WO2024070247A1 - 表面処理銅箔、銅張積層板及びプリント配線板 - Google Patents

表面処理銅箔、銅張積層板及びプリント配線板 Download PDF

Info

Publication number
WO2024070247A1
WO2024070247A1 PCT/JP2023/028813 JP2023028813W WO2024070247A1 WO 2024070247 A1 WO2024070247 A1 WO 2024070247A1 JP 2023028813 W JP2023028813 W JP 2023028813W WO 2024070247 A1 WO2024070247 A1 WO 2024070247A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
treatment layer
treated copper
layer
surface treatment
Prior art date
Application number
PCT/JP2023/028813
Other languages
English (en)
French (fr)
Inventor
俊行 古村
敦史 三木
啓介 楠木
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Publication of WO2024070247A1 publication Critical patent/WO2024070247A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • This disclosure relates to surface-treated copper foil, copper-clad laminates, and printed wiring boards.
  • Copper-clad laminates are widely used in a variety of applications, including flexible printed wiring boards.
  • Flexible printed wiring boards are manufactured by etching the copper foil of a copper-clad laminate to form a conductor pattern (also called a "wiring pattern"), and then mounting electronic components on the conductor pattern by connecting them with solder.
  • the causes of signal power loss (transmission loss) in electronic circuits can be roughly divided into two categories.
  • the first is conductor loss, i.e., loss due to copper foil.
  • the second is dielectric loss, i.e., loss due to resin substrate.
  • conductor loss i.e., loss due to copper foil.
  • dielectric loss i.e., loss due to resin substrate.
  • current has the property of flowing on the surface of a conductor (i.e., the skin effect). Therefore, if the copper foil surface is rough, the current will flow along a complex path. Therefore, in order to reduce the conductor loss of high-frequency signals, it is desirable to reduce the surface roughness of the copper foil.
  • the dielectric loss depends on the type of resin substrate. For this reason, in circuit boards through which high-frequency signals flow, it is desirable to use a resin substrate made of a low-dielectric material (e.g., liquid crystal polymer, low-dielectric polyimide). The dielectric loss is also affected by the adhesive used to bond the copper foil and the resin substrate. For this reason, it is desirable to bond the copper foil and the resin substrate without using an adhesive.
  • a resin substrate made of a low-dielectric material (e.g., liquid crystal polymer, low-dielectric polyimide).
  • the dielectric loss is also affected by the adhesive used to bond the copper foil and the resin substrate. For this reason, it is desirable to bond the copper foil and the resin substrate without using an adhesive.
  • Patent Document 1 proposes a method of providing a roughening treatment layer made of roughening particles on the copper foil and forming a silane coupling treatment layer on the outermost layer.
  • the adhesion between the copper foil and the resin substrate can be improved by the anchor effect of the roughening particles, but the skin effect can increase the conductor loss. For this reason, it is desirable to reduce the amount of roughening particles electrodeposited on the copper foil surface. On the other hand, if the amount of roughening particles electrodeposited on the copper foil surface is reduced, the anchoring effect of the roughening particles is reduced. As a result, sufficient adhesion between the copper foil and the resin substrate is not obtained.
  • silane coupling treatment layer has the effect of improving the adhesion between the copper foil and the resin substrate, depending on the type of the silane coupling treatment layer, the effect of improving the adhesion may not be sufficient.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a surface-treated copper foil capable of improving adhesion to a resin substrate, particularly a resin substrate suitable for high frequency applications.
  • Another object of the present invention in another aspect, is to provide a copper-clad laminate having excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a surface-treated copper foil.
  • an object of the present invention is to provide a printed wiring board having excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a circuit pattern.
  • the inventors conducted extensive research into surface-treated copper foil to solve the above problems. Based on the knowledge that the solid volume Vmp of the peaks of the surface treatment layer is related to the complexity of the shape of the surface treatment layer (particularly the roughening particles in the roughening layer), they discovered that by controlling the solid volume Vmp of the peaks of the surface treatment layer within a predetermined range, it is possible to increase the anchor effect of the surface treatment layer and improve the adhesion between the surface-treated copper foil and the resin substrate.
  • an embodiment of the present invention relates to a surface-treated copper foil having a copper foil and a surface treatment layer formed on at least one side of the copper foil, wherein the substantial volume Vmp of the peaks of the surface treatment layer is 0.022 to 0.060 ⁇ m 3 / ⁇ m 2 .
  • an embodiment of the present invention relates to a copper-clad laminate comprising the above-mentioned surface-treated copper foil and a resin base material adhered to the surface treatment layer of the surface-treated copper foil. Furthermore, in another aspect, an embodiment of the present invention relates to a printed wiring board having a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate.
  • a surface-treated copper foil capable of improving adhesion to a resin substrate, particularly a resin substrate suitable for high frequency applications.
  • an embodiment of the present invention can provide a copper-clad laminate having excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a surface-treated copper foil.
  • a printed wiring board having excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a circuit pattern can be provided.
  • FIG. 1 is a graph showing a typical load curve of a surface treatment layer.
  • FIG. 1 is a cross-sectional view showing a schematic diagram of a surface-treated copper foil having a roughened layer on one side thereof, which is an example of an embodiment of the present invention.
  • the surface-treated copper foil according to the embodiment of the present invention has a copper foil and a surface treatment layer formed on at least one surface of the copper foil, and the substantial volume Vmp of the peaks of the surface treatment layer is 0.022 to 0.060 ⁇ m 3 / ⁇ m 2 . According to the above-mentioned configuration, it is possible to realize a surface-treated copper foil capable of improving adhesion to a resin substrate, particularly a resin substrate suitable for high frequency applications.
  • the surface treatment layer may be formed on only one side of the copper foil, or on both sides of the copper foil.
  • the types of the surface treatment layer may be the same or different.
  • the types of surface treatment layers formed on both sides of the copper foil are different, for example, a surface treatment layer including a roughening layer is formed on one side of the copper foil, and a surface treatment layer not including a roughening layer is formed on the other side of the copper foil.
  • the surface shape of the surface treatment layer can be specified using a surface texture parameter, which is obtained by measuring the surface shape and analyzing a load curve calculated from the measurement data in accordance with ISO 25178-2:2012.
  • the area coverage ratio is a ratio obtained by dividing an area corresponding to a cross section of a three-dimensional object to be measured when the object is cut at a plane of a certain height by the area of the measurement field.
  • the object to be measured is assumed to be a copper foil or a surface treatment layer of a surface-treated copper foil.
  • the load curve is a curve that represents the load areal ratio at each height.
  • the height near the load areal ratio of 0% represents the height of the highest part of the object to be measured.
  • the height near the load areal ratio of 100% represents the height of the lowest part of the object to be measured.
  • FIG. 1 is a graph showing a typical load curve of a surface treatment layer.
  • the load curve can be used to express the volume of the solid part and the volume of the void part of the surface treatment layer.
  • the volume of the solid part corresponds to the volume of the part occupied by the substance of the measurement object in the measurement field of view.
  • the volume of the void part corresponds to the volume occupied by the space between the solid parts in the measurement field of view.
  • the load curve is divided into a valley portion, a core portion, and a peak portion, with the boundaries being the positions of the load areal ratios of 10% and 80%.
  • Vvv means the volume of the space in the valley of the surface treatment layer
  • Vvc means the volume of the space in the core of the surface treatment layer
  • Vmp means the volume of the substance in the peak of the surface treatment layer
  • Vmc means the volume of the substance in the core of the surface treatment layer.
  • Sk means the level difference of the core of the surface treatment layer (the difference between the upper limit level and the lower limit level of the core)
  • Spk means the average height of the peak of the surface treatment layer
  • Svk means the average depth of the valley of the surface treatment layer.
  • the peaks are the high parts of the object
  • the valleys are the low parts
  • the cores are the parts of the object that are not the peaks or valleys, that is, the parts that are close to the average height.
  • the volume Vmp of the peaks of the surface treatment layer (hereinafter, sometimes simply referred to as "Vmp") is related to the complexity of the shape of the surface treatment layer.
  • the volume Vmp is related to the complexity of the shape of the roughening particles that constitute the roughening layer.
  • the Vmp of the surface treatment layer is specified to be 0.022 to 0.060 ⁇ m 3 / ⁇ m 2. If the Vmp is within this range, the anchor effect of the surface treatment layer can be enhanced, and the adhesion between the surface-treated copper foil and the resin substrate is improved.
  • the Vmp of the surface treatment layer is 0.022 ⁇ m 3 / ⁇ m 2 or more, the complexity of the surface treatment layer is improved and the desired anchor effect can be obtained. If the Vmp of the surface treatment layer is 0.060 ⁇ m 3 / ⁇ m 2 or less, the transmission loss can be reduced. From the viewpoint of stably enhancing the anchor effect of the surface treatment layer, the Vmp of the surface treatment layer is preferably 0.030 to 0.055 ⁇ m 3 / ⁇ m 2 , and more preferably 0.035 to 0.046 ⁇ m 3 / ⁇ m 2 .
  • the average height Spk of the peaks of the surface treatment layer (hereinafter sometimes simply referred to as "Spk") is related to the ease with which the peaks (parts higher than the average) of the surface treatment layer penetrate into the resin substrate when the surface treatment layer is bonded to the resin substrate.
  • the average height Spk is related to the ease with which the parts higher than the average of the roughening particles constituting the roughening layer penetrate into the resin substrate.
  • the Spk of the surface treatment layer may be 0.42 to 1.00 ⁇ m from the viewpoint of ensuring that the peaks of the surface treatment layer bite into the resin substrate.
  • the Spk of the surface treatment layer is more preferably 0.60 to 0.95 ⁇ m, and further preferably 0.71 to 0.90 ⁇ m.
  • the surface treatment layer may have a developed interface area ratio Sdr (hereinafter sometimes simply abbreviated as "Sdr") of 40 to 130%.
  • Sdr is a composite parameter defined in ISO 25178-2:2012, and represents the size of the surface area of the surface treatment layer. Therefore, if the Sdr of the surface treatment layer is too large, the surface of the surface treatment layer becomes dense and rough, so that the anchor effect is easily exhibited when the surface-treated copper foil is bonded to a resin substrate, but the inventors believe that the transmission loss increases due to the skin effect. Therefore, by setting the Sdr of the surface treatment layer within the above range, it is possible to ensure a balance between ensuring the anchor effect and suppressing the transmission loss. From the viewpoint of stably ensuring this effect, the Sdr of the surface treatment layer is more preferably from 53 to 120%, and further preferably from 62 to 110%.
  • the surface of the copper foil on which the surface treatment layer is formed generally has minute unevenness.
  • minute unevenness exists on the copper foil, for example, when forming a roughening treatment layer, current concentrates around the convex parts, causing the roughening particles to overgrow, while current is not sufficiently supplied around the concave parts, making it difficult for the roughening particles to grow.
  • the anchoring effect of the roughening particles is reduced, and sufficient adhesion between the copper foil and the resin substrate may not be obtained.
  • the inventors believe that if the Sdr of the surface treatment layer is within the above range, there is a possibility that the roughening particles are sufficiently formed around the minute recesses of the copper foil, and the formation region (area) of the roughening particles that contribute to the adhesive strength with the resin substrate is increased, resulting in improved adhesion between the surface-treated copper foil and the resin substrate.
  • the amount of Zn attached in the surface treatment layer is not particularly limited, but is preferably 6 to 200 ⁇ m/ dm2 . By controlling the amount of Zn attached in this range, the solder heat resistance of the circuit pattern formed from the surface-treated copper foil can be improved. From the viewpoint of stably improving this effect, the amount of Zn attached in the surface treatment layer is more preferably 82 to 200 ⁇ m/ dm2 .
  • the amount of Zn attached in the surface treatment layer can be measured by dissolving the surface treatment layer in 20% by mass nitric acid and performing quantitative analysis by atomic absorption spectrometry using an atomic absorption spectrophotometer (AA240FS, manufactured by VARIAN). When the surface treatment layer is provided on both sides of the copper foil, the surface of the surface treatment layer that is not the measurement target is protected, and then the surface treatment layer to be measured is dissolved and quantitatively analyzed.
  • the type of the surface treatment layer is not particularly limited as long as it has the above-mentioned surface shape, and various surface treatment layers known in the art can be used.
  • the surface treatment layer include a roughening treatment layer, a chemical resistance treatment layer, a heat resistance treatment layer, a chromate treatment layer, a silane coupling treatment layer, etc. These layers may be used alone or in combination of two or more.
  • the surface treatment layer preferably contains a roughening treatment layer from the viewpoint of adhesion to the resin substrate.
  • the surface treatment layer contains one or more layers selected from the group consisting of a chemical resistance treatment layer, a heat resistance treatment layer, a chromate treatment layer, and a silane coupling treatment layer, it is preferable that these layers are provided on the roughening treatment layer.
  • the roughening treatment layer contains roughening particles.
  • the roughening particles may contain primary roughening particles and secondary roughening particles.
  • the secondary roughening particles may have a chemical composition different from that of the primary roughening particles.
  • a cover plating layer is formed on at least a part of the surface of the primary roughening particles.
  • FIG. 2 is a cross-sectional view that shows a schematic diagram of a surface-treated copper foil having a roughening layer on one side of the copper foil.
  • an example of an embodiment of the present invention includes a roughening treatment layer formed on one side of a copper foil (10).
  • the roughening treatment layer includes primary roughening particles (20), a cover plating layer (30) covering the primary roughening particles (20), and secondary roughening particles (40) formed on the cover plating layer (30). It is preferable that the primary roughening particles (20) covered with the cover plating layer (30) are substantially spherical, and the secondary roughening particles (40) are formed so as to spread out in a dendritic shape. It is considered that a surface treatment layer in which Vmp, Spk, and Sdr are controlled within the above ranges has such a cross-sectional structure.
  • the roughening particles may be formed from, but are not limited to, a single element selected from the group consisting of copper, nickel, cobalt, phosphorus, tungsten, arsenic, molybdenum, chromium and zinc, or an alloy containing two or more of these elements.
  • the primary roughening particles are preferably formed from copper or a copper alloy, especially copper.
  • the secondary roughening particles are preferably formed from an alloy containing copper, cobalt and nickel.
  • the cover plating layer is not particularly limited, but may be formed from copper, silver, gold, nickel, cobalt, zinc, etc. Among these, it is preferable that the cover plating layer is formed from copper.
  • the roughened layer can be formed, for example, by performing a primary roughening treatment to form primary roughening particles, followed by cover plating to form a cover plating layer, and then a secondary roughening treatment to form secondary roughening particles.
  • a primary roughening treatment to form primary roughening particles
  • cover plating to form a cover plating layer
  • secondary roughening treatment to form secondary roughening particles.
  • Each particle and layer can be formed by electroplating.
  • the primary roughening particles can be formed by electroplating using a plating solution containing a trace amount of a tungsten compound.
  • the cover plating layer and the secondary roughening particles can be formed by electroplating using a plating solution containing a predetermined component.
  • the tungsten compound is not particularly limited, but for example, sodium tungstate (Na 2 WO 4 ) can be used.
  • the content of the tungsten compound in the plating solution is preferably 1 ppm or more.
  • On the surface of the copper foil on which the roughening treatment layer is formed there are minute recesses such as oil pits, and the roughening particles may be too small or not formed around the recesses.
  • the upper limit of the content of the tungsten compound is not particularly limited, but it is preferably 20 ppm from the viewpoint of suppressing the increase in electrical resistance.
  • the electroplating conditions for forming the roughened layer are not particularly limited and may be adjusted depending on the electroplating apparatus used, but typical conditions are as follows: Each electroplating may be performed once or multiple times. (Conditions for forming primary roughening particles)
  • Plating solution composition 5-15 g/L Cu, 40-100 g/L sulfuric acid, 1-6 ppm sodium tungstate Plating solution temperature: 20-50° C.
  • Electroplating conditions current density 30 to 90 A/dm 2 , time 0.1 to 8 seconds
  • Plating solution composition 10-30 g/L Cu, 70-130 g/L sulfuric acid Plating solution temperature: 30-60° C.
  • Electroplating conditions current density 4.8 to 15 A/dm 2 , time 0.1 to 8 seconds
  • Plating solution composition 10-20 g/L Cu, 5-15 g/L Co, 5-15 g/L Ni Plating solution temperature: 30 to 50°C
  • Electroplating conditions current density 24-50 A/dm 2 , time 0.3-0.8 seconds
  • the chemical resistance layer and the heat resistance layer are not particularly limited and can be formed from materials known in the art. Since the chemical resistance layer may also function as a heat resistance layer, a single layer having both the functions of the chemical resistance layer and the heat resistance layer may be formed as the chemical resistance layer and the heat resistance layer.
  • the chemical resistance layer and/or heat resistance layer may be a layer containing one or more elements (which may be in any form such as metal, alloy, oxide, nitride, sulfide, etc.) selected from the group consisting of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum.
  • the chemical resistance layer is preferably a Co-Ni layer.
  • the heat resistance layer is preferably a Ni-Zn layer.
  • the chemical-resistant layer and heat-resistant layer can be formed by electroplating.
  • the conditions are not particularly limited and can be adjusted according to the electroplating equipment used, but the conditions for forming the chemical-resistant layer (Co-Ni layer) and heat-resistant layer (Ni-Zn layer) using a general electroplating equipment are as follows. Note that electroplating may be performed once or multiple times.
  • Plating solution composition 1-8 g/L Co, 5-20 g/L Ni Plating solution pH: 2 to 3
  • Electroplating conditions current density 1 to 20 A/dm 2 , time 0.3 to 0.6 seconds
  • Plating solution composition 1 to 30 g/L Ni, 1 to 30 g/L Zn Plating solution pH: 2 to 5 Plating solution temperature: 30 to 50°C
  • Electroplating conditions current density 0.1 to 10 A/dm 2 , time 0.1 to 5 seconds
  • the chromate treatment layer is not particularly limited and can be formed from materials known in the art.
  • the term "chromate treatment layer” means a layer formed from a liquid containing chromic anhydride, chromic acid, dichromate, a chromate salt, or a dichromate salt.
  • the chromate-treated layer may be a layer containing one or more elements (which may be in any form such as metal, alloy, oxide, nitride, sulfide, etc.) selected from the group consisting of cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic, and titanium.
  • Examples of the chromate-treated layer include a chromate-treated layer treated with an aqueous solution of chromic anhydride or potassium dichromate, and a chromate-treated layer treated with a treatment solution containing chromic anhydride or potassium dichromate and zinc.
  • the chromate treatment layer can be formed by a known method such as immersion chromate treatment, electrolytic chromate treatment, etc.
  • the conditions are not particularly limited, but for example, the conditions for forming a general chromate treatment layer are as follows.
  • the chromate treatment may be performed once or multiple times.
  • Chromate solution composition 1-10 g/L K 2 Cr 2 O 7 , 0.01-10 g/L Zn Chromate solution pH: 2 to 5
  • Chromate solution temperature 30 to 55°C
  • Electrolysis conditions current density 0.1 to 10 A/dm 2 , time 0.1 to 5 seconds (in the case of electrolytic chromate treatment)
  • the silane coupling treatment layer is not particularly limited, and can be formed from a material known in the art.
  • the term "silane coupling treatment layer” means a layer formed with a silane coupling agent.
  • the silane coupling agent is not particularly limited, and can be one known in the art.
  • Examples of the silane coupling agent include amino-based silane coupling agents, epoxy-based silane coupling agents, mercapto-based silane coupling agents, methacryloxy-based silane coupling agents, vinyl-based silane coupling agents, imidazole-based silane coupling agents, and triazine-based silane coupling agents. Among these, amino-based silane coupling agents and epoxy-based silane coupling agents are preferred.
  • the above silane coupling agents can be used alone or in combination of two or more.
  • a representative method for forming the silane coupling treatment layer is to apply a 1 to 3 volume % aqueous solution of the above-mentioned silane coupling agent and dry it to form the silane coupling treatment layer.
  • the copper foil is not particularly limited, and may be either an electrolytic copper foil or a rolled copper foil.
  • Electrolytic copper foil is generally produced by electrolytically depositing copper from a copper sulfate plating bath onto a titanium or stainless steel drum, and has a flat S-side (shine side) formed on the rotating drum side and an M-side (matte side) formed on the opposite side of the S-side.
  • the M-side of electrolytic copper foil generally has minute irregularities.
  • the S-side of electrolytic copper foil has minute irregularities due to the transfer of polishing streaks formed by the rotating drum during polishing.
  • the rolled copper foil has minute irregularities on its surface due to the formation of oil pits by the rolling oil during rolling.
  • the material of the copper foil is not particularly limited, but when the copper foil is rolled copper foil, high purity copper such as tough pitch copper (JIS H3100 alloy number C1100) and oxygen-free copper (JIS H3100 alloy number C1020 or JIS H3510 alloy number C1011) that are usually used as circuit patterns for printed wiring boards can be used.
  • high purity copper such as tough pitch copper (JIS H3100 alloy number C1100) and oxygen-free copper (JIS H3100 alloy number C1020 or JIS H3510 alloy number C1011) that are usually used as circuit patterns for printed wiring boards can be used.
  • copper alloys such as copper containing Sn, copper containing Ag, copper alloys containing Cr, Zr, or Mg, and Corson copper alloys containing Ni and Si can also be used.
  • the term "copper foil” is a concept that includes copper alloy foil.
  • the rolled copper foil may have a composition containing 99.0 mass% or more of Cu, 0.003 to 0.825 mass% of one or more elements selected from the group consisting of P, Ti, Sn, Ni, Be, Zn, In, and Mg, with the balance being unavoidable impurities.
  • the rolled copper foil may also have a composition containing 99.9 mass% or more of Cu, 0.0005 mass% to 0.0220 mass% of P, with the balance being unavoidable impurities.
  • the rolled copper foil may have a composition containing 99.0 mass% or more of Cu, with the balance being unavoidable impurities.
  • the copper foil when the copper foil is a rolled copper foil, the average crystal grain size may be 0.5 to 4.0 ⁇ m and the tensile strength in the rolling direction may be 235 to 290 MPa. Furthermore, the rolled copper foil may have a conductivity of 75% IACS or more. The conductivity of the copper foil can be measured at room temperature (25° C.) by a four-terminal method in accordance with JIS H0505 (1975).
  • the thickness of the copper foil is not particularly limited, but can be, for example, 1 to 1000 ⁇ m, 1 to 500 ⁇ m, 1 to 300 ⁇ m, 3 to 100 ⁇ m, 5 to 70 ⁇ m, 6 to 35 ⁇ m, or 9 to 18 ⁇ m.
  • the surface-treated copper foil having the above-mentioned configuration can be manufactured according to a method known in the art.
  • the surface property parameters such as Vmp of the surface treatment layer can be controlled by adjusting the formation conditions of the surface treatment layer, in particular the formation conditions of the roughening treatment layer described above.
  • the Vmp of the surface treatment layer is controlled to 0.022 to 0.060 ⁇ m 3 / ⁇ m 2 , and therefore the adhesion to resin substrates, particularly resin substrates suitable for high frequency applications, can be improved.
  • a copper-clad laminate according to an embodiment of the present invention comprises the above-mentioned surface-treated copper foil and a resin substrate adhered to the surface treatment layer of the surface-treated copper foil.
  • This copper-clad laminate can be produced by adhering a resin substrate to the surface-treated layer of the above-mentioned surface-treated copper foil.
  • the resin substrate is not particularly limited, and can be one known in the art. Examples of the resin substrate include paper-based phenolic resin, paper-based epoxy resin, synthetic fiber cloth-based epoxy resin, glass cloth/paper composite substrate epoxy resin, glass cloth/glass nonwoven fabric composite substrate epoxy resin, glass cloth-based epoxy resin, polyester film, polyimide resin, liquid crystal polymer, fluororesin, etc. Among these, polyimide resin is preferred as the resin substrate.
  • resin substrates particularly suitable for high frequency applications include resin substrates formed from low dielectric materials.
  • low dielectric materials include liquid crystal polymers, low dielectric polyimides, fluororesins, etc.
  • the low dielectric material may be, for example, a material having a dielectric constant of 3.5 or less at 1 MHz.
  • the low dielectric material suitable for high frequency applications may be a material having a dielectric constant of 3.4 or less at 30 GHz.
  • the method for bonding the surface-treated copper foil to the resin substrate is not particularly limited and may be any method known in the art.
  • the surface-treated copper foil and the resin substrate may be laminated and then thermocompressed.
  • the copper-clad laminate produced as described above can be used in the production of printed wiring boards.
  • the copper-clad laminate according to the embodiment of the present invention uses the above-mentioned surface-treated copper foil, which allows for improved adhesion to resin substrates, particularly resin substrates suitable for high-frequency applications.
  • a printed wiring board includes a circuit pattern formed by etching the surface-treated copper foil of the above-mentioned copper-clad laminate.
  • This printed wiring board can be produced by etching the surface-treated copper foil of the above-mentioned copper-clad laminate to form a circuit pattern.
  • the method for forming the circuit pattern is not particularly limited, and known methods such as a subtractive method, a semi-additive method, etc. can be used. Among these, the subtractive method is preferred as the method for forming the circuit pattern.
  • a printed wiring board is manufactured by the subtractive method, it is preferably carried out as follows. First, a resist is applied to the surface of the surface-treated copper foil of a copper-clad laminate, and a predetermined resist pattern is formed by exposing and developing it. Next, the surface-treated copper foil in the portion where the resist pattern is not formed (i.e., the unnecessary portion) is removed by etching to form a circuit pattern. Finally, the resist pattern on the surface-treated copper foil is removed.
  • the conditions for this subtractive method are not particularly limited, and the method can be carried out according to the conditions known in the art.
  • the printed wiring board according to the embodiment of the present invention uses the above-mentioned copper-clad laminate, and therefore has excellent adhesion between the resin substrate, particularly the resin substrate suitable for high-frequency applications, and the circuit pattern.
  • Example 1 A rolled copper foil (HG foil manufactured by JX Metals Corporation) having a thickness of 12 ⁇ m was prepared. Both sides of the copper foil were degreased and pickled, and then a roughening treatment layer, a chemical resistance treatment layer (Co—Ni layer), a heat resistance treatment layer (Ni—Zn layer), a chromate treatment layer, and a silane coupling treatment layer were sequentially formed as surface treatment layers on one side (hereinafter referred to as the “first side”) to obtain a surface-treated copper foil.
  • the conditions for forming each treatment layer were as follows.
  • Plating solution composition 20 g/L Cu, 100 g/L sulfuric acid Plating solution temperature: 50° C.
  • Plating solution composition 15.5 g/L Cu, 7.5 g/L Co, 9.5 g/L Ni Plating solution temperature: 50°C
  • Electroplating conditions current density 33.3 A/dm 2 , time 0.55 seconds
  • Chromate Treatment Layer/First Surface ⁇ Conditions for Forming Electrolytic Chromate Treatment Layer> Chromate solution composition: 3 g/L K2Cr2O7 , 0.33 g/L Zn Chromate solution pH: 3.7 Chromate solution temperature: 55°C Electrolysis conditions: current density 1.2 A/dm 2 , time 0.90 seconds Number of chromate treatments: 2 times
  • Silane coupling treatment layer/first surface A 1.2% by volume aqueous solution of N-2-(aminoethyl)-3-aminopropyltrimethoxysilane was applied and dried to form a silane coupling treatment layer.
  • Example 2 A surface-treated copper foil was obtained under the same conditions as in Example 1, except that the electroplating conditions for forming the primary roughening particles were changed to a current density of 43.7 A/ dm2 , and the electroplating conditions for forming the cover plating layer were changed to a current density of 12.3 A/ dm2 and a time of 1.8 seconds.
  • Example 3 A surface-treated copper foil was obtained under the same conditions as in Example 1, except that the electroplating conditions for forming the heat-resistant layer (Ni-Zn layer) on the first surface were changed to a current density of 0.5 A/dm 2 and a time of 0.90 seconds.
  • Example 4 A surface-treated copper foil was obtained under the same conditions as in Example 1, except that no heat-resistant layer was formed on the first surface, and the electroplating conditions for forming the chemical-resistant layer (Co-Ni layer) were changed to a current density of 3.0 A/ dm2 .
  • Example 5 A surface-treated copper foil was obtained under the same conditions as in Example 1, except that no heat-resistant treatment layer was formed on the first surface, and the electroplating conditions for forming the primary roughening particles were changed to a current density of 31.4 A/ dm2 , and the electroplating conditions for forming the chemical-resistant treatment layer (Co—Ni layer) were changed to a current density of 3.0 A/ dm2 .
  • Example 6 A surface-treated copper foil was obtained under the same conditions as in Example 1, except that no heat-resistant treatment layer was formed on the first surface, and the electroplating conditions for forming the primary roughening particles were changed to a current density of 35.2 A/ dm2 , and the electroplating conditions for forming the chemical-resistant treatment layer (Co—Ni layer) were changed to a current density of 3.0 A/ dm2 .
  • Example 7 A surface-treated copper foil was obtained under the same conditions as in Example 1, except that no heat-resistant treatment layer was formed on the first surface, and the electroplating conditions for forming the primary roughening particles were changed to a current density of 42.9 A/ dm2 , and the electroplating conditions for forming the chemical-resistant treatment layer (Co—Ni layer) were changed to a current density of 3.0 A/ dm2 .
  • Example 8 A surface-treated copper foil was obtained under the same conditions as in Example 1, except that no heat-resistant layer was formed on the first surface, and the electroplating conditions for forming the primary roughening particles were changed to a current density of 46.7 A/ dm2 , and the electroplating conditions for forming the chemical-resistant layer (Co—Ni layer) were changed to a current density of 3.0 A/ dm2 .
  • Example 9 A surface-treated copper foil was obtained under the same conditions as in Example 1, except that no heat-resistant layer was formed on the first surface, and the electroplating conditions for forming the secondary roughening particles were changed to a current density of 28.9 A/ dm2 , and the electroplating conditions for forming the chemical-resistant layer (Co—Ni layer) were changed to a current density of 3.0 A/ dm2 .
  • Example 10 A surface-treated copper foil was obtained under the same conditions as in Example 1, except that no heat-resistant layer was formed on the first surface, and the electroplating conditions for forming the secondary roughening particles were changed to a current density of 37.7 A/ dm2 , and the electroplating conditions for forming the chemical-resistant layer (Co—Ni layer) were changed to a current density of 3.0 A/ dm2 .
  • Example 11 A surface-treated copper foil was obtained under the same conditions as in Example 1, except that no heat-resistant layer was formed on the first surface, and the electroplating conditions for forming the secondary roughening particles were changed to a current density of 42.1 A/ dm2 , and the electroplating conditions for forming the chemical-resistant layer (Co—Ni layer) were changed to a current density of 3.0 A/ dm2 .
  • Example 1 A rolled copper foil (HG foil manufactured by JX Metals Corporation) having a thickness of 12 ⁇ m was prepared. Both sides of the copper foil were degreased and pickled, and then a roughening treatment layer, a chemical resistance treatment layer (Co—Ni layer), a heat resistance treatment layer (Ni—Zn layer), a chromate treatment layer, and a silane coupling treatment layer were sequentially formed as surface treatment layers on one side (first side) to obtain a surface-treated copper foil.
  • the conditions for forming each treatment layer were as follows.
  • Plating solution composition 20 g/L Cu, 100 g/L sulfuric acid Plating solution temperature: 50° C.
  • Chromate Treatment Layer/First Surface ⁇ Conditions for Forming Electrolytic Chromate Treatment Layer> Chromate solution composition: 3 g/L K2Cr2O7 , 0.33 g/L Zn Chromate solution pH: 3.7 Chromate solution temperature: 55°C Electrolysis conditions: current density 1.2 A/dm 2 , time 0.90 seconds Number of chromate treatments: 2 times
  • Silane coupling treatment layer/first surface A 1.2% by volume aqueous solution of N-2-(aminoethyl)-3-aminopropyltrimethoxysilane was applied and dried to form a silane coupling treatment layer.
  • Vmp, Spk and Sdr of Surface Treatment Layer (First Side)> Images were taken using a laser microscope (LEXT OLS4000) manufactured by Olympus Corporation. The captured images were analyzed using analysis software for a laser microscope (LEXT OLS4100) manufactured by Olympus Corporation. Measurements of Vmp, Spk and Sdr of the surface treatment layer were performed in accordance with ISO 25178-2:2012. The measurement results were the average values measured at any 10 points. The temperature during measurement was 23 to 25°C.
  • the measurement was performed using a MiniScan (registered trademark) EZ Model 4000L manufactured by HunterLab Co., Ltd., in accordance with JIS Z8730:2009 to measure L*, a*, and b* of the CIE L*a*b* color system.
  • the measurement target surface of the surface-treated copper foil obtained in the above examples and comparative examples was pressed against the photosensitive part of the measurement device, and measurements were performed while preventing light from entering from outside.
  • the measurements of L*, a*, and b* were performed based on the geometric condition C of JIS Z8722:2009.
  • the main conditions of the measurement device are as follows.
  • Optical system d/8°, integrating sphere size: 63.5 mm, observation light source: D65 Measurement method: Reflection Lighting diameter: 25.4 mm Measurement diameter: 20.0 mm Measurement wavelength/interval: 400-700 nm/10 nm Light source: Pulsed xenon lamp, 1 emission/measurement Traceability standard: National Institute of Standards and Technology (NIST) calibration based on CIE 44 and ASTM E259 Standard observer: 10°
  • the white tiles used as the measurement standards were the following object colors: When measured at D65/10°, the CIE XYZ color system values are X: 81.90, Y: 87.02, and Z: 93.76.
  • ⁇ Peel strength> After laminating the surface-treated copper foil (first surface side) with a resin substrate formed from a low dielectric material, a circuit having a width of 3 mm was formed in the MD direction (longitudinal direction of the rolled copper foil). The formation of the circuit was carried out according to a normal method. Next, the strength (MD 180° peel strength) when the circuit (surface-treated copper foil) was peeled off from the surface of the resin substrate at a speed of 50 mm/min in a 180° direction, i.e., in the MD direction, was measured in accordance with JIS C6471:1995. The measurement was carried out five times, and the average value was taken as the peel strength result. If the peel strength is 0.60 kgf/cm or more, it can be said that the adhesion between the circuit (surface-treated copper foil) and the resin substrate is good.
  • the surface-treated copper foils of Examples 1 to 11 in which the Vmp of the surface treatment layer was within the range of 0.022 to 0.060 ⁇ m 3 / ⁇ m 2 had higher peel strength than Comparative Example 1 in which the Vmp of the surface treatment layer was outside the specified range.
  • Example 12 A surface-treated copper foil was obtained under the same conditions as in Example 1, except that no heat-resistant layer was formed on the first surface and that immersion was performed under the conditions for forming a chromate treatment layer without applying a current.
  • Example 13 A surface-treated copper foil was obtained under the same conditions as in Example 1, except that no heat-resistant layer was formed on the first surface and the electroplating conditions for forming the chromate treatment layer were changed to a current density of 0.64 A/ dm2 .
  • Example 14 A surface-treated copper foil was obtained under the same conditions as in Example 1, except that no heat-resistant layer was formed on the first surface and the electroplating conditions for forming the chromate treatment layer were changed to a current density of 1.4 A/ dm2 .
  • the surface-treated copper foil obtained in the above examples was subjected to measurements of Vmp, Spk, Sdr and peel strength in the same manner as above, and was also evaluated as follows.
  • the surface-treated copper foils of Examples 12 to 14 had a Vmp of the surface treatment layer in the range of 0.022 to 0.060 ⁇ m 3 / ⁇ m 2 , similar to the surface-treated copper foils of Examples 1 to 11, and therefore had higher peel strength than the surface-treated copper foil of Comparative Example 1. Furthermore, the surface-treated copper foils of Examples 12 to 14 had a Zn deposition amount in the surface treatment layer of 6 to 200 ⁇ m/dm 2 , and therefore also had good solder heat resistance. In particular, Examples 13 and 14, in which the Zn deposition amount was 82 to 200 ⁇ m/dm 2 , had particularly excellent solder heat resistance.
  • a surface-treated copper foil that can enhance adhesion to a resin substrate, particularly a resin substrate suitable for high frequency applications. Furthermore, according to an embodiment of the present invention, it is possible to provide a copper-clad laminate that has excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a surface-treated copper foil. Furthermore, according to an embodiment of the present invention, it is possible to provide a printed wiring board that has excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a circuit pattern.
  • the embodiment of the present invention can have the following aspects.
  • the surface-treated copper foil has a substantial volume Vmp of the peaks of the surface treatment layer of 0.022 to 0.060 ⁇ m 3 / ⁇ m 2 .
  • the surface-treated copper foil according to [1] wherein the peaks have a substantial volume Vmp of 0.035 to 0.046 ⁇ m 3 / ⁇ m 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

銅箔と、前記銅箔の少なくとも一方の面に形成された表面処理層とを有する表面処理銅箔である。表面処理層の山部の実体部体積Vmpが0.022~0.060μm3/μm2である。

Description

表面処理銅箔、銅張積層板及びプリント配線板
 本開示は、表面処理銅箔、銅張積層板及びプリント配線板に関する。
 銅張積層板は、フレキシブルプリント配線板などの各種用途において広く用いられている。フレキシブルプリント配線板は、銅張積層板の銅箔をエッチングして導体パターン(「配線パターン」とも称される)を形成し、導体パターン上に電子部品を半田で接続して実装することによって製造される。
 近年、パソコン、モバイル端末などの電子機器では、通信の高速化及び大容量化に伴い、電気信号の高周波化が進んでおり、これに対応可能なフレキシブルプリント配線板が求められている。特に、電気信号の周波数は、高周波になるほど信号電力の損失(減衰)が大きくなり、データが読み取り難くなる。このため、信号電力の損失を低減することが求められている。
 電子回路における信号電力の損失(伝送損失)が起こる原因は大きく二つに分けることができる。その一は、導体損失、すなわち銅箔による損失である。その二は、誘電体損失、すなわち樹脂基材による損失である。
 高周波域では、電流は導体の表面を流れるという特性(すなわち、表皮効果)を有する。このため、銅箔表面が粗いと、複雑な経路を辿って電流が流れることになる。したがって、高周波信号の導体損失を少なくするためには、銅箔の表面粗さを小さくすることが望ましい。
 以下、本明細書において、単に「伝送損失」及び「導体損失」と記載した場合は、「高周波信号の伝送損失」及び「高周波信号の導体損失」を主に意味する。
 誘電体損失は、樹脂基材の種類に依存する。このため、高周波信号が流れる回路基板においては、低誘電材料(例えば、液晶ポリマー、低誘電ポリイミド)から形成された樹脂基材を用いることが望ましい。また、誘電体損失は、銅箔と樹脂基材との間を接着する接着剤によっても影響を受ける。このため、銅箔と樹脂基材との間は接着剤を用いずに接着することが望ましい。
 そこで、銅箔と樹脂基材との間を接着剤なしに接着するために、銅箔の少なくとも一方の面に表面処理層を形成することが提案されている。例えば、特許文献1には、銅箔上に粗化粒子から形成される粗化処理層を設けるとともに、最表層にシランカップリング処理層を形成する方法が提案されている。
特開2012-112009号公報
 銅箔表面が粗化処理されていると、粗化粒子によるアンカー効果によって、銅箔と樹脂基材との間の接着性を高めることができるが、表皮効果によって導体損失を増大させることがある。このため、銅箔表面に電着させる粗化粒子を少なくすることが望ましい。
 他方、銅箔表面に電着させる粗化粒子を少なくすると、粗化粒子によるアンカー効果が低下する。その結果、銅箔と樹脂基材との接着性が十分に得られない。特に、液晶ポリマー、低誘電ポリイミドなどの低誘電材料から形成された樹脂基材は、従来の樹脂基材よりも銅箔と接着し難いため、銅箔と樹脂基材との間の接着性を高める手法の開発が望まれている。
 また、シランカップリング処理層は、銅箔と樹脂基材との間の接着性を向上させる効果を有するものの、その種類によっては、接着性の向上効果が十分ではないこともある。
 本発明の実施形態は、上記のような問題を解決するためになされたものである。本発明の実施形態は、一つの側面において、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔を提供することを目的とする。
 また、本発明の実施形態は、別の側面において、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することを目的とする。
 さらに、本発明の実施形態は、別の側面において、樹脂基材、特に高周波用途に好適な樹脂基材と回路パターンとの間の接着性に優れたプリント配線板を提供することを目的とする。
 本発明者らは、上記の問題を解決すべく表面処理銅箔について鋭意研究を行った結果、表面処理層の山部の実体部体積Vmpが、表面処理層(特に、粗化処理層における粗化粒子)の形状の複雑性と関係しているという知見に基づき、表面処理層の山部の実体部体積Vmpを所定の範囲に制御することにより、表面処理層によるアンカー効果を高め、表面処理銅箔と樹脂基材との接着性を向上させ得ることを見出した。
 すなわち、本発明の実施形態は、一つの側面において、銅箔と、前記銅箔の少なくとも一方の面に形成された表面処理層とを有し、前記表面処理層の山部の実体部体積Vmpが0.022~0.060μm3/μm2である表面処理銅箔に関する。
 また、本発明の実施形態は、別の側面において、前記表面処理銅箔と、前記表面処理銅箔の前記表面処理層に接着された樹脂基材とを備える銅張積層板に関する。
 さらに、本発明の実施形態は、別の側面において、前記銅張積層板の前記表面処理銅箔をエッチングして形成された回路パターンを備えるプリント配線板に関する。
 本発明の実施形態によれば、一つの側面において、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔を提供することができる。
 また、本発明の実施形態によれば、別の側面において、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することができる。
 さらに、本発明の実施形態によれば、別の側面において、樹脂基材、特に高周波用途に好適な樹脂基材と回路パターンとの間の接着性に優れたプリント配線板を提供することができる。
表面処理層の典型的な負荷曲線を示すグラフである。 本発明の実施形態の一例である、銅箔の一方の面に粗化処理層を有する表面処理銅箔を模式的に示した断面図である。
 以下、本発明の好適な実施形態について具体的に説明するが、本発明はこれらに限定されて解釈されるべきものではなく、本発明の要旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、改良などを行うことができる。以下の実施形態に開示されている複数の構成要素は、適宜な組み合わせにより、種々の発明を形成できる。例えば、以下の実施形態に示される全構成要素からいくつかの構成要素を削除してもよいし、異なる実施形態の構成要素を適宜組み合わせてもよい。
 本発明の実施形態に係る表面処理銅箔は、銅箔と、銅箔の少なくとも一方の面に形成された表面処理層とを有し、当該表面処理層の山部の実体部体積Vmpが0.022~0.060μm3/μm2である。
 以上の構成によれば、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔を実現できる。
 表面処理層は、銅箔の一方の面のみに形成されていてもよいし、銅箔の両方の面に形成されていてもよい。銅箔の両方の面に表面処理層が形成される場合、表面処理層の種類は同一であっても異なっていてもよい。銅箔の両方の面に形成される表面処理層の種類が異なる場合、例えば、粗化処理層を含む表面処理層が銅箔の一方の面に形成され、粗化処理層を含まない表面処理層が銅箔の他方の面に形成される。
 表面処理層の表面形状は、表面性状パラメータを用いて特定することができる。表面性状パラメータは、ISO 25178-2:2012に準拠し、表面形状を測定し、測定データから算出した負荷曲線を解析することによって得られる。
 負荷曲線の説明をするにあたり、まず、負荷面積率について説明する。
 負荷面積率とは、立体的な測定対象物を、ある高さの面で切断した場合の測定対象物の断面に相当する領域を測定視野の面積で除して求められる割合のことである。なお、本開示において、測定対象物としては、銅箔や表面処理銅箔の表面処理層などを想定している。
 負荷曲線は、各高さにおける負荷面積率を表した曲線である。負荷面積率0%付近の高さは測定対象物の最も高い部分の高さを表す。負荷面積率100%付近の高さは測定対象物の最も低い部分の高さを表す。
 図1は、表面処理層の典型的な負荷曲線を示すグラフである。
 負荷曲線を活用して、表面処理層の実体部体積及び空間部体積を表現することができる。実体部体積とは、測定視野において測定対象物の実体が占める部分の体積に相当する。空間部体積とは、測定視野における実体部分の間の空間が占める体積に相当する。
 本開示に記載の負荷曲線においては、負荷面積率が10%及び80%の位置を境界として、谷部、コア部及び山部に分けられる。
 図1を参照しつつ、本発明の実施形態に係る表面処理層に対応させて、各パラメータを説明する。Vvvは表面処理層の谷部の空間部体積、Vvcは表面処理層のコア部の空間部体積、Vmpは表面処理層の山部の実体部体積、Vmcは表面処理層のコア部の実体部体積をそれぞれ意味する。Skは表面処理層のコア部のレベル差(コア部の上限レベルと下限レベルとの差)、Spkは表面処理層の山部の平均高さ、Svkは表面処理層の谷部の平均深さをそれぞれ意味する。
 なお、山部とは、測定対象物の中でも高さが高い部分のことである。谷部とは、測定対象物の中でも高さが低い部分のことである。コア部とは、測定対象物のうち、山部と谷部以外の部分、すなわち、平均に近い高さの部分である。
 表面処理層の山部の実体部体積Vmp(以下、単に「Vmp」と省略することがある)は、表面処理層の形状の複雑性と関係する。特に、表面処理層が粗化処理層を含む場合、粗化処理層を構成する粗化粒子の形状の複雑性と関係する。
 上記の通り、本発明の実施形態に係る表面処理銅箔において、表面処理層のVmpが0.022~0.060μm3/μm2に規定される。この範囲のVmpであれば、表面処理層のアンカー効果を高めることができるため、表面処理銅箔と樹脂基材との接着性が向上する。表面処理層のVmpが0.022μm3/μm2以上であると、表面処理層の複雑性が向上し、所望のアンカー効果が得られる。表面処理層のVmpが0.060μm3/μm2以下であると、伝送損失を低減できる。
 表面処理層のVmpは、表面処理層のアンカー効果を安定して高める観点から、0.030~0.055μm3/μm2が好ましく、0.035~0.046μm3/μm2がより好ましい。
 表面処理層の山部の平均高さSpk(以下、単に「Spk」と省略することがある)は、表面処理層を樹脂基材と接着させる際に、表面処理層の山部(平均よりも高い部分)の樹脂基材への食い込み易さと関係する。特に、表面処理層が粗化処理層を含む場合、粗化処理層を構成する粗化粒子の平均よりも高い部分の樹脂基材への食い込み易さと関係する。
 表面処理層のVmpが上記の範囲にある場合、表面処理層の山部の樹脂基材への食い込みを確保する観点から、表面処理層のSpkが0.42~1.00μmであってもよい。この範囲のSpkであれば、表面処理層の山部の樹脂基材への食い込みによるアンカー効果を高めることができるため、表面処理銅箔と樹脂基材との接着性が向上する。表面処理層のSpkが0.42μm以上であると、表面処理層の山部が樹脂基材へ食い込み易くなり、所望のアンカー効果が得られる。表面処理層のSpkが1.00μm以下であると、例えば、粗化粒子が折れ難くなり、所望のアンカー効果が得られる。
 表面処理層のSpkは、表面処理層の山部の樹脂基材への食い込みを安定して確保する観点から、0.60~0.95μmがより好ましく、0.71~0.90μmが更に好ましい。
 表面処理層は、展開界面面積率Sdr(以下、単に「Sdr」と省略することがある)が40~130%であってもよい。
 Sdrは、ISO 25178-2:2012に規定される複合パラメータであり、表面処理層の表面積の大きさを表す。したがって、表面処理層のSdrが大きすぎると、表面処理層の表面が緻密で起伏が激しくなるため、表面処理銅箔を樹脂基材に接着した場合にアンカー効果が発揮され易くなる一方、表皮効果によって伝送損失が大きくなると発明者は考える。そのため、表面処理層のSdrを上記の範囲とすることにより、アンカー効果の確保と伝送損失の抑制とのバランスを確保することができる。
 表面処理層のSdrは、この効果を安定して確保する観点から、53~120%がより好ましく、62~110%が更に好ましい。
 表面処理層が形成される銅箔の表面には、一般的に微小な凹凸部が存在する。例えば、圧延銅箔の場合、圧延時に圧延油によって形成されるオイルピットが微小な凹部として表面に形成される。また、電解銅箔の場合、研磨時に形成された回転ドラムの研磨スジが、回転ドラム上に析出形成される電解銅箔の回転ドラム側表面の微小な凹凸部の原因となる。銅箔に微小な凹凸部が存在すると、例えば、粗化処理層を形成する際に、凸部周辺では電流が集中して粗化粒子が過成長する一方、凹部周辺では電流が十分に供給されず、粗化粒子が成長し難くなる。その結果、銅箔の凸部周辺には粗大な粗化粒子が形成される一方、銅箔の凹部周辺には粗化粒子が過小になるか又は形成されないという状態、すなわち、銅箔表面の粗化粒子が均一に形成されていない状態になる。粗大な粗化粒子が多い表面処理銅箔では、樹脂基材との接合後、表面処理銅箔を剥離させる力を付与すると、粗大な粗化粒子に応力が集中して折れ易くなる結果、樹脂基材に対する接着力が低下することがある。また、粗化粒子の大きさが不十分な表面処理銅箔では、粗化粒子によるアンカー効果が低下し、銅箔と樹脂基材との接着性が十分に得られないことがある。
 表面処理層のSdrが上記の範囲であれば、銅箔の微小な凹部の周辺にも粗化粒子が十分形成されている可能性があり、樹脂基材との接着力に寄与する粗化粒子の形成領域(面積)が増加する結果、表面処理銅箔と樹脂基材との接着性が向上すると発明者は考える。
 表面処理層におけるZn付着量は、特に限定されないが、6~200μm/dm2であることが好ましい。この範囲にZn付着量を制御することにより、表面処理銅箔から形成される回路パターンのはんだ耐熱性を向上させることができる。この効果を安定して向上させる観点から、表面処理層におけるZn付着量は、82~200μm/dm2であることがより好ましい。
 表面処理層におけるZn付着量は、表面処理層を20質量%の硝酸に溶解し、原子吸光分光光度計(VARIAN社製、AA240FS)を用いて原子吸光法で定量分析を行うことによって測定することができる。銅箔の両面に表面処理層が設けられている場合は、測定対象ではない表面処理層の表面を保護した後に、測定対象の表面処理層を溶解させて定量分析を行う。
 表面処理層の種類は、上記の表面形状を有していれば特に限定されず、当該技術分野において公知の各種表面処理層を用いることができる。
 表面処理層の例としては、粗化処理層、耐薬品処理層、耐熱処理層、クロメート処理層、シランカップリング処理層などが挙げられる。これらの層は、単一又は2種以上を組み合わせて用いることができる。その中でも表面処理層は、樹脂基材との接着性の観点から、粗化処理層を含有することが好ましい。
 表面処理層が、耐薬品処理層、耐熱処理層、クロメート処理層及びシランカップリング処理層からなる群から選択される1種以上の層を含有する場合、これらの層は粗化処理層上に設けられることが好ましい。
 粗化処理層は粗化粒子を含有する。粗化粒子は、1次粗化粒子及び2次粗化粒子を含有していてもよい。2次粗化粒子は、1次粗化粒子とは異なる化学組成を有していてもよい。また、1次粗化粒子の表面の少なくとも一部にはかぶせめっき層が形成されていることが好ましい。
 図2は、銅箔の一方の面に粗化処理層を有する表面処理銅箔を模式的に示す断面図である。
 図2に示されるように、本発明の実施形態の一例は、銅箔(10)の一方の面に形成された粗化処理層を含む。粗化処理層は、1次粗化粒子(20)と、1次粗化粒子(20)を被覆するかぶせめっき層(30)と、かぶせめっき層(30)上に形成された2次粗化粒子(40)とを含む。かぶせめっき層(30)で被覆された1次粗化粒子(20)は略球状であり、2次粗化粒子(40)は樹枝状に広がるように形成されていることが好ましい。Vmp、Spk及びSdrが上記の範囲に制御された表面処理層は、このような断面構造を有していると考えられる。
 粗化粒子は、特に限定されないが、銅、ニッケル、コバルト、リン、タングステン、ヒ素、モリブデン、クロム及び亜鉛からなる群から選択される単一の元素、又はこれらの元素の2種以上を含む合金から形成することができる。
 1次粗化粒子は、銅又は銅合金、特に銅から形成されることが好ましい。
 2次粗化粒子は、銅、コバルト及びニッケルを含む合金から形成されることが好ましい。
 かぶせめっき層は、特に限定されないが、銅、銀、金、ニッケル、コバルト、亜鉛などから形成することができる。その中でも、かぶせめっき層は、銅から形成されることが好ましい。
 粗化処理層は、例えば、1次粗化粒子を形成するための1次粗化処理を行った後に、かぶせめっき層を形成するためのかぶせめっきを行い、次いで2次粗化粒子を形成するための2次粗化処理を行うことによって形成することができる。このような方法で粗化処理を行うことにより、上記のような表面形状を有する表面処理層を形成し易くなる。
 各粒子及び層の形成は、電気めっきによって行うことができる。具体的には、1次粗化粒子は、微量のタングステン化合物を添加しためっき液を用いた電気めっきによって形成することができる。かぶせめっき層及び2次粗化粒子は、所定の成分を含むめっき液を用いた電気めっきによって形成することができる。
 タングステン化合物としては、特に限定されないが、例えば、タングステン酸ナトリウム(Na2WO4)などを用いることができる。
 めっき液におけるタングステン化合物の含有量としては、1ppm以上とすることが好ましい。粗化処理層が形成される銅箔の表面には、オイルピットなどの微小な凹部が存在し、凹部周辺には粗化粒子が過小になるか又は形成されないことがあるが、このような含有量であれば、銅箔の比較的平滑な部分に形成された1次粗化粒子の過成長を抑制するとともに、凹部周辺に1次粗化粒子を形成させ易くなる。なお、タングステン化合物の含有量の上限値は、特に限定されないが、電気抵抗の増大を抑制する観点から、20ppmであることが好ましい。
 粗化処理層を形成する際の電気めっきの条件は、使用する電気めっき装置などに応じて調整すればよく特に限定されないが、典型的な条件は以下の通りである。なお、各電気めっきは、1回であってもよいし、複数回行ってもよい。
(1次粗化粒子の形成条件)
 めっき液組成:5~15g/LのCu、40~100g/Lの硫酸、1~6ppmのタングステン酸ナトリウム
 めっき液温度:20~50℃
 電気めっき条件:電流密度30~90A/dm2、時間0.1~8秒
(かぶせめっき層の形成条件)
 めっき液組成:10~30g/LのCu、70~130g/Lの硫酸
 めっき液温度:30~60℃
 電気めっき条件:電流密度4.8~15A/dm2、時間0.1~8秒
(2次粗化粒子の形成条件)
 めっき液組成:10~20g/LのCu、5~15g/LのCo、5~15g/LのNi
 めっき液温度:30~50℃
 電気めっき条件:電流密度24~50A/dm2、時間0.3~0.8秒
 耐薬品処理層及び耐熱処理層としては、特に限定されず、当該技術分野において公知の材料から形成することができる。なお、耐薬品処理層は耐熱処理層としても機能することがあるため、耐薬品処理層及び耐熱処理層として、耐薬品処理層及び耐熱処理層の両方の機能を有する1つの層を形成してもよい。
 耐薬品処理層及び/又は耐熱処理層としては、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄及びタンタルからなる群から選択される1種以上の元素(金属、合金、酸化物、窒化物、硫化物などのいずれの形態であってもよい)を含む層とすることができる。その中でも、耐薬品処理層はCo-Ni層であることが好ましい。耐熱処理層はNi-Zn層であることが好ましい。
 耐薬品処理層及び耐熱処理層は、電気めっきによって形成することができる。その条件は、使用する電気めっき装置に応じて調整すればよく特に限定されないが、一般的な電気めっき装置を用いて耐薬品処理層(Co-Ni層)及び耐熱処理層(Ni-Zn層)を形成する際の条件は以下の通りである。なお、電気めっきは、1回であってもよいし、複数回行ってもよい。
(耐薬品処理層:Co-Ni層の形成条件)
 めっき液組成:1~8g/LのCo、5~20g/LのNi
 めっき液pH:2~3
 めっき液温度:40~60℃
 電気めっき条件:電流密度1~20A/dm2、時間0.3~0.6秒
(耐熱処理層:Ni-Zn層の形成条件)
 めっき液組成:1~30g/LのNi、1~30g/LのZn
 めっき液pH:2~5
 めっき液温度:30~50℃
 電気めっき条件:電流密度0.1~10A/dm2、時間0.1~5秒
 クロメート処理層としては、特に限定されず、当該技術分野において公知の材料から形成することができる。
 ここで、本明細書において「クロメート処理層」とは、無水クロム酸、クロム酸、二クロム酸、クロム酸塩又は二クロム酸塩を含む液で形成された層を意味する。
 クロメート処理層は、コバルト、鉄、ニッケル、モリブデン、亜鉛、タンタル、銅、アルミニウム、リン、タングステン、錫、ヒ素及びチタンからなる群から選択される1種以上の元素(金属、合金、酸化物、窒化物、硫化物などのいずれの形態であってもよい)を含む層とすることができる。クロメート処理層の例としては、無水クロム酸又は二クロム酸カリウム水溶液で処理したクロメート処理層、無水クロム酸又は二クロム酸カリウム及び亜鉛を含む処理液で処理したクロメート処理層などが挙げられる。
 クロメート処理層は、浸漬クロメート処理、電解クロメート処理などの公知の方法によって形成することができる。それらの条件は、特に限定されないが、例えば、一般的なクロメート処理層を形成する際の条件は以下の通りである。なお、クロメート処理は、1回であってもよいし、複数回行ってもよい。
 クロメート液組成:1~10g/LのK2Cr27、0.01~10g/LのZn
 クロメート液pH:2~5
 クロメート液温度:30~55℃
 電解条件:電流密度0.1~10A/dm2、時間0.1~5秒(電解クロメート処理の場合)
 シランカップリング処理層としては、特に限定されず、当該技術分野において公知の材料から形成することができる。
 ここで、本明細書において「シランカップリング処理層」とは、シランカップリング剤で形成された層を意味する。
 シランカップリング剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。シランカップリング剤の例としては、アミノ系シランカップリング剤、エポキシ系シランカップリング剤、メルカプト系シランカップリング剤、メタクリロキシ系シランカップリング剤、ビニル系シランカップリング剤、イミダゾール系シランカップリング剤、トリアジン系シランカップリング剤などが挙げられる。これらの中でも、アミノ系シランカップリング剤、エポキシ系シランカップリング剤が好ましい。上記のシランカップリング剤は、単独又は2種以上を組み合わせて用いることができる。
 代表的なシランカップリング処理層の形成方法としては、上述のシランカップリング剤の1~3体積%水溶液を塗布し、乾燥させることでシランカップリング処理層を形成する方法が挙げられる。
 銅箔としては、特に限定されず、電解銅箔又は圧延銅箔のいずれであってもよい。
 電解銅箔は、硫酸銅めっき浴からチタン又はステンレスのドラム上に銅を電解析出させることによって一般に製造されるが、回転ドラム側に形成される平坦なS面(シャイン面)と、S面の反対側に形成されるM面(マット面)とを有する。電解銅箔のM面は、一般に微小な凹凸部を有している。また、電解銅箔のS面は、研磨時に形成された回転ドラムの研磨スジが転写されるため、微小な凹凸部を有する。
 圧延銅箔は、圧延時に圧延油によってオイルピットが形成されるため、微小な凹凸部を表面に有する。
 銅箔の材料としては、特に限定されないが、銅箔が圧延銅箔の場合、プリント配線板の回路パターンとして通常使用されるタフピッチ銅(JIS H3100 合金番号C1100)、無酸素銅(JIS H3100 合金番号C1020又はJIS H3510 合金番号C1011)などの高純度の銅を用いることができる。また、例えば、Sn入り銅、Ag入り銅、Cr、Zr又はMgなどを添加した銅合金、Ni及びSiなどを添加したコルソン系銅合金のような銅合金も用いることができる。なお、本明細書において「銅箔」とは、銅合金箔も含む概念である。
 銅箔が圧延銅箔の場合、圧延銅箔は、99.0質量%以上のCuと、0.003~0.825質量%のP、Ti、Sn、Ni、Be、Zn、In及びMgからなる群から選ばれる1種以上の元素とを含有し、残部が不可避不純物からなる組成を有してもよい。また、圧延銅箔は、99.9質量%以上のCuと、0.0005質量%~0.0220質量%のPとを含有し、残部が不可避不純物からなる組成を有していてもよい。さらに、圧延銅箔は、99.0質量%以上のCuを含有し、残部が不可避不純物からなる組成を有していてもよい。
 また、銅箔が圧延銅箔の場合、平均結晶粒径が0.5~4.0μmであり、且つ圧延方向における引張強度が235~290MPaであってもよい。
 さらに、圧延銅箔は、75%IACS以上の導電率を有していてもよい。銅箔の導電率は、JIS H0505(1975)に準拠して、4端子法により、室温(25℃)で測定することができる。
 銅箔の厚みは、特に限定されないが、例えば1~1000μm、1~500μm、1~300μm、3~100μm、5~70μm、6~35μm、或いは9~18μmとすることができる。
 上記のような構成を有する表面処理銅箔は、当該技術分野において公知の方法に準じて製造することができる。ここで、表面処理層のVmpなどの表面性状パラメータは、表面処理層の形成条件、特に、上記した粗化処理層の形成条件などを調整することによって制御することができる。
 本発明の実施形態に係る表面処理銅箔は、表面処理層のVmpを0.022~0.060μm3/μm2に制御しているため、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることができる。
 本発明の実施形態に係る銅張積層板は、上記の表面処理銅箔と、この表面処理銅箔の表面処理層に接着された樹脂基材とを備える。
 この銅張積層板は、上記の表面処理銅箔の表面処理層に樹脂基材を接着することによって製造することができる。
 樹脂基材としては、特に限定されず、当該技術分野において公知のものを用いることができる。樹脂基材の例としては、紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂、ガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミド樹脂、液晶ポリマー、フッ素樹脂などが挙げられる。これらの中でも樹脂基材はポリイミド樹脂が好ましい。
 また、高周波用途に特に好適な樹脂基材としては、低誘電材料から形成された樹脂基材が挙げられる。低誘電材料の例としては、液晶ポリマー、低誘電ポリイミド、フッ素樹脂などが挙げられる。低誘電材料は、例えば、1MHzにおいて3.5以下の誘電率を有する材料であってもよい。高周波用途に適した低誘電材料としては、30GHzにおいて3.4以下の誘電率を有する材料であってもよい。
 表面処理銅箔と樹脂基材との接着方法としては、特に限定されず、当該技術分野において公知の方法に準じて行うことができる。例えば、表面処理銅箔と樹脂基材とを積層させて熱圧着すればよい。
 上記のようにして製造された銅張積層板は、プリント配線板の製造に用いることができる。
 本発明の実施形態に係る銅張積層板は、上記の表面処理銅箔を用いているため、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることができる。
 本発明の実施形態に係るプリント配線板は、上記の銅張積層板の表面処理銅箔をエッチングして形成された回路パターンを備える。
 このプリント配線板は、上記の銅張積層板の表面処理銅箔をエッチングして回路パターンを形成することによって製造することができる。
 回路パターンの形成方法としては、特に限定されず、サブトラクティブ法、セミアディティブ法などの公知の方法を用いることができる。その中でも、回路パターンの形成方法はサブトラクティブ法が好ましい。
 サブトラクティブ法によってプリント配線板を製造する場合、次のようにして行うことが好ましい。まず、銅張積層板の表面処理銅箔の表面にレジストを塗布、露光及び現像することによって所定のレジストパターンを形成する。次に、レジストパターンが形成されていない部分(すなわち、不要部)の表面処理銅箔をエッチングによって除去して回路パターンを形成する。最後に、表面処理銅箔上のレジストパターンを除去する。
 なお、このサブトラクティブ法における各種条件は、特に限定されず、当該技術分野において公知の条件に準じて行うことができる。
 本発明の実施形態に係るプリント配線板は、上記の銅張積層板を用いているため、樹脂基材、特に高周波用途に好適な樹脂基材と回路パターンとの間の接着性に優れている。
 以下、本発明の実施形態を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
(実施例1)
 厚さ12μmの圧延銅箔(JX金属株式会社製HG箔)を準備した。当該銅箔の両面を脱脂及び酸洗した後、一方の面(以下、「第1面」という)に、表面処理層として粗化処理層、耐薬品処理層(Co-Ni層)、耐熱処理層(Ni-Zn層)、クロメート処理層及びシランカップリング処理層を順次形成することによって表面処理銅箔を得た。
 各処理層の形成条件は次の通りとした。
(1)粗化処理層/第1面
<1次粗化粒子の形成条件>
 めっき液組成:12g/LのCu、50g/Lの硫酸、5ppmのタングステン(タングステン酸ナトリウム2水和物由来)
 めっき液温度:27℃
 電気めっき条件:電流密度39.5A/dm2、時間1.2秒
 電気めっき処理回数:2回
<かぶせめっき層の形成条件>
 めっき液組成:20g/LのCu、100g/Lの硫酸
 めっき液温度:50℃
 電気めっき条件:電流密度9.6A/dm2、時間1.8秒
 電気めっき処理回数:2回
<2次粗化粒子の形成条件>
 めっき液組成:15.5g/LのCu、7.5g/LのCo、9.5g/LのNi
 めっき液温度:50℃
 電気めっき条件:電流密度33.3A/dm2、時間0.55秒
 電気めっき処理回数:2回
(2)耐薬品処理層/第1面
<Co-Ni層の形成条件>
 めっき液組成:3g/LのCo、13g/LのNi
 めっき液pH:2.0
 めっき液温度:50℃
 電気めっき条件:電流密度4.5A/dm2、時間0.48秒
 電気めっき処理回数:1回
(3)耐熱処理層/第1面
<Ni-Zn層の形成条件>
 めっき液組成:23.5g/LのNi、4.5g/LのZn
 めっき液pH:3.6
 めっき液温度:40℃
 電気めっき条件:電流密度0.7A/dm2、時間0.90秒
 電気めっき処理回数:1回
(4)クロメート処理層/第1面
<電解クロメート処理層の形成条件>
 クロメート液組成:3g/LのK2Cr27、0.33g/LのZn
 クロメート液pH:3.7
 クロメート液温度:55℃
 電解条件:電流密度1.2A/dm2、時間0.90秒
 クロメート処理回数:2回
(5)シランカップリング処理層/第1面
 N-2-(アミノエチル)-3-アミノプロピルトリメトキシシランの1.2体積%水溶液を塗布し、乾燥させることでシランカップリング処理層を形成した。
(実施例2)
 1次粗化粒子の形成条件において、電気めっき条件を電流密度43.7A/dm2に変更したこと、及びかぶせめっき層の形成条件において、電気めっき条件を電流密度12.3A/dm2、時間1.8秒に変更したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
(実施例3)
 第1面の耐熱処理層(Ni-Zn層)の形成条件において、電気めっき条件を電流密度0.5A/dm2、時間0.90秒に変更したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
(実施例4)
 第1面において耐熱処理層を形成しないとともに、耐薬品処理層(Co-Ni層)の形成条件において、電気めっき条件を電流密度3.0A/dm2に変更したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
(実施例5)
 第1面において耐熱処理層を形成しないとともに、1次粗化粒子の形成条件において、電気めっき条件を電流密度31.4A/dm2に変更したこと、及び耐薬品処理層(Co-Ni層)の形成条件において、電気めっき条件を電流密度3.0A/dm2に変更したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
(実施例6)
 第1面において耐熱処理層を形成しないとともに、1次粗化粒子の形成条件において、電気めっき条件を電流密度35.2A/dm2に変更したこと、及び耐薬品処理層(Co-Ni層)の形成条件において、電気めっき条件を電流密度3.0A/dm2に変更したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
(実施例7)
 第1面において耐熱処理層を形成しないとともに、1次粗化粒子の形成条件において、電気めっき条件を電流密度42.9A/dm2に変更したこと、及び耐薬品処理層(Co-Ni層)の形成条件において、電気めっき条件を電流密度3.0A/dm2に変更したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
(実施例8)
 第1面において耐熱処理層を形成しないとともに、1次粗化粒子の形成条件において、電気めっき条件を電流密度46.7A/dm2に変更したこと、及び耐薬品処理層(Co-Ni層)の形成条件において、電気めっき条件を電流密度3.0A/dm2に変更したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
(実施例9)
 第1面において耐熱処理層を形成しないとともに、2次粗化粒子の形成条件において、電気めっき条件を電流密度28.9A/dm2に変更したこと、及び耐薬品処理層(Co-Ni層)の形成条件において、電気めっき条件を電流密度3.0A/dm2に変更したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
(実施例10)
 第1面において耐熱処理層を形成しないとともに、2次粗化粒子の形成条件において、電気めっき条件を電流密度37.7A/dm2に変更したこと、及び耐薬品処理層(Co-Ni層)の形成条件において、電気めっき条件を電流密度3.0A/dm2に変更したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
(実施例11)
 第1面において耐熱処理層を形成しないとともに、2次粗化粒子の形成条件において、電気めっき条件を電流密度42.1A/dm2に変更したこと、及び耐薬品処理層(Co-Ni層)の形成条件において、電気めっき条件を電流密度3.0A/dm2に変更したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
(比較例1)
 厚さ12μmの圧延銅箔(JX金属株式会社製HG箔)を準備した。当該銅箔の両面を脱脂及び酸洗した後、一方の面(第1面)に、表面処理層として粗化処理層、耐薬品処理層(Co-Ni層)、耐熱処理層(Ni-Zn層)、クロメート処理層及びシランカップリング処理層を順次形成することによって表面処理銅箔を得た。
 各処理層の形成条件は次の通りとした。
(1)粗化処理層/第1面
<1次粗化粒子の形成条件>
 めっき液組成:12g/LのCu、50g/Lの硫酸、5ppmのタングステン(タングステン酸ナトリウム2水和物由来)
 めっき液温度:27℃
 電気めっき条件:電流密度46A/dm2、時間1.2秒
 電気めっき処理回数:2回
<かぶせめっき層の形成条件>
 めっき液組成:20g/LのCu、100g/Lの硫酸
 めっき液温度:50℃
 電気めっき条件:電流密度9.6A/dm2、時間1.8秒
 電気めっき処理回数:2回
(2)耐薬品処理層/第1面
<Co-Ni層の形成条件>
 めっき液組成:3g/LのCo、13g/LのNi
 めっき液pH:2.0
 めっき液温度:50℃
 電気めっき条件:電流密度4.5A/dm2、時間0.48秒
 電気めっき処理回数:1回
(3)耐熱処理層/第1面
<Ni-Zn層の形成条件>
 めっき液組成:23.5g/LのNi、4.5g/LのZn
 めっき液pH:3.6
 めっき液温度:40℃
 電気めっき条件:電流密度0.9A/dm2、時間0.90秒
 電気めっき処理回数:1回
(4)クロメート処理層/第1面
<電解クロメート処理層の形成条件>
 クロメート液組成:3g/LのK2Cr27、0.33g/LのZn
 クロメート液pH:3.7
 クロメート液温度:55℃
 電解条件:電流密度1.2A/dm2、時間0.90秒
 クロメート処理回数:2回
(5)シランカップリング処理層/第1面
 N-2-(アミノエチル)-3-アミノプロピルトリメトキシシランの1.2体積%水溶液を塗布し、乾燥させることでシランカップリング処理層を形成した。
 上記の実施例及び比較例で得られた表面処理銅箔について、下記の特性評価を行った。
<表面処理層(第1面)のVmp、Spk及びSdr>
 オリンパス株式会社製のレーザー顕微鏡(LEXT OLS4000)を用いて画像撮影を行った。撮影した画像の解析は、オリンパス株式会社製のレーザー顕微鏡(LEXT OLS4100)の解析ソフトを用いて行った。表面処理層のVmp、Spk及びSdrの測定はISO 25178-2:2012に準拠して行った。また、これらの測定結果は、任意の10か所で測定した値の平均値を測定結果とした。測定時の温度は23~25℃とした。
 レーザー顕微鏡及び解析ソフトにおける主要な設定条件は下記の通りである。
 対物レンズ:MPLAPON50XLEXT(倍率:50倍、開口数:0.95、液浸タイプ:空気、機械的鏡筒長:∞、カバーガラス厚:0、視野数:FN18)
 光学ズーム倍率:1倍
 走査モード:XYZ高精度(高さ分解能:60nm、取込みデータの画素数:1024×1024)
 取込み画像サイズ[画素数]:横257μm×縦258μm[1024×1024]
(横方向に測定するため、評価長さとしては257μmに相当)
 DIC:オフ
 マルチレイヤー:オフ
 レーザー強度:100
 オフセット:0
 コンフォーカルレベル:0
 ビーム径絞り:オフ
 画像平均:1回
 ノイズリダクション:オン
 輝度むら補正:オン
 光学的ノイズフィルタ:オン
 カットオフ:λc=200μm、λs及びλfは無し
 フィルタ:ガウシアンフィルタ
 ノイズ除去:測定前処理
 表面(傾き)補正:実施
 明るさ:30~50の範囲になるように調整する
 明るさは測定対称の色調によって適宜設定すべき値である。上記の設定はL*が-69~-10、a*が2~32、b*が2~21の表面処理銅箔の表面を測定する際に適切な値である。
<測定対象の色調の測定>
 測定器としてHunterLab社製のMiniScan(登録商標)EZ Model 4000Lを用い、JIS Z8730:2009に準拠してCIE L*a*b*表色系のL*、a*及びb*の測定を行った。具体的には、上記の実施例及び比較例で得られた表面処理銅箔の測定対象面を測定器の感光部に押し当て、外から光が入らないようにしつつ測定した。また、L*、a*及びb*の測定は、JIS Z8722:2009の幾何条件Cに基づいて行った。なお、測定器の主な条件は下記の通りである。
 光学系:d/8°、積分球サイズ:63.5mm、観察光源:D65
 測定方式:反射
 照明径:25.4mm
 測定径:20.0mm
 測定波長・間隔:400~700nm・10nm
 光源:パルスキセノンランプ・1発光/測定
 トレーサビリティ標準:CIE 44及びASTM E259に基づく、米国標準技術研究所(NIST)準拠校正
 標準観察者:10°
 また、測定基準となる白色タイルは、下記の物体色のものを使用した。
 D65/10°にて測定した場合に、CIE XYZ表色系での値がX:81.90、Y:87.02、Z:93.76
<ピール強度>
 表面処理銅箔(第1面側)を低誘電材料から形成された樹脂基材と貼り合わせた後、幅3mmの回路をMD方向(圧延銅箔の長手方向)に形成した。回路の形成は通常の方法に則って実施した。次に、回路(表面処理銅箔)を樹脂基材の表面に対して、50mm/分の速度で180°方向に、すなわち、MD方向に、引き剥がすときの強さ(MD180°ピール強度)をJIS C6471:1995に準拠して測定した。測定は5回行い、その平均値をピール強度の結果とした。ピール強度は、0.60kgf/cm以上であれば、回路(表面処理銅箔)と樹脂基材との接着性が良好であるといえる。
 上記の特性評価の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、表面処理層のVmpが0.022~0.060μm3/μm2の範囲内にある実施例1~11の表面処理銅箔は、表面処理層のVmpが所定の範囲外である比較例1に比べてピール強度が高かった。
 次に、表面処理層におけるZn付着量が、はんだ耐熱性に及ぼす影響を調べた。
 (実施例12)
 第1面において耐熱処理層を形成しないとともに、クロメート処理層の形成条件において、電流をかけずに浸漬したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
 (実施例13)
 第1面において耐熱処理層を形成しないとともに、クロメート処理層の形成条件において、電気めっき条件を電流密度0.64A/dm2に変更したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
 (実施例14)
 第1面において耐熱処理層を形成しないとともに、クロメート処理層の形成条件において、電気めっき条件を電流密度1.4A/dm2に変更したこと以外は、実施例1と同様の条件で表面処理銅箔を得た。
 上記の実施例で得られた表面処理銅箔について、上記と同様にしてVmp、Spk、Sdr及びピール強度の測定を行うとともに、下記の評価を行った。
<表面処理層(第1面)におけるZn付着量の測定>
 表面処理層(第1面)におけるZn付着量は、表面処理層(第1面)を20質量%の硝酸に溶解し、原子吸光分光光度計(VARIAN社製、AA240FS)を用いて原子吸光法で定量分析を行うことによって測定した。
<はんだ耐熱性>
 表面処理銅箔を低誘電材料から形成された樹脂基材と貼り合わせた後、当該表面処理銅箔の表面が25mm×25mmとなるようにエッチングした。回路の形成は通常の方法に則って実施した。次に、サンプルを恒温恒湿機内に入れ、温度85℃、相対湿度85%にて48時間保持した。その後、所定の温度のはんだを収容したはんだ槽にサンプルを浮かべ30秒後に取り出し、サンプルの回路に気泡が発生しているかを目視で確認した。サンプルの回路に気泡が発生しなかった場合、別のサンプルを準備し、はんだ槽のはんだの温度を高くして、サンプルの回路に気泡が発生しているかを再度確認した。この操作をサンプルの回路に気泡が発生するまで繰り返した。この評価の結果を、サンプルの回路に気泡が発生しなかったはんだの最高温度によって表す。サンプルの回路に気泡が発生しなかったはんだの最高温度が290℃以上であれば、はんだ耐熱性が良好であるといえる。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、実施例12~14の表面処理銅箔は、実施例1~11の表面処理銅箔と同様に、表面処理層のVmpが0.022~0.060μm3/μm2の範囲内にあったため、比較例1の表面処理銅箔に比べてピール強度が高かった。また、実施例12~14の表面処理銅箔は、表面処理層におけるZn付着量が6~200μm/dm2であったため、はんだ耐熱性も良好であった。特に、Zn付着量が82~200μm/dm2である実施例13及び14は、はんだ耐熱性が特に優れていた。
 以上の結果からわかるように、本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔を提供することができる。また、本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することができる。さらに、本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材と回路パターンとの間の接着性に優れたプリント配線板を提供することができる。
 したがって、本発明の実施形態は、以下の態様とすることができる。
[1]
 銅箔と、前記銅箔の少なくとも一方の面に形成された表面処理層とを有し、
 前記表面処理層の山部の実体部体積Vmpが0.022~0.060μm3/μm2である、表面処理銅箔。
[2]
 前記山部の実体部体積Vmpが0.030~0.055μm3/μm2である、[1]に記載の表面処理銅箔。
[3]
 前記山部の実体部体積Vmpが0.035~0.046μm3/μm2である、[1]に記載の表面処理銅箔。
[4]
 前記山部の平均高さSpkが0.42~1.00μmである、[1]~[3]のいずれか一つに記載の表面処理銅箔。
[5]
 前記山部の平均高さSpkが0.60~0.95μmである、[1]~[3]のいずれか一つに記載の表面処理銅箔。
[6]
 前記山部の平均高さSpkが0.71~0.90μmである、[1]~[3]のいずれか一つに記載の表面処理銅箔。
[7]
 前記表面処理層の展開界面面積率Sdrが40~130%である、[1]~[6]のいずれか一つに記載の表面処理銅箔。
[8]
 前記表面処理層の展開界面面積率Sdrが53~120%である、[1]~[6]のいずれか一つに記載の表面処理銅箔。
[9]
 前記表面処理層の展開界面面積率Sdrが62~110%である、[1]~[6]のいずれか一つに記載の表面処理銅箔。
[10]
 前記表面処理層におけるZn付着量が6~200μm/dm2である、[1]~[9]のいずれか一つに記載の表面処理銅箔。
[11]
 前記表面処理層におけるZn付着量が82~200μm/dm2である、[10]に記載の表面処理銅箔。
[12]
 前記表面処理層は粗化処理層を含有する、[1]~[11]のいずれか一つに記載の表面処理銅箔。
[13]
 [1]~[12]のいずれか一つに記載の表面処理銅箔と、前記表面処理銅箔の前記表面処理層に接着された樹脂基材とを備える、銅張積層板。
[14]
 [13]に記載の銅張積層板の前記表面処理銅箔をエッチングして形成された回路パターンを備える、プリント配線板。
 10 銅箔
 20 1次粗化粒子
 30 かぶせめっき層
 40 2次粗化粒子

Claims (17)

  1.  銅箔と、前記銅箔の少なくとも一方の面に形成された表面処理層とを有し、
     前記表面処理層の山部の実体部体積Vmpが0.022~0.060μm3/μm2である、表面処理銅箔。
  2.  前記山部の実体部体積Vmpが0.030~0.055μm3/μm2である、請求項1に記載の表面処理銅箔。
  3.  前記山部の実体部体積Vmpが0.035~0.046μm3/μm2である、請求項1に記載の表面処理銅箔。
  4.  前記山部の平均高さSpkが0.42~1.00μmである、請求項1~3のいずれか一項に記載の表面処理銅箔。
  5.  前記山部の平均高さSpkが0.60~0.95μmである、請求項1~3のいずれか一項に記載の表面処理銅箔。
  6.  前記山部の平均高さSpkが0.71~0.90μmである、請求項1~3のいずれか一項に記載の表面処理銅箔。
  7.  前記表面処理層の展開界面面積率Sdrが40~130%である、請求項1~3のいずれか一項に記載の表面処理銅箔。
  8.  前記表面処理層の展開界面面積率Sdrが53~120%である、請求項1~3のいずれか一項に記載の表面処理銅箔。
  9.  前記表面処理層の展開界面面積率Sdrが62~110%である、請求項1~3のいずれか一項に記載の表面処理銅箔。
  10.  前記表面処理層の展開界面面積率Sdrが40~130%である、請求項4に記載の表面処理銅箔。
  11.  前記表面処理層の展開界面面積率Sdrが53~120%である、請求項6に記載の表面処理銅箔。
  12.  前記表面処理層の展開界面面積率Sdrが62~110%である、請求項6に記載の表面処理銅箔。
  13.  前記表面処理層におけるZn付着量が6~200μm/dm2である、請求項1に記載の表面処理銅箔。
  14.  前記表面処理層におけるZn付着量が82~200μm/dm2である、請求項13に記載の表面処理銅箔。
  15.  前記表面処理層は粗化処理層を含有する、請求項1~3のいずれか一項に記載の表面処理銅箔。
  16.  請求項1~3のいずれか一項に記載の表面処理銅箔と、前記表面処理銅箔の前記表面処理層に接着された樹脂基材とを備える、銅張積層板。
  17.  請求項16に記載の銅張積層板の前記表面処理銅箔をエッチングして形成された回路パターンを備える、プリント配線板。
PCT/JP2023/028813 2022-09-28 2023-08-07 表面処理銅箔、銅張積層板及びプリント配線板 WO2024070247A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022155419 2022-09-28
JP2022-155419 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024070247A1 true WO2024070247A1 (ja) 2024-04-04

Family

ID=90477166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028813 WO2024070247A1 (ja) 2022-09-28 2023-08-07 表面処理銅箔、銅張積層板及びプリント配線板

Country Status (1)

Country Link
WO (1) WO2024070247A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087388A (ja) * 2010-10-21 2012-05-10 Furukawa Electric Co Ltd:The 表面処理銅箔及び銅張積層板
JP2022501521A (ja) * 2019-02-01 2022-01-06 長春石油化學股▲分▼有限公司 表面処理銅箔及び銅箔基板
WO2022255420A1 (ja) * 2021-06-03 2022-12-08 三井金属鉱業株式会社 粗化処理銅箔、銅張積層板及びプリント配線板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087388A (ja) * 2010-10-21 2012-05-10 Furukawa Electric Co Ltd:The 表面処理銅箔及び銅張積層板
JP2022501521A (ja) * 2019-02-01 2022-01-06 長春石油化學股▲分▼有限公司 表面処理銅箔及び銅箔基板
WO2022255420A1 (ja) * 2021-06-03 2022-12-08 三井金属鉱業株式会社 粗化処理銅箔、銅張積層板及びプリント配線板

Similar Documents

Publication Publication Date Title
JP7330172B2 (ja) 表面処理銅箔、銅張積層板及びプリント配線板
TWI716210B (zh) 表面處理銅箔、覆銅積層板及印刷配線板
TW202122642A (zh) 表面處理銅箔、覆銅積層板及印刷配線板
TWI747088B (zh) 表面處理銅箔、覆銅積層板及印刷配線板
TWI749827B (zh) 表面處理銅箔、覆銅積層板及印刷配線板
WO2024070247A1 (ja) 表面処理銅箔、銅張積層板及びプリント配線板
WO2024070248A1 (ja) 表面処理銅箔、銅張積層板及びプリント配線板
WO2024070245A1 (ja) 表面処理銅箔、銅張積層板及びプリント配線板
WO2024070246A1 (ja) 表面処理銅箔、銅張積層板及びプリント配線板
WO2023281773A1 (ja) 表面処理銅箔、銅張積層板及びプリント配線板
WO2022154102A1 (ja) 表面処理銅箔、銅張積層板及びプリント配線板
WO2023281774A1 (ja) 表面処理銅箔、銅張積層板及びプリント配線板
TW202413724A (zh) 表面處理銅箔、覆銅積層板及印刷配線板
WO2023281777A1 (ja) 表面処理銅箔、銅張積層板及びプリント配線板
WO2023281778A1 (ja) 表面処理銅箔、銅張積層板及びプリント配線板
WO2023281776A1 (ja) 表面処理銅箔、銅張積層板及びプリント配線板
WO2023281775A1 (ja) 表面処理銅箔、銅張積層板及びプリント配線板
TW202415156A (zh) 表面處理銅箔、覆銅積層板及印刷配線板
TW202413736A (zh) 表面處理銅箔、覆銅積層板及印刷配線板
TW202415155A (zh) 表面處理銅箔、覆銅積層板及印刷配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871489

Country of ref document: EP

Kind code of ref document: A1