WO2010147013A1 - 銅箔及びその製造方法 - Google Patents

銅箔及びその製造方法 Download PDF

Info

Publication number
WO2010147013A1
WO2010147013A1 PCT/JP2010/059602 JP2010059602W WO2010147013A1 WO 2010147013 A1 WO2010147013 A1 WO 2010147013A1 JP 2010059602 W JP2010059602 W JP 2010059602W WO 2010147013 A1 WO2010147013 A1 WO 2010147013A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
copper foil
nickel
layer
peel strength
Prior art date
Application number
PCT/JP2010/059602
Other languages
English (en)
French (fr)
Inventor
賢吾 神永
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to EP10789388A priority Critical patent/EP2444530A4/en
Priority to KR1020117028940A priority patent/KR101343667B1/ko
Priority to JP2011519731A priority patent/JP5399489B2/ja
Priority to US13/378,687 priority patent/US20120135266A1/en
Priority to CN201080027238.3A priority patent/CN102803575B/zh
Publication of WO2010147013A1 publication Critical patent/WO2010147013A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0723Electroplating, e.g. finish plating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component
    • Y10T428/12854Next to Co-, Fe-, or Ni-base component

Definitions

  • the present invention relates to a copper foil for a flexible printed circuit board on which a polyimide resin layer is formed on a copper foil, and in particular, has excellent adhesion (normal peel strength, heat-resistant peel strength) between the copper foil and the polyimide resin layer, and is tin-resistant plated.
  • the present invention relates to a copper foil that is suitable for a flexible printed circuit board that has liquid properties and that can be finely patterned.
  • the property required for the fine patterning of copper foil is not only a problem of adhesion to such a resin.
  • it is required to have excellent acid resistance and tin plating solution resistance.
  • Patent Documents 3, 4, and 5 there are many patent documents (see Patent Documents 3, 4, and 5).
  • JP 2002-217507 A JP-A-56-155592 JP 2005-344174 A JP 2007-165694 A JP 2007-7937 A
  • the present invention has been made in view of the above-mentioned problems, and the object thereof is excellent in adhesiveness (normal peel strength, heat-resistant peel strength) between the copper foil and the polyimide resin layer, and tin-resistant.
  • An object of the present invention is to provide a copper foil suitable for a flexible printed circuit board having plating solution properties and capable of forming a fine pattern of wiring.
  • a copper foil comprising a plated layer containing nickel and zinc on a copper foil made of electrolytic copper foil or rolled copper foil, and a chromium plated layer on the plated layer containing nickel and zinc.
  • Zinc in the plating layer to be contained is composed of a zero-valent metal state and a divalent oxidation state, and the ratio of metal zinc in the total zinc is 50% or less.
  • the copper foil as described in 1 above, wherein the plating layer containing nickel and zinc is 50 to 1500 ⁇ g / dm 2 in total of nickel and zinc.
  • the copper foil according to 1 above, wherein the plating layer containing nickel and zinc is 100 to 1000 ⁇ g / dm 2 in total of nickel and zinc. 4.
  • the copper foil according to any one of the above 1 to 4 further comprising a mixed silane coupling agent layer of amino alkoxysilane and tetraalkoxysilane on the outermost layer having a chromium plating layer.
  • the amount of zinc on the outermost layer measured by XPS is below the detection limit or 2 at% or less, and the amount of chromium on the outermost layer is 5 to 30 at%.
  • the amount of zinc on the outermost layer measured by XPS is below the detection limit or 1 at% or less, and the amount of chromium on the outermost layer is 8 to 30 at%. Of copper foil.
  • the present invention provides a copper foil that is excellent in adhesion (normal peel strength, heat-resistant peel strength) between a copper foil and a polyimide resin layer, has a tin plating solution resistance, and can be used for fine patterning of wiring. It has an excellent effect of being able to.
  • the electrolytic copper foil uses a rotating metal cathode drum and an insoluble metal anode (anode) surrounding the cathode drum, which is disposed at a position approximately half the lower side of the cathode drum.
  • a copper electrolyte is allowed to flow between the electrodes, and an electric potential is applied between them to electrodeposit copper on the cathode drum.
  • the electrodeposited copper is peeled off from the cathode drum and the copper is continuously removed.
  • a foil is being manufactured.
  • the rolled copper foil is produced by repeatedly melting and casting an ingot by repeating many times of rolling and annealing.
  • the present invention provides a plating layer containing nickel and zinc (hereinafter referred to as “nickel-zinc plating layer”) on a copper foil made of electrolytic copper foil or rolled copper foil, and chromium on the nickel-zinc plating layer. It is copper foil provided with the plating layer. As described above, the copper foil provided with these coating layers is already known. However, the problem is that, when tin plating is performed on the known copper foil in this way, the tin plating solution penetrates between the polyimide resin layer and the copper foil and reduces the peel strength of the copper foil. . Due to the high erodibility of the tin plating solution, if the surface treatment is partially eroded, it may lead to circuit peeling, which is a very big problem.
  • a nickel-zinc plating layer is formed on a copper foil made of an electrolytic copper foil or a rolled copper foil. It was found that there was a cause in the nickel-zinc plating layer coated on. This nickel-zinc plating layer is not a simple alloy plating layer. Examination of the chemical state of zinc in the nickel-zinc plating layer revealed that the nickel-zinc plating layer was composed of zinc oxide and / or zinc hydroxide and metallic zinc.
  • This ratio of zinc oxide and / or zinc hydroxide to metallic zinc can be achieved by changing the nickel-zinc plating conditions.
  • the conditions for nickel-zinc plating are shown below, but can be implemented by those skilled in the art within the range shown.
  • it goes without saying that it cannot be achieved on a regular basis without the intention of adjusting the ratio of zinc oxide and / or zinc hydroxide to metallic zinc. That is, it is found that the ratio of zero-valent metal zinc in the total zinc composed of the zero-valent metal state and the divalent oxidized state is a direct cause of the infiltration of the tin plating solution.
  • the present inventor has found that the infiltration of the tin plating solution can be suppressed by setting the chemical state of zinc in the nickel-zinc plating layer, that is, the ratio of metallic zinc in the total zinc to 50% or less.
  • the chemical state of zinc in the nickel-zinc plating layer that is, the ratio of metallic zinc in the total zinc to 50% or less.
  • the metal zinc ratio in the plating layer can be lowered.
  • the ratio of metallic zinc is 50% or less.
  • the presence of zinc oxide in the nickel-zinc plating layer means that it is preferable to prevent the penetration of the tin plating solution.
  • it is difficult to change the chemical state of all zinc in the nickel-zinc plating to zinc oxide it is possible to reduce metallic zinc as much as possible to about 10% or even about 5%.
  • the condition of nickel-zinc plating is adjusted to a condition in which the ratio of zinc oxide and / or zinc hydroxide to metal zinc in metal zinc is 50% or less within a range of steady conditions.
  • the chemical state of the zinc of the present invention can be achieved.
  • the nickel-zinc plating layer further has a total of nickel and zinc of 50 to 1500 ⁇ g / dm 2. Further, the nickel-zinc plating layer has a total of nickel and zinc of 100 to 1000 ⁇ g / dm 2. It is desirable that In the present invention, the presence of a nickel-zinc plating layer is an essential requirement.
  • the nickel-zinc plating layer may be a normal amount, but if the amount of this plating layer is less than 50 ⁇ g / dm 2 , the plating effect as a whole is lost, and the nickel-zinc plating layer is inevitably formed. This is because the normal peel strength, heat peel strength, chemical resistance, and tin plating resistance are poor. Moreover, it does not need to exist excessively. Even if it exists in excess, the effect is saturated and only the cost is increased. In this sense, it can be said that the upper limit is preferably 1500 ⁇ g / dm 2 .
  • the nickel ratio in the nickel-zinc plating layer is 40 to 80 wt%.
  • the nickel ratio is less than 40 wt%, the chemical resistance and heat resistance are lowered, and when the nickel ratio is more than 80 wt%, the etching property (fine etching property) deteriorates when a circuit is formed. % Can be said to be desirable.
  • nickel ratio exceeds 90 wt%, heat resistance will also fall. This is considered to be because when the nickel ratio is increased, the amount of zinc is relatively decreased, and the heat resistance of zinc is lowered. Therefore, it is desirable to determine the nickel ratio in consideration of these points.
  • the present invention further includes a plating layer containing nickel and zinc on a copper foil made of electrolytic copper foil or rolled copper foil, and a chromium plating layer on the plating layer containing nickel and zinc.
  • a copper foil in which a mixed silane coupling agent layer of amino-based alkoxysilane and tetraalkoxysilane is further formed on the outermost layer having a plating layer. Adhesiveness to various polyimide resins can be obtained by the mixed silane coupling agent layer of amino alkoxysilane and tetraalkoxysilane.
  • the amount of metallic zinc in the outermost layer measured by XPS is 2 at% or less
  • the amount of chromium in the outermost layer is 5 to 30 at%
  • the amount of metallic zinc in the outermost layer measured by XPS. Is 1 at% or less, and provides the copper foil in which the outermost layer has a chromium content of 8 to 30 at%. If the amount of zinc exceeds 2 at%, the normal peel strength decreases, so it is desirable that the above numerical value be the upper limit.
  • the amount of metallic zinc in the outermost layer be as small as possible. If possible, 0% is good, but there is actually a slight presence of about 0.01 at%.
  • the amount of zinc metal in the outermost layer is effective for the resistance to tin plating solution.
  • the outermost layer on which the chromium plating layer is formed naturally has a lot of chromium, but oxygen, carbon, nitrogen, nickel, copper, and zinc are also present in addition to this.
  • Appropriate amounts of chromium and zinc are effective in improving the normal peel strength.
  • the above range shows the amount.
  • the amount of chromium is effective in improving the normal peel strength, and there is no particular upper limit, but the upper limit is 40% in production.
  • the chromium content is 5 to 30 at%.
  • the presence of chromium is not as effective as the nickel-zinc plating layer, but is also effective for the resistance to tin plating solution.
  • the outermost layer on which the chromium plating layer is formed depends on the degree of the chromium plating layer, the depth measured by XPS is about several nm (2 to 3 nm). Since the film thickness is very thin as described above, it is very difficult to measure the film thickness. However, this film is not necessarily a uniform film, and it is assumed that there are many minute holes. Therefore, it is considered that the outermost layer does not necessarily contain only chromium, but the component of the nickel-zinc plating layer serving as the underlying layer is exposed through the holes. Therefore, it is expected that the outermost layer is a state in which chromium, zinc, nickel, copper, and oxides thereof exist.
  • an electrolytic copper foil having a surface roughness 10-point average roughness (Rz) of 2.5 ⁇ m or less, but it is not particularly limited to this condition.
  • Rz 10-point average roughness
  • a rough surface (matt surface) or a glossy surface with minute irregularities can be applied to the copper foil of the present invention.
  • rolled copper foil has the surface excellent in smoothness from the characteristic of a manufacturing process, it can apply similarly to this invention.
  • high etching accuracy can be obtained by setting the surface roughness of the copper foil to 1.5 ⁇ m or less, and further to 1.0 ⁇ m or less. That is, in order to increase the etching accuracy, it can be said that it is preferable to make the surface roughness of the raw copper foil smaller. Usually, no roughening treatment is required.
  • the glossy surface of rolled copper foil or electrolytic copper foil is suitable.
  • the rough surface of the electrolytic copper foil can be set to the above condition, that is, the surface roughness can be 1.5 ⁇ m or less. Therefore, the rough surface can be used.
  • the electrolytic copper foil and the rolled copper foil are continuously manufactured and wound around a coil, but the copper foil obtained as described above is further subjected to surface treatment or coating treatment of the present invention such as electrochemical or chemical or resin. (Coating) can be applied and used for printed wiring boards and the like.
  • the thickness of the copper foil is required to be 18 ⁇ m or less, more preferably 3 to 12 ⁇ m in order to be used as a high-density wiring, but the copper foil treatment of the present invention is not limited to such thickness. It can also be applied to ultra thin foils or thick copper foils.
  • nickel-zinc plating is used as a heat-resistant layer.
  • cobalt, molybdenum, phosphorus, boron, tungsten or the like to the film in which the chemical state of zinc is controlled, the ratio of these can be controlled. It is expected that the same effect as the present invention can be obtained.
  • These are suitably selected according to the use of the copper foil of a printed wiring board, and this invention includes all these.
  • the means for forming the polyimide resin layer is not particularly limited.
  • polyamic acid varnish (polyamic acid obtained by addition polymerization of aromatic diamines and aromatic dianhydrides in a solution state as a raw material) Can be used.
  • This polyamic acid varnish is applied onto the electrolytic copper foil or rolled copper foil of the present invention, and further dried to form a polyamic acid layer as a polyimide precursor layer.
  • the obtained polyamic acid layer is imidized by heating to 300 ° C. to 400 ° C. in an inert atmosphere such as nitrogen to form a polyimide resin layer.
  • the thickness of the polyimide resin layer is not particularly limited, but is usually 10 to 50 ⁇ m.
  • the electrolytic copper foil and the rolled copper foil are used, and the nickel-zinc plated layer and the chromium plated layer of the present invention are formed on the electrolytic copper foil or the rolled copper foil.
  • An example of the electrochemical treatment liquid is as follows. (Nickel-zinc plating solution composition and plating conditions 1) Ni: 10-40g / L Zn: 0.5-7 g / L H 2 SO 4 : 2 to 20 g / L Bath temperature: normal temperature to 65 ° C Current density Dk: 10 to 50 A / dm 2 Plating time: 1 to 4 seconds (Nickel-zinc plating solution composition and plating conditions 2) Ni: 10-40g / L Zn: 0.5 to 20 g / L pH: 3.0-4.0 Bath temperature: normal temperature to 65 ° C Current density Dk: 1 to 15 A / dm 2 Plating time: 1 to 4 seconds (cobalt-molybdenum plating solution composition and plating conditions) Co: 10-40 g / L Mo: 10-40
  • Amino silane coupling agent 0.2-1.2 vol%
  • Amino silane coupling agent 0.2-1.2 vol%
  • ⁇ -aminopropyltriethoxysilane N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, and the like.
  • Tetraalkoxysilane 0.2-0.6 vol%
  • TEOS tetraethoxysilane
  • Example 1 As the copper foil, a rolled copper foil of 18 ⁇ m having a surface roughness Rz of 0.7 ⁇ m was used. The rolled copper foil was degreased and washed with water, followed by pickling and washing, followed by plating under the above-mentioned nickel-zinc plating conditions. Nickel-zinc plating was carried out under the conditions of Ni—Zn plating 1 shown above, a chromium plating layer was formed under the above conditions, and a mixed silane coupling agent layer of amino and TEOS was further formed.
  • Ni content 65 ⁇ g / dm 2
  • Zn content 60 ⁇ g / dm 2
  • ratio of metallic zinc in total zinc in nickel-zinc plating layer 45%
  • Ni ratio in nickel-zinc plating layer 52 wt%
  • XPS The zinc content of the outermost layer measured by 1 was 1 at%
  • the chromium content of the outermost layer was 8 at%.
  • the copper foil thus produced was measured for the normal peel strength, the peel strength retention after aging, and the penetration amount of the tin plating solution under the above conditions. The results are shown in Table 1.
  • the normal peel strength was 0.9 kN / m
  • the peel strength retention after aging was> 80%
  • the penetration amount of the tin plating solution was ⁇ 1 ⁇ m.
  • the adhesion to the polyimide resin layer normal peel strength, heat-resistant peel strength
  • tin plating solution resistance were all excellent.
  • the etching property was also excellent.
  • Example 2 As the copper foil, a rolled copper foil of 18 ⁇ m having a surface roughness Rz of 0.7 ⁇ m was used. The rolled copper foil was degreased and washed with water, followed by pickling and washing, followed by plating under the above-mentioned nickel-zinc plating conditions. Nickel-zinc plating was carried out under the conditions of Ni—Zn plating 1 shown above, a chromium plating layer was formed under the above conditions, and a mixed silane coupling agent layer of amino and TEOS was further formed.
  • Ni amount 80 [mu] g / dm 2
  • Zn amount 65 [mu] g / dm 2
  • Ni - ratio of zinc metal in the total zinc in the zinc plating layer 40%
  • nickel - Ni ratio in the galvanized layer 55 wt% XPS
  • the amount of zinc on the outermost layer measured by 1 was 1.2 at%, and the amount of chromium on the outermost layer was 9 at%.
  • the copper foil thus produced was measured for the normal peel strength, the peel strength retention after aging, and the penetration amount of the tin plating solution under the above conditions.
  • the results are shown in Table 1.
  • the normal peel strength was 0.9 kN / m
  • the peel strength retention after aging was> 80%
  • the penetration amount of the tin plating solution was ⁇ 1 ⁇ m.
  • the adhesion to the polyimide resin layer normal peel strength, heat-resistant peel strength
  • tin plating solution resistance were all excellent.
  • the etching property was also excellent.
  • Example 3 As the copper foil, an 18 ⁇ m electrolytic copper foil having a surface roughness Rz 0.7 ⁇ m was used. This electrolytic copper foil was degreased and washed with water, followed by pickling and washing, and then plated under the above-mentioned nickel-zinc plating conditions. Nickel-zinc plating was carried out under the conditions of Ni—Zn plating 1 shown above, a chromium plating layer was formed under the above conditions, and a mixed silane coupling agent layer of amino and TEOS was further formed.
  • the Ni content 55 ⁇ g / dm 2
  • the Zn content 80 ⁇ g / dm 2
  • the ratio of metal zinc in the total zinc in the nickel-zinc plating layer 35%
  • the Ni ratio in the nickel-zinc plating layer 41 wt%
  • XPS XPS
  • the amount of zinc in the outermost layer measured by 1 was 1.2 at%
  • the amount of chromium in the outermost layer was 8 at%.
  • a chromium plating layer was formed on the nickel-zinc plated copper foil under the above conditions, and a mixed silane coupling agent layer of amino and TEOS was further formed.
  • the copper foil thus produced was measured for the normal peel strength, the peel strength retention after aging, and the penetration amount of the tin plating solution under the above conditions.
  • the results are shown in Table 1.
  • the normal peel strength was 0.8 kN / m
  • the peel strength retention after aging was> 80%
  • the penetration amount of the tin plating solution was ⁇ 1 ⁇ m.
  • the adhesion to the polyimide resin layer (normal peel strength, heat-resistant peel strength) and tin plating solution resistance were all excellent.
  • the etching property was also excellent.
  • Example 4 As the copper foil, a rolled copper foil of 18 ⁇ m having a surface roughness Rz of 0.7 ⁇ m was used. The rolled copper foil was degreased and washed with water, followed by pickling and washing, followed by plating under the above-mentioned nickel-zinc plating conditions. Nickel-zinc plating was carried out under the conditions of Ni—Zn plating 1 shown above, a chromium plating layer was formed under the above conditions, and a mixed silane coupling agent layer of amino and TEOS was further formed.
  • the amount of zinc on the outermost layer measured by 1.9 was 1.9 at%, and the amount of chromium on the outermost layer was 8 at%.
  • the copper foil thus produced was measured for the normal peel strength, the peel strength retention after aging, and the penetration amount of the tin plating solution under the above conditions.
  • the results are shown in Table 1.
  • the normal peel strength was 0.7 kN / m
  • the peel strength retention after aging was> 80%
  • the permeation amount of the tin plating solution was ⁇ 1 ⁇ m.
  • the adhesion to the polyimide resin layer normal peel strength, heat-resistant peel strength
  • tin plating solution resistance were all excellent.
  • the etching property was also excellent.
  • Example 5 As the copper foil, a rolled copper foil of 18 ⁇ m having a surface roughness Rz of 0.7 ⁇ m was used. The rolled copper foil was degreased and washed with water, followed by pickling and washing, followed by plating under the above-mentioned nickel-zinc plating conditions. Nickel-zinc plating was performed under the above-described Ni—Zn plating conditions, a chromium plating layer was formed under the above conditions, and a mixed silane coupling agent layer of amino and TEOS was further formed.
  • Ni amount 300 ⁇ g / dm 2
  • Zn amount 80 ⁇ g / dm 2
  • ratio of metallic zinc in total zinc in nickel-zinc plating layer 45%
  • Ni ratio in nickel-zinc plating layer 79 wt%
  • XPS The amount of zinc on the outermost layer measured by 1 was 0.8 at%
  • the amount of chromium on the outermost layer was 10 at%.
  • the copper foil thus produced was measured for the normal peel strength, the peel strength retention after aging, and the penetration amount of the tin plating solution under the above conditions.
  • the results are shown in Table 1.
  • the normal peel strength was 0.9 kN / m
  • the peel strength retention after aging was> 80%
  • the penetration amount of the tin plating solution was ⁇ 1 ⁇ m.
  • the adhesion to the polyimide resin layer normal peel strength, heat-resistant peel strength
  • tin plating solution resistance were all excellent.
  • the etching property was also excellent.
  • Example 6 As the copper foil, a rolled copper foil of 18 ⁇ m having a surface roughness Rz of 0.7 ⁇ m was used. The rolled copper foil was degreased and washed with water, followed by pickling and washing, followed by plating under the above-mentioned nickel-zinc plating conditions. Nickel-zinc plating was carried out under the conditions of Ni—Zn plating 1 shown above, a chromium plating layer was formed under the above conditions, and a mixed silane coupling agent layer of amino and TEOS was further formed.
  • Ni content 110 ⁇ g / dm 2
  • Zn content 110 ⁇ g / dm 2
  • ratio of metallic zinc in total zinc in nickel-zinc plating layer 40%
  • Ni ratio in nickel-zinc plating layer 50 wt%
  • XPS X-ray photoelectron spectroscopy
  • the copper foil thus produced was measured for the normal peel strength, the peel strength retention after aging, and the penetration amount of the tin plating solution under the above conditions.
  • the results are shown in Table 1.
  • the normal peel strength was 1.3 kN / m
  • the peel strength retention after aging was> 80%
  • the penetration amount of the tin plating solution was ⁇ 1 ⁇ m.
  • the adhesion to the polyimide resin layer normal peel strength, heat-resistant peel strength
  • tin plating solution resistance were all excellent.
  • the etching property was also excellent.
  • Example 7 As the copper foil, a rolled copper foil of 18 ⁇ m having a surface roughness Rz of 0.7 ⁇ m was used. The rolled copper foil was degreased and washed with water, followed by pickling and washing, followed by plating under the above-mentioned nickel-zinc plating conditions. Nickel-zinc plating was carried out under the conditions of Ni—Zn plating 1 shown above, a chromium plating layer was formed under the above conditions, and a mixed silane coupling agent layer of amino and TEOS was further formed.
  • the Ni amount 700 ⁇ g / dm 2
  • the Zn amount 300 ⁇ g / dm 2
  • the ratio of metallic zinc in the total zinc in the nickel-zinc plating layer 30%
  • the Ni ratio in the nickel-zinc plating layer 70 wt%
  • XPS The amount of zinc on the outermost layer measured by 2 was 0.2 at%
  • the amount of chromium on the outermost layer was 20 at%.
  • the copper foil thus produced was measured for the normal peel strength, the peel strength retention after aging, and the penetration amount of the tin plating solution under the above conditions.
  • the results are shown in Table 1.
  • the normal peel strength was 1.2 kN / m
  • the peel strength retention after aging was> 80%
  • the permeation amount of the tin plating solution was ⁇ 1 ⁇ m.
  • the adhesion to the polyimide resin layer normal peel strength, heat-resistant peel strength
  • tin plating solution resistance were all excellent.
  • the etching property was also excellent.
  • Example 8 As the copper foil, an 18 ⁇ m electrolytic copper foil having a surface roughness Rz 0.7 ⁇ m was used. This electrolytic copper foil was degreased and washed with water, followed by pickling and washing, and then plated under the above-mentioned nickel-zinc plating conditions. Nickel-zinc plating was carried out under the conditions of Ni—Zn plating 1 shown above, a chromium plating layer was formed under the above conditions, and a mixed silane coupling agent layer of amino and TEOS was further formed.
  • Ni amount 650 ⁇ g / dm 2
  • Zn amount 350 ⁇ g / dm 2
  • ratio of metallic zinc in total zinc in nickel-zinc plating layer 20%
  • Ni ratio in nickel-zinc plating layer 65 wt%
  • XPS The zinc content of the outermost layer measured by 1 was 1 at%
  • the chromium content of the outermost layer was 20 at%.
  • the copper foil thus produced was measured for the normal peel strength, the peel strength retention after aging, and the penetration amount of the tin plating solution under the above conditions.
  • the results are shown in Table 1.
  • the normal peel strength was 1.2 kN / m
  • the peel strength retention after aging was> 80%
  • the permeation amount of the tin plating solution was ⁇ 1 ⁇ m.
  • the adhesion to the polyimide resin layer normal peel strength, heat-resistant peel strength
  • tin plating solution resistance were all excellent.
  • the etching property was also excellent.
  • a rolled copper foil of 18 ⁇ m having a surface roughness Rz of 0.7 ⁇ m was used as the copper foil.
  • the rolled copper foil was degreased and washed with water, followed by pickling and washing, followed by plating under the above-mentioned nickel-zinc plating conditions.
  • Nickel-zinc plating was performed under the Ni—Zn plating 2 conditions described above, a chromium plating layer was formed under the above conditions, and a mixed silane coupling agent layer of amino and TEOS was further formed.
  • the Ni content 200 ⁇ g / dm 2
  • the Zn content 200 ⁇ g / dm 2
  • the ratio of metallic zinc in the total zinc in the nickel-zinc plating layer 80%
  • the Ni ratio in the nickel-zinc plating layer 50 wt%
  • XPS XPS
  • the amount of zinc in the outermost layer measured in step 6 was 6 at%
  • the amount of chromium in the outermost layer was 2 at%.
  • the copper foil thus produced was measured for the normal peel strength, the peel strength retention after aging, and the penetration amount of the tin plating solution under the above conditions.
  • the results are shown in Table 2.
  • the normal peel strength was 0.2 kN / m
  • the peel strength retention after aging was> 80%
  • the penetration amount of the tin plating solution was> 2 ⁇ m.
  • the adhesion to the polyimide resin layer was poor
  • the tin plating solution resistance was poor.
  • a rolled copper foil of 18 ⁇ m having a surface roughness Rz of 0.7 ⁇ m was used as the copper foil.
  • the rolled copper foil was degreased and washed with water, followed by pickling and washing, followed by plating under the above-mentioned nickel-zinc plating conditions.
  • Nickel-zinc plating was performed under the Ni—Zn plating 2 conditions described above, a chromium plating layer was formed under the above conditions, and a mixed silane coupling agent layer of amino and TEOS was further formed.
  • Ni amount 200 [mu] g / dm 2
  • Zn amount 0 Pg / dm 2
  • Ni - ratio of zinc metal in the total zinc in the galvanized layer -%
  • nickel - Ni ratio in the galvanized layer 100 wt%
  • XPS The amount of zinc on the outermost layer measured by 1 was 0 at%
  • the amount of chromium on the outermost layer was 3 at%.
  • the copper foil thus produced was measured for the normal peel strength, the peel strength retention after aging, and the penetration amount of the tin plating solution under the above conditions.
  • the results are shown in Table 2.
  • the normal peel strength was 0.7 kN / m
  • the peel strength retention after aging was 40%
  • the permeation amount of the tin plating solution was ⁇ 1 ⁇ m.
  • the adhesiveness (heat resistant peel strength) with the polyimide resin layer was poor.
  • Example 3 As the copper foil, an 18 ⁇ m electrolytic copper foil having a surface roughness Rz 0.7 ⁇ m was used. This electrolytic copper foil was degreased and washed with water, followed by pickling and washing, and then plated under the above-mentioned nickel-zinc plating conditions. Nickel-zinc plating was performed under the Ni—Zn plating 2 conditions described above, a chromium plating layer was formed under the above conditions, and a mixed silane coupling agent layer of amino and TEOS was further formed.
  • the Ni content 370 ⁇ g / dm 2
  • the Zn content 80 ⁇ g / dm 2
  • the ratio of metallic zinc in the total zinc in the nickel-zinc plating layer 90%
  • the Ni ratio in the nickel-zinc plating layer 82 wt%
  • XPS XPS
  • the zinc content of the outermost layer measured by the above was 0.6 at%
  • the chromium content of the outermost layer was 4 at%.
  • the copper foil thus produced was measured for the normal peel strength, the peel strength retention after aging, and the penetration amount of the tin plating solution under the above conditions.
  • the results are shown in Table 2.
  • the normal peel strength was 0.5 kN / m
  • the peel strength retention after aging was> 80%
  • the permeation amount of the tin plating solution was> 2 ⁇ m.
  • the adhesion to the polyimide resin layer was poor, and the tin plating solution resistance was poor.
  • Example 4 As the copper foil, an 18 ⁇ m electrolytic copper foil having a surface roughness Rz 0.7 ⁇ m was used. This electrolytic copper foil was degreased and washed with water, followed by pickling and washing, and then plated under the above-mentioned nickel-zinc plating conditions. Nickel-zinc plating was performed under the Ni—Zn plating 2 conditions described above, a chromium plating layer was formed under the above conditions, and a mixed silane coupling agent layer of amino and TEOS was further formed.
  • the Ni content 200 ⁇ g / dm 2
  • the Zn content 20 ⁇ g / dm 2
  • the ratio of metallic zinc in the total zinc in the nickel-zinc plating layer 70%
  • the Ni ratio in the nickel-zinc plating layer 91 wt%
  • XPS XPS
  • the amount of zinc on the outermost layer measured by 1 was 0.3 at%
  • the amount of chromium on the outermost layer was 3 at%.
  • the copper foil thus produced was measured for the normal peel strength, the peel strength retention after aging, and the penetration amount of the tin plating solution under the above conditions.
  • the results are shown in Table 2.
  • the normal peel strength was 0.3 kN / m
  • the peel strength retention after aging was> 80%
  • the permeation amount of the tin plating solution was> 2 ⁇ m.
  • the adhesion to the polyimide resin layer was poor, and the tin plating solution resistance was poor.
  • Example 5 As the copper foil, an 18 ⁇ m electrolytic copper foil having a surface roughness Rz 0.7 ⁇ m was used. The electrolytic copper foil was degreased and washed with water, followed by pickling and washing, followed by cobalt-molybdenum alloy plating. Cobalt-molybdenum alloy plating was performed under the above-described Co—Mo plating conditions, a chromium plating layer was further formed under the above conditions, and a mixed silane coupling agent layer of amino and TEOS was further formed. As a result, the Co content: 440 ⁇ g / dm 2 , the Mo content: 290 ⁇ g / dm 2 , and the chromium content of the outermost layer measured by XPS were 1 at%.
  • the copper foil thus produced was measured for the normal peel strength, the peel strength retention after aging, and the penetration amount of the tin plating solution under the above conditions.
  • the results are shown in Table 2.
  • the normal peel strength was 0.4 kN / m
  • the peel strength retention after aging was> 80%
  • the penetration amount of the tin plating solution was> 2 ⁇ m.
  • the adhesion to the polyimide resin layer was poor, and the tin plating solution resistance was poor.
  • the present invention provides a copper foil that is excellent in adhesion (normal peel strength, heat-resistant peel strength) between a copper foil and a polyimide resin layer, has a tin plating solution resistance, and can be used for fine patterning of wiring. It is useful as a copper foil for a flexible printed circuit board that forms a polyimide resin layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

電解銅箔又は圧延銅箔からなる銅箔上に、ニッケルと亜鉛を含有するめっき層及び当該ニッケルと亜鉛を含有するめっき層上にクロムめっき層を備えた銅箔であって、ニッケルと亜鉛を含有するめっき層における亜鉛は亜鉛酸化物と金属亜鉛からなり、当該亜鉛酸化物と金属亜鉛中の金属亜鉛の比率が50%以下であることを特徴とする銅箔。ポリイミド系樹脂層を形成するフレキシブルプリント基板用の銅箔に関し、特に銅箔とポリイミド系樹脂層との間の接着強度に優れ、耐酸性及び耐錫めっき液性を有すると共に、またピール強度が高く、良好なエッチング性と光沢度を備え、さらに配線のファインパターン化が可能であるフレキシブルプリント基板に好適な銅箔を提供する。

Description

銅箔及びその製造方法
 本発明は、銅箔上にポリイミド系樹脂層を形成するフレキシブルプリント基板用銅箔に関し、特に銅箔とポリイミド系樹脂層との接着性(常態ピール強度、耐熱ピール強度)に優れ、耐錫めっき液性を有し、さらに配線のファインパターン化が可能であるフレキシブルプリント基板に好適な銅箔に関する。
 近年、半導体装置や各種電子チップ部品等の、搭載部品の小型集積化技術の発達に伴い、これらを搭載するためのフレキシブルプリント基板から加工されるプリント配線板に対して、配線のいっそうのファインパターン化が求められている。
 従来、粗化処理し樹脂との接着性を向上させた電解銅箔が使用されていたが、この粗化処理のために銅箔のエッチング性が著しく損なわれ、高アスペクト比でのエッチングが困難となり、十分なファインパターン化ができないという問題が生じた。
 このため、ファインパターン化の要求に対応するために、電解銅箔の粗化処理をより軽度にする、すなわちロープロファイル化(粗さの低減化)する提案がなされている。
 しかしながら、電解銅箔のロープロファイル化は電解銅箔と絶縁性のポリイミド層との間の密着強度を低下させるという問題がある。このため、ハイレベルなファインパターン化の要求はあるが、一方では所期の接着強度を維持することができず、配線がポリイミド層から加工段階で剥離してしまうなどの問題が発生した。
 銅箔の高度なファインパターン化のために要求される特性としては、このような樹脂との接着性だけの問題ではない。例えば、耐酸性、耐錫めっき液性などにも優れていることが要求される。
 最近の傾向として、ポリイミド系樹脂層との密着性に大きな関心が寄せられており、その特許文献も、多数ある(特許文献3、4、5参照)。
 これらは、耐錫めっき液性については、量産性を加味した面内のバラツキについて十分に考慮されていない。しかし、耐錫めっき液性について本発明者が詳細に調査したところ、これらの特許文献に示される技術では、例えば市販錫めっき液であるローム アンド ハース製のLT-34での評価において表面処理が部分的に侵食され、めっき液が樹脂と銅箔との間に染み込み、密着性が低下するという問題があることを見出した。
 このように、銅箔上にポリイミド系樹脂層を形成するフレキシブルプリント基板用銅箔に対して、上記の錫めっき液の染み込みの問題を含め、総合的に問題を解決しない限り、良好な特性を持つ銅箔を得ているとは言えない。
特開2002-217507号公報 特開昭56-155592号公報 特開2005-344174号公報 特開2007-165674号公報 特開2007-7937号公報
発明が解決しょうとする課題
 本発明は上記のような問題点に鑑みてなされたものであり、その目的とするところは、銅箔とポリイミド系樹脂層との接着性(常態ピール強度、耐熱ピール強度)に優れ、耐錫めっき液性を有し、さらに配線のファインパターン化が可能であるフレキシブルプリント基板に好適な銅箔を提供することにある。
 以上から、本発明は
 1.電解銅箔又は圧延銅箔からなる銅箔上に、ニッケルと亜鉛を含有するめっき層及び当該ニッケルと亜鉛を含有するめっき層上にクロムめっき層を備えた銅箔であって、ニッケルと亜鉛を含有するめっき層における亜鉛は0価の金属状態と2価の酸化状態からなり、総亜鉛中の金属亜鉛の比率が50%以下であることを特徴とする銅箔
 2.ニッケルと亜鉛を含有するめっき層が、ニッケル及び亜鉛の合計で50~1500μg/dmであることを特徴とする上記1記載の銅箔
 3.ニッケルと亜鉛を含有するめっき層が、ニッケル及び亜鉛の合計で100~1000μg/dmであることを特徴とする上記1記載の銅箔
 4.ニッケルと亜鉛を含有するめっき層中のニッケル比{ニッケル量/(ニッケル量+亜鉛量)}が、40~80wt%であることを特徴とする上記1~3のいずれか一項に記載の銅箔
 5.クロムめっき層を有する最表層上にさらに、アミノ系アルコキシシラン及びテトラアルコキシシランの混合系シランカップリング剤層を備える上記1~4のいずれか一項に記載の銅箔
 6.XPSで測定した最表層の亜鉛量が検出限界以下、もしくは2at%以下であり、同最表層のクロム量が5~30at%であることを特徴とする上記1~5のいずれか一項に記載の銅箔
 7.XPSで測定した最表層の亜鉛量が検出限界以下、もしくは1at%以下であり、同最表層のクロム量が8~30at%であることを特徴とする上記1~5のいずれか一項に記載の銅箔、を提供する。
 本発明は、銅箔とポリイミド系樹脂層との接着性(常態ピール強度、耐熱ピール強度)に優れ、耐錫めっき液性を有し、さらに配線のファインパターン化が可能である銅箔を提供することができるという、優れた効果を有する。
 一般に、電解銅箔は、回転する金属製陰極ドラムと、その陰極ドラムのほぼ下方半分の位置に配置した該陰極ドラムの周囲を囲む不溶性金属アノード(陽極)を使用し、前記陰極ドラムとアノードとの間に銅電解液を流動させかつこれらの間に電位を与えて陰極ドラム上に銅を電着させ、所定厚みになったところで、該陰極ドラムから電着した銅を剥がして連続的に銅箔が製造されている。
 また、圧延銅箔は、溶解鋳造したインゴットを、多数回の圧延と焼鈍を繰返して製造するものである。これらの電解銅箔又は圧延銅箔は、フレキシブルプリント基板用銅箔として既に知られた材料であり、本願発明はこれらに全て適用できる。
 本願発明は、電解銅箔又は圧延銅箔からなる銅箔上に、ニッケルと亜鉛を含有するめっき層(以下、「ニッケル-亜鉛めっき層」と言う。)及び当該ニッケル-亜鉛めっき層上にクロムめっき層を備えた銅箔である。上記の通り、これらの被覆層を備えた銅箔は、既に知られている。しかし、問題は、このように既知の銅箔について、錫めっきを実施した場合に、錫めっき液がポリイミド系樹脂層と銅箔との間に染み込み、銅箔のピール強度を低下させることである。
 錫めっき液の持つ高い侵食性よって、表面処理が部分的にでも侵食を受けると、回路剥離につながる可能性があり、非常に大きな問題である。
 従来、このような現象があること、またこの原因がどこにあるのかということことに気がつくことはなかった。したがって、これを解決する手段を講ずることもなかったのである。一般に、電解銅箔又は圧延銅箔からなる銅箔上に、ニッケル-亜鉛めっき層を形成することが行われるが、本発明者は、上記の問題、すなわち錫めっき液の染み込みが銅箔の表面に被覆したニッケル-亜鉛めっき層に原因があることを見出した。
 このニッケル-亜鉛めっき層は、単純な合金めっき層ではない。ニッケル-亜鉛めっき層における亜鉛の化学状態を調べると、ニッケル-亜鉛めっき層は、亜鉛酸化物及び/または亜鉛水酸化物と金属亜鉛から構成されることが分かった。
 この亜鉛酸化物及び/または亜鉛水酸化物と金属亜鉛の比率は、ニッケル-亜鉛めっきの条件を変えることにより達成できるものである。下記にニッケル-亜鉛めっきの条件を示すが、提示する範囲であれば、当業者が実施できるものである。しかし、亜鉛酸化物及び/または亜鉛水酸化物と、金属亜鉛の比率を調節するという意図がなければ、定常的に達成することができないことは言うまでもない。それは、0価の金属状態と2価の酸化状態から構成される総亜鉛中の0価の金属亜鉛の比率が錫めっき液の染み込み発生の直接の原因であることを知見するということである。
 本発明者は、ニッケル-亜鉛めっき層における亜鉛の化学状態、すなわち総亜鉛中の金属亜鉛の比率を50%以下とすることにより、錫めっき液の染み込み発生を抑制することができることが分かった。特に、強酸中でニッケル-亜鉛めっきすることにより、めっき層中の金属亜鉛比を下げることができる。
 下記の実施例において、具体的に説明するが、金属亜鉛の比率が50%を超えると、錫めっき液の染み込み発生を抑制することが難しくなる。したがって、金属亜鉛の比率を50%以下とするものである。
 この場合、容易に理解できることであるが、ニッケル-亜鉛めっき層における亜鉛酸化物として存在することが、錫めっき液の染み込み発生防止のためには、好ましいことを意味する。ニッケル-亜鉛めっきの全ての亜鉛の化学状態を亜鉛酸化物にすることは難しいが、金属亜鉛を極力低減させ、10%程度、さらには5%程度にまで、低減させることは可能である。
 しかし、下記の実施例に示すように、金属亜鉛を極力低減させることによって錫めっき液の染み込み発生を抑制するという効果は、極限まで低減させる必要はないことを知るべきである。したがって、ニッケル-亜鉛めっきの条件は、定常の条件の範囲で、亜鉛酸化物及び/または亜鉛水酸化物と、金属亜鉛中の金属亜鉛の比率を50%以下とする条件に調節することにより、本願発明の亜鉛の化学状態を達成できる。
 本願発明は、さらにニッケル-亜鉛めっき層が、ニッケル及び亜鉛の合計で50~1500μg/dmであること、さらには、ニッケル-亜鉛めっき層が、ニッケル及び亜鉛の合計で100~1000μg/dmであることが、望ましい。本願発明においては、ニッケル-亜鉛めっき層が存在することが必須の要件である。
 ニッケル-亜鉛めっき層は、通常の量で良いのであるが、このめっき層の量が50μg/dm未満であると全体量としての、めっきの効果が無くなり、必然的にニッケル-亜鉛めっき層が持つ、常態ピール強度、耐熱ピール強度、耐薬品性、さらに耐錫めっき性が劣る結果となるからである。
 また、過剰に存在する必要もない。過剰に存在しても効果が飽和し、コスト高になるだけである。この意味から、1500μg/dmを上限とすることが望ましいと言える。
 さらに、本願発明は、ニッケル-亜鉛めっき層中のニッケル比を40~80wt%とするのが望ましい。ニッケル比が40wt%未満では、耐薬品性及び耐熱性が低下し、またニッケル比が80wt%を超えると、回路を形成する際に、エッチング性(ファインエッチング性)が悪くなるので、上限を80wt%とすることが望ましいと言える。
 なお、ニッケル比が90wt%を超えるようになると、耐熱性も低下する。これは、ニッケル比が増加すると、相対的に亜鉛量が減少し、亜鉛が持つ耐熱性を低下させるということが起因すると考えられる。したがって、これらの点を勘案して、ニッケル比率を決定するのが望ましい。
 さらに、本願発明は、電解銅箔又は圧延銅箔からなる銅箔上に、ニッケルと亜鉛を含有するめっき層及び当該ニッケルと亜鉛を含有するめっき層上にクロムめっき層を備え、さらに、前記クロムめっき層を有する最表層上に、さらにアミノ系アルコキシシラン及びテトラアルコキシシランの混合系シランカップリング剤層を形成した銅箔を提供する。
 このアミノ系アルコキシシラン及びテトラアルコキシシランの混合系シランカップリング剤層によって様々なポリイミド系樹脂への密着性を得ることが可能となる。
 さらに、本願発明は、XPSで測定した最表層の金属亜鉛量が2at%以下であり、同最表層のクロム量が5~30at%であること、さらにはXPSで測定した最表層の金属亜鉛量が1at%以下であり、同最表層のクロム量が8~30at%である銅箔を提供する。亜鉛量は、2at%を超えると、常態ピール強度が低下するので、上記の数値を上限とするのが望ましい。
 また、耐錫めっき液性のためには、最表層の金属亜鉛量はできるだけ少ない方が望ましい。可能であれば0%であることが良いのであるが、実際上0.01at%程度のわずかな存在がある。最表層の金属亜鉛量であれば、耐錫めっき液性に有効である。
 クロムめっき層を形成した最表層には、当然ながらクロムが多く存在するのであるが、これ以外にも、酸素、炭素、窒素、ニッケル、銅、亜鉛が存在する。適度なクロム量と亜鉛量は、常態ピール強度の向上に効果がある。上記範囲は、その量を示すものである。
 上記の通り、クロム量は、常態ピール強度の向上に効果があり、特に上限はないのであるが、製作上40%が限度である。通常クロム量を5~30at%とするのが、望ましいと言える。また、クロムの存在は、ニッケル-亜鉛めっき層ほどの効果を有するものではないが、耐錫めっき液性にも有効である。
 クロムめっき層を形成した最表層は、そのクロムめっき層の程度にもよるが、XPSによる測定深さでは、数nm(2~3nm)程度である。このように膜厚が非常に薄いために、膜厚測定は非常に難しいのであるが、この膜は必ずしも均一な膜とは限らず、多数の微小な孔が存在すると想定される。
 したがって、最表層は、必ずしもクロムだけが存在するだけではなく、その下地となるニッケル-亜鉛めっき層の成分が、孔を通して露出している状態と考えられる。したがって、最表層は、クロム、亜鉛、ニッケル、銅、これらの酸化物が存在する状態であると予想される。
 一般に、表面粗さ十点平均粗さ(Rz)が2.5μm以下である電解銅箔を使用することが望ましいが、特にこの条件に制限される必要はない。微小な凹凸のある粗面(マット面)又は光沢面のいずれも本発明の銅箔に適用できる。また、圧延銅箔は製造工程の特徴から平滑性に優れた表面を有するので、本発明に同様に適用できる。
 一般に、銅箔の表面粗さを1.5μm以下に、さらには1.0μm以下とすることにより、高いエッチング精度を得ることができる。すなわちエッチング精度を上げるためには、原銅箔の表面粗さをより小さくすることが好ましいと言える。通常、粗化処理は不要である。
 このような観点から、圧延銅箔又は電解銅箔の光沢面が好適である。しかし、上記の通り電解銅箔の粗面を上記条件、すなわち表面粗さを1.5μm以下にすることも可能であり、したがって、粗面を使用することもできる。
 電解銅箔及び圧延銅箔は連続的に製造されコイルに巻かれるが、上記のようにして得た銅箔は、その後さらに本発明の電気化学的若しくは化学的又は樹脂等の表面処理又は被覆処理(コーティング)を施してプリント配線板等に使用することができる。
 銅箔の厚みは高密度配線として使用するために、18μm以下、さらには3~12μmの厚さのものが要求されているが、本発明の銅箔処理は、このような厚さに制限なく適用でき、さらに極薄箔又は厚い銅箔においても同様に適用できる。
 また、本発明ではニッケル-亜鉛めっきを耐熱層としたが、亜鉛の化学状態が制御された皮膜中にコバルトやモリブデン、リン、ホウ素、タングステン等を添加してこれらの比率を制御することによっても本発明と同様の効果が得られると期待される。これらは、プリント配線基板の銅箔の用途に応じて適宜選択されるものであり、本発明はこれらを全て包含する。
 ポリイミド樹脂層を形成する手段としては、特に制限されるものではないが、例えば原料としてポリアミック酸ワニス(芳香族ジアミン類と芳香族酸二無水物とを溶液状態で付加重合させて得られるポリアミック酸を含有する混合物)を使用することができる。
 このポリアミック酸ワニスを、本発明の電解銅箔又は圧延銅箔上に塗布し、さらに乾燥してポリイミド前駆体層としてのポリアミック酸層を形成する。得られたポリアミック酸層を、窒素等の不活性雰囲気下で300°C~400°Cに加熱してイミド化し、ポリイミド系樹脂層を形成する。
 ポリイミド系樹脂層の厚みは特に限定されないが、通常10~50μmとする。また、ポリアミック酸ワニスには、必要に応じて従来公知の添加剤を配合してもよい。このようにして得られるフレキシブルプリント基板においては、本発明の電解銅箔又は圧延銅箔とポリイミド系樹脂層との接着強度が良好なものとなる。
 電解銅箔及び圧延銅箔を使用し、これらの電解銅箔又は圧延銅箔上に、本発明のニッケル-亜鉛めっき層とクロムめっき層を形成する。電気化学的処理液の例を示すと、次の通りである。
(ニッケル-亜鉛めっき液組成とめっき条件1)
 Ni:10~40g/L
 Zn:0.5~7g/L
 HSO:2~20g/L
 浴温度:常温~65°C
 電流密度Dk:10~50A/dm
 めっき時間:1~4秒
(ニッケル-亜鉛めっき液組成とめっき条件2)
 Ni:10~40g/L
 Zn:0.5~20g/L
 pH:3.0~4.0
 浴温度:常温~65°C
 電流密度Dk:1~15A/dm
 めっき時間:1~4秒
(コバルト-モリブデンめっき液組成とめっき条件)
 Co:10~40g/L
 Mo:10~40g/L
 pH:4.0~5.0
 浴温度:常温~40°C
 電流密度Dk:1~15A/dm
 めっき時間:1~10秒
(クロムめっき液組成とめっき条件)
 CrO:200~250g/L(実施例・比較例では、250g/L)
 HSO:2~3g/L(実施例・比較例では、2.5g/L)
 浴温度:50~60℃(実施例・比較例では、55℃)
 めっき液には必要に応じ、従来公知の添加剤重クロム酸ナトリウムや重クロム酸カリウム、三価のクロム塩、珪フッ化ナトリウム等を配合しても良い。
(カップリング剤組成)
 アミノ系シランカップリング剤:0.2~1.2vol%
 例えば、γ-アミノプロピルトリエトキシシランやN-β(アミノエチル)γ-アミノプロピルトリメトキシシラン等。
 テトラアルコキシシラン:0.2~0.6vol%
 例えば、TEOS(テトラエトキシシラン)等。
[試験方法]
(樹脂組成)
 ポリイミド:宇部興産製(UワニスA、樹脂厚み:30μm)
(ピール強度試験)
  常態ピール強度:幅3mm、膜厚9μm銅箔の180°引き剥がし試験
 エージング後のピール強度:150°C、7日間のエージング後、ピール強度測定
(錫めっき液染み込み性試験)
 錫めっき液:ロームアンドハース製LT-34
 70°C、5分浸漬後、侵食量を測定
(XPS解析)
 Kratos製AXIS-HSにより測定した。材料をスパッタリングして掘り進めながらXPS測定したが、本発明ではスパッタリングする前の最表面の測定値に注目した。
 次に、実施例に基づいて説明する。なお、本実施例は好適な一例を示すもので、本発明はこれらの実施例に限定されるものではない。したがって、本発明の技術思想に含まれる変形、他の実施例又は態様は、全て本発明に含まれる。
なお、本発明との対比のために、比較例を掲載した。
(実施例1)
 銅箔として表面粗さRz0.7μmである18μmの圧延銅箔を使用した。この圧延銅箔を、脱脂及び水洗処理、続いて酸洗・水洗処理した後、上記ニッケル-亜鉛めっきの条件でめっきを行った。上記に示したNi-Znめっき1の条件で、ニッケル-亜鉛めっきを実施し、さらに上記の条件でクロムめっき層を形成し、さらにアミノ系及びTEOSの混合系シランカップリング剤層を形成した。その結果、Ni量:65μg/dm、Zn量:60μg/dm、ニッケル-亜鉛めっき層における総亜鉛中の金属亜鉛の比率:45%、ニッケル-亜鉛めっき層におけるNi比:52wt%、XPSで測定した最表層の亜鉛量:1at%、同最表層のクロム量:8at%となった。
 このようにして製造した銅箔を、上記の条件で、常態ピール強度の測定、エージング後のピール強度保持率、及び錫めっき液の染み込み量を測定した。
 この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すように、常態ピール強度は0.9kN/m、エージング後のピール強度保持率は>80%、錫めっき液の染み込み量は<1μmであった。
 本実施例1における上記の試験結果では、ポリイミド系樹脂層との接着性(常態ピール強度、耐熱ピール強度)、耐錫めっき液性が、いずれも優れていた。また、表には示さないが、エッチング性にも優れていた。
(実施例2)
 銅箔として表面粗さRz0.7μmである18μmの圧延銅箔を使用した。この圧延銅箔を、脱脂及び水洗処理、続いて酸洗・水洗処理した後、上記ニッケル-亜鉛めっきの条件でめっきを行った。上記に示したNi-Znめっき1の条件で、ニッケル-亜鉛めっきを実施し、さらに上記の条件でクロムめっき層を形成し、さらにアミノ系及びTEOSの混合系シランカップリング剤層を形成した。その結果、Ni量:80μg/dm、Zn量:65μg/dm、ニッケル-亜鉛めっき層における総亜鉛中の金属亜鉛の比率:40%、ニッケル-亜鉛めっき層におけるNi比:55wt%、XPSで測定した最表層の亜鉛量:1.2at%、同最表層のクロム量:9at%となった。
 このようにして製造した銅箔を、上記の条件で、常態ピール強度の測定、エージング後のピール強度保持率、及び錫めっき液の染み込み量を測定した。
 この結果を表1に示す。
 上記表1に示すように、常態ピール強度は0.9kN/m、エージング後のピール強度保持率は>80%、錫めっき液の染み込み量は<1μmであった。
 本実施例2における上記の試験結果では、ポリイミド系樹脂層との接着性(常態ピール強度、耐熱ピール強度)、耐錫めっき液性が、いずれも優れていた。また、表には示さないが、エッチング性にも優れていた。
(実施例3)
 銅箔として表面粗さRz0.7μmである18μmの電解銅箔を使用した。この電解銅箔を、脱脂及び水洗処理、続いて酸洗・水洗処理した後、上記ニッケル-亜鉛めっきの条件でめっきを行った。上記に示したNi-Znめっき1の条件で、ニッケル-亜鉛めっきを実施し、さらに上記の条件でクロムめっき層を形成し、さらにアミノ系及びTEOSの混合系シランカップリング剤層を形成した。その結果、Ni量:55μg/dm、Zn量:80μg/dm、ニッケル-亜鉛めっき層における総亜鉛中の金属亜鉛の比率:35%、ニッケル-亜鉛めっき層におけるNi比:41wt%、XPSで測定した最表層の亜鉛量:1.2at%、同最表層のクロム量:8at%となった。
 このニッケル-亜鉛めっきした銅箔に、上記の条件でクロムめっき層を形成し、さらにアミノ系及びTEOSの混合系シランカップリング剤層を形成した。
 このようにして製造した銅箔を、上記の条件で、常態ピール強度の測定、エージング後のピール強度保持率、及び錫めっき液の染み込み量を測定した。
 この結果を表1に示す。
 上記表1に示すように、常態ピール強度は0.8kN/m、エージング後のピール強度保持率は>80%、錫めっき液の染み込み量は<1μmであった。
 本実施例3における上記の試験結果では、ポリイミド系樹脂層との接着性(常態ピール強度、耐熱ピール強度)、耐錫めっき液性が、いずれも優れていた。また、表には示さないが、エッチング性にも優れていた。
(実施例4)
 銅箔として表面粗さRz0.7μmである18μmの圧延銅箔を使用した。この圧延銅箔を、脱脂及び水洗処理、続いて酸洗・水洗処理した後、上記ニッケル-亜鉛めっきの条件でめっきを行った。上記に示したNi-Znめっき1の条件で、ニッケル-亜鉛めっきを実施し、さらに上記の条件でクロムめっき層を形成し、さらにアミノ系及びTEOSの混合系シランカップリング剤層を形成した。その結果、Ni量:220μg/dm、Zn量:300μg/dm、ニッケル-亜鉛めっき層における総亜鉛中の金属亜鉛の比率:12%、ニッケル-亜鉛めっき層におけるNi比:42wt%、XPSで測定した最表層の亜鉛量:1.9at%、同最表層のクロム量:8at%となった。
 このようにして製造した銅箔を、上記の条件で、常態ピール強度の測定、エージング後のピール強度保持率、及び錫めっき液の染み込み量を測定した。
 この結果を表1に示す。
 上記表1に示すように、常態ピール強度は0.7kN/m、エージング後のピール強度保持率は>80%、錫めっき液の染み込み量は<1μmであった。
 本実施例4における上記の試験結果では、ポリイミド系樹脂層との接着性(常態ピール強度、耐熱ピール強度)、耐錫めっき液性が、いずれも優れていた。また、表には示さないが、エッチング性にも優れていた。
(実施例5)
 銅箔として表面粗さRz0.7μmである18μmの圧延銅箔を使用した。この圧延銅箔を、脱脂及び水洗処理、続いて酸洗・水洗処理した後、上記ニッケル-亜鉛めっきの条件でめっきを行った。上記に示したNi-Znめっき1条件で、ニッケル-亜鉛めっきを実施し、さらに上記の条件でクロムめっき層を形成し、さらにアミノ系及びTEOSの混合系シランカップリング剤層を形成した。その結果、Ni量:300μg/dm、Zn量:80μg/dm、ニッケル-亜鉛めっき層における総亜鉛中の金属亜鉛の比率:45%、ニッケル-亜鉛めっき層におけるNi比:79wt%、XPSで測定した最表層の亜鉛量:0.8at%、同最表層のクロム量:10at%となった。
 このようにして製造した銅箔を、上記の条件で、常態ピール強度の測定、エージング後のピール強度保持率、及び錫めっき液の染み込み量を測定した。
 この結果を表1に示す。
 上記表1に示すように、常態ピール強度は0.9kN/m、エージング後のピール強度保持率は>80%、錫めっき液の染み込み量は<1μmであった。
 本実施例5における上記の試験結果では、ポリイミド系樹脂層との接着性(常態ピール強度、耐熱ピール強度)、耐錫めっき液性が、いずれも優れていた。また、表には示さないが、エッチング性にも優れていた。
(実施例6)
 銅箔として表面粗さRz0.7μmである18μmの圧延銅箔を使用した。この圧延銅箔を、脱脂及び水洗処理、続いて酸洗・水洗処理した後、上記ニッケル-亜鉛めっきの条件でめっきを行った。上記に示したNi-Znめっき1の条件で、ニッケル-亜鉛めっきを実施し、さらに上記の条件でクロムめっき層を形成し、さらにアミノ系及びTEOSの混合系シランカップリング剤層を形成した。その結果、Ni量:110μg/dm、Zn量:110μg/dm、ニッケル-亜鉛めっき層における総亜鉛中の金属亜鉛の比率:40%、ニッケル-亜鉛めっき層におけるNi比:50wt%、XPSで測定した最表層の亜鉛量:0.1at%、同最表層のクロム量:23at%となった。
 このようにして製造した銅箔を、上記の条件で、常態ピール強度の測定、エージング後のピール強度保持率、及び錫めっき液の染み込み量を測定した。
 この結果を表1に示す。
 上記表1に示すように、常態ピール強度は1.3kN/m、エージング後のピール強度保持率は>80%、錫めっき液の染み込み量は<1μmであった。
 本実施例6における上記の試験結果では、ポリイミド系樹脂層との接着性(常態ピール強度、耐熱ピール強度)、耐錫めっき液性が、いずれも優れていた。また、表には示さないが、エッチング性にも優れていた。
(実施例7)
 銅箔として表面粗さRz0.7μmである18μmの圧延銅箔を使用した。この圧延銅箔を、脱脂及び水洗処理、続いて酸洗・水洗処理した後、上記ニッケル-亜鉛めっきの条件でめっきを行った。上記に示したNi-Znめっき1の条件で、ニッケル-亜鉛めっきを実施し、さらに上記の条件でクロムめっき層を形成し、さらにアミノ系及びTEOSの混合系シランカップリング剤層を形成した。その結果、Ni量:700μg/dm、Zn量:300μg/dm、ニッケル-亜鉛めっき層における総亜鉛中の金属亜鉛の比率:30%、ニッケル-亜鉛めっき層におけるNi比:70wt%、XPSで測定した最表層の亜鉛量:0.2at%、同最表層のクロム量:20at%となった。
 このようにして製造した銅箔を、上記の条件で、常態ピール強度の測定、エージング後のピール強度保持率、及び錫めっき液の染み込み量を測定した。
 この結果を表1に示す。
 上記表1に示すように、常態ピール強度は1.2kN/m、エージング後のピール強度保持率は>80%、錫めっき液の染み込み量は<1μmであった。
 本実施例7における上記の試験結果では、ポリイミド系樹脂層との接着性(常態ピール強度、耐熱ピール強度)、耐錫めっき液性が、いずれも優れていた。また、表には示さないが、エッチング性にも優れていた。
(実施例8)
 銅箔として表面粗さRz0.7μmである18μmの電解銅箔を使用した。この電解銅箔を、脱脂及び水洗処理、続いて酸洗・水洗処理した後、上記ニッケル-亜鉛めっきの条件でめっきを行った。上記に示したNi-Znめっき1の条件で、ニッケル-亜鉛めっきを実施し、さらに上記の条件でクロムめっき層を形成し、さらにアミノ系及びTEOSの混合系シランカップリング剤層を形成した。その結果、Ni量:650μg/dm、Zn量:350μg/dm、ニッケル-亜鉛めっき層における総亜鉛中の金属亜鉛の比率:20%、ニッケル-亜鉛めっき層におけるNi比:65wt%、XPSで測定した最表層の亜鉛量:1at%、同最表層のクロム量:20at%となった。
 このようにして製造した銅箔を、上記の条件で、常態ピール強度の測定、エージング後のピール強度保持率、及び錫めっき液の染み込み量を測定した。
 この結果を表1に示す。
 上記表1に示すように、常態ピール強度は1.2kN/m、エージング後のピール強度保持率は>80%、錫めっき液の染み込み量は<1μmであった。
 本実施例8における上記の試験結果では、ポリイミド系樹脂層との接着性(常態ピール強度、耐熱ピール強度)、耐錫めっき液性が、いずれも優れていた。また、表には示さないが、エッチング性にも優れていた。
(比較例1)
 銅箔として表面粗さRz0.7μmである18μmの圧延銅箔を使用した。この圧延銅箔を、脱脂及び水洗処理、続いて酸洗・水洗処理した後、上記ニッケル-亜鉛めっきの条件でめっきを行った。上記に示したNi-Znめっき2の条件で、ニッケル-亜鉛めっきを実施し、さらに上記の条件でクロムめっき層を形成し、さらにアミノ系及びTEOSの混合系シランカップリング剤層を形成した。その結果、Ni量:200μg/dm、Zn量:200μg/dm、ニッケル-亜鉛めっき層における総亜鉛中の金属亜鉛の比率:80%、ニッケル-亜鉛めっき層におけるNi比:50wt%、XPSで測定した最表層の亜鉛量:6at%、同最表層のクロム量:2at%となった。
 このようにして製造した銅箔を、上記の条件で、常態ピール強度の測定、エージング後のピール強度保持率、及び錫めっき液の染み込み量を測定した。
 この結果を表2に示す。
 上記表2に示すように、常態ピール強度は0.2kN/m、エージング後のピール強度保持率は>80%、錫めっき液の染み込み量は>2μmであった。
 比較例1における上記の試験結果では、ポリイミド系樹脂層との接着性(常態ピール強度、耐熱ピール強度)が悪く、耐錫めっき液性がいずれも悪かった。
Figure JPOXMLDOC01-appb-T000002
(比較例2)
 銅箔として表面粗さRz0.7μmである18μmの圧延銅箔を使用した。この圧延銅箔を、脱脂及び水洗処理、続いて酸洗・水洗処理した後、上記ニッケル-亜鉛めっきの条件でめっきを行った。上記に示したNi-Znめっき2の条件で、ニッケル-亜鉛めっきを実施し、さらに上記の条件でクロムめっき層を形成し、さらにアミノ系及びTEOSの混合系シランカップリング剤層を形成した。その結果、Ni量:200μg/dm、Zn量:0μg/dm、ニッケル-亜鉛めっき層における総亜鉛中の金属亜鉛の比率:-%、ニッケル-亜鉛めっき層におけるNi比:100wt%、XPSで測定した最表層の亜鉛量:0at%、同最表層のクロム量:3at%となった。
 このようにして製造した銅箔を、上記の条件で、常態ピール強度の測定、エージング後のピール強度保持率、及び錫めっき液の染み込み量を測定した。
 この結果を表2に示す。
 上記表2に示すように、常態ピール強度は0.7kN/m、エージング後のピール強度保持率は40%、錫めっき液の染み込み量は<1μmであった。
 比較例2における上記の試験結果では、ポリイミド系樹脂層との接着性(耐熱ピール強度)が悪かった。
(比較例3)
 銅箔として表面粗さRz0.7μmである18μmの電解銅箔を使用した。この電解銅箔を、脱脂及び水洗処理、続いて酸洗・水洗処理した後、上記ニッケル-亜鉛めっきの条件でめっきを行った。上記に示したNi-Znめっき2の条件で、ニッケル-亜鉛めっきを実施し、さらに上記の条件でクロムめっき層を形成し、さらにアミノ系及びTEOSの混合系シランカップリング剤層を形成した。その結果、Ni量:370μg/dm、Zn量:80μg/dm、ニッケル-亜鉛めっき層における総亜鉛中の金属亜鉛の比率:90%、ニッケル-亜鉛めっき層におけるNi比:82wt%、XPSで測定した最表層の亜鉛量:0.6at%、同最表層のクロム量:4at%となった。
 このようにして製造した銅箔を、上記の条件で、常態ピール強度の測定、エージング後のピール強度保持率、及び錫めっき液の染み込み量を測定した。
 この結果を表2に示す。
 上記表2に示すように、常態ピール強度は0.5kN/m、エージング後のピール強度保持率は>80%、錫めっき液の染み込み量は>2μmであった。
 比較例3における上記の試験結果では、ポリイミド系樹脂層との接着性(常態ピール強度、耐熱ピール強度)が悪く、耐錫めっき液性がいずれも悪かった。
(比較例4)
 銅箔として表面粗さRz0.7μmである18μmの電解銅箔を使用した。この電解銅箔を、脱脂及び水洗処理、続いて酸洗・水洗処理した後、上記ニッケル-亜鉛めっきの条件でめっきを行った。上記に示したNi-Znめっき2の条件で、ニッケル-亜鉛めっきを実施し、さらに上記の条件でクロムめっき層を形成し、さらにアミノ系及びTEOSの混合系シランカップリング剤層を形成した。その結果、Ni量:200μg/dm、Zn量:20μg/dm、ニッケル-亜鉛めっき層における総亜鉛中の金属亜鉛の比率:70%、ニッケル-亜鉛めっき層におけるNi比:91wt%、XPSで測定した最表層の亜鉛量:0.3at%、同最表層のクロム量:3at%となった。
 このようにして製造した銅箔を、上記の条件で、常態ピール強度の測定、エージング後のピール強度保持率、及び錫めっき液の染み込み量を測定した。
 この結果を表2に示す。
 上記表2に示すように、常態ピール強度は0.3kN/m、エージング後のピール強度保持率は>80%、錫めっき液の染み込み量は>2μmであった。
 比較例4における上記の試験結果では、ポリイミド系樹脂層との接着性(常態ピール強度、耐熱ピール強度)が悪く、耐錫めっき液性がいずれも悪かった。
(比較例5)
 銅箔として表面粗さRz0.7μmである18μmの電解銅箔を使用した。この電解銅箔を、脱脂及び水洗処理、続いて酸洗・水洗処理した後、コバルト-モリブデン合金めっきを行った。上記に示したCo-Moめっきの条件で、コバルト-モリブデン合金めっきを実施し、さらに上記の条件でクロムめっき層を形成し、さらにアミノ系及びTEOSの混合系シランカップリング剤層を形成した。その結果、Co量:440μg/dm、Mo量:290μg/dm、XPSで測定した最表層のクロム量:1at%となった。
 このようにして製造した銅箔を、上記の条件で、常態ピール強度の測定、エージング後のピール強度保持率、及び錫めっき液の染み込み量を測定した。
 この結果を表2に示す。
 上記表2に示すように、常態ピール強度は0.4kN/m、エージング後のピール強度保持率は>80%、錫めっき液の染み込み量は>2μmであった。
 比較例5における上記の試験結果では、ポリイミド系樹脂層との接着性(常態ピール強度、耐熱ピール強度)が悪く、耐錫めっき液性がいずれも悪かった。
 本発明は、銅箔とポリイミド系樹脂層との接着性(常態ピール強度、耐熱ピール強度)に優れ、耐錫めっき液性を有し、さらに配線のファインパターン化が可能である銅箔を提供することができ、ポリイミド系樹脂層を形成するフレキシブルプリント基板用銅箔として有用である。

Claims (7)

  1.  電解銅箔又は圧延銅箔からなる銅箔上に、ニッケルと亜鉛を含有するめっき層及び当該ニッケルと亜鉛を含有するめっき層上にクロムめっき層を備えた銅箔であって、ニッケルと亜鉛を含有するめっき層における亜鉛は、0価の金属状態と2価の酸化状態からなり、総亜鉛中の0価の金属状態の亜鉛の比率が50%以下であることを特徴とする銅箔。
  2.  ニッケルと亜鉛を含有するめっき層が、ニッケル及び亜鉛の合計で50~1500μg/dmであることを特徴とする請求項1記載の銅箔。
  3.  ニッケルと亜鉛を含有するめっき層が、ニッケル及び亜鉛の合計で100~1000μg/dmであることを特徴とする請求項1記載の銅箔。
  4.  ニッケルと亜鉛を含有するめっき層中のニッケル比{ニッケル量/(ニッケル量+亜鉛量)}が、40~80wt%であることを特徴とする請求項1~3のいずれか一項に記載の銅箔。
  5.  クロムめっき層を有する最表層上にさらに、アミノ系アルコキシシラン及びテトラアルコキシシランの混合系シランカップリング剤層を備える請求項1~4のいずれか一項に記載の銅箔。
  6.  XPSで測定した最表層の亜鉛量が検出限界以下、もしくは2at%以下であり、同最表層のクロム量が5~30at%であることを特徴とする請求項1~5のいずれか一項に記載の銅箔。
  7.  XPSで測定した最表層の亜鉛量が検出限界以下、もしくは1at%以下であり、同最表層のクロム量が8~30at%であることを特徴とする請求項1~5のいずれか一項に記載の銅箔。
PCT/JP2010/059602 2009-06-19 2010-06-07 銅箔及びその製造方法 WO2010147013A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10789388A EP2444530A4 (en) 2009-06-19 2010-06-07 COPPER FOIL AND MANUFACTURING METHOD THEREFOR
KR1020117028940A KR101343667B1 (ko) 2009-06-19 2010-06-07 동박 및 그 제조 방법
JP2011519731A JP5399489B2 (ja) 2009-06-19 2010-06-07 銅箔及びその製造方法
US13/378,687 US20120135266A1 (en) 2009-06-19 2010-06-07 Copper Foil and Method for Producing Same
CN201080027238.3A CN102803575B (zh) 2009-06-19 2010-06-07 铜箔及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009146046 2009-06-19
JP2009-146046 2009-06-19

Publications (1)

Publication Number Publication Date
WO2010147013A1 true WO2010147013A1 (ja) 2010-12-23

Family

ID=43356334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059602 WO2010147013A1 (ja) 2009-06-19 2010-06-07 銅箔及びその製造方法

Country Status (8)

Country Link
US (1) US20120135266A1 (ja)
EP (1) EP2444530A4 (ja)
JP (1) JP5399489B2 (ja)
KR (1) KR101343667B1 (ja)
CN (1) CN102803575B (ja)
MY (1) MY159142A (ja)
TW (1) TWI484072B (ja)
WO (1) WO2010147013A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5470487B1 (ja) * 2013-05-29 2014-04-16 Jx日鉱日石金属株式会社 銅箔、それを用いた半導体パッケージ用銅張積層体、プリント配線板、プリント回路板、樹脂基材、回路の形成方法、セミアディティブ工法、半導体パッケージ用回路形成基板及び半導体パッケージ
CN106604538A (zh) * 2016-12-13 2017-04-26 苏州城邦达力材料科技有限公司 一种柔性线路板及其制备方法
WO2019208521A1 (ja) * 2018-04-27 2019-10-31 Jx金属株式会社 表面処理銅箔、銅張積層板及びプリント配線板
JP2020164975A (ja) * 2019-03-29 2020-10-08 古河電気工業株式会社 表面処理銅箔、銅張積層板、及びプリント配線板
JP2021059728A (ja) * 2019-10-09 2021-04-15 才将科技股▲フン▼有限公司CJ Technology Co., Ltd. 金属と樹脂とを接着する接着剤、接着剤層及びその応用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY149539A (en) 2008-12-26 2013-09-13 Jx Nippon Mining & Metals Corp Rolled copper foil or electrolytic copper foil for electronic circuit, and method of forming electronic circuit using same
JP5654581B2 (ja) 2010-05-07 2015-01-14 Jx日鉱日石金属株式会社 印刷回路用銅箔、銅張積層板、印刷回路基板、印刷回路及び電子機器
KR101871029B1 (ko) 2010-09-27 2018-06-25 제이엑스금속주식회사 프린트 배선판용 구리박, 그 제조 방법, 프린트 배선판용 수지 기판 및 프린트 배선판
KR20130124383A (ko) 2011-03-25 2013-11-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 조화 처리면을 구비한 압연 구리 또는 구리 합금박
TWI631049B (zh) 2013-05-07 2018-08-01 康寧公司 製造3d玻璃蓋的方法以及用於估計3d玻璃蓋的形狀之電腦實施方法
EP3112502B1 (en) * 2015-06-30 2018-08-01 Vazzoler, Evio Method for plating metallic wire or tape and product obtained with said method
JP6687409B2 (ja) * 2016-02-09 2020-04-22 福田金属箔粉工業株式会社 高彩度処理銅箔及び該処理銅箔を用いた銅張積層板並びに該処理銅箔の製造方法
JP7033905B2 (ja) * 2017-02-07 2022-03-11 Jx金属株式会社 表面処理銅箔、キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法
CN111819077B (zh) * 2018-03-09 2023-07-07 株式会社有泽制作所 层叠体及其制造方法
CN111757607B (zh) * 2019-03-29 2023-11-07 古河电气工业株式会社 表面处理铜箔、覆铜层叠板及印制布线板
CN114108042B (zh) * 2021-12-27 2023-05-26 山东金宝电子有限公司 一种提高铜箔表面耐电化学腐蚀性能的稀土表面处理剂及表面处理工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155592A (en) 1980-04-03 1981-12-01 Furukawa Circuit Foil Copper foil for printed circuit and method of manufacturing same
JP2002217507A (ja) 2001-01-22 2002-08-02 Sony Chem Corp フレキシブルプリント基板
JP2005344174A (ja) 2004-06-03 2005-12-15 Mitsui Mining & Smelting Co Ltd 表面処理銅箔及びその表面処理銅箔を用いて製造したフレキシブル銅張積層板並びにフィルムキャリアテープ
JP2007007937A (ja) 2005-06-29 2007-01-18 Furukawa Circuit Foil Kk キャリア付き極薄銅箔、ポリイミド系フレキシブル銅張積層板、及びポリイミド系フレキシブルプリント配線板
JP2007165674A (ja) 2005-12-15 2007-06-28 Fukuda Metal Foil & Powder Co Ltd Cof用フレキシブルプリント配線板用銅箔

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2849059B2 (ja) * 1995-09-28 1999-01-20 日鉱グールド・フォイル株式会社 印刷回路用銅箔の処理方法
JP3142259B2 (ja) * 1998-11-30 2001-03-07 三井金属鉱業株式会社 耐薬品性および耐熱性に優れたプリント配線板用銅箔およびその製造方法
JP3032514B1 (ja) * 1998-12-14 2000-04-17 株式会社日鉱マテリアルズ 光沢面の耐酸化性に優れた銅箔及びその製造方法
CN1301046C (zh) * 2002-05-13 2007-02-14 三井金属鉱业株式会社 膜上芯片用软性印刷线路板
TW200424359A (en) * 2003-02-04 2004-11-16 Furukawa Circuit Foil Copper foil for high frequency circuit, method of production and apparatus for production of same, and high frequency circuit using copper foil
CN103266335B (zh) * 2007-09-28 2016-08-10 Jx日矿日石金属株式会社 印刷电路用铜箔及覆铜箔层压板
EP2290132A1 (en) * 2008-06-17 2011-03-02 Nippon Mining & Metals Co., Ltd. Copper foil for printed circuit board and copper clad laminate plate for printed circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155592A (en) 1980-04-03 1981-12-01 Furukawa Circuit Foil Copper foil for printed circuit and method of manufacturing same
JP2002217507A (ja) 2001-01-22 2002-08-02 Sony Chem Corp フレキシブルプリント基板
JP2005344174A (ja) 2004-06-03 2005-12-15 Mitsui Mining & Smelting Co Ltd 表面処理銅箔及びその表面処理銅箔を用いて製造したフレキシブル銅張積層板並びにフィルムキャリアテープ
JP2007007937A (ja) 2005-06-29 2007-01-18 Furukawa Circuit Foil Kk キャリア付き極薄銅箔、ポリイミド系フレキシブル銅張積層板、及びポリイミド系フレキシブルプリント配線板
JP2007165674A (ja) 2005-12-15 2007-06-28 Fukuda Metal Foil & Powder Co Ltd Cof用フレキシブルプリント配線板用銅箔

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2444530A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5470487B1 (ja) * 2013-05-29 2014-04-16 Jx日鉱日石金属株式会社 銅箔、それを用いた半導体パッケージ用銅張積層体、プリント配線板、プリント回路板、樹脂基材、回路の形成方法、セミアディティブ工法、半導体パッケージ用回路形成基板及び半導体パッケージ
WO2014192895A1 (ja) * 2013-05-29 2014-12-04 Jx日鉱日石金属株式会社 銅箔、キャリア付銅箔、銅張積層体、プリント配線板、半導体パッケージ用回路形成基板、半導体パッケージ、電子機器、樹脂基材、回路の形成方法、セミアディティブ工法、プリント配線板の製造方法
KR101822251B1 (ko) 2013-05-29 2018-01-25 제이엑스금속주식회사 구리박, 캐리어 부착 구리박, 구리 피복 적층체, 프린트 배선판, 반도체 패키지용 회로 형성 기판, 반도체 패키지, 전자 기기, 수지 기재, 회로의 형성 방법, 세미 애디티브 공법, 프린트 배선판의 제조 방법
CN106604538A (zh) * 2016-12-13 2017-04-26 苏州城邦达力材料科技有限公司 一种柔性线路板及其制备方法
JPWO2019208521A1 (ja) * 2018-04-27 2021-06-10 Jx金属株式会社 表面処理銅箔、銅張積層板及びプリント配線板
WO2019208520A1 (ja) * 2018-04-27 2019-10-31 Jx金属株式会社 表面処理銅箔、銅張積層板及びプリント配線板
WO2019208521A1 (ja) * 2018-04-27 2019-10-31 Jx金属株式会社 表面処理銅箔、銅張積層板及びプリント配線板
JPWO2019208520A1 (ja) * 2018-04-27 2021-06-17 Jx金属株式会社 表面処理銅箔、銅張積層板及びプリント配線板
US11337314B2 (en) 2018-04-27 2022-05-17 Jx Nippon Mining & Metals Corporation Surface treated copper foil, copper clad laminate, and printed circuit board
US11337315B2 (en) 2018-04-27 2022-05-17 Jx Nippon Mining & Metals Corporation Surface treated copper foil, copper clad laminate, and printed circuit board
US11375624B2 (en) 2018-04-27 2022-06-28 Jx Nippon Mining & Metals Corporation Surface treated copper foil, copper clad laminate, and printed circuit board
US11382217B2 (en) 2018-04-27 2022-07-05 Jx Nippon Mining & Metals Corporation Surface treated copper foil, copper clad laminate, and printed circuit board
JP2020164975A (ja) * 2019-03-29 2020-10-08 古河電気工業株式会社 表面処理銅箔、銅張積層板、及びプリント配線板
JP2021059728A (ja) * 2019-10-09 2021-04-15 才将科技股▲フン▼有限公司CJ Technology Co., Ltd. 金属と樹脂とを接着する接着剤、接着剤層及びその応用
JP2022133468A (ja) * 2019-10-09 2022-09-13 才将科技股▲フン▼有限公司 金属と樹脂とを接着する接着剤、接着剤層及びその応用
JP7168996B2 (ja) 2019-10-09 2022-11-10 才将科技股▲フン▼有限公司 金属と樹脂とを接着する接着剤、接着剤層及びその応用
JP7418859B2 (ja) 2019-10-09 2024-01-22 才将科技股▲フン▼有限公司 金属と樹脂とを接着する接着剤、接着剤層及びその応用

Also Published As

Publication number Publication date
US20120135266A1 (en) 2012-05-31
EP2444530A1 (en) 2012-04-25
JPWO2010147013A1 (ja) 2012-12-06
KR20120023744A (ko) 2012-03-13
CN102803575A (zh) 2012-11-28
TWI484072B (zh) 2015-05-11
KR101343667B1 (ko) 2013-12-20
CN102803575B (zh) 2016-02-03
MY159142A (en) 2016-12-15
JP5399489B2 (ja) 2014-01-29
EP2444530A4 (en) 2013-01-02
TW201105826A (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP5399489B2 (ja) 銅箔及びその製造方法
JP5932705B2 (ja) 印刷回路用銅箔
KR101853519B1 (ko) 액정 폴리머 구리 피복 적층판 및 당해 적층판에 사용하는 구리박
WO2011138876A1 (ja) 印刷回路用銅箔
US7108923B1 (en) Copper foil for printed circuit board with taking environmental conservation into consideration
JP4172704B2 (ja) 表面処理銅箔およびそれを使用した基板
JPWO2009041292A1 (ja) 印刷回路用銅箔及び銅張積層板
JPWO2010110092A1 (ja) プリント配線板用銅箔及びその製造方法
JP5913356B2 (ja) 印刷回路用銅箔
JP3250994B2 (ja) 電解銅箔
JP6205269B2 (ja) 印刷回路用銅箔、銅張積層板、プリント配線板、印刷回路板及び電子機器
JP5913355B2 (ja) 印刷回路用銅箔、銅張積層板、プリント配線板及び電子機器
TWI530591B (zh) Rolled copper or copper alloy foil with roughened surface
JP4698957B2 (ja) 電解銅箔及び電解銅箔光沢面の電解研磨方法
JP5443157B2 (ja) 高周波用銅箔及びそれを用いた銅張積層板とその製造方法
JP2010047842A (ja) 電解銅箔及び電解銅箔光沢面の電解研磨方法
LU501394B1 (en) Surface-treated copper foil for high-frequency circuit and method for producing the same
JP2011012297A (ja) プリント配線板用銅箔
KR101315364B1 (ko) 내열성이 개선된 표면 처리 동박 및 그 제조방법
JP2010059547A (ja) 電解銅箔及び電解銅箔光沢面の電解研磨方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080027238.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789388

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519731

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010789388

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117028940

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13378687

Country of ref document: US