WO2023033088A1 - 非水系二次電池接着層用スラリー組成物、非水系二次電池用接着層及びその製造方法、非水系二次電池用部材、並びに非水系二次電池 - Google Patents

非水系二次電池接着層用スラリー組成物、非水系二次電池用接着層及びその製造方法、非水系二次電池用部材、並びに非水系二次電池 Download PDF

Info

Publication number
WO2023033088A1
WO2023033088A1 PCT/JP2022/032881 JP2022032881W WO2023033088A1 WO 2023033088 A1 WO2023033088 A1 WO 2023033088A1 JP 2022032881 W JP2022032881 W JP 2022032881W WO 2023033088 A1 WO2023033088 A1 WO 2023033088A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
adhesive layer
aqueous secondary
polymer
slurry composition
Prior art date
Application number
PCT/JP2022/032881
Other languages
English (en)
French (fr)
Inventor
朋文 山田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2023545664A priority Critical patent/JPWO2023033088A1/ja
Priority to KR1020247004187A priority patent/KR20240051924A/ko
Priority to CN202280056933.5A priority patent/CN117837014A/zh
Publication of WO2023033088A1 publication Critical patent/WO2023033088A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous secondary battery adhesive layer slurry composition, a non-aqueous secondary battery adhesive layer and a method for producing the same, a non-aqueous secondary battery member, and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes abbreviated as "secondary batteries") are characterized by being small, lightweight, high energy density, and capable of repeated charging and discharging. Used for a wide range of purposes.
  • a secondary battery generally includes battery members such as a positive electrode, a negative electrode, and a separator that isolates the positive electrode from the negative electrode to prevent a short circuit between the positive electrode and the negative electrode.
  • an electrode in which an adhesive layer is further formed on an electrode base material in which an electrode mixture layer is provided on a current collector, or a separator in which an adhesive layer is formed on a separator base material is a battery member.
  • this adhesive layer is usually a slurry-like non-aqueous secondary battery adhesive layer composition containing a binder component and a dispersion medium such as water (hereinafter abbreviated as "adhesive layer composition” ) is supplied onto an appropriate substrate such as an electrode substrate or a separator substrate and dried (see, for example, Patent Document 1).
  • adhesive layer composition a slurry-like non-aqueous secondary battery adhesive layer composition containing a binder component and a dispersion medium such as water
  • Patent Document 1 a non-aqueous secondary battery adhesive layer that contains organic particles and a water-soluble polymer having a viscosity within a predetermined range when used as a 1% by mass aqueous solution, and that satisfies a predetermined shear viscosity condition. have been proposed.
  • Patent Document 2 proposes a secondary battery separator having an adhesive layer containing a particulate polymer having a glass transition temperature of 10 to 100°C.
  • the adhesive layer formed using the adhesive layer composition described in Patent Documents 1 and 2 has room for further improvement in uniformity, and as a result, the resulting non-aqueous secondary battery There was room for further reduction in internal resistance.
  • the present invention provides a slurry composition for a non-aqueous secondary battery adhesive layer, which is excellent in uniformity and capable of forming an adhesive layer capable of reducing the internal resistance of the resulting non-aqueous secondary battery.
  • a slurry composition for a non-aqueous secondary battery adhesive layer which is excellent in uniformity and capable of forming an adhesive layer capable of reducing the internal resistance of the resulting non-aqueous secondary battery.
  • Another object of the present invention is to provide an adhesive layer for a non-aqueous secondary battery that is excellent in uniformity and capable of reducing the internal resistance of the non-aqueous secondary battery, and a method for producing the same.
  • Another object of the present invention is to provide a non-aqueous secondary battery member capable of providing a non-aqueous secondary battery with low internal resistance.
  • Another object of the present invention is to provide a non-aqueous secondary battery with low internal resistance.
  • the present inventors have conducted repeated studies and found that the formulation components and solid content concentration of the slurry composition for the adhesive layer affect the uniformity of the resulting adhesive layer and the internal resistance of the non-aqueous secondary battery having such an adhesive layer.
  • the present invention was completed by paying attention to the fact that it has a great influence on
  • an object of the present invention is to advantageously solve the above problems, and a slurry composition for a non-aqueous secondary battery adhesive layer of the present invention comprises at least two kinds of particulate polymers, A slurry composition for a non-aqueous secondary battery adhesive layer containing a water-soluble polymer and a dispersion medium, wherein the at least two polymers are particulate polymers having a glass transition temperature of 30° C. or higher and 100° C. or lower A, and a particulate polymer B having a glass transition temperature of 20° C. or lower, and the slurry composition for a non-aqueous secondary battery adhesive layer has a solid content concentration of 1% by mass or more and 25% by mass or less.
  • Such a non-aqueous secondary battery adhesive layer slurry composition is excellent in uniformity and can form an adhesive layer capable of reducing the internal resistance of the obtained non-aqueous secondary battery.
  • the glass transition temperature of the polymer can be measured by the method described in Examples.
  • the polymer is "water-soluble" means that the insoluble content is less than 1.0% by mass when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C. say.
  • the particulate polymer A preferably contains a (meth)acrylic acid ester monomer unit. If the particulate polymer A contains a (meth)acrylic acid ester monomer unit, swelling of the obtained non-aqueous secondary battery can be suppressed.
  • (meth)acryl means acryl and/or methacryl.
  • “comprising a monomer unit” means that "a structural unit derived from a monomer is contained in a polymer obtained using the monomer”.
  • the particulate polymer B is preferably a styrene polymer or an acrylic polymer. If the particulate polymer B is a styrenic polymer or an acrylic polymer, the uniformity is further improved and the internal resistance of the obtained non-aqueous secondary battery can be further reduced.
  • the water-soluble polymer has an acid group-containing monomer unit content of 5 mass% or more and 50 It is preferably contained in a ratio of mass % or less. If the water-soluble polymer contains an acid group-containing monomer unit, the uniformity of the obtained adhesive layer can be further improved.
  • the content ratio of the monomer units can be measured using a nuclear magnetic resonance (NMR) method such as 1 H-NMR.
  • the slurry composition for a non-aqueous secondary battery adhesive layer according to any one of [1] to [4] above preferably has a pH of 7 or more and 9 or less. If the pH is 7 or more and 9 or less, it becomes possible to further reduce the internal resistance of the resulting non-aqueous secondary battery while further improving the uniformity.
  • the slurry composition for a non-aqueous secondary battery adhesive layer according to any one of [1] to [5] may contain at least one of a preservative and an antifoaming agent. Thereby, a desired attribute can be imparted to the slurry composition.
  • the particulate polymer A has a core-shell structure and a shell portion is composed of all repeating It is preferable to contain 30.0% by mass or more of (meth)acrylic acid ester monomer units based on 100% by mass of units. If the particulate polymer A is a core-shell polymer having a shell portion that satisfies such compositional conditions, the electrolytic solution pourability and cycle durability of the resulting secondary battery can be enhanced.
  • the particulate polymer A has a core-shell structure, and the shell portion is (meta) It is preferable to contain, as repeating units, a methyl methacrylate unit and a methyl acrylate unit as acrylic acid ester monomer units and a monomer unit having a carboxylic acid group as an acid group-containing monomer unit. If the particulate polymer A is a core-shell polymer having a shell portion that satisfies such compositional conditions, the electrolytic solution pourability and cycle durability of the resulting secondary battery can be enhanced.
  • an object of the present invention is to advantageously solve the above problems, and the adhesive layer for a non-aqueous secondary battery of the present invention comprises any one of the above [1] to [8]. It is characterized by being formed using a slurry composition for a non-aqueous secondary battery adhesive layer. Such an adhesive layer for a non-aqueous secondary battery has excellent uniformity and can reduce the internal resistance of the secondary battery.
  • an object of the present invention is to advantageously solve the above problems, and a method for producing an adhesive layer for a non-aqueous secondary battery of the present invention comprises the above [1] to [8]. It is characterized by including a coating step of coating any slurry composition for a non-aqueous secondary battery adhesive layer on a substrate by gravure coating or slot die coating. According to such a manufacturing method, the adhesive layer for non-aqueous secondary batteries of the present invention can be efficiently manufactured.
  • an object of the present invention is to advantageously solve the above-described problems, and the non-aqueous secondary battery member of the present invention comprises a base material and the non-aqueous two-layer structure of [9] above on a base material. It is characterized by comprising an adhesive layer for a secondary battery.
  • a non-aqueous secondary battery member By using such a non-aqueous secondary battery member, it is possible to provide a non-aqueous secondary battery with low internal resistance.
  • the base material contains an organic separator material
  • the adhesive layer for a non-aqueous secondary battery is formed on at least one surface of the organic separator material. or adjacent to the surface of a heat-resistant layer provided on at least one surface of the organic separator material.
  • An object of the present invention is to advantageously solve the above-mentioned problems. It is characterized by comprising In this way, by providing the secondary battery with the non-aqueous secondary battery member of the present invention, the internal resistance of the secondary battery can be reduced.
  • a slurry composition for a non-aqueous secondary battery adhesive layer which is excellent in uniformity and capable of forming an adhesive layer capable of reducing the internal resistance of the resulting non-aqueous secondary battery.
  • an adhesive layer for a non-aqueous secondary battery which is excellent in uniformity and capable of reducing the internal resistance of the non-aqueous secondary battery, and a method for producing the same.
  • the non-aqueous secondary battery adhesive layer slurry composition of the present invention is used for bonding battery members such as separators and electrodes to each other, or for constituent elements of battery members such as separator substrates and heat-resistant layers. It is used for the purpose of forming an adhesive layer for bonding each other.
  • the adhesive layer for a non-aqueous secondary battery of the present invention is formed using the slurry composition for an adhesive layer for a non-aqueous secondary battery, preferably according to the method for producing an adhesive layer for a non-aqueous secondary battery of the present invention.
  • the non-aqueous secondary battery member of the present invention comprises at least the non-aqueous secondary battery adhesive layer of the present invention.
  • the non-aqueous secondary battery of the present invention comprises at least the non-aqueous secondary battery member of the present invention.
  • the slurry composition for a non-aqueous secondary battery adhesive layer contains at least two kinds of particulate polymers, a water-soluble polymer, a dispersion medium, and optionally other components. More specifically, the slurry composition contains a particulate polymer A having a glass transition temperature of 30° C. or higher and 100° C. or lower, a particulate polymer B having a glass transition temperature of 20° C. or lower, and a water-soluble polymer. include. Furthermore, the slurry composition is characterized by having a solid content concentration of 1% by mass or more and 25% by mass or less.
  • the adhesive layer formed using the slurry composition for a non-aqueous secondary battery adhesive layer of the present invention is excellent in uniformity, and the internal resistance of the secondary battery provided with such an adhesive layer can be reduced. Secondary batteries with low internal resistance are excellent in rapid charging performance.
  • the particulate polymer A contained in the slurry composition needs to have a glass transition temperature of 30°C or higher and 100°C or lower.
  • the particulate polymer A has a function of making the adhesive layer formed using the non-aqueous secondary battery adhesive layer slurry composition exhibit adhesiveness.
  • the particulate polymer A preferably contains a (meth)acrylic acid ester monomer unit. If the particulate polymer A contains (meth)acrylic acid ester monomer units, swelling of the resulting non-aqueous secondary battery can be suppressed satisfactorily.
  • the particulate polymer A may contain an acid group-containing monomer unit.
  • the particulate polymer A contains an acid group-containing monomer unit, it is possible to improve the coatability of the slurry composition for a non-aqueous secondary battery adhesive layer. If the adhesive layer slurry composition has excellent coatability, it is possible to suppress the occurrence of streaks and unevenness in the formed coating film.
  • (Meth)acrylate monomers capable of forming (meth)acrylate monomer units include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2 - (Meth)acrylic acid ester monomers such as ethylhexyl acrylate.
  • One of these may be used alone, or two or more of them may be used in combination at any ratio.
  • the content of the (meth)acrylic acid ester monomer units in the particulate polymer A is 15% by mass or more when the total monomer units contained in the particulate polymer A is 100% by mass. is preferably 30% by mass or more, more preferably 60% by mass or more, preferably 99.0% by mass or less, and more preferably 95.0% by mass or less. If the content of the (meth)acrylic acid ester monomer units in the particulate polymer A is at least the above lower limit, swelling of the resulting non-aqueous secondary battery can be suppressed.
  • Acid group-containing monomers capable of forming acid group-containing monomer units include monomers having an acid group, such as monomers having a carboxylic acid group, monomers having a sulfonic acid group, phosphoric acid group-containing monomers and hydroxyl group-containing monomers.
  • Examples of monomers having a carboxylic acid group include monocarboxylic acids and dicarboxylic acids.
  • monocarboxylic acids include acrylic acid, methacrylic acid, and crotonic acid.
  • dicarboxylic acids include maleic acid, fumaric acid, and itaconic acid.
  • monomers having a sulfonic acid group include vinylsulfonic acid, methylvinylsulfonic acid, (meth)allylsulfonic acid, ethyl (meth)acrylate-2-sulfonate, and 2-acrylamido-2-methyl propanesulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid, and the like.
  • the monomer having a phosphate group includes, for example, 2-(meth)acryloyloxyethyl phosphate, methyl 2-(meth)acryloyloxyethyl phosphate, ethyl phosphate-(meth)acryloyloxyethyl etc.
  • monomers having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, and 2-hydroxypropyl methacrylate.
  • (meth)allyl means allyl and/or methallyl
  • (meth)acryloyl means acryloyl and/or methacryloyl. One of these may be used alone, or two or more of them may be used in combination at any ratio.
  • the content of the acid group-containing monomer units in the particulate polymer A is 0.1% by mass or more when the total monomer units contained in the particulate polymer A is 100% by mass. Preferably, it is 0.5% by mass or more, more preferably 1.0% by mass or more, preferably 4.5% by mass or less, and 4.0% by mass or less. more preferred. If the content ratio of the acid group-containing monomer units in the particulate polymer A is at least the above lower limit, the uniformity of the resulting adhesive layer can be further improved. Moreover, if the content ratio of the acid group-containing monomer unit in the particulate polymer A is equal to or less than the above upper limit value, the internal resistance of the obtained secondary battery can be further reduced.
  • the particulate polymer A is not particularly limited, and may contain monomer units other than the (meth)acrylic acid ester monomer units and the acid group-containing monomer units described above.
  • Monomers capable of forming such monomeric units include, for example, aromatic vinyl monomers and crosslinkable monomers.
  • aromatic vinyl monomers include styrene, ⁇ -methylstyrene, styrenesulfonic acid, butoxystyrene, vinylnaphthalene and the like. One of these may be used alone, or two or more of them may be used in combination at any ratio.
  • a crosslinkable monomer is a monomer that can form a crosslinked structure during or after polymerization by heating or irradiation with energy rays. More specifically, crosslinkable monomers include, for example, polyfunctional monomers having two or more polymerizable reactive groups in the monomer. Examples of such polyfunctional monomers include divinyl compounds such as divinylbenzene and allyl methacrylate; acrylic acid ester compounds; tri(meth)acrylic acid ester compounds such as trimethylolpropane trimethacrylate and trimethylolpropane triacrylate; ethylenically unsaturated monomers containing epoxy groups such as allyl glycidyl ether and glycidyl methacrylate; mentioned. One of these may be used alone, or two or more of them may be used in combination at any ratio.
  • the combination and blending ratio of the various monomers can be arbitrarily changed according to the application of the slurry composition.
  • the particulate polymer A may have any structure, for example, it may have a core-shell structure comprising a core portion and a shell portion covering the outer surface of the core portion. Also, the shell portion may partially cover the outer surface of the core portion. That is, the shell portion of the particulate polymer A may cover the outer surface of the core portion but may not cover the entire outer surface of the core portion. Furthermore, the central portion of the particulate polymer A and the surface thereof may have a heterogeneous structure with different polymer compositions. Whether or not the particulate polymer A has a core-shell structure can be confirmed by observing the particulate polymer with a scanning electron microscope.
  • the particulate polymer A when it has a core-shell structure, it may be provided with arbitrary constituent elements in addition to the above-described core portion and shell portion.
  • the particulate polymer A may have a portion formed of a polymer different from the core portion inside the core portion.
  • the seed particles used in the production of the particulate polymer A by the seed polymerization method may remain inside the core portion.
  • the (meth)acrylic acid ester monomer unit is 30.0% by mass based on 100% by mass of the total repeating units constituting the shell portion. It preferably contains 45.0% by mass or more, more preferably 60.0% by mass or more, and preferably 99.0% by mass or less, and 95.0% by mass. It is more preferable to contain the following.
  • the content of the (meth)acrylic acid ester monomer unit in the shell is at least the above lower limit, it is possible to enhance the electrolytic solution pourability and cycle durability of the obtained secondary battery.
  • the content of the (meth)acrylic acid ester monomer unit in the shell is equal to or less than the above upper limit, the adhesiveness of the obtained non-aqueous secondary battery adhesive layer can be enhanced.
  • a methyl methacrylate unit and a methyl acrylate unit are preferable as the (meth)acrylic acid ester monomer unit contained in the shell portion. Furthermore, it is more preferable that the shell portion contains both of these. If the shell part contains both of these, it is possible to improve the electrolyte pourability and cycle durability of the obtained secondary battery.
  • the shell portion includes methyl methacrylate units and methyl acrylate units as (meth)acrylic acid ester monomer units, and an acid It is preferable that a monomer unit having a carboxylic acid group as a group-containing monomer unit is included as a repeating unit. If the particulate polymer A is a core-shell polymer having a shell portion that satisfies such compositional conditions, the electrolytic solution pourability and cycle durability of the resulting secondary battery can be enhanced.
  • the monomer unit having a carboxylic acid group which the shell portion contains together with the methyl methacrylate unit and the methyl acrylate unit as the (meth)acrylic acid ester monomer unit, is derived from the above-described monocarboxylic acid.
  • a monomer unit is preferred, a monomer unit derived from acrylic acid or methacrylic acid is more preferred, and a monomer unit derived from methacrylic acid is even more preferred.
  • the content of monomer units having a carboxylic acid group in the shell portion is preferably 0.10% by mass or more, more preferably 0.50% by mass or more, and preferably 0.90% by mass or more. More preferably, it is 4.50% by mass or less, and even more preferably 4.00% by mass or less. If the content ratio of the monomer unit having a carboxylic acid group in the shell portion is at least the above lower limit, the uniformity of the obtained adhesive layer can be further improved. Moreover, if the content of the monomer unit having a carboxylic acid group in the shell portion is equal to or less than the above upper limit, the adhesiveness of the resulting secondary battery can be enhanced.
  • the proportion of the polymer constituting the shell is 40% by mass, where the total mass of the core and the shell is 100% by mass. or less, more preferably 35% by mass or less, preferably 15% by mass or more, and more preferably 20% by mass or more. If the proportion of the polymer constituting the shell portion is equal to or less than the above upper limit, the adhesiveness of the resulting adhesive layer can be further enhanced. Further, when the proportion of the polymer constituting the shell portion is at least the above lower limit, it is possible to further improve the electrolytic solution pourability and cycle durability of the resulting secondary battery.
  • the particulate polymer A preferably has a volume average particle diameter of 300 nm or more, more preferably 450 nm or more, preferably 900 nm or less, and more preferably 750 nm or less. From the viewpoint of satisfactorily achieving both adhesion and blocking resistance (difficulty blocking) of the adhesive layer, the volume average particle size of the particulate polymer A is larger than the volume average particle size of the particulate polymer B described below. is preferred. If the volume average particle diameter of the particulate polymer A is at least the above lower limit, the blocking resistance of the adhesive layer can be enhanced. Moreover, if the volume average particle diameter of the particulate polymer A is equal to or less than the above upper limit, the adhesiveness of the adhesive layer can be enhanced. The volume average particle size of the particulate polymer A can be measured by the method described in Examples.
  • the particulate polymer A should have a glass transition temperature of 30° C. or higher and 100° C. or lower, more preferably 40° C. or higher, more preferably 55° C. or higher, and 90° C. or lower.
  • the temperature is preferably 80° C. or lower, and more preferably 80° C. or lower. If the glass transition temperature of the particulate polymer A is at least the above lower limit, it is possible to prevent blocking due to mutual adhesion when secondary battery members having adhesive layers on their surfaces are stacked and stored. .
  • the glass transition temperature of the particulate polymer A is equal to or lower than the above upper limit, the adhesiveness of the adhesive layer can be enhanced, and swelling of the obtained secondary battery can be suppressed.
  • the particulate polymer A has the core-shell structure described above, multiple glass transition temperatures may be detected when the glass transition temperature is measured by the method described in the examples of the present specification. . In that case, the lowest glass transition temperature value is taken as the glass transition temperature of the particulate polymer A.
  • the glass transition temperature of the particulate polymer A can be adjusted to a desired temperature by changing the composition of the particulate polymer A or the like.
  • the particulate polymer A can be prepared by a known polymerization method without any particular limitation.
  • the polymerization method is not particularly limited, and any method such as solution polymerization method, suspension polymerization method, bulk polymerization method, and emulsion polymerization method can be used.
  • As the polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • seed polymerization using seed particles may be employed.
  • a stepwise polymerization method is used, in which the polymer formed in the previous step is sequentially coated with the polymer formed in the subsequent step.
  • a continuous multi-stage suspension polymerization method and a multi-stage suspension polymerization method can be employed.
  • emulsifiers, dispersants, polymerization initiators, polymerization aids, and the like used in polymerization can be those generally used, and the amount used can also be the amount generally used.
  • the particulate polymer B contained in the slurry composition should have a glass transition temperature of 20° C. or lower.
  • the particulate polymer B, together with the particulate polymer A described above, has a function of making the adhesive layer formed using the non-aqueous secondary battery adhesive layer slurry composition exhibit adhesiveness.
  • the particulate polymer B is not particularly limited as long as it can be dispersed in a dispersion medium such as water, and may be any polymer. Polymers are preferred. This is because it is possible to further reduce the internal resistance of the non-aqueous secondary battery to be obtained as well as the uniformity is further improved.
  • styrene-based polymers include polymers in which the proportion of styrene units is 50% by mass or more, preferably more than 60% by mass, of all repeating units.
  • the styrene-based polymer includes a styrene-butadiene copolymer (SBR), and among them, a polar group-containing SBR is preferable.
  • SBR styrene-butadiene copolymer
  • polar group-containing SBR include polymers obtained by modifying SBR with polar groups such as acid groups.
  • Monomers that can be used to modify SBR with acid groups include the acid group-containing monomers described in the section on particulate polymer A.
  • the acrylic polymer refers to a polymer containing 50% by mass or more, preferably 60% by mass or more of the total repeating units of (meth)acrylic acid ester monomer units.
  • the (meth)acrylic acid ester monomer capable of forming the (meth)acrylic acid ester monomer unit the same monomer as described in the item of the particulate polymer A can be used. can be done.
  • the acrylic polymer preferably contains a (meth)acrylic acid ester monomer unit having 8 or more carbon atoms (particularly, a 2-ethylhexyl acrylate unit having 8 carbon atoms) in an amount of 50 mass% or more and 95 A polymer containing at a ratio of mass % or less is preferable.
  • a (meth)acrylic acid ester monomer unit having 8 or more carbon atoms By containing a (meth)acrylic acid ester monomer unit having 8 or more carbon atoms, the adhesiveness between the electrode and the separator can be improved.
  • the particulate polymer B one type may be used alone, or two or more types may be used in combination.
  • the particulate polymer B should have a glass transition temperature of 20° C. or lower, preferably 10° C. or lower, preferably ⁇ 50° C. or higher, more preferably ⁇ 40° C. or higher. If the glass transition temperature of the particulate polymer B is equal to or lower than the above upper limit, the adhesiveness of the adhesive layer can be ensured. In addition, it is preferable that the particulate polymer B has one glass transition temperature.
  • the particulate polymer B preferably has a volume average particle diameter of 80 nm or more, more preferably 100 nm or more, preferably 400 nm or less, and more preferably 200 nm or less. If the volume average particle diameter of the particulate polymer B is at least the above lower limit, the internal resistance of the obtained secondary battery can be further reduced. Further, when the volume average particle diameter of the particulate polymer B is equal to or less than the above upper limit, the blocking resistance of the adhesive layer can be enhanced.
  • the volume average particle size of the particulate polymer B can be measured by the method described in Examples.
  • Examples of methods for producing particulate polymer B include solution polymerization, suspension polymerization, and emulsion polymerization.
  • the emulsion polymerization method and the suspension polymerization method are preferable because the polymerization can be carried out in water and the aqueous dispersion containing the particulate polymer B can be used as it is as a material for the slurry composition for the adhesive layer.
  • the reaction system preferably contains a dispersant.
  • the particulate polymer B is usually formed substantially from the polymer that constitutes it, but may be accompanied by optional components such as additives used in the polymerization.
  • the blending ratio of the particulate polymer A and the particulate polymer B in the slurry composition is preferably 3 parts by mass or more of the particulate polymer B with respect to 100 parts by mass of the particulate polymer A. It is more preferably 5 parts by mass or more, more preferably 7 parts by mass or more, preferably 25 parts by mass or less, more preferably 15 parts by mass or less, and 12 parts by mass or less. is more preferred. If the blending ratio of the particulate polymers A and B is within the above range, the adhesiveness of the adhesive layer can be improved and the occurrence of blocking can be favorably suppressed.
  • the water-soluble polymer contained in the slurry composition for the non-aqueous secondary battery adhesive layer adjusts the viscosity of the slurry composition for the non-aqueous secondary battery adhesive layer to improve the coating properties. bear.
  • the water-soluble polymer has adhesiveness and electrolyte resistance, and plays a role of assisting adhesion between components in the adhesive layer and between battery members in the secondary battery.
  • the water-soluble polymer is not particularly limited, and examples thereof include natural polymers, semi-synthetic polymers and synthetic polymers.
  • Natural polymers include, for example, plant- or animal-derived polysaccharides and proteins, fermented products thereof by microorganisms, etc., and heat-treated products thereof. These natural polymers can be classified into plant natural polymers, animal natural polymers, microbial natural polymers, and the like.
  • plant-based natural polymers include gum arabic, tragacanth gum, galactan, guar gum, carob gum, karaya gum, carrageenan, pectin, agar, quince seed (quince), alkecolloid (gassou extract), starch (rice, corn, potato, wheat). etc.) and glycyrrhizin.
  • Animal-based natural polymers include collagen, casein, albumin, and gelatin. Natural polymers produced by microorganisms include xanthan gum, dextran, succinoglucan, and pullulan.
  • Semi-synthetic polymers include cellulosic semi-synthetic polymers.
  • Cellulose-based semi-synthetic polymers can be classified into nonionic cellulose-based semi-synthetic polymers, anionic cellulose-based semi-synthetic polymers and cationic cellulose-based semi-synthetic polymers.
  • Nonionic cellulose-based semisynthetic polymers include, for example, alkylcelluloses such as methylcellulose, methylethylcellulose, ethylcellulose, microcrystalline cellulose; hydroxyethylcellulose, hydroxybutylmethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, Hydroxyalkylcelluloses such as propylmethylcellulose stearoxyether, carboxymethylhydroxyethylcellulose, alkylhydroxyethylcellulose, nonoxynylhydroxyethylcellulose and the like can be mentioned.
  • anionic cellulose-based semisynthetic polymers include substituted products obtained by substituting the above nonionic cellulose-based semisynthetic polymers with various derivative groups and salts thereof (sodium salts, ammonium salts, etc.). Specific examples include sodium cellulose sulfate, methylcellulose, methylethylcellulose, ethylcellulose, carboxymethylcellulose (CMC), and salts thereof.
  • Cationic cellulose-based semisynthetic polymers include, for example, low-nitrogen hydroxyethyl cellulose dimethyl diallyl ammonium chloride (polyquaternium-4), O-[2-hydroxy-3-(trimethylammonio)propyl]hydroxyethyl cellulose chloride (polyquaternium-10 ), O-[2-hydroxy-3-(lauryldimethylammonio)propyl]hydroxyethylcellulose chloride (polyquaternium-24).
  • the synthetic polymer is not particularly limited, and for example, a synthetic polymer containing an acid group-containing monomer unit in a proportion of 5% by mass or more and 50% by mass or less, a vinyl acetate polymer such as polyvinyl alcohol, Special polyacrylic acid ammonium salt (e.g., Toagosei Co., Ltd., Aron (registered trademark) A6114, etc.), acrylic acid / sulfonic acid monomer copolymer (e.g., Nippon Shokubai Co., Ltd., Aqualic (registered trademark) GL366), and compounds known as polyethylene glycol-type nonionic surfactants or propylene oxide/ethylene oxide copolymers (eg Noptex (registered trademark) ED052, manufactured by San Nopco).
  • a synthetic polymer containing an acid group-containing monomer unit in a proportion of 5% by mass or more and 50% by mass or less a vinyl acetate polymer such as polyvinyl alcohol, Special poly
  • the acid group-containing monomer used to form the acid group-containing monomer unit the above-described ones can be used. One of these may be used alone, or two or more of them may be used in combination at any ratio.
  • the proportion of the acid group-containing monomer in the monomer composition used for preparing the synthetic polymer is preferably 5% by mass or more, more preferably 25% by mass or more, It is preferably 50% by mass or less, more preferably 45% by mass or less.
  • the proportion of the acid group-containing monomer in the monomer composition used for preparing the synthetic polymer within the above range, the uniformity of the resulting adhesive layer can be further enhanced.
  • the content of acid group-containing monomer units in a synthetic polymer synthesized using such a monomer composition is 5%, with the total repeating units constituting the synthetic polymer being 100% by mass. It is preferably at least 25% by mass, more preferably at least 25% by mass, preferably at most 50% by mass, and more preferably at most 45% by mass.
  • the monomer composition may contain other compounds copolymerizable with the acid group-containing monomer.
  • other compounds include the above-mentioned (meth)acrylic acid ester monomers, the above-described crosslinkable monomers, amide group-containing monomers such as (meth)acrylamide, and nitrile group-containing monomers such as acrylonitrile.
  • a monomer is mentioned.
  • the additives to be blended in the monomer composition used for the preparation of the synthetic polymer include cross-linking agents such as ethylene glycol dimethacrylate, polymerization initiators such as potassium persulfate, and polymerization accelerators such as tetramethylethylenediamine.
  • cross-linking agents such as ethylene glycol dimethacrylate
  • polymerization initiators such as potassium persulfate
  • polymerization accelerators such as tetramethylethylenediamine.
  • additives that can be used in the polymerization reaction, such as additives, can be mentioned.
  • the type and blending amount of the additive can be arbitrarily selected according to the polymerization method and the like.
  • the polymerization solvent to be blended in the monomer composition used for preparing the synthetic polymer a known solvent capable of dissolving or dispersing the above-described monomers can be used depending on the polymerization method and the like. Among them, it is preferable to use water as the polymerization solvent.
  • aqueous solution of an arbitrary compound, a mixed solution of a small amount of an organic medium and water, or the like may be used.
  • the synthetic polymer can be obtained, for example, by radically polymerizing a monomer composition obtained by mixing the above-described monomer, cross-linking agent, additive and polymerization solvent by a known method.
  • the solution containing the synthetic polymer and the polymerization solvent obtained by polymerizing the above monomer composition may be used as it is for preparing the adhesive layer slurry composition, or may be used after solvent replacement. You may use for preparation of the slurry composition for adhesive layers after performing addition of arbitrary components.
  • aqueous solution polymerization slurry polymerization, suspension polymerization, emulsion polymerization, etc.
  • aqueous solution polymerization using water as a polymerization solvent is preferred because there is no problem of contamination with a surfactant.
  • the monomer composition is adjusted to a predetermined concentration, the dissolved oxygen in the reaction system is sufficiently replaced with an inert gas, and then a radical polymerization initiator is added. It is a method of performing a polymerization reaction by irradiating light such as.
  • the pH of the aqueous solution should be adjusted to 8 or more and 9 or less after polymerization. is preferred.
  • the weight-average molecular weight of the water-soluble polymer is preferably 300 or more, more preferably 500 or more, preferably 3 million or less, and more preferably 2,500,000 or less. Furthermore, when the slurry composition of the present invention contains two or more kinds of water-soluble polymers, it is preferable to use together those having different weight average molecular weights.
  • the weight-average molecular weight of the water-soluble polymer having a relatively large weight-average molecular weight is preferably 100,000 or more, more preferably 150,000 or more, It is more preferably 200,000 or more, preferably 500,000 or less, more preferably 450,000 or less, and even more preferably 400,000 or less. If the weight average molecular weight of the water-soluble polymer A is at least the above lower limit, the uniformity of the obtained adhesive layer can be further improved. If the weight-average molecular weight of the water-soluble polymer A is equal to or less than the above upper limit, the resulting adhesiveness can be enhanced.
  • the weight-average molecular weight of the water-soluble polymer having a relatively small weight-average molecular weight is preferably 300 or more, more preferably 400 or more, and 500 or more. More preferably, it is 90,000 or less, and more preferably 80,000 or less. If the weight average molecular weight of the water-soluble polymer B is at least the above lower limit, the uniformity of the obtained adhesive layer can be further improved. If the weight-average molecular weight of the water-soluble polymer B is equal to or less than the above upper limit, the resulting adhesiveness can be enhanced.
  • the uniformity of the resulting adhesive layer can be further improved.
  • the blending ratio of the water-soluble polymer in the slurry composition for the non-aqueous secondary battery adhesive layer is preferably 0.05 parts by mass or more, and 0.1 parts by mass or more with respect to 100 parts by mass of the particulate polymer A. is more preferably 0.5 parts by mass or more, preferably 5 parts by mass or less, and more preferably 3 parts by mass or less.
  • the slurry composition for a non-aqueous secondary battery adhesive layer may contain any other component in addition to the particulate polymers A and B and the water-soluble polymer described above.
  • the other components exclude the compounds corresponding to the water-soluble polymers described above.
  • These other ingredients include, for example, preservatives and antifoam agents. These other components may be used singly or in combination of two or more. Desired attributes can be imparted to the adhesive layer slurry composition by optionally blending other components such as preservatives and antifoaming agents.
  • isothiazoline-based compounds such as Navisite P40 and Actiside MBS can be suitably added as preservatives.
  • DF6351 manufactured by Seiko PMC Co., Ltd., etc. can be suitably blended.
  • these compounding amounts can be appropriately adjusted depending on the application.
  • the total amount of these additives is preferably in the range of 1000 ppm or more and 3000 ppm or less with respect to 100 parts by mass of the particulate polymer A.
  • Dispersion medium Water can be used as the dispersion medium.
  • the dispersion medium is not particularly limited as long as the particulate polymers A and B can be dispersed and at least a part of the water-soluble polymer can be dissolved. good. From the viewpoint of coatability, the dispersion medium is preferably water.
  • the method for producing the adhesive layer slurry composition includes a step of mixing the particulate polymers A and B, the water-soluble polymer, the dispersion medium, and optionally other components.
  • the mixing method is not particularly limited, but in order to efficiently disperse each component, a disperser is usually used as a mixing device.
  • the disperser is preferably a device capable of uniformly dispersing and mixing the above components. Examples include ball mills, sand mills, pigment dispersers, grinders, ultrasonic dispersers, homogenizers, planetary mixers, and the like. Also, from the viewpoint of being able to apply a high shearing force during dispersion, a high dispersion device such as a bead mill, a roll mill, and a filmix can be used.
  • the adhesive layer slurry composition preferably has a pH of 7 or higher, more preferably 8 or higher, and preferably 9 or lower.
  • the pH of the adhesive layer slurry composition is within the above range, the uniformity is further improved, and the internal resistance of the resulting non-aqueous secondary battery can be further reduced.
  • the adhesive layer slurry composition must have a solid content concentration of 1% by mass or more and 25% by mass or less, preferably 20% by mass or less, more preferably 12% by mass or less, and 8% by mass. It is more preferably 5% by mass or less, and particularly preferably 5% by mass or less. If the solid content concentration is within the above range, it becomes possible to uniformly produce an adhesive layer having a small thickness and a low basis weight. As a result, the internal resistance of the obtained secondary battery can be reduced and the rapid charging performance can be improved.
  • an adhesive layer can be formed on a suitable substrate using the slurry composition for a non-aqueous secondary battery adhesive layer described above.
  • the non-aqueous secondary battery adhesive layer can be formed by drying the slurry composition for the non-aqueous secondary battery adhesive layer on a suitable substrate. That is, the adhesive layer for a non-aqueous secondary battery of the present invention comprises a dried slurry composition for an adhesive layer for a non-aqueous secondary battery, and usually comprises the particulate polymers A and B and a water-soluble polymer. and optionally the other ingredients listed above.
  • the crosslinkable monomer unit is dried during drying of the slurry composition, or after drying. It may be crosslinked during the optional heat treatment (that is, the adhesive layer for a non-aqueous secondary battery is the above-described particulate polymer A, particulate polymer B, and/or water-soluble polymer crosslinked may contain objects).
  • the preferred abundance ratio of each component contained in the adhesive layer for non-aqueous secondary battery is the same as the preferred abundance ratio of each component in the slurry composition for non-aqueous secondary battery adhesive layer.
  • the particulate polymers A and B present as particles in the slurry composition for the non-aqueous secondary battery adhesive layer may maintain the original particle shape in the adhesive layer, or may be deformed. good. Further, when the particulate polymer A having a core-shell structure is blended in the adhesive layer slurry composition, even if the shape of the particulate polymer A as a whole changes from the original particle shape, , the core-shell structure itself is preferably maintained.
  • the adhesive layer for a non-aqueous secondary battery of the present invention is excellent in uniformity and can reduce the internal resistance of the obtained non-aqueous secondary battery. Moreover, the non-aqueous secondary battery member provided with the adhesive layer for non-aqueous secondary batteries of the present invention can reduce the internal resistance of the resulting non-aqueous secondary battery.
  • the base material for forming the adhesive layer is not particularly limited.
  • the separator base material can be used as the base material.
  • an adhesive layer is used as a member constituting a part of, an electrode base material obtained by forming an electrode mixture layer on a current collector can be used as the base material. Further, there is no particular limitation on the usage of the adhesive layer formed on the substrate.
  • the adhesive layer may be formed on the separator substrate or the like and used as it is as a battery member such as a separator, or the It may be used as an electrode by forming an adhesive layer, or the adhesive layer formed on a release substrate may be peeled off from the substrate once and attached to another substrate to be used as a battery member.
  • a separator base material or an electrode base material as the base material from the viewpoint of omitting the step of peeling off the release base material from the adhesive layer and improving the production efficiency of the battery member.
  • the separator substrate is not particularly limited.
  • an arbitrary heat-resistant layer For example, a separator substrate in which a layer containing a heat-resistant filler such as inorganic particles is arranged can be used.
  • the non-aqueous secondary battery adhesive layer is arranged directly adjacent to at least one surface of the organic separator material, or is formed on at least one surface of the organic separator material. It has a structure arranged adjacent to the surface of the heat-resistant layer provided in the.
  • the electrode base material (positive electrode base material and negative electrode base material) forming the adhesive layer is not particularly limited, but an electrode base material in which an electrode mixture layer is formed on a current collector is exemplified.
  • the components in the current collector, the electrode mixture layer (for example, the electrode active material (positive electrode active material, negative electrode active material) and the binder for the electrode mixture layer (binder for the positive electrode mixture layer, the negative electrode mixture) Binder for material layer), etc.), and a method for forming an electrode mixture layer on a current collector can be a known method, for example, the method described in JP-A-2013-145763 is used. be able to.
  • the electrode base material may partially include any layer having a desired function other than the adhesive layer.
  • the release substrate forming the adhesive layer is not particularly limited, and known release substrates can be used.
  • the adhesive layer preferably has a basis weight of 0.2 g/m 2 or less, more preferably 0.15 g/m 2 or less, and even more preferably 0.11 g/m 2 or less. If the basis weight of the adhesive layer is equal to or less than the above upper limit, the internal resistance of the obtained secondary battery can be further reduced, and the rapid charging performance of the secondary battery can be enhanced. Although the lower limit of the basis weight of the adhesive layer is not particularly limited, it can usually be 0.05 g/m 2 or more.
  • Method for producing adhesive layer for non-aqueous secondary battery examples include the following methods. : 1) A slurry composition for an adhesive layer is applied to the surface of a separator base material or an electrode base material (in the case of an electrode base material, the surface of the electrode mixture layer side; the same shall apply hereinafter) by gravure coating or slot die coating, and then drying method; 2) The adhesive layer slurry composition is applied onto a release substrate by gravure coating or slot die coating, dried to produce an adhesive layer, and the obtained adhesive layer is used as a separator substrate or an electrode substrate.
  • the method 1) comprises, in detail, a step of applying a slurry composition for an adhesive layer onto a separator base material or an electrode base material by gravure coating or slot die coating (coating step); A step of drying the adhesive layer slurry composition applied on the substrate to form an adhesive layer (drying step) is provided.
  • the method for drying the adhesive layer slurry composition on the substrate is not particularly limited, and known methods can be used. A drying method by irradiation with an electron beam or the like can be mentioned.
  • the drying conditions are not particularly limited, but the drying temperature is preferably 30 to 80° C., and the drying time is preferably 30 seconds to 10 minutes.
  • the thickness of the adhesive layer formed on the substrate is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, still more preferably 0.5 ⁇ m or more, and preferably 3.0 ⁇ m or less, more preferably It is 1.5 ⁇ m or less, more preferably 1.0 ⁇ m or less.
  • the thickness of the adhesive layer is at least the lower limit value of the above range, the strength of the adhesive layer can be sufficiently secured, and when it is at most the upper limit value of the above range, the internal resistance of the secondary battery is further reduced. can do.
  • the non-aqueous secondary battery of the present invention includes the non-aqueous secondary battery member of the present invention described above. More specifically, in the non-aqueous secondary battery of the present invention, at least one of the positive electrode, the negative electrode, and the separator is the non-aqueous secondary battery member of the present invention. Since the non-aqueous secondary battery of the present invention includes the non-aqueous secondary battery member of the present invention, the internal resistance is low. Therefore, the non-aqueous secondary battery of the present invention has excellent rapid charging performance.
  • the secondary battery of the present invention is a non-aqueous secondary battery member of the present invention in which at least one of a positive electrode, a negative electrode, and a separator is provided with the adhesive layer of the present invention. That is, it is possible to use an electrode in which an adhesive layer is provided on an electrode base material in which an electrode mixture layer is formed on a current collector.
  • the electrode base material and the separator base material the same materials as those listed in the section "Adhesive layer for non-aqueous secondary battery" can be used.
  • the positive electrode and the negative electrode having no adhesive layer are not particularly limited, and electrodes made of the electrode base material described above can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a supporting electrolyte for example, a lithium salt is used in a lithium ion secondary battery.
  • lithium salts include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like.
  • LiPF 6 , LiClO 4 and CF 3 SO 3 Li are preferable because they are easily dissolved in a solvent and exhibit a high degree of dissociation.
  • an electrolyte may be used individually by 1 type, and may be used in combination of 2 or more types.
  • lithium ion conductivity tends to increase as a supporting electrolyte with a higher degree of dissociation is used, so the lithium ion conductivity can be adjusted depending on the type of supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • carbonates are preferable because they have a high dielectric constant and a wide stable potential range.
  • the lower the viscosity of the solvent used the higher the lithium ion conductivity tends to be, so the lithium ion conductivity can be adjusted by the type of solvent.
  • concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate. Further, known additives may be added to the electrolytic solution.
  • a non-aqueous secondary battery is, for example, a positive electrode and a negative electrode stacked with a separator interposed therebetween, and the obtained positive electrode-separator-negative electrode laminate is used as it is, or if necessary, the battery is wound or folded. It can be manufactured by putting it in a container, injecting an electrolytic solution into the battery container, and sealing the battery container.
  • expanded metal, fuses, overcurrent protection elements such as PTC elements, lead plates, and the like may be placed in the battery container to prevent pressure rise inside the battery and overcharge/discharge.
  • the shape of the battery may be, for example, coin-shaped, button-shaped, sheet-shaped, cylindrical, rectangular, or flat.
  • the glass transition temperatures of the particulate polymers A and B prepared in Examples and Comparative Examples were obtained by measuring DSC curves according to JIS K6240 using a differential thermal analysis measuring device (manufactured by SII Nanotechnology, EXSTAR DSC6220). Specifically, 10 mg of the dried measurement sample is weighed into an aluminum pan, and an empty aluminum pan is used as a reference, and the measurement temperature range is -100 ° C. to 200 ° C. at a temperature increase rate of 20 ° C./min. A curve was measured. The temperature of the endothermic peak of the differential signal (DDSC) in this temperature rising process was determined and used as the glass transition temperature of the particulate polymers A and B. Two glass transition temperatures were detected for the particulate polymer A used in all the examples and comparative examples and the particulate polymer used in place of it. was adopted as the glass transition temperature of the polymer A.
  • DDSC differential thermal analysis measuring device
  • volume average particle size The volume average particle diameters of the particulate polymers A and B prepared in Examples and Comparative Examples were measured by a laser diffraction method. Specifically, an aqueous dispersion (adjusted to a solid content concentration of 0.1% by mass) containing the prepared particulate polymers A and B was used as a sample. Then, in the particle size distribution (volume basis) measured using a laser diffraction particle size distribution analyzer (manufactured by Beckman Coulter, "LS-13320"), the cumulative volume calculated from the small diameter side is 50%. The particle diameter D50 was taken as the volume average particle diameter.
  • ⁇ Weight average molecular weight of water-soluble polymer> Aqueous solutions containing water-soluble polymers used in Examples and Comparative Examples were diluted to adjust the concentration to 0.5%. Samples were then prepared by diluting to 0.025% with the following eluent. This sample was analyzed by gel permeation chromatography under the following conditions to create a molecular weight distribution curve to determine the weight average molecular weight of the water-soluble polymer.
  • Apparatus Gel permeation chromatograph GPC (Agilent 1260 Infinity II HPLC) Detector: Refractive index detector RI (Agilent 1260 Infinity II) Column: 2 TSKgel GMPWXL ( ⁇ 7.8 mm ⁇ 30 cm, manufactured by Tosoh) Solvent: 0.1M Tris buffer (0.1M potassium chloride added) for anionic polymers Flow rate: 0.7 mL/min Column temperature: 40°C Injection volume: 0.2 mL Standard samples: Tosoh and Sigma-Aldrich monodisperse polyethylene oxide (PEO), polyethylene glycol (PEG)
  • the adhesive layer slurry composition used for forming an adhesive layer capable of uniformly transmitting light has good coatability, and the adhesive layer slurry used for forming an adhesive layer with "streaks" or “unevenness” The composition has poor coatability. Therefore, the applicability of the adhesive layer slurry composition was evaluated according to the following criteria. “Good”: The formed adhesive layer uniformly transmits light. “Weak streak generation”: A line-shaped area where the amount of transmitted light slightly clearly changes is generated in the formed adhesive layer. “Streaking”: A line-shaped area where the amount of transmitted light clearly changes occurs in the formed adhesive layer. “Unevenness”: Areas with unclear boundaries where the amount of transmitted light varies irregularly in the formed adhesive layer.
  • the basis weight of the adhesive layer was calculated from the difference between "the weight of the coated base material + the adhesive layer" and "the weight of the uncoated base material”. Then, low basis weight property was evaluated according to the following criteria. The smaller the difference between the "weight of base material + adhesive layer after coating” and the "weight of uncoated base material", the better the low basis weight.
  • SA The difference between "weight of substrate + adhesive layer after coating” and “weight of uncoated substrate” is 0.1 (g/m 2 ) or less
  • the uniformity of the adhesive layer was observed using a SEM (FE-SEM (JSM-7800F Prime)), the adhesive layer was observed at 2,000 times, and the existence ratio of primary particles (particulate polymer A existing alone) (Denseness of particles) was visually confirmed and evaluated according to the following criteria. A higher proportion of temporary particles indicates better uniformity.
  • SA The proportion of primary particles is 80% or more
  • A The proportion of primary particles is 60% or more and less than 80%
  • B The proportion of primary particles is 40% or more and less than 60%
  • C The proportion of primary particles is less than 40%
  • the rate of increase in the thickness of the battery after the cycle compared to before the cycle was evaluated as the swelling property of the battery.
  • C The thickness of the battery after cycling compared to before cycling increase rate of 5% or more
  • Capacity retention rate ⁇ C is 70% or more (resistance: low)
  • capacity retention rate ⁇ C is less than 55% (resistance: large)
  • a single-layer polyethylene separator (thickness: 12 ⁇ m) manufactured by a wet method was prepared as a separator base material.
  • the slurry composition prepared in Examples and Comparative Examples was applied, the slurry composition on the separator substrate was dried at 50 ° C. for 10 minutes, and the functional layer (coating weight: 0.2 g/m 2 ).
  • a separator provided with this functional layer on one side was used as a separator for evaluation.
  • a negative electrode was produced in the same manner as in Example 1, which will be described later, and used as a negative electrode for evaluation.
  • Each of the negative electrode for evaluation and the separator for evaluation obtained above was cut into a rectangular shape of 10 mm ⁇ 100 mm.
  • the test piece together with the laminated packaging material was pressed at 80° C. and a pressure of 1.0 MPa for 10 minutes. After that, the test piece was taken out, and the electrolytic solution adhering to the surface was wiped off.
  • the negative electrode current collector side surface of the test piece was placed downward, and cellophane tape was attached to the negative electrode current collector side surface.
  • the cellophane tape specified in JIS Z1522 was used.
  • the cellophane tape was fixed on a horizontal test stand. Then, the stress when one end of the separator was pulled vertically upward at a pulling rate of 50 mm/min and peeled off was measured. This measurement was performed three times, and the average value of the stress was obtained as the peel strength, which was evaluated according to the following criteria.
  • Electrolyte is impregnated on all surfaces of the electrode.
  • B A portion of the electrode not impregnated with the electrolyte remains less than 1 cm 2 (except that all surfaces are impregnated).
  • C A portion of the electrode not impregnated with the electrolytic solution is 1 cm 2 or more.
  • Capacity retention rate ⁇ C is 85% or more
  • B Capacity retention rate ⁇ C is 75% or more and less than 85%
  • C Capacity retention rate ⁇ C is less than 75%
  • Example 1 ⁇ Preparation of Particulate Polymer A>
  • a polymer (1-1) having a core-shell structure was prepared.
  • 45 parts of methyl methacrylate monomer and 21.83 parts of butyl acrylate as (meth)acrylic acid ester monomers were added to a 5 MPa pressure vessel equipped with a stirrer; 3.1 parts of methacrylic acid monomer as a monomer; and 0.07 part of allyl methacrylate as a crosslinkable monomer were added.
  • ⁇ Preparation of Particulate Polymer B> In a 5 MPa pressure vessel equipped with a stirrer, 32.5 parts of 1,3-butadiene, 65 parts of styrene, 1 part of methacrylic acid monomer as an acid group-containing monomer, 1 part of 2-hydroxyethyl acrylate, (meth)acrylic acid 0.5 parts of allyl methacrylate as an ester monomer, 0.4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water and 0.5 parts of potassium persulfate as a polymerization initiator are added and thoroughly stirred. , and the polymerization was initiated by heating to 50°C.
  • the mixture was cooled to stop the reaction, and a mixture containing the polymer (2-1) as the particulate polymer B was obtained.
  • a 5% aqueous sodium hydroxide solution was added to the mixture containing the polymer (2-1) to adjust the pH to 8. Thereafter, unreacted monomers were removed from the mixture by heating under reduced pressure distillation, and the mixture was cooled to 30° C. or less to obtain an aqueous dispersion containing the desired polymer (2-1).
  • the glass transition temperature and volume average particle size were measured according to the methods described above. The results are shown in Table 1-1.
  • an aqueous dispersion containing synthetic water-soluble polymer 1 synthetic WP1
  • synthetic WP1 synthetic water-soluble polymer 1
  • an aqueous dispersion containing the above synthetic WP1 and a 5% by mass sodium hydroxide aqueous solution were added to a container equipped with a stirrer, into which ion-exchanged water was charged, while the resulting solution had a pH of 8.
  • the composition was adjusted so that the concentration of synthetic WP1 in the resulting solution was 1% by mass, and the mixture was sufficiently stirred to dissolve synthetic WP1.
  • an aqueous solution of water-soluble polymer A was prepared.
  • ⁇ Preparation of slurry composition for non-aqueous secondary battery adhesive layer 100 parts by mass of particulate polymer A (equivalent to solid content), 10 parts by mass of particulate polymer B (equivalent to solid content), and 2 parts by mass of water-soluble polymer A aqueous solution (equivalent to solid content) were added to a vessel equipped with a stirrer. Add and mix. To this, 2000 ppm of an antiseptic (Navisite P40) and 150 ppm of an antifoaming agent (DF6351 manufactured by Seiko PMC Co., Ltd.) are added, and further diluted with ion-exchanged water to obtain an adhesive layer slurry composition having a solid content concentration of 1% by mass. Obtained.
  • the adhesive layer slurry composition obtained as described above was coated on a separator base material (made of polypropylene, Celgard 2500) using a gravure coating machine (Yasui Seiki Co., Ltd.) ⁇ Coater, and coated at 50° C. for 3 hours. dried for a minute. This operation was performed on both sides of the separator substrate to obtain a separator having an adhesive layer with a thickness of 1 ⁇ m on each side. With respect to the obtained separator provided with the adhesive layer, the basis weight of the adhesive layer was measured as described above. The results are shown in Table 1-2.
  • the mixture was further mixed at 25° C. for 15 minutes.
  • 1.5 parts of the above-described particulate binder was added in terms of the solid content, and ion-exchanged water was added to adjust the final solid content concentration to 52% by mass. and mixed for an additional 10 minutes. This was defoamed under reduced pressure to obtain a negative electrode slurry composition with good fluidity.
  • the negative electrode slurry composition obtained above was coated on a copper foil having a thickness of 20 ⁇ m as a current collector with a comma coater so that the film thickness after drying was about 150 ⁇ m, and dried.
  • This drying was carried out by conveying the copper foil at a speed of 0.5 m/min in an oven at 60° C. for 2 minutes. After that, heat treatment was performed at 120° C. for 2 minutes to obtain a negative electrode raw sheet before pressing.
  • the unpressed negative electrode material was rolled by a roll press to obtain a pressed negative electrode having a negative electrode active material layer with a thickness of 80 ⁇ m (single-sided negative electrode).
  • HS-100 acetylene black
  • PVDF #7208 manufactured by Kureha Co., Ltd.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode slurry composition obtained as described above is coated on a 20 ⁇ m thick aluminum foil as a current collector with a comma coater so that the film thickness after drying is about 150 ⁇ m, and dried. let me This drying was carried out by conveying the copper foil at a speed of 0.5 m/min in an oven at 60° C. for 2 minutes. After that, heat treatment was performed at 120° C. for 2 minutes to obtain a positive electrode material sheet before pressing.
  • the raw positive electrode sheet before pressing was rolled by a roll press to obtain a positive electrode after pressing having a positive electrode active material layer with a thickness of 80 ⁇ m (single-sided positive electrode).
  • the pressed positive electrode obtained as described above was cut into a 4 cm square.
  • the separator having the adhesive layer for a non-aqueous secondary battery obtained as described above was cut into 5 cm square pieces. Then, a square piece of the separator was arranged on the face of the cut square piece of the positive electrode on the side of the positive electrode mixture layer.
  • the negative electrode after pressing produced as described above was cut into a square piece of 4.2 cm square, and this was further arranged on the square piece of the separator so that the surfaces on the negative electrode mixture layer side faced each other. Then, the obtained laminate was pressed at a temperature of 60° C. and 0.5 MPa to adhere.
  • Example 2-4 The same operations, measurements, and evaluations as in Example 1 were performed, except that the solid content concentration in preparing the adhesive layer slurry composition was changed as shown in Table 1-1. The results are shown in Tables 1-1 and 1-2.
  • Example 5 The same operations, measurements, and evaluations as in Example 1 were performed except that the composition of particulate polymer A was changed as shown in Table 1-1 to prepare polymer (1-2). The results are shown in Tables 1-1 and 1-2.
  • the mixture was heated to 70° C. to continue the polymerization, and when the polymerization conversion rate reached 96%, the reaction was stopped by cooling. As a result, an aqueous dispersion containing the polymer (1-2) as the particulate polymer A was obtained.
  • Example 6-7 The same operation, measurement, and evaluation. The results are shown in Tables 1-1 and 1-2.
  • the conditions for producing the polymers (1-3) to (1-4) were the same as in Example 5.
  • Example 8 The same operations, measurements, and evaluations as in Example 1 were performed, except that the polymer (1-2) prepared in Example 5 was used and the pH of the adhesive layer slurry composition was changed to 7. The results are shown in Tables 1-1 and 1-2.
  • Example 9 The same operations, measurements, and evaluations as in Example 1 were performed, except that the composition of particulate polymer B was changed as shown in Table 1-1 to prepare polymer (2-2) according to the following procedure. . The results are shown in Tables 1-1 and 1-2.
  • ⁇ Production of polymer (2-2)> In a reactor equipped with a stirrer, 90 parts of ion-exchanged water, 0.05 parts of sodium dodecylbenzenesulfonate (manufactured by Kao Chemical Co., Ltd., "Neopelex G-15") as an emulsifier, and 0.23 parts of ammonium persulfate were added.
  • the gas phase was replaced with nitrogen gas, and the temperature was raised to 70°C.
  • 50 parts of ion-exchanged water, 0.1 part of sodium dodecylbenzenesulfonate as an emulsifier, 2 parts of methacrylic acid (MAA) as an acid group-containing monomer, and acrylonitrile as a nitrile group-containing monomer were added to another container.
  • (AN) 2.5 parts, and as other monomers, n-butyl acrylate (BA) 95 parts as a (meth) acrylic ester monomer, allyl methacrylate (AMA) as a crosslinkable monomer 0.5 part was mixed to obtain a monomer composition.
  • Polymerization was carried out by continuously adding this monomer composition to the reactor over 4 hours. The reaction was carried out at 80° C. during the addition. After completion of the addition, the mixture was further stirred at 80° C. for 3 hours to complete the reaction, and an aqueous dispersion containing polymer (2-2) as particulate polymer B was obtained.
  • Example 10 The same operations, measurements, and evaluations as in Example 1 were carried out, except that the composition of particulate polymer B was changed as shown in Table 1-1 to prepare polymer (2-3) according to the following procedure. . The results are shown in Tables 1-1 and 1-2.
  • ⁇ Production of polymer (2-3)> In a reactor equipped with a stirrer, 90 parts of ion-exchanged water, 0.05 parts of sodium dodecylbenzenesulfonate (manufactured by Kao Chemical Co., Ltd., "Neopelex G-15") as an emulsifier, and 0.23 parts of ammonium persulfate were added.
  • the gas phase was replaced with nitrogen gas, and the temperature was raised to 70°C.
  • 50 parts of ion-exchanged water, 0.1 part of sodium dodecylbenzenesulfonate as an emulsifier, 3 parts of methacrylic acid (MAA) as an acidic group-containing monomer, 25 parts of styrene, and (meth) are placed in another container.
  • a monomer composition was obtained by mixing 71.5 parts of 2-ethylhexyl acrylate (2EHA) as an acrylate ester monomer and 0.5 parts of allyl methacrylate (AMA) as a crosslinkable monomer. Polymerization was carried out by continuously adding this monomer composition to the reactor over 4 hours.
  • the reaction was carried out at 80° C. during the addition. After completion of the addition, the mixture was further stirred at 80° C. for 3 hours to complete the reaction, and an aqueous dispersion containing polymer (2-3) as particulate polymer B was obtained.
  • Example 11 The same operations, measurements and and evaluation. The results are shown in Tables 1-1 and 1-2.
  • Example 12 The same operations, measurements, and evaluations as in Example 1 were carried out, except that the composition of the water-soluble polymer was changed as shown in Table 1-1, and synthetic water-soluble polymer 2 (WP2) was produced according to the following. bottom. The results are shown in Tables 1-1 and 1-2.
  • Synthetic water-soluble polymer 2 synthetic WP2
  • a synthetic water-soluble polymer 2 synthetic WP2 was prepared as a water-soluble polymer.
  • 550 parts of ion-exchanged water and 17 parts of a 2.0% aqueous solution of L-ascorbic acid as a polymerization accelerator are added to a 10 L flask equipped with a septum, heated to a temperature of 40° C., and nitrogen gas is supplied at a flow rate of 100 mL/min. was replaced in the flask.
  • 75 parts of acrylamide as an amide group-containing monomer and 25 parts of acrylic acid as an acid group-containing monomer were mixed and injected into the flask with a syringe.
  • Example 13 The same operations, measurements, and evaluations as in Example 1 were carried out, except that the composition of the water-soluble polymer was changed as shown in Table 1-1, and synthetic water-soluble polymer 3 (WP3) was produced according to the following. bottom. The results are shown in Tables 1-1 and 1-2.
  • Synthetic water-soluble polymer 3 synthetic WP3> A synthetic water-soluble polymer 3 (synthetic WP3) was prepared as a water-soluble polymer.
  • Example 14 A polymer (1-8) was produced by changing the composition of the particulate polymer A as shown in Table 2-1. The blending amount of the aqueous solution was changed to 1.9 parts equivalent to the solid content, and as the water-soluble polymer B, a propylene oxide / ethylene oxide copolymer (manufactured by San Nopco, Noptex (registered trademark) ED052; weight average molecular weight: 550 ⁇ 600 (nominal value)) was blended. Except for these points, the same operations, measurements, and evaluations as in Example 1 were performed. The results are shown in Tables 2-1 and 2-2.
  • a polymer (1-8) having a core-shell structure was prepared.
  • a core portion was formed in the same manner as in Example 1.
  • 10 parts of styrene and an acid group-containing monomer were added to the container to form the shell portion.
  • 0.3 parts of a methacrylic acid monomer as a monomer and 20 parts of a methyl methacrylate monomer as a (meth)acrylic acid ester monomer were continuously added, and the inside of the vessel was heated to 70°C to initiate polymerization. The reaction was continued, and when the polymerization conversion reached 96%, the reaction was stopped by cooling. As a result, an aqueous dispersion containing the polymer (1-8) as the particulate polymer A was obtained.
  • Example 15 The same operations, measurements, and evaluations as in Example 1 were carried out, except that the polymer (1-8) prepared in the same manner as in Example 14 was used as the particulate polymer A. The results are shown in Tables 2-1 and 2-2.
  • Example 16 A polymer (1-9) was produced by changing the composition of the particulate polymer A as shown in Table 2-1. The blending amount of the aqueous solution was changed to 1.9 parts equivalent to the solid content, and as the water-soluble polymer B, a propylene oxide / ethylene oxide copolymer (manufactured by San Nopco, Noptex (registered trademark) ED052; weight average molecular weight: 550 ⁇ 600 (nominal value)) was blended. Except for these points, the same operations, measurements, and evaluations as in Example 1 were performed. The results are shown in Tables 2-1 and 2-2.
  • a polymer (1-9) having a core-shell structure was prepared.
  • a core portion was formed in the same manner as in Example 1.
  • 10 parts of styrene and an acid group-containing monomer were added to the container to form the shell portion.
  • 0.3 parts of a methacrylic acid monomer as a monomer 10 parts of a methyl methacrylate monomer and 10 parts of a methyl acrylate monomer as a (meth)acrylic acid ester monomer are continuously added, and the inside of the container is The mixture was heated to 70° C. to continue the polymerization, and when the polymerization conversion rate reached 96%, the reaction was stopped by cooling.
  • an aqueous dispersion containing the polymer (1-9) as the particulate polymer A was obtained.
  • Example 17 A polymer (1-10) was prepared by changing the composition of the particulate polymer A as shown in Table 2-1. The blending amount of the aqueous solution was changed to 1.9 parts equivalent to the solid content, and as the water-soluble polymer B, a propylene oxide / ethylene oxide copolymer (manufactured by San Nopco, Noptex (registered trademark) ED052; weight average molecular weight: 550 ⁇ 600 (nominal value)) was blended. Except for these points, the same operations, measurements, and evaluations as in Example 1 were performed. The results are shown in Tables 2-1 and 2-2.
  • a polymer (1-10) having a core-shell structure was prepared.
  • a core portion was formed in the same manner as in Example 1.
  • 10 parts of styrene and an acid group-containing monomer were added to the container to form the shell portion.
  • 0.3 parts of a methacrylic acid monomer as a monomer, 15 parts of a methyl methacrylate monomer and 5 parts of a butyl acrylate monomer as a (meth)acrylic acid ester monomer were continuously added, and the inside of the container was The mixture was heated to 70° C. to continue the polymerization, and when the polymerization conversion rate reached 96%, the reaction was stopped by cooling.
  • an aqueous dispersion containing the polymer (1-10) as the particulate polymer A was obtained.
  • Example 18 A polymer (1-11) was produced by changing the composition of the particulate polymer A as shown in Table 2-1. The blending amount of the aqueous solution was changed to 1.9 parts equivalent to the solid content, and as the water-soluble polymer B, a propylene oxide / ethylene oxide copolymer (manufactured by San Nopco, Noptex (registered trademark) ED052; weight average molecular weight: 550 ⁇ 600 (nominal value)) was blended. Except for these points, the same operations, measurements, and evaluations as in Example 1 were performed. The results are shown in Tables 2-1 and 2-2.
  • a polymer (1-11) having a core-shell structure was prepared.
  • a core portion was formed in the same manner as in Example 1.
  • 10 parts of styrene and an acid group-containing monomer were added to the container to form the shell portion.
  • 0.3 parts of a methacrylic acid monomer as a monomer, 15 parts of a methyl methacrylate monomer as a (meth)acrylic acid ester monomer, and 5 parts of an acrylonitrile monomer were continuously added, and the inside of the container was heated to 70°C. to continue the polymerization, and when the polymerization conversion reached 96%, the reaction was stopped by cooling.
  • an aqueous dispersion containing the polymer (1-11) as the particulate polymer A was obtained.
  • Example 19 A polymer (1-12) was prepared by changing the composition of the particulate polymer A as shown in Table 2-1. The blending amount of the aqueous solution was changed to 1.9 parts equivalent to the solid content, and as the water-soluble polymer B, a propylene oxide / ethylene oxide copolymer (manufactured by San Nopco, Noptex (registered trademark) ED052; weight average molecular weight: 550 ⁇ 600 (nominal value)) was blended. Except for these points, the same operations, measurements, and evaluations as in Example 1 were performed. The results are shown in Tables 2-1 and 2-2.
  • a polymer (1-12) having a core-shell structure was prepared.
  • 20 parts of 2-ethylhexyl acrylate as a (meth)acrylic acid ester monomer; 46.1 parts of styrene as an aromatic vinyl monomer are added to a 5 MPa pressure vessel equipped with a stirrer.
  • 2.8 parts of a methacrylic acid monomer as an acid group-containing monomer; and 0.8 parts of ethylene glycol dimethacrylate as a crosslinking monomer were added.
  • Example 20 The same operations, measurements, and evaluations as in Example 14 were carried out, except that the water-soluble polymer A was not blended. The results are shown in Tables 2-1 and 2-2.
  • Example 21 Water-soluble polymer A is not blended, and special polyacrylic acid ammonium salt (manufactured by Toagosei Co., Ltd., Aron (registered trademark) A6114; weight average molecular weight: 8000 (nominal value)) is 1.9 as water-soluble polymer B. and 0.1 part of a propylene oxide/ethylene oxide copolymer (manufactured by San Nopco, Noptex (registered trademark) ED052; weight average molecular weight: 550 to 600 (nominal value)). Similar operations, measurements, and evaluations were performed. The results are shown in Tables 2-1 and 2-2.
  • Example 22 As the water-soluble polymer B, a vinyl acetate polymer (polyvinyl alcohol; PVA JF-17 manufactured by Nippon Acetate & Poval Co., Ltd.; weight average molecular weight: 70,000 to 80,000 ( The same operation, measurement, and evaluation as in Example 14 were carried out, except that 0.1 part of nominal value)) was added. The results are shown in Tables 2-1 and 2-2.
  • Example 23 The same operations, measurements, and evaluations as in Example 14 were performed except that the same polymer (2-2) as in Example 9 was used as the particulate polymer B. The results are shown in Tables 2-1 and 2-2.
  • Example 24 The same operations, measurements, and evaluations as in Example 14 were performed except that the same polymer (2-3) as in Example 10 was used as the particulate polymer B. The results are shown in Tables 2-1 and 2-2.
  • Example 25 The same operations, measurements, and evaluations as in Example 14 were carried out, except that the polymer (2-6) prepared as follows was used as the particulate polymer B. The results are shown in Tables 2-1 and 2-2.
  • ⁇ Preparation of polymer (2-6)> In a reactor equipped with a stirrer, 90 parts of ion-exchanged water, 0.05 parts of sodium dodecylbenzenesulfonate (manufactured by Kao Chemical Co., Ltd., "Neopelex G-15") as an emulsifier, and 0.23 parts of ammonium persulfate were added. , respectively, the gas phase was replaced with nitrogen gas, and the temperature was raised to 70°C.
  • a monomer composition was obtained by mixing 71 parts of 2-ethylhexyl acrylate (2EHA) as an acrylate monomer and 1 part of ethylene glycol dimethacrylate (EDMA) as a crosslinkable monomer. Polymerization was carried out by continuously adding this monomer composition to the reactor over 4 hours. The reaction was carried out at 80° C. during the addition. After completion of the addition, the mixture was further stirred at 80° C. for 3 hours to complete the reaction, and an aqueous dispersion containing polymer (2-6) as particulate polymer B was obtained.
  • EHA 2-ethylhexyl acrylate
  • EDMA ethylene glycol dimethacrylate
  • a particulate polymer (1-5) having a composition shown in Table 3-1 and a glass transition temperature of 110° C. was prepared as follows. Except for this, the same operations, measurements, and evaluations as in Example 1 were performed. The results are shown in Tables 3-1 and 3-2.
  • ⁇ Production of polymer (1-5)> A polymer (1-5) having a core-shell structure was prepared. First, in order to form the core portion, 10 parts of 2-ethylhexyl acrylate as a (meth)acrylic acid ester monomer; 56.1 parts of styrene as an aromatic vinyl monomer are added to a 5 MPa pressure vessel equipped with a stirrer.
  • a particulate polymer (2-5) having a composition shown in Table 3-1 and a glass transition temperature of 30° C. was prepared as follows. Except for this, the same operations, measurements, and evaluations as in Example 1 were performed. The results are shown in Tables 3-1 and 3-2.
  • a monomer composition was obtained by mixing 56.5 parts of 2-ethylhexyl acrylate (2EHA) as an acrylate monomer and 0.5 parts of allyl methacrylate (AMA) as a crosslinkable monomer. Polymerization was carried out by continuously adding this monomer composition to the reactor over 4 hours. The reaction was carried out at 80° C. during the addition. After completion of the addition, the mixture was further stirred at 80° C. for 3 hours to terminate the reaction, thereby obtaining an aqueous dispersion containing polymer (2-5) in particle form.
  • EHA 2-ethylhexyl acrylate
  • AMA allyl methacrylate
  • Example 3 (Comparative Example 3) The same operations, measurements, and evaluations as in Example 1 were carried out, except that no water-soluble polymer was blended. The results are shown in Tables 3-1 and 3-2.
  • Example 5 The same operations, measurements, and evaluations as in Example 1 were performed, except that the solid content concentration in preparing the adhesive layer slurry composition was changed to 30% by mass. The results are shown in Tables 3-1 and 3-2.
  • Example 6 As the particulate polymer A, a polymer (1-6) having the composition shown in Table 3-1 prepared according to the following is blended, and a polymer corresponding to the particulate polymer B and a water-soluble polymer are not blended, Furthermore, the same operations, measurements and evaluations as in Example 1 were carried out, except that the solid content concentration of the adhesive layer slurry composition was changed to 20% by mass. The results are shown in Tables 3-1 and 3-2. ⁇ Production of polymer (1-6)> As the particulate polymer A, a polymer (1-6) having a core-shell structure was prepared.
  • the mixture was heated to 70° C. to continue the polymerization, and when the polymerization conversion rate reached 96%, the reaction was stopped by cooling. As a result, an aqueous dispersion containing the polymer (1-6) as the particulate polymer A was obtained.
  • Example 7 a particulate polymer (1-7) having a composition shown in Tables 1-1 and 3-2 and having a glass transition temperature of 105° C., prepared according to the following procedure, was used in Example 9. The same operation, measurement, and evaluation as in Example 1 were performed except that the same polymer (2-2) as in Example 1 was used, and the solid content concentration of the adhesive layer slurry composition was changed to 30% by mass. The results are shown in Tables 3-1 and 3-2. ⁇ Production of polymer (1-7)> A polymer (1-7) having a core-shell structure was prepared.
  • MMA indicates methyl methacrylate
  • BA indicates butyl acrylate
  • ST indicates styrene
  • MAA indicates methacrylic acid
  • HSA denotes 2-hydroxyethyl acrylate
  • AMA indicates allyl methacrylate
  • EDMA indicates ethylene glycol dimethacrylate
  • 2EHA denotes 2-ethylhexyl acrylate
  • EA indicates ethyl acrylate
  • AAm indicates acrylamide
  • AA indicates acrylic acid
  • AN indicates acrylonitrile
  • AMPS denotes 2-acrylamido-2-methylpropanesulfonic acid
  • WP indicates a water-soluble polymer.
  • a particulate polymer A having a glass transition temperature of 30° C. or higher and 100° C. or lower, a particulate polymer B having a glass transition temperature of 20° C. or lower, a water-soluble polymer, and a dispersion medium are included.
  • a slurry composition for a non-aqueous secondary battery adhesive layer having a solid content concentration of 1% by mass or more and 25% by mass is used, excellent uniformity and internal resistance of the resulting non-aqueous secondary battery can be reduced. It can be seen that an adhesive layer capable of
  • a slurry composition for a non-aqueous secondary battery adhesive layer which is excellent in uniformity and capable of forming an adhesive layer capable of reducing the internal resistance of the resulting non-aqueous secondary battery.
  • an adhesive layer for a non-aqueous secondary battery which is excellent in uniformity and capable of reducing the internal resistance of the non-aqueous secondary battery, and a method for producing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)

Abstract

少なくとも2種類の粒子状重合体、水溶性高分子、及び分散媒を含む、非水系二次電池接着層用スラリー組成物を提供する。少なくとも2種類の重合体は、ガラス転移温度が30℃以上100℃以下の粒子状重合体A、及び、ガラス転移温度が20℃以下の粒子状重合体Bを含む。また、非水系二次電池接着層用スラリー組成物の固形分濃度は、1質量%以上25質量%以下である。

Description

非水系二次電池接着層用スラリー組成物、非水系二次電池用接着層及びその製造方法、非水系二次電池用部材、並びに非水系二次電池
 本発明は、非水系二次電池接着層用スラリー組成物、非水系二次電池用接着層及びその製造方法、非水系二次電池用部材、並びに非水系二次電池に関するものである。
 リチウムイオン二次電池などの非水系二次電池(以下、「二次電池」と略記する場合がある)は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そして二次電池は、一般に、正極、負極、及び、正極と負極とを隔離して正極と負極との間の短絡を防ぐセパレータなどの電池部材を備えている。
 ここで、近年、二次電池においては、耐熱性や強度の向上を目的とした多孔膜層や、電池部材間の接着性の向上を目的とした接着層などを備える電池部材が使用されている。
 具体的には、集電体上に電極合材層を設けてなる電極基材上にさらに接着層を形成してなる電極や、セパレータ基材上に接着層を形成してなるセパレータが電池部材として使用されている。そしてこの接着層は、通常、結着材成分と、水などの分散媒とを含有するスラリー状の非水系二次電池接着層用組成物(以下、「接着層用組成物」と略記する場合がある)を、電極基材又はセパレータ基材などの適切な基材上に供給し、乾燥することで形成される(例えば、特許文献1参照)。
 特許文献1では、有機粒子と、1質量%水溶液とした場合の粘度が所定の範囲でなる水溶性高分子と、を含み、且つ、所定のせん断粘度条件を満たす、非水系二次電池接着層用組成物が提案されている。特許文献2では、ガラス転移温度が10~100℃である粒子状重合体を含有する接着層を有する二次電池用セパレータが提案されている。
国際公開第2017/090242号 国際公開第2013/151144号
 しかしながら、上記特許文献1~2に記載された接着層用組成物を用いて形成される接着層は均一性に一層の向上の余地があるとともに、結果的に、得られる非水系二次電池の内部抵抗に一層の低減の余地があった。
 そこで、本発明は、均一性に優れると共に、得られる非水系二次電池の内部抵抗を低減することが可能な接着層を形成することができる、非水系二次電池接着層用スラリー組成物を提供することを目的とする。
 また、本発明は、均一性に優れ、非水系二次電池の内部抵抗を低減することができる非水系二次電池用接着層及びその製造方法を提供することを目的とする。
 また、本発明は、内部抵抗の低い非水系二次電池を提供可能な非水系二次電池用部材を提供することを目的とする。
 さらに、本発明は、内部抵抗の低い非水系二次電池を提供することを目的とする。
 かかる点に鑑みて、本発明者は検討を重ね、接着層用スラリー組成物の配合成分及び固形分濃度が、得られる接着層の均一性及びかかる接着層を備える非水系二次電池の内部抵抗に大きな影響を及ぼすことに着目し、本発明を完成させた。
 〔1〕即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池接着層用スラリー組成物は、少なくとも2種類の粒子状重合体、水溶性高分子、及び分散媒を含む、非水系二次電池接着層用スラリー組成物であって、前記少なくとも2種類の重合体は、ガラス転移温度が30℃以上100℃以下の粒子状重合体A、及び、ガラス転移温度が20℃以下の粒子状重合体Bを含み、前記非水系二次電池接着層用スラリー組成物の固形分濃度が、1質量%以上25質量%以下である、ことを特徴とする。かかる非水系二次電池接着層スラリー組成物は、均一性に優れると共に、得られる非水系二次電池の内部抵抗を低減することが可能な接着層を形成することができる。
 ここで、本明細書において重合体のガラス転移温度は、実施例に記載の方法により測定することができる。また、本明細書において重合体が「水溶性である」とは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が1.0質量%未満であることをいう。
 〔2〕そして、上記〔1〕の非水系二次電池接着層用スラリー組成物は、前記粒子状重合体Aが、(メタ)アクリル酸エステル単量体単位を含むことが好ましい。粒子状重合体Aが、(メタ)アクリル酸エステル単量体単位を含んでいれば、得られる非水系二次電池の膨れを抑制することができる。なお、本明細書において(メタ)アクリルとは、アクリル及び/又はメタクリルを意味する。また、本明細書において、「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の構造単位が含まれている」ことを意味する。
 〔3〕さらに、上記〔1〕又は〔2〕の非水系二次電池接着層用スラリー組成物は、前記粒子状重合体Bがスチレン系重合体又はアクリル系重合体であることが好ましい。粒子状重合体Bがスチレン系重合体又はアクリル系重合体であれば、均一性に一層優れると共に、得られる非水系二次電池の内部抵抗を一層低減することが可能となる。
 〔4〕さらに、上記〔1〕~〔3〕の何れかの非水系二次電池接着層用スラリー組成物は、前記水溶性高分子が、酸基含有単量体単位を5質量%以上50質量%以下の割合で含有することが好ましい。水溶性高分子が酸基含有単量体単位を含んでいれば、得られる接着層の均一性を一層高めることができる。なお、単量体単位の含有割合は、H-NMRなどの核磁気共鳴(NMR)法を用いて測定することができる。
 〔5〕さらに、上記〔1〕~〔4〕の何れかの本発明の非水系二次電池接着層用スラリー組成物は、pHが7以上9以下であることが好ましい。pHが7以上9以下であれば均一性に一層優れると共に、得られる非水系二次電池の内部抵抗を一層低減することが可能となる。
 〔6〕さらに、上記〔1〕~〔5〕の何れかの非水系二次電池接着層用スラリー組成物は、防腐剤及び消泡剤のうちの少なくとも一方を含んでいてもよい。これにより、スラリー組成物に所望の属性を付与することができる。
 〔7〕さらに、上記〔1〕~〔6〕の何れかの非水系二次電池接着層用スラリー組成物は、前記粒子状重合体Aがコアシェル構造を有し、シェル部を構成する全繰り返し単位を100質量%として、(メタ)アクリル酸エステル単量体単位を30.0質量%以上含有することが好ましい。粒子状重合体Aが、かかる組成条件を満たすシェル部を有するコアシェル重合体であれば、得られる二次電池の電解液注液性及びサイクル耐久性を高めることができる。
 〔8〕さらに、上記〔1〕~〔7〕の何れかの非水系二次電池接着層用スラリー組成物は、前記粒子状重合体Aがコアシェル構造を有し、シェル部が、(メタ)アクリル酸エステル単量体単位としてのメチルメタクリレート単位及びメチルアクレート単位、並びに、酸基含有単量体単位としてのカルボン酸基を有する単量体単位を、繰り返し単位として含むことが好ましい。粒子状重合体Aが、かかる組成条件を満たすシェル部を有するコアシェル重合体であれば、得られる二次電池の電解液注液性及びサイクル耐久性を高めることができる。
 〔9〕また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用接着層は、上記〔1〕~〔8〕の何れかの非水系二次電池接着層用スラリー組成物を用いて形成したことを特徴とする。かかる非水系二次電池用接着層は、均一性に優れると共に、二次電池の内部抵抗を低減することができる。
 〔10〕また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用接着層の製造方法は、上記〔1〕~〔8〕の何れかの非水系二次電池接着層用スラリー組成物を、グラビア塗工又はスロットダイ塗工により基材上に塗布する塗布工程を含むことを特徴とする。かかる製造方法によれば、本発明の非水系二次電池用接着層を効率的に製造することができる。
 〔11〕また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用部材は、基材上に、上記〔9〕の非水系二次電池用接着層を備えることを特徴とする。かかる非水系二次電池用部材を用いれば、内部抵抗の低い非水系二次電池を提供することができる。
 〔12〕ここで、上記〔11〕の非水系二次電池用部材は、前記基材が有機セパレータ材料を含み、前記非水系二次電池用接着層が、前記有機セパレータ材料の少なくとも一方の表面に隣接配置されてなる、或いは、前記有機セパレータ材料の少なくとも一方の表面上に備えられた耐熱層の表面に隣接配置されてなることが好ましい。かかる非水系二次電池用部材を用いれば、内部抵抗の一層低い非水系二次電池を提供することができる。
 〔13〕また、この発明は、上記課題を有利に解決することを目的とするものであり、上記〔11〕又は〔12〕の非水系二次電池は、上述した非水系二次電池用部材を備えることを特徴とするものである。このように、二次電池に本発明の非水系二次電池用部材を備えることで、二次電池の内部抵抗を低減することができる。
 本発明によれば、均一性に優れると共に、得られる非水系二次電池の内部抵抗を低減することが可能な接着層を形成することができる、非水系二次電池接着層用スラリー組成物を提供することができる。
 また、本発明によれば、均一性に優れ、非水系二次電池の内部抵抗を低減することができる非水系二次電池用接着層及びその製造方法を提供することができる。
 また、本発明によれば、内部抵抗の低い非水系二次電池を提供可能な非水系二次電池用部材を提供することができる。
 さらに、本発明によれば、内部抵抗の低い非水系二次電池を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池接着層用スラリー組成物は、セパレータや電極等の電池部材を相互に接着させるため、或いは、セパレータ基材及び耐熱層のような、電池部材の構成要素同士を相互に接着させるための接着層を形成する目的で用いられる。
 また、本発明の非水系二次電池用接着層は上記非水系二次電池接着層用スラリー組成物を用いて、好ましくは本発明の非水系二次電池用接着層の製造方法に従って形成される。そして、本発明の非水系二次電池用部材は、少なくとも本発明の非水系二次電池用接着層を備えるものである。さらに、本発明の非水系二次電池は、少なくとも本発明の非水系二次電池用部材を備える。
(非水系二次電池接着層用スラリー組成物)
 非水系二次電池接着層用スラリー組成物は、少なくとも2種類の粒子状重合体、水溶性高分子、及び分散媒を含有し、任意に、その他の成分を含有する。より具体的には、スラリー組成物は、ガラス転移温度が30℃以上100℃以下の粒子状重合体A、及び、ガラス転移温度が20℃以下の粒子状重合体B、及び水溶性高分子を含む。さらに、スラリー組成物は、固形分濃度が、1質量%以上25質量%以下であることを特徴とする。
 そして、本発明の非水系二次電池接着層用スラリー組成物を用いて形成される接着層は、均一性に優れるとともに、かかる接着層を備える二次電池の内部抵抗を低減することができる。内部抵抗の低い二次電池は、急速充電性能に優れる。
<粒子状重合体A>
 スラリー組成物に含有される粒子状重合体Aは、ガラス転移温度が30℃以上100℃以下であることを必要とする。粒子状重合体Aは、非水系二次電池接着層用スラリー組成物を用いて形成された接着層に接着性を発揮させる機能を担う。ここで、粒子状重合体Aは、(メタ)アクリル酸エステル単量体単位を含むことが好ましい。粒子状重合体Aが(メタ)アクリル酸エステル単量体単位を含んでいれば、得られる非水系二次電池の膨れを良好に抑制することができる。さらに、粒子状重合体Aは、酸基含有単量体単位を含んでいてもよい。粒子状重合体Aが酸基含有単量体単位を含んでいれば、非水系二次電池接着層用スラリー組成物の塗工性を向上させることができる。接着層用スラリー組成物が塗工性に優れていれば、形成した塗膜にスジやムラが発生することが抑制されうる。
[(メタ)アクリル酸エステル単量体単位]
 (メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、2-エチルヘキシルアクリレート等の(メタ)アクリル酸エステル単量体が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 粒子状重合体Aにおける(メタ)アクリル酸エステル単量体単位の含有割合は、粒子状重合体Aに含まれる全単量体単位を100質量%とした場合に、15質量%以上であることが好ましく、30質量%以上であることがより好ましく、60質量%以上であることが更に好ましく、99.0質量%以下であることが好ましく、95.0質量%以下であることがより好ましい。粒子状重合体Aにおける(メタ)アクリル酸エステル単量体単位の含有割合が上記下限値以上であれば、得られる非水系二次電池の膨れを抑制することができる。
[酸基含有単量体単位]
 酸基含有単量体単位を形成しうる酸基含有単量体としては、酸基を有する単量体、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、リン酸基を有する単量体、及び、水酸基を有する単量体が挙げられる。
 そして、カルボン酸基を有する単量体としては、例えば、モノカルボン酸、ジカルボン酸などが挙げられる。モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 また、スルホン酸基を有する単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 さらに、リン酸基を有する単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。
 また、水酸基を有する単量体としては、例えば、アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピルなどが挙げられる。
 なお、本発明において、(メタ)アリルとは、アリル及び/又はメタリルを意味し、(メタ)アクリロイルとは、アクリロイル及び/又はメタクリロイルを意味する。
 これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 粒子状重合体Aにおける酸基含有単量体単位の含有割合は、粒子状重合体Aに含まれる全単量体単位を100質量%とした場合に、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1.0質量%以上であることが更に好ましく、4.5質量%以下であることが好ましく、4.0質量%以下であることがより好ましい。粒子状重合体A中の酸基含有単量体単位の含有比率が上記下限値以上であれば、得られる接着層の均一性を一層向上させることができる。また、粒子状重合体A中の酸基含有単量体単位の含有比率が上記上限値以下であれば、得られる二次電池の内部抵抗を一層低減することができる。
[その他の単量体単位]
 そして、粒子状重合体Aは、特に限定されることなく、上述した(メタ)アクリル酸エステル単量体単位、及び酸基含有単量体単位以外の単量体単位を含みうる。そのような単量体単位を形成し得る単量体としては、例えば、芳香族ビニル単量体及び架橋性単量体が挙げられる。芳香族ビニル単量体としては、例えば、スチレン、α-メチルスチレン、スチレンスルホン酸、ブトキシスチレン、ビニルナフタレン等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。架橋性単量体とは、加熱又はエネルギー線の照射により、重合中又は重合後に架橋構造を形成しうる単量体である。より具体的には、架橋性単量体としては、例えば、当該単量体に2個以上の重合反応性基を有する多官能単量体が挙げられる。このような多官能単量体としては、例えば、ジビニルベンゼン、アリルメタクリレート等のジビニル化合物;ジエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート等のジ(メタ)アクリル酸エステル化合物;トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート等のトリ(メタ)アクリル酸エステル化合物;アリルグリシジルエーテル、グリシジルメタクリレート等のエポキシ基を含有するエチレン性不飽和単量体;などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 なお、粒子状重合体Aを調製するにあたり、上記各種単量体の組合せ及び配合割合は、スラリー組成物の用途などに応じて任意に変更することができる。
―粒子状重合体Aの構造―
 なお、粒子状重合体Aはいかなる構造を有していてもよく、例えば、コア部とコア部の外表面を覆うシェル部とを備えるコアシェル構造を有していてもよい。また、シェル部は、コア部の外表面を部分的に覆っていてもよい。即ち、粒子状重合体Aのシェル部は、コア部の外表面を覆っているが、コア部の外表面の全体を覆ってはいない被覆態様であってもよい。さらには、粒子状重合体Aの中心部と該表面とで重合体組成の異なる不均一な構造を有していてもよい。なお、粒子状重合体Aがコアシェル構造を有するか否かという点は、粒子状重合体を走査型電子顕微鏡観察することで確認することができる。
 なお、粒子状重合体Aがコアシェル構造を有する場合に、上述したコア部及びシェル部以外に任意の構成要素を備えていてもよい。例えば、粒子状重合体Aは、コア部の内部に、コア部とは別の重合体で形成された部分を有していてもよい。具体例を挙げると、粒子状重合体Aをシード重合法で製造する場合に用いたシード粒子が、コア部の内部に残留していてもよい。
 粒子状重合体Aがコアシェル構造を有する、所謂コアシェル重合体である場合において、シェル部を構成する全繰り返し単位を100質量%として、(メタ)アクリル酸エステル単量体単位を30.0質量%以上含有することが好ましく、45.0質量%以上含有することがより好ましく、60.0質量%以上含有することが更に好ましく、99.0質量%以下含有することが好ましく、95.0質量%以下含有することがより好ましい。シェルにおける(メタ)アクリル酸エステル単量体単位の含有量が上記下限値以上であれば、得られる二次電池の電解液注液性及びサイクル耐久性を高めることができる。また、シェルにおける(メタ)アクリル酸エステル単量体単位の含有量が上記上限値以下であれば、得られる非水系二次電池接着層の接着性を高めることができる。
 シェル部に含まれる(メタ)アクリル酸エステル単量体単位としては、メチルメタクリレート単位及びメチルアクレート単位が好ましい。さらに、シェル部が、これらの双方を含有することがより好ましい。シェル部がこれらの双方を含有していれば、得られる二次電池の電解液注液性及びサイクル耐久性を高めることができる。
 また、粒子状重合体Aがコアシェル構造を有する、所謂コアシェル重合体である場合において、シェル部が、(メタ)アクリル酸エステル単量体単位としてのメチルメタクリレート単位及びメチルアクレート単位、並びに、酸基含有単量体単位としてのカルボン酸基を有する単量体単位を、繰り返し単位として含むことが好ましい。粒子状重合体Aが、かかる組成条件を満たすシェル部を有するコアシェル重合体であれば、得られる二次電池の電解液注液性及びサイクル耐久性を高めることができる。
 特に、シェル部が、(メタ)アクリル酸エステル単量体単位としてのメチルメタクリレート単位及びメチルアクレート単位と共に含有する、カルボン酸基を有する単量体単位としては、上述したモノカルボン酸に由来する単量体単位が好ましく、アクリル酸又はメタクリル酸に由来する単量体単位がより好ましく、メタクリル酸に由来する単量体単位が更に好ましい。
 シェル部におけるカルボン酸基を有する単量体単位の含有割合は、0.10質量%以上であることが好ましく、0.50質量%以上であることがより好ましく、0.90以上であることが更に好ましく、4.50質量%以下であることが好ましく、4.00質量%以下であることが更に好ましい。シェル部におけるカルボン酸基を有する単量体単位の含有割合が上記下限値以上であれば、得られる接着層の均一性を一層向上させることができる。また、シェル部におけるカルボン酸基を有する単量体単位の含有割合が上記上限値以下であれば、得られる二次電池の接着性を高めることができる。
 さらに、粒子状重合体Aがコアシェル構造を有する、所謂コアシェル重合体である場合において、シェル部を構成する重合体の割合が、コア部及びシェル部の合計質量を100質量%として、40質量%以下であることが好ましく、35質量%以下であることがより好ましく、15質量%以上であることが好ましく、20質量%以上であることがより好ましい。シェル部を構成する重合体の割合が上記上限値以下であれば、得られる接着層の接着性を一層高めることができる。また、シェル部を構成する重合体の割合が上記下限値以上であれば、得られる二次電池の電解液注液性及びサイクル耐久性を一層高めることができる。
―粒子状重合体Aの体積平均粒子径―
 粒子状重合体Aは、体積平均粒子径が300nm以上であることが好ましく、450nm以上であることがより好ましく、900nm以下であることが好ましく、750nm以下であることがより好ましい。接着層の接着性及び耐ブロッキング性(ブロッキングしにくさ)を良好に両立する観点から、粒子状重合体Aの体積平均粒子径が、後述する粒子状重合体Bの体積平均粒子径よりも大きいことが好ましい。粒子状重合体Aの体積平均粒子径が上記下限値以上であれば、接着層の耐ブロッキング性を高めることができる。また、粒子状重合体Aの体積平均粒子径が上記上限値以下であれば、接着層の接着性を高めることができる。なお、粒子状重合体Aの体積平均粒子径は、実施例に記載の方法により測定することができる。
―粒子状重合体Aのガラス転移温度―
 粒子状重合体Aは、ガラス転移温度が30℃以上100℃以下である必要があり、40℃以上であることがより好ましく、55℃以上であることがより好ましく、90℃以下であることが好ましく、80℃以下であることがより好ましい。粒子状重合体Aのガラス転移温度が上記下限値以上であれば、接着層を表面に備える二次電池用部材を重ねて保管した場合に相互に接着してブロッキングすることを抑制することができる。また、粒子状重合体Aのガラス転移温度が上記上限値以下であれば、接着層の接着性を高めることができ、得られる二次電池の膨れを抑制することができる。なお、粒子状重合体Aが上述したコアシェル構造を有する場合などにおいては、本明細書の実施例に記載の方法によりガラス転移温度を測定した場合に複数のガラス転移温度が検出されることがある。その場合には、最も低いガラス転移温度の値を、粒子状重合体Aのガラス転移温度とする。
 なお、粒子状重合体Aのガラス転移温度は、粒子状重合体Aの組成などを変更することで、所望の温度に調節することができる。
―粒子状重合体Aの調製方法―
 粒子状重合体Aは、特に限定されることなく、既知の重合方法により調製することができる。重合様式は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの様式も用いることができる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。また、乳化重合においては、シード粒子を用いるシード重合を採用してもよい。さらに、コアシェル構造を有する粒子状重合体Aを調製する場合には、段階的な重合法であって、先の段階で形成された重合体を後の段階で形成される重合体で順次被覆させるような、連続した多段階懸濁重合法及び多段階懸濁重合法を採用することができる。
 そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とすることができる。
<粒子状重合体B>
 スラリー組成物に含有される粒子状重合体Bは、ガラス転移温度が20℃以下であることを必要とする。粒子状重合体Bは、上述した粒子状重合体Aと共に、非水系二次電池接着層用スラリー組成物を用いて形成された接着層に接着性を発揮させる機能を担う。粒子状重合体Bは、水などの分散媒中に分散可能である限りにおいて特に限定されず、あらゆる重合体でありうるが、中でも、粒子状重合体Bとしては、スチレン系重合体及びアクリル系重合体が好ましい。均一性に一層優れると共に、得られる非水系二次電池の内部抵抗を一層低減することが可能となるからである。スチレン系重合体としては、スチレン単位の割合が全繰り返し単位の50質量%以上、好ましくは、60質量%超である重合体が挙げられる。具体的には、スチレン系重合体としては、スチレン-ブタジエン共重合体(SBR)が挙げられ、中でも、極性基含有SBRが好ましい。極性基含有SBRとしては、酸基のような極性基でSBRを変性してなる重合体が挙げられる。SBRを酸基変性するために用いることができる単量体としては、粒子状重合体Aの項目にて説明した酸基含有単量体が挙げられる。また、アクリル系重合体とは、(メタ)アクリル酸エステル単量体単位を全繰り返し単位の50質量%以上、好ましくは60質量%以上含む重合体を指す。ここで、(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、粒子状重合体Aの項目にて説明した単量体と同様のものを用いることができる。中でも、アクリル系重合体としては、好ましくは炭素数が8以上である(メタ)アクリル酸エステル単量体単位(特には、炭素数が8である2-エチルヘキシルアクリレート単位)を50質量%以上95質量%以下の割合で含む重合体が好ましい。炭素数が8以上である(メタ)アクリル酸エステル単量体単位を含有することで、電極とセパレータとの接着性が良化しうる。
 なお、粒子状重合体Bとしては、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
―粒子状重合体Bのガラス転移温度―
 粒子状重合体Bは、ガラス転移温度が20℃以下である必要があり、10℃以下であることが好ましい、-50℃以上であることが好ましく、-40℃以上であることがより好ましい。粒子状重合体Bのガラス転移温度が上記上限値以下であれば、接着層の接着性を確保することができる。なお、粒子状重合体Bは、1つのガラス転移温度を有することが好ましい。
―粒子状重合体Bの体積平均粒子径―
 粒子状重合体Bは、体積平均粒子径が80nm以上であることが好ましく、100nm以上であることがより好ましく、400nm以下であることが好ましく、200nm以下であることがより好ましい。粒子状重合体Bの体積平均粒子径が上記下限値以上であれば、得られる二次電池の内部抵抗を一層低減することができる。また、粒子状重合体Bの体積平均粒子径が上記上限値以下であれば、接着層の耐ブロッキング性を高めることができる。なお、粒子状重合体Bの体積平均粒子径は、実施例に記載の方法により測定することができる。
 粒子状重合体Bの製造方法としては、例えば、溶液重合法、懸濁重合法、乳化重合法などが挙げられる。中でも、水中で重合をすることができ、粒子状重合体Bを含む水分散液をそのまま接着層用スラリー組成物の材料として好適に使用できるので、乳化重合法及び懸濁重合法が好ましい。また、粒子状重合体Bとしての重合体を製造する際、その反応系は分散剤を含むことが好ましい。粒子状重合体Bは、通常、実質的にそれを構成する重合体により形成されるが、重合に際して用いた添加剤等の任意の成分を同伴していてもよい。
<粒子状重合体A及びBの配合比率>
 スラリー組成物における粒子状重合体A及び粒子状重合体Bの配合比率は、粒子状重合体A100質量部に対して、粒子状重合体Bの配合量が3質量部以上であることが好ましく、5質量部以上であることがより好ましく、7質量部以上であることがさらに好ましく、25質量部以下であることが好ましく、15質量部以下であることがより好ましく、12質量部以下であることがさらに好ましい。粒子状重合体A及びBの配合比率が上記範囲内であれば、接着層の接着性を良好なものとするとともに、ブロッキングの発生を良好に抑制することができる。
<水溶性高分子>
 非水系二次電池接着層用スラリー組成物に含有される水溶性高分子は、非水系二次電池接着層用スラリー組成物の粘度を調整して、塗工性を良好なものとする機能を担う。好ましくは、水溶性高分子は接着性及び耐電解液性を備え、二次電池中において、接着層中の各成分同士及び電池部材同士の接着を補助する役割を果たす。
―水溶性高分子の種類―
 ここで、水溶性高分子としては、特に限定されることなく、例えば、天然高分子、半合成高分子及び合成高分子を挙げることができる。
[天然高分子]
 天然高分子としては、例えば、植物又は動物由来の多糖類及び蛋白質、並びにこれらの微生物等による発酵処理物、これらの熱処理物が挙げられる。
 そしてこれらの天然高分子は、植物系天然高分子、動物系天然高分子及び微生物産出天然高分子等に分類することができる。
 植物系天然高分子としては、例えば、アラビアガム、トラガカントガム、ガラクタン、グアガム、キャロブガム、カラヤガム、カラギーナン、ペクチン、カンテン、クインスシード(マルメロ)、アルケコロイド(ガッソウエキス)、澱粉(コメ、トウモロコシ、馬鈴薯、小麦等に由来するもの)、グリチルリチンが挙げられる。動物系天然高分子としては、コラーゲン、カゼイン、アルブミン、ゼラチンが挙げられる。微生物産生天然高分子としては、キサンタンガム、デキストラン、サクシノグルカン、プルランが挙げられる。
[半合成高分子]
 半合成高分子としては、セルロース系半合成高分子が挙げられる。そしてセルロース系半合成高分子は、ノニオン性セルロース系半合成高分子、アニオン性セルロース系半合成高分子及びカチオン性セルロース系半合成高分子に分類することができる。
 ノニオン性セルロース系半合成高分子としては、例えば、メチルセルロース、メチルエチルセルロース、エチルセルロース、マイクロクリスタリンセルロース、等のアルキルセルロース類;ヒドロキシエチルセルロース、ヒドロキシブチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロースステアロキシエーテル、カルボキシメチルヒドロキシエチルセルロース、アルキルヒドロキシエチルセルロース、ノノキシニルヒドロキシエチルセルロース等のヒドロキシアルキルセルロース類が挙げられる。
 アニオン性セルロース系半合成高分子としては、上記のノニオン性セルロース系半合成高分子を各種誘導基により置換した置換体及びその塩(ナトリウム塩、アンモニウム塩など)が挙げられる。具体的には、セルロース硫酸ナトリウム、メチルセルロース、メチルエチルセルロース、エチルセルロース、カルボキシメチルセルロース(CMC)及びそれらの塩が挙げられる。
 カチオン性セルロース系半合成高分子としては、例えば、低窒素ヒドロキシエチルセルロースジメチルジアリルアンモニウムクロリド(ポリクオタニウム-4)、塩化O-[2-ヒドロキシ-3-(トリメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム-10)、塩化O-[2-ヒドロキシ-3-(ラウリルジメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム-24)が挙げられる。
[合成高分子]
 合成高分子としては、特に限定されることなく、例えば、酸基含有単量体単位を5質量%以上50質量%以下の割合で含有する合成高分子、ポリビニルアルコールなどの酢酸ビニル系重合体、特殊ポリアクリル酸アンモニウム塩(例えば、東亞合成社製、アロン(登録商標)A6114など)、アクリル酸・スルホン酸系モノマー共重合体(例えば、日本触媒社製、アクアリック(登録商標)GL366)、及び、ポリエチレングリコール型非イオン界面活性剤又はプロピレンオキサイド/エチレンオキサイド共重合体として周知の化合物(例えば、サンノプコ社製、ノプテックス(登録商標)ED052)等が挙げられる。
 ここで、酸基含有単量体単位を形成するために用いる酸基含有単量体としては、上述したものを用いることができる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 そして、合成高分子の調製に用いる単量体組成物は、上述した酸基含有単量体が占める割合が、5質量%以上であることが好ましく、25質量%以上であることがより好ましく、50質量%以下であることが好ましく、45質量%以下であることがより好ましい。合成高分子の調製に用いる単量体組成物における酸基含有単量体の割合を上記範囲内とすることで、得られる接着層の均一性を一層高めることができる。なお、同様の理由により、かかる単量体組成物を用いて合成した合成高分子における酸基含有単量体単位の含有割合は、合成高分子を構成する全繰り返し単位を100質量%として、5質量%以上であることが好ましく、25質量%以上であることがより好ましく、50質量%以下であることが好ましく、45質量%以下であることがより好ましい。
 さらに、上記単量体組成物は、酸基含有単量体と共重合可能なその他の化合物を含有しうる。具体的には、その他の化合物としては、上述した(メタ)アクリル酸エステル単量体、上述した架橋性単量体、(メタ)アクリルアミドなどのアミド基含有単量体、アクリロニトリルなどのニトリル基含有単量体が挙げられる。
 ここで、合成高分子の調製に用いる単量体組成物に配合する添加剤としては、エチレングリコールジメタクリレート等の架橋剤や、過硫酸カリウム等の重合開始剤や、テトラメチルエチレンジアミン等の重合促進剤などの重合反応に使用し得る既知の添加剤が挙げられる。なお、添加剤の種類及び配合量は、重合方法等に応じて任意に選択することができる。
 また、合成高分子の調製に用いる単量体組成物に配合する重合溶媒としては、重合方法等に応じて、前述した単量体を溶解又は分散可能な既知の溶媒を用いることができる。中でも、重合溶媒としては、水を用いることが好ましい。なお、重合溶媒としては、任意の化合物の水溶液や、少量の有機媒体と水との混合溶液などを用いてもよい。
 そして、合成高分子は、上述した単量体、架橋剤、添加剤及び重合溶媒を既知の方法で混合して得た単量体組成物を、例えばラジカル重合させることで得られる。なお、上記単量体組成物を重合して得られる、合成高分子と重合溶媒とを含む溶液は、そのままの状態で接着層用スラリー組成物の調製に使用してもよいし、溶媒置換や任意の成分の添加などを行なった後に接着層用スラリー組成物の調製に使用してもよい。
 ここで、合成高分子の重合方法としては、水溶液重合、スラリー重合、懸濁重合、乳化重合などの公知の重合法が挙げられるが、溶媒の除去操作が不要であり、溶媒の安全性が高く、且つ、界面活性剤の混入の問題が無いことから、重合溶媒として水を使用した水溶液重合が好ましい。なお、水溶液重合は、単量体組成物を所定の濃度に調整し、反応系内の溶存酸素を不活性ガスで十分に置換した後、ラジカル重合開始剤を添加し、必要により、加熱や紫外線などの光照射をすることによって重合反応を行う方法である。
 なお、重合溶媒として水を使用し、上述した単量体組成物を水中で重合して合成高分子を含む水溶液を調製する場合には、重合後に水溶液のpHを8以上9以下に調整することが好ましい。
―水溶性高分子の重量平均分子量―
 水溶性高分子は、重量平均分子量が300以上であることが好ましく、500以上であることがより好ましく、300万以下であることが好ましく、250万以下であることがより好ましい。更に、本発明のスラリー組成物が2種以上の水溶性高分子を含有する場合には、重量平均分子量が相異なるものを併用することが好ましい。
 比較的重量平均分子量が大きい水溶性高分子(以下、水溶性高分子Aと称することがある)の重量平均分子量は、10万以上であることが好ましく、15万以上であることがより好ましく、20万以上であることが更に好ましく、50万以下であることが好ましく、45万以下であることがより好ましく、40万以下であることが更に好ましい。水溶性高分子Aの重量平均分子量が上記下限値以上であれば、得られる接着層の均一性を一層向上させることができる。水溶性高分子Aの重量平均分子量が上記上限値以下であれば、得られる接着性を高めることができる。
 比較的重量平均分子量が小さい水溶性高分子(以下、水溶性高分子Bと称することがある)の重量平均分子量は、300以上であることが好ましく、400以上であることがより好ましく、500以上であることが更に好ましく、9万以下であることが好ましく、8万以下であることがより好ましい。水溶性高分子Bの重量平均分子量が上記下限値以上であれば、得られる接着層の均一性を一層向上させることができる。水溶性高分子Bの重量平均分子量が上記上限値以下であれば、得られる接着性を高めることができる。
 なお、水溶性高分子A及び水溶性高分子Bを併用することにより、得られる接着層の均一性を一層向上させることができる。
―水溶性高分子の配合比率―
 非水系二次電池接着層用スラリー組成物における水溶性高分子の配合比率は、粒子状重合体A100質量部に対して、0.05質量部以上であることが好ましく、0.1質量部以上であることがより好ましく、0.5質量部以上であることが更に好ましく、5質量部以下であることが好ましく、3質量部以下であることがより好ましい。水溶性高分子の配合比率を上記範囲内とすることにより、スラリー組成物の塗工性を高めることで、得られる接着層の均一性を高め、さらには得られる二次電池の内部抵抗を一層低減することができる。なお、スラリー組成物が、水溶性高分子として、上述した水溶性高分子A及びBを含有する場合には、その合計量が上記範囲内となることが好ましい。
<その他の成分>
 非水系二次電池接着層用スラリー組成物は、上述した粒子状重合体A及びB、並びに、水溶性高分子以外に、任意のその他の成分を含んでいてもよい。なお、その他の成分からは、上述した水溶性高分子に該当する化合物は除く。これらのその他の成分としては、例えば、防腐剤及び消泡剤が挙げられる。これらのその他の成分は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。防腐剤及び消泡剤などのその他の成分を任意で配合することで、接着層用スラリー組成物に所望の属性を付与することができる。
 中でも、防腐剤としては、ナビサイトP40、アクチサイドMBS等のイソチアゾリン系化合物などを好適に配合することができる。また、消泡剤としては、星光PMC株式会社製DF6351などを好適に配合することができる。これらの配合量は用途に応じて適宜調節することができる。例えば、これらの添加剤の配合量は、粒子状重合体A100質量部に対して、合計量が1000ppm以上3000ppm以下の範囲であることが好ましい。
<分散媒>
 分散媒としては、水を用いることができる。なお、分散媒は、粒子状重合体A及びBを分散するとともに、水溶性高分子の少なくとも一部を溶解可能な限りにおいて特に限定されることなく、水と有機溶媒の混合溶媒であってもよい。塗工性の観点からは、分散媒が水であることが好ましい。
<非水系二次電池接着層用スラリー組成物の製造方法>
 接着層用スラリー組成物の製造方法は、粒子状重合体A及びB、水溶性高分子、並びに分散媒を、必要に応じて用いられるその他の成分を混合する工程を含む。混合方法は特に制限されないが、各成分を効率よく分散させるため、通常は混合装置として分散機を用いて混合を行う。
 分散機は、上記成分を均一に分散及び混合できる装置が好ましい。例を挙げると、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどが挙げられる。また、分散時に高いせん断力を加えることができる観点から、ビーズミル、ロールミル、フィルミックス等の高分散装置も挙げられる。
<非水系二次電池接着層用スラリー組成物のpH>
 接着層用スラリー組成物は、pHが、7以上が好ましく、8以上がより好ましく、9以下であることが好ましい。接着層用スラリー組成物のpHが上記範囲内であれば均一性に一層優れると共に、得られる非水系二次電池の内部抵抗を一層低減することが可能となる。
  <非水系二次電池接着層用スラリー組成物の固形分濃度>
 接着層用スラリー組成物は、固形分濃度が1質量%以上25質量%以下である必要があり、20質量%以下であることが好ましく、12質量%以下であることがより好ましく、8質量%以下であることがさらに好ましく、5質量%以下であることが特に好ましい。固形分濃度が上記範囲内であれば、厚みが薄く低目付量の接着層を均一に製造することが可能となる。結果的に、得られる二次電池の内部抵抗を低減して、急速充電性能を高めることができる。
(非水系二次電池用接着層及びこれを備える非水系二次電池用部材)
 上述した非水系二次電池接着層用スラリー組成物を用い、適切な基材上に接着層を形成することができる。具体的には、非水系二次電池接着層用スラリー組成物を適切な基材上で乾燥することにより、非水系二次電池用接着層を形成することができる。即ち、本発明の非水系二次電池用接着層は、上述した非水系二次電池接着層用スラリー組成物の乾燥物よりなり、通常、上記粒子状重合体A及びB、並びに水溶性高分子を含有し、任意に、上記その他の成分を含有する。なお、上述した粒子状重合体A及びB、並びに水溶性高分子が架橋性単量体単位を含む場合には、かかる架橋性単量体単位は、スラリー組成物の乾燥時、又は、乾燥後に任意に実施される熱処理時に架橋されていてもよい(即ち、非水系二次電池用接着層は、上述した粒子状重合体A、粒子状重合体B、及び/又は、水溶性高分子の架橋物を含んでいてもよい)。なお、非水系二次電池用接着層中に含まれている各成分の好適な存在比は、非水系二次電池接着層用スラリー組成物中の各成分の好適な存在比と同じである。
 また、非水系二次電池接着層用スラリー組成物中において粒子として存在する粒子状重合体A及びBは、接着層中においてもとの粒子形状を維持していても良いし変形していてもよい。また、接着層用スラリー組成物中にコアシェル構造を有する粒子状重合体Aを配合した場合には、粒子状重合体A全体としての形状は元の粒子形状から変化している場合であっても、コアシェル構造自体は維持されていることが好ましい。
 そして本発明の非水系二次電池用接着層は、均一性に優れ、得られる非水系二次電池の内部抵抗を低減することができる。
 また、本発明の非水系二次電池用接着層を備える非水系二次電池用部材は、得られる非水系二次電池の内部抵抗を低減することができる。
<基材>
 接着層を形成する基材としては、特に限定されず、例えばセパレータの一部を構成する部材として接着層を使用する場合には、基材としてはセパレータ基材を用いることができ、また、電極の一部を構成する部材として接着層を使用する場合には、基材としては集電体上に電極合材層を形成してなる電極基材を用いることができる。また、基材上に形成した接着層の用法に特に制限は無く、例えばセパレータ基材等の上に接着層を形成してそのままセパレータ等の電池部材として使用してもよいし、電極基材上に接着層を形成して電極として使用してもよいし、離型基材上に形成した接着層を基材から一度剥離し、他の基材に貼り付けて電池部材として使用してもよい。
 しかし、接着層から離型基材を剥がす工程を省略して電池部材の製造効率を高める観点からは、基材としてセパレータ基材又は電極基材を用いることが好ましい。
[セパレータ基材]
 セパレータ基材としては、特に限定されることなく、例えば、ポリエチレン、ポリプロピレン、ポリブテン、及びポリ塩化ビニルなどのポリオレフィン系の樹脂からなる微多孔膜である有機セパレータ材料の表面に、任意の耐熱層(例えば、無機粒子などの耐熱性フィラーを含んでなる層)が配置されてなるセパレータ基材を用いることができる。言い換えると、非水系二次電池用部材は、非水系二次電池用接着層が、有機セパレータ材料の少なくとも一方の表面に直接に隣接配置されてなる、或いは、有機セパレータ材料の少なくとも一方の表面上に備えられた耐熱層の表面に隣接配置されてなる構造を有する。
[電極基材]
 接着層を形成する電極基材(正極基材及び負極基材)としては、特に限定されないが、集電体上に電極合材層が形成された電極基材が挙げられる。
 ここで、集電体、電極合材層中の成分(例えば、電極活物質(正極活物質、負極活物質)及び電極合材層用結着材(正極合材層用結着材、負極合材層用結着材)など)、並びに、集電体上への電極合材層の形成方法は、既知のものを用いることができ、例えば特開2013-145763号公報に記載のものを用いることができる。
 なお、電極基材は、接着層以外の、所期の機能を有する任意の層をその一部に含んでいてもよい。
[離型基材]
 接着層を形成する離型基材としては、特に限定されず、既知の離型基材を用いることができる。
<接着層の目付量>
 接着層は、目付量が0.2g/m以下であることが好ましく、0.15g/m以下であることがより好ましく、0.11g/m以下であることがさらに好ましい。接着層の目付量が上記上限値以下であれば、得られる二次電池の内部抵抗を一層低減することができ、二次電池の急速充電性能を高めることができる。なお、接着層の目付量の下限値は特に限定されないが、通常0.05g/m以上でありうる。
(非水系二次電池用接着層の製造方法)
 上述したセパレータ基材、電極基材などの基材上に接着層を形成する方法としては、以下の方法が挙げられる。:
1)接着層用スラリー組成物をセパレータ基材又は電極基材の表面(電極基材の場合は電極合材層側の表面、以下同じ)にグラビア塗工又はスロットダイ塗工により塗布し、次いで乾燥する方法;
2)接着層用スラリー組成物を、離型基材上にグラビア塗工又はスロットダイ塗工により塗布し、乾燥して接着層を製造し、得られた接着層をセパレータ基材又は電極基材の表面に転写する方法。
 これらの中でも、前記1)の方法が、接着層の厚みを薄くしながらも均一性を高めることができ、特に好ましい。該1)の方法は、詳細には、接着層用スラリー組成物をセパレータ基材又は電極基材上にグラビア塗工又はスロットダイ塗工により塗布する工程(塗布工程)と、セパレータ基材又は電極基材上に塗布された接着層用スラリー組成物を乾燥させて接着層を形成する工程(乾燥工程)を備える。
 乾燥工程において、基材上の接着層用スラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。乾燥条件は特に限定されないが、乾燥温度は好ましくは30~80℃で、乾燥時間は好ましくは30秒~10分である。
 なお、基材上に形成された接着層の厚みは、好ましくは0.1μm以上、より好ましくは0.3μm以上、さらに好ましくは0.5μm以上であり、好ましくは3.0μm以下、より好ましくは1.5μm以下、さらに好ましくは1.0μm以下である。接着層の厚みが、前記範囲の下限値以上であることで、接着層の強度を十分に確保することができ、前記範囲の上限値以下であることで、二次電池の内部抵抗を一層低減することができる。
(非水系二次電池)
 本発明の非水系二次電池は、上述した本発明の非水系二次電池用部材を備えるものである。より具体的には、本発明の非水系二次電池は、正極、負極、及びセパレータのうちの少なくとも一つが本発明の非水系二次電池用部材である。
 本発明の非水系二次電池は、本発明の非水系二次電池用部材を備えているので、内部抵抗が低い。従って、本発明の非水系二次電池は、急速充電性能に優れる。
<正極及び負極>
 本発明の二次電池は、上述したように、正極、負極、及びセパレータの少なくとも一つ、が、本発明の接着層を備える本発明の非水系二次電池用部材である。すなわち、集電体上に電極合材層を形成してなる電極基材の上に接着層を設けてなる電極を用いることができる。なお、電極基材及びセパレータ基材としては、「非水系二次電池用接着層」の項で挙げたものと同様のものを用いることができる。
 また、接着層を有さない正極及び負極としては、特に限定されることなく、上述した電極基材よりなる電極を用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウムイオン二次電池においてはリチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えばリチウムイオン二次電池においては、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類が好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加してもよい。
<非水系二次電池の製造方法>
 非水系二次電池は、例えば、正極と負極とをセパレータを介して重ね合わせ、得られた正極-セパレータ-負極の積層体を、そのまま、或いは、必要に応じて、巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することで製造し得る。ここで、電池容器には、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される構造単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 実施例及び比較例において、各種の属性の測定及び評価については、下記の方法に従って実施した。
<ガラス転移温度>
 実施例、比較例で調製した粒子状重合体A及びBのガラス転移温度は、示差熱分析測定装置(エスアイアイ・ナノテクノロジー社製、EXSTAR DSC6220)を用い、JIS K6240に従ってDSC曲線を測定した。具体的には、乾燥させた測定試料10mgをアルミパンに計量し、リファレンスとして空のアルミパンを用い、測定温度範囲-100℃~200℃の間で、昇温速度20℃/分で、DSC曲線を測定した。この昇温過程における、微分信号(DDSC)の吸熱ピークの温度を求め、粒子状重合体A及びBのガラス転移温度とした。なお、全ての実施例、及び比較例にて用いた粒子状重合体A及びそれに代えて用いた粒子状の重合体については、2つのガラス転移温度が検出されたが、低い方の温度を粒子状重合体Aのガラス転移温度として採用した。
<体積平均粒子径>
 実施例、比較例で調製した粒子状重合体A,Bの体積平均粒子径は、レーザー回折法にて測定した。具体的には、調製した粒子状重合体A,Bを含む水分散液(固形分濃度0.1質量%に調整)を試料とした。そして、レーザー回折式粒子径分布測定装置(ベックマン・コールター社製、「LS-13320」)を用いて測定された粒子径分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径D50を、体積平均粒子径とした。
<水溶性高分子の重量平均分子量>
 実施例及び比較例で用いた水溶性高分子を含む水溶液を希釈して、濃度を0.5%に調整した。次いで、下記の溶離液で0.025%に希釈して試料を調製した。この試料を、以下の条件のゲルパーミエーションクロマトグラフィーにより分析し、分子量分布曲線を作成して、水溶性高分子の重量平均分子量を求めた。
 装置:ゲル浸透クロマトグラフGPC(Agilent 1260 Infinity II HPLC)
 検出器:示差屈折率検出器RI(Agilent 1260 Infinity II)
 カラム:TSKgel GMPWXL 2本(φ7.8mm×30cm、東ソー製)
 溶媒:アニオン性高分子の場合、0.1Mトリス緩衝液(0.1M塩化カリウム添加)
 流速:0.7mL/分
 カラム温度:40℃
 注入量:0.2mL
 標準試料:東ソー及びSigma-Aldrich製単分散ポリエチレンオキサイド(PEO)、ポリエチレングリコール(PEG)
<接着層の目付量>
 実施例、比較例で得られた接着層を有する基材から、幅10cm、長さ10cmの試験片を10枚切り出し、切り出した試験片の質量の平均値W(g)を測定した。また、各試験片の4隅と中心の計5か所にて、試験片の厚みをそれぞれ測定し、その平均値を各試験片の厚さT(μm)とした。また、実施例、比較例にてそれぞれ使用した、接着層を塗布する前の各基材も同様に切り出し、同様の測定方法にて各質量W(g)及び厚さT(μm)を測定した。得られた数値から接着層の密度ρは次の式に従い計算した。
  ρ=(W-W)/(T-T)×100
<接着層用スラリー組成物の塗工性(スジムラの有無)>
 実施例、比較例で得られた接着層を、接着層が塗布された基材側から光を当てて、目視にて観察した。ここで、接着層に「スジ」や「ムラ」がある場合は透過する光量に目視で判別可能な程度の差が生じる。ここで、本明細書にて、「スジ」とは、接着層用スラリー組成物を塗工する際に用いたアプリケーターの影響などにより生じる表面の凹凸である。また、「ムラ」とは、塗工された接着層の層厚のばらつきである。透過する光量の分布パターンに応じて、観察対象の接着層において「スジ」又は「ムラ」のいずれが生じているのかを目視にて判別できる。光が均一に透過可能な接着層の形成に用いた接着層用スラリー組成物は塗工性が良好であり、「スジ」又は「ムラ」が生じた接着層の形成に用いた接着層用スラリー組成物は塗工性に劣っている。従って、接着層用スラリー組成物の塗工性の評価は、以下の基準に従った。
 「良好」:形成された接着層が光を均一に透過する。
 「弱いスジ発生」:形成された接着層にライン状の透過光量がやや明瞭に変化する領域が生じる。
 「スジ発生」:形成された接着層にライン状の透過光量が明瞭に変化する領域が生じる。
 「ムラ発生」:形成された接着層に不規則的に透過光量が変化する、境界が不明瞭である領域が生じる。
<低目付性の評価>
 接着層の目付は、「塗工後の基材+接着層の重量」と「未塗工の基材の重量」の差から算出した。そして、以下の基準に従って低目付性を評価した。「塗工後の基材+接着層の重量」と「未塗工の基材の重量」の差が少ないほど低目付性が良いことを示す。
 SA:「塗工後の基材+接着層の重量」と「未塗工の基材の重量」の差が0.1(g/m)以下
  A:「塗工後の基材+接着層の重量」と「未塗工の基材の重量」の差が0.1(g/m)超0.15(g/m)以下
   B:「塗工後の基材+接着層の重量」と「未塗工の基材の重量」の差が0.15(g/m)超0.25(g/m)以下
    C:「塗工後の基材+接着層の重量」と「未塗工の基材の重量」の差が0.25(g/m)超
<均一性の評価>
 接着層の均一性は、SEM(FE-SEM (JSM-7800F Prime))を用いて、接着層を2,000倍で観察し、一次粒子(単独で存在する粒子状重合体A)の存在割合(粒子の粗密状態)を目視で確認し、以下の基準に従って評価した。一時粒子の存在割合が高いほど、均一性が良いことを示す。
 SA:一次粒子の存在割合が80%以上
    A:一次粒子の存在割合が60%以上80%未満
    B:一次粒子の存在割合が40%以上60%未満
    C:一次粒子の存在割合が40%未満
<二次電池の膨れ性>
 実施例、比較例で作製した二次電池を、電解液注液後、25℃の環境下で24時間静置した。その際の電池の厚みをノギスで測定した。その後、25℃にて、1Cの充電レートにて定電圧定電流(CC-CV)方式で4.2V(カットオフ条件:0.02C)まで充電し、1Cの放電レートにて定電流(CC)方式で3.0Vまで放電する充放電の操作を行った。さらに、45℃環境下で同様の充放電の操作を繰り返し、300サイクル後の電池の厚みをノギスで測定した。そして、サイクル前に対するサイクル後の電池の厚みの増加割合を電池の膨れ性として評価した。サイクル前に対するサイクル後の電池の厚みの増加割合が少ないほど、膨れ性が良いことを示す。
 A: サイクル前に対するサイクル後の電池の厚みの増加割合が1%未満
 B: サイクル前に対するサイクル後の電池の厚みの増加割合が1%以上5%未満
 C: サイクル前に対するサイクル後の電池の厚みの増加割合が5%以上
<二次電池の内部抵抗>
 実施例、比較例で作製した二次電池を、電解液注液後、温度25℃で5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、0.2Cの定電流にて、CC-CV充電(上限セル電圧4.35V)を行い、0.2Cの定電流にてセル電圧3.00VまでCC放電を行った。この0.2Cにおける充放電を3回繰り返し実施した。
 次に、温度25℃の環境下、セル電圧4.2-3.00V間で、0.2Cの定電流充放電を実施し、このときの放電容量をC0と定義した。その後、同様に0.2Cの定電流にてCC-CV充電し、温度-10℃の環境下において、0.5Cの定電流にて3.0Vまで放電を実施し、このときの放電容量をC1と定義した。そして、レート特性として、ΔC=(C1/C0)×100(%)で示される容量維持率を求め、以下の基準により評価した。この容量維持率ΔCの値は大きいほど、内部の抵抗が低いことを示し、低温環境下、高電流での放電容量が高い。
 A:容量維持率ΔCが70%以上      (抵抗:低)
 B:容量維持率ΔCが55%以上70%未満 (抵抗:中)
 C:容量維持率ΔCが55%未満         (抵抗:大)
 <接着性>
 湿式法により製造された単層のポリエチレン製セパレータ(厚み:12μm)を、セパレータ基材として準備した。このセパレータ基材の一方の面に、実施例、比較例で調製したスラリー組成物を塗布し、セパレータ基材上のスラリー組成物を50℃で10分間乾燥して、機能層(塗工目付:0.2g/m)を形成した。この機能層を片面に備えるセパレータを評価用セパレータとした。
 また、後述する実施例1と同様にして負極を作製し、評価用負極とした。
 上記で得られた評価用負極と評価用セパレータとを、それぞれ、10mm×100mmの長方形状に切り出した。そして、セパレータの機能層表面に負極の負極合材層を沿わせ試験片とし、電解液(溶媒:エチレンカーボネート(EC)/ジエチルカーボネート(DEC)/ビニレンカーボネート(VC)(体積比)=68.5/30/1.5、電解質:濃度1MのLiPF6)約400μLと共にラミネート包材に入れた。12時間経過後、試験片を、ラミネート包材ごと80℃、圧力1.0MPaで10分間プレスした。
 その後、試験片を取り出し、表面に付着した電解液を拭き取った。次いで、この試験片を、負極の集電体側の表面を下にして、負極の集電体側の表面にセロハンテープを貼り付けた。この際、セロハンテープとしては、JIS Z1522に規定されるものを用いた。また、セロハンテープは、水平な試験台に固定しておいた。そして、セパレータの一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、応力の平均値をピール強度として求め、下記の基準で評価した。ピール強度が大きいほど、機能層は電解液浸漬後の接着性に優れており、電解液中でセパレータと電極(負極)が機能層を介して強固に接着し得ることを示す。
 A:ピール強度が6.0N/m以上
 B:ピール強度が2.0N/m以上6.0N/m未満
 C:ピール強度が2.0N/m未満
<電解液注液性>
 実施例及び比較例で作製したリチウムイオン二次電池に電解液(溶媒:エチレンカーボネート(EC)/ジエチルカーボネート(DEC)/ビニレンカーボネート(VC)(体積比)=68.5/30/1.5、電解質:濃度1MのLiPF6)を注液した。そして、リチウムイオン二次電池の内部を-100kPaまで減圧しその状態で1分間保持した。その後ヒートシールを実施した。そして、10分後に電極(正極)を解体し、電極における電解液の含浸状態を目視で確認した。そして以下の基準により評価した。電極において、電解液が含浸されている部分が多いほど、電解液注液性が高いことを示す。
 A:電解液が電極のすべての面に含浸されている。
 B:電極において、電解液が含浸されていない部分が、1cm未満残っている(すべての面に含浸されていることを除く)。
 C:電極において、電解液が含浸されていない部分が、1cm以上残っている。
<サイクル耐久性>
 実施例及び比較例で作製したリチウムイオン二次電池を、電解液注液後、25℃の環境下で24時間静置した。その後、25℃にて、1Cの充電レートにて定電圧定電流(CC-CV)方式で4.2V(カットオフ条件:0.02C)まで充電し、1Cの放電レートにて定電流(CC)方式で3.0Vまで放電する充放電の操作を行い、初期容量C2を測定した。
 さらに、45℃環境下で同様の充放電の操作を繰り返し、300サイクル後の容量C3を測定した。そして、容量維持率ΔC=(C3/C2)×100(%)を算出し、下記の基準で評価した。この容量維持率の値が高いほど、放電容量の低下が少なく、サイクル特性に優れていることを示す。
 A:容量維持率ΔCが85%以上
 B:容量維持率ΔCが75%以上85%未満
 C:容量維持率ΔCが75%未満
(実施例1)
<粒子状重合体Aの作製>
 粒子状重合体Aとして、コアシェル構造を有する重合体(1-1)を調製した。まず、コア部を形成するために、攪拌機付き5MPa耐圧容器に対して、(メタ)アクリル酸エステル単量体としてのメタクリル酸メチル単量体45部及びアクリル酸ブチル21.83部;酸基含有単量体としてのメタクリル酸単量体3.1部;架橋性単量体としてのアリルメタクリレート0.07部を添加した。さらに、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を添加し、十分に攪拌した後、容器内を60℃に加温して重合を開始させた。重合転化率が96%になった時点で、続いて、シェル部を形成するために、上記容器に対して、スチレン30部を連続添加し、容器内を70℃に加温して重合を継続させ、重合転化率が96%になった時点で、冷却し反応を停止させた。これにより、粒子状重合体Aとしての重合体(1-1)を含む水分散液を得た。得られた粒子状重合体Aとしての重合体(1-1)について、上述の方法に従ってガラス転移温度及び体積平均粒子径を測定した。結果を表1-1に示す。
<粒子状重合体Bの作製>
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン32.5部、スチレン65部、酸基含有単量体としてのメタクリル酸単量体1部、2-ヒドロキシエチルアクリレート1部、(メタ)アクリル酸エステル単量体としてのアリルメタクリレート0.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状重合体Bとしての重合体(2-1)を含む混合物を得た。上記重合体(2-1)を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって前記の混合物から未反応単量体の除去を行い、30℃以下まで冷却して、所望の重合体(2-1)を含む水分散液を得た。粒子状重合体Bとしての重合体(2-1)について、上述の方法に従ってガラス転移温度及び体積平均粒子径を測定した。結果を表1-1に示す。
<水溶性高分子Aの調製>
 水溶性高分子Aとして、合成水溶性高分子1(合成WP1)を調製した。攪拌機付き5MPa耐圧容器に、酸基含有単量体としてメタクリル酸34部、(メタ)アクリル酸エステル単量体としてアクリル酸エチル65部、架橋性単量体としてエチレングリコールジメタクリレート1.0部、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム1.0部、イオン交換水150部、及び重合開始剤として過硫酸カリウム0.5部を添加し、十分に攪拌した後、容器内を60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、水溶性高分子Aとしての合成水溶性高分子1(合成WP1)を含む水分散液を得た。
 次に、イオン交換水を投入した、攪拌機を備える容器に対して、上記合成WP1を含む水分散液と、5質量%水酸化ナトリウム水溶液とを、得られる溶液のpHが8となるとともに、得られる溶液内の合成WP1の濃度が1質量%となるように配合を調節して投入し、十分に攪拌して合成WP1を溶解させた。このようにして、水溶性高分子A水溶液を調製した。
<非水系二次電池接着層用スラリー組成物の作製>
 攪拌器付き容器に対して、粒子状重合体A100質量部(固形分相当)、粒子状重合体B10質量部(固形分相当)、及び水溶性高分子A水溶液2質量部(固形分相当)を添加し、混合した。ここに、防腐剤(ナビサイトP40)2000ppm及び消泡剤(星光PMC株式会社製DF6351)150ppmを添加し、さらにイオン交換水により希釈し、固形分濃度1質量%の接着層用スラリー組成物を得た。
<非水系二次電池用接着層の形成>
 上述のようにして得られた接着層用スラリー組成物を、グラビア塗工機(康井精機製)μCoaterを用いて、セパレータ基材(ポリプロピレン製、セルガード2500)上に塗布し、50℃で3分間乾燥させた。この操作をセパレータ基材の両面に施し、片面厚み1μmずつの接着層を備えるセパレータを得た。得られた接着層を備えるセパレータについて、上述の通りに接着層の目付量を測定した。結果を表1-2に示す。
<負極の作製>
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン33部、イタコン酸3.5部、スチレン63.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、容器内を50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状結着材(SBR)を含む混合物を得た。上記粒子状結着材を含む混合物に対して、5質量%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った後、30℃以下まで冷却し、粒子状結着材を含む水分散液を得た。
 人造黒鉛(平均粒子径:15.6μm)100部、増粘剤としてカルボキシメチルセルロース(日本製紙社製「MAC350HC」)の2%水溶液を固形分相当で1部、イオン交換水で固形分濃度68質量%に調整した後、25℃で60分間混合した。さらにイオン交換水で固形分濃度62質量%に調整した後、さらに25℃で15分間混合した。得られた混合液に、上述した粒子状結着材を固形分相当量で1.5部添加し、さらにイオン交換水を投入して、最終固形分濃度が52質量%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して流動性の良い負極用スラリー組成物を得た。
 上記で得られた負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理してプレス前の負極原反を得た。このプレス前の負極原反をロールプレスで圧延して、負極活物質層の厚みが80μmのプレス後の負極を得た(片面負極)。
<正極の作製>
 正極活物質として体積平均粒子径12μmのLiCoO100部、導電材としてアセチレンブラック(デンカ株式会社製「HS-100」)2部、及びバインダーとしてPVDF(クレハ社製、#7208)2部(固形分相当)と、N-メチル-2-ピロリドン(NMP)とを混合し、全固形分濃度を70質量%に調整した。これらをプラネタリーミキサーにより混合し、正極用スラリー組成物を調製した。
 上述のようにして得られた正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の正極原反を得た。このプレス前の正極原反をロールプレスで圧延して、正極活物質層の厚みが80μmのプレス後正極を得た(片面正極)。
<リチウムイオン二次電池の製造>
 上述のようにして得られたプレス後の正極を4cm四方の正方形に切り出した。また、上述のようにして得られた非水系二次電池用接着層を有するセパレータを5cm四方の正方形片に切り出した。そして、切り出した正極の正方形片の正極合材層側の面上に、セパレータの正方形片を配置した。さらに上述のようにして作製したプレス後の負極を4.2cm四方の正方形片に切り出し、これをセパレータの正方形片上に負極合材層側の表面が対向するように、さらに配置した。次いで、得られた積層体を温度60℃、0.5MPaにてプレスし、接着させた。
 続いて接着させた積層体を、電池の外装としてのアルミ包材外装で包み、電解液(溶媒:エチレンカーボネート(EC)/ジエチルカーボネート(DEC)/ビニレンカーボネート(VC)(体積比)=68.5/30/1.5、電解質:濃度1MのLiPF6)を空気が残らないように注入した。そして、150℃で、当該アルミ包材外装の開口をヒートシールし、アルミ包材外装を密封閉口し、40mAhの積層型リチウムイオン二次電池を製造した。
 得られた積層型リチウムイオン二次電池について、上述の通りに各種評価を実施した。結果を表1-2に示す。
(実施例2~4)
 接着層用スラリー組成物を調製する際の固形分濃度を表1-1に示す通りにそれぞれ変更した以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表1-1,1-2に示す。
(実施例5)
 粒子状重合体Aの組成を表1-1に示す通りに変更して重合体(1-2)を作製した以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表1-1,1-2に示す。
<重合体(1-2)の作製>
 粒子状重合体Aとして、コアシェル構造を有する重合体(1-2)を調製した。まず、コア部を形成するために、攪拌機付き5MPa耐圧容器に対して、(メタ)アクリル酸エステル単量体としての2-エチルヘキシルアクリレート35部;芳香族ビニル単量体としてのスチレン31.1部;酸基含有単量体としてのメタクリル酸単量体2.8部;架橋性単量体としてのジメタクリル酸エチレングリコール0.8部添加した。さらに、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を添加し、十分に攪拌した後、容器内を60℃に加温して重合を開始させた。重合転化率が96%になった時点で、続いて、シェル部を形成するために、上記容器に対して、スチレン30部、メタクリル酸単量体0.3部を連続添加し、容器内を70℃に加温して重合を継続させ、重合転化率が96%になった時点で、冷却し反応を停止させた。これにより、粒子状重合体Aとしての重合体(1-2)を含む水分散液を得た。
(実施例6~7)
 粒子状重合体Aの組成を表1-1に示す通りに変更して、重合体(1-3)~(1-4)をそれぞれ作製した以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表1-1,1-2に示す。なお、重合体(1-3)~(1-4)を作製する際の条件は、実施例5と同様にした。
(実施例8)
 実施例5で作製した重合体(1-2)を用いるとともに、接着層用スラリー組成物のpHを7に変更した以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表1-1,1-2に示す。
(実施例9)
 粒子状重合体Bの組成を表1-1に示す通りに変更して、下記に従って重合体(2-2)を作製した以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表1-1,1-2に示す。
<重合体(2-2)の作製>
 攪拌機を備えた反応器に、イオン交換水90部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム(花王ケミカル社製、「ネオペレックスG-15」)0.05部、及び過流酸アンモニウム0.23部を、それぞれ供給し、気相部を窒素ガスで置換し、70℃に昇温した。
 一方、別の容器でイオン交換水50部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.1部、酸基含有単量体としてのメタクリル酸(MAA)2部、ニトリル基含有単量体としてのアクリロニトリル(AN)2.5部、並びに、その他の単量体として、(メタ)アクリル酸エステル単量体としてのn-ブチルアクリレート(BA)95部、架橋性単量体としてのアリルメタクリレート(AMA)0.5部を混合して単量体組成物を得た。この単量体組成物を4時間かけて前記反応器に連続的に添加して重合を行った。添加中は、80℃で反応を行った。添加終了後、さらに80℃で3時間攪拌して反応を終了し、粒子状重合体Bとしての重合体(2-2)を含む水分散液を得た。
(実施例10)
 粒子状重合体Bの組成を表1-1に示す通りに変更して、下記に従って重合体(2-3)を作製した以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表1-1,1-2に示す。
<重合体(2-3)の作製>
 攪拌機を備えた反応器に、イオン交換水90部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム(花王ケミカル社製、「ネオペレックスG-15」)0.05部、及び過流酸アンモニウム0.23部を、それぞれ供給し、気相部を窒素ガスで置換し、70℃に昇温した。
 一方、別の容器でイオン交換水50部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.1部、酸性基含有単量体としてのメタクリル酸(MAA)3部、スチレン25部、並びに、(メタ)アクリル酸エステル単量体としての2-エチルヘキシルアクリレート(2EHA)71.5部、架橋性単量体としてのアリルメタクリレート(AMA)0.5部を混合して単量体組成物を得た。この単量体組成物を4時間かけて前記反応器に連続的に添加して重合を行った。添加中は、80℃で反応を行った。添加終了後、さらに80℃で3時間攪拌して反応を終了し、粒子状重合体Bとしての重合体(2-3)を含む水分散液を得た。
(実施例11)
 粒子状重合体Bの組成を表1-1に示す通りに変更して、実施例10と同様にして重合体(2-4)を作製した以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表1-1,1-2に示す。
(実施例12)
 水溶性高分子の組成を表1-1に示す通りに変更して、下記に従って合成水溶性高分子2(WP2)を作製した以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表1-1,1-2に示す。
<合成水溶性高分子2(合成WP2)の作製>
 水溶性高分子として、合成水溶性高分子2(合成WP2)を調製した。セプタム付き10Lフラスコに、イオン交換水550部と、重合促進剤としてのL-アスコルビン酸の2.0%水溶液17部とを投入して、温度40℃に加熱し、流量100mL/分の窒素ガスでフラスコ内を置換した。次に、アミド基含有単量体としてのアクリルアミド75部と、酸基含有単量体としてのアクリル酸25部を混合して、シリンジでフラスコ内に注入した。その後、重合開始剤としての過硫酸アンモニウムの5.0%水溶液17部をシリンジでフラスコ内に追加し、反応温度を60℃に設定した。2時間後、反応転化率をさらに上げるために、重合開始剤としての過硫酸アンモニウムの5.0%水溶液10部と、重合促進剤としてのL-アスコルビン酸の2.0%水溶液8部を追加した。さらに2時間後、重合開始剤としての過硫酸アンモニウムの5.0%水溶液10部と、重合促進剤としてのL-アスコルビン酸の2.0%水溶液8gを追加した。2時間後、反応停止剤としての亜硝酸ナトリウム5%水溶液3部をフラスコに添加して、攪拌した。その後、該フラスコを40℃になるまで冷却して空気雰囲気とし、8%水酸化リチウム水溶液を用いて、系中のpHを8.0として、水溶性高分子水溶液(合成水溶性高分子2(合成WP2))を調製した。
(実施例13)
 水溶性高分子の組成を表1-1に示す通りに変更して、下記に従って合成水溶性高分子3(WP3)を作製した以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表1-1,1-2に示す。
<合成水溶性高分子3(合成WP3)の作製>
 水溶性高分子として、合成水溶性高分子3(合成WP3)を調製した。攪拌機付きのオートクレーブに、イオン交換水164部、ニトリル基含有単量体としてのアクリロニトリル(AN)59部、酸基含有単量体としてのアクリル酸39部を混合して、更に、その他の単量体として2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)を2部添加、重合開始剤としての過硫酸カリウム0.3部、乳化剤としてのポリオキシエチレンアルキルエーテル硫酸ナトリウム1.2部を入れ、十分に攪拝した後、反応温度80℃で5時間、重合反応されることにより、水溶性高分子としての合成水溶性高分子3(合成WP3)を含む水分散液を得た。
(実施例14)
 粒子状重合体Aの組成を表2-1に示す通りに変更して重合体(1-8)を作製し、さらに、接着層用スラリー組成物の作製に際して、水溶性高分子(合成WP1)水溶液の配合量を固形分相当で1.9部に変更し、水溶性高分子Bとして、プロピレンオキサイド/エチレンオキサイド共重合体(サンノプコ社製、ノプテックス(登録商標)ED052;重量平均分子量:550~600(公称値))を0.1部配合した。これらの点以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表2-1、2-2に示す。
<重合体(1-8)の作製>
 粒子状重合体Aとして、コアシェル構造を有する重合体(1-8)を調製した。まず、実施例1と同様にしてコア部を形成した。コア部を形成するための単量体組成物の重合転化率が96%になった時点で、続いて、シェル部を形成するために、上記容器に対して、スチレン10部、酸基含有単量体としてのメタクリル酸単量体0.3部、(メタ)アクリル酸エステル単量体としてのメタクリル酸メチル単量体20部を連続添加し、容器内を70℃に加温して重合を継続させ、重合転化率が96%になった時点で、冷却し反応を停止させた。これにより、粒子状重合体Aとしての重合体(1-8)を含む水分散液を得た。
(実施例15)
 粒子状重合体Aとして、実施例14と同様にして調製した重合体(1-8)を用いた以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表2-1、2-2に示す。
(実施例16)
 粒子状重合体Aの組成を表2-1に示す通りに変更して重合体(1-9)を作製し、さらに、接着層用スラリー組成物の作製に際して、水溶性高分子(合成WP1)水溶液の配合量を固形分相当で1.9部に変更し、水溶性高分子Bとして、プロピレンオキサイド/エチレンオキサイド共重合体(サンノプコ社製、ノプテックス(登録商標)ED052;重量平均分子量:550~600(公称値))を0.1部配合した。これらの点以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表2-1、2-2に示す。
<重合体(1-9)の作製>
 粒子状重合体Aとして、コアシェル構造を有する重合体(1-9)を調製した。まず、実施例1と同様にしてコア部を形成した。コア部を形成するための単量体組成物の重合転化率が96%になった時点で、続いて、シェル部を形成するために、上記容器に対して、スチレン10部、酸基含有単量体としてのメタクリル酸単量体0.3部、(メタ)アクリル酸エステル単量体としてのメタクリル酸メチル単量体10部及びアクリル酸メチル単量体10部を連続添加し、容器内を70℃に加温して重合を継続させ、重合転化率が96%になった時点で、冷却し反応を停止させた。これにより、粒子状重合体Aとしての重合体(1-9)を含む水分散液を得た。
(実施例17)
 粒子状重合体Aの組成を表2-1に示す通りに変更して重合体(1-10)を作製し、さらに、接着層用スラリー組成物の作製に際して、水溶性高分子(合成WP1)水溶液の配合量を固形分相当で1.9部に変更し、水溶性高分子Bとして、プロピレンオキサイド/エチレンオキサイド共重合体(サンノプコ社製、ノプテックス(登録商標)ED052;重量平均分子量:550~600(公称値))を0.1部配合した。これらの点以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表2-1、2-2に示す。
<重合体(1-10)の作製>
 粒子状重合体Aとして、コアシェル構造を有する重合体(1-10)を調製した。まず、実施例1と同様にしてコア部を形成した。コア部を形成するための単量体組成物の重合転化率が96%になった時点で、続いて、シェル部を形成するために、上記容器に対して、スチレン10部、酸基含有単量体としてのメタクリル酸単量体0.3部、(メタ)アクリル酸エステル単量体としてのメタクリル酸メチル単量体15部及びアクリル酸ブチル単量体5部を連続添加し、容器内を70℃に加温して重合を継続させ、重合転化率が96%になった時点で、冷却し反応を停止させた。これにより、粒子状重合体Aとしての重合体(1-10)を含む水分散液を得た。
(実施例18)
 粒子状重合体Aの組成を表2-1に示す通りに変更して重合体(1-11)を作製し、さらに、接着層用スラリー組成物の作製に際して、水溶性高分子(合成WP1)水溶液の配合量を固形分相当で1.9部に変更し、水溶性高分子Bとして、プロピレンオキサイド/エチレンオキサイド共重合体(サンノプコ社製、ノプテックス(登録商標)ED052;重量平均分子量:550~600(公称値))を0.1部配合した。これらの点以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表2-1、2-2に示す。
<重合体(1-11)の作製>
 粒子状重合体Aとして、コアシェル構造を有する重合体(1-11)を調製した。まず、実施例1と同様にしてコア部を形成した。コア部を形成するための単量体組成物の重合転化率が96%になった時点で、続いて、シェル部を形成するために、上記容器に対して、スチレン10部、酸基含有単量体としてのメタクリル酸単量体0.3部、(メタ)アクリル酸エステル単量体としてのメタクリル酸メチル単量体15部、アクリロニトリル単量体5部を連続添加し、容器内を70℃に加温して重合を継続させ、重合転化率が96%になった時点で、冷却し反応を停止させた。これにより、粒子状重合体Aとしての重合体(1-11)を含む水分散液を得た。
(実施例19)
 粒子状重合体Aの組成を表2-1に示す通りに変更して重合体(1-12)を作製し、さらに、接着層用スラリー組成物の作製に際して、水溶性高分子(合成WP1)水溶液の配合量を固形分相当で1.9部に変更し、水溶性高分子Bとして、プロピレンオキサイド/エチレンオキサイド共重合体(サンノプコ社製、ノプテックス(登録商標)ED052;重量平均分子量:550~600(公称値))を0.1部配合した。これらの点以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表2-1、2-2に示す。
<重合体(1-12)の作製>
 粒子状重合体Aとして、コアシェル構造を有する重合体(1-12)を調製した。まず、コア部を形成するために、攪拌機付き5MPa耐圧容器に対して、(メタ)アクリル酸エステル単量体としての2-エチルヘキシルアクリレート20部;芳香族ビニル単量体としてのスチレン46.1部;酸基含有単量体としてのメタクリル酸単量体2.8部;架橋性単量体としてのジメタクリル酸エチレングリコール0.8部添加した。さらに、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を添加し、十分に攪拌した後、容器内を60℃に加温して重合を開始させた。重合転化率が96%になった時点で、続いて、シェル部を形成するために、上記容器に対して、スチレン10部、酸基含有単量体としてのメタクリル酸単量体0.3部、(メタ)アクリル酸エステル単量体としてのメタクリル酸メチル単量体20部を連続添加し、容器内を70℃に加温して重合を継続させ、重合転化率が96%になった時点で、冷却し反応を停止させた。これにより、粒子状重合体Aとしての重合体(1-12)を含む水分散液を得た。
(実施例20)
 水溶性高分子Aを配合しなかった以外は実施例14と同様の操作、測定、及び評価を実施した。結果を表2-1、2-2に示す。
(実施例21)
 水溶性高分子Aを配合せず、水溶性高分子Bとして、特殊ポリアクリル酸アンモニウム塩(東亞合成社製、アロン(登録商標)A6114;重量平均分子量:8000(公称値))を1.9部と、プロピレンオキサイド/エチレンオキサイド共重合体(サンノプコ社製、ノプテックス(登録商標)ED052;重量平均分子量:550~600(公称値))を0.1部とを併用した以外は実施例14と同様の操作、測定、及び評価を実施した。結果を表2-1、2-2に示す。
(実施例22)
 水溶性高分子Bとして、プロピレンオキサイド/エチレンオキサイド共重合体に代えて、酢酸ビニル系重合体(ポリビニルアルコール;日本酢ビ・ポバール社製、PVA JF-17;重量平均分子量:7~8万(公称値))を0.1部配合した以外は実施例14と同様の操作、測定、及び評価を実施した。結果を表2-1、2-2に示す。
(実施例23)
 粒子状重合体Bとして、実施例9と同じ重合体(2-2)を用いた以外は実施例14と同様の操作、測定、及び評価を実施した。結果を表2-1、2-2に示す。
(実施例24)
 粒子状重合体Bとして、実施例10と同じ重合体(2-3)を用いた以外は実施例14と同様の操作、測定、及び評価を実施した。結果を表2-1、2-2に示す。
(実施例25)
 粒子状重合体Bとして、下記のようにして調製した重合体(2-6)を用いた以外は実施例14と同様の操作、測定、及び評価を実施した。結果を表2-1、2-2に示す。
<重合体(2-6)の作製>
 攪拌機を備えた反応器に、イオン交換水90部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム(花王ケミカル社製、「ネオペレックスG-15」)0.05部、及び過流酸アンモニウム0.23部を、それぞれ供給し、気相部を窒素ガスで置換し、70℃に昇温した。
 一方、別の容器でイオン交換水50部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.1部、酸性基含有単量体としてのメタクリル酸(MAA)3部、スチレン25部、並びに、(メタ)アクリル酸エステル単量体としての2-エチルヘキシルアクリレート(2EHA)71部、架橋性単量体としてのエチレングリコールジメタクリレート(EDMA)1部を混合して単量体組成物を得た。この単量体組成物を4時間かけて前記反応器に連続的に添加して重合を行った。添加中は、80℃で反応を行った。添加終了後、さらに80℃で3時間攪拌して反応を終了し、粒子状重合体Bとしての重合体(2-6)を含む水分散液を得た。
(比較例1)
 粒子状重合体Aとしての重合体(1-1)に代えて、表3-1に示す組成のガラス転移温度が110℃である粒子状の重合体(1-5)を、下記に従って作製した以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表3-1、3-2に示す。
<重合体(1-5)の作製>
 コアシェル構造を有する重合体(1-5)を調製した。まず、コア部を形成するために、攪拌機付き5MPa耐圧容器に対して、(メタ)アクリル酸エステル単量体としての2-エチルヘキシルアクリレート10部;芳香族ビニル単量体としてのスチレン56.1部;酸基含有単量体としてのメタクリル酸単量体2.8部;架橋性単量体としてのジメタクリル酸エチレングリコール0.8部添加した。さらに、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を添加し、十分に攪拌した後、容器内を60℃に加温して重合を開始させた。重合転化率が96%になった時点で、続いて、シェル部を形成するために、上記容器に対して、スチレン30部、メタクリル酸単量体0.3部を連続添加し、容器内を70℃に加温して重合を継続させ、重合転化率が96%になった時点で、冷却し反応を停止させた。これにより、粒子状の重合体(1-5)を含む水分散液を得た。
(比較例2)
 粒子状重合体Bとしての重合体(2-1)に代えて、表3-1に示す組成のガラス転移温度が30℃である粒子状の重合体(2-5)を、下記に従って作製した以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表3-1、3-2に示す。
<重合体(2-5)の作製>
 攪拌機を備えた反応器に、イオン交換水90部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム(花王ケミカル社製、「ネオペレックスG-15」)0.05部、及び過流酸アンモニウム0.23部を、それぞれ供給し、気相部を窒素ガスで置換し、70℃に昇温した。
 一方、別の容器でイオン交換水50部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.1部、酸基含有単量体としてのメタクリル酸(MAA)3部、スチレン40部、並びに、(メタ)アクリル酸エステル単量体としての2-エチルヘキシルアクリレート(2EHA)56.5部、架橋性単量体としてのアリルメタクリレート(AMA)0.5部を混合して単量体組成物を得た。この単量体組成物を4時間かけて前記反応器に連続的に添加して重合を行った。添加中は、80℃で反応を行った。添加終了後、さらに80℃で3時間攪拌して反応を終了し、粒子状の重合体(2-5)を含む水分散液を得た。
(比較例3)
 水溶性高分子を配合しなかった以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表3-1、3-2に示す。
(比較例4)
 接着層用スラリー組成物を調製する際の固形分濃度を0.7質量%に変更し、目付量が実施例1と同じ値となるように、塗工時に用いるグラビアロールの線数を変更した以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表3-1、3-2に示す。
(比較例5)
 接着層用スラリー組成物を調製する際の固形分濃度を30質量%に変更した以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表3-1、3-2に示す。
(比較例6)
 粒子状重合体Aとして、下記に従って作成した表3-1に示す組成の重合体(1-6)を配合し、粒子状重合体Bに相当する重合体及び水溶性高分子を配合せず、さらに、接着層用スラリー組成物の固形分濃度を20質量%に変更した以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表3-1、3-2に示す。
<重合体(1-6)の作製>
 粒子状重合体Aとして、コアシェル構造を有する重合体(1-6)を調製した。まず、コア部を形成するために、攪拌機付き5MPa耐圧容器に対して、(メタ)アクリル酸エステル単量体としてのアクリル酸ブチル69.2部;酸基含有単量体としてのメタクリル酸単量体29.7部;ジメタクリル酸エチレングリコール0.8部を添加した。さらに、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を添加し、十分に攪拌した後、容器内を60℃に加温して重合を開始させた。重合転化率が96%になった時点で、続いて、シェル部を形成するために、上記容器に対して、スチレン30部、メタクリル酸単量体0.3部を連続添加し、容器内を70℃に加温して重合を継続させ、重合転化率が96%になった時点で、冷却し反応を停止させた。これにより、粒子状重合体Aとしての重合体(1-6)を含む水分散液を得た。
(比較例7)
 粒子状重合体Aに代えて、下記に従って作製した、表1-1、3-2に示す組成のガラス転移温度が105℃である粒子状の重合体(1-7)を用い、実施例9と同じ重合体(2-2)を用い、さらに、接着層用スラリー組成物の固形分濃度を30質量%に変更した以外は、実施例1と同様の操作、測定、及び評価を実施した。結果を表3-1、3-2に示す。
<重合体(1-7)の作製>
 コアシェル構造を有する重合体(1-7)を調製した。まず、コア部を形成するために、攪拌機付き5MPa耐圧容器に対して、(メタ)アクリル酸エステル単量体としてのメタクリル酸メチル単量体58.5部及びアクリル酸ブチル8.33部;酸基含有単量体としてのメタクリル酸単量体2.8部;架橋性単量体としてのアリルメタクリレート0.07部を添加した。さらに、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を添加し、十分に攪拌した後、容器内を60℃に加温して重合を開始させた。重合転化率が96%になった時点で、続いて、シェル部を形成するために、上記容器に対して、スチレン30部、メタクリル酸単量体0.3部を連続添加し、容器内を70℃に加温して重合を継続させ、重合転化率が96%になった時点で、冷却し反応を停止させた。これにより、粒子状の重合体(1-7)を含む水分散液を得た。
 なお、以下に示す表1-1~3-2中、
「MMA」はメタクリル酸メチルを示し、
「BA」はアクリル酸ブチルを示し、
「ST」は、スチレンを示し、
「MAA」は、メタクリル酸を示し、
「HEA」は、2-ヒドロキシエチルアクリレートを示し、
「AMA」は、アリルメタクリレートを示し、
「EDMA」は、エチレングリコールジメタクリレートを示し、
「2EHA」は、2-エチルヘキシルアクリレートを示し、
「EA」は、アクリル酸エチルを示し、
「AAm」は、アクリルアミドを示し、
「AA」は、アクリル酸を示し、
「AN」は、アクリロニトリルを示し、
「AMPS」は、2-アクリルアミド-2-メチルプロパンスルホン酸を示し、
「WP」は、水溶性高分子を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例1~25によれば、ガラス転移温度が30℃以上100℃以下の粒子状重合体A、ガラス転移温度が20℃以下の粒子状重合体B、水溶性高分子、及び分散媒を含み、固形分濃度が、1質量%以上25質量%である非水系二次電池接着層用スラリー組成物を用いれば、均一性に優れると共に、得られる非水系二次電池の内部抵抗を低減することが可能な接着層を形成できたことが分かる。
 本発明によれば、均一性に優れると共に、得られる非水系二次電池の内部抵抗を低減することが可能な接着層を形成することができる、非水系二次電池接着層用スラリー組成物を提供することができる。
 また、本発明によれば、均一性に優れ、非水系二次電池の内部抵抗を低減することができる非水系二次電池用接着層及びその製造方法を提供することができる。
 また、本発明によれば、内部抵抗の低い非水系二次電池を提供可能な非水系二次電池用部材を提供することができる。
 さらに、本発明によれば、内部抵抗の低い非水系二次電池を提供することができる。

Claims (13)

  1.  少なくとも2種類の粒子状重合体、水溶性高分子、及び分散媒を含む、非水系二次電池接着層用スラリー組成物であって、
     前記少なくとも2種類の重合体は、ガラス転移温度が30℃以上100℃以下の粒子状重合体A、及び、ガラス転移温度が20℃以下の粒子状重合体Bを含み、
     前記非水系二次電池接着層用スラリー組成物の固形分濃度が、1質量%以上25質量%以下である、
    非水系二次電池接着層用スラリー組成物。
  2.  前記粒子状重合体Aが、(メタ)アクリル酸エステル単量体単位を含む、請求項1に記載の非水系二次電池接着層用スラリー組成物。
  3.  前記粒子状重合体Bがスチレン系重合体又はアクリル系重合体である請求項1に記載の非水系二次電池接着層用スラリー組成物。
  4.  前記水溶性高分子が、酸基含有単量体単位を5質量%以上50質量%以下の割合で含有する、請求項1に記載の非水系二次電池接着層用スラリー組成物。
  5.  pHが7以上9以下である、請求項1に記載の非水系二次電池接着層用スラリー組成物。
  6.  防腐剤及び消泡剤のうちの少なくとも一方をさらに含む、請求項1に記載の非水系二次電池接着層用スラリー組成物。
  7.  前記粒子状重合体Aがコアシェル構造を有し、シェル部を構成する全繰り返し単位を100質量%として、(メタ)アクリル酸エステル単量体単位を30.0質量%以上含有する、請求項1に記載の非水系二次電池接着層用スラリー組成物。
  8.  前記粒子状重合体Aがコアシェル構造を有し、シェル部が、(メタ)アクリル酸エステル単量体単位としてのメチルメタクリレート単位及びメチルアクレート単位、並びに、酸基含有単量体単位としてのカルボン酸基を有する単量体単位を、繰り返し単位として含む、請求項1に記載の非水系二次電池接着層用スラリー組成物。
  9.  請求項1~8の何れかに記載の非水系二次電池接着層用スラリー組成物を用いて形成した、非水系二次電池用接着層。
  10.  請求項1~8の何れかに記載の非水系二次電池接着層用スラリー組成物を、グラビア塗工又はスロットダイ塗工により基材上に塗布する塗布工程を含む、非水系二次電池用接着層の製造方法。
  11.  基材上に、請求項9に記載の非水系二次電池用接着層を備える、非水系二次電池用部材。
  12.  前記基材が有機セパレータ材料を含み、前記非水系二次電池用接着層が、前記有機セパレータ材料の少なくとも一方の表面に隣接配置されてなる、或いは、前記有機セパレータ材料の少なくとも一方の表面上に備えられた耐熱層の表面に隣接配置されてなる、請求項11に記載の非水系二次電池用部材。
  13.  請求項11に記載の非水系二次電池用部材を備える、非水系二次電池。
PCT/JP2022/032881 2021-08-31 2022-08-31 非水系二次電池接着層用スラリー組成物、非水系二次電池用接着層及びその製造方法、非水系二次電池用部材、並びに非水系二次電池 WO2023033088A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023545664A JPWO2023033088A1 (ja) 2021-08-31 2022-08-31
KR1020247004187A KR20240051924A (ko) 2021-08-31 2022-08-31 비수계 이차 전지 접착층용 슬러리 조성물, 비수계 이차 전지용 접착층 및 그 제조 방법, 비수계 이차 전지용 부재, 그리고 비수계 이차 전지
CN202280056933.5A CN117837014A (zh) 2021-08-31 2022-08-31 非水系二次电池黏合层用浆料组合物、非水系二次电池用黏合层及其制造方法、非水系二次电池用构件、以及非水系二次电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-141961 2021-08-31
JP2021141961 2021-08-31
JP2022030445 2022-02-28
JP2022-030445 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023033088A1 true WO2023033088A1 (ja) 2023-03-09

Family

ID=85412294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032881 WO2023033088A1 (ja) 2021-08-31 2022-08-31 非水系二次電池接着層用スラリー組成物、非水系二次電池用接着層及びその製造方法、非水系二次電池用部材、並びに非水系二次電池

Country Status (3)

Country Link
JP (1) JPWO2023033088A1 (ja)
KR (1) KR20240051924A (ja)
WO (1) WO2023033088A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117169A1 (ja) * 2004-05-27 2005-12-08 Matsushita Electric Industrial Co., Ltd. 捲回型非水系二次電池およびそれに用いる電極板
JP2013145763A (ja) 2013-04-30 2013-07-25 Nippon Zeon Co Ltd 二次電池多孔膜用スラリー組成物、二次電池用電極、二次電池用セパレータおよび二次電池
JP2013206846A (ja) * 2012-03-29 2013-10-07 Nippon Zeon Co Ltd 二次電池多孔膜用スラリー組成物
JP2015028843A (ja) * 2013-06-28 2015-02-12 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用電極、及びリチウムイオン二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191597B2 (ja) 2012-04-05 2017-09-06 日本ゼオン株式会社 二次電池用セパレータ
CN108292735B (zh) 2015-11-27 2022-02-25 日本瑞翁株式会社 非水系二次电池粘接层用组合物、非水系二次电池用粘接层以及非水系二次电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117169A1 (ja) * 2004-05-27 2005-12-08 Matsushita Electric Industrial Co., Ltd. 捲回型非水系二次電池およびそれに用いる電極板
JP2013206846A (ja) * 2012-03-29 2013-10-07 Nippon Zeon Co Ltd 二次電池多孔膜用スラリー組成物
JP2013145763A (ja) 2013-04-30 2013-07-25 Nippon Zeon Co Ltd 二次電池多孔膜用スラリー組成物、二次電池用電極、二次電池用セパレータおよび二次電池
JP2015028843A (ja) * 2013-06-28 2015-02-12 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用電極、及びリチウムイオン二次電池

Also Published As

Publication number Publication date
JPWO2023033088A1 (ja) 2023-03-09
KR20240051924A (ko) 2024-04-22

Similar Documents

Publication Publication Date Title
JP7306272B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および非水系二次電池
JP6155967B2 (ja) リチウムイオン二次電池用の接着剤、接着層付きセパレータ、接着層付き電極、及びリチウムイオン二次電池
WO2016017066A1 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層付き基材、非水系二次電池用積層体の製造方法および非水系二次電池
US11258133B2 (en) Binder composition for non-aqueous secondary battery porous membrane, slurry composition for non-aqueous secondary battery porous membrane, porous membrane for non-aqueous secondary battery, and non-aqueous secondary battery and production method therefor
US10186699B2 (en) Laminate for non-aqueous secondary battery, and method for manufacturing non-aqueous secondary battery member
JP6504179B2 (ja) 電気化学素子用接着剤組成物、電気化学素子用接着層、および電気化学素子
KR102550641B1 (ko) 비수계 이차 전지 기능층용 조성물, 비수계 이차 전지용 기능층 및 비수계 이차 전지
JP2017098203A (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池
JP7179463B2 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池
US20160351873A1 (en) Binder for non-aqueous secondary battery porous membrane-use, composition for non-aqueous secondary battery porous membrane-use, porous membrane for non-aqueous secondary battery-use, and non-aqueous secondary battery
JP6589269B2 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層および非水系二次電池
KR20210049098A (ko) 비수계 이차 전지 접착층용 조성물, 비수계 이차 전지용 전지 부재 및 그 제조 방법, 그리고 비수계 이차 전지용 적층체의 제조 방법 및 비수계 이차 전지의 제조 방법
WO2016103559A1 (ja) 非水系二次電池機能層用組成物、非水系二次電池用セパレータおよび非水系二次電池
JP6665484B2 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池
JP2017103031A (ja) 非水系二次電池用積層体
JP7306271B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および、非水系二次電池
JP6693101B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池機能層用組成物の製造方法、非水系二次電池用機能層及び非水系二次電池
WO2023033088A1 (ja) 非水系二次電池接着層用スラリー組成物、非水系二次電池用接着層及びその製造方法、非水系二次電池用部材、並びに非水系二次電池
JP6344081B2 (ja) 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
CN117837014A (zh) 非水系二次电池黏合层用浆料组合物、非水系二次电池用黏合层及其制造方法、非水系二次电池用构件、以及非水系二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864670

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545664

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280056933.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022864670

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022864670

Country of ref document: EP

Effective date: 20240402