WO2017032320A1 - 一种锂离子电池用水性粘合剂、制备方法及其用途 - Google Patents

一种锂离子电池用水性粘合剂、制备方法及其用途 Download PDF

Info

Publication number
WO2017032320A1
WO2017032320A1 PCT/CN2016/096669 CN2016096669W WO2017032320A1 WO 2017032320 A1 WO2017032320 A1 WO 2017032320A1 CN 2016096669 W CN2016096669 W CN 2016096669W WO 2017032320 A1 WO2017032320 A1 WO 2017032320A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
acrylate
meth
inorganic
mass
Prior art date
Application number
PCT/CN2016/096669
Other languages
English (en)
French (fr)
Inventor
刘俊
任建国
岳敏
李苗苗
Original Assignee
深圳市贝特瑞新能源材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市贝特瑞新能源材料股份有限公司 filed Critical 深圳市贝特瑞新能源材料股份有限公司
Priority to US15/755,237 priority Critical patent/US10777818B2/en
Priority to KR1020187008440A priority patent/KR102105380B1/ko
Priority to JP2018511086A priority patent/JP6667617B2/ja
Publication of WO2017032320A1 publication Critical patent/WO2017032320A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1802C2-(meth)acrylate, e.g. ethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/286Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • C08F251/02Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof on to cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/10Homopolymers or copolymers of methacrylic acid esters
    • C09J133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/02Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to polysaccharides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/10Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/30Sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of lithium ion batteries, relates to a lithium ion secondary battery electrode material, and particularly relates to a lithium ion secondary battery aqueous binder, a preparation method and the use thereof.
  • lithium-ion batteries After the first commercialization of lithium-ion batteries by Sony in Japan in the early 1990s, lithium-ion batteries quickly occupied the high-end rechargeable battery market. As a new type of clean energy, lithium-ion batteries have higher specific energy density, higher operating voltage, longer cycle life and no memory effect. Currently, lithium-ion batteries are considered the most promising mobile energy storage technologies in mobile electronics, the electric vehicle industry and other recycling energy systems.
  • lithium-ion batteries generally use graphite-based carbon materials as negative electrode active materials, and such materials have small volume changes during charge and discharge cycles.
  • carbon materials have a low battery capacity, for example, a theoretical capacity of graphite having a high crystallinity of 372 mAh/g.
  • a high discharge capacity such as silicon, tin or a silicon tin alloy is used as the negative electrode active material, the volume changes considerably and is easily deteriorated.
  • the volume expansion ratio is as high as 300%, and the expansion stress causes the silicon-based material structure to be pulverized, thereby destroying the conductive connection between the active material and the current collector between the electrode materials, so that the electrode pole piece is deteriorated.
  • Patent CN103242595 and CN 101243566A respectively disclose an inorganic nanoparticle composite binder which is improved in tensile strength and added as a high capacity and a high volume expansion ratio by adding a nano inorganic filler such as nano silica and carbon nanotubes.
  • Non-carbonaceous active substance negative electrode binder Although physical complex Legally, although the size and surface morphology of the nanoparticles are pre-controlled, the inorganic nanoparticles inevitably agglomerate during the film formation of the binder and affect the uniform stability of the pole pieces.
  • Patent CN102875722A discloses a strong adhesion type inorganic-organic composite adhesive prepared by in-situ emulsion polymerization of carbon nanotubes. However, at present, there is still no functional adhesive which is particularly suitable for the bulk expansion of a silicon-based negative electrode active material, which has excellent bond strength and exhibits high flexibility.
  • inorganic-organic composite emulsions are mainly prepared by a simple physical blending method, but the main problem of this method is that inorganic nanoparticles are difficult to disperse uniformly in an aqueous medium. For this reason, the in-situ emulsion polymerization is used to achieve uniform coating of the inorganic nanoparticles by the high molecular polymer to obtain core-shell particles.
  • Patent CN 1944479 A discloses a polyacrylate composite emulsion of an inorganic-organic composite latex particle having a core/shell structure for a pressure-sensitive adhesive.
  • the latex particles constituting the composite emulsion are made of nano silica whose surface is modified by a silane coupling agent, and a copolymer of acrylate and acrylic monomer is used as a shell, and the solid content is 30-40%, and the viscosity is 1 ⁇ . 6MPA.S, the composite latex particle has a particle size of 250-700 nm and a particle size distribution index of 0.005-0.15.
  • the preparation method comprises the preparation of nano-silica alcohol sol, surface modification of nano-silica and nano-silica- Preparation of polyacrylate composite emulsion; drying the composite emulsion coating film to obtain acrylate pressure sensitive adhesive, and improving the initial tack property and cohesive property of the pressure sensitive adhesive, and the nano silica is in the polyacrylate pressure sensitive adhesive matrix
  • the dispersion is uniform, and the thickness of the core layer and the shell layer of the latex particles can be controlled.
  • a small molecule emulsifier is used, and most of the nano silica is still dispersed unevenly, and the small molecule emulsifier affects the solvent resistance of the adhesive.
  • an object of the present invention to provide an aqueous binder for lithium ion battery electrode materials having excellent bond strength and flexibility.
  • the present inventors conducted intensive studies to study the relationship between the polymer molecular chain structure and the polymer/inorganic nanocomposite microstructure and the performance of a lithium ion battery using a water-based binder for a lithium ion battery as a starting point. relationship.
  • the adhesive is used in a lithium ion battery, the small molecule emulsifier has a negligible negative impact on battery performance.
  • the present inventors have found that when a water-soluble cellulose grafted amphiphilic copolymer is used as a dispersing agent, the agglomeration of the nanoparticles can be avoided when the binder is formed into a film, and at the same time, the toughening and the bonding strength can be enhanced. At the same time, the water-soluble cellulose has a certain enhanced toughness, so that the aqueous binder of the present invention has excellent tensile properties.
  • An aqueous binder for a lithium ion battery being an inorganic-organic composite emulsion comprising a dispersant, inorganic nanoparticles and a (meth) acrylate monomer, an unsaturated carboxylic acid monomer, ethylene A hydrocarbon-based monomer, and optionally other copolymerizable monomer copolymers, which are water-soluble cellulose grafted amphiphilic copolymers.
  • the dispersant has a weight average molecular weight of from 100 to 1,000,000.
  • the molecular weight of the dispersant is too low, the dispersing performance is weakened, and the tensile strength of the binder is poor; however, the molecular weight is too large, which tends to cause flocculation of the latex particles during the preparation of the emulsion.
  • the dispersant is 0.5 to 25% of the total mass of the composite emulsion solids, for example 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22% Or 24%.
  • the binder of the present invention is easily excellent in binding strength, and the dispersibility of the negative electrode active material is good.
  • the mass ratio of the water-soluble cellulose to the amphiphilic copolymer is from 2/98 to 40/60.
  • the reason is that when the mass ratio of the water-soluble cellulose to the amphiphilic copolymer is too low, the tensile strength of the binder is reduced. It is weak and the dispersion performance is deteriorated; however, when the mass ratio is too high, the grafting amount is large, so that the molecular weight is too high, which tends to cause flocculation of the latex particles in the emulsion preparation process.
  • the water-soluble cellulose is any one or at least two of sodium carboxymethyl cellulose, sodium carboxyethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose or hydroxypropyl cellulose. mixture.
  • the water-soluble cellulose has a viscosity of 20 to 3500 mPa/s in an aqueous solution having a mass fraction of 1%.
  • the water-soluble cellulose contains a graftable hydroxyl group having a chemical formula of -OH, and the hydroxyl group has a mass fraction of 10 to 20% by weight of the water-soluble cellulose, for example, 11 wt%, 12 wt%, 13 wt% %, 14 wt%, 15 wt%, 16 wt%, 17 wt%, 18 wt% or 19 wt.
  • the comonomer of the amphiphilic copolymer comprises a hydrophilic monomer, a hydrophobic monomer, optionally an amphiphilic monomer, and optionally a crosslinking monomer.
  • the amphiphilic copolymer can be prepared by emulsion polymerization of the above comonomer.
  • the hydrophilic monomer is selected from the group consisting of fumaric acid, (meth)acrylic acid, itaconic acid, sodium p-styrene sulfonate, sodium vinyl sulfonate, sodium allyl sulfonate, 2-methyl Sodium allyl sulfonate, sodium ethyl methacrylate sulfonate, (meth)acrylamide, N-methylol acrylamide, N,N-dimethyl acrylamide or 2-acrylamide-2-methyl Any one or a combination of at least two of propanesulfonic acid.
  • the hydrophobic monomer is selected from the group consisting of styrene, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate or 2-ethylhexyl (meth)acrylate Any one or a combination of at least two.
  • the amphiphilic monomer is selected from the group consisting of dodecyl alcohol polyoxyethylene ether (meth) acrylate, stearic acid polyoxyethylene ether (meth) acrylate or nonyl phenol ethoxylate ( Any one or a combination of at least two of methyl) acrylates.
  • the invention imparts a certain branch network structure to the dispersant by using a crosslinking monomer, thereby inhibiting expansion Bulging, increasing the peel strength.
  • the mass ratio of the hydrophilic monomer to the hydrophobic monomer is from 10/100 to 80/20, such as 20/100, 30/100, 50/100, 70/100, 1:1, 2:1 or 3:1.
  • the mass ratio between the hydrophilic monomer and the hydrophobic monomer is too high, the viscosity of the dispersant is high, and it is difficult to prepare a uniformly stable emulsion; however, when the mass ratio is too low, the water solubility of the dispersing agent is deteriorated and the dispersing property is weakened.
  • the amphiphilic monomer is added in an amount of from 0 to 40% by weight, such as 5%, 10%, 15%, 20%, 25%, 30% or 35% by weight of the amphiphilic copolymer.
  • the crosslinking monomer is added in an amount of 0.01 to 5 wt%, such as 0.5 wt%, 1 wt%, 1.5 wt%, 2 wt%, 2.5 wt%, 3 wt%, 3.5 wt%, 4 wt%, of the mass of the amphiphilic copolymer. Or 4.5wt%.
  • the inorganic nanoparticles are any one or a combination of at least two of silica, alumina, aluminum silicate, calcium sulfate or wollastonite.
  • nano silica is preferably used as the inorganic nanoparticles.
  • the inorganic nanoparticles have a particle diameter of 20 to 200 nm, and more preferably 20 to 120 nm.
  • the inorganic nanoparticles are surface-modified by a silane coupling agent, and after surface modification, they contain a polymerizable double bond, and when reacted with a comonomer of the copolymer, a graft reaction may occur to form a core-shell structure.
  • the mass ratio of the silane coupling agent to the inorganic nanoparticles is from 0.01 to 0.3/1.
  • the silane coupling agent is vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris( ⁇ -methoxyethoxy)silane, ⁇ -methacryloxypropylpropyl Any one or a combination of at least two of trimethoxysilane or ⁇ -methacryloxypropyltriethoxysilane.
  • the (meth) acrylate monomer is selected from the group consisting of methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, n-amyl acrylate, isoamyl acrylate, n-hexyl acrylate, isooctyl acrylate Ester, hydroxypropyl acrylate, 2-hydroxyethyl acrylate, lauryl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, n-amyl methacrylate Any one or a combination of at least two of n-hexyl methacrylate, isooctyl methacrylate, hydroxypropyl methacrylate or 2-hydroxyethyl methacrylate.
  • the unsaturated carboxylic acid monomer is selected from any one or a combination of at least two of lithium acrylate, acrylic acid, lithium methacrylate, methacrylic acid, lithium itaconate or itaconic acid.
  • the vinyl hydrocarbon monomer is selected from any one or a combination of at least two of vinyl acetate, styrene, ⁇ -methylstyrene, sodium styrenesulfonate or sodium methylvinylsulfonate. .
  • the optional other copolymerizable monomer is selected from the group consisting of acrylamides such as acrylamide and N-methylol acrylamide, heterocyclic vinyls such as N-vinylpyrrolidone, vinylpyridine and vinylimidazole, Any one or a mixture of at least two vinyl acetates such as vinyl acetate, vinyl propionate or vinyl butyrate;
  • the mass ratio of the inorganic nanoparticles to the (meth) acrylate monomer, the unsaturated carboxylic acid monomer, the vinyl hydrocarbon monomer, and optionally other copolymerizable monomer copolymer is 0.001 to 6 /99.999 ⁇ 94.
  • the sum of the mass of the inorganic nanoparticles and the (meth) acrylate monomer, the unsaturated carboxylic acid monomer, the vinyl hydrocarbon monomer, and optionally the other copolymerizable monomer copolymer is a composite emulsion 25 to 55 wt% of mass, such as 30 wt%, 35 wt%, 40 wt%, 45 wt%, 50 wt% or 55 wt%.
  • the composite emulsion has a core-shell structure, and the copolymer is a shell layer, and the number of layers of the shell layer is one or more layers, that is, at least two layers.
  • the glass transition temperature of the innermost layer copolymer is lower than the glass transition temperature of the outermost copolymer.
  • the present invention preferably optimizes the (meth) acrylate monomer, the unsaturated carboxylic acid monomer, the vinyl hydrocarbon monomer, and optionally other copolymerizable monomers while determining an appropriate monomer ratio,
  • the glass transition temperature of each layer of the copolymer can be effectively adjusted. It is not particularly limited. It is generally considered that a monomer having a glass transition temperature Tg>40° C. is called a hard monomer and can impart a tensile strength to a binder; a monomer having a glass transition temperature Tg ⁇ 10° C. is called a soft single.
  • the body imparts flexibility to the adhesive and broadens its low-temperature use performance; the glass transition temperature is between -10 ° C and ⁇ Tg ⁇ 40 ° C, which is a moderately soft and hard monomer.
  • the glass transition temperature (unit: ° C).
  • methyl methacrylate (105), ethyl methacrylate (65), 2-hydroxyethyl methacrylate (55), acrylamide (165), and styrene (100) may be used.
  • the soft monomer for example, ethyl acrylate (-24), butyl acrylate (-55), isobutyl acrylate (-40), isooctyl acrylate (-70), hydroxyethyl acrylate ( -15);
  • a moderately soft and hard monomer for example, methyl acrylate (8), hydroxypropyl acrylate (-7), butyl methacrylate (20), and vinyl acetate (28) may be used.
  • the number of layers of the shell layer is more than one layer, the glass transition temperature of the adjacent shell layer differs by -30 to 30 ° C, and the glass transition temperature of the inner shell layer is -25 to 30 ° C.
  • the composite emulsion has a core-shell structure, and the inorganic nanoparticles are cores.
  • the composite emulsion has a glass transition temperature of -30 to 90 °C.
  • the composite emulsion has a pH of 6-10.
  • the composite emulsion has a solid content of 25 to 55 wt%;
  • the composite emulsion latex particles have a particle size of 50 to 300 nm.
  • the composite emulsion is prepared by in-situ polymerization.
  • the present inventors have found that a water-soluble dispersing agent prepared by water-soluble cellulose and graft polymerization modification is used for in-situ polymerization of inorganic nanoparticles to prepare an inorganic-organic composite emulsion, so that the binder is prevented from agglomerating when forming a film. At the same time, it plays the role of toughening and improving the bonding strength.
  • a second object of the present invention is to provide a method for preparing an aqueous binder for a lithium ion battery as described above, which comprises a dispersant, inorganic nanoparticles, and a (meth) acrylate monomer, an unsaturated carboxylic acid monomer.
  • the above aqueous binder is obtained by in situ polymerization of a vinyl hydrocarbon monomer and optionally other copolymerizable monomers.
  • the dispersant is prepared by a process as follows: a comonomer of a water-soluble cellulose and an amphiphilic copolymer is prepared by radical polymerization.
  • the water-soluble cellulose has a viscosity of 20 to 3500 mPa/s in an aqueous solution having a mass fraction of 1%.
  • the water-soluble cellulose contains a hydroxyl group which can be graft-reacted, and the hydroxyl group has a mass fraction of 10 to 20% by weight of the water-soluble cellulose, for example, 11% by weight, 12% by weight, 13% by weight, 14% by weight, 15 wt%, 16 wt%, 17 wt%, 18 wt% or 19 wt.
  • the mass ratio of the water-soluble cellulose to the amphiphilic copolymer is from 2/98 to 40/60.
  • the comonomer of the amphiphilic copolymer comprises a hydrophilic monomer, a hydrophobic monomer, optionally an amphiphilic monomer, and optionally a crosslinking monomer.
  • the mass ratio of the hydrophilic monomer to the hydrophobic monomer is from 10/100 to 80/20, such as 20/100, 30/100, 50/100, 70/100, 1:1, 2:1 or 3:1.
  • the amphiphilic monomer is added in an amount of from 0 to 40% by weight, such as 5%, 10%, 15%, 20%, 25%, 30% or 35% by weight of the amphiphilic copolymer.
  • the crosslinking monomer is added in an amount of 0.01 to 5 wt%, such as 0.5 wt%, 1 wt%, 1.5 wt%, 2 wt%, 2.5 wt%, 3 wt%, 3.5 wt%, 4 wt%, of the mass of the amphiphilic copolymer. Or 4.5wt%.
  • a chain transfer agent in an amount of from 0.01 to 5% by mass based on the mass of the comonomer of the amphiphilic copolymer is added to adjust the molecular mass.
  • the chain transfer agent is selected from any one or a combination of at least two of dodecyl mercaptan, t-dodecyl mercaptan or isooctyl thioglycolate.
  • the dispersing agent is prepared by a radical polymerization reaction system in which the radical polymerization reaction system is previously neutralized to a pH of 5 to 8 with 10 to 20% of an aqueous alkaline compound solution.
  • the basic compound is any one or a combination of at least two of lithium hydroxide, sodium hydroxide, potassium hydroxide or sodium hydrogencarbonate.
  • the inorganic nanoparticles are surface-modified by a silane coupling agent, and the surface modification method is:
  • Nanoparticles (containing polymerizable double bonds).
  • the inorganic nanoparticles have a particle diameter of 20 to 200 nm, and more preferably 20 to 120 nm.
  • the mass ratio of the silane coupling agent to the inorganic nanoparticles is from 0.01 to 0.3/1.
  • the silane coupling agent is vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris( ⁇ -methoxyethoxy)silane, ⁇ -methacryloxypropylpropyl Any one or a combination of at least two of trimethoxysilane or ⁇ -methacryloxypropyltriethoxysilane.
  • An exemplary aqueous alcohol solution is an aqueous ethanol dispersion.
  • In situ polymerization of the monomer, vinyl hydrocarbon monomer, and optionally other copolymerizable monomers includes the following steps:
  • step (b) is repeated 1 to 3 times.
  • the dispersing agent is a total mass of the (meth) acrylate monomer, the unsaturated carboxylic acid monomer, the vinyl hydrocarbon monomer, and optionally other copolymerizable monomers. ⁇ 25%, for example 2%, 4%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22% or 24%.
  • the dispersant in the resulting product is from 0.5 to 15% by mass of the emulsion.
  • the inorganic nanoparticle mass fraction is 0.1 to 25 wt% of the mass of the dispersant solid.
  • the dispersion is carried out at 300 to 3000 rpm by an emulsification disperser for not less than 20 minutes, preferably for 28 to 100 minutes, and more preferably for 30 to 60 minutes to disperse the inorganic nanoparticles.
  • the polymerization time of step (a) is from 3 to 6 hours.
  • both step (a) and step (b) are independently fed with a comonomer and an initiator at a temperature of from 30 to 90 ° C, preferably from 60 to 90 ° C, and a polymerization reaction takes place.
  • the initiator is any one or a combination of at least two of an organic peroxide initiator, an inorganic peroxide initiator or a redox initiator.
  • the organic peroxide initiator is selected from the group consisting of benzoyl peroxide or/and diisopropyl peroxide benzene.
  • the inorganic peroxide initiator is selected from the group consisting of ammonium persulfate, sodium persulfate or potassium persulfate.
  • the redox initiator is selected from the group consisting of ammonium persulfate/sodium sulfite, or a combination of ammonium persulfate/sodium bisulfite.
  • the mass of the initiator is 0.1 to 2 wt% of the total mass of the (meth) acrylate monomer, the unsaturated carboxylic acid monomer, the vinyl hydrocarbon monomer, and optionally other copolymerizable monomers, For example, 0.3 wt%, 0.5 wt%, 0.7 wt%, 0.9 wt%, 1.1 wt%, 1.3 wt%, 1.5 wt%, 1.7 wt%, or 1.9 wt%.
  • the mass of the (meth) acrylate monomer, the unsaturated carboxylic acid monomer, the vinyl hydrocarbon monomer, and optionally other copolymerizable monomers in step (b) is (meth) acrylate 15 to 85 wt% of the total mass of the monomer, unsaturated carboxylic acid monomer, vinyl hydrocarbon monomer, and optionally other copolymerizable monomers.
  • step (a) and step (b) The total mass of the (meth) acrylate monomer, the unsaturated carboxylic acid monomer, the vinyl hydrocarbon monomer, and optionally other copolymerizable monomers, ie, step (a) and step (b) ( The sum of the masses of the methyl) acrylate monomer, the unsaturated carboxylic acid monomer, the vinyl hydrocarbon monomer, and optionally other copolymerizable monomers. If the monomer mass fraction added in the controlling step (b) of the present invention is within the above range, the adhesive is excellent in toughness and bond strength. If the mass fraction of the monomer added in the step (b) is too high, the toughness of the adhesive is deteriorated; however, if the mass fraction is too low, the bond strength is decreased.
  • the method further comprises the step of adjusting the pH of the composite emulsion after the end of the polymerization reaction, preferably adjusting the pH of the composite emulsion to 6-10.
  • the pH adjustment process can be achieved by base neutralization.
  • the basic compound used for the neutralization of the base is all basic compounds well known to those skilled in the art, and particularly uses a basic compound which does not volatilize during drying and curing, such as lithium hydroxide, sodium hydroxide, potassium hydroxide or Sodium bicarbonate and a solution having a mass fraction of 10 to 30%.
  • the inorganic-organic seed composite emulsion has a glass transition temperature of -30 to 90 ° C, more preferably -25 to 30 ° C.
  • the inorganic-organic composite emulsion latex particles have a particle diameter of 50 to 300 nm.
  • the inorganic-organic composite emulsion has a glass transition temperature of -30 to 90 ° C, more preferably -15 to 90 ° C.
  • the method for preparing an aqueous binder for a lithium ion battery comprises the following steps:
  • step (3) adding the inorganic nanoparticles obtained in the step (2) to the total mass of the (meth) acrylate-based monomer, the unsaturated carboxylic acid monomer, the vinyl hydrocarbon monomer, and optionally other copolymerizable monomers 2 to 15% dispersant in a deionized water solution, and dispersed in an emulsifier disperser at 800-3000 rpm for not less than 20 min, at 60-90 ° C, adding (meth) acrylate monomer, unsaturated a carboxylic acid monomer, a vinyl hydrocarbon monomer, and optionally other copolymerizable monomers and an initiator, stirred for 3 to 6 hours to prepare an inorganic-organic seed composite emulsion;
  • a third object of the present invention is to provide an aqueous binder for a lithium ion battery as described above. It is used in lithium ion batteries.
  • the present invention has the following beneficial effects:
  • the invention can avoid the agglomeration of the nanoparticles when the binder is formed into a film, and at the same time, functions to toughen and improve the bonding strength.
  • the water-soluble cellulose has a certain enhanced toughness, so that the aqueous binder of the present invention has excellent tensile properties.
  • the inorganic nanoparticles of the present invention are surface-modified with a silane coupling agent to polymerize to form a network structure, thereby improving the bonding strength and solvent resistance, thereby imparting uniform dispersion properties to the adhesive.
  • the rigid inorganic nanoparticle core structure imparts a certain high temperature resistance to the adhesive.
  • the multi-layered core-shell structure imparts adhesion and flexibility to the adhesive.
  • Example 1 is an SEM image of the surface-modified nano-silica of Example 1;
  • Figure 2 is a DSC chart of the adhesive of Example 3.
  • Inorganic-organic seed composite emulsion 250 parts by mass of the dispersant solution prepared above is added to 50 parts by mass of deionized water, 2 parts by mass of surface-modified silica is added, emulsified and dispersed at 800 rpm for 30 minutes, and the temperature is raised to 70 ° C. Next, 100 parts by mass of methyl methacrylate (MMA) 40 w%, butyl acrylate (BA) 58 w%, and acrylic acid (AA) 2 w% mixed monomer were added, and 0.6 parts by mass of ammonium persulfate was added, and the reaction was carried out. In an hour, an inorganic-organic seed composite emulsion was obtained.
  • MMA methyl methacrylate
  • BA butyl acrylate
  • AA acrylic acid
  • Inorganic-organic composite emulsion 50 parts by mass of an inorganic-organic seed composite emulsion (based on the mass of the polymer in the emulsion) is added to 50 parts by mass of deionized water, and 100 parts by mass of methyl methacrylate is added at 75 ° C ( MMA) 56.6w%, butyl acrylate (BA) 42.2w% and methacrylic acid (MAA) 1.2w% mixed monomer, the core-shell monomer mass ratio is 1:2 (the core-shell monomer mass ratio, ie The mass ratio of the seed emulsion to the mass of the subsequent monomer was increased by polymerization for 6 hours to obtain an inorganic-organic composite emulsion.
  • MMA MMA
  • BA butyl acrylate
  • MAA methacrylic acid
  • the mixture was neutralized with a lithium hydroxide solution having a mass fraction of 10% to obtain an inorganic-organic composite emulsion having a solid content of 40%.
  • the binder described in the above examples was used for the production of a silicon-based/graphite composite anode material pole piece.
  • silicon-based/graphite composite negative electrode material it is preferable to prepare SiO x /C or a Si-C composite material containing Si and C in combination with natural graphite or artificial graphite.
  • a silicon-based/graphite composite negative electrode material having a gram capacity of 480 mAh/g is preferably used.
  • the silicon-based composite anode material has a mass fraction of 92.0 w%, a conductive additive of 4.0 w%, a thickener carboxymethylcellulose sodium (denoted as CMC), a mass fraction of 2 w%, and a solid content of 2 w%.
  • the aqueous binder (referred to as PAA) was added to an appropriate amount of deionized water in a proportion of 45% of the total solid content to prepare a battery pole piece slurry.
  • the uniformly dispersed slurry was passed through a 100 mesh screen, coated on a 10 ⁇ m thick copper foil as a current collector, dried at 120 ° C for 5 minutes, and then rolled at a load of 10 ⁇ 10 4 N/m per unit length at room temperature. Electrode pole piece.
  • An aqueous binder was prepared in the same manner as in Example 1 except that sodium carboxymethylcellulose was used in the preparation of the dispersant.
  • An aqueous binder was prepared in the same manner as in Example 1 except that 10 parts by mass of hydrophilic monomer acrylic acid and 10 parts by mass of hydrophobic monomer butyl acrylate were used as a monomer in preparing a dispersant.
  • a hydrophilic monomer sodium p-sodium styrene sulfonate 18 parts by mass of a hydrophilic monomer methacrylic acid, and 20 parts by mass of a hydrophobic monomer butyl acrylate are used as a monomer.
  • An aqueous binder was prepared in the same manner as in Example 1.
  • Example 2 Different from Example 2, a hydrophilic monomer, that is, 2 parts by mass of sodium styrene sulfonate and 8 parts by mass of methacrylic acid was replaced with 10 parts by mass of the amphiphilic monomer lauryl alcohol. Oxyethylene ether methacrylate.
  • Example 2 In contrast to Example 1, an aqueous binder was prepared in the same manner as in Example 1 except that the amount of nano silica added was reduced from 2 parts by mass to 1 part by mass in the preparation of the inorganic-organic composite seed emulsion.
  • Example 2 The difference from Example 2 is that the core-shell monomer mass ratio is 1:1.
  • Example 2 The difference from Example 2 is that the core-shell monomer mass ratio is 4:1.
  • a negative electrode tab was prepared as a binder using a company which was marketed as a binder, and the SBR binder was a surface carboxyl group-modified styrene and butadiene copolymer prepared by a small molecule emulsifier.
  • the negative electrode tab was produced as a binder by using a commercially available acrylic resin LA as a binder, and the LA binder was a linear structure water-soluble polyacrylic latex, and did not contain an emulsifier.
  • the adhesive PAA was prepared as in Example 2 except that the dispersant was prepared by using a sodium dodecyl sulfate/alkylphenol polyoxyethylene ether composite emulsifier, and a negative electrode tab was produced as described above.
  • the adhesive PAA was prepared as in Example 2 except that the dispersant was prepared without water-soluble cellulose and a binder was prepared.
  • a lithium ion battery was prepared and evaluated in accordance with Example 1 except the above.
  • the adhesive PAA was prepared according to Example 2 except that the inorganic nanoparticles were not contained and a binder was prepared.
  • a lithium ion battery was prepared and evaluated in accordance with Example 2 except for the above.
  • Comparative Example 6 is an inorganic-organic composite emulsion having a core-shell structure obtained in Example 1 disclosed in CN 1944479A. A lithium ion battery was prepared in accordance with Example 1 and evaluated.
  • the lithium ion secondary battery aqueous binder prepared by the method of the invention has the following properties Determination and evaluation, the relevant pole piece production formula and test evaluation results are shown in Table 1 and Table 2:
  • the average particle diameter of the inorganic-organic composite polymer and its particle size distribution were measured using a laser particle size analyzer.
  • the inorganic-organic composite emulsion was subjected to thermal analysis using a DSC thermal analyzer.
  • the electrode sheets of the examples and the comparative examples were cut into strips of 10 cm ⁇ 2 cm, and a steel plate having a thickness of 1 mm was bonded to the collector side with a double-sided tape, and a transparent tape was attached to the side of the coating layer, and a tensile tester was used. The speed of 100 mm/min was peeled off toward the 180° direction, and the peeling stress was measured.
  • the above-mentioned pole piece was fabricated into a simulated battery and the first coulombic efficiency of the charge and discharge cycle and the Coulomb efficiency and capacity retention rate after 50 cycles of the cycle were tested by a constant current method. After 50 cycles of the charge and discharge cycle, the thickness of the pole piece in the state of the lithium plate in the pole piece was measured. The ratio of the added value to the thickness of the pole piece before charging and discharging is recorded as the pole piece expansion ratio (%).
  • the negative electrode tabs were prepared according to the formulation of Table 1 and assembled into a lithium ion battery.
  • the electrodes using the adhesives according to Examples 1 to 9 of the present invention showed a relatively high bond as compared with the electrodes using the adhesives of Comparative Examples 1-5.
  • the capacity retention rate was high, and the pole piece expansion ratio was lower than that of Comparative Examples 1-5.
  • Comparative Example 3 was prepared by performing inorganic-organic composite emulsion polymerization using a small molecule emulsifier, and although the peel strength was slightly higher, the capacity retention ratio was lowered and the pole piece expansion ratio was increased.
  • Comparative Example 4 In Comparative Example 4 and Comparative Example 5, since the water-soluble cellulose and inorganic nanoparticles described in the present invention were not included, the peel strength of the prepared adhesive was lowered, and the expansion rate of the pole piece was increased. Comparative Example 6 Using the Example 1 disclosed in CN 1944479 A to prepare a lithium ion battery, the cycle retention rate was low for 50 weeks, and the pole piece expansion ratio was high.
  • FIG. 1 is an SEM image of the surface-modified nano-silica prepared in Example 1, showing that the surface-modified nano-silica has a particle size of ⁇ 60 nm;
  • FIG. 2 is a DSC chart of the adhesive prepared in Example 3, showing The inorganic-organic composite polymer is a multi-phase structure and has a double glass transition temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

一种锂离子电池用水性粘合剂、制备方法及其用途,所述粘合剂为无机-有机复合乳液,其包括分散剂、无机纳米粒子和(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚合单体共聚物,所述分散剂为水溶性纤维素接枝两亲性共聚物。采用水溶性纤维素接枝两亲性共聚物作为分散剂时,可以使粘合剂成膜时避免纳米粒子团聚,同时起到增韧和提高粘结强度的作用。同时,水溶性纤维素具有一定增强增韧性,使得所述水性粘合剂具有优异的抗拉伸性能。所述锂离子电池用水性粘合剂可用于锂离子电池。

Description

一种锂离子电池用水性粘合剂、制备方法及其用途 技术领域
本发明属于锂离子电池领域,涉及一种锂离子二次电池电极材料,具体涉及一种锂离子二次电池水性粘合剂、制备方法及其用途。
背景技术
上世纪九十年代初期日本Sony公司首次商业化锂离子电池后,锂离子电池迅速占据了高端可充电电池市场。锂离子电池作为新型的清洁能源,具有比能量密度大、工作电压高、循环寿命长和无记忆效应等特点。目前,锂离子电池在移动电子产品,电动汽车行业和其他循环能源系统中被认为是最具前景的移动储能技术。
目前锂离子电池普遍采用石墨类碳材料作为负极活性物质,这类材料在充放电循环中,体积变化小。但这类碳材料的电池容量低,例如,高结晶度的石墨理论容量为372mAh/g。而使用高放电容量的如硅、锡或硅锡合金作为负极活性物质时,体积变化颇大,且容易恶化。例如硅基活性物质嵌锂时体积膨胀率高达300%,膨胀应力导致硅基材料结构粉碎,从而破坏了电极材料间活性物质与集流体的导电连接,使得电极极片劣化。
为了解决非碳质负极活性物质的循环体积膨胀而引起电池变形、劣化等问题,需要开发高粘结强度和能够均匀分散膨胀应力的粘合剂来实现高容量非碳质活性物质负极的循环稳定性。
专利CN103242595和CN 101243566A分别公开了一种无机纳米粒子复合粘合剂,通过添加纳米无机填料(如纳米二氧化硅)和碳纳米管,来改善拉伸强度并作为高容量和高体积膨胀率的非碳质活性物质负极粘合剂。但是,物理复 合法,尽管通过对纳米粒子的尺寸和表面形态预先控制,粘合剂成膜过程中无机纳米粒子仍不可避免地会发生团聚而影响极片的均一稳定性。专利CN102875722A公开了一种基于碳纳米管原位乳液聚合制备强力粘合型的无机-有机复合粘合剂。但目前而言,市场上仍未出现一种即具有优异粘结强度又展现出较强柔韧性的,特别适用于硅基负极活性物质的体积膨胀大的功能性粘合剂。
通过将无机纳米粒子引入无机-有机复合乳液可以改善乳液的成膜性并且可增强乳胶膜的力学性能。目前主要是通过简单的物理共混方法制备无机-有机复合乳液,但这种方法的主要问题是无机纳米粒子在水性介质中很难分散均匀。为此,通过原位乳液聚合,实现高分子聚合物对无机纳米粒子的均匀包覆,制得核壳粒子。
专利CN 1944479A公开了一种压敏胶黏剂用的具有核/壳结构的无机-有机复合乳胶粒子的聚丙烯酸酯复合乳液。组成这种复合乳液的乳胶粒子以表面经硅烷偶联剂改性的纳米二氧化硅为核,以丙烯酸酯与丙烯酸单体的共聚物为壳,固含量为30~40%,粘度为1~6MPA.S,复合乳胶粒子粒径为250~700nm,粒径分布指数为0.005~0.15,其制备方法包括纳米二氧化硅醇溶胶的制备、纳米二氧化硅的表面改性和纳米二氧化硅-聚丙烯酸酯复合乳液的制备;将此复合乳液涂膜干燥即得丙烯酸酯压敏胶粘剂,同时提高了压敏胶粘剂初粘性能和内聚性能,纳米二氧化硅在聚丙烯酸酯压敏胶基体中分散均匀,乳胶粒子核层和壳层厚度可以控制。但是,该方法制备无机-有机复合乳液过程中使用小分子乳化剂,仍有大部分纳米二氧化硅分散不均而团聚,同时小分子乳化剂影响胶黏剂的耐溶剂性能。
发明内容
针对现有技术的不足,本发明的目的之一在于提供一种具有优异粘结强度和柔韧性的用于锂离子电池电极材的水性粘合剂。
为了解决上述课题,本发明人进行了深入研究,以锂离子电池用水性粘合剂为起始点来研究聚合物分子链结构以及聚合物/无机纳米复合微观结构与锂离子电池的性能之间的关系。同时注意到粘合剂用于锂离子电池时,小分子乳化剂对电池性能具有不可忽视的负面影响。本发明人发现,采用水溶性纤维素接枝两亲性共聚物作为分散剂时,可以使粘合剂成膜时避免纳米粒子团聚,同时起到增韧和提高粘结强度的作用。同时,水溶性纤维素具有一定增强增韧性,使得本发明的水性粘合剂具有优异的抗拉伸性能。
为了实现上述目的,本发明采用了如下技术方案:
一种锂离子电池用水性粘合剂,所述粘合剂为无机-有机复合乳液,其包括分散剂、无机纳米粒子和(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体共聚物,所述分散剂为水溶性纤维素接枝两亲性共聚物。
优选地,所述分散剂的重均分子量为100~1000000。分散剂分子量过低,分散性能减弱,且粘合剂抗张性能差;但分子量过大,易导致乳液制备过程中乳胶粒子絮凝。
优选地,分散剂为复合乳液固体总质量的0.5~25%,例如2%、4%、6%、8%、10%、12%、14%、16%、18%、20%、22%或24%。若作为无机-有机复合乳液的分散剂质量分数在上述范围内,则容易使得本发明的粘合剂具有优异的粘结强度,且负极活性物质分散性良好。
优选地,水溶性纤维素与两亲性共聚物的质量比为2/98~40/60。其原因为,水溶性纤维素与两亲性共聚物的质量比过低时,粘合剂抗张强度则会减 弱,且分散性能会变差;但质量比过高时,接枝量大,使得分子量过高易导致乳液制备过程乳胶粒子絮凝。
优选地,所述水溶性纤维素为羧甲基纤维素钠、羧乙基纤维素钠、羟甲基纤维素、羟乙基纤维素或羟丙基纤维素中的任意一种或者至少两种的混合物。
优选地,所述水溶性纤维素在质量分数为1%的水溶液中粘度为20~3500mPa/s。
优选地,所述水溶性纤维素含可接枝反应的羟基基团,化学式为-OH,且所述羟基质量分数为水溶性纤维素质量的10~20wt%,例如11wt%、12wt%、13wt%、14wt%、15wt%、16wt%、17wt%、18wt%或19wt。
优选地,所述两亲性共聚物的共聚单体包括亲水性单体、疏水性单体、任选地两亲性单体以及任选地交联单体。
所述两亲性共聚物可由上述共聚单体采用乳液聚合法制备得到。
优选地,所述亲水性单体选自富马酸、(甲基)丙烯酸、衣康酸、对苯乙烯磺酸钠、乙烯基磺酸钠、烯丙基磺酸钠、2-甲基烯丙基磺酸钠、甲基丙烯酸乙酯磺酸钠、(甲基)丙烯酰胺、N-羟甲基丙烯酰胺、N,N-二甲基丙烯酰胺或2-丙烯酰胺-2-甲基丙磺酸中的任意一种或者至少两种的组合。
优选地,所述疏水性单体选自苯乙烯、(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丁酯或(甲基)丙烯酸-2-乙基己酯中的任意一种或者至少两种的组合。
优选地,所述两亲性单体选自十二烷基醇聚氧乙烯醚(甲基)丙烯酸酯、硬脂酸聚氧乙烯醚(甲基)丙烯酸酯或壬基酚聚氧乙烯醚(甲基)丙烯酸酯中的任意一种或者至少两种的组合。
本发明通过使用交联单体赋予分散剂具有一定支化网络结构,进而抑制膨 胀,提高剥离强度。优选地,所述交联单体选自(甲基)丙烯酸缩水甘油酯、亚甲基双丙烯酰胺、二乙烯基苯或(乙二醇)n二(甲基)丙烯酸酯(n=1~35,例如2、3、5、7、9、12、15、18、21、24、27、30或33)中的一种或至少两种的组合。若本发明使用(乙二醇)n二(甲基)丙烯酸酯交联单体时,可通过n的取值大小来调节交联网络结构的柔韧性。例如,当n=1~5时,交联网络结构刚性强;当6≤n≤35时,交联网络结构具有强的柔韧性及抗张强度。
优选地,亲水性单体和疏水性单体的质量比为10/100~80/20,例如20/100、30/100、50/100、70/100、1∶1、2∶1或3∶1。亲水单体和疏水单体之间的质量比过高时,分散剂粘度高难以制备均一稳定的乳液;但质量比过低时,分散剂的水溶性变差且分散性能减弱。
优选地,两亲性单体加入量为两亲性共聚物质量的0~40wt%,例如5wt%、10wt%、15wt%、20wt%、25wt%、30wt%或35wt%。
优选地,交联单体加入量为两亲性共聚物质量的0.01~5wt%,例如0.5wt%、1wt%、1.5wt%、2wt%、2.5wt%、3wt%、3.5wt%、4wt%或4.5wt%。
优选地,所述无机纳米粒子为二氧化硅、氧化铝、硅酸铝、硫酸钙或硅灰石中的任意一种或至少两种的组合。作为本发明的优异粘合强度的功能型锂离子电池粘合剂,优选采用纳米二氧化硅作为无机纳米粒子。
优选地,所述无机纳米粒子的粒径为20~200nm,进一步优选为20~120nm。
优选地,所述无机纳米粒子经硅烷偶联剂进行表面改性,经过表面改性后含有可聚合双键,与共聚物的共聚单体反应时,可以发生接枝反应,形成核壳结构。
优选地,所述硅烷偶联剂与无机纳米粒子的质量比为0.01~0.3/1。
优选地,所述硅烷偶联剂为乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷或γ-甲基丙烯酰氧基丙基三乙氧基硅烷中的任意一种或至少两种的组合。
优选地,所述(甲基)丙烯酸酯类单体选自丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸异丁酯、丙烯酸正戊酯、丙烯酸异戊酯、丙烯酸正己酯、丙烯酸异辛酯、丙烯酸羟丙酯、丙烯酸-2-羟基乙酯、丙烯酸月桂酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、甲基丙烯酸异丁酯、甲基丙烯酸正戊酯、甲基丙烯酸正己酯、甲基丙烯酸异辛酯、甲基丙烯酸羟丙酯或甲基丙烯酸-2-羟基乙酯中的任意一种或至少两种的组合。
优选地,所述不饱和羧酸单体选自丙烯酸锂、丙烯酸、甲基丙烯酸锂、甲基丙烯酸、衣康酸锂或衣康酸中的任意一种或至少两种的组合。
优选地,所述乙烯基烃类单体选自醋酸乙烯酯、苯乙烯、α-甲基苯乙烯、苯乙烯磺酸钠或甲基乙烯磺酸钠中的任意一种或至少两种的组合。
优选地,所述任选地其他可共聚单体选自丙烯酰胺、N-羟甲基丙烯酰胺等丙烯酰胺类、N-乙烯基吡咯烷酮、乙烯基吡啶、乙烯基咪唑等杂环乙烯基类、乙酸乙烯酯、丙酸乙烯酯或丁酸乙烯酯等乙烯基酯类中的任意一种或者至少两种的混合物;
优选地,所述无机纳米粒子和(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体共聚物的质量比为0.001~6/99.999~94。
优选地,所述无机纳米粒子和(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体共聚物的质量之和为复合乳液质量的25~55wt%,例如30wt%、35wt%、40wt%、45wt%、50wt%或55wt%。
优选地,所述复合乳液具有核壳结构,共聚物为壳层,所述壳层的层数为一层以上,即至少两层。
优选地,在具有核壳结构的复合乳液中,最内层共聚物的玻璃化转变温度低于最外层共聚物的玻璃化转变温度。
本发明通过对所述(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体进行优选,同时确定适当的单体配比,能够有效的调节各层共聚物的玻璃化转变温度。没有特别限定,通常认为玻璃化转变温度Tg>40℃的单体称之为硬单体,能赋予粘合剂抗张强度;玻璃化转变温度Tg<-10℃的单体称之为软单体,赋予粘合剂柔韧性,并且拓宽其低温使用性能;玻璃化转变温度在-10℃<Tg<40℃之间的,为软硬适中的单体。以下,列举出可共使用单体的例子,单体后面括号为玻璃化转变温度,(单位℃)。
作为硬单体,例如可以为,甲基丙烯酸甲酯(105)、甲基丙烯酸乙酯(65)、甲基丙烯酸-2-羟基乙酯(55)、丙烯酰胺(165)、苯乙烯(100);作为软单体,例如可以为,丙烯酸乙酯(-24)、丙烯酸丁酯(-55)、丙烯酸异丁酯(-40)、丙烯酸异辛酯(-70)、丙烯酸羟乙酯(-15);作为软硬适中的单体,例如可以为丙烯酸甲酯(8)、丙烯酸羟丙酯(-7)、甲基丙烯酸丁酯(20)、醋酸乙烯酯(28)。
优选地,所述壳层的层数为一层以上,相邻壳层玻璃化转变温度相差-30~30℃,且内壳层玻璃化转变温度为-25~30℃。
优选地,所述复合乳液具有核壳结构,无机纳米粒子为核。
优选地,所述复合乳液的玻璃化转变温度为-30~90℃。
优选地,所述复合乳液的pH值为6~10。
优选地,所述复合乳液的固含量为25~55wt%;
优选地,所述复合乳液乳胶粒子粒径为50~300nm。
优选地,所述复合乳液采用原位聚合制备得到。本发明人发现,采用水溶性纤维素并接枝聚合改性制备的水溶性分散剂,并用于无机纳米粒子原位聚合制备无机-有机复合乳液,使得粘合剂成膜时避免纳米粒子团聚,同时起到增韧和提高粘结强度的作用。
本发明的目的之二在于提供一种如上所述的锂离子电池用水性粘合剂的制备方法,将分散剂、无机纳米粒子和(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体原位聚合得到上述水性粘合剂。
优选地,所述分散剂由如下所述方法制备得到:将水溶性纤维素与两亲性共聚物的共聚单体通过自由基聚合制备得到。
优选地,所述水溶性纤维素在质量分数为1%的水溶液中粘度为20~3500mPa/s.
优选地,所述水溶性纤维素含可接枝反应的羟基基团,且所述羟基质量分数为水溶性纤维素质量的10~20wt%,例如11wt%、12wt%、13wt%、14wt%、15wt%、16wt%、17wt%、18wt%或19wt。
优选地,水溶性纤维素与两亲性共聚物的质量比为2/98~40/60。
优选地,所述两亲性共聚物的共聚单体包括亲水性单体、疏水性单体、任选地两亲性单体以及任选地交联单体。
优选地,亲水性单体和疏水性单体的质量比为10/100~80/20,例如20/100、30/100、50/100、70/100、1∶1、2∶1或3∶1。
优选地,两亲性单体加入量为两亲性共聚物质量的0~40wt%,例如5wt%、10wt%、15wt%、20wt%、25wt%、30wt%或35wt%。
优选地,交联单体加入量为两亲性共聚物质量的0.01~5wt%,例如0.5wt%、1wt%、1.5wt%、2wt%、2.5wt%、3wt%、3.5wt%、4wt%或4.5wt%。
优选地,在制备分散剂时,加入占两亲性共聚物的共聚单体质量的0.01~5%的链转移剂调节分子质量。
优选地,所述链转移剂选自十二烷基硫醇、叔十二烷基硫醇或巯基乙酸异辛酯中的任意一种或至少两种的组合。
优选地,采用自由基聚合反应体系制备分散剂,其中,自由基聚合反应体系预先用10~20%的碱性化合物水溶液中和至pH为5~8。
优选地,所述碱性化合物为氢氧化锂、氢氧化钠、氢氧化钾或碳酸氢钠中的任意一种或至少两种的组合。
优选地,所述无机纳米粒子经硅烷偶联剂进行表面改性,表面改性方法为:
向无机纳米粒子的醇水溶液中加入硅烷偶联剂,并调节pH(示例性的如可采用氨水调节pH)至8~10,于20~70℃搅拌反应3~24h,得到表面改性的无机纳米粒子(含有可聚合双键)。
优选地,所述无机纳米粒子的粒径为20~200nm,进一步优选为20~120nm。
优选地,所述硅烷偶联剂与无机纳米粒子的质量比为0.01~0.3/1。
优选地,所述硅烷偶联剂为乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷或γ-甲基丙烯酰氧基丙基三乙氧基硅烷中的任意一种或至少两种的组合。
示例性的醇水溶液为乙醇水分散液。
优选地,分散剂、无机纳米粒子和(甲基)丙烯酸酯类单体、不饱和羧酸 单体、乙烯基烃类单体以及任选地其他可共聚单体的原位聚合包括以下步骤:
(a)将无机纳米粒子加入分散剂的水溶液中,待其分散后,加入(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体和引发剂,在搅拌条件下,发生聚合反应,得到无机-有机种子复合乳液;
(b)向无机-有机种子复合乳液中加入(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体和引发剂,在搅拌条件下,发生聚合反应,得到无机-有机复合乳液,即锂离子电池用水性粘合剂。
优选地,重复步骤(b)1~3次。
优选地,步骤(a)中,所述分散剂是(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体总质量的1~25%,例如2%、4%、8%、10%、12%、14%、16%、18%、20%、22%或24%。采用该量的分散剂,即可使得到的产品中分散剂为乳液质量的0.5~15%。
优选地,步骤(a)中,所述无机纳米粒子质量分数为分散剂固体质量的0.1~25wt%。
优选地,步骤(a)中,利用乳化分散机在300~3000rpm转速下进行不少于20min分散,优选进行28~100min分散,进一步优选进行30~60min分散,以使无机纳米粒子分散。
优选地,步骤(a)聚合反应时间为3~6h。
优选地,步骤(a)和步骤(b)均独立地在30~90℃,优选60~90℃的条件下加入共聚单体和引发剂,并发生聚合反应。
优选地,所述引发剂为有机过氧化物引发剂、无机过氧化物引发剂或者氧化还原引发剂中的任意一种或至少两种的组合。
优选地,所述有机过氧化物引发剂选自过氧化苯甲酰或/和过氧化二异丙 苯。
优选地,所述无机过氧化物引发剂选自过硫酸铵、过硫酸钠或过硫酸钾。
优选地,所述氧化还原引发剂选自过硫酸铵/亚硫酸钠的组合,或者过硫酸铵/亚硫酸氢钠的组合。
优选地,所述引发剂的质量为(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体总质量的0.1~2wt%,例如0.3wt%、0.5wt%、0.7wt%、0.9wt%、1.1wt%、1.3wt%、1.5wt%、1.7wt%或1.9wt%。
优选地,步骤(b)中(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体的质量占(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体总质量的15~85wt%。所述(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体总质量即,步骤(a)和步骤(b)加入的(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体的质量总和。若本发明控制步骤(b)中所加入单体质量分数在上述范围内,则使得粘合剂具有优异的韧性和粘结强度。步骤(b)中所加入单体所占质量分数过高,则粘合剂韧性变差;但质量分数过低,则粘结强度减小。
优选地,所述方法还包括:聚合反应结束后,调节复合乳液pH的过程,优选调节复合乳液pH至6~10的过程。
优选地,该pH调节过程可以通过碱中和实现。
碱中和所采用的碱性化合物为本领域技术人员所熟知的所有碱性化合物,特别使用在干燥和固化过程中不挥发的碱性化合物,如氢氧化锂、氢氧化钠、氢氧化钾或碳酸氢钠,并配置质量分数为10~30%的溶液。
优选地,所述无机-有机种子复合乳液玻璃化转变温度为-30~90℃,进一步优选为-25~30℃。
优选地,所述无机-有机复合乳液乳胶粒子粒径为50~300nm。
优选地,所述无机-有机复合乳液玻璃化转变温度为-30~90℃,进一步优选为-15~90℃。
优选地,所述锂离子电池用水性粘合剂的制备方法,包括以下步骤:
(1)水溶性纤维素与两亲性共聚物的共聚单体通过自由基聚合制备分散剂;
(2)向无机纳米粒子的醇水混合液中加入硅烷偶联剂,并用氨水调节pH至8-10,于20~70℃搅拌反应3~24h,得到表面改性的无机纳米粒子(含有可聚合双键);
(3)将步骤(2)得到的无机纳米粒子加入含占(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体总质量的2~15%分散剂的去离子水溶液中,并用乳化分散机在800~3000rpm转速下进行不少于20min分散,在60~90℃下,加入(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体和引发剂,搅拌聚合反应3~6h,制备无机-有机种子复合乳液;
(4)在60~90℃下,向步骤(3)得到的无机-有机种子复合乳液中,加入(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体和引发剂,搅拌聚合反应;
(4)碱中和,得到pH为6-10的无机-有机复合乳液,即锂离子电池用水性粘合剂。
本发明的目的之三在于提供一种如上所述的锂离子电池用水性粘合剂的用 途,其用于锂离子电池。
与已有技术相比,本发明具有如下有益效果:
本发明采用水溶性纤维素接枝两亲性共聚物作为分散剂时,可以使粘合剂成膜时避免纳米粒子团聚,同时起到增韧和提高粘结强度的作用。同时,水溶性纤维素具有一定增强增韧性,使得本发明的水性粘合剂具有优异的抗拉伸性能。
此外,本发明的无机纳米粒子经硅烷偶联剂进行表面改性,可聚合形成网状结构,提高粘结强度和耐溶剂性,从而赋予粘合剂对应力的均匀分散性能。同时,刚性的无机纳米粒子内核结构赋予粘合剂一定的耐高温性能。此外,多层核壳型结构赋予粘合剂的粘结力和柔韧性。
附图说明
图1是实施例1表面改性纳米二氧化硅SEM图;
图2是是实施例3粘合剂的DSC图。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
实施例1
无机纳米粒子表面改性:取20质量份平均粒径50nm的二氧化硅分散于乙醇和去离子水混合液中,室温搅拌下,加入氨水调节pH为8~10,加入2质量份的乙烯基三乙氧基硅烷,升温至70℃反应1h后降至室温,得到表面改性的纳米二氧化硅。
分散剂的制备:取2.5质量份羟乙基纤维素溶于250质量份去离子水中,升温至75℃,预先用20%的碱性氢氧化锂水溶液中和至pH=5~8,加入0.6质量份的过硫酸铵,加入2质量份的亲水单体对苯乙烯磺酸钠、8质量份的甲基丙 烯酸、10质量份的疏水单体丙烯酸丁酯、0.06质量份的交联单体丙烯酸缩水甘油酯。
无机-有机种子复合乳液:于50质量份的去离子水中,加入250质量份上述制备的分散剂溶液,加入2质量份的表面改性二氧化硅,800rpm下乳化分散30min,升温至70℃搅拌下,加入含100质量份的甲基丙烯酸甲酯(MMA)40w%、丙烯酸丁酯(BA)58w%和丙烯酸(AA)2w%混合单体,并加入0.6质量份的过硫酸铵,反应6小时,得到无机-有机种子复合乳液。
无机-有机复合乳液:于50质量份的去离子水中加入50质量份的无机-有机种子复合乳液(以乳液中聚合物质量计),75℃下,加入100质量份的甲基丙烯酸甲酯(MMA)56.6w%,丙烯酸丁酯(BA)42.2w%以及甲基丙烯酸(MAA)1.2w%混合单体,核壳单体质量比为1∶2(所述核壳单体质量比即,种子乳液的质量与后续加入单体的质量比),聚合反应6小时,得到无机-有机复合乳液。
以质量分数为10%的氢氧化锂溶液中和,得到固含量40%的无机-有机复合乳液。
电池极片的制作
将上述实施例中所述的粘合剂用于硅基/石墨复合负极材料极片的制作。
作为硅基/石墨复合负极材料,优选SiOx/C或含有Si及C的Si-C复合材料与天然石墨或人造石墨进行复合制备。
本发明,优选地使用克容量为480mAh/g的硅基/石墨复合负极材料。
硅基复合负极材料质量分数为92.0w%,导电添加剂4.0w%,增稠剂羧甲基纤维素钠(记为CMC)质量分数为2w%,以固含量计质量分数为2w%的实施例所述的水性粘合剂(记为PAA),按照总固体成份为45%的比例加入适量去离子水,制成电池极片浆料。将分散均匀的浆料过100目筛网后,涂布于作为 集流体的10μm厚铜箔上,120℃干燥5分钟后,室温下以10×104N/m的单位长度载荷压延而获得电极极片。
实施例2
除了制备分散剂时采用羧甲基纤维素钠之外,以与实施例1相同方式制备水性粘合剂。
实施例3
除了制备分散剂时使用10质量份的亲水单体丙烯酸、10质量份的疏水单体丙烯酸丁酯作为单体之外,以与实施例1相同方式制备水性粘合剂。
实施例4
除了制备分散剂时使用12质量份的亲水单体对苯乙烯磺酸钠、18质量份的亲水单体甲基丙烯酸、20质量份的疏水单体丙烯酸丁酯为单体之外,以与实施例1相同方式制备水性粘合剂。
实施例5
与实施例2不同的是,将亲水单体,即2质量份的苯乙烯磺酸钠和8质量份的甲基丙烯酸,替换为10质量份的两亲性单体十二烷基醇聚氧乙烯醚甲基丙烯酸酯。
实施例6
与实施例1不同的是,将交联单体替换为n=5,(乙二醇)5二丙烯酸酯。
实施例7
与实施例1不同的是,无机-有机复合种子乳液制备过程中,除纳米二氧化硅加入量由2质量份减少至1质量份之外,以与实施例1相同方式制备水性粘合剂。
实施例8
与实施例2不同的是核壳单体质量比为1∶1。
实施例9
与实施例2不同的是核壳单体质量比为4∶1。
对比例1
使用某公司已市场销售SBR,作为粘合剂按上述例子制作负极极片,SBR粘合剂为小分子乳化剂制备的表面羧基改性的苯乙烯和丁二烯共聚物。
对比例2
使用使用某公司已市场销售丙烯酸树脂LA,作为粘合剂按上述例子制作负极极片,LA粘合剂为线性结构水溶性聚丙烯酸类胶乳,不含乳化剂。
对比例3
按实施例2制备粘合剂PAA,唯一不同的是分散剂采用十二烷基磺酸钠/烷基酚聚氧乙烯基醚复合乳化剂制备粘合剂,并按上述例子制作负极极片。
对比例4
按照实施例2制备粘合剂PAA,唯一不同的是分散剂制备过程中不含水溶性纤维素,并制备粘合剂。除上面事项外,按照实施例1制备锂离子电池并进行评价。
对比例5
按照实施2制备粘合剂PAA,唯一不同的是不含无机纳米粒子,并制备粘合剂。除上面事项外,按照实施例2制备锂离子电池并进行评价。
对比例6
对比例6为CN 1944479A公开的实施例1得到的具有核壳结构的无机-有机复合乳液。按照实施例1制备锂离子电池并进行评价。
本发明所述方法制备的一种锂离子二次电池水性粘合剂进行了如下性能的 测定及评价,相关极片制作配方及测试评价结果见表1及表2:
(平均粒径的测定)
使用激光粒度仪测定无机-有机复合聚合物的平均粒径及其粒径分布。
(玻璃化转变温度的测定)
使用DSC热分析仪对无机-有机复合乳液进行热分析。
(剥离强度的测定)
将实施例和对比例的电极极片切成10cm×2cm的长条状,在集流体侧用双面胶粘接厚1mm的钢板,在涂布层侧粘贴透明胶带,用拉伸试验机以100mm/min的速度朝180°方向剥离,并测定剥离应力。
(极片柔韧性评价)
将实施例和对比例的辊压后极片的集流体一侧放置直径Φ=3mm芯棒,并进行弯折实验,通过光学显微镜观察此时极片的状态,极片完好记为○,发生脱落或者开裂记为×。
(电池性能评价)
将上述极片制作模拟电池并采用恒流法测试其充放电循环的首次库仑效率和循环50次后的库伦效率和容量保持率,充放电循环50周后,极片嵌锂状态下极片厚度增加值与充放电前极片厚度的比值记为极片膨胀率(%)。
表1
Figure PCTCN2016096669-appb-000001
Figure PCTCN2016096669-appb-000002
按照表1配方制作负极极片,并组装成锂离子电池。
表2
Figure PCTCN2016096669-appb-000003
表3
Figure PCTCN2016096669-appb-000004
如从上面的表2和表3看出,与采用对比例1-5的粘合剂的电极相比,采用根据本发明实施例1~9的粘合剂的电极显示出相当高的粘结力,50周充放电循环后,容量保持率高,极片膨胀率均低于对比实施例1-5。同时,可以看到对比实施例3由于采用小分子乳化剂进行无机-有机复合乳液聚合制备粘合剂,尽管剥离强度稍高,但容量保持率降低,极片膨胀率增大。对比实施例4和对比实施例5因未包含本发明专利所述的水溶性纤维素以及无机纳米粒子,所制备的粘合剂剥离强度降低,极片膨胀率增大。对比例6采用CN 1944479A公开的实施例1制备粘合剂并制作锂离子电池,50周循环保持率低,极片膨胀率高。
图1为实施例1制备的表面改性纳米二氧化硅SEM图,显示所述表面改性纳米二氧化硅粒径为~60nm;图2为实施例3制备粘合剂的DSC图,显示出所述无机-有机复合聚合物为多相结构,且具有双玻璃化转变温度。
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (13)

  1. 一种锂离子电池用水性粘合剂,所述粘合剂为无机-有机复合乳液,其包括分散剂、无机纳米粒子和(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体共聚物,所述分散剂为水溶性纤维素接枝两亲性共聚物。
  2. 如权利要求1所述的水性粘合剂,其特征在于,分散剂为复合乳液固体总质量的0.5~25wt%;
    优选地,水溶性纤维素与两亲性共聚物的质量比为2/98~40/60;
    优选地,所述分散剂的重均分子量为100~1000000。
  3. 如权利要求1或2所述的水性粘合剂,其特征在于,所述水溶性纤维素为羧甲基纤维素钠、羧乙基纤维素钠、羟甲基纤维素、羟乙基纤维素或羟丙基纤维素中的任意一种或者至少两种的混合物。
    优选地,所述水溶性纤维素在质量分数为1%的水溶液中粘度为20~3500mPa/s;
    优选地,所述水溶性纤维素含可接枝反应的羟基基团,且所述羟基质量为水溶性纤维素质量的10~20wt%。
  4. 如权利要求1-3之一所述的水性粘合剂,其特征在于,所述两亲性共聚物的共聚单体包括亲水性单体、疏水性单体、任选地两亲性单体以及任选地交联单体;
    优选地,亲水性单体和疏水性单体的质量比为10/100~80/20;
    优选地,两亲性单体加入量为两亲性共聚物质量的0~40wt%;
    优选地,交联单体加入量为两亲性共聚物质量的0.01~5wt%;
    优选地,所述亲水性单体选自富马酸、(甲基)丙烯酸、衣康酸、对苯乙烯磺酸钠、乙烯基磺酸钠、烯丙基磺酸钠、2-甲基烯丙基磺酸钠、甲基丙烯酸 乙酯磺酸钠、(甲基)丙烯酰胺、N-羟甲基丙烯酰胺、N,N-二甲基丙烯酰胺或2-丙烯酰胺-2-甲基丙磺酸中的任意一种或者至少两种的组合;
    优选地,所述疏水性单体选自苯乙烯、(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丁酯或(甲基)丙烯酸-2-乙基己酯中的任意一种或者至少两种的组合;
    优选地,所述两亲性单体选自十二烷基醇聚氧乙烯醚(甲基)丙烯酸酯、硬脂酸聚氧乙烯醚(甲基)丙烯酸酯或壬基酚聚氧乙烯醚(甲基)丙烯酸酯中的任意一种或者至少两种的组合;
    优选地,所述交联单体选自(甲基)丙烯酸缩水甘油酯、亚甲基双丙烯酰胺、二乙烯基苯或(乙二醇)n二(甲基)丙烯酸酯中的一种或至少两种的组合,其中,n=1~35。
  5. 如权利要求1-4之一所述的水性粘合剂,所述无机纳米粒子为二氧化硅、氧化铝、硅酸铝、硫酸钙或硅灰石中的任意一种或至少两种的组合,优选采用纳米二氧化硅作为无机纳米粒子;
    优选地,所述无机纳米粒子的粒径为20~200nm,进一步优选为20~120nm;
    优选地,所述无机纳米粒子经硅烷偶联剂进行表面改性;
    优选地,所述硅烷偶联剂与无机纳米粒子的质量比为0.01~0.3/1;
    优选地,所述硅烷偶联剂为乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷或γ-甲基丙烯酰氧基丙基三乙氧基硅烷中的任意一种或至少两种的组合。
  6. 如权利要求1-5之一所述的水性粘合剂,其特征在于,所述(甲基)丙烯酸酯类单体选自丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸异丁酯、丙 烯酸正戊酯、丙烯酸异戊酯、丙烯酸正己酯、丙烯酸异辛酯、丙烯酸羟丙酯、丙烯酸-2-羟基乙酯、丙烯酸月桂酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、甲基丙烯酸异丁酯、甲基丙烯酸正戊酯、甲基丙烯酸正己酯、甲基丙烯酸异辛酯、甲基丙烯酸羟丙酯或甲基丙烯酸-2-羟基乙酯中的任意一种或至少两种的组合;
    优选地,所述不饱和羧酸单体选自丙烯酸锂、丙烯酸、甲基丙烯酸锂、甲基丙烯酸、衣康酸锂或衣康酸中的任意一种或至少两种的组合;
    优选地,所述乙烯基烃类单体选自醋酸乙烯酯、苯乙烯、α-甲基苯乙烯、苯乙烯磺酸钠或甲基乙烯磺酸钠中的任意一种或至少两种的组合;
    优选地,所述其他可共聚单体选自丙烯酰胺、N-羟甲基丙烯酰胺、N-乙烯基吡咯烷酮、乙烯基吡啶、乙烯基咪唑、乙酸乙烯酯、丙酸乙烯酯或丁酸乙烯酯中的任意一种或者至少两种的混合物。
  7. 如权利要求1-6之一所述的水性粘合剂,其特征在于,所述无机纳米粒子和(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体共聚物的质量比为0.001~6/99.999~94;
    优选地,所述无机纳米粒子和(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体共聚物的质量之和为复合乳液质量的25~55wt%;
    优选地,所述复合乳液具有核壳结构,共聚物为壳层,所述壳层的层数为一层以上;
    优选地,在具有核壳结构的复合乳液中,最内层共聚物的玻璃化转变温度低于最外层共聚物的玻璃化转变温度;
    优选地,所述壳层的层数为一层以上,相邻壳层玻璃化转变温度相差 -30~30℃,且最内壳层玻璃化转变温度为-25~30℃;
    优选地,所述复合乳液具有核壳结构,无机纳米粒子为核;
    优选地,所述复合乳液的玻璃化转变温度为-30~90℃;
    优选地,所述复合乳液的pH值为6~10;
    优选地,所述复合乳液的固含量为25~55wt%;
    优选地,所述复合乳液乳胶粒子粒径为50~300nm。
  8. 一种如权利要求1-7之一所述的锂离子电池用水性粘合剂的制备方法,将分散剂、无机纳米粒子和(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体原位聚合得到上述水性粘合剂。
  9. 如权利要求8所述的方法,其特征在于,所述分散剂由如下所述方法制备得到:将水溶性纤维素与两亲性共聚物的共聚单体通过自由基聚合制备得到;
    优选地,所述水溶性纤维素在质量分数为1%的水溶液中粘度为20~3500mPa/s;
    优选地,水溶性纤维素与两亲性共聚物的质量比为2/98~40/60;
    优选地,所述两亲性共聚物的共聚单体包括亲水性单体、疏水性单体、任选地两亲性单体以及任选地交联单体;
    优选地,亲水性单体和疏水性单体的质量比为10/100~80/20;
    优选地,两亲性单体加入量为两亲性共聚物质量的0~40wt%;
    优选地,交联单体加入量为两亲性共聚物质量的0.01~5wt%;
    优选地,在制备分散剂时,加入占两亲性共聚物的共聚单体质量的0.01~5%的链转移剂;
    优选地,所述链转移剂选自十二烷基硫醇、叔十二烷基硫醇或巯基乙酸异 辛酯中的任意一种或至少两种的组合;
    优选地,采用自由基聚合反应体系制备分散剂,其中,自由基聚合反应体系预先用10~20%的碱性化合物水溶液中和至pH为5~8;
    优选地,所述碱性化合物为氢氧化锂、氢氧化钠、氢氧化钾或碳酸氢钠中的任意一种或至少两种的组合。
  10. 如权利要求8或9所述的方法,其特征在于,所述水溶性纤维素含可接枝反应的羟基基团,且所述羟基质量分数为水溶性纤维素质量的10wt%~20wt%。
  11. 如权利要求8-10之一所述的方法,其特征在于,所述无机纳米粒子经硅烷偶联剂进行表面改性,表面改性方法为:
    向无机纳米粒子的醇水溶液中加入硅烷偶联剂,并调节pH至8~10,于20~70℃搅拌反应3~24h,得到表面改性的无机纳米粒子;
    优选地,所述无机纳米粒子的粒径为20~200nm,进一步优选为20~120nm;
    优选地,所述硅烷偶联剂与无机纳米粒子的质量比为0.01~0.3/1;
    优选地,所述硅烷偶联剂为乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷或γ-甲基丙烯酰氧基丙基三乙氧基硅烷中的任意一种或至少两种的组合。
  12. 如权利要求8-11之一所述的方法,其特征在于,分散剂、无机纳米粒子和(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体的原位聚合包括以下步骤:
    (a)将无机纳米粒子加入分散剂的水溶液中,待其分散后,加入(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单 体和引发剂,在搅拌条件下,发生聚合反应,得到无机-有机种子复合乳液;
    (b)向无机-有机种子复合乳液中加入(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体和引发剂,在搅拌条件下,发生聚合反应,得到无机-有机复合乳液,即锂离子电池用水性粘合剂;
    优选地,重复步骤(b)1~3次;
    优选地,步骤(a)中,所述分散剂是(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体总质量的1~25%;
    优选地,步骤(a)中,所述无机纳米粒子质量分数为分散剂固体质量的0.1~25wt%;
    优选地,步骤(a)中,利用乳化分散机在300~3000rpm转速下进行不少于20min分散,优选进行28~100min分散,进一步优选进行30~60min分散,以使无机纳米粒子分散;
    优选地,步骤(a)聚合反应时间为3~6h;
    优选地,步骤(a)和步骤(b)均独立地在30~90℃,优选60~90℃的条件下加入共聚单体和引发剂,并发生聚合反应;
    优选地,所述引发剂为有机过氧化物引发剂、无机过氧化物引发剂或者氧化还原引发剂中的任意一种或至少两种的组合;
    优选地,所述有机过氧化物引发剂选自过氧化苯甲酰或/和过氧化二异丙苯;
    优选地,所述无机过氧化物引发剂选自过硫酸铵、过硫酸钠或过硫酸钾;
    优选地,所述氧化还原引发剂选自过硫酸铵/亚硫酸钠的组合,或者过硫酸铵/亚硫酸氢钠的组合;
    优选地,所述引发剂的质量为(甲基)丙烯酸酯类单体、不饱和羧酸单体、 乙烯基烃类单体以及任选地其他可共聚单体总质量的0.1~2wt%;
    优选地,步骤(b)中(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体的质量占(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体总质量的15~85wt%;
    优选地,所述方法还包括:聚合反应结束后,调节复合乳液pH的过程,优选调节复合乳液pH至6~10的过程;
    优选地,该pH调节过程可以通过碱中和实现;
    优选地,所述无机-有机种子复合乳液玻璃化转变温度为-30~90℃,进一步优选为-25~30℃;
    优选地,所述无机-有机复合乳液乳胶粒子粒径为50~300nm;
    优选地,所述无机-有机复合乳液玻璃化转变温度为-30~90℃,进一步优选为-15~90℃;
    优选地,所述锂离子电池用水性粘合剂的制备方法,包括以下步骤:
    (1)水溶性纤维素与两亲性共聚物的共聚单体通过自由基聚合制备分散剂;
    (2)向无机纳米粒子的醇水混合液中加入硅烷偶联剂,并用氨水调节pH至8~10,于20~70℃搅拌反应3~24h,得到表面改性的无机纳米粒子;
    (3)将步骤(2)得到的无机纳米粒子加入含占(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体总质量的1~25%分散剂的去离子水溶液中,并用乳化分散机在800~3000rpm转速下进行不少于20min分散,在60~90℃下,加入(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体和引发剂,搅拌聚合反应 3~6h,制备无机-有机种子复合乳液;
    (4)在60~90℃下,向步骤(3)得到的无机-有机种子复合乳液中,加入(甲基)丙烯酸酯类单体、不饱和羧酸单体、乙烯基烃类单体以及任选地其他可共聚单体和引发剂,搅拌聚合反应;
    (4)碱中和,得到pH为6-10的无机-有机复合乳液,即锂离子电池用水性粘合剂。
  13. 一种如权利要求1-12之一所述的锂离子电池用水性粘合剂的用途,其用于锂离子电池。
PCT/CN2016/096669 2015-08-26 2016-08-25 一种锂离子电池用水性粘合剂、制备方法及其用途 WO2017032320A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/755,237 US10777818B2 (en) 2015-08-26 2016-08-25 Aqueous binder for lithium ion battery, preparation method therefor and use thereof
KR1020187008440A KR102105380B1 (ko) 2015-08-26 2016-08-25 리튬이온전지용 수성 바인더, 제조방법 및 그 용도
JP2018511086A JP6667617B2 (ja) 2015-08-26 2016-08-25 リチウムイオン電池用水性バインダー、調製方法及びその使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510530760.8 2015-08-26
CN201510530760.8A CN105131875B (zh) 2015-08-26 2015-08-26 一种锂离子电池用水性粘合剂、制备方法及其用途

Publications (1)

Publication Number Publication Date
WO2017032320A1 true WO2017032320A1 (zh) 2017-03-02

Family

ID=54717461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096669 WO2017032320A1 (zh) 2015-08-26 2016-08-25 一种锂离子电池用水性粘合剂、制备方法及其用途

Country Status (5)

Country Link
US (1) US10777818B2 (zh)
JP (1) JP6667617B2 (zh)
KR (1) KR102105380B1 (zh)
CN (1) CN105131875B (zh)
WO (1) WO2017032320A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666578A (zh) * 2018-05-21 2018-10-16 上海洛法化工有限公司 一种锂离子电池负极水系粘结组合物剂及其制备工艺
WO2019124122A1 (ja) * 2017-12-21 2019-06-27 パナソニック株式会社 非水電解質二次電池用負極及び非水電解質二次電池
CN112467133A (zh) * 2020-03-30 2021-03-09 万向一二三股份公司 一种锂离子电池负极浆料及其制备方法
CN113321678A (zh) * 2021-04-27 2021-08-31 万华化学集团股份有限公司 一种硅烷偶联剂、水性丙烯酸酯贴合胶乳液及水性丙烯酸酯贴合胶
US11362334B2 (en) * 2018-04-26 2022-06-14 Zeon Corporation Binder composition for electrical storage device, slurry composition for electrical storage device electrode, electrode for electrical storage device, and electrical storage device
CN115028774A (zh) * 2022-05-13 2022-09-09 金陵科技学院 改性纤维素共聚丙烯酸型两性有机抗水分散剂的制备方法
CN115232581A (zh) * 2022-08-30 2022-10-25 陕西科技大学 一种具有互穿网络结构的丙烯酸树脂粘结剂及其制备方法

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105131875B (zh) * 2015-08-26 2017-07-07 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用水性粘合剂、制备方法及其用途
CN105504169B (zh) * 2016-01-07 2018-05-01 上海交通大学 一种用于锂离子电池的粘结剂
CN105778834B (zh) * 2016-03-21 2017-10-13 福建蓝海黑石科技有限公司 锂离子电池陶瓷隔膜用粘合剂及其制备方法
JP6911553B2 (ja) * 2016-06-23 2021-07-28 荒川化学工業株式会社 リチウムイオン電池負極用スラリー及びその製造方法、リチウムイオン電池用負極、並びにリチウムイオン電池
CN105914377B (zh) 2016-06-28 2019-05-17 中国科学院广州能源研究所 一种多元功能化改性高分子锂离子电池粘结剂及在电化学储能器件中的应用
CN107845812A (zh) * 2016-09-18 2018-03-27 宁德新能源科技有限公司 正极极片及其制备方法以及二次电池
CN106803590B (zh) * 2016-11-28 2019-08-02 德阳九鼎智远知识产权运营有限公司 一种锂离子电池负极材料粘接剂及负极材料及锂电池
US11664489B2 (en) * 2017-03-24 2023-05-30 Nissan Motor Co., Ltd. Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
CN107134590B (zh) * 2017-05-09 2019-02-12 哈尔滨工业大学 一种表面改性的无机纳米粒子及其制备方法与应用
CN109935830B (zh) * 2017-12-15 2021-08-20 浙江中科立德新材料有限公司 一种基于改性明胶粘结剂的锂离子电池硅碳负极极片的制备方法
CN109957361B (zh) * 2017-12-22 2021-02-09 宁德时代新能源科技股份有限公司 一种水性粘结剂及二次电池
CN108306021B (zh) * 2018-02-07 2020-12-29 浙江大学 一种基于硅的锂离子电池负极
WO2019156460A1 (ko) * 2018-02-09 2019-08-15 주식회사 엘지화학 고체 고분자 전해질 및 이를 포함하는 리튬 이차 전지
CN108767259B (zh) * 2018-05-24 2021-12-31 九江华先新材料有限公司 一种用于锂离子电池的水性粘结剂及其制备方法
CN110534818B (zh) * 2018-05-25 2021-02-19 宁德时代新能源科技股份有限公司 锂离子电池负极用悬浮剂、锂离子电池负极和锂离子电池
CN108682862A (zh) * 2018-06-06 2018-10-19 苏州大学 一种锂离子电池硅基负极片的制备方法
WO2020006642A1 (en) * 2018-07-06 2020-01-09 HYDRO-QUéBEC Glycidyl-containing polymers, polymer compositions comprising them and their use in electrochemical cells
CN109103394B (zh) * 2018-07-30 2021-06-15 广东美联隔膜有限公司 一种含高度剥离超微改性填料的锂电池隔膜及其制备方法与应用
CN110885650B (zh) * 2018-09-07 2022-06-14 荒川化学工业株式会社 锂离子电池用粘合剂水溶液、锂离子电池电极用浆料、锂离子电池电极以及锂离子电池
CN109536048A (zh) * 2018-10-11 2019-03-29 福建鸿利印刷材料工贸有限公司 一种环保复合膜及其使用的胶水和制备方法
KR20210110298A (ko) * 2018-12-28 2021-09-07 니폰 제온 가부시키가이샤 전고체 이차 전지 전극용 도전재 페이스트
CN109868095B (zh) * 2019-03-28 2021-04-27 上海西怡新材料科技有限公司 原位聚合型具有光扩散功能的有机硅-丙烯酸酯胶粘剂制备方法及其产品和应用
CN110218285B (zh) * 2019-05-09 2021-09-07 福建蓝海黑石新材料科技有限公司 一种水性粘合剂及其制备方法
CN110157361A (zh) * 2019-05-29 2019-08-23 深圳日高胶带新材料有限公司 一种用于低表面能表面粘接的胶黏剂及其制备方法
CN110143092A (zh) * 2019-05-31 2019-08-20 江苏拜富科技有限公司 一种陶瓷超低温花纸生产方法
CN110172124B (zh) * 2019-06-14 2021-07-02 湖南高瑞电源材料有限公司 一种锂电池陶瓷隔膜专用粘合剂及其制备方法和应用
KR102230563B1 (ko) * 2019-09-05 2021-03-19 쇼와 덴코 가부시키가이샤 전극 바인더용 공중합체 및 리튬 이온 이차 전지
US11223048B2 (en) 2019-10-31 2022-01-11 Tpr Co., Ltd. Binder
CN110931794B (zh) * 2019-11-25 2022-04-29 中国乐凯集团有限公司 粘合剂及制备方法、浆料及其应用
CN111057489A (zh) * 2019-12-04 2020-04-24 广州市黄埔乐天实业有限公司 一种水性交联型聚丙烯酸粘结剂的制备方法
CN110937916B (zh) * 2019-12-09 2022-03-11 江苏省宜兴非金属化工机械厂有限公司 一种蜂窝状结构的陶瓷载体及其制备方法
CN111048786B (zh) * 2019-12-30 2021-05-25 珠海冠宇电池股份有限公司 一种含有无机/有机核壳结构的乳液型粘结剂及锂离子电池
CN111554930B (zh) * 2020-05-08 2021-08-27 珠海冠宇电池股份有限公司 一种粘结剂及含有该粘结剂的锂离子电池
CN113024707A (zh) * 2021-01-28 2021-06-25 江汉大学 一种环保水性硅碳负极粘结剂及其制备方法和应用
CN113185938B (zh) * 2021-05-10 2022-06-24 宁波大榭开发区综研化学有限公司 一种环保耐低湿丙烯酸酯类胶粘剂及其制备方法
CN113555558B (zh) * 2021-07-12 2022-12-20 珠海冠宇电池股份有限公司 一种乳液型粘结剂和包括该粘结剂的锂离子电池
EP4151337A3 (en) 2021-08-27 2023-05-31 General Electric Company Method of edge printing for use in additive manufacturing processes
CN114149549A (zh) * 2021-12-31 2022-03-08 湖南高瑞电源材料有限公司 一种核壳乳液及其制备方法和应用
CN114478898A (zh) * 2022-02-17 2022-05-13 惠州市赛力达化工有限公司 一种锂电池负极代sbr用乳液聚合粘合剂及其制备方法
KR20230123830A (ko) 2022-02-17 2023-08-24 주식회사 엘지화학 이차 전지 수계 바인더용 코어-쉘 구조의 고분자 입자
WO2024023713A1 (en) * 2022-07-26 2024-02-01 3M Innovative Properties Company Inorganic adhesive and methods thereof
CN115141285B (zh) * 2022-08-11 2023-09-01 湖北亿纬动力有限公司 一种改性羧甲基纤维素盐粘结剂及其制备方法和应用
KR102538285B1 (ko) * 2022-10-06 2023-06-01 주식회사 한솔케미칼 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
CN115404029A (zh) * 2022-10-19 2022-11-29 苏州德比电子材料科技有限公司 一种耐高温、低水分的隔膜粘结剂及其制备方法与应用
CN117089015B (zh) * 2023-10-20 2024-01-12 苏州德比电子材料科技有限公司 一种锂电池陶瓷隔膜用强耐水胶黏剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1814629A (zh) * 2005-02-05 2006-08-09 广州宏昌胶粘带厂 含无机纳米粒子的核-壳无机-有机复合压敏胶乳液及其制备方法和应用
CN1944479A (zh) * 2006-10-24 2007-04-11 河北工业大学 压敏胶粘剂用的聚丙烯酸酯复合乳液及其制备和应用方法
CN102533186A (zh) * 2011-12-26 2012-07-04 北京高盟新材料股份有限公司 耐碱型丙烯酸酯玻纤网格布定型用粘合剂及其制备方法
CN102875722A (zh) * 2012-10-06 2013-01-16 四川之江化工新材料有限公司 强力粘合型锂离子电池粘合剂的制备方法
US20140349184A1 (en) * 2013-05-23 2014-11-27 Hercules Corporated Binder Composition For An Electrode And Methods For Producing The Same
CN105131875A (zh) * 2015-08-26 2015-12-09 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用水性粘合剂、制备方法及其用途

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3907230B2 (ja) * 1995-02-24 2007-04-18 三井化学株式会社 粒子及び粒子含有分散液並びにそれらの製造方法
JP3960193B2 (ja) * 2001-12-20 2007-08-15 株式会社デンソー リチウム二次電池用電極及びリチウム二次電池並びにその製造方法
JP4617886B2 (ja) * 2005-01-11 2011-01-26 パナソニック株式会社 非水二次電池およびその正極ペーストの製造方法
JP2008080226A (ja) * 2006-09-27 2008-04-10 Shin Etsu Chem Co Ltd 乳化物又は懸濁物の調製方法
JP2009170287A (ja) * 2008-01-17 2009-07-30 Mitsubishi Chemicals Corp 非水系電解液二次電池用電極及びそれを用いた非水系電解液二次電池
JP5155959B2 (ja) * 2009-01-19 2013-03-06 関西ペイント株式会社 水分散体及び該水分散体を含む水性塗料組成物
US9187622B2 (en) * 2012-02-09 2015-11-17 Samsung Sdi Co., Ltd. Composite binder for battery, and anode and battery including the composite binder
KR101708364B1 (ko) * 2012-02-09 2017-02-20 삼성에스디아이 주식회사 전지용 복합바인더, 이를 채용한 음극과 리튬전지
KR101693293B1 (ko) * 2012-08-20 2017-01-05 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이를 포함하는 음극 및 리튬 이차 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1814629A (zh) * 2005-02-05 2006-08-09 广州宏昌胶粘带厂 含无机纳米粒子的核-壳无机-有机复合压敏胶乳液及其制备方法和应用
CN1944479A (zh) * 2006-10-24 2007-04-11 河北工业大学 压敏胶粘剂用的聚丙烯酸酯复合乳液及其制备和应用方法
CN102533186A (zh) * 2011-12-26 2012-07-04 北京高盟新材料股份有限公司 耐碱型丙烯酸酯玻纤网格布定型用粘合剂及其制备方法
CN102875722A (zh) * 2012-10-06 2013-01-16 四川之江化工新材料有限公司 强力粘合型锂离子电池粘合剂的制备方法
US20140349184A1 (en) * 2013-05-23 2014-11-27 Hercules Corporated Binder Composition For An Electrode And Methods For Producing The Same
CN105131875A (zh) * 2015-08-26 2015-12-09 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用水性粘合剂、制备方法及其用途

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817583B2 (en) 2017-12-21 2023-11-14 Panasonic Holdings Corporation Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2019124122A1 (ja) * 2017-12-21 2019-06-27 パナソニック株式会社 非水電解質二次電池用負極及び非水電解質二次電池
KR20200041980A (ko) * 2017-12-21 2020-04-22 파나소닉 주식회사 비수 전해질 이차 전지용 부극 및 비수 전해질 이차 전지
JPWO2019124122A1 (ja) * 2017-12-21 2020-12-24 パナソニック株式会社 非水電解質二次電池用負極及び非水電解質二次電池
KR102344886B1 (ko) 2017-12-21 2021-12-30 파나소닉 주식회사 비수 전해질 이차 전지용 부극 및 비수 전해질 이차 전지
US11362334B2 (en) * 2018-04-26 2022-06-14 Zeon Corporation Binder composition for electrical storage device, slurry composition for electrical storage device electrode, electrode for electrical storage device, and electrical storage device
CN108666578B (zh) * 2018-05-21 2021-07-30 上海洛法化工有限公司 一种锂离子电池负极水系粘结剂组合物及其制备工艺
CN108666578A (zh) * 2018-05-21 2018-10-16 上海洛法化工有限公司 一种锂离子电池负极水系粘结组合物剂及其制备工艺
CN112467133A (zh) * 2020-03-30 2021-03-09 万向一二三股份公司 一种锂离子电池负极浆料及其制备方法
CN113321678A (zh) * 2021-04-27 2021-08-31 万华化学集团股份有限公司 一种硅烷偶联剂、水性丙烯酸酯贴合胶乳液及水性丙烯酸酯贴合胶
CN113321678B (zh) * 2021-04-27 2023-01-13 万华化学集团股份有限公司 一种硅烷偶联剂、水性丙烯酸酯贴合胶乳液及水性丙烯酸酯贴合胶
CN115028774B (zh) * 2022-05-13 2023-04-21 金陵科技学院 改性纤维素共聚丙烯酸型两性有机抗水分散剂的制备方法
CN115028774A (zh) * 2022-05-13 2022-09-09 金陵科技学院 改性纤维素共聚丙烯酸型两性有机抗水分散剂的制备方法
CN115232581A (zh) * 2022-08-30 2022-10-25 陕西科技大学 一种具有互穿网络结构的丙烯酸树脂粘结剂及其制备方法
CN115232581B (zh) * 2022-08-30 2023-10-20 陕西科技大学 一种具有互穿网络结构的丙烯酸树脂粘结剂及其制备方法

Also Published As

Publication number Publication date
JP6667617B2 (ja) 2020-03-18
JP2018527710A (ja) 2018-09-20
KR102105380B1 (ko) 2020-04-29
CN105131875B (zh) 2017-07-07
CN105131875A (zh) 2015-12-09
US10777818B2 (en) 2020-09-15
US20180248191A1 (en) 2018-08-30
KR20180048778A (ko) 2018-05-10

Similar Documents

Publication Publication Date Title
WO2017032320A1 (zh) 一种锂离子电池用水性粘合剂、制备方法及其用途
WO2019242318A1 (zh) 一种水性粘结剂及其制备方法和用途
JP5742493B2 (ja) 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP5567429B2 (ja) リチウムイオン二次電池用導電層
JP2012150905A (ja) 樹脂集電体および二次電池
JP6365011B2 (ja) 蓄電デバイス下地層用樹脂微粒子、下地層形成用インキ、下地層付き集電体、蓄電デバイス用電極、蓄電デバイス。
WO2024016587A1 (zh) 一种水性粘结剂及其制备方法和应用
WO2022194172A1 (zh) 一种硼酸衍生物改性的粘结剂及含有该粘结剂的锂离子电池
JP6503790B2 (ja) 非水系二次電池多孔膜用バインダー、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
JP2012150896A (ja) 樹脂集電体および二次電池
US20240105948A1 (en) Secondary battery electrode binder, secondary battery electrode mixture layer composition, secondary battery electrode and secondary battery
WO2015099021A1 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極、及びリチウムイオン二次電池
JP2016216550A (ja) ビニル系組成物並びにコーティング剤及び非水系二次電池用セパレータ
JP6572410B2 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極、及びリチウムイオン二次電池
US20220013785A1 (en) Binder for a secondary battery electrode and use thereof
JP2016066601A (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極、及びリチウムイオン二次電池
JP2014165108A (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極の製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池
JP7063324B2 (ja) 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用スラリー組成物、非水系二次電池用多孔膜、および非水系二次電池
WO2017104770A1 (ja) 二次電池負極用バインダー組成物、二次電池負極及び二次電池
JP6029823B2 (ja) 二次電池電極用水系組成物および二次電池正極用電極
JP7493912B2 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
WO2020110847A1 (ja) 二次電池電極用バインダー、二次電池電極合剤層用組成物及び二次電池電極
US20200335791A1 (en) Binder for secondary battery electrode, and use thereof
US20230312906A1 (en) Power storage device binder composition, power storage device electrode slurry, power storage device electrode, and power storage device
CN117678043A (zh) 用于负极的粘合剂组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018511086

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15755237

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187008440

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16838578

Country of ref document: EP

Kind code of ref document: A1