WO2022255468A1 - 銅張積層板 - Google Patents

銅張積層板 Download PDF

Info

Publication number
WO2022255468A1
WO2022255468A1 PCT/JP2022/022555 JP2022022555W WO2022255468A1 WO 2022255468 A1 WO2022255468 A1 WO 2022255468A1 JP 2022022555 W JP2022022555 W JP 2022022555W WO 2022255468 A1 WO2022255468 A1 WO 2022255468A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
content
copper foil
clad laminate
atomic
Prior art date
Application number
PCT/JP2022/022555
Other languages
English (en)
French (fr)
Inventor
裕介 伊藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2022255468A1 publication Critical patent/WO2022255468A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Definitions

  • the present disclosure relates to a copper-clad laminate, and more particularly to a copper-clad laminate comprising a copper foil and an insulating layer.
  • a copper-clad laminate in which a copper foil and an insulating layer are laminated is used to manufacture printed wiring boards.
  • printed wiring boards are required to have excellent high-frequency characteristics and be able to reduce transmission loss of electrical signals in a high-frequency range of 10 GHz or higher.
  • a fluororesin such as polytetrafluoroethylene (PTFE) having a small dielectric loss tangent (Df).
  • An object of the present disclosure is to provide a copper-clad laminate capable of enhancing the durability of adhesion between the copper foil and the insulating layer containing the fluororesin without increasing the surface roughness of the copper foil.
  • a copper-clad laminate includes a copper foil and an insulating layer containing a fluororesin.
  • the copper foil has a first surface containing at least one element selected from chromium, zinc and nitrogen on its surface layer.
  • the insulating layer overlies the first surface.
  • the maximum content of chromium is At least one of the conditions of 7 atomic % or more, the maximum zinc content of 12 atomic % or more, and the maximum nitrogen content of 6 atomic % or more is satisfied.
  • FIG. 1 is a schematic cross-sectional view showing a copper-clad laminate according to this embodiment.
  • FIG. 2 is a graph showing the measurement results of changes in the chromium content in the depth direction by X-ray photoelectron spectroscopy in this example.
  • FIG. 3 is the same graph for zinc.
  • FIG. 4 is the same graph for silicon.
  • FIG. 5 is the same graph for nitrogen.
  • a copper-clad laminate includes a copper foil and an insulating layer containing a fluororesin.
  • the copper foil has a first surface containing at least one element selected from chromium, zinc and nitrogen on its surface layer.
  • An insulating layer overlies the first surface.
  • the maximum content in the depth direction of the element content detected by X-ray photoelectron spectroscopy is the maximum content
  • the maximum content of chromium is 7 atomic %.
  • at least one condition of the maximum zinc content of 12 atomic % or more and the maximum nitrogen content of 6 atomic % or more is satisfied.
  • the adhesion between the copper foil and the insulating layer containing the fluororesin is related to the content of a specific element in the surface layer of the copper foil.
  • the surface layer of the surface of the insulating layer side of the copper foil contains at least one element selected from chromium, zinc and nitrogen, and in the range from this surface to a depth of 10 nm, X-ray photoelectron spectroscopic analysis
  • the maximum content of each element detected by corresponding to the maximum value in the depth direction of the content of each element in the range from the surface to a depth of 10 nm
  • the maximum content of chromium is 7 atomic% or more
  • the copper foil of the copper clad laminate and the insulating layer containing fluororesin It is possible to increase the durability of the adhesion between them. That is, the copper-clad laminate can suppress deteriorati
  • the reason why the copper-clad laminate according to the present embodiment has the above-described effects by providing the above-described configuration is not necessarily clear, it can be inferred, for example, as follows. That is, it is considered that deterioration of the copper foil due to hydrofluoric acid or the like generated by moisture absorption of the fluororesin causes deterioration of the adhesive strength between the copper foil and the insulating layer over time in a humid environment.
  • elements of chromium, zinc and/or nitrogen are present at a certain concentration or more in the surface layer up to a depth of 10 nm, which is considered to be able to contribute to the removal of hydrofluoric acid, etc.
  • a copper-clad laminate capable of increasing the durability of adhesion between the copper foil and the insulating layer containing the fluororesin without increasing the surface roughness of the copper foil. be able to.
  • FIG. 1 shows a cross-sectional view of an example of the copper-clad laminate according to this embodiment.
  • a copper-clad laminate 1 of FIG. 1 includes a copper foil 10 and an insulating layer 20 .
  • the insulating layer 20 overlies the first surface 11 of the copper foil 10 .
  • another layer such as a polyimide layer, an epoxy resin layer, or a phenol resin layer may be interposed between the copper foil 10 and the insulating layer 20; does not have a layer of That is, in the copper-clad laminate 1, the copper foil 10 and the insulating layer 20 are usually directly overlapped.
  • the copper-clad laminate 1 in FIG. 1 is a single-sided copper-clad laminate in which the copper foil 10 is laminated only on one side of the insulating layer 20, but the copper-clad laminate 1 of this embodiment has , a double-sided copper clad laminate in which the copper foil 10 is laminated.
  • the copper-clad laminate 1 may include other layers in addition to the copper foil 10 and the insulating layer 20.
  • Other layers include, for example, a release film layer for protecting the copper foil 10 and/or the insulating layer 20 .
  • the copper foil 10 is a copper foil having a first surface 11 and containing at least one element selected from chromium, zinc and nitrogen in the surface layer 12 of the first surface 11 .
  • the copper foil 10 may be obtained by obtaining a copper foil having a surface layer containing such an element. may be obtained by forming a surface-treated portion on the surface.
  • the copper foil 10 thus obtained comprises a copper foil portion and a surface-treated portion laminated on the copper foil portion.
  • the copper foil 10 normally has a surface treatment portion on one side of the copper foil portion, but may have surface treatment portions on both sides of the copper foil portion.
  • the surface layer 12 of the first surface 11 of the copper foil 10 contains at least one element selected from chromium, zinc and nitrogen. “Surface layer” refers to a region of the copper foil 10 ranging from the surface to a depth of about 10 nm, for example.
  • the copper foil portion is usually made of foil-shaped metallic copper or a copper alloy, preferably made of foil-shaped metallic copper.
  • As the copper foil portion for example, an electrolytic copper foil, a rolled copper foil, or the like is used.
  • the thickness of the copper foil portion is, for example, 1 ⁇ m or more and 1000 ⁇ m or less, preferably 2 ⁇ m or more and 500 ⁇ m or less, more preferably 5 ⁇ m or more and 200 ⁇ m or less, and even more preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the surface treated portion is laminated on the copper foil portion.
  • the surface-treated portion usually contains at least one element selected from chromium, zinc and nitrogen.
  • the surface-treated portion can be formed, for example, by applying a surface-treating agent on the copper foil portion and then drying it as necessary.
  • the surface-treated portion may be laminated on one side or both sides of the copper foil portion, but is preferably laminated on one side.
  • the surface treatment agent preferably contains at least one of a rust inhibitor containing at least one of chromium and zinc as an element and a coupling agent containing nitrogen as an element.
  • the chromium element constitutes chromic acid.
  • the zinc element preferably constitutes a zinc salt such as zinc pyrophosphate.
  • This nitrogen element preferably constitutes at least one of an amino group (--NH 2 ), a monosubstituted amino group, a disubstituted amino group, a diazole group, a triazole group, and a tetrazole group. In these cases, it is considered that hydrofluoric acid and the like generated in a wet environment can be removed more easily, and as a result, the durability of adhesion between the copper foil and the insulating layer can be further improved.
  • rust inhibitors containing chromium examples include rust inhibitors containing chromic acid, and rust inhibitors capable of forming an electrolytic chromate plating layer are preferred.
  • Rust inhibitors containing zinc element include, for example, zinc pyrophosphate-containing rust inhibitors, and rust inhibitors capable of forming a zinc-copper-tin ternary alloy plated layer are preferred.
  • Examples of coupling agents containing nitrogen include silane coupling agents containing nitrogen and silicon.
  • Examples of coupling agents containing a nitrogen element include 3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl-N-(1,3- dimethylbutylidene)propylamine, amino group-containing silane coupling agents such as N-phenyl- ⁇ -aminopropyltrimethoxysilane, tetrazole group-containing silane coupling agents such as 1-[(trimethoxysilyl)methyl]-1H-tetrazole agents and the like.
  • the thickness of the surface-treated portion is usually 10 nm or more, preferably 12 nm or more, more preferably 15 nm or more.
  • the thickness of the surface-treated portion is usually 100 nm or less.
  • the copper-clad laminate 1 of the present embodiment can improve the durability of adhesion between the copper foil and the insulating layer without increasing the surface roughness (Rz) of the copper foil 10 .
  • the roughness (Rz) of the first surface 11 of the copper foil 10 is preferably 3.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, further preferably 1.0 ⁇ m or less, and 0 0.8 ⁇ m or less is particularly preferred.
  • the lower limit of Rz of the copper foil 10 is preferably 0.3 ⁇ m or more, although the lower the better.
  • the insulating layer 20 contains fluororesin.
  • the insulating layer 20 may contain other components than the fluororesin.
  • fluororesins examples include polytetrafluoroethylene (PTFE), polyhexafluoropropylene, polytrifluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polyethylene fluoride propylene, tetrafluoroethylene and perfluoroalkoxy.
  • PTFE polytetrafluoroethylene
  • PFA polychlorotrifluoroethylene
  • PFA ethylene
  • PTFE and PFA are preferable, and PTFE is more preferable, from the viewpoint of being able to adjust the dielectric constant and dielectric loss tangent of the insulating layer 20 to a more appropriate range.
  • the insulation layer 20 can adjust the coefficient of linear expansion to a more moderate one by containing a filler.
  • resins other than fluororesin examples include polyimide, epoxy resin, and phenol resin.
  • fillers include inorganic fillers and organic fillers.
  • inorganic fillers include silica, silicon carbide, silicon nitride, boron nitride, aluminum nitride, calcium carbonate, magnesium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, aluminum hydroxide, Magnesium hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide and the like.
  • silica examples include fused silica, spherical silica, spherical fused silica, crushed silica, and crystalline silica.
  • organic fillers include urethane fine particles, acrylic fine particles, styrene fine particles, styrene olefin fine particles, and silicone fine particles.
  • the filler is preferably an inorganic filler, more preferably silica.
  • the filler content in the insulating layer 20 is preferably 10% by mass or more, more preferably 30% by mass or more, and even more preferably 50% by mass or more.
  • the proportion of this filler is preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less.
  • the proportion of the fluororesin in the insulating layer 20 is preferably 30% by mass or more, more preferably 50% by mass or more, and even more preferably 70% by mass or more. This proportion may be 100% by mass.
  • the thickness of the insulating layer 20 is, for example, 50 ⁇ m or more and 200 ⁇ m or less, preferably 70 ⁇ m or more and 160 ⁇ m or less.
  • the dielectric constant (Dk) of the insulating layer 20 at a measurement frequency of 10 GHz is preferably 3.0 or less. In this case, the high frequency characteristics of the copper-clad laminate 1 can be further improved. This dielectric constant is more preferably 2.8 or less, and even more preferably 2.6 or less.
  • the lower limit of the dielectric constant is, for example, 1.8 or more, preferably 2.0 or more, more preferably 2.3 or more, and even more preferably 2.5 or more.
  • the dielectric loss tangent of the insulating layer 20 at a measurement frequency of 10 GHz is preferably 0.005 or less. In this case, the high frequency characteristics of the copper-clad laminate 1 can be further improved.
  • the dielectric loss tangent is more preferably 0.003 or less, still more preferably 0.001 or less, and particularly preferably 0.0007 or less.
  • the lower limit of the dielectric loss tangent is, for example, 0.0001 or more, preferably 0.0003 or more, and more preferably 0.0005 or more.
  • the element content rate means the percentage of the number of atoms of the element with respect to the sum of the number of atoms of all the elements forming the region to be measured.
  • the “maximum content of elements in the range from the first surface 11 to a depth of 10 nm” means the maximum content of elements detected in the range from the first surface 11 to a depth of 10 nm in the depth direction. means value. That is, in the region from the first surface 11 to a depth of 10 nm, the element content rate (atomic %) at the depth where the content rate of the element is the largest.
  • the maximum content rate is the peak value corresponding to the analysis depth at which the content rate peaks in the graph showing the relationship between the element content rate and the analysis depth, and the value at the analysis depth of 0 nm and 10 nm. It is a large percentage content value.
  • Average element content in the range from the first surface to a depth of 10 nm means the average value of the element content detected in the depth direction in the range from the first surface 11 to a depth of 10 nm means That is, it is a value obtained by arithmetically averaging the content of the element at each analysis depth from the first surface 11 to a depth of 10 nm, for example, the region from the first surface 11 to a depth of 10 nm. It can be obtained by calculating the percentage (atomic %) of the number of atoms of the element with respect to the total number of atoms of all the elements.
  • the average content is a graph showing the relationship between the element content and the analysis depth, and can be obtained from the area indicated by the curve showing the transition of the content in the analysis depth range from 0 nm to 10 nm.
  • the maximum content of chromium detected by X-ray photoelectron spectroscopy is 7 atomic % or more, and the maximum content of zinc is in the range from the first surface 11 to a depth of 10 nm. It is important that at least one of the following conditions is satisfied: the content of nitrogen is 12 atomic % or more and the maximum nitrogen content is 6 atomic % or more.
  • the maximum chromium content is preferably 8 atomic % or more, more preferably 9 atomic % or more, and even more preferably 9.5 atomic % or more. Although the upper limit of the maximum content of chromium is not particularly limited, 12 atomic % is sufficient.
  • the maximum content of zinc is preferably 15 atomic % or more, more preferably 17 atomic % or more, and even more preferably 19 atomic % or more. Although the upper limit of the maximum content of zinc is not particularly limited, 30 atomic % is sufficient.
  • the maximum nitrogen content is preferably 7 atomic % or more, more preferably 9 atomic % or more, and even more preferably 10 atomic % or more. Although the upper limit of the maximum nitrogen content is not particularly limited, 15 atomic % is sufficient.
  • the average content of chromium detected by X-ray photoelectron spectroscopy is 5 atomic % or more in the range from the first surface 11 to a depth of 10 nm, and the content of zinc is It is preferable to further satisfy at least one condition of an average content of 8 atomic % or more and an average nitrogen content of 5 atomic % or more. By further satisfying this condition in addition to the above conditions, the copper-clad laminate 1 can further improve the durability of adhesion between the copper foil and the insulating layer.
  • the average chromium content is preferably 5.5 atomic % or more, more preferably 6 atomic % or more, and even more preferably 6.5 atomic % or more. Although the upper limit of the average chromium content is not particularly limited, 8 atomic % is sufficient.
  • the average zinc content is preferably 10 atomic % or more, more preferably 15 atomic % or more, and even more preferably 20 atomic % or more. Although the upper limit of the average zinc content is not particularly limited, 30 atomic % is sufficient.
  • the average nitrogen content is preferably 5.5 atomic % or more, more preferably 6 atomic % or more, and even more preferably 6.5 atomic % or more. Although the upper limit of the average nitrogen content is not particularly limited, 10 atomic % is sufficient.
  • the copper-clad laminate 1 according to this embodiment is excellent in durability of adhesion between the copper foil 10 and the insulating layer 20 . Since the copper-clad laminate 1 has excellent adhesion durability, the peel strength between the copper foil 10 and the insulating layer 20 after being subjected to moisture absorption treatment for 200 hours under conditions of, for example, 85° C. and a relative humidity of 85%. is 0.525 N/mm or more.
  • the peel strength is preferably 0.8 N/mm or more, more preferably 1 N/mm or more, and even more preferably 2 N/mm or more. Although the upper limit of the peel strength is not particularly limited, 5 N/mm is sufficient. A method for measuring the copper foil peeling strength will be described in Examples below.
  • solder heat resistance It is preferable that the copper-clad laminate 1 according to the present embodiment has solder heat resistance at 250° C. for 60 seconds or longer. Since the copper-clad laminate 1 according to the present embodiment is excellent in solder heat resistance, it can be suitably used for applications such as printed wiring boards that require heat resistance.
  • the solder heat resistance is more preferably 70 seconds or more at 250° C., more preferably 80 seconds or more. A method for evaluating solder heat resistance will be shown in the examples given later.
  • the method for manufacturing a copper-clad laminate includes a step of preparing a copper foil 10 and an insulating layer 20 containing a fluororesin (hereinafter also referred to as a preparation step), and a first surface of the copper foil 10 11, a step of stacking the insulating layer 20 (hereinafter also referred to as a stacking step).
  • a copper foil 10 and an insulating layer 20 containing fluororesin are prepared.
  • the copper foil 10 and the insulating layer 20 are as described above.
  • the insulating layer 20 is overlaid on the first surface 11 of the copper foil 10 .
  • the copper-clad laminate 1 according to the present embodiment described above is obtained.
  • a lamination method in the lamination step for example, a hot press method can be used.
  • Examples 1 to 4 and Comparative Examples 1 to 3 A copper clad laminate was manufactured by using the types of copper foil and insulating layer material shown in Table 1 below, placing the insulating layer material on the first surface of the copper foil, and heating at 360° C. for 5 seconds. .
  • the details of the materials used are as follows.
  • -Copper foil F1N-WS manufactured by Furukawa Electric Co., Ltd.
  • Thickness 12 ⁇ m.
  • ⁇ BHM-102F-HG manufactured by JX Metals.
  • Thickness 12 ⁇ m.
  • ⁇ BHFX-P92C-HG manufactured by JX Metals.
  • Thickness 12 ⁇ m.
  • ⁇ T4NX-SV manufactured by Fukuda Metal Foil & Powder Co., Ltd. Thickness: 18 ⁇ m.
  • ⁇ T4X-SV manufactured by Fukuda Metal Foil & Powder Co., Ltd.
  • ⁇ FL451 manufactured by Co-Tech.
  • -Material of insulating layer PTFE manufactured by Saint-Gobain.
  • Thickness 100 ⁇ m.
  • Polytetrafluoroethylene. - PFA manufactured by AGC. Thickness: 25 ⁇ m.
  • PHI5000 Versaprobe manufactured by ULVAC-PHI X-ray used: Monochrome Al-K ⁇ line X-ray beam diameter: about 100 ⁇ m ⁇ (25 W, 15 kV) Analysis area: about 100 ⁇ m ⁇ Ion gun used: Ar ion gun (2 kV, 7 mA) Ar ion etching rate: about 8.0 nm/min ( SiO2 equivalent value) Method of conversion to quantitative conversion value (at %): Calculated using the relative sensitivity coefficient incorporated in the analysis software of the device.
  • FIG. 2 shows a graph showing the transition of the content rate in the depth direction of the quantitative conversion value (at%) obtained by the above measurement (relationship between the quantitative conversion value (at%) and the analysis depth (nm)).
  • the area between the measurement curve of the element content rate in the graph and the X axis (analysis depth (nm)) and the analysis depth is in the range from 0 nm to 10 nm, and the depth from the first surface
  • the average content (atomic %) of each element of chromium, zinc and nitrogen in the range up to 10 nm is calculated, and the numerical value is shown in Table 1 as "the average content of the element in the range of 10 nm in the surface layer [atomic %]". rice field.
  • a test piece was prepared by etching a copper-clad laminate with a width of 1 mm and a length of 130 mm to form a circuit. , the copper foil peel strength after 500 hours was measured. The copper foil peeling strength was measured by peeling off the copper foil at a crosshead speed of about 50 mm/min in a direction of 90° to the surface from which the copper foil was removed, and continuously recording the peeling force. If the sample is a double-sided board, measure two each in the MD direction and the TD direction of each side (8 in total), and use the minimum value of the recorded measured values as the peeling strength (N / mm).
  • the durability of the adhesion between the copper foil and the insulating layer is "A" when the copper foil peel strength after 200 hours is 0.525 N / mm or more, and "B" when it is less than 0.525 N / mm. ” was evaluated.
  • solder heat resistance The solder heat resistance of the obtained copper-clad laminate was evaluated by the following method. A copper-clad laminate was cut to a size of 50 mm ⁇ 50 mm to prepare a test piece. The test piece was immersed in a solder bath at 250° C. for 60 seconds, and the presence or absence of measling and blistering was visually observed. Those with no measling or blistering were evaluated as "pass", and those with measling or blistering were evaluated as "unpass”.
  • the copper-clad laminates of Examples 1 to 4 in which the maximum content of the element in the range of 10 nm of the surface layer is equal to or higher than the specific value, have high adhesion durability, and the content of the element in the range of 10 nm of the surface layer is high. It was shown that the copper-clad laminates of Comparative Examples 1 to 3, in which the maximum content was less than the specific value, were inferior in adhesion durability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Abstract

本開示の課題は、銅箔の面粗度を高めなくても、銅箔とフッ素樹脂を含有する絶縁層との密着の耐久性を高めることができる銅張積層板を提供することである。銅張積層板(1)は、銅箔(10)と、フッ素樹脂を含有する絶縁層(20)とを備える。銅箔(10)は、その表層(12)に、クロム、亜鉛及び窒素から選ばれる少なくとも1種の元素を含有する第一の面(11)を有する。第一の面(11)から深さ10nmまでの範囲において、X線光電子分光分析によって検出される元素の含有率の深さ方向における最大値を最大含有率とするとき、クロムの最大含有率が7原子%以上、亜鉛の最大含有率が12原子%以上及び窒素の最大含有率が6原子%以上のうちの少なくとも1つの条件を満たす。

Description

銅張積層板
 本開示は、銅張積層板に関し、詳しくは、銅箔と絶縁層とを備える銅張積層板に関する。
 プリント配線板等の製造には、銅箔と絶縁層とが積層された銅張積層板が用いられる。最近では、プリント配線板は、高周波特性に優れ、10GHz以上の高周波領域において電気信号の伝送損失を小さくすることができることが要求されるようになってきており、絶縁層として、比誘電率(Dk)及び誘電正接(Df)が小さいポリテトラフルオロエチレン(PTFE)等のフッ素樹脂を用いることが求められている。
 しかし、銅張積層板は、絶縁層にフッ素樹脂を用いると、湿潤環境下などにおいて、銅箔と絶縁層との密着強度の経時低下が大きくなることが知られている。これに対し、密着強度の経時低下を抑制する方法として、銅箔表面にコブ状銅粒からなる粗化処理層を形成し、粗化処理層の表面全体に極微細銅粒を析出させ、表面粗度値Rzを1.0~6.5μmとすることが検討されている(特許文献1参照)。
 しかし、銅箔の面粗度を高くすると、銅張積層板の高周波特性は低下する。そのため、銅箔の面粗度を高くすることなく、銅箔とフッ素樹脂を含有する絶縁層との密着強度の経時低下を抑制することができ、密着の耐久性を高めることが求められている。
国際公開第2003/102277号
 本開示の課題は、銅箔の面粗度を高めなくても、銅箔とフッ素樹脂を含有する絶縁層との密着の耐久性を高めることができる銅張積層板を提供することにある。
 本開示の一態様に係る銅張積層板は、銅箔と、フッ素樹脂を含有する絶縁層とを備える。前記銅箔は、その表層に、クロム、亜鉛及び窒素から選ばれる少なくとも1種の元素を含有する第一の面を有する。前記絶縁層は、前記第一の面に重なる。前記第一の面から深さ10nmまでの範囲において、X線光電子分光分析によって検出される前記元素の含有率の深さ方向における最大値を最大含有率とするとき、前記クロムの最大含有率が7原子%以上、前記亜鉛の最大含有率が12原子%以上及び前記窒素の最大含有率が6原子%以上のうちの少なくとも1つの条件を満たす。
図1は、本実施形態に係る銅張積層板を示す概略の断面図である。 図2は、本実施例におけるX線光電子分光分析によるクロムの深さ方向の含有率の推移の測定結果を示すグラフである。 図3は、亜鉛についての同上のグラフである。 図4は、ケイ素についての同上のグラフである。 図5は、窒素についての同上のグラフである。
1.概要
 本実施形態に係る銅張積層板は、銅箔と、フッ素樹脂を含有する絶縁層とを備える。銅箔は、その表層に、クロム、亜鉛及び窒素から選ばれる少なくとも1種の元素を含有する第一の面を有する。絶縁層は、第一の面に重なる。第一の面から深さ10nmまでの範囲において、X線光電子分光分析によって検出される元素の含有率の深さ方向における最大値を最大含有率とするとき、クロムの最大含有率が7原子%以上、亜鉛の最大含有率が12原子%以上及び窒素の最大含有率が6原子%以上のうちの少なくとも1つの条件を満たす。
 発明者らは、銅箔とフッ素樹脂を含有する絶縁層との密着性について、銅箔の面の表層における特定の元素の含有率と関連があることを見出した。これによると、銅箔の絶縁層側の面の表層に、クロム、亜鉛及び窒素から選ばれる少なくとも1種の元素を含有し、かつこの面から深さ10nmまでの範囲において、X線光電子分光分析によって検出される各元素の最大含有率(表面から深さ10nmまでの範囲での各元素の含有率の深さ方向における最大値に対応する)について、クロムの最大含有率が7原子%以上、亜鉛の最大含有率が12原子%以上及び窒素の最大含有率が6原子%以上のうちの少なくとも1つの条件を満たす場合に、銅張積層板の銅箔とフッ素樹脂を含有する絶縁層との間の密着の耐久性を高めることができる。すなわち、銅張積層板は、銅箔の面粗度を高くすることなく、湿潤環境下における銅箔と絶縁層との密着強度(引き剥がし強度)の経時低下を抑制することができる。
 本実施形態に係る銅張積層板が、上記構成を備えることで上記効果を奏する理由については、必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、湿潤環境下における銅箔と絶縁層との密着強度の経時低下は、フッ素樹脂の吸湿により発生したフッ酸等による銅箔の劣化により起こると考えられる。本実施形態に係る銅張積層板は、このフッ酸等の除去に寄与できると考えられる深さ10nmまでの表層に、クロム、亜鉛及び/又は窒素の元素が一定濃度以上で存在することにより、これらの元素が中和等によりフッ酸等を除去することができ、これにより銅箔の劣化を抑制し、銅箔と絶縁層との密着強度の経時低下を抑制して、密着の耐久性を向上することができると考えられる。以上の知見はあくまでも推察であり、本開示を限定するものではない。このように、本開示によれば、銅箔の面粗度を高めなくても、銅箔とフッ素樹脂を含有する絶縁層との密着の耐久性を高めることができる銅張積層板を提供することができる。
2.詳細
<銅張積層板>
 本実施形態に係る銅張積層板の一例の断面図を図1に示す。図1の銅張積層板1は、銅箔10と、絶縁層20とを備えている。絶縁層20は、銅箔10の第一の面11に重なっている。本実施形態の銅張積層板1において、銅箔10と絶縁層20との間に、ポリイミド層、エポキシ樹脂層、フェノール樹脂層等の他の層が介在していてもよいが、通常、他の層を備えていない。すなわち、銅張積層板1において、通常、銅箔10と絶縁層20とは直接重なっている。
 図1の銅張積層板1は、絶縁層20の片面のみに銅箔10が積層された片面銅張積層板であるが、本実施形態の銅張積層板1は、絶縁層20の両面に、銅箔10が積層された両面銅張積層板であってもよい。
 銅張積層板1は、銅箔10及び絶縁層20以外に、その他の層を備えていてもよい。その他の層としては、例えば銅箔10及び/又は絶縁層20を保護するための離型フィルム層などが挙げられる。
[銅箔]
 銅箔10は、第一の面11を有し、この第一の面11の表層12に、クロム、亜鉛及び窒素から選ばれる少なくとも一種の元素を含有する銅箔である。銅箔10は、そのような元素を含有する表層を有する銅箔を入手することにより得てもよいし、例えば銅箔部の少なくとも一方の面に、表面処理剤を塗布して、銅箔部に表面処理部を形成することにより得てもよい。このようにして得られた銅箔10は、銅箔部と、銅箔部上に積層された表面処理部とを備えている。銅箔10は、通常、表面処理部を銅箔部の一方の面上に備えているが、銅箔部の両面上に備えていてもよい。
 銅箔10は、第一の面11の表層12に、クロム、亜鉛及び窒素から選ばれる少なくとも1種の元素を含有している。「表層」とは、銅箔10において、例えば表面から深さ10nm程度までの範囲の領域をいう。
(銅箔部)
 銅箔部は、通常、箔状の金属銅又は銅合金からなり、好ましくは箔状の金属銅からなる。銅箔部としては、例えば電解銅箔、圧延銅箔等が用いられる。
 銅箔部の厚みは、例えば1μm以上1000μm以下であり、2μm以上500μm以下であることが好ましく、5μm以上200μm以下であることがより好ましく、10μm以上100μm以下であることがさらに好ましい。
(表面処理部)
 表面処理部は、銅箔部に積層されている。銅張積層板1において、通常、表面処理部が、クロム、亜鉛及び窒素から選ばれる少なくとも1種の元素を含有している。表面処理部は、例えば銅箔部上に、表面処理剤を塗布した後、必要に応じて乾燥等することにより形成することができる。表面処理部は、銅箔部の片面又は両面に積層されていてもよいが、片面に積層されていることが好ましい。
 表面処理剤は、元素としてクロム及び亜鉛の少なくとも一方を含有する防錆剤、及び元素として窒素を含有するカップリング剤の少なくとも一方を含むことが好ましい。このクロム元素はクロム酸を構成していることが好ましい。この亜鉛元素はピロリン酸亜鉛等の亜鉛塩を構成していることが好ましい。この窒素元素は、アミノ基(-NH)、1置換アミノ基、2置換アミノ基、ジアゾール基、トリアゾール基、及びテトラゾール基の少なくともいずれかを構成していることが好ましい。これらの場合、湿潤環境下で発生したフッ酸等をより除去しやすくなると考えられ、その結果、銅箔と絶縁層との密着の耐久性をより向上させることができる。
 クロム元素を含有する防錆剤としては、例えばクロム酸を含有する防錆剤等が挙げられ、電解クロメートメッキ層を形成することができる防錆剤が好ましい。亜鉛元素を含有する防錆剤としては、例えばピロリン酸亜鉛を含有する防錆剤等が挙げられ、亜鉛-銅-スズの3元合金メッキ層を形成することができる防錆剤が好ましい。
 窒素元素を含有するカップリング剤としては、例えば窒素元素及びケイ素元素を含有するシランカップリング剤などが挙げられる。窒素元素を含有するカップリング剤としては、例えば3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、N-フェニル-γ-アミノプロピルトリメトキシシランなどのアミノ基含有シランカップリング剤、1-[(トリメトキシシリル)メチル]-1H-テトラゾール等のテトラゾール基含有シランカップリング剤などが挙げられる。
 表面処理部の厚みは、通常10nm以上であり、12nm以上であることが好ましく、15nm以上であることがより好ましい。表面処理部の厚みは、通常100nm以下である。
 上述のように、本実施形態の銅張積層板1は、銅箔10の面粗度(Rz)を高めなくても、銅箔と絶縁層との密着の耐久性を高めることができる。銅箔10の第一の面11の粗度(Rz)は、3.0μm以下であることが好ましく、1.5μm以下であることがより好ましく、1.0μm以下であることがさらに好ましく、0.8μm以下であることが特に好ましい。Rzを前記範囲とすることで、銅張積層板1の高周波特性をより向上させることができる。銅箔10のRzの下限は、低いほど好ましいが、通常0.3μm以上である。
[絶縁層]
 絶縁層20は、フッ素樹脂を含有する。絶縁層20は、フッ素樹脂以外の他の成分を含有していてもよい。
 フッ素樹脂としては、例えばポリテトラフルオロエチレン(PTFE)、ポリヘキサフルオロプロピレン、ポリトリフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリフッ化エチレンプロピレン、テトラフルオロエチレンとパーフルオロアルコキシエチレンとの共重合体(PFA)、又はこれらの混合物などが挙げられる。これらの中で、絶縁層20の比誘電率及び誘電正接をより適度な範囲に調整できる観点から、PTFE及びPFAが好ましく、PTFEがより好ましい。
 他の成分としては、フッ素樹脂以外の樹脂、フィラー等が挙げられる。絶縁層20は、フィラーを含有することにより、線膨張係数をより適度なものに調整することができる。
 フッ素樹脂以外の樹脂としては、例えばポリイミド、エポキシ樹脂、フェノール樹脂などが挙げられる。
 フィラーとしては、例えば無機フィラー、有機フィラー等が挙げられる。無機フィラーとしては、例えばシリカ、シリコンカーバイド、窒化珪素、窒化ホウ素、窒化アルミニウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン等が挙げられる。シリカとしては、例えば溶融シリカ、球状シリカ、球状溶融シリカ、破砕シリカ、結晶シリカ等が挙げられる。有機フィラーとしては、例えばウレタン微粒子、アクリル微粒子、スチレン微粒子、スチレンオレフィン微粒子、シリコーン微粒子等が挙げられる。
 フィラーとしては、無機フィラーが好ましく、シリカがより好ましい。
 絶縁層20がフィラーを含有する場合、絶縁層20におけるフィラーの割合は、10質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。このフィラーの割合は、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましい。
 絶縁層20におけるフッ素樹脂の割合は、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。この割合は、100質量%であってもよい。
 絶縁層20の厚みは、例えば50μm以上200μm以下であり、70μm以上160μm以下であることが好ましい。
 絶縁層20の測定周波数10GHzにおける比誘電率(Dk)は、3.0以下であることが好ましい。この場合、銅張積層板1の高周波特性をより向上させることができる。この比誘電率は、2.8以下であることがより好ましく、2.6以下であることがさらに好ましい。この比誘電率の下限は、例えば1.8以上であり、2.0以上であることが好ましく、2.3以上であることがより好ましく、2.5以上であることがさらに好ましい。
 絶縁層20の測定周波数10GHzにおける誘電正接は、0.005以下であることが好ましい。この場合、銅張積層板1の高周波特性をより向上させることができる。この誘電正接は、0.003以下であることがより好ましく、0.001以下であることがさらに好ましく、0.0007以下であることが特に好ましい。この誘電正接の下限は、例えば0.0001以上であり、0.0003以上であることが好ましく、0.0005以上であることがより好ましい。
[銅箔の表層における元素含有率]
 銅箔10の第一の面11から深さ10nmまでの範囲におけるクロム、亜鉛及び窒素の元素の含有率は、後掲の実施例で示すように、X線光電子分光分析(XPS)による深さ方向の元素分析を行うことにより測定することができる。深さ方向の元素分析は、Arイオン銃等のイオン銃により、表層12等をエッチングしながら、表層12等の深さ方向に順次XPS測定することにより行うことができる。このようにして、各分析深さにおける各元素の含有率を求めることができる。この深さ方向の元素分析を、銅箔10の第一の面11における任意の10点において行い、算術平均値を算出し、その算術平均値を元素含有率(原子%)の値とする。元素含有率(原子%)とは、測定する領域を構成する全元素の原子数の総和に対するその元素の原子数の百分比を意味する。
 「第一の面11から深さ10nmまでの範囲における元素の最大含有率」とは、第一の面11から深さ10nmまでの範囲において、検出される元素の含有率の深さ方向における最大値を意味する。すなわち、第一の面11から深さ10nmまでの領域において、その元素の含有率が最も大きくなる深さにおける元素含有率(原子%)をいう。最大含有率は、元素の含有率と分析深さとの関係を表すグラフにおいて、含有率がピークを示す分析深さに対応するピーク値、並びに分析深さが0nm及び10nmでの値のうち、最も大きい含有率の値である。
 「第一の面から深さ10nmまでの範囲における元素の平均含有率」とは、第一の面11から深さ10nmまでの範囲において、検出される元素の含有率の深さ方向における平均値を意味する。すなわち、第一の面11から深さ10nmまでの各分析深さにおけるその元素の含有率を算術平均することにより求められる値であり、例えば第一の面11から深さ10nmまでの領域を構成する全元素の原子数の総和に対するその元素の原子数の百分比(原子%)を算出することによって、求めることができる。平均含有率は、元素の含有率と分析深さとの関係を表すグラフで、分析深さが0nmから10nmまでの範囲において、含有率の推移を表す曲線が示す面積から求めることができる。
(表層における元素の最大含有率)
 本実施形態に係る銅張積層板1において、第一の面11から深さ10nmまでの範囲において、X線光電子分光分析によって検出されるクロムの最大含有率が7原子%以上、亜鉛の最大含有率が12原子%以上及び窒素の最大含有率が6原子%以上のうちの少なくとも1つの条件を満たすことが重要である。
 クロムの最大含有率は、8原子%以上であることが好ましく、9原子%以上であることがより好ましく、9.5原子%以上であることがさらに好ましい。クロムの最大含有率の上限値は特に限定されないが、12原子%もあれば十分である。
 亜鉛の最大含有率は、15原子%以上であることが好ましく、17原子%以上であることがより好ましく、19原子%以上であることがさらに好ましい。亜鉛の最大含有率の上限値は特に限定されないが、30原子%もあれば十分である。
 窒素の最大含有率は、7原子%以上であることが好ましく、9原子%以上であることがより好ましく、10原子%以上であることがさらに好ましい。窒素の最大含有率の上限値は特に限定されないが、15原子%もあれば十分である。
(表層における元素の平均含有率)
 また、本実施形態に係る銅張積層板1において、第一の面11から深さ10nmまでの範囲において、X線光電子分光分析によって検出されるクロムの平均含有率が5原子%以上、亜鉛の平均含有率が8原子%以上及び窒素の平均含有率が5原子%以上のうちの少なくとも1つの条件をさらに満たすことが好ましい。銅張積層板1は、上記条件に加えてこの条件をさらに満たすことで、銅箔と絶縁層との密着の耐久性をより向上させることができる。
 クロムの平均含有率は、5.5原子%以上であることが好ましく、6原子%以上であることがより好ましく、6.5原子%以上であることがさらに好ましい。クロムの平均含有率の上限値は特に限定されないが、8原子%もあれば十分である。
 亜鉛の平均含有率は、10原子%以上であることが好ましく、15原子%以上であることがより好ましく、20原子%以上であることがさらに好ましい。亜鉛の平均含有率の上限値は特に限定されないが、30原子%もあれば十分である。
 窒素の平均含有率は、5.5原子%以上であることが好ましく、6原子%以上であることがより好ましく、6.5原子%以上であることがさらに好ましい。窒素の平均含有率の上限値は特に限定されないが、10原子%もあれば十分である。
[特性]
(銅箔引き剥がし強度)
 本実施形態に係る銅張積層板1は、銅箔10と絶縁層20との密着の耐久性に優れている。銅張積層板1は、密着の耐久性に優れるので、例えば85℃、相対湿度85%の条件下において、200時間の吸湿処理を施した後の銅箔10と絶縁層20との引き剥がし強度が0.525N/mm以上である。この引き剥がし強度は、0.8N/mm以上であることが好ましく、1N/mm以上であることがより好ましく、2N/mm以上であることがさらに好ましい。この引き剥がし強度の上限値は特に限定されないが、5N/mmもあれば十分である。銅箔引き剥がし強度の測定方法は、後掲の実施例において示す。
(ハンダ耐熱性)
 本実施形態に係る銅張積層板1は、ハンダ耐熱性が、250℃において60秒以上であることが好ましい。本実施形態に係る銅張積層板1は、ハンダ耐熱性に優れるので、プリント配線板等として耐熱性が要求される用途に好適に用いることができる。ハンダ耐熱性は、250℃において70秒以上であることがより好ましく、80秒以上であることがさらに好ましい。ハンダ耐熱性の評価方法は、後掲の実施例において示す。
<銅張積層板の製造方法>
 本実施形態に係る銅張積層板の製造方法は、銅箔10と、フッ素樹脂を含有する絶縁層20とを準備する工程(以下、準備工程ともいう)と、銅箔10の第一の面11に、絶縁層20を重ねる工程(以下、積層工程ともいう)とを備える。
[準備工程]
 本工程では、銅箔10と、フッ素樹脂を含有する絶縁層20とを準備する。銅箔10及び絶縁層20については上述の通りである。
[積層工程]
 本工程では、銅箔10の第一の面11に、絶縁層20を重ねる。これにより、上述の本実施形態に係る銅張積層板1が得られる。積層工程における積層の方法としては、例えばホットプレスによる方法等が挙げられる。
 以下、本開示を実施例によって具体的に説明するが、本開示は実施例のみに限定されるものではない。
<銅張積層板の製造>
[実施例1~4及び比較例1~3]
 下記表1に示す種類の銅箔及び絶縁層の材料を用い、銅箔の第一の面に、絶縁層の材料を重ね、360℃で5秒加熱することにより、銅張積層板を製造した。
 なお、用いた材料の詳細は下記の通りである。
-銅箔
 ・F1N-WS:古河電気工業社製。厚み:12μm。
 ・BHM-102F-HG:JX金属社製。厚み:12μm。
 ・BHFX-P92C-HG:JX金属社製。厚み:12μm。
 ・T4NX-SV:福田金属箔粉工業社製。厚み:18μm。
 ・T4X-SV:福田金属箔粉工業社製。厚み:12μm。
 ・FL451:Co-Tech社製。厚み12μm。
-絶縁層の材料
 ・PTFE:サンゴバン社製。厚み:100μm。ポリテトラフルオロエチレン。
 ・PFA:AGC社製。厚み:25μm。テトラフルオロエチレンとパーフルオロアルコキシエチレンとの共重合体。
<評価>
[クロム、亜鉛及び窒素の元素の含有率の測定]
 銅張積層板から銅箔を取り出し、得られた銅箔の第一の面から深さ10nmまでの範囲の各分析深さ(nm)について、下記に示すX線光電子分光分析(XPS)により、銅箔の第一の面における任意の10点について測定し、これらの算術平均を測定値とした。
 装置:アルバック・ファイ社製の「PHI5000 Versaprobe」
 使用X線:モノクロAl-Kα線
 X線ビーム径:約100μmΦ(25W、15kV)
 分析領域:約100μmΦ
 使用イオン銃:Arイオン銃(2kV、7mA)
 Arイオンエッチングレート:約8.0nm/分(SiO換算値)
 定量換算数値(at%)への換算方法:前記装置の解析ソフトに組み込まれた相対感度係数を用いて計算した。
 上記測定により得られた定量換算数値(at%)の深さ方向の含有率の推移(定量換算数値(at%)と分析深さ(nm)との関係)を示すグラフを、図2にクロム、図3に亜鉛、図4にケイ素、図5に窒素について示す。
 上記グラフから、クロム、亜鉛及び窒素の各元素の深さ10nmまでの範囲における最大値である最大含有率(原子%)を読み取り、その数値を「表層10nmの範囲における元素の最大含有率[原子%]」として表1中に示した。
 また、上記グラフにおける元素含有率の測定曲線と、X軸(分析深さ(nm))との間、かつ分析深さが0nmから10nmまでの範囲における面積を求め、第一の面から深さ10nmまでの範囲におけるクロム、亜鉛及び窒素の各元素の平均含有率(原子%)を算出し、その数値を「表層10nmの範囲における元素の平均含有率[原子%]」として表1中に示した。
[面の粗度(Rz)]
 銅張積層板から、銅箔と絶縁層とを引き剥がし、得られた銅箔の第一の面について、表面粗さ測定装置(ミツトヨ社製の「1500SD2」)を用い、5.0μmの範囲について、JIS B 0601:1994に基づいて、銅箔マット面のMD方向・TD方向をそれぞれ2回ずつ測定する方法により測定し、十点平均粗さ(Rz)を求めた。
[銅箔引き剥がし強度]
 銅張積層板を、幅1mm×長さ130mmの寸法にエッチングにて回路形成した試験片を作製し、この試験片を、85℃、85%RHの恒温恒湿槽中に放置し、200時間、500時間後の銅箔引き剥がし強度を測定した。銅箔引き剥がし強度は、JIS C 6471に基づいて、クロスヘッド速度を毎分約50mmで銅箔を銅箔除去面に対し90°方向に引き剥がし、その引き剥がし力を連続的に記録した。サンプルは両面板であれば、それぞれの面のMD方向・TD方向を2本ずつ(計8本)を測定し、それらの記録された測定値の最小値をその銅箔の引き剥がし強度(N/mm)とした。
 銅箔と絶縁層との密着の耐久性は、200時間後の銅箔引き剥がし強度が、0.525N/mm以上の場合は「A」と、0.525N/mm未満の場合は、「B」と評価した。
[比誘電率(Dk)及び誘電正接(Df)]
 銅張積層板を、23℃、50%RHの恒温恒湿槽中に24時間放置した。放置後の銅張積層板から絶縁層を取り出し、得られた絶縁層の測定周波数10GHzにおける比誘電率(Dk)及び誘電正接(Df)を空洞共振器摂動法で測定した。測定には、ネットワーク・アナライザ(キーサイトテクノロジー社製の「N5230A」)を用いた。
[ハンダ耐熱性]
 得られた銅張積層板のハンダ耐熱性を、以下の方法により評価した。銅張積層板を50mm×50mmの寸法にカットした試験片を作製し、この試験片を、250℃の半田槽中に60秒間浸漬し、ミーズリングやフクレの発生の有無を目視で観察した。ミーズリングやフクレが発生しなかったものを「pass」、ミーズリングやフクレが発生したものを「unpass」と評価した。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、表層10nmの範囲における元素の最大含有率が特定値以上である実施例1~4の銅張積層板は、密着の耐久性が高いこと、及び表層10nmの範囲における元素の最大含有率が特定値未満である比較例1~3の銅張積層板は、密着の耐久性に劣ることが示された。
 1  銅張積層板
 10 銅箔
 11 第一の面
 12 表層
 20 絶縁層

Claims (8)

  1.  銅箔と、
     フッ素樹脂を含有する絶縁層と
     を備え、
     前記銅箔が、その表層に、クロム、亜鉛及び窒素から選ばれる少なくとも1種の元素を含有する第一の面を有し、
     前記絶縁層は、前記第一の面に重なり、
     前記第一の面から深さ10nmまでの範囲において、X線光電子分光分析によって検出される前記元素の含有率の深さ方向における最大値を最大含有率とするとき、前記クロムの最大含有率が7原子%以上、前記亜鉛の最大含有率が12原子%以上及び前記窒素の最大含有率が6原子%以上のうちの少なくとも1つの条件を満たす銅張積層板。
  2.  前記第一の面から深さ10nmまでの範囲において、X線光電子分光分析によって検出される前記元素の含有率の深さ方向における平均値を平均含有率とするとき、前記クロムの平均含有率が5原子%以上、前記亜鉛の平均含有率が8原子%以上及び前記窒素の平均含有率が5原子%以上のうちの少なくとも1つの条件をさらに満たす請求項1に記載の銅張積層板。
  3.  前記絶縁層の測定周波数10GHzにおける比誘電率が2.3以上3.0以下であり、かつ測定周波数10GHzにおける誘電正接が0.0001以上0.005以下である請求項1又は2に記載の銅張積層板。
  4.  85℃、相対湿度85%の条件下において200時間の吸湿処理を施した後の前記銅箔と前記絶縁層との引き剥がし強度が、0.525N/mm以上である請求項1から3のいずれか一項に記載の銅張積層板。
  5.  前記銅箔の前記第一の面の粗度Rzが、3.0μm以下である請求項1から4のいずれか一項に記載の銅張積層板。
  6.  前記絶縁層の厚みが50μm以上200μm以下である請求項1から5のいずれか一項に記載の銅張積層板。
  7.  ハンダ耐熱性が250℃において60秒以上である請求項1から6のいずれか一項に記載の銅張積層板。
  8.  前記絶縁層がフィラーを含有する請求項1から7のいずれか一項に記載の銅張積層板。
PCT/JP2022/022555 2021-06-03 2022-06-02 銅張積層板 WO2022255468A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021093735 2021-06-03
JP2021-093735 2021-06-03

Publications (1)

Publication Number Publication Date
WO2022255468A1 true WO2022255468A1 (ja) 2022-12-08

Family

ID=84324315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022555 WO2022255468A1 (ja) 2021-06-03 2022-06-02 銅張積層板

Country Status (1)

Country Link
WO (1) WO2022255468A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152149A1 (ja) * 2015-03-23 2016-09-29 タツタ電線株式会社 樹脂含浸物、複合材及び銅張積層体の製造方法
JP2016194044A (ja) * 2015-04-01 2016-11-17 住友電工ファインポリマー株式会社 基板、フレキシブルプリント配線板用基材、フレキシブルプリント配線板及び基板の製造方法
WO2019208520A1 (ja) * 2018-04-27 2019-10-31 Jx金属株式会社 表面処理銅箔、銅張積層板及びプリント配線板
WO2021079819A1 (ja) * 2019-10-25 2021-04-29 パナソニックIpマネジメント株式会社 銅張積層板、配線板、及び樹脂付き銅箔

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152149A1 (ja) * 2015-03-23 2016-09-29 タツタ電線株式会社 樹脂含浸物、複合材及び銅張積層体の製造方法
JP2016194044A (ja) * 2015-04-01 2016-11-17 住友電工ファインポリマー株式会社 基板、フレキシブルプリント配線板用基材、フレキシブルプリント配線板及び基板の製造方法
WO2019208520A1 (ja) * 2018-04-27 2019-10-31 Jx金属株式会社 表面処理銅箔、銅張積層板及びプリント配線板
WO2021079819A1 (ja) * 2019-10-25 2021-04-29 パナソニックIpマネジメント株式会社 銅張積層板、配線板、及び樹脂付き銅箔

Similar Documents

Publication Publication Date Title
TWI715417B (zh) 用於印刷電路板之具有低傳輸損耗的電解銅箔
KR102056964B1 (ko) 동박, 동장 적층판, 프린트 배선판의 제조 방법, 전자기기의 제조 방법, 전송로의 제조 방법 및 안테나의 제조 방법
JP6297124B2 (ja) 銅箔、キャリア箔付銅箔及び銅張積層板
KR101494936B1 (ko) 금속박 적층 폴리이미드 수지 기판
JP6682516B2 (ja) 粗化処理銅箔及びプリント配線板
KR102480377B1 (ko) 조화 처리 구리박, 캐리어 구비 구리박, 동장 적층판 및 프린트 배선판
TWI627307B (zh) 印刷配線板用表面處理銅箔、印刷配線板用覆銅積層板及印刷配線板
JP2007098732A (ja) 表面処理銅箔及びその表面処理銅箔の製造方法並びにその表面処理銅箔を用いた銅張積層板
JP7259093B2 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2022255468A1 (ja) 銅張積層板
KR102054044B1 (ko) 표면처리 동박
JP4430020B2 (ja) フレキシブルプリント配線板用銅箔、その製造方法及びフレキシブルプリント配線板
TWI687527B (zh) 表面處理銅箔及覆銅積層板
WO2021020289A1 (ja) ポリアリーレンスルフィド系樹脂フィルム、金属積層体、ポリアリーレンスルフィド系樹脂フィルムの製造方法、および金属積層体の製造方法
JP4798894B2 (ja) 積層板用銅合金箔
JP5794806B2 (ja) 表面処理銅箔、および、該表面処理銅箔を用いた銅張積層基板、並びにプリント配線基板
WO2021131359A1 (ja) 表面処理銅箔及びその製造方法
CN107852828B (zh) 印刷线路板用基板、印刷线路板以及印刷线路板用基板的制造方法
JP6827083B2 (ja) 表面処理銅箔、銅張積層板、及びプリント配線板
WO2022244828A1 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2022014648A1 (ja) 銅張積層板及びプリント配線板
KR20230161954A (ko) 조화 처리 구리박, 동장 적층판 및 프린트 배선판
WO2022244827A1 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2022244826A1 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
JP2008279663A (ja) 銅張り積層板用Al被膜付き銅箔及び銅張り積層板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22816213

Country of ref document: EP

Kind code of ref document: A1