WO2022194172A1 - 一种硼酸衍生物改性的粘结剂及含有该粘结剂的锂离子电池 - Google Patents

一种硼酸衍生物改性的粘结剂及含有该粘结剂的锂离子电池 Download PDF

Info

Publication number
WO2022194172A1
WO2022194172A1 PCT/CN2022/081028 CN2022081028W WO2022194172A1 WO 2022194172 A1 WO2022194172 A1 WO 2022194172A1 CN 2022081028 W CN2022081028 W CN 2022081028W WO 2022194172 A1 WO2022194172 A1 WO 2022194172A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
copolymer
binder
ion battery
acrylate
Prior art date
Application number
PCT/CN2022/081028
Other languages
English (en)
French (fr)
Inventor
储霖
郭盼龙
陈伟平
李素丽
李俊义
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2022194172A1 publication Critical patent/WO2022194172A1/zh
Priority to US18/225,642 priority Critical patent/US20230369599A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing boron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/066Copolymers with monomers not covered by C09J133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J135/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J147/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Adhesives based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application relates to a boric acid derivative-modified binder and a lithium ion battery containing the binder, belonging to the technical field of lithium ion batteries, in particular to the technical field of lithium ion battery binders.
  • the binder in lithium-ion batteries not only plays the role of bonding between the active material layers, but also can be used for the bonding between the active material layer and the substrate of the pole piece. It plays an important role in the aspect and is one of the important components of the battery.
  • the most widely used emulsion adhesives in the industry include SBR emulsion formed by copolymer of styrene and butadiene, and styrene-acrylic emulsion formed by copolymerization of styrene and acrylate.
  • the films formed by these emulsions are all elastomers with different degrees of cross-linking, which can play a bonding role.
  • van der Waals force between the particles in this type of emulsion no chemical interaction, so an effective three-dimensional bonding network cannot be formed during the use process, so the battery expansion inhibition ability is not good during the battery cycle process. Therefore, there is an urgent need to develop functionalized emulsion binders, which can form an effective three-dimensional bonding network during use and improve the performance of batteries.
  • the present application provides a boric acid derivative-modified binder and a lithium ion battery containing the binder.
  • the boric acid derivative-modified binder Compared with the existing adhesives, the adhesive performance of the adhesive is greatly improved, and the mechanical stability of the prepared film is also improved.
  • a copolymer is a copolymer of a matrix monomer and a comonomer represented by formula (1);
  • R 2 is selected from -H, -C 1-6 alkyl;
  • R 3 is selected from -H, -C 1-6 alkyl.
  • the matrix monomer is selected from at least one of the compounds represented by formula (2) and formula (3);
  • the comonomer represented by the formula (1) is specifically selected from the following formula (1-1), formula (1-2), formula (1-3), formula (1-4) and formula (1) -5) At least one of the compounds shown:
  • the copolymer is a copolymer of a matrix monomer, a comonomer represented by formula (1) and a functional monomer
  • the functional monomer is selected from acrylonitrile, (meth)acrylamide, (methyl) ) acrylic acid, itaconic acid, 2-acrylamido-2-methylpropanesulfonic acid, allylsulfonic acid, N-methylol(meth)acrylamide, N,N-dimethylacrylamide, para Sodium styrene sulfonate, sodium vinyl sulfonate, sodium allyl sulfonate, sodium 2-methallyl sulfonate, sodium ethyl methacrylate sulfonate, hydroxyethyl (meth)acrylate, (methyl) base) at least one of hydroxypropyl acrylate or dimethyl diallyl ammonium chloride.
  • the introduction of the functional monomer is beneficial to improve the properties of the copolymer, such as
  • the matrix monomer is selected from butadiene and styrene; or, the matrix monomer is selected from at least one of alkyl (meth)acrylate and hydroxyalkyl (meth)acrylate or, the matrix monomer is selected from at least one of styrene and the following compounds: alkyl (meth)acrylate and hydroxyalkyl (meth)acrylate.
  • the copolymer is, for example, a comonomer (boronic acid derivative) represented by formula (1), a copolymer of butadiene and styrene , or a copolymer of comonomer (boronic acid derivative) represented by formula (1), butadiene, styrene and functional monomer.
  • the copolymer is, for example, alkyl (meth)acrylate A copolymer of at least one of ester and hydroxyalkyl (meth)acrylate and a comonomer (boronic acid derivative) represented by formula (1), or an alkyl (meth)acrylate and a (meth)acrylate A copolymer of at least one hydroxyalkyl acrylate, a comonomer (boronic acid derivative) represented by formula (1) and a functional monomer.
  • the copolymer is, for example, ( At least one of alkyl meth)acrylate and hydroxyalkyl (meth)acrylate, copolymer of comonomer (boronic acid derivative) represented by formula (1) and styrene, or (methyl) At least one of alkyl acrylate and hydroxyalkyl (meth)acrylate, a comonomer (boronic acid derivative) represented by formula (1), a copolymer of styrene and a functional monomer.
  • the comonomer represented by the formula (I) accounts for 0.1-10 wt % of the total mass of the copolymer.
  • the comonomer represented by the formula (I) accounts for 1-5 wt % of the total mass of the copolymer.
  • the matrix monomer accounts for 90-99.9 wt % of the total mass of the copolymer.
  • the matrix monomer accounts for 95-99 wt % of the total mass of the copolymer.
  • the functional monomer accounts for 0-10 wt% of the total mass of the copolymer.
  • the functional monomer accounts for 0.1-5 wt % of the total mass of the copolymer.
  • the glass transition temperature of the copolymer is -20°C to 80°C.
  • the present application also provides a binder comprising the above-mentioned copolymer.
  • the binder is an emulsion binder.
  • the particle size of the emulsion binder is 100-800 nm, optionally 100-300 nm.
  • the PDI of the emulsion-type binder is not more than 0.3, optionally not more than 0.1.
  • the viscosity of the emulsion-type binder is 10-500 mPa ⁇ s, optionally 50-250 mPa ⁇ s.
  • the solid content of the emulsion type binder is 1-70wt%, for example, 5-65wt%, also for example 10-60wt%, further for example 20-60wt%, further for example 30-60wt%, It is selected to be 40 to 60 wt %.
  • the present application provides a pole piece, the pole piece includes a current collector and an active material layer on at least one surface of the current collector, the active material layer includes the above-mentioned binder, and the mass of the binder accounts for the proportion of the active material 0.5 to 5 wt % of the total mass of the layer, for example 0.8 to 2.5 wt %, or 1.5 to 2.5 wt %.
  • the present application provides a lithium ion battery, the lithium ion battery includes the above-mentioned binder and/or the above-mentioned pole piece.
  • the present application provides a boric acid derivative-modified binder and a lithium ion battery containing the binder, wherein the surface of the latex particles of the binder is rich in boric acid groups (-B(OH) 2 ).
  • the boronic acid group and the -OH in the dispersant sodium carboxymethylcellulose or the -OH in the functional monomer can undergo a dehydration condensation reaction during the drying process of the pole piece to form a three-dimensional network. Increase the adhesive force and greatly improve the peel strength of the pole piece.
  • the binder can also significantly improve the cycle performance of the lithium ion battery under normal and low temperature conditions, thereby prolonging the cycle life of the lithium ion battery; compared with the conventional binder, the lithium ion battery using the binder of the present application
  • the cycle capacity retention rate of the ion battery is higher, and the expansion rate of the lithium ion battery after cycling is lower, so that the expansion rate of the lithium ion battery after long-term use can be significantly suppressed, and the lithium ion battery using the binder of the present application has a low temperature Performance has also been significantly improved at the same time.
  • FIG. 1 is an infrared spectrogram of the binders of Example 1 and Comparative Example 1.
  • FIG. 1 is an infrared spectrogram of the binders of Example 1 and Comparative Example 1.
  • FIG. 2 is a schematic structural diagram of an apparatus for performing a peel strength test of an adhesive.
  • the present application provides a copolymer, which is a copolymer of a matrix monomer and a comonomer represented by formula (1);
  • R 2 is selected from -H, -C 1-6 alkyl;
  • R 3 is selected from -H, -C 1-6 alkyl.
  • the matrix monomer is selected from at least one of the compounds represented by formula (2) and formula (3);
  • the matrix monomer is selected from at least one of butadiene, styrene, alkyl (meth)acrylate, and hydroxyalkyl (meth)acrylate.
  • R 2 is selected from -H, -C 1-3 alkyl;
  • R 3 is selected from -H, -C 1-3 alkyl.
  • R 2 is selected from -H, -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH(CH 3 ) 2 ;
  • R 3 is selected from - H, -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH(CH 3 ) 2 .
  • the comonomer represented by the formula (1) is a boronic acid derivative with an unsaturated bond, that is, the comonomer represented by the formula (1) is a boronic acid derivative.
  • the comonomer represented by the formula (1) is specifically selected from the following formula (1-1), formula (1-2), formula (1-3), formula (1-4) and At least one of the compounds represented by formula (1-5):
  • the copolymer is a copolymer of a matrix monomer, a comonomer represented by formula (1) and a functional monomer.
  • the functional monomer is selected from acrylonitrile, (meth)acrylamide, (meth)acrylic acid, itaconic acid, 2-acrylamido-2-methylpropanesulfonic acid, allyl sulfonic acid, N-methylol (meth)acrylamide, N,N-dimethylacrylamide, sodium p-styrene sulfonate, sodium vinyl sulfonate, sodium allyl sulfonate, 2-methyl sulfonate At least one of sodium allyl sulfonate, sodium ethyl methacrylate sulfonate, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate or dimethyldiallylammonium chloride.
  • the introduction of the functional monomer is beneficial to improve the properties of the copolymer, such as the dispersion stability of the emulsion formed by the copolymer in water and the adhesion to active substances.
  • the matrix monomer is selected from butadiene and styrene; or, the matrix monomer is selected from alkyl (meth)acrylate and hydroxyalkyl (meth)acrylate at least one; or, the matrix monomer is selected from styrene and at least one of the following compounds: alkyl (meth)acrylate and hydroxyalkyl (meth)acrylate.
  • the alkyl (meth)acrylate is selected from butyl methacrylate, butyl acrylate, methyl methacrylate, methyl acrylate, ethyl methacrylate, ethyl acrylate, methacrylic acid At least one of n-octyl ester, n-octyl acrylate, isooctyl methacrylate, isooctyl acrylate, and dodecyl methacrylate.
  • the hydroxyalkyl (meth)acrylate is selected from at least one of hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxypropyl methacrylate, and hydroxypropyl acrylate.
  • the copolymer is, for example, a comonomer (boronic acid derivative) represented by formula (1), butadiene and styrene , or a copolymer of comonomer (boronic acid derivative) represented by formula (1), butadiene, styrene and functional monomer.
  • the copolymer is, for example, (meth) A copolymer of at least one of alkyl acrylate and hydroxyalkyl (meth)acrylate and a comonomer (boronic acid derivative) represented by formula (1), or an alkyl (meth)acrylate and ( A copolymer of at least one hydroxyalkyl meth)acrylate, a comonomer (boronic acid derivative) represented by formula (1) and a functional monomer.
  • the matrix monomer includes styrene and at least one of the following compounds: alkyl (meth)acrylate, hydroxyalkyl (meth)acrylate
  • the copolymer For example, at least one of alkyl (meth)acrylate and hydroxyalkyl (meth)acrylate, a copolymer of a comonomer (boronic acid derivative) represented by formula (1) and styrene, or ( At least one of alkyl meth)acrylate and hydroxyalkyl (meth)acrylate, a comonomer (boronic acid derivative) represented by formula (1), a copolymer of styrene and a functional monomer.
  • the introduction of the comonomer (boronic acid derivative) represented by the formula (1) in the copolymer can make the latex particle surface of the copolymer have abundant boronic acid-B(OH) 2 groups, This group exists stably in aqueous emulsions.
  • the commonly used dispersants for lithium ion batteries are -OH in sodium carboxymethylcellulose and -OH in functional monomers; after chemical cross-linking, a three-dimensional bonding network is formed to increase the bonding strength, thereby improving battery performance.
  • the comonomer represented by formula (I) accounts for 0.1-10 wt % of the total mass of the copolymer.
  • the comonomer represented by the formula (I) accounts for 1-5 wt % of the total mass of the copolymer.
  • the comonomer represented by formula (I) accounts for 0.1wt%, 0.3wt%, 0.5wt%, 0.8wt%, 1wt%, 2wt%, 3wt%, 4wt%, 5wt%, 8wt%, 10wt%.
  • the matrix monomer accounts for 90-99.9 wt % of the total mass of the copolymer.
  • the matrix monomer accounts for 95-99 wt % of the total mass of the copolymer.
  • the matrix monomer accounts for 90wt%, 92wt%, 95wt%, 96wt%, 97wt%, 98wt%, 99wt%, 99.2wt%, 99.5wt%, 99.7wt%, 99.9wt% of the total mass of the copolymer.
  • the functional monomer accounts for 0-10 wt % of the total mass of the copolymer.
  • the functional monomer accounts for 0.1-5 wt % of the total mass of the copolymer.
  • the functional monomer accounts for 0wt%, 0.1wt%, 0.2wt%, 0.3wt%, 0.4wt%, 0.5wt%, 0.8wt%, 1wt%, 2wt%, 3wt% of the total mass of the copolymer , 4wt%, 5wt%.
  • the copolymer is a random copolymer or a block copolymer, optionally a random copolymer.
  • the glass transition temperature of the copolymer is -20°C to 80°C.
  • the weight average molecular weight of the copolymer is 250,000 to 1.5 million.
  • the present application also provides a binder, which includes the above-mentioned copolymer.
  • the binder is prepared by polymerizing a comonomer (boronic acid derivative) represented by formula (1), a matrix monomer and optionally a functional monomer.
  • the binder is an emulsion binder.
  • the copolymer is dispersed in a dispersion medium (eg, water) to obtain an emulsion binder.
  • the prepared adhesive is an emulsion adhesive.
  • the comonomer (boronic acid derivative) represented by the formula (1), the copolymer of butadiene and styrene, or the comonomer (boronic acid derivative) represented by the formula (1), butadiene The copolymer of styrene and functional monomer is dispersed in a dispersion medium (such as water) to prepare an emulsion type binder.
  • the base monomer is at least one of styrene and the following compounds: alkyl (meth)acrylate, hydroxyalkyl (meth)acrylate
  • the binder is an emulsion binder. Specifically, at least one of alkyl (meth)acrylate and hydroxyalkyl (meth)acrylate, a copolymer of a comonomer (boronic acid derivative) represented by formula (1) and styrene, or Disperse at least one of alkyl (meth)acrylate and hydroxyalkyl (meth)acrylate, comonomer (boronic acid derivative) represented by formula (1), and copolymer of styrene and functional monomer
  • a dispersion medium eg, water
  • the prepared adhesive is an emulsion adhesive agent.
  • a copolymer of a comonomer (boronic acid derivative) represented by formula (1) and a functional monomer is prepared. binding agent.
  • the particle size of the emulsion binder is 100-800 nm, optionally 100-300 nm.
  • the PDI of the emulsion-type binder is not more than 0.3, optionally not more than 0.1.
  • the viscosity of the emulsion-type binder is 10-500 mPa ⁇ s, optionally 50-250 mPa ⁇ s.
  • the solid content of the emulsion type binder is 1-70wt%, for example, 5-65wt%, also for example 10-60wt%, further for example 20-60wt%, further for example 30-60wt%, It is selected to be 40 to 60 wt %.
  • the emulsion-type binder selected with the parameters has good dispersion stability, stable cohesive force, and is easy to disperse during use.
  • water when used as the dispersion medium, it has the characteristics of no solvent release, conforming to environmental requirements, non-combustion, low cost, and safe use.
  • the present application also provides a preparation method of the above-mentioned copolymer, that is, prepared by a method of emulsion polymerization, and the method comprises the following steps:
  • the copolymer is prepared by mixing the comonomer represented by the formula (1) with the matrix monomer and optionally the functional monomer, passing in an inert gas, and reacting.
  • the inert gas is one of high-purity nitrogen and high-purity argon.
  • the reaction temperature is 30-120° C., and the reaction time is 5-24 h.
  • the adjuvant includes at least one of an initiator, a cross-linking agent, an emulsifier or a buffer.
  • the emulsifier is selected from one or more of anionic emulsifiers, cationic emulsifiers, amphoteric emulsifiers and nonionic emulsifiers.
  • the initiator is selected from potassium persulfate, ammonium persulfate, 4,4'-azobis(4-cyanovaleric acid), 2,2-azobis(2-methylpropylimid)di Hydrochloride, sodium persulfate, tetravalent cerium salt (such as cerium ammonium nitrate), potassium permanganate, sodium persulfate/sodium bisulfite, ferrous sulfate/hydrogen peroxide, ammonium persulfate/tetramethylethylenediamine, At least one of ammonium persulfate/sodium sulfite.
  • sodium persulfate/sodium bisulfite, ferrous sulfate/hydrogen peroxide, ammonium persulfate/tetramethylethylenediamine, and ammonium persulfate/sodium sulfite respectively represent the initiators used in combination, and can be added successively during use.
  • the buffer is selected from sodium bicarbonate or sodium phosphate dodecahydrate (Na 3 PO 4 ⁇ 12H 2 O).
  • the crosslinking agent is selected from at least one of divinylbenzene, N,N-methylenebisacrylamide, ethylene glycol diacrylate, and ethylene glycol dimethacrylate.
  • the present application also provides a method for preparing the above-mentioned binder, the method comprising the steps of:
  • the above-mentioned copolymer is dispersed in a dispersion medium (such as water) to prepare the binder, which can be optionally an emulsion-type binder.
  • a dispersion medium such as water
  • the present application also provides the application of the above-mentioned binder in a lithium ion battery.
  • the application in the positive electrode and/or the negative electrode of the lithium ion battery is further used as a binder for the negative electrode.
  • the present application provides a pole piece, the pole piece includes a current collector and an active material layer on at least one surface of the current collector, and the active material layer includes the above-mentioned binder.
  • the pole piece is a positive pole piece or a negative pole piece.
  • the current collector is a positive electrode current collector or a negative electrode current collector; wherein, the negative electrode current collector is selected from single-gloss copper foil, double-gloss copper foil or porous copper foil; the positive electrode current collector choose from single glossy foil, double glossy foil or porous foil.
  • the mass of the binder accounts for 0.5-5 wt % of the total mass of the active material layer, such as 0.8-2.5 wt %, or 1.5-2.5 wt %.
  • the active material layer further includes active materials and additives.
  • the active material is a positive active material or a negative active material
  • the negative active material includes artificial graphite, natural graphite, mesocarbon spheres, lithium titanate, silicon oxide, nano-silicon powder, suboxide At least one of silicon and silicon carbon
  • the positive electrode active material includes at least one of lithium iron phosphate, ternary positive electrode material, and lithium cobalt oxide.
  • the additive includes a conductive agent and/or a dispersant; optionally, the conductive agent is selected from at least one of graphite, carbon black, acetylene black, graphene, and carbon nanotubes; The dispersing agent is selected from sodium carboxymethyl cellulose or lithium carboxymethyl cellulose.
  • the amount of the conductive agent and/or the dispersing agent is the amount known in the art.
  • the application also provides a preparation method of the above-mentioned pole piece, comprising the following steps:
  • a slurry containing the above-mentioned binder is coated on at least one surface of the current collector to prepare the pole piece.
  • the preparation method of the negative pole piece comprises the following steps:
  • the positive electrode sheet is prepared by a method comprising the following steps:
  • the positive electrode binder may be at least one of the above-mentioned binder, PVDF, polyacrylate and polyacrylic acid, and may be PVDF.
  • the present application also provides the application of the above-mentioned pole piece in a lithium ion battery.
  • the present application provides a lithium ion battery, and the lithium ion battery includes the above-mentioned binder and/or the above-mentioned pole piece.
  • the lithium ion battery includes a positive electrode, a negative electrode, a separator and an electrolyte.
  • the lithium ion battery is assembled from a positive pole piece, a separator, a negative pole piece and an electrolyte.
  • the positive pole piece, negative pole piece and separator are assembled into a battery cell by winding or lamination commonly used in the industry, and then packaged with aluminum plastic film, and then baked, injected with electrolyte, chemically formed, and sealed In the process, a lithium ion battery is obtained.
  • the particle size and PDI data of emulsion micelles in the following examples are obtained by testing with a laser particle sizer (Zatasizer Nano ZS90 from Malvern).
  • the viscosities involved in the following examples and comparative examples are measured at room temperature (20-25° C.) by using a digital display rotational viscometer (Shanghai Sannuo NDJ-5S).
  • the glass transition temperatures involved in the following examples and comparative examples are obtained by measuring with a differential scanning calorimeter (DSC), model 910s (TA Instruments, USA).
  • the positive electrode active material lithium cobaltate, the binder PVDF and the conductive carbon black are dispersed in N-methylpyrrolidone, and after stirring, a uniformly dispersed positive electrode slurry is obtained, wherein the solid content includes 96.8wt% lithium cobaltate, 1.3wt% PVDF and 2 wt % conductive carbon black, the solid content of the positive electrode slurry was 67.5 wt %, and the viscosity was 21745 mPa ⁇ s.
  • the positive electrode slurry is evenly coated on both sides of the aluminum foil, dried at 100-130° C. for 4 hours, and compacted by a roller press, with a compaction density of 2.6-3.2 g/cm 3 , to obtain a positive electrode pole piece;
  • the graphite, the above-mentioned emulsion binder, the dispersant CMC and the conductive agent conductive carbon black are mixed and dispersed in deionized water to obtain a negative electrode slurry, wherein the solid content includes 95.5wt% graphite, 1.5wt% CMC, 1wt% conductive carbon black Carbon black and 2 wt % of the above-mentioned emulsion-type binder, the solid content of the negative electrode slurry is 44-46 wt %, and the viscosity is 6561 mPa ⁇ s.
  • the slurry is uniformly coated on both sides of the copper foil, dried at 70-100° C. for 5 hours, and compacted by a roller press, wherein the compaction density is 1.4-1.7 g/cm 3 to obtain a negative pole piece;
  • the positive electrode sheet, the negative electrode sheet and the separator (PP/PE/PP composite film, thickness 8 ⁇ m, porosity 42%) are wound and packaged into a battery cell, and then injected into the electrolyte, formed, hot pressed, and sealed to obtain lithium ions Battery.
  • the glass transition temperature of the latex adhesive is 20°C
  • the average particle size of the latex adhesive is 165nm
  • the PDI is 0.036
  • the viscosity is 15 ⁇ 50mPa ⁇ s
  • the solid content is 39-41 wt %
  • the pH 7-8.
  • the method and process of making a lithium ion battery are basically the same as those in Example 1, except that the binder used is the emulsion-type binder synthesized in this example.
  • octylphenol polyoxyethylene ether OP-10
  • sodium dodecyl sulfate SDS
  • the mass ratio is 1/1, a total of 4 parts, 1 part of acrylamide, 33 parts of methyl methacrylate , 60 parts of butyl acrylate, 2 parts of hydroxyethyl acrylate, 3 parts of boric acid derivatives shown in formula 1-2, 0.15 parts of ethylene glycol diacrylate, 0.5 parts of ammonium persulfate, 0.5 parts of sodium bisulfite, water 200 copies.
  • the emulsifier (OP-10/SDS) and deionized water were added to the reaction vessel by the semi-continuous method, stirred for 1 h, mixed uniformly and emulsified; then the temperature was raised to 40 °C, and N 2 was introduced at the same time (to remove the O 2 ), add 1/10 part of the mixed monomer and 1/3 part of the initiator, and react at 45°C for 1 hour; then add the remaining mixed monomer and initiator to the system simultaneously (control the drop rate) , after dripping, continue the reaction for 5 hours; cool down to 25 °C, adjust the pH to 7.0-8.0 with ammonia water to obtain the target boric acid derivative-modified acrylate emulsion adhesive, the glass transition of the emulsion adhesive
  • the temperature is 25°C, the average particle size of the emulsion binder is 185 nm, the PDI is 0.03, the viscosity is 10-70 mPa ⁇ s, and the solid content is 36-39 wt %
  • the method and process of making a lithium ion battery are basically the same as those in Example 1, except that the emulsion-type binder used is the emulsion-type binder synthesized in this example.
  • SDS sodium dodecyl sulfate
  • the reaction vessel stir, then heat up, and feed N 2 (excluding O 2 in the system) at the same time; after the temperature rises to 70 ° C, add 0.35 parts of potassium persulfate, and continue the reaction for 8 hours;
  • the pH is adjusted to 7.0-8.0 with sodium hydroxide, and the target boric acid derivative-modified styrene-acrylic emulsion binder is obtained after cooling.
  • the glass transition temperature of the emulsion adhesive is 10°C
  • the average particle size of the emulsion adhesive is 175 nm
  • the PDI is 0.043
  • the viscosity is 10-60 mPa ⁇ s
  • the solid content is 38-41 wt%.
  • the method and process of making a lithium ion battery are basically the same as those in Example 1, except that the binder used is the emulsion-type binder synthesized in this example.
  • Example 1 Compared with Example 1, the difference is that no boronic acid derivative monomer is added, and the content and preparation process of other substances are the same as those of Example 1.
  • Example 2 Compared with Example 2, the difference is that no boronic acid derivative monomer is added, and the content and preparation process of other substances are the same as those of Example 2.
  • Example 3 Compared with Example 3, the difference is that no boronic acid derivative monomer is added, and the content and preparation process of other substances are consistent with Example 3.
  • Example 4 Compared with Example 4, the difference is that no boronic acid derivative monomer is added, and the content and preparation process of other substances are the same as those of Example 4.
  • the batteries prepared in the examples and comparative examples were tested for performance.
  • the test items included low temperature performance (charge at 0°C, discharge at -20°C), cycle retention rate and cyclic expansion rate at room temperature.
  • the test process was as follows:
  • Cycle retention rate The capacity retention rate after 250 cycles was calculated by charging and discharging 250 times at 1C at room temperature of 25°C.
  • Cycle expansion rate at room temperature at room temperature of 25°C, charge and discharge cycles at 1C for 250 times, and calculate the percentage of the thickness increase of the battery after 250 times to the original thickness.
  • FIG. 1 is an infrared spectrogram of the binders of Example 1 and Comparative Example 1.
  • FIG. It can be seen from Figure 1 that in Example 1, by introducing a boronic acid derivative structure, there are characteristic absorption peaks of BO and OH stretching vibrations at 1340cm -1 and 3200-3600cm -1 wavenumbers, while in Comparative Example 1, there are no characteristic absorption peaks here. Obvious absorption peak, it can be judged that the boronic acid derivative monomer participated in the copolymerization and was successfully introduced into the latex micelles.
  • the performance of the battery with the addition of the boric acid derivative-modified binder is compared with the performance of the battery without the addition of the boric acid derivative-modified binder, peel strength, 0.2C discharge at -20 °C
  • the performance of capacity retention rate, 1C charge-discharge cycle at room temperature and 250T capacity retention rate and room temperature expansion rate all show advantages.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本申请提供了一种硼酸衍生物改性的粘结剂及含有该粘结剂的锂离子电池,所述粘结剂的乳液胶粒的表面带有丰富的硼酸基团(-B(OH)2)。当应用到电池极片中时,在极片干燥的过程中硼酸基团与分散剂羧甲基纤维素钠中的-OH或者功能单体中的-OH可以发生脱水缩合反应,形成三维网络,增加粘结力,大幅提升了极片的剥离强度。所述粘结剂还能明显改善锂离子电池的循环性能,从而延长了锂离子电池的循环寿命;与常规的粘结剂相比,使用本申请的粘结剂的锂离子电池的循环容量保持率更高,且循环后锂离子电池的膨胀率更低,由此能够显著抑制锂离子电池长期使用之后的膨胀率,且使用本申请的粘结剂的锂离子电池低温性能也同时得到明显的改进。

Description

一种硼酸衍生物改性的粘结剂及含有该粘结剂的锂离子电池
本申请要求于2021年03月15日提交中国专利局、申请号为202110278031.3、申请名称为“一种硼酸衍生物改性的粘结剂及含有该粘结剂的锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种硼酸衍生物改性的粘结剂及含有该粘结剂的锂离子电池,属于锂离子电池技术领域,具体属于锂离子电池粘结剂技术领域。
背景技术
锂离子电池中的粘结剂作为一种聚合物,既起到活性材料层间的粘结作用,又可以用于活性材料层与极片基材之间的粘结,在电池的制造和性能方面起重要作用,电池的重要组成之一。
目前业内使用最多的乳液型粘结剂有苯乙烯与丁二烯的共聚物形成的SBR乳液、苯乙烯与丙烯酸酯共聚形成的苯丙乳液。这些乳液所形成的胶膜都是不同交联度的弹性体,能起到粘结作用。但是这类乳液中的微粒之间仅存在范德华作用力,没有化学相互作用,所以在使用过程中不能形成有效的三维粘结网络,这样在电池循环过程中,对电池的膨胀抑制能力欠佳。因此,急需开发功能化的乳液型粘结剂,使其在使用过程中能形成有效的三维粘结网络,提高电池的性能。
发明内容
为了解决现有粘结剂的粘结性能差等问题,本申请提供一种硼酸衍生物改性的粘结剂及含有该粘结剂的锂离子电池,所述硼酸衍生物改性的粘结剂的粘结性能较现有的粘结剂有大幅提高,且制备成膜的机械稳定性也有所提升。
本申请是通过如下技术方案实现的:
一种共聚物,所述共聚物为基体单体与式(1)所示共聚单体的共聚物;
Figure PCTCN2022081028-appb-000001
式(1)中,R 1选自-C 1-6亚烷基-、-C 6-12亚芳基-、-C(=O)-O-C 6-12亚芳基-;R 2选自-H、-C 1-6烷基;R 3选自-H、-C 1-6烷基。
根据本申请,所述基体单体选自式(2)和式(3)所示化合物中的至少一种;
H 2C=CH-R 4    式(2)
H 2C=C(CH 3)-R 4    式(3)
式(2)和式(3)中,R 4选自-C(R 5)=C(R 5) 2、-C 6-12芳基、-C(=O)-O-R 6;其中,R 5相同或不同,彼此独立地选自-H、-C 1-6烷基;R 6选自取代或未取代的-C 1-6烷基,取代基选自羟基。
根据本申请,所述式(1)所示共聚单体具体选自如下式(1-1)、式(1-2)、式(1-3)、式(1-4)和式(1-5)所示的化合物中的至少一种:
Figure PCTCN2022081028-appb-000002
根据本申请,所述共聚物为基体单体、式(1)所示共聚单体和功能单体的共聚物,所述功能单体选自丙烯腈、(甲基)丙烯酰胺、(甲基)丙烯酸、衣 康酸、2-丙烯酰胺基-2-甲基丙磺酸、烯丙基磺酸、N-羟甲基(甲基)丙烯酰胺、N,N-二甲基丙烯酰胺、对苯乙烯磺酸钠、乙烯基磺酸钠、烯丙基磺酸钠、2-甲基烯丙基磺酸钠、甲基丙烯酸乙酯磺酸钠、(甲基)丙烯酸羟乙酯、(甲基)丙烯酸羟丙酯或二甲基二烯丙基氯化铵中的至少一种。所述功能单体的引入有利于提升所述共聚物的性能,如共聚物形成的乳液在水中的分散稳定性及对活性物质的粘附力。
根据本申请,所述基体单体选自丁二烯和苯乙烯;或者,所述基体单体选自(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯中的至少一种;或者,所述基体单体选自苯乙烯和下述化合物中的至少一种:(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯。
根据本申请,当所述基体单体选自丁二烯和苯乙烯时,所述共聚物例如为式(1)所示共聚单体(硼酸衍生物)、丁二烯和苯乙烯的共聚物,或者为式(1)所示共聚单体(硼酸衍生物)、丁二烯、苯乙烯和功能单体的共聚物。
根据本申请,当所述基体单体选自(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯中的至少一种时,所述共聚物例如为(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯中的至少一种与式(1)所示共聚单体(硼酸衍生物)的共聚物,或者为(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯中的至少一种、式(1)所示共聚单体(硼酸衍生物)与功能单体的共聚物。
根据本申请,当所述基体单体包括苯乙烯和下述化合物中的至少一种时:(甲基)丙烯酸烷基酯、(甲基)丙烯酸羟烷基酯,所述共聚物例如为(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯中的至少一种、式(1)所示共聚单体(硼酸衍生物)与苯乙烯的共聚物,或者为(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯中的至少一种、式(1)所示共聚单体(硼酸衍生物)、苯乙烯与功能单体的共聚物。
根据本申请,所述式(I)所示共聚单体占所述共聚物总质量的0.1~10wt%。可选地,所述式(I)所示共聚单体占所述共聚物总质量的1~5wt%。
根据本申请,所述基体单体占所述共聚物总质量的90~99.9wt%。可选地,所述基体单体占所述共聚物总质量的95~99wt%。
根据本申请,所述功能单体占所述共聚物总质量的0~10wt%。可选地,所述功能单体占所述共聚物总质量的0.1~5wt%。
根据本申请,所述共聚物的玻璃化转变温度为-20℃~80℃。
本申请还提供一种粘结剂,所述粘结剂包括上述的共聚物。
根据本申请,所述粘结剂为乳液型粘结剂。
其中,所述乳液型粘结剂的粒径为100~800nm,可选为100~300nm。
其中,所述乳液型粘结剂的PDI不大于0.3,可选为不大于0.1。
其中,所述乳液型粘结剂的粘度为10~500mPa·s,可选为50~250mPa·s。
其中,所述乳液型粘结剂的固含量为1~70wt%,例如为5~65wt%,还例如为10~60wt%,进一步例如为20~60wt%,再例如为30~60wt%,可选为40~60wt%。
本申请提供了一种极片,所述极片包括集流体和位于集流体至少一侧表面的活性物质层,所述活性物质层包括上述粘结剂,所述粘结剂的质量占活性物质层总质量的0.5~5wt%,例如0.8~2.5wt%,又如1.5~2.5wt%。
本申请提供了一种锂离子电池,所述锂离子电池包括上述的粘结剂和/或上述极片。
本申请的有益效果:
本申请提供了一种硼酸衍生物改性的粘结剂及含有该粘结剂的锂离子电池,所述粘结剂的乳液胶粒的表面带有丰富的硼酸基团(-B(OH) 2)。当应用到电池极片中时,在极片干燥的过程中硼酸基团与分散剂羧甲基纤维素钠中的-OH或者功能单体中的-OH可以发生脱水缩合反应,形成三维网络,增加粘结力,大幅提升了极片的剥离强度。所述粘结剂还能明显改善锂离子电池的常温和低温条件下的循环性能,从而延长了锂离子电池的循环寿命;与常规的粘结剂相比,使用本申请的粘结剂的锂离子电池的循环容量保持率更高,且循环后锂离子电 池的膨胀率更低,由此能够显著抑制锂离子电池长期使用之后的膨胀率,且使用本申请的粘结剂的锂离子电池低温性能也同时得到明显的改进。
附图说明
图1为实施例1和对比例1的粘结剂的红外光谱图。
图2为用于进行粘结剂的剥离强度测试装置的结构示意图。
具体实施方式
[共聚物]
如前所述,本申请提供一种共聚物,所述共聚物为基体单体与式(1)所示共聚单体的共聚物;
Figure PCTCN2022081028-appb-000003
式(1)中,R 1选自-C 1-6亚烷基-、-C 6-12亚芳基-、-C(=O)-O-C 6-12亚芳基-;R 2选自-H、-C 1-6烷基;R 3选自-H、-C 1-6烷基。
在一个可选方案中,所述基体单体选自式(2)和式(3)所示化合物中的至少一种;
H 2C=CH-R 4    式(2)
H 2C=C(CH 3)-R 4   式(3)
式(2)和式(3)中,R 4选自-C(R 5)=C(R 5) 2、-C 6-12芳基、-C(=O)-O-R 6;其中,R 5相同或不同,彼此独立地选自-H、-C 1-6烷基;R 6选自取代或未取代的-C 1-6烷基,取代基选自羟基。
示例性地,所述基体单体选自丁二烯、苯乙烯、(甲基)丙烯酸烷基酯、(甲基)丙烯酸羟烷基酯中的至少一种。
在一个可选方案中,R 1选自-C 1-3亚烷基-、-C 6H 4-、-C(=O)-O-C 6H 4-;R 2选自-H、-C 1-3烷基;R 3选自-H、-C 1-3烷基。
在一个可选方案中,R 1选自-CH 2-、-CH 2CH 2-、-CH 2CH 2CH 2-、-CH 2CH(CH 3)-、-C 6H 4-、-C(=O)-O-C 6H 4-;R 2选自-H、-CH 3、-CH 2CH 3、-CH 2CH 2CH 3、-CH(CH 3) 2;R 3选自-H、-CH 3、-CH 2CH 3、-CH 2CH 2CH 3、-CH(CH 3) 2
在一个可选方案中,所述式(1)所示共聚单体为带有不饱和键的硼酸衍生物,即式(1)所示共聚单体为硼酸衍生物。
在一个可选方案中,所述式(1)所示共聚单体具体选自如下式(1-1)、式(1-2)、式(1-3)、式(1-4)和式(1-5)所示的化合物中的至少一种:
Figure PCTCN2022081028-appb-000004
在一个可选方案中,所述共聚物为基体单体、式(1)所示共聚单体和功能单体的共聚物。
在一个可选方案中,所述功能单体选自丙烯腈、(甲基)丙烯酰胺、(甲基)丙烯酸、衣康酸、2-丙烯酰胺基-2-甲基丙磺酸、烯丙基磺酸、N-羟甲基(甲基)丙烯酰胺、N,N-二甲基丙烯酰胺、对苯乙烯磺酸钠、乙烯基磺酸钠、烯丙基磺酸钠、2-甲基烯丙基磺酸钠、甲基丙烯酸乙酯磺酸钠、(甲基)丙烯酸羟乙酯、(甲基)丙烯酸羟丙酯或二甲基二烯丙基氯化铵中的至少一种。所述功能单体的引入有利于提升所述共聚物的性能,如共聚物形成的乳液在水中的分散稳定性及对活性物质的粘附力。
在一个可选方案中,所述基体单体选自丁二烯和苯乙烯;或者,所述基体单体选自(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯中的至少一种;或者,所述基体单体选自苯乙烯和下述化合物中的至少一种:(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯。
示例性的,所述的(甲基)丙烯酸烷基酯选自甲基丙烯酸丁酯、丙烯酸丁酯、甲基丙烯酸甲酯、丙烯酸甲酯、甲基丙烯酸乙酯、丙烯酸乙酯、甲基丙烯酸正辛酯、丙烯酸正辛酯、甲基丙烯酸异辛酯、丙烯酸异辛酯、甲基丙烯酸十二烷酯中的至少一种。
示例性的,所述的(甲基)丙烯酸羟烷基酯选自甲基丙烯酸羟乙酯、丙烯酸羟乙酯、甲基丙烯酸羟丙酯、丙烯酸羟丙酯中的至少一种。
在一个可选方案中,当所述基体单体选自丁二烯和苯乙烯时,所述共聚物例如为式(1)所示共聚单体(硼酸衍生物)、丁二烯和苯乙烯的共聚物,或者为式(1)所示共聚单体(硼酸衍生物)、丁二烯、苯乙烯和功能单体的共聚物。
在一个可选方案中,当所述基体单体选自(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯中的至少一种时,所述共聚物例如为(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯中的至少一种与式(1)所示共聚单体(硼酸衍生物)的共聚物,或者为(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯中的至少一种、式(1)所示共聚单体(硼酸衍生物)与功能单体的共聚物。
在一个可选方案中,当所述基体单体包括苯乙烯和下述化合物中的至少一种时:(甲基)丙烯酸烷基酯、(甲基)丙烯酸羟烷基酯,所述共聚物例如为(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯中的至少一种、式(1)所示共聚单体(硼酸衍生物)与苯乙烯的共聚物,或者为(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯中的至少一种、式(1)所示共聚单体(硼酸衍生物)、苯乙烯与功能单体的共聚物。
本申请中,所述共聚物中的式(1)所示共聚单体(硼酸衍生物)的引入可以让所述共聚物的乳胶粒表面带有丰富的硼酸-B(OH) 2基团,该基团在水乳液中 稳定存在。当将其作为锂离子电池用粘结剂使用时,其在极片干燥过程中易与羟基(-OH)发生脱水反应,该-OH可以来源于临近乳液颗粒表面的-B(OH) 2、锂离子电池常用的分散剂羧甲基纤维素钠中的-OH、功能单体中的-OH;实现化学交联后,形成三维的粘结网络,增加粘结强度,从而提高电池性能。
在一个可选方案中,所述式(I)所示共聚单体占所述共聚物总质量的0.1~10wt%。可选地,所述式(I)所示共聚单体占所述共聚物总质量的1~5wt%。例如,式(I)所示共聚单体占所述共聚物总质量的0.1wt%、0.3wt%、0.5wt%、0.8wt%、1wt%、2wt%、3wt%、4wt%、5wt%、8wt%、10wt%。
在一个可选方案中,所述基体单体占所述共聚物总质量的90~99.9wt%。可选地,所述基体单体占所述共聚物总质量的95~99wt%。例如,基体单体占所述共聚物总质量的90wt%、92wt%、95wt%、96wt%、97wt%、98wt%、99wt%、99.2wt%、99.5wt%、99.7wt%、99.9wt%。
在一个可选方案中,所述功能单体占所述共聚物总质量的0~10wt%。可选地,所述功能单体占所述共聚物总质量的0.1~5wt%。例如,所述功能单体占所述共聚物总质量的0wt%、0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.8wt%、1wt%、2wt%、3wt%、4wt%、5wt%。
在一个可选方案中,所述共聚物为无规共聚物或嵌段共聚物,可选为无规共聚物。
在一个可选方案中,所述共聚物的玻璃化转变温度为-20℃~80℃。
在一个可选方案中,所述共聚物的重均分子量为25万~150万。
[硼酸衍生物改性的粘结剂]
如前所述,本申请还提供一种粘结剂,所述粘结剂包括上述的共聚物。
在一个可选方案中,所述粘结剂是通过式(1)所示共聚单体(硼酸衍生物)、基体单体和任选地功能单体经聚合反应制备得到的。
在一个可选方案中,所述粘结剂为乳液型粘结剂,具体的,所述共聚物分散在分散介质(如水)中,得到乳液型粘结剂。
在一个可选方案中,当所述基体单体为丁二烯和苯乙烯时,制备得到的粘结剂为乳液型粘结剂。具体的,将式(1)所示共聚单体(硼酸衍生物)、丁二烯和苯乙烯的共聚物,或者将式(1)所示共聚单体(硼酸衍生物)、丁二烯、苯乙烯和功能单体的共聚物分散在分散介质(如水)中,制备得到乳液型粘结剂。
在一个可选方案中,当所述基体单体为苯乙烯和下述化合物中的至少一种:(甲基)丙烯酸烷基酯、(甲基)丙烯酸羟烷基酯时,制备得到的粘结剂为乳液型粘结剂。具体的,将(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯中的至少一种、式(1)所示共聚单体(硼酸衍生物)与苯乙烯的共聚物,或者将(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯中的至少一种、式(1)所示共聚单体(硼酸衍生物)、苯乙烯与功能单体的共聚物分散在分散介质(如水)中,制备得到乳液型粘结剂。
在一个可选方案中,当所述基体单体为(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯中的至少一种时,制备得到的粘结剂为乳液型粘结剂。具体的,将(甲基)丙烯酸烷基酯、(甲基)丙烯酸羟烷基酯中的至少一种与式(1)所示共聚单体(硼酸衍生物)的共聚物,或者为(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯中的至少一种、式(1)所示共聚单体(硼酸衍生物)与功能单体的共聚物时,制备得到乳液型粘结剂。
其中,所述乳液型粘结剂的粒径为100~800nm,可选为100~300nm。
其中,所述乳液型粘结剂的PDI不大于0.3,可选为不大于0.1。
其中,所述乳液型粘结剂的粘度为10~500mPa·s,可选为50~250mPa·s。
其中,所述乳液型粘结剂的固含量为1~70wt%,例如为5~65wt%,还例如为10~60wt%,进一步例如为20~60wt%,再例如为30~60wt%,可选为40~60wt%。
选择所述参数的乳液型粘结剂的分散稳定性好,粘结力稳定,使用过程中易于分散。
在一个可选方案中,选用水作为分散介质时,具有无溶剂释放,符合环境要求,不燃烧、成本低,使用安全等特点。
[共聚物的制备方法]
本申请还提供上述共聚物的制备方法,即通过乳液聚合的方法制备,所述方法包括如下步骤:
将式(1)所示共聚单体与基体单体以及任选地功能单体混合,通入惰性气体,反应,制备得到所述共聚物。
其中,式(1)所示共聚单体、基体单体和功能单体的定义如前所述。
在一个可选方案中,所述惰性气体为高纯氮气、高纯氩气中的一种。
在一个可选方案中,所述反应的温度为30~120℃,所述反应的时间为5~24h。
在一个可选方案中,根据基体单体以及任选地功能单体的不同,在反应过程中还可以加入助剂。示例性的,所述助剂包括引发剂、交联剂、乳化剂或缓冲剂中的至少一种。
例如,所述乳化剂选自阴离子型乳化剂、阳离子型乳化剂、两性型乳化剂和非离子型乳化剂中的一种或几种。示例性地,所述乳化剂选自SDS(十二烷基硫酸钠)、OP-10(聚氧乙烯辛基苯酚醚-10)、十二烷基三甲基溴化铵、十二烷基磺酸钠、SDBS(十二烷基苯磺酸钠)、琥珀酸二辛酯磺酸钠、对壬基酚聚氧化乙烯(n=4-40)醚、聚氧化乙烯单月桂酸酯中的一种或几种。
例如,所述引发剂选自过硫酸钾、过硫酸铵、4,4'-偶氮双(4-氰基戊酸)、2,2-偶氮二(2-甲基丙基咪)二盐酸盐、过硫酸钠、四价铈盐(例如硝酸铈铵)、高锰酸钾、过硫酸钠/亚硫酸氢钠、硫酸亚铁/双氧水、过硫酸铵/四甲基乙二胺、过硫酸铵/亚硫酸钠中的至少一种。其中,过硫酸钠/亚硫酸氢钠、硫酸亚铁/双氧水、过硫酸铵/四甲基乙二胺、以及过硫酸铵/亚硫酸钠分别代表组合使用的引发剂,在使用时可以相继加入。
例如,所述缓冲剂选自碳酸氢钠或十二水磷酸钠(Na 3PO 4·12H 2O)。
例如,所述交联剂选自二乙烯基苯、N,N-亚甲基双丙烯酰胺、二丙烯酸乙二醇酯、乙二醇二甲基丙烯酸酯中的至少一种。
[粘结剂的制备方法]
本申请还提供上述粘结剂的制备方法,所述方法包括如下步骤:
将上述共聚物分散在分散介质(如水)中,制备得到所述粘结剂,可选为乳液型粘结剂。
[粘结剂的应用]
本申请还提供上述粘结剂在锂离子电池中的应用。
可选地,在锂离子电池的正极和/或负极中的应用,进一步用于负极用粘结剂。
[极片]
如前所述,本申请提供了一种极片,所述极片包括集流体和位于集流体至少一侧表面的活性物质层,所述活性物质层包括上述粘结剂。
在一个可选方案中,所述极片为正极极片或负极极片。
在一个可选方案中,所述集流体为正极集流体或负极集流体;其中,所述负极集流体选自单光面铜箔、双光面铜箔或多孔铜箔;所述正极集流体选自单光面铝箔、双光面铝箔或多孔铝箔。
在一个可选方案中,所述粘结剂的质量占活性物质层总质量的0.5~5wt%,例如0.8~2.5wt%,又如1.5~2.5wt%。
在一个可选方案中,所述活性物质层中还包括活性物质和添加剂。
在一个可选方案中,所述活性物质为正极活性物质或负极活性物质,所述负极活性物质包括人造石墨、天然石墨、中间相碳球和钛酸锂、氧化硅、纳米硅粉、氧化亚硅、硅碳的至少一种;所述正极活性物质包括磷酸铁锂、三元正极材料、钴酸锂中的至少一种。
在一个可选方案中,所述添加剂包括导电剂和/或分散剂;可选地,所述导电剂选自石墨、炭黑、乙炔黑、石墨烯、碳纳米管中的至少一种;所述分散剂选自羧甲基纤维素钠或羧甲基纤维素锂。
其中,所述导电剂和/或分散剂的用量为本领域已知用量。
[极片的制备方法]
本申请还提供上述极片的制备方法,包括如下步骤:
在集流体至少一侧表面涂覆含有上述粘结剂的浆料,制备得到所述极片。
在一个可选方案中,所述负极极片的制备方法包括如下步骤:
(1)将负极活性物质、导电剂、分散剂、上述的粘结剂混合均匀,得到负极浆料;
(2)将所述负极浆料涂覆在集流体的表面,烘烤后即得到所述负极极片。
在一个可选方案中,所述正极极片由包括如下步骤的方法制备得到:
(1)将正极活性物质、导电剂和正极粘结剂混合均匀,得到正极浆料;
(2)将所述正极浆料涂覆在集流体的表面,烘烤后即得到正极极片。
其中,所述正极粘结剂可以为上述的粘结剂、PVDF、聚丙烯酸酯和聚丙烯酸中的至少一种,可选为PVDF。
[极片的应用]
本申请还提供上述极片在锂离子电池中的应用。
[锂离子电池]
如前所述,本申请提供了一种锂离子电池,所述锂离子电池包括上述的粘结剂和/或上述极片。
在一个可选方案中,所述锂离子电池包括正极极片、负极极片、隔膜和电解液。
在一个可选方案中,所述锂离子电池由正极极片、隔膜、负极极片和电解液组装得到。例如,将正极极片、负极极片和隔膜通过行业内通用的卷绕或者叠片式组装成电芯,再通过铝塑膜进行封装,再依次经过烘烤、注入电解液、化成、二封工序即得到锂离子电池。
下文将结合具体实施例对本申请的制备方法做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本申请,而不应被解释为对本申请保护范围的限制。凡基于本申请上述内容所实现的技术均涵盖在本申请旨在保 护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
下述实施例和对比例中涉及到的剥离强度是采用如下方法测试得到的:
将负极浆料涂覆于集流体铜箔表面,经过干燥、冷压制成极片,将制备完成的极片裁剪为20×100mm尺寸的测试试样,备用;将极片用双面胶粘接需要测试的那一面,并用压辊压实,使之与极片完全贴合;试样的双面胶的另外一面粘贴于不锈钢表面,将试样一端反向弯曲,弯曲角度为180°;采用高铁拉力机测试,将不锈钢一端固定于拉力机下方夹具,试样弯曲末端固定于上方夹具,调整试样角度,保证上下端位于垂直位置,然后以50mm/min的速度拉伸试样,直到负极浆料全部从基板剥离,记录过程中的位移和作用力,认为受力平衡时的力为极片的剥离强度,装置示意图如图2所示。
下述实施例中的乳液胶粒粒径及PDI数据由激光粒度仪(马尔文公司的Zatasizer Nano ZS90)测试得到。
下述实施例和对比例中涉及到的粘度是利用数显式旋转粘度计(上海三诺NDJ-5S)在室温(20~25℃)条件下测量得到的。
下述实施例和对比例中涉及到的玻璃化转变温度是由差示扫描量热仪(DSC),型号为910s(美国TA Instruments公司)测试得到。
实施例1
在反应釜中依次加入30份(质量份,同下)苯乙烯、70份丁二烯、0.4份丙烯酸、0.1份二乙烯基苯、2份对乙烯基苯硼酸(式1-1所示)、200份水、4.5份硬脂酸钠、0.5份分子量调节剂十二硫醇,通入氮气保护,搅拌300rpm,升温至65℃。继续搅拌20分钟后,加入0.31份过硫酸钾,60℃保温,冷凝,持续300rpm搅拌,反应7h,反应结束后,用氨水调节pH值,用200目的纱网过滤其中的凝胶物,得到对乙烯基苯硼酸改性的丁苯橡胶乳液型粘结剂,乳液型粘结剂的玻璃化转变 温度为16℃,平均粒径为168nm,PDI为0.06,粘度为10~50mPa·s,固含量为40~42wt%,pH=6.5~7.5。
将正极活性物质钴酸锂、粘结剂PVDF和导电炭黑分散在N-甲基吡咯烷酮,搅拌后得到均匀分散的正极浆料,其中固体成分包括96.8wt%的钴酸锂、1.3wt%的PVDF和2wt%的导电炭黑,正极浆料的固体含量为67.5wt%,粘度为21745mPa·s。将正极浆料均匀地涂覆在铝箔两面,经过100~130℃干燥4h,利用辊压机对其压实,压实密度为2.6~3.2g/cm 3,得到正极极片;
将石墨、上述乳液型粘结剂、分散剂CMC和导电剂导电炭黑混合分散于去离子水中,得到负极浆料,其中固体成分包括95.5wt%石墨、1.5wt%的CMC、1wt%的导电炭黑、2wt%的上述乳液型粘结剂,负极浆料的固体含量为44~46wt%,粘度为6561mPa·s。该浆料均匀地涂覆在铜箔两面,经过70~100℃干燥5h、辊压机压实,其中压实密度为1.4~1.7g/cm 3,得到负极极片;
将正极片、负极片和隔膜(PP/PE/PP复合膜,厚度8μm,孔隙率为42%)卷绕并封装成电芯,然后注入电解液,化成、热压、二封后得到锂离子电池。
实施例2
在反应釜中依次加入33份苯乙烯、67份丁二烯、0.15份二乙烯基苯、3份式1-3所示的硼酸衍生物、155份水、2份丙烯酰胺、6份硬脂酸钠、0.6份分子量调节剂十二硫醇,通入氮气保护,搅拌300rpm,升温至60℃。继续搅拌20分钟后,加入0.3份过硫酸铵,65℃保温,冷凝,持续300rpm搅拌,反应6h,反应结束后,用氨水调节pH,并用200目的纱网过滤其中的凝胶物,得到碳硼酸衍生物改性的丁苯橡胶乳液型粘结剂,乳液型粘结剂的玻璃化转变温度为20℃,乳液型粘结剂的平均粒径为165nm,PDI为0.036,粘度为15~50mPa·s,固含量为39~41wt%,pH=7~8。
制作锂离子电池的方法流程与实施例1基本一致,不同之处为采用的粘结剂为本实施例中合成的乳液型粘结剂。
实施例3
以辛基酚聚氧乙烯醚(OP-10)和十二烷基硫酸钠(SDS)为乳化剂,质量比为1/1,共4份,丙烯酰胺1份,甲基丙烯酸甲酯33份,丙烯酸丁酯60份,丙烯酸羟乙酯2份,式1-2所示的硼酸衍生物3份,二丙烯酸乙二醇酯0.15份、过硫酸铵0.5份,亚硫酸氢钠0.5份,水200份。采用半连续法将乳化剂(OP-10/SDS)和去离子水加入到反应容器中,搅拌1h,混合均匀并使其乳化;然后升温至40℃,同时通入N 2(排除体系中的O 2),加入1/10份的混合单体和1/3份的引发剂,45℃反应1小时;随后分别向体系中同时滴加剩余的混合单体及引发剂(控制滴加速率),滴毕,继续反应5小时;降温至25℃,用氨水调节pH至7.0~8.0,即得目标的硼酸衍生物改性的丙烯酸酯乳液型粘结剂,乳液型粘结剂的玻璃化转变温度为25℃,乳液型粘结剂的平均粒径为185nm,PDI为0.03,粘度为10~70mPa·s,固含量为36~39wt%。
制作锂离子电池的方法流程与实施例1基本一致,不同之处为采用的乳液型粘结剂为本实施例中合成的乳液型粘结剂。
实施例4
以十二烷基硫酸钠(SDS)为乳化剂,0.05份,苯乙烯40份,丙烯酸丁酯60份,丙烯酰胺1份,N,N-亚甲基双丙烯酰胺0.1份,式1-4所示的硼酸衍生物2份,水200份。先将上述物料加入到反应容器中,搅拌,然后升温,同时通入N 2(排除体系中的O 2);待温度升至70℃后,加入0.35份过硫酸钾,继续反应8小时;降温至40℃,用氢氧化钠调节pH至7.0~8.0,冷却后即得目标的硼酸衍生物改性苯丙乳液粘结剂。乳液型粘结剂的玻璃化转变温度为10℃,乳液型粘结剂的平均粒径为175nm,PDI为0.043,粘度为10~60mPa·s,固含量为38~41wt%。
制作锂离子电池的方法流程与实施例1基本一致,不同之处为采用的粘结剂为本实施例中合成的乳液型粘结剂。
对比例1
与实施例1相比,不同之处在于没有加入硼酸衍生物单体,其他物质的含量及制备工艺与实施例1一致。
对比例2
与实施例2相比,不同之处在于没有加入硼酸衍生物单体,其他物质的含量及制备工艺与实施例2一致。
对比例3
与实施例3相比,不同之处在于没有加入硼酸衍生物单体,其他物质的含量及制备工艺与实施例3一致。
对比例4
与实施例4相比,不同之处在于没有加入硼酸衍生物单体,其他物质的含量及制备工艺与实施例4一致。
测试例1
对实施例和对比例制备得到的电池进行性能测试,测试项目包括低温性能(0℃充电、-20℃放电)、循环保持率和常温循环膨胀率,测试过程如下:
(1)低温性能:-20℃放电:将电池置于0℃进行充电,然后将满电电池静置在-20℃的低温箱中,以0.2C放电,计算放电容量保持率。
(2)循环保持率:常温25℃下,以1C充放电循环250次,计算250次后的容量保持率。
(3)常温循环膨胀率:常温25℃下,以1C充放电循环250次,计算250次后的电池的厚度增加值与原始厚度的百分比。
上述实施例与对比例的电池通过电性能测试,结果如表1所示。
图1为实施例1和对比例1的粘结剂的红外光谱图。由图1可以看出,实施例1中通过引入硼酸衍生物结构,在1340cm -1及3200~3600cm -1波数处有B-O及O-H伸缩振动的特征吸收峰,而对比例1中此处均没有明显的吸收峰,由此可以判断硼酸衍生物单体参与了共聚,成功引入到了乳液胶粒中。
表1实施例与对比例的电池通过电性能测试结果
Figure PCTCN2022081028-appb-000005
从表1中可以看出,添加了硼酸衍生物改性的粘结剂的电池性能与没有添加硼酸衍生物改性的粘结剂的电池性能相比,剥离强度、-20℃下0.2C放电容量保持率、常温1C充放电循环250T容量保持及常温膨胀率的性能方面均展现出优势。
以上,对本申请的实施方式进行了说明。但是,本申请不限定于上述实施方式。凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种共聚物,其中,所述共聚物为基体单体与式(1)所示共聚单体的共聚物;
    Figure PCTCN2022081028-appb-100001
    式(1)中,R 1选自-C 1-6亚烷基-、-C 6-12亚芳基-、-C(=O)-O-C 6-12亚芳基-;R 2选自-H、-C 1-6烷基;R 3选自-H、-C 1-6烷基。
  2. 根据权利要求1所述的共聚物,其中,所述基体单体选自式(2)和式(3)所示化合物中的至少一种;
    H 2C=CH-R 4  式(2)
    H 2C=C(CH 3)-R 4  式(3)
    式(2)和式(3)中,R 4选自-C(R 5)=C(R 5) 2、-C 6-12芳基、-C(=O)-O-R 6;其中,R 5相同或不同,彼此独立地选自-H、-C 1-6烷基;R 6选自取代或未取代的-C 1-6烷基,取代基选自羟基。
  3. 根据权利要求1所述的共聚物,其中,所述式(1)所示共聚单体选自如下式(1-1)、式(1-2)、式(1-3)、式(1-4)和式(1-5)所示的化合物中的至少一种:
    Figure PCTCN2022081028-appb-100002
    Figure PCTCN2022081028-appb-100003
  4. 根据权利要求1所述的共聚物,其中,所述共聚物为基体单体、式(1)所示共聚单体和功能单体的共聚物,所述功能单体选自丙烯腈、(甲基)丙烯酰胺、(甲基)丙烯酸、衣康酸、2-丙烯酰胺基-2-甲基丙磺酸、烯丙基磺酸、N-羟甲基(甲基)丙烯酰胺、N,N-二甲基丙烯酰胺、对苯乙烯磺酸钠、乙烯基磺酸钠、烯丙基磺酸钠、2-甲基烯丙基磺酸钠、甲基丙烯酸乙酯磺酸钠、(甲基)丙烯酸羟乙酯、(甲基)丙烯酸羟丙酯或二甲基二烯丙基氯化铵中的至少一种;和/或,
    所述基体单体选自丁二烯和苯乙烯;或者,所述基体单体选自(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯中的至少一种;或者,所述基体单体选自苯乙烯和下述化合物中的至少一种:(甲基)丙烯酸烷基酯和(甲基)丙烯酸羟烷基酯。
  5. 根据权利要求4所述的共聚物,其中,所述式(I)所示共聚单体占所述共聚物总质量的0.1-10wt%;所述基体单体占所述共聚物总质量的90-99.9wt%;所述功能单体占所述共聚物总质量的0-10wt%。
  6. 根据权利要求1-5任一项所述的共聚物,其中,所述共聚物的玻璃化转变温度为-20℃~80℃。
  7. 一种粘结剂,其中,所述粘结剂包括权利要求1-6任一项所述的共聚物。
  8. 根据权利要求7所述的粘结剂,其中,所述粘结剂为乳液型粘结剂,所述乳液型粘结剂的粒径为100~800nm;和/或,所述乳液型粘结剂的PDI不大于0.3;和/或,所述乳液型粘结剂的粘度为10~500mPa·s;和/或,所述乳液型粘结剂的固含量为1-70wt%。
  9. 一种锂离子电池,所述锂离子电池包括极片,所述极片包括集流体和位于集流体至少一侧表面的活性物质层,所述活性物质层包括权利要求7或8所述的粘结剂。
  10. 根据权利要求9所述的锂离子电池,其中,所述粘结剂的质量占活性物质层总质量的0.5~5wt%。
PCT/CN2022/081028 2021-03-15 2022-03-15 一种硼酸衍生物改性的粘结剂及含有该粘结剂的锂离子电池 WO2022194172A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/225,642 US20230369599A1 (en) 2021-03-15 2023-07-24 Boric acid derivative modified binder and lithium-ion battery including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110278031.3 2021-03-15
CN202110278031.3A CN113045702B (zh) 2021-03-15 2021-03-15 一种硼酸衍生物改性的粘结剂及含有该粘结剂的锂离子电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/225,642 Continuation US20230369599A1 (en) 2021-03-15 2023-07-24 Boric acid derivative modified binder and lithium-ion battery including same

Publications (1)

Publication Number Publication Date
WO2022194172A1 true WO2022194172A1 (zh) 2022-09-22

Family

ID=76512456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081028 WO2022194172A1 (zh) 2021-03-15 2022-03-15 一种硼酸衍生物改性的粘结剂及含有该粘结剂的锂离子电池

Country Status (3)

Country Link
US (1) US20230369599A1 (zh)
CN (1) CN113045702B (zh)
WO (1) WO2022194172A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045702B (zh) * 2021-03-15 2023-06-16 珠海冠宇电池股份有限公司 一种硼酸衍生物改性的粘结剂及含有该粘结剂的锂离子电池
CN116195084A (zh) * 2022-03-30 2023-05-30 宁德新能源科技有限公司 一种粘结剂、负极极片、电化学装置及电子装置
JP7373008B2 (ja) * 2022-03-31 2023-11-01 住友化学株式会社 アルカリ金属含有重合体、並びにそれを含む電解質組成物及び電池
CN115842132B (zh) * 2022-12-29 2023-09-22 江苏道赢科技有限公司 一种锂电池复合粘结剂其制备方法
CN116875227B (zh) * 2023-09-06 2024-01-05 宁德时代新能源科技股份有限公司 粘结剂及其制备方法、电极极片、二次电池和用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105612442A (zh) * 2013-10-09 2016-05-25 富士胶片株式会社 偏振片及图像显示装置
CN107805308A (zh) * 2016-09-09 2018-03-16 翁秋梅 一种具有杂化交联网络的动态聚合物及其应用
CN108341943A (zh) * 2017-01-25 2018-07-31 翁秋梅 一种杂化动态聚合物及其应用
CN111234105A (zh) * 2020-01-20 2020-06-05 珠海冠宇电池有限公司 一种碳酸亚乙烯酯改性的粘结剂及含有该粘结剂的锂离子电池
CN113045702A (zh) * 2021-03-15 2021-06-29 珠海冠宇电池股份有限公司 一种硼酸衍生物改性的粘结剂及含有该粘结剂的锂离子电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352857A (ja) * 2001-05-23 2002-12-06 Nof Corp 二次電池電解質用ホウ酸エステル化合物、二次電池電解質および二次電池
CN105218759B (zh) * 2015-10-23 2017-09-26 上海三瑞高分子材料股份有限公司 一种超塑化剂及其制备方法
CN107778419B (zh) * 2017-11-02 2019-08-06 合众(佛山)化工有限公司 一种poss改性自阻燃型丙烯酸乳液及其制备方法
CN108546318B (zh) * 2018-05-16 2020-05-19 清华大学 一种水溶性聚合物及其制备方法与应用
CN109004220B (zh) * 2018-07-19 2021-07-20 苏州大学 一种硼酸化合物修饰锂离子电池硅负极及其制备方法
CN109280514A (zh) * 2018-08-22 2019-01-29 四川羽玺新材料股份有限公司 一种水可解离的粘合剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105612442A (zh) * 2013-10-09 2016-05-25 富士胶片株式会社 偏振片及图像显示装置
CN107805308A (zh) * 2016-09-09 2018-03-16 翁秋梅 一种具有杂化交联网络的动态聚合物及其应用
CN108341943A (zh) * 2017-01-25 2018-07-31 翁秋梅 一种杂化动态聚合物及其应用
CN111234105A (zh) * 2020-01-20 2020-06-05 珠海冠宇电池有限公司 一种碳酸亚乙烯酯改性的粘结剂及含有该粘结剂的锂离子电池
CN113045702A (zh) * 2021-03-15 2021-06-29 珠海冠宇电池股份有限公司 一种硼酸衍生物改性的粘结剂及含有该粘结剂的锂离子电池

Also Published As

Publication number Publication date
CN113045702B (zh) 2023-06-16
US20230369599A1 (en) 2023-11-16
CN113045702A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
WO2022194172A1 (zh) 一种硼酸衍生物改性的粘结剂及含有该粘结剂的锂离子电池
CN111139002B (zh) 锂离子电池水溶型粘接剂及其制备方法、电极极片及电池
JP6667617B2 (ja) リチウムイオン電池用水性バインダー、調製方法及びその使用
US10882990B2 (en) Multi-functionally modified polymer binder for lithium ion batteries and use thereof in electrochemical energy storage devices
TWI746131B (zh) 電池用黏合劑、鋰離子電池負極片以及鋰離子電池
TW519777B (en) The binder composition for the secondary battery electrode of lithium ion and its utilization
WO2022121863A1 (zh) 一种负极片及包括该负极片的锂离子电池
WO2019242318A1 (zh) 一种水性粘结剂及其制备方法和用途
CN113555558B (zh) 一种乳液型粘结剂和包括该粘结剂的锂离子电池
WO2022160845A1 (zh) 锂离子电池正极水性粘结剂及其制备方法
CN112279981B (zh) 一种含有软相区和硬相区的聚合物粘结剂及其制备方法和应用
CN111732684A (zh) 一种粘结剂用水性聚合物及其制备方法,水性粘结剂和硅负极锂离子电池
CN111234105A (zh) 一种碳酸亚乙烯酯改性的粘结剂及含有该粘结剂的锂离子电池
CN112375179B (zh) 一种双分子量分布的负极用粘结剂及其制备方法和用途
US20230365732A1 (en) Binder and lithium-ion battery comprising same
TWI736318B (zh) 聚乙烯醇接枝共聚物及其用途
CN111916740B (zh) 一种聚不饱和羧酸基可控交联型粘结剂及含有该粘结剂的锂离子电池
TWI710581B (zh) 羧甲基纖維素接枝共聚物及其用途
US20220278330A1 (en) Binder composition for electricity storage devices, slurry for electricity storage device electrodes, electricity storage device electrode, and electricity storage device
CN114520334B (zh) 用于锂离子电池硅负极的含氟复合粘结剂及其制备方法
CN116333650A (zh) 一种用于钠离子电池硬碳负极材料的水性粘合剂
CN118324994A (zh) 树脂聚合物、树脂组合物及其制备方法、改性粘结剂、电极浆料、极片和电池
CN115763819A (zh) 电极粘结剂组合物、正极材料组合物、正极及电池
CN117736668A (zh) 一种粘结剂、包括该粘结剂的负极片及电池
WO2023033088A1 (ja) 非水系二次電池接着層用スラリー組成物、非水系二次電池用接着層及びその製造方法、非水系二次電池用部材、並びに非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770525

Country of ref document: EP

Kind code of ref document: A1