラン処理を行った。シラン濃度は0.5vol%とした。
他の条件は、実施例1と同様とした。この処理条件を、表2に示す。この結果、シランカップリング処理後の銅箔表面粗さRzは1.42μmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は1.1%、N濃度は1.1%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.45kg/cmと低下した。これらの結果を、表3に示す。本比較例27に示す通り、比較例27の表面処理された電解銅箔は、高周波用回路基板の素材として、期待する工業的に十分な表面性能を持つには至らなかった。
(比較例28)
 板厚が12μmである電解銅箔の光沢面に、耐熱処理としてNi-Znめっき処理を実施した。また、防錆処理としての電解クロメート処理を行った。さらにこの上にシラン処理を行った。シラン濃度は0.5vol%とした。
他の条件は、実施例1と同様とした。この処理条件を、表2に示す。なお、この結果、シランカップリング処理後の銅箔表面粗さRzは0.60μmとなった。また、このときのNiおよびZnの付着量はそれぞれ600μg/dmおよび90μg/dmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は0.7%、N濃度は0.9%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.10kg/cmと低かった。これらの結果を、表3に示す。本比較例28に示す通り、比較例28の表面処理された電解銅箔は、高周波用回路基板の素材として、期待する工業的に十分な表面性能を持つには至らなかった。
なお、この銅箔とポリイミドを張り合わせてピール強度を測定すると、0.8kg/cmとなり、樹脂によってピール強度差が大きいことが確認できる。
(比較例29)
 板厚が12μmである電解銅箔に粗化処理を施し、耐熱処理としてNi-Moめっき処理を実施した。また、防錆処理としての浸漬クロメート処理を行った。さらにこの上にシラン処理を行った。シラン濃度は0.5vol%とした。
他の条件は、実施例1と同様とした。この処理条件を、表2に示す。この結果、シランカップリング処理後の銅箔表面粗さRzは0.61μmとなった。また、このときのNiおよびZnの付着量はそれぞれ2850μg/dmおよび190μg/dmとなった。
実施例1と同様にして、銅箔表面のSi濃度とN濃度を求めた結果、Si濃度は0.9%、N濃度は1.3%となり、Si濃度が2.0%以上であり、N濃度が2.0%以上であるという、本願発明の条件を満たしていなかった。
以上の結果、90度ピール強度は0.11kg/cmと低かった。これらの結果を、表3に示す。本比較例29に示す通り、比較例29の表面処理された電解銅箔は、高周波用回路基板の素材として、期待する工業的に十分な表面性能を持つには至らなかった。なお、この銅箔とポリイミドを張り合わせてピール強度を測定すると、1.2kg/cmとなり、樹脂によってピール強度差が大きいことが確認できる。
本発明は、高周波回路用銅箔が製造可能であり、該銅箔を液晶ポリマー(LCP)積層基板に適用することにより、接着強度(ピール強度)を高めることが可能であり、かつ1GHzを超える高周波数下での使用が可能なフレキシブルプリント回路板が実現できるという優れた効果が得られ、工業的に極めて有用である。

Claims (17)

  1.  銅箔表面のXPS survey 測定において、Si濃度が2.0%以上であり、N濃度が2.0%以上であることを特徴とする表面処理銅箔。
  2. フレキシブルプリント回路基板用銅箔であることを特徴とする請求項1に記載の表面処理銅箔。
  3.  銅箔が圧延銅箔又は電解銅箔であることを特徴とする請求項1~2のいずれか一項に記載の表面処理銅箔。
  4.  液晶ポリマーからなるフレキシブルプリント回路基板に接合される銅箔であることを特徴とする請求項1~3のいずれか一項に記載の表面処理銅箔。
  5.  液晶ポリマーからなるフレキシブルプリント回路基板に接合された場合の90度の常態ピール強度が0.3kg/cm以上であることを特徴とする請求項1~4のいずれか一項に記載の表面処理銅箔。
  6. 1GHzを超える高周波数下での使用が可能なフレキシブルプリント回路板に接合されることを特徴とする請求項1~5のいずれか一項に記載の表面処理銅箔。
  7.  銅箔表面のXPS survey 測定において、Si濃度が20.0%以下であることを特徴とする請求項1~6のいずれか一項に記載の表面処理銅箔。
  8.  銅箔表面のXPS survey 測定において、N濃度が40.0%以下であることを特徴とする請求項1~7のいずれか一項に記載の表面処理銅箔。
  9.  銅箔表面に粗化処理層、耐熱処理層、防錆処理層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項1~8のいずれか一項に記載の表面処理銅箔。
  10.  銅箔表面にクロメート処理層を有し、前記クロメート処理層の上にシランカップリング処理層を有する請求項1~9のいずれか一項に記載の表面処理銅箔。
  11.  銅箔表面に粗化処理層を有し、前記粗化処理層の上にクロメート処理層を有し、前記クロメート処理層の上にシランカップリング処理層を有する請求項1~10のいずれか一項に記載の表面処理銅箔。
  12.  銅箔表面に粗化処理層を有し、前記粗化処理層の上に防錆処理層を有し、前記防錆処理層の上にクロメート処理層を有し、前記クロメート処理層の上にシランカップリング処理層を有する請求項1~11のいずれか一項に記載の表面処理銅箔。
  13.  銅箔表面に粗化処理層を有し、前記粗化処理層が一次粒子層と、該一次粒子層の上に、二次粒子層を有する請求項1~12のいずれか一項に記載の表面処理銅箔。
  14.  前記粗化処理層が銅の一次粒子層と、該一次粒子層の上に、銅、コバルト及びニッケルからなる3元系合金からなる二次粒子層を有する請求項13に記載の表面処理銅箔。
  15.  前記粗化処理層が銅の一次粒子層と、該一次粒子層の上に、銅、コバルト及びニッケルからなる3元系合金からなる二次粒子層を有し、該一次粒子層の平均粒子径が0.25-0.45μmであり、該二次粒子層の平均粒子径が0.05-0.25μmである請求項13~14のいずれかに記載の表面処理銅箔。
  16.  前記粗化処理層の上にクロメート処理層し、前記クロメート処理層の上にシランカップリング処理層を有する請求項13~15に記載の表面処理銅箔。
  17.  前記粗化処理層の上に防錆処理層を有し、前記防錆処理層の上にクロメート処理層を有し、前記クロメート処理層上にシランカップリング処理層を有する請求項13~16に記載の表面処理銅箔。
PCT/JP2013/059455 2012-03-29 2013-03-29 表面処理銅箔 WO2013147116A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147030308A KR101658722B1 (ko) 2012-03-29 2013-03-29 표면 처리 동박
CN201380018060.XA CN104246013B (zh) 2012-03-29 2013-03-29 表面处理铜箔
JP2014508074A JP5886417B2 (ja) 2012-03-29 2013-03-29 表面処理銅箔
KR1020167016480A KR101824827B1 (ko) 2012-03-29 2013-03-29 표면 처리 동박

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-076711 2012-03-29
JP2012076711 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013147116A1 true WO2013147116A1 (ja) 2013-10-03

Family

ID=49260358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059455 WO2013147116A1 (ja) 2012-03-29 2013-03-29 表面処理銅箔

Country Status (6)

Country Link
JP (3) JP5886417B2 (ja)
KR (2) KR101658722B1 (ja)
CN (1) CN104246013B (ja)
MY (1) MY169065A (ja)
TW (1) TWI565833B (ja)
WO (1) WO2013147116A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170081572A (ko) 2016-01-04 2017-07-12 제이엑스금속주식회사 표면처리 동박
WO2017134716A1 (ja) * 2016-02-05 2017-08-10 パナソニックIpマネジメント株式会社 金属張積層板、金属張積層板の製造方法、樹脂付き金属部材、樹脂付き金属部材の製造方法、配線板、及び配線板の製造方法
US10070521B2 (en) 2012-03-29 2018-09-04 Jx Nippon Mining & Metals Corporation Surface-treated copper foil
PH12018000036A1 (en) * 2017-02-03 2019-01-28 Jx Nippon Mining & Metals Corp Surface treated copper foil, and current collector, electrode, and battery cell using the surface-treated copper foil
JP2019119935A (ja) * 2018-01-05 2019-07-22 長春石油化學股▲分▼有限公司 銅箔付き高速プリント回路基板製品用の表面処理銅箔及び製造方法
US10383222B2 (en) 2016-01-04 2019-08-13 Jx Nippon Mining & Metals Corporation Surface-treated copper foil
US10529992B2 (en) 2017-02-03 2020-01-07 Jx Nippon Mining & Metals Corporation Surface-treated copper foil, and current collector, electrode, and battery cell using the surface-treated copper foil
WO2020226160A1 (ja) * 2019-05-09 2020-11-12 ナミックス株式会社 複合銅部材
JP2020186464A (ja) * 2019-05-09 2020-11-19 ナミックス株式会社 複合銅部材
WO2021131359A1 (ja) * 2019-12-24 2021-07-01 日本電解株式会社 表面処理銅箔及びその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101658722B1 (ko) * 2012-03-29 2016-09-21 제이엑스금속주식회사 표면 처리 동박
JP6413039B1 (ja) * 2018-03-29 2018-10-24 Jx金属株式会社 表面処理銅箔及び銅張積層板
EP3786315A4 (en) * 2018-04-27 2022-04-20 JX Nippon Mining & Metals Corporation SURFACE TREATED COPPER FOIL, COPPER COATED LAMINATE AND CIRCUIT BOARD
CN109467722B (zh) * 2018-09-29 2022-04-08 苏州市新广益电子有限公司 一种用于fpc行业的lcp薄膜及其制备方法
US10697082B1 (en) * 2019-08-12 2020-06-30 Chang Chun Petrochemical Co., Ltd. Surface-treated copper foil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118163A (ja) * 2002-05-13 2008-05-22 Mitsui Mining & Smelting Co Ltd 電解銅箔
JP2011168887A (ja) * 2010-01-22 2011-09-01 Furukawa Electric Co Ltd:The 粗化処理銅箔、その製造方法、銅張積層板及びプリント配線板
WO2011138876A1 (ja) * 2010-05-07 2011-11-10 Jx日鉱日石金属株式会社 印刷回路用銅箔

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015654B2 (ja) * 1980-11-18 1985-04-20 日本電解株式会社 銅箔のクロメ−ト処理層と樹脂基材との接着方法
JPS6154592A (ja) 1984-08-24 1986-03-18 株式会社日立製作所 現金自動取引装置
JPH0334679A (ja) 1989-06-30 1991-02-14 Canon Inc 画像処理装置
JPH0555746A (ja) * 1991-08-29 1993-03-05 Hitachi Chem Co Ltd 高周波用銅張り積層板及びプリント配線板
JP3135098B2 (ja) 1993-06-21 2001-02-13 キヤノン株式会社 光学素子の成形装置
JP3300160B2 (ja) * 1994-06-06 2002-07-08 株式会社ジャパンエナジー 銅箔の処理方法
JP2003193211A (ja) 2001-12-27 2003-07-09 Nippon Mining & Metals Co Ltd 銅張積層板用圧延銅箔
KR100602896B1 (ko) * 2002-06-04 2006-07-19 미쓰이 긴조꾸 고교 가부시키가이샤 저유전성 기재용 표면처리 동박과 그것을 사용한 동클래드적층판 및 프린트 배선판
CN101904228B (zh) * 2007-12-21 2014-01-01 Jx日矿日石金属株式会社 印刷配线板用铜箔
WO2011001551A1 (ja) * 2009-06-30 2011-01-06 Jx日鉱日石金属株式会社 プリント配線板用銅箔
JP5463117B2 (ja) * 2009-10-20 2014-04-09 株式会社日立製作所 低損失配線板,多層配線板、それに用いる銅箔及び積層板
KR101658722B1 (ko) * 2012-03-29 2016-09-21 제이엑스금속주식회사 표면 처리 동박

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118163A (ja) * 2002-05-13 2008-05-22 Mitsui Mining & Smelting Co Ltd 電解銅箔
JP2011168887A (ja) * 2010-01-22 2011-09-01 Furukawa Electric Co Ltd:The 粗化処理銅箔、その製造方法、銅張積層板及びプリント配線板
WO2011138876A1 (ja) * 2010-05-07 2011-11-10 Jx日鉱日石金属株式会社 印刷回路用銅箔

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10070521B2 (en) 2012-03-29 2018-09-04 Jx Nippon Mining & Metals Corporation Surface-treated copper foil
US10383222B2 (en) 2016-01-04 2019-08-13 Jx Nippon Mining & Metals Corporation Surface-treated copper foil
KR20170081572A (ko) 2016-01-04 2017-07-12 제이엑스금속주식회사 표면처리 동박
TWI623639B (zh) * 2016-01-04 2018-05-11 Jx Nippon Mining & Metals Corp Surface treated copper foil
JP2017122274A (ja) * 2016-01-04 2017-07-13 Jx金属株式会社 表面処理銅箔
US11267225B2 (en) 2016-02-05 2022-03-08 Panasonic Intellectual Property Management Co., Ltd. Metal-clad laminated board, method for producing metal-clad laminated board, resin-attached metal member, method for producing resin-attached metal member, wiring board and method for producing wiring board
WO2017134716A1 (ja) * 2016-02-05 2017-08-10 パナソニックIpマネジメント株式会社 金属張積層板、金属張積層板の製造方法、樹脂付き金属部材、樹脂付き金属部材の製造方法、配線板、及び配線板の製造方法
JP2017136786A (ja) * 2016-02-05 2017-08-10 パナソニックIpマネジメント株式会社 金属張積層板、金属張積層板の製造方法、樹脂付き金属部材、樹脂付き金属部材の製造方法、配線板、及び配線板の製造方法
PH12018000036A1 (en) * 2017-02-03 2019-01-28 Jx Nippon Mining & Metals Corp Surface treated copper foil, and current collector, electrode, and battery cell using the surface-treated copper foil
US10529992B2 (en) 2017-02-03 2020-01-07 Jx Nippon Mining & Metals Corporation Surface-treated copper foil, and current collector, electrode, and battery cell using the surface-treated copper foil
JP2019119935A (ja) * 2018-01-05 2019-07-22 長春石油化學股▲分▼有限公司 銅箔付き高速プリント回路基板製品用の表面処理銅箔及び製造方法
JP7479617B2 (ja) 2019-05-09 2024-05-09 ナミックス株式会社 複合銅部材
JP2020186464A (ja) * 2019-05-09 2020-11-19 ナミックス株式会社 複合銅部材
WO2020226160A1 (ja) * 2019-05-09 2020-11-12 ナミックス株式会社 複合銅部材
JP7352939B2 (ja) 2019-05-09 2023-09-29 ナミックス株式会社 複合銅部材
WO2021131359A1 (ja) * 2019-12-24 2021-07-01 日本電解株式会社 表面処理銅箔及びその製造方法
CN114929944A (zh) * 2019-12-24 2022-08-19 日本电解株式会社 表面处理铜箔及其制造方法
JP7421208B2 (ja) 2019-12-24 2024-01-24 日本電解株式会社 表面処理銅箔及びその製造方法
US11952675B2 (en) 2019-12-24 2024-04-09 Nippon Denkai, Ltd. Surface-treated copper foil and method for manufacturing same

Also Published As

Publication number Publication date
KR101658722B1 (ko) 2016-09-21
TWI565833B (zh) 2017-01-11
JP2016033261A (ja) 2016-03-10
KR101824827B1 (ko) 2018-02-01
KR20160075865A (ko) 2016-06-29
TW201404935A (zh) 2014-02-01
JP2015206119A (ja) 2015-11-19
MY169065A (en) 2019-02-12
KR20140142341A (ko) 2014-12-11
JP6149066B2 (ja) 2017-06-14
JP5886417B2 (ja) 2016-03-16
CN104246013A (zh) 2014-12-24
CN104246013B (zh) 2018-01-23
JPWO2013147116A1 (ja) 2015-12-14

Similar Documents

Publication Publication Date Title
JP6149066B2 (ja) 表面処理銅箔
JP6190846B2 (ja) 表面処理銅箔
TWI645759B (zh) 印刷配線板用表面處理銅箔、印刷配線板用覆銅積層板及印刷配線板
TWI627307B (zh) 印刷配線板用表面處理銅箔、印刷配線板用覆銅積層板及印刷配線板
JP5871426B2 (ja) 高周波伝送用表面処理銅箔、高周波伝送用積層板及び高周波伝送用プリント配線板
KR20170085991A (ko) 동박, 동장 적층판, 프린트 배선판의 제조 방법, 전자기기의 제조 방법, 전송로의 제조 방법 및 안테나의 제조 방법
WO2013187420A1 (ja) 表面処理銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
TW201116653A (en) Heat-resistant copper foil and method for producing same, circuit board, and copper-clad laminate board and method for manufacturing same
JP2011162860A (ja) 表面粗化銅箔とその製造方法及び銅張積層板
US10383222B2 (en) Surface-treated copper foil
JP2006351677A (ja) 高周波回路用銅箔およびその製造方法
KR102054044B1 (ko) 표면처리 동박
JP2019019414A (ja) 表面処理銅箔、積層体及びプリント配線板
TWI687527B (zh) 表面處理銅箔及覆銅積層板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508074

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147030308

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767965

Country of ref document: EP

Kind code of ref document: A1