WO2015020486A1 - 리튬 이차전지용 양극 재료 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 양극 재료 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2015020486A1
WO2015020486A1 PCT/KR2014/007397 KR2014007397W WO2015020486A1 WO 2015020486 A1 WO2015020486 A1 WO 2015020486A1 KR 2014007397 W KR2014007397 W KR 2014007397W WO 2015020486 A1 WO2015020486 A1 WO 2015020486A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium
positive electrode
coated
lithium phosphate
Prior art date
Application number
PCT/KR2014/007397
Other languages
English (en)
French (fr)
Inventor
명승택
조창흠
Original Assignee
세종대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세종대학교산학협력단 filed Critical 세종대학교산학협력단
Priority to US14/910,954 priority Critical patent/US10050261B2/en
Priority to EP14833735.5A priority patent/EP3032619B1/en
Priority to CN201480053984.8A priority patent/CN105594032B/zh
Publication of WO2015020486A1 publication Critical patent/WO2015020486A1/ko
Priority to US15/141,768 priority patent/US9444095B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a secondary battery, and more particularly to a lithium secondary battery.
  • the secondary battery refers to a battery that can be repeatedly used because it can be charged as well as discharged.
  • the representative lithium secondary battery of the secondary battery is lithium ions contained in the positive electrode active material is transferred to the negative electrode through the electrolyte and then inserted into the layered structure of the negative electrode active material (charging), after which the lithium ion inserted into the layered structure of the negative electrode active material is again It works on the principle of returning to the anode (discharge).
  • Such lithium secondary batteries are currently commercialized and used as small power sources for mobile phones, notebook computers, and the like, and are expected to be used as large power sources for hybrid cars, and the demand is expected to increase.
  • Korean Patent Publication No. 2006-0119382 proposes a cathode active material coated with a dissimilar metal oxide.
  • the residual lithium compound present on the surface of the positive electrode active material may generate a reactant capable of increasing the surface resistance by reaction with the electrolyte.
  • a reactant capable of increasing the surface resistance by reaction with the electrolyte.
  • the problem to be solved by the present invention is to provide a lithium secondary battery positive electrode material and a lithium secondary battery comprising the same, which can reduce the amount of lithium compounds remaining on the surface and at the same time the surface degradation due to reaction with the electrolyte is suppressed Is in.
  • the cathode material for a lithium secondary battery includes a cathode active material and a lithium phosphate layer coated on a surface of the cathode active material.
  • Another aspect of the present invention to achieve the above object provides a method for producing a positive electrode material for a lithium secondary battery.
  • a positive electrode active material, phosphoric acid, and a solvent are mixed.
  • the mixture is heat-treated to obtain a cathode active material coated with a lithium phosphate layer.
  • the lithium secondary battery has a positive electrode comprising a positive electrode material including a positive electrode active material and a lithium phosphate layer coated on the surface of the positive electrode active material.
  • a negative electrode having a negative electrode material containing a negative electrode active material into which lithium can be deinserted is disposed.
  • An electrolyte is disposed between the positive electrode and the negative electrode.
  • the cathode active material may be lithium-transition metal oxide.
  • the positive electrode active material is LiCoO 2 , LiNiO 2 , Li (Co x Ni 1-x ) O 2 (0.5 ⁇ x ⁇ 1), LiMn 2 O 4 , Li 1 + x Mn 2-yzw Al y Co z Mg w O 4 (0.03 ⁇ x ⁇ 0.25, 0.01 ⁇ y ⁇ 0.2, 0.01 ⁇ z ⁇ 0.2, 0 ⁇ w ⁇ 0.1, x + y + z + w ⁇ 0.4 ), Li 4 Mn 5 O 12 , or Li 1 + x (Ni 1-yz Co y M z ) 1-x O 2 (0 ⁇ x ⁇ 0.2, 0.01 ⁇ y ⁇ 0.5, 0.01 ⁇ z ⁇ 0.5, 0 ⁇ y + z ⁇ 1, M may be Mn, Ti, Mg, or Al).
  • the positive electrode active material is Li 1 + x [Ni y ( Co 0.5 M 0.5) 1-y] 1-x O 2 (0 ⁇ x ⁇ 0.2, 0.3 ⁇ y ⁇ 0.99, M is Mn, Ti, Mg Or Al).
  • the cathode active material may have the form of particles.
  • the lithium phosphate layer may have a thickness of 5 to 50nm.
  • the weight fraction of the phosphoric acid with respect to the positive electrode active material may be 0.25 to 1wt%.
  • the lithium phosphate-coated cathode active material may detect LiPO + fragments in ToF-SIMS analysis.
  • the lithium phosphate layer may be generated by any one of the following schemes.
  • Li 2 O, LiOH, Li 2 CO 3 , or Li 2 C in the schemes may be a lithium compound remaining on the cathode active material.
  • the solvent Before the heat treatment of the mixture, the solvent may be evaporated. In the evaporation step, H 2 O, CO 2 , or CH 2 generated in at least one of Schemes 1 to 4 may also be evaporated.
  • the solvent may be a volatile solvent.
  • the volatile solvent may be ethanol, acetone, or mixtures thereof.
  • a lithium phosphate layer is coated on the surface of the positive electrode active material, and the lithium phosphate layer may serve to protect the positive electrode active material without disturbing the movement of lithium ions.
  • the cathode active material may not only be prevented from deteriorating due to side reaction with the electrolyte, and the formed lithium phosphate layer may not interfere with the movement of lithium ions. The active material can be protected.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a positive electrode according to an embodiment of the present invention.
  • Figure 2 is a graph showing the XRD analysis results of the Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder is not coated with the lithium phosphate Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder is a coating according to the Production Example 1.
  • Figure 3 is a photograph showing the lithium phosphate is coated Li [Ni 0.6 Co 0.2 Mn 0.2 ] O (Energy Dispersive Spectroscopy) EDS analysis of the 2 powders element according to Preparation Example 1.
  • FIG. 5 shows Li 2 OH + fragments of Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder coated with lithium phosphate and Uncoated Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder according to Preparation Example 1 A graph showing ToF-SIMS results.
  • FIG. 6 is a graph showing discharge capacity according to the number of cycles of a half cell according to Preparation Example 9 and a half cell according to Comparative Example 1.
  • FIG. 6 is a graph showing discharge capacity according to the number of cycles of a half cell according to Preparation Example 9 and a half cell according to Comparative Example 1.
  • FIG. 8 is a graph showing discharge capacity according to the number of cycles of a half cell according to Preparation Example 12 and a half cell according to Comparative Example 4.
  • FIG. 8 is a graph showing discharge capacity according to the number of cycles of a half cell according to Preparation Example 12 and a half cell according to Comparative Example 4.
  • FIG. 9 is a graph showing a change in discharge capacity according to the number of cycles of a half cell according to Preparation Example 9 and a half cell according to Comparative Example 1.
  • FIG. 9 is a graph showing a change in discharge capacity according to the number of cycles of a half cell according to Preparation Example 9 and a half cell according to Comparative Example 1.
  • 10A and 10B are graphs illustrating impedance characteristics of the half-cell according to Preparation Example 9 and the half-cell according to Comparative Example 1, that is, a Cole-Cole plot of AC impedance.
  • Figure 11a is a transmission electron microscope (TEM) photographing the surface of the lithium phosphate-coated Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder prepared in Preparation Example 1 before and after the charge and discharge test
  • Figure 11b is the charge and discharge Transmission electron microscopy (TEM) images of the uncoated Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder before and after the test.
  • TEM Transmission electron microscopy
  • TEM 12 is a transmission electron microscope (TEM) photographing the surface of the lithium phosphate-coated Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder prepared in Preparation Example 5 and a half paper according to Preparation Example 13 and Comparative Example 1 It is a graph showing the discharge capacity according to the number of cycles of the half cell.
  • TEM 13 is a transmission electron microscope (TEM) photographing the surface of the lithium phosphate-coated Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder prepared in Preparation Example 8 and a half cell according to Preparation Example 16 and Comparative Example 1 It is a graph showing the discharge capacity according to the number of cycles of the half cell.
  • FIG. 14 is a graph showing discharge capacity according to the number of cycles of the reverse cells according to Production Examples 9 and 13 to 16 and the reverse cell according to Comparative Example 1.
  • FIG. 14 is a graph showing discharge capacity according to the number of cycles of the reverse cells according to Production Examples 9 and 13 to 16 and the reverse cell according to Comparative Example 1.
  • a layer “on” another layer means that not only are these layers directly in contact, but also another layer (s) between these layers.
  • a lithium secondary battery includes a positive electrode, a negative electrode containing a negative electrode active material into which lithium can be inserted, and an electrolyte positioned therebetween.
  • a cathode of a lithium secondary battery according to an embodiment of the present invention contains a cathode material including a cathode active material and a lithium phosphate layer coated on a surface thereof.
  • the lithium phosphate layer is coated on the surface of the positive electrode active material particles, the positive electrode or the positive electrode material may include the positive electrode active material particles coated with such a lithium phosphate layer.
  • the positive electrode active material may be lithium-transition metal oxide.
  • Lithium-transition metal oxides include, for example, LiCoO 2 , LiNiO 2 , Li (Co x Ni 1-x ) O 2 (0.5 ⁇ x ⁇ 1), LiMn 2 O 4 , Li 1 + x Mn 2-yzw Al y Co z Mg w O 4 (0.03 ⁇ x ⁇ 0.25, 0.01 ⁇ y ⁇ 0.2, 0.01 ⁇ z ⁇ 0.2, 0 ⁇ w ⁇ 0.1, x + y + z + w ⁇ 0.4 ), Li 4 Mn 5 O 12 , or Li 1 + x (Ni 1- yz Co y M z) 1-x O 2 (0 ⁇ x ⁇ 0.2, 0.01 ⁇ y ⁇ 0.5, 0.01 ⁇ z ⁇ 0.5, 0 ⁇ y + z ⁇ 1, M may be Mn, Ti, Mg, or Al). However, it is not limited to this.
  • lithium-transition metal oxide is Li 1 + x (Ni 1-yz Co y M z which can exhibit high thermal stability, capacity and excellent reversibility while reducing the content of expensive and rare metal Co among them ) 1-x O 2 (0 ⁇ x ⁇ 0.2, 0.01 ⁇ y ⁇ 0.5, 0.01 ⁇ z ⁇ 0.5, and 0 ⁇ y + z ⁇ 1, where M is Mn, Ti, Mg, or Al).
  • the lithium-transition metal oxide as the cathode active material is Li 1 + x [Ni y (Co 0.5 M 0.5 ) 1-y ] 1-x O 2 (0 ⁇ x ⁇ 0.2, 0.3 ⁇ y ⁇ 0.99, M is Mn, Ti, Mg, or Al).
  • the lithium phosphate layer coated on the surface of the cathode active material particles may have a thickness of about 5 to 50 nm, for example, about 5 to 20 nm.
  • the lithium phosphate layer may prevent deterioration by protecting the surface of the cathode active material particles.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a positive electrode according to an embodiment of the present invention.
  • a cathode active material may be prepared (S1).
  • the cathode active material may be cathode active material particles in the form of particles.
  • the metal oxides, or metal compounds, which are metal salts that may become metal oxides when decomposed and / or oxidized may be mixed and then fired to obtain a cathode active material.
  • the cathode active material may be the lithium-transition metal oxide described above. Thereafter, the cathode active material may be further ground. At this time, it is preferable that the positive electrode active material is not in contact with moisture.
  • a cathode active material coated with lithium phosphate specifically, cathode active material particles coated with lithium phosphate (S3).
  • a lithium compound remaining on the surface of the positive electrode active material which is the lithium-transition metal oxide, without forming a transition metal and an oxide, for example, lithium oxide (Li 2 O), lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), lithium carbide (Li 2 C) may be present.
  • Such residual lithium compounds may react with specific substances in the electrolyte in the secondary battery and the reactants may accumulate on the surface of the positive electrode active material. These reactants can interfere with the movement of lithium ions.
  • the residual lithium compound may react with HF in the electrolyte to generate LiF.
  • lithium phosphate when the cathode active material is mixed with phosphoric acid (H 3 PO 4 ) and heat treated as described above, residual lithium compounds on the surface of the cathode active material may react with phosphoric acid (H 3 PO 4 ) to form lithium phosphate.
  • the residual lithium compound is lithium oxide (Li 2 O), lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), or lithium carbide (Li 2 C)
  • lithium phosphate is represented by the following schemes. Can be generated by
  • Li 2 O, LiOH, Li 2 CO 3 , or Li 2 C in the schemes may be a lithium compound remaining on the cathode active material.
  • the lithium phosphate layer may be coated on the surface of the positive electrode active material.
  • the lithium phosphate layer may have a thickness of 5 to 100 nm, specifically, 5 to 50 nm.
  • the lithium phosphate layer may serve to protect the cathode active material without disturbing the movement of lithium ions. As such, as the residual lithium compound is consumed in the process of forming the lithium phosphate layer, the cathode active material may not only be prevented from deteriorating due to side reaction with the electrolyte, and the formed lithium phosphate layer may not interfere with the movement of lithium ions. The active material can be protected.
  • Phosphoric acid may be placed in a solvent and sufficiently mixed to form a phosphoric acid solution, and then the cathode active material may be added to the phosphoric acid solution.
  • the solvent may be a volatile solvent, for example ethanol, acetone, or mixtures thereof. Specifically, the solvent may be anhydrous ethanol. In this case, the step of sufficiently evaporating the volatile solvent before the heat treatment (S3) after mixing the positive electrode active material with the phosphoric acid solution.
  • Evaporating the volatile solvent When evaporating the volatile solvent, by-products generated in the process of forming the lithium phosphate (H 2 O, CO 2 , or CH 2 in the schemes) may be evaporated together with the volatile solvent. Evaporating the volatile solvent may be performed at a temperature of 60 degrees to 200 degrees. The heat treatment may be a temperature of about 400 to 700 degrees, it may be performed for about 3 to 5 hours.
  • a cathode material may be obtained by mixing a cathode active material coated with lithium phosphate, a conductive material, and a binder (S5).
  • the conductive material may be a carbon material such as natural graphite, artificial graphite, cokes, carbon black, carbon nanotubes, graphene, or the like.
  • the binder may be a thermoplastic resin such as polyvinylidene fluoride, polytetrafluoroethylene, ethylene tetrafluoride, vinylidene fluoride copolymer, fluorine resin such as hexafluoropropylene, and / or polyolefin resin such as polyethylene or polypropylene. It may include.
  • the positive electrode material may be coated on the positive electrode current collector to form a positive electrode (S7).
  • the positive electrode current collector may be a conductor such as Al, Ni, stainless steel, or the like.
  • the application of the positive electrode material onto the positive electrode current collector may be made by pressure molding or by using an organic solvent or the like to make a paste, and then applying the paste onto the current collector and pressing to fix the paste.
  • the organic solvent is amine type, such as N, N-dimethylaminopropylamine and diethyltriamine; Ethers such as ethylene oxide and tetrahydrofuran; Ketones such as methyl ethyl ketone; Esters such as methyl acetate; Aprotic polar solvents such as dimethylacetamide and N-methyl-2-pyrrolidone.
  • Application of the paste onto the positive electrode current collector can be performed using, for example, a gravure coating method, a slit die coating method, a knife coating method, a spray coating method.
  • Cathode active materials include metals, metal alloys, metal oxides, metal fluorides, metal sulfides, and natural graphite, artificial graphite, coke, carbon black, carbon nanotubes, which can deintercalate lithium ions or cause conversion reactions. It can also form using carbon materials, such as a fin.
  • the negative electrode material can be obtained by mixing the negative electrode active material, the conductive material, and the binder.
  • the conductive material may be a carbon material such as natural graphite, artificial graphite, cokes, carbon black, carbon nanotubes, graphene, or the like.
  • the binder may be a thermoplastic resin such as polyvinylidene fluoride, polytetrafluoroethylene, ethylene tetrafluoride, vinylidene fluoride copolymer, fluorine resin such as hexafluoropropylene, and / or polyolefin resin such as polyethylene or polypropylene. It may include.
  • the negative electrode material may be applied onto the negative electrode current collector to form a negative electrode.
  • the negative electrode current collector may be a conductor such as Al, Ni, Cu, stainless steel, or the like.
  • the application of the negative electrode material onto the negative electrode current collector may be made by pressure molding or by using an organic solvent or the like to make a paste, and then applying the paste onto the current collector and pressing to fix the paste.
  • the organic solvent is amine type, such as N, N-dimethylaminopropylamine and diethyltriamine; Ethers such as ethylene oxide and tetrahydrofuran; Ketones such as methyl ethyl ketone; Esters such as methyl acetate; Aprotic polar solvents such as dimethylacetamide and N-methyl-2-pyrrolidone.
  • Application of the paste onto the negative electrode current collector can be performed using, for example, a gravure coating method, a slit die coating method, a knife coating method, a spray coating method.
  • the electrolyte may contain a lithium salt and a nonaqueous electrolyte.
  • the lithium salt is a good material to be dissolved in the nonaqueous electrolyte, and for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, chloroborane lithium, lower aliphatic lithium carbonate, lithium phenyl borate and the like can be used.
  • the nonaqueous electrolyte may be a nonaqueous electrolyte, an organic solid electrolyte, or an inorganic solid electrolyte.
  • the nonaqueous electrolyte is, for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2-dimethoxy ethane, tetra Hydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxolon, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid Tryesters, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone,
  • the organic solid electrolyte may be, for example, a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, a poly etchation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, or an ion. It may be a polymer containing a sex dissociation group.
  • the inorganic solid electrolyte is, for example, Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 It may be a nitride, halide, or sulfate of Li, such as SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 .
  • a solid electrolyte may play the role of the separator mentioned later, and a separator may not be needed in that case.
  • the separator may be disposed between the positive electrode and the negative electrode.
  • a separator may be a material having a form such as a porous film made of a material such as polyolefin resin such as polyethylene or polypropylene, a fluorine resin, a nitrogen-containing aromatic polymer, a nonwoven fabric, a woven fabric, or the like.
  • the thickness of the separator is preferably as thin as the mechanical strength is maintained, in that the volume energy density of the battery becomes high and the internal resistance decreases.
  • the thickness of the separator may generally be on the order of 5 to 200 ⁇ m, more specifically 5 to 40 ⁇ m.
  • a secondary battery can be manufactured by laminating
  • a secondary battery may be manufactured by stacking a positive electrode, a solid electrolyte, and a negative electrode to form an electrode group, and then rolling the electrode group in a battery can if necessary.
  • Phosphoric acid (H 3 PO 4 ) was quantified at a weight fraction of 0.25 wt% based on 1 g of the cathode active material Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 .
  • the quantified phosphoric acid was added to 300 ml of anhydrous ethanol (CH 3 CH 2 OH). Thereafter, phosphoric acid and ethanol anhydride were stirred at 30 ° C. using an impeller and sufficiently mixed, and then 10 g of Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 was added to the mixed solution. Then, the reaction was continued by stirring while raising the temperature until the solvent, anhydrous ethanol was completely evaporated. After the solvent was completely evaporated, heat treatment was performed at a temperature of about 400 ° C. or more for about 3 hours or more to prepare a lithium phosphate-coated cathode active material.
  • a lithium phosphate-coated positive electrode active material was manufactured in the same manner as in Preparation Example 1, except that Li [Ni 0.7 Co 0.2 Mn 0.1 ] O 2 was used as the positive electrode active material. Specifically, phosphoric acid (H 3 PO 4 ) was quantified at a weight fraction of 0.25 wt% based on 1 g of the positive electrode active material Li [Ni 0.7 Co 0.2 Mn 0.1 ] O 2 , and the mixture was mixed at 30 ° C. with phosphoric anhydride ethanol. 10 g of Li [Ni 0.7 Co 0.2 Mn 0.1 ] O 2 was added to the solution.
  • phosphoric acid H 3 PO 4
  • a lithium phosphate-coated positive electrode active material was manufactured in the same manner as in Preparation Example 1, except that Li [Ni 0.8 Co 0.1 Al 0.1 ] O 2 was used as the positive electrode active material. Specifically, phosphoric acid (H 3 PO 4 ) was quantified at a weight fraction of 0.25 wt% based on 1 g of the positive electrode active material Li [Ni 0.8 Co 0.1 Al 0.1 ] O 2 , and stirred and mixed at 30 ° C. 10 g of Li [Ni 0.8 Co 0.1 Al 0.1 ] O 2 was added to the solution.
  • phosphoric acid H 3 PO 4
  • a lithium phosphate-coated positive electrode active material was prepared in the same manner as in Preparation Example 1, except that LiCoO 2 was used as the positive electrode active material. Specifically, phosphoric acid (H 3 PO 4 ) was quantified at a weight fraction of 0.25 wt% based on 1 g of the positive electrode active material LiCoO 2 , and 10 g of LiCoO 2 was added to the phosphate-anhydrous ethanol solution mixed by stirring at 30 ° C.
  • Phosphoric acid was prepared in substantially the same manner as in Preparation Example 1, except that phosphoric acid (H 3 PO 4 ) was quantified at a weight fraction of 1 wt% based on 1 g of the positive electrode active material Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2. A lithium-coated cathode active material was prepared.
  • Phosphoric acid was prepared in substantially the same manner as in Preparation Example 1, except that phosphoric acid (H 3 PO 4 ) was quantified at a weight fraction of 2 wt% based on 1 g of the positive electrode active material Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2. A lithium-coated cathode active material was prepared.
  • Phosphoric acid was prepared in substantially the same manner as in Preparation Example 1, except that phosphoric acid (H 3 PO 4 ) was quantified at a weight fraction of 5 wt% based on 1 g of the positive electrode active material Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2. A lithium-coated cathode active material was prepared.
  • the lithium phosphate-coated cathode active material prepared in any one of Preparation Examples 1 to 8, Super-P carbon black and acetylene black as a conductive agent, and a binder (Poly vinylidene fluoride (PVdF)) were 8: 0.5: 0.5: 1 (weight) Fraction) After mixing in an organic solvent (N-Methyl-2-Pyrrolidone (NMP) to form a positive electrode active material slurry composition, it was coated on an aluminum foil current collector and dried to form a positive electrode.
  • NMP N-Methyl-2-Pyrrolidone
  • a nonaqueous electrolyte in which 1.15 mol LiPF 6 as an electrolyte was dissolved in a mixed solvent of lithium metal, a nonaqueous electrolyte ethylene carbonate and dimethyl carbonate (3: 7 volume ratio), and a separator disposed between the positive electrode and the negative electrode were used.
  • a coin battery of the 2032 standard was manufactured.
  • Table 1 shows the characteristics of the preparation methods of Preparation Examples 1 to 16.
  • Comparative Example 1 Li [Ni without Lithium Phosphate Coated 0.6 Co 0.2 Mn 0.2 ] O 2 Anode and half-cell using
  • Comparative Example 3 Li [Ni without Lithium Phosphate Coated 0.8 Co 0.1 Al 0.1 ] O 2 Anode and half-cell using
  • Comparative Example 4 LiCoO without Lithium Phosphate 2 Anode and half-cell using
  • a positive electrode and a half cell were manufactured in the same manner as in Preparation Example 14, except that LiCoO 2 without lithium phosphate was used as the positive electrode active material.
  • Figure 2 is a graph showing the XRD analysis results of the Li [Ni 0.6 Co 0.2 Mn 0.2] O second powder not coated with the lithium phosphate Li [Ni 0.6 Co 0.2 Mn 0.2] O two powder-coated according to the Production Example 1.
  • Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder (or particle) coated with lithium phosphate is the same crystal as Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder (or particle) It can be seen that it has a structure. From these results, it can be seen that the lithium phosphate coating layer does not have a crystal structure.
  • FIG. 3 is a photograph showing the results of the element analysis of the energy dispersive spectroscopy (EDS) of the lithium phosphate-coated Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder according to Preparation Example 1.
  • EDS energy dispersive spectroscopy
  • LiPO + fragments indicating lithium phosphate were detected. It can be seen that LiPO + fragments are not detected in the uncoated Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder (or particles).
  • Li x PO y + fragments (x may be an integer of 1 to 3, specifically 1 to 3, and y may be 1 to 3, meaning lithium phosphate) 4, specifically an integer of 1 to 4), for example, Li 2 PO 2 + , Li 2 PO + , LiPO 2 + and the like can be detected.
  • FIG. 5 shows Li 2 OH + fragments of Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder coated with lithium phosphate and Uncoated Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder according to Preparation Example 1
  • Li 2 OH + detection of the fragments may be line to check for the presence of LiOH in Li [Ni 0.6 Mn 0.2 Co 0.2] O 2 remaining in the lithium compound powder surface.
  • Table 2 shows the amount of residual lithium on the surface of the positive electrode active material before and after the lithium phosphate coating during the manufacturing process of the lithium phosphate-coated positive electrode active material according to Preparation Examples 1 to 4.
  • the amount of residual lithium shown in Table 2 is an average value after five measurements based on 50 g using the Wader method.
  • FIG. 6 is a graph showing discharge capacity according to the number of cycles of a half cell according to Preparation Example 9 and a half cell according to Comparative Example 1.
  • the reverse cell according to Comparative Example 1 using uncoated Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder as the positive electrode active material had a large drop in discharge capacity as the charge and discharge cycle increased (84 at 100 cycles). %).
  • the reverse cell according to Preparation Example 9 using Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder coated with lithium phosphate as the positive electrode active material maintained the discharge capacity retention rate (94% even at 100 cycles) even though the charge / discharge cycle was increased. It can be seen that much better.
  • FIG. 7 is a graph showing the discharge capacity according to the cycle number of the half cell according to Preparation Example 11 and the half cell according to Comparative Example 3. At this time, charging and discharging were performed at a current density of 190 mA / g in a potential region of 3.0 to 4.3 V, and a total of 100 cycles were performed.
  • the reverse cell according to Comparative Example 3 using the uncoated Li [Ni 0.8 Co 0.1 Al 0.1 ] O 2 powder as the positive electrode active material had a large drop in discharge capacity as the charge / discharge cycle increased (67.8 at 100 cycles). %).
  • the reverse cell according to Preparation Example 11 using Li [Ni 0.8 Co 0.1 Al 0.1 ] O 2 powder coated with lithium phosphate as the positive electrode active material maintained the discharge capacity retention rate (90.3% even at 100 cycles) even if the charge / discharge cycle was increased. It can be seen that much better.
  • the half cell according to Preparation Example 11 using Li [Ni 0.8 Co 0.1 Al 0.1 ] O 2 powder coated with lithium phosphate as the cathode active material may exhibit excellent life characteristics, even when the effect is 80% nickel. Nevertheless, there is a great deal of meaning.
  • FIG. 8 is a graph showing discharge capacity according to the number of cycles of a half cell according to Preparation Example 12 and a half cell according to Comparative Example 4.
  • FIG. 8 At this time, charging and discharging were performed at a current density of 150 mA / g in a potential region of 3.0 to 4.5 V, and a total of 100 cycles were performed.
  • the reverse cell according to Comparative Example 4 using the uncoated LiCoO 2 powder as the positive electrode active material had a very large discharge capacity (31.5% at 100 cycles) as the charge and discharge cycle was increased.
  • the reverse cell according to Preparation Example 12 using lithium phosphate-coated LiCoO 2 powder as the positive electrode active material showed that the retention rate of discharge capacity (95.3% even at 100 cycles) was much better even if the charge / discharge cycle was increased.
  • FIG. 9 is a graph showing a change in discharge capacity according to the number of cycles of a half cell according to Preparation Example 9 and a half cell according to Comparative Example 1.
  • charging was performed at a current density of 20 mA / g up to 4.3 V, and discharge was performed at 1 C (170 mA / g), 2 C (340 mA / g), 3 C (510 mA / g), 5 C (850 mA / g), and 7 C ( 1190 mA / g) and 10 C (1700 mA / g) current density. Five cycles were performed per rate.
  • 10A and 10B are graphs illustrating impedance characteristics of the half-cell according to Preparation Example 9 and the half-cell according to Comparative Example 1, that is, a Cole-Cole plot of AC impedance.
  • Figure 11a is charged and after a discharge test before the the lithium phosphate obtained in Preparation Example 1 Coating Li [Ni 0.6 Co 0.2 Mn 0.2 ] O is the transmission electron microscope taking a surface of the second powder (TEM) pictures, Fig. 11b is charged and discharged Transmission electron microscopy (TEM) images of the uncoated Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder before and after the test.
  • TEM Transmission electron microscopy
  • TEM 12 is a transmission electron microscope (TEM) photographing the surface of the lithium phosphate-coated Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder prepared in Preparation Example 5 and a half paper according to Preparation Example 13 and Comparative Example 1 It is a graph showing the discharge capacity according to the number of cycles of the half cell. At this time, charging and discharging were performed at a current density of 170 mA / g in a potential region of 3.0 to 4.3 V, and a total of 100 cycles were performed.
  • Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder shows a slightly better discharge capacity at the initial stage of charging and discharging, compared to Comparative Example 1 without lithium phosphate coating. After 20 cycles, it can be seen that there is almost no difference in the discharge capacity retention rate.
  • TEM 13 is a transmission electron microscope (TEM) photographing the surface of the lithium phosphate-coated Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder prepared in Preparation Example 8 and a half cell according to Preparation Example 16 and Comparative Example 1 It is a graph showing the discharge capacity according to the number of cycles of the half cell. At this time, charging and discharging were performed at a current density of 170 mA / g in a potential region of 3.0 to 4.3 V, and a total of 100 cycles were performed.
  • FIG. 14 is a graph showing discharge capacity according to the number of cycles of the reverse cells according to Production Examples 9 and 13 to 16 and the reverse cell according to Comparative Example 1.
  • Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder coated with lithium phosphate prepared in Preparation Example 5 (weight fraction of phosphoric acid: 0.1wt%)
  • the half-cell (Production Example 13) using Zn showed a slightly better discharge capacity at the initial stage of charge and discharge, but exhibited little difference in discharge capacity retention after 20 cycles, and was coated with lithium phosphate coated Li [Ni prepared in Preparation Example 7 0.6 Co 0.2 Mn 0.2] O 2 powder (weight of phosphoric acid fraction: 2wt%) no reversal member (Preparation 15) by the difference be charged and discharged, the initial discharge capacity and discharge capacity retention rate with, also, prepared in Preparation 8
  • the half cell (Manufacturing Example 16) using Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder (weight fraction of phosphoric acid: 5wt%) coated with lithium phosphate was found to have a large drop in discharge capacity even
  • Example 6 and Preparation Example 6 using Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder (weight fraction of phosphoric acid: 0.25 wt%) coated with lithium phosphate prepared in Preparation Example 1
  • the half cell (Manufacturing Example 14) using Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder (weight fraction of phosphoric acid: 1wt%) coated with lithium phosphate the retention of discharge capacity was increased even though the charge and discharge cycle was increased. It can be seen that it is much better than Comparative Example 1, in which lithium is not coated.
  • lithium phosphate-coated positive electrode active material for example, lithium phosphate-coated Li [Ni 0.6 Co 0.2 Mn 0.2 ] O 2 powder (Preparation Example 1), lithium phosphate-coated Li [Ni 0.7 Co 0.2 Mn 0.1 ] O 2 powder (Preparation Example 2), Li [Ni 0.8 Co 0.1 Al 0.1 ] O 2 powder (Preparation Example 3) coated with lithium phosphate, LiCoO 2 powder (Preparation Example 4) coated with lithium phosphate
  • the discharge capacity retention characteristics that is, the life characteristics are improved (see FIGS. 6, 7, and 8) and the rate characteristics are improved (see FIG. 9).

Abstract

리튬 이차전지용 양극 재료 및 이를 포함하는 리튬 이차전지를 제공한다. 리튬 이차 전지용 양극재료는 리튬-전이금속 산화물인 양극활물질과 상기 양극활물질의 표면 상에 코팅된 인산리튬층을 포함한다.

Description

리튬 이차전지용 양극 재료 및 이를 포함하는 리튬 이차전지
본 발명은 이차전지에 관한 것으로 구체적으로는 리튬 이차전지에 관한 것이다.
이차전지는 방전뿐 아니라 충전이 가능하여 반복적으로 사용할 수 있는 전지를 말한다. 이차전지 중 대표적인 리튬 이차전지는 양극활물질에 포함된 리튬이온이 전해질을 거쳐 음극으로 이동한 후 음극활물질의 층상 구조 내로 삽입되며(충전), 이 후 음극활물질의 층상 구조 내로 삽입되었던 리튬 이온이 다시 양극으로 되돌아가는(방전) 원리를 통해 작동한다. 이러한 리튬 이차전지는 현재 상용화되어 휴대전화, 노트북 컴퓨터 등의 소형전원으로 사용되고 있으며, 하이브리드 자동차 등의 대형 전원으로도 사용가능할 것으로 예측되고 있어, 그 수요가 증대될 것으로 예상된다.
그러나, 리튬 이차전지에서 양극활물질로 주로 사용되는 복합금속산화물은 전해질과의 반응에 의해 열화될 수 있다. 이를 해결하기 위해 대한민국 공개특허 제2006-0119382호는 이종 금속 산화물이 코팅된 양극활물질을 제시하고 있다.
또한, 양극활물질의 표면 상에 존재하는 잔류 리튬화합물은 전해질과의 반응에 의해 표면저항을 증가시킬 수 있는 반응물을 생성할 수 있다. 그러나, 현재까지 양극활물질의 표면 상에 잔류하는 리튬화합물을 제거 또는 그 양을 감소시킬 수 있는 방법은 보고되지 않고 있는 것으로 파악된다.
따라서, 본 발명이 해결하고자 하는 과제는 표면 상에 잔류하는 리튬 화합물의 양이 감소됨과 동시에 전해질과의 반응에 의한 표면 열화가 억제될 수 있는 리튬 이차전지용 양극 재료 및 이를 포함하는 리튬 이차전지를 제공함에 있다.
상기 과제를 이루기 위하여 본 발명의 일 측면은 리튬 이차 전지용 양극 재료를 제공한다. 리튬 이차 전지용 양극재료는 양극활물질과 상기 양극활물질의 표면 상에 코팅된 인산리튬층을 포함한다.
상기 과제를 이루기 위하여 본 발명의 다른 측면은 리튬 이차 전지용 양극 재료 제조 방법을 제공한다. 먼저, 양극활물질, 인산, 및 용매를 혼합한다. 상기 혼합물을 열처리하여, 인산리튬층이 코팅된 양극활물질을 얻는다.
상기 과제를 이루기 위하여 본 발명의 다른 측면은 리튬 이차 전지를 제공한다. 리튬 이차 전지는 양극활물질과 상기 양극활물질의 표면 상에 코팅된 인산리튬층을 포함하는 양극 재료를 포함하는 양극을 갖는다. 리튬이 탈삽입될 수 있는 음극활물질을 함유하는 음극 재료를 구비하는 음극이 배치된다. 상기 양극과 상기 음극 사이에 전해질이 배치된다.
상기 양극활물질은 리튬-전이금속 산화물일 수 있다. 구체적으로, 상기 양극활물질은 LiCoO2, LiNiO2, Li(CoxNi1-x)O2(0.5≤x〈1), LiMn2O4, Li1+xMn2-y-z-wAlyCozMgwO4 (0.03〈x〈0.25 , 0.01〈y〈0.2 , 0.01〈z〈0.2 , 0≤w〈0.1 , x + y + z + w〈 0.4), Li4Mn5O12, 또는 Li1+x(Ni1-y-zCoyMz)1-xO2(0≤x≤0.2, 0.01≤y≤0.5, 0.01≤z≤0.5, 0〈y+z〈1, M은 Mn, Ti, Mg, 또는 Al) 일 수 있다. 일 예로서, 상기 양극활물질은 Li1+x[Niy(Co0.5M0.5)1-y]1-xO2(0≤x≤0.2, 0.3≤y≤0.99, M은 Mn, Ti, Mg, 또는 Al)일 수 있다.상기 양극활물질은 입자의 형태를 가질 수 있다.
상기 인산리튬층은 5 내지 50nm의 두께를 가질 수 있다. 상기 양극활물질에 대한 상기 인산의 무게 분율은 0.25 내지 1wt% 일 수 있다. 상기 인산리튬층이 코팅된 양극활물질은 ToF-SIMS 분석에서 LiPO+ 파편이 검출될 수 있다.
상기 인산리튬층은 하기 반응식들 중 어느 하나에 의해 생성될 수 있다.
[반응식 1]
2H3PO4 + 3Li2O → 2Li3PO4 + 3H2O
[반응식 2]
H3PO4 + 3LiOH → Li3PO4 + 3H2O
[반응식 3]
2H3PO4 + 3Li2CO3→ 2Li3PO4 + 3CO2 + 3H2O
[반응식 4]
2H3PO4 + 3Li2C→ 2Li3PO4 + 3CH2
상기 반응식들에서 Li2O, LiOH, Li2CO3, 또는 Li2C는 상기 양극활물질 상에서 잔류하는 리튬화합물일 수 있다.
상기 혼합물을 열처리하기 전에, 상기 용매를 증발시킬 수 있다. 상기 증발 단계에서 상기 반응식들 1 내지 4 중 적어도 어느 하나에서 생성된 H2O, CO2, 또는 CH2도 증발될 수 있다. 상기 용매는 휘발성 용매일 수 있다. 상기 휘발성 용매는 에탄올, 아세톤, 또는 이들의 혼합물일 수 있다.
본 발명에 따르면, 양극활물질의 표면 상에 인산리튬층이 코팅되는데, 이러한 인산리튬층은 리튬이온의 이동을 방해하지 않으면서 양극활물질을 보호하는 역할을 수행할 수 있다. 이와 같이, 인산리튬층을 형성하는 과정에서 잔류 리튬화합물을 소모함에 따라 전해질과의 부반응에 따른 양극활물질의 열화를 막을 수 있을 뿐 아니라, 형성된 인산리튬층은 리튬이온의 이동을 방해하지 않으면서 양극활물질을 보호할 수 있다.
도 1은 본 발명의 일실시예에 따른 양극을 제조하는 방법을 나타낸 플로우챠트이다.
도 2는 제조예 1에 따른 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말과 코팅되지 않은 Li[Ni0.6Co0.2Mn0.2]O2분말의 XRD 분석결과를 나타낸 그래프이다.
도 3은 제조예 1에 따른 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말의 EDS(Energy Dispersive Spectroscopy)원소 분석 결과를 나타낸 사진이다.
도 4는 제조예 1에 따른 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말과 코팅되지 않은 Li[Ni0.6Co0.2Mn0.2]O2분말의 LiPO+ 파편을 검출한 ToF-SIMS 결과를 나타낸 그래프이다.
도 5는 제조예 1에 따른 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말과 코팅되지 않은 Li[Ni0.6Co0.2Mn0.2]O2분말의 Li2OH+ 파편을 검출한 ToF-SIMS 결과를 나타낸 그래프이다.
도 6는 제조예 9에 따른 반전지 및 비교예 1에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다.
도 7은 제조예 11에 따른 반전지 및 비교예 3에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다.
도 8은 제조예 12에 따른 반전지 및 비교예 4에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다.
도 9는 제조예 9에 따른 반전지 및 비교예 1에 따른 반전지의 사이클 횟수에 따른 방전용량 변화를 나타낸 그래프이다.
도 10a 및 도 10b는 각각 제조예 9에 따른 반전지와 비교예 1에 따른 반전지의 임피던스 특성을 나타낸 그래프 즉, 교류 임피던스의 콜-콜 플랏(Cole-Cole plot)이다.
도 11a는 충방전 테스트 전과 후에 제조예 1에서 제조된 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말의 표면을 촬영한 투과전자현미경(TEM)사진이고, 도 11b는 충방전 테스트 전과 후에 코팅되지 않은 Li[Ni0.6Co0.2Mn0.2]O2분말의 표면을 촬영한 투과전자현미경(TEM)사진이다.
도 12는 제조예 5에서 제조된 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말의 표면을 촬영한 투과전자현미경(TEM)사진과 제조예 13에 따른 반전지 및 비교예 1에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다.
도 13은 제조예 8에서 제조된 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말의 표면을 촬영한 투과전자현미경(TEM)사진과 제조예 16에 따른 반전지 및 비교예 1에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다.
도 14는 제조예들 9, 및 13 내지 16에 따른 반전지들 및 비교예 1에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다.
이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기서 설명되어지는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
본 명세서에서, 어떤 층이 다른 층 "상"에 위치한다고 함은 이들 층들이 직접적으로 접해있는 것 뿐 아니라 이들 층들 사이에 또 다른 층(들)이 위치하는 것을 의미한다.
본 발명의 일 실시예에 따른 리튬 이차전지는 양극, 리튬이 탈삽입될 수 있는 음극활물질을 함유하는 음극, 및 이들 사이에 위치하는 전해질을 구비한다.
<양극>
본 발명의 일 실시예에 따른 리튬 이차전지의 양극은 양극활물질과 이의 표면 상에 코팅된 인산리튬층을 포함하는 양극재료를 함유한다. 구체적으로, 양극활물질 입자들의 표면에 인산리튬층이 코팅되어 있고, 양극 또는 양극 재료는 이러한 인산리튬층이 코팅된 양극활물질 입자들을 구비할 수 있다.
양극활물질은 리튬-전이금속 산화물일 수 있다. 리튬-전이금속 산화물은 예를 들어, LiCoO2, LiNiO2, Li(CoxNi1-x)O2(0.5≤x〈1), LiMn2O4, Li1+xMn2-y-z-wAlyCozMgwO4 (0.03〈x〈0.25 , 0.01〈y〈0.2 , 0.01〈z〈0.2 , 0≤w〈0.1 , x + y + z + w〈 0.4), Li4Mn5O12, 또는 Li1+x(Ni1-y-zCoyMz)1-xO2(0≤x≤0.2, 0.01≤y≤0.5, 0.01≤z≤0.5, 0〈y+z〈1, M은 Mn, Ti, Mg, 또는 Al)일 수 있다. 그러나, 이에 한정되는 것은 아니다.
일 예로서, 리튬-전이금속 산화물은 이들 중에서도, 고가이며 희소금속인 Co의 함량을 줄이면서, 높은 열적 안정성과 용량, 우수한 가역성을 나타낼 수 있는 Li1+x(Ni1-y-zCoyMz)1-xO2(0≤x≤0.2, 0.01≤y≤0.5, 0.01≤z≤0.5, 0〈y+z〈1, M은 Mn, Ti, Mg, 또는 Al)일 수 있다. 구체적으로는, 양극활물질인 리튬-전이금속 산화물은 Li1+x[Niy(Co0.5M0.5)1-y]1-xO2(0≤x≤0.2, 0.3≤y≤0.99, M은 Mn, Ti, Mg, 또는 Al)일 수 있다.
상기 양극활물질 입자의 표면 상에 코팅된 인산리튬층은 약 5 내지 50nm, 일 예로서, 약 5 내지 20nm의 두께를 가질 수 있다. 이러한 인산리튬층은 상기 양극활물질 입자의 표면을 보호하여 열화를 방지할 수 있다.
도 1은 본 발명의 일 실시예에 따른 양극을 제조하는 방법을 나타낸 플로우챠트이다.
도 1을 참조하면, 양극활물질을 준비할 수 있다(S1). 상기 양극활물질은 입자의 형태로 된 양극활물질 입자들일 수 있다. 구체적으로, 금속산화물들, 또는 분해 및/또는 산화했을 때 금속산화물이 될 수 있는 금속염들인 금속화합물들을 혼합한 후, 소성하여 양극활물질을 얻을 수 있다. 상기 양극활물질은 앞서 설명한 리튬-전이금속 산화물일 수 있다. 이 후, 추가적으로 양극활물질을 분쇄할 수도 있다. 이 때, 양극활물질이 수분과 접촉하지 않는 것이 바람직하다.
상기 양극활물질, 인산(H3PO4), 및 용매를 섞은 후, 열처리하여, 인산리튬이 코팅된 양극활물질, 구체적으로 인산리튬이 코팅된 양극활물질 입자들을 얻을 수 있다(S3). 부연하면, 상기 리튬-전이금속 산화물인 양극활물질의 표면 상에는 전이금속과 산화물을 형성하지 못하고 잔류하는 리튬화합물 예를 들어, 산화 리튬(Li2O), 수산화 리튬(LiOH), 탄산 리튬(Li2CO3), 리튬 카바이드(Li2C)가 존재할 수 있다. 이러한 잔류 리튬화합물은 이차전지 내에서 전해질 내의 특정물질과 반응할 수 있고 그 반응물은 양극활물질의 표면 상에 축적될 수 있다. 이러한 반응물은 리튬이온의 이동을 방해할 수 있다. 일 예로서, 잔류 리튬화합물은 전해질 내의 HF 등과 반응하여 LiF를 생성할 수 있다.
그러나, 상술한 바와 같이 양극활물질을 인산(H3PO4)과 혼합한 후 열처리하는 경우에는, 양극활물질 표면의 잔류 리튬화합물이 인산(H3PO4)과 반응하여 인산리튬을 형성할 수 있다. 일 예로서, 잔류 리튬화합물이 산화 리튬(Li2O), 수산화 리튬(LiOH), 탄산 리튬(Li2CO3), 또는 리튬 카바이드(Li2C)인 경우에, 인산리튬은 하기 반응식들에 의해 생성될 수 있다.
[반응식 1]
2H3PO4 + 3Li2O → 2Li3PO4 + 3H2O
[반응식 2]
H3PO4 + 3LiOH → Li3PO4 + 3H2O
[반응식 3]
2H3PO4 + 3Li2CO3→ 2Li3PO4 + 3CO2 + 3H2O
[반응식 4]
2H3PO4 + 3Li2C→ 2Li3PO4 + 3CH2
상기 반응식들에서 Li2O, LiOH, Li2CO3, 또는 Li2C는 상기 양극활물질 상에서 잔류하는 리튬화합물일 수 있다.
이에 따라, 양극활물질의 표면 상에 인산리튬층이 코팅될 수 있다. 상기 인산리튬층은 5 내지 100nm, 구체적으로는 5 내지 50nm의 두께를 가질 수 있다. 이러한 인산리튬층은 리튬이온의 이동을 방해하지 않으면서 양극활물질을 보호하는 역할을 수행할 수 있다. 이와 같이, 인산리튬층을 형성하는 과정에서 잔류 리튬화합물을 소모함에 따라 전해질과의 부반응에 따른 양극활물질의 열화를 막을 수 있을 뿐 아니라, 형성된 인산리튬층은 리튬이온의 이동을 방해하지 않으면서 양극활물질을 보호할 수 있다.
인산리튬층이 코팅된 양극활물질을 얻기 위한 구체적 방법은 다음과 같다. 인산을 용매 내에 넣고 이를 충분히 혼합하여 인산 용액을 만든 후, 이 인산 용액에 상기 양극활물질을 넣을 수 있다. 상기 용매는 휘발성 용매, 일 예로서 에탄올, 아세톤, 또는 이들의 혼합물일 수 있다. 구체적으로, 상기 용매는 무수에탄올일 수 있다. 이 경우, 상기 양극활물질을 인산 용액과 혼합한 후의 열처리(S3) 전에, 상기 휘발성 용매를 충분히 증발시키는 단계가 수행될 수 있다. 상기 휘발성 용매를 증발시킬 때, 상기 인산리튬이 형성되는 과정에서 생성되는 부산물(상기 반응식들에서는 H2O, CO2, 또는 CH2)은 상기 휘발성 용매와 함께 증발될 수 있다. 상기 휘발성 용매를 증발시키는 것은 60도 내지 200도의 온도에서 수행될 수 있다. 상기 열처리는 온도는 약 400 내지 700도일 수 있고, 약 3 내지 5시간 동안 수행될 수 있다.
이 후, 인산리튬이 코팅된 양극활물질, 도전재, 및 결합제를 혼합하여 양극재료를 얻을 수 있다(S5). 이 때, 도전재는 천연 흑연, 인조 흑연, 코크스류, 카본 블랙, 탄소 나노튜브, 그래핀 등의 탄소 재료일 수 있다. 결합제는 열가소성 수지 예를 들어, 폴리불화비닐리덴, 폴리테트라플루오로에틸렌, 사불화에틸렌, 불화비닐리덴계 공중합체, 육불화프로필렌 등의 불소 수지, 및/또는 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀 수지를 포함할 수 있다.
양극재료를 양극 집전체 상에 도포하여 양극을 형성할 수 있다(S7). 양극 집전체는 Al, Ni, 스테인레스 등의 도전체일 수 있다. 양극재료를 양극 집전체 상에 도포하는 것은 가압 성형, 또는 유기 용매등을 사용하여 페이스트를 만든 후 이 페이스트를 집전체 상에 도포하고 프레스하여 고착화하는 방법을 사용할 수 있다. 유기 용매는 N,N-디메틸아미노프로필아민, 디에틸트리아민 등의 아민계; 에틸렌옥시드, 테트라히드로푸란 등의 에테르계; 메틸에틸케톤 등의 케톤계; 아세트산메틸 등의 에스테르계; 디메틸아세트아미드, N-메틸-2-피롤리돈 등의 비양성자성 극성 용매 등일 수 있다. 페이스트를 양극 집전체 상에 도포하는 것은 예를 들면, 그라비아 코팅법, 슬릿다이 코팅법, 나이프 코팅법, 스프레이 코팅법을 사용하여 수행할 수 있다.
<음극>
음극활물질은 리튬 이온을 탈삽입하거나 전환(conversion) 반응을 일으킬 수 있는 금속, 금속합금, 금속산화물, 금속불화물, 금속황화물, 및 천연 흑연, 인조흑연, 코크스류, 카본 블랙, 탄소나노튜브, 그래핀 등의 탄소 재료 등을 사용하여 형성할 수도 있다.
음극활물질, 도전재, 및 결합제를 혼합하여 음극재료를 얻을 수 있다. 이 때, 도전재는 천연 흑연, 인조 흑연, 코크스류, 카본 블랙, 탄소 나노튜브, 그래핀 등의 탄소 재료일 수 있다. 결합제는 열가소성 수지 예를 들어, 폴리불화비닐리덴, 폴리테트라플루오로에틸렌, 사불화에틸렌, 불화비닐리덴계 공중합체, 육불화프로필렌 등의 불소 수지, 및/또는 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀 수지를 포함할 수 있다.
음극재료를 음극 집전체 상에 도포하여 음극을 형성할 수 있다. 음극 집전체는 Al, Ni, Cu, 스테인레스 등의 도전체일 수 있다. 음극재료를 음극 집전체 상에 도포하는 것은 가압 성형, 또는 유기 용매등을 사용하여 페이스트를 만든 후 이 페이스트를 집전체 상에 도포하고 프레스하여 고착화하는 방법을 사용할 수 있다. 유기 용매는 N,N-디메틸아미노프로필아민, 디에틸트리아민 등의 아민계; 에틸렌옥시드, 테트라히드로푸란 등의 에테르계; 메틸에틸케톤 등의 케톤계; 아세트산메틸 등의 에스테르계; 디메틸아세트아미드, N-메틸-2-피롤리돈 등의 비양성자성 극성 용매 등일 수 있다. 페이스트를 음극 집전체 상에 도포하는 것은 예를 들면, 그라비아 코팅법, 슬릿다이 코팅법, 나이프 코팅법, 스프레이 코팅법을 사용하여 수행할 수 있다.
<전해질>
전해질은 리튬염과 비수 전해질을 함유할 수 있다.
상기 리튬염은 상기 비수 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬 등이 사용될 수 있다.
비수 전해질은 비수 전해액, 유기 고체 전해질, 또는 무기 고체 전해질일 수 있다. 상기 비수 전해액은 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매일 수 있다. 상기 유기 고체 전해질은 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 또는 이온성 해리기를 포함하는 중합체일 수 있다. 상기 무기 고체 전해질은 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 또는 황산염일 수 있다.
이들 고체 전해질을 이용하여 이차 전지의 안전성을 보다 높일 수 있는 경우가 있다. 또한, 고체 전해질이 후술하는 세퍼레이터의 역할을 하는 경우도 있고, 그 경우에는 세퍼레이터를 필요로 하지 않는 경우도 있다.
<세퍼레이터>
양극과 음극 사이에 세퍼레이터가 배치될 수 있다. 이러한 세퍼레이터는 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀 수지, 불소 수지, 질소 함유 방향족 중합체 등의 재질로 이루어지는 다공질 필름, 부직포, 직포 등의 형태를 가지는 재료일 수 있다. 세퍼레이터의 두께는, 전지의 부피 에너지 밀도가 높아지고, 내부 저항이 작아진다는 점에서, 기계적 강도가 유지되는 한 얇을수록 바람직하다. 세퍼레이터의 두께는, 일반적으로 5 내지 200 ㎛ 정도일 수 있고, 더 구체적으로는 5 내지 40 ㎛일 수 있다.
<리튬 이차 전지의 제조 방법>
양극, 세퍼레이터, 및 음극을 순서대로 적층하여 전극군을 형성한 후 필요하다면 전극군을 말아서 전지캔에 수납하고, 전극군에 전해질을 함침시킴으로써 이차 전지를 제조할 수 있다. 이와는 달리, 양극, 고체 전해질, 및 음극을 적층하여 전극군을 형성한 후 필요하다면 전극군을 말아서 전지캔에 수납하여 이차 전지를 제조할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실험예(example)를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.
[실험예들; Examples]
제조예 1: 인산리튬 코팅된 Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2
양극활물질 Li[Ni0.6Co0.2Mn0.2]O2 1g을 기준으로 하여 0.25wt%의 무게 분율로 인산(H3PO4)을 정량하였다. 상기 정량된 인산을 무수에탄올(CH3CH2OH) 300㎖에 투입하였다. 이 후, 인산과 무수에탄올을 30℃에서 임펠러를 이용하여 교반(stirring)시켜 충분히 혼합한 후, 혼합된 용액 내에 Li[Ni0.6Co0.2Mn0.2]O2 10g을 투입하였다. 그 다음, 용매인 무수에탄올이 완전히 증발할 때까지 온도를 상승시키며 교반을 통해 지속적으로 반응시켰다. 용매가 완전히 증발할 후, 다시 약 400℃ 이상의 온도에서 약 3 시간 이상의 시간동안 열처리를 하여 인산리튬이 코팅된 양극활물질을 제조하였다.
제조예 2: 인산리튬 코팅된 Li[Ni 0.7 Co 0.2 Mn 0.1 ]O 2
양극활물질로서 Li[Ni0.7Co0.2Mn0.1]O2을 사용한 것을 제외하고는 제조예 1과 실질적으로 동일한 방법을 사용하여 인산리튬이 코팅된 양극활물질을 제조하였다. 구체적으로, 양극활물질 Li[Ni0.7Co0.2Mn0.1]O2 1g을 기준으로 하여 0.25wt%의 무게 분율로 인산(H3PO4)을 정량하였고, 30℃에서 교반되어 혼합된 인산-무수에탄올 용액 내에 Li[Ni0.7Co0.2Mn0.1]O2 10g을 투입하였다.
제조예 3: 인산리튬 코팅된 Li[Ni 0.8 Co 0.1 Al 0.1 ]O 2
양극활물질로서 Li[Ni0.8Co0.1Al0.1]O2을 사용한 것을 제외하고는 제조예 1과 실질적으로 동일한 방법을 사용하여 인산리튬이 코팅된 양극활물질을 제조하였다. 구체적으로, 양극활물질 Li[Ni0.8Co0.1Al0.1]O2 1g을 기준으로 하여 0.25wt%의 무게 분율로 인산(H3PO4)을 정량하였고, 30℃에서 교반되어 혼합된 인산-무수에탄올 용액 내에 Li[Ni0.8Co0.1Al0.1]O2 10g을 투입하였다.
제조예 4: 인산리튬 코팅된 LiCoO 2
양극활물질로서 LiCoO2을 사용한 것을 제외하고는 제조예 1과 실질적으로 동일한 방법을 사용하여 인산리튬이 코팅된 양극활물질을 제조하였다. 구체적으로, 양극활물질 LiCoO2 1g을 기준으로 하여 0.25wt%의 무게 분율로 인산(H3PO4)을 정량하였고, 30℃에서 교반되어 혼합된 인산-무수에탄올 용액 내에 LiCoO2 10g을 투입하였다.
제조예 5: 인산리튬 코팅된 Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2
양극활물질 Li[Ni0.6Co0.2Mn0.2]O2 1g을 기준으로 하여 0.1wt%의 무게 분율로 인산(H3PO4)을 정량한 것을 제외하고는 제조예 1과 실질적으로 동일한 방법을 사용하여 인산리튬이 코팅된 양극활물질을 제조하였다.
제조예 6: 인산리튬 코팅된 Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2
양극활물질 Li[Ni0.6Co0.2Mn0.2]O2 1g을 기준으로 하여 1wt%의 무게 분율로 인산(H3PO4)을 정량한 것을 제외하고는 제조예 1과 실질적으로 동일한 방법을 사용하여 인산리튬이 코팅된 양극활물질을 제조하였다.
제조예 7: 인산리튬 코팅된 Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2
양극활물질 Li[Ni0.6Co0.2Mn0.2]O2 1g을 기준으로 하여 2wt%의 무게 분율로 인산(H3PO4)을 정량한 것을 제외하고는 제조예 1과 실질적으로 동일한 방법을 사용하여 인산리튬이 코팅된 양극활물질을 제조하였다.
제조예 8: 인산리튬 코팅된 Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2
양극활물질 Li[Ni0.6Co0.2Mn0.2]O2 1g을 기준으로 하여 5wt%의 무게 분율로 인산(H3PO4)을 정량한 것을 제외하고는 제조예 1과 실질적으로 동일한 방법을 사용하여 인산리튬이 코팅된 양극활물질을 제조하였다.
제조예들 9 내지 16 : 인산리튬이 코팅된 양극활물질을 사용한 양극 및 반전지
제조예들 1 내지 8 중 어느 하나에서 제조된 인산리튬이 코팅된 양극활물질, 도전제인 Super-P 카본블랙과 아세틸렌 블랙, 및 결합제(Poly vinylidene fluoride; PVdF)를 8:0.5:0.5:1(무게분율)로 유기 용매(NMP(N-Methyl-2-Pyrrolidone)) 내에서 혼합하여 양극활물질 슬러리 조성물을 형성한 후, 이를 알루미늄 포일 집전체 상에 코팅한 후 건조하여 양극을 형성하였다.
이 후, 리튬 금속인 음극, 비수 전해액 에틸렌 카보네이트와 디메틸 카보네이트의 혼합 용매(3:7 부피비)에 전해질인 1.15몰 LiPF6가 용해된 비수전해질, 및 양극과 음극의 사이에 배치된 세퍼레이터를 사용하여, 리튬이차전지의 통상적 제조공정에 따라 2032 규격의 코인 전지를 제조하였다.
하기 표 1에서 제조예들 1 내지 16의 제조방법 상의 특징을 나타낸다.
표 1
인산리튬이 코팅된 양극활물질 제조예들 양극 및 반전지 제조예들
양극활물질 종류 양극활물질에 대한 인산의 무게 분율
제조예 1 Li[Ni0.6Co0.2Mn0.2]O2 0.25 wt% 제조예 9
제조예 2 Li[Ni0.7Co0.2Mn0.1]O2 제조예 10
제조예 3 Li[Ni0.8Co0.1Al0.1]O2 제조예 11
제조예 4 LiCoO2 제조예 12
제조예 5 Li[Ni0.6Co0.2Mn0.2]O2 0.1 wt% 제조예 13
제조예 6 1 wt% 제조예 14
제조예 7 2 wt% 제조예 15
제조예 8 5 wt% 제조예 16
비교예 1: 인산리튬이 코팅되지 않은 Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 를 사용한 양극 및 반전지 제조
양극활물질로서 인산리튬이 코팅되지 않은 Li[Ni0.6Co0.2Mn0.2]O2를 사용한 것을 제외하고는 제조예 11와 실질적으로 동일한 방법을 사용하여 양극 및 반전지를 제조하였다.
비교예 2: 인산리튬이 코팅되지 않은 Li[Ni 0.7 Co 0.2 Mn 0.1 ]O 2 를 사용한 양극 및 반전지 제조
양극활물질로서 인산리튬이 코팅되지 않은 Li[Ni0.7Co0.2Mn0.1]O2를 사용한 것을 제외하고는 제조예 12와 실질적으로 동일한 방법을 사용하여 양극 및 반전지를 제조하였다.
비교예 3: 인산리튬이 코팅되지 않은 Li[Ni 0.8 Co 0.1 Al 0.1 ]O 2 를 사용한 양극 및 반전지 제조
양극활물질로서 인산리튬이 코팅되지 않은 Li[Ni0.8Co0.1Al0.1]O2를 사용한 것을 제외하고는 제조예 13와 실질적으로 동일한 방법을 사용하여 양극 및 반전지를 제조하였다.
비교예 4: 인산리튬이 코팅되지 않은 LiCoO 2 를 사용한 양극 및 반전지 제조
양극활물질로서 인산리튬이 코팅되지 않은 LiCoO2를 사용한 것을 제외하고는 제조예 14와 실질적으로 동일한 방법을 사용하여 양극 및 반전지를 제조하였다.
도 2는 제조예 1에 따른 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말과 코팅되지 않은 Li[Ni0.6Co0.2Mn0.2]O2분말의 XRD 분석결과를 나타낸 그래프이다.
도 2를 참조하면, 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말(또는 입자)은 코팅되지 않은 Li[Ni0.6Co0.2Mn0.2]O2분말(또는 입자)과 동일한 결정구조를 갖는 것을 알 수 있다. 이러한 결과로부터, 인산리튬 코팅층은 결정구조를 갖지 않는 것을 알 수 있다.
도 3은 제조예 1에 따른 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말의 EDS(Energy Dispersive Spectroscopy)원소 분석 결과를 나타낸 사진이다.
도 3을 참조하면, 제조예 1에 따른 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말(또는 입자) 내에 니켈, 코발트, 망간, 산소, 및 인이 고르게 분포하고 있는 것을 알 수 있다.
도 4는 제조예 1에 따른 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말과 코팅되지 않은 Li[Ni0.6Co0.2Mn0.2]O2분말의 LiPO+ 파편을 검출한 ToF-SIMS(Time of Flight Secondary Ion Mass Spectrometry)결과를 나타낸 그래프이다.
도 4를 참조하면, 인산리튬(Li3PO4)이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말(또는 입자)에서는 인산리튬을 의미하는 LiPO+ 파편(fragment)이 검출된 반면, 코팅되지 않은 Li[Ni0.6Co0.2Mn0.2]O2분말(또는 입자)에서는 LiPO+ 파편이 검출되지 않음을 알 수 있다. 본 실험에서 검출된 LiPO+ 파편 이외에도, 인산리튬이 코팅된 경우, 인산리튬을 의미하는 다양한 LixPOy + 파편(x는 1 내지 3, 구체적으로 1 내지 3의 정수일 수 있고, y는 1 내지 4, 구체적으로 1 내지 4의 정수), 예를 들어 Li2PO2 +, Li2PO+, LiPO2 + 등이 검출될 수 있다.
도 5는 제조예 1에 따른 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말과 코팅되지 않은 Li[Ni0.6Co0.2Mn0.2]O2분말의 Li2OH+ 파편을 검출한 ToF-SIMS 결과를 나타낸 그래프이다. Li2OH+ 파편의 검출은 Li[Ni0.6Co0.2Mn0.2]O2분말 표면의 잔여 리튬화합물중 LiOH의 존재여부를 확인하여 줄 수 있다.
도 5를 참조하면, 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말에서는 Li2OH+ 파편의 검출량이 코팅되지 않은 Li[Ni0.6Co0.2Mn0.2]O2분말에서의 그것보다 크게 감소하는 것을 알 수 있다. 이는 인산리튬이 코팅됨에 따라 Li[Ni0.6Co0.2Mn0.2]O2분말 표면상에서의 잔여 리튬화합물의 량이 크게 감소한 것을 의미한다.
하기 표 2는 제조예들 1 내지 4에 따른 인산리튬이 코팅된 양극활물질들의 제조과정 중 인산리튬 코팅 전후의 양극활물질 표면의 잔류리튬의 양을 나타낸다. 표 2에 기재된 잔류리튬의 양은 와더 방법(Warder method)을 사용하여 50g을 기준으로 5회 측정한 후의 평균값이다.
표 2
인산리튬 코팅유무 잔류리튬 량 (unit: ppm) 비고
LiOH Li2CO3 총 잔류리튬 비교
Li[Ni0.6Co0.2Mn0.2]O2 코팅 후 1197 738 1935 47% 감소 제조예 1
코팅 전 1436 2216 3652
Li[Ni0.7Co0.2Mn0.1]O2 코팅 후 2633 2955 5588 50% 감소 제조예 2
코팅 전 4548 6649 11197
Li[Ni0.8Co0.1Al0.1]O2 코팅 후 2458 4325 6783 50% 감소 제조예 3
코팅 전 5938 7532 13470
LiCoO2 코팅 후 324 1134 1458 54% 감소 제조예 4
코팅 전 598 2543 3141
표 2을 참조하면, 제조예들 1 내지 4에서 인산리튬 코팅된 양극활물질들은 모두 코팅 전에 비해 잔류리튬의 양이 약 50% 전후로 감소된 것으로 나타났다. 한편, 양극활물질에서 니켈 함량이 증가함에 따라 잔류리튬의 양은 증가하는 것으로 보인다.
도 6는 제조예 9에 따른 반전지 및 비교예 1에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다. 이 때, 충전과 방전은 3.0 내지 4.3V의 전위영역에서 170 mA/g의 전류밀도로 행하였고, 총 100 사이클 진행하였다.
도 6을 참조하면, 코팅되지 않은 Li[Ni0.6Co0.2Mn0.2]O2분말을 양극활물질로 사용한 비교예 1에 따른 반전지는 충방전 사이클이 늘어남에 따라 방전용량이 크게 떨어지는(100 사이클에서 84%) 것을 알 수 있다. 이에 비해, 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말을 양극활물질로 사용한 제조예 9에 따른 반전지는 충방전 사이클이 늘어나더라도 방전용량의 유지율(100 사이클에서도 94%)이 훨씬 양호함을 알 수 있다.
도 7은 제조예 11에 따른 반전지 및 비교예 3에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다. 이 때, 충전과 방전은 3.0 내지 4.3V의 전위영역에서 190mA/g의 전류밀도로 행하였고, 총 100 사이클 진행하였다.
도 7을 참조하면, 코팅되지 않은 Li[Ni0.8Co0.1Al0.1]O2분말을 양극활물질로 사용한 비교예 3에 따른 반전지는 충방전 사이클이 늘어남에 따라 방전용량이 크게 떨어지는(100 사이클에서 67.8%) 것을 알 수 있다. 이에 비해, 인산리튬이 코팅된 Li[Ni0.8Co0.1Al0.1]O2분말을 양극활물질로 사용한 제조예 11에 따른 반전지는 충방전 사이클이 늘어나더라도 방전용량의 유지율(100 사이클에서도 90.3%)이 훨씬 양호함을 알 수 있다.
이와 같이, 인산리튬이 코팅된 Li[Ni0.8Co0.1Al0.1]O2분말을 양극활물질로 사용한 제조예 11에 따른 반전지는 우수한 수명특성을 나타낼 수 있는데, 이러한 효과가 니켈이 80%인 경우임에도 불구하고 나타나는 점에 큰 의미가 있다.
도 8은 제조예 12에 따른 반전지 및 비교예 4에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다. 이 때, 충전과 방전은 3.0 내지 4.5V의 전위영역에서 150 mA/g의 전류밀도로 행하였고, 총 100 사이클 진행하였다.
도 8을 참조하면, 코팅되지 않은 LiCoO2분말을 양극활물질로 사용한 비교예 4에 따른 반전지는 충방전 사이클이 늘어남에 따라 방전용량이 매우 크게 떨어지는(100 사이클에서 31.5%) 것을 알 수 있다. 이에 비해, 인산리튬이 코팅된 LiCoO2분말을 양극활물질로 사용한 제조예 12에 따른 반전지는 충방전 사이클이 늘어나더라도 방전용량의 유지율(100 사이클에서도 95.3%)이 훨씬 양호함을 알 수 있다.
도 9는 제조예 9에 따른 반전지 및 비교예 1에 따른 반전지의 사이클 횟수에 따른 방전용량 변화를 나타낸 그래프이다. 이 때, 충전은 4.3V 까지 20mA/g의 전류밀도로 행하였고, 방전은 1C(170mA/g), 2C(340mA/g), 3C(510mA/g), 5C (850mA/g), 7C(1190mA/g), 10C(1700mA/g)의 전류밀도로 행하였다. 각 율속 당 5사이클씩 진행하였다.
도 9를 참조하면, C-rate를 높여가면서(즉, 방전 속도를 높이면서) 실험한 결과, 코팅되지 않은 Li[Ni0.6Co0.2Mn0.2]O2분말을 양극활물질로 사용한 비교예 1에 따른 반전지에 비해 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말을 양극활물질로 사용한 제조예 9에 따른 반전지가 더 우수한 율특성을 나타냄을 알 수 있다.
도 10a 및 도 10b는 각각 제조예 9에 따른 반전지와 비교예 1에 따른 반전지의 임피던스 특성을 나타낸 그래프 즉, 교류 임피던스의 콜-콜 플랏(Cole-Cole plot)이다.
도 10a 및 도 10b를 참조하면, 인산리튬이 코팅되지 않은 Li[Ni0.6Co0.2Mn0.2]O2분말을 양극활물질로 사용한 비교예 1에 따른 반전지(도 10b)는 사이클이 진행됨에 따라 저항이 크게 증가하는 반면, 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말을 양극활물질로 사용한 제조예 9에 따른 반전지(도 10a)는 사이클이 진행되더라도 저항 증가가 제한적임을 알 수 있다.
도 11a는 충방전 테스트 전과 후에 제조예 1에서 제조된 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말의 표면을 촬영한 투과전자현미경(TEM)사진이고, 도 11b는 충방전 테스트 전과 후에 코팅되지 않은 Li[Ni0.6Co0.2Mn0.2]O2분말의 표면을 촬영한 투과전자현미경(TEM)사진이다. 상기 충방전 테스트는, 이들 양극활물질들을 사용하여 제조예 9와 비교예 1에 따라 각각 반전지들을 제조한 후, 상온에서 170mA/g의 전류밀도로 100사이클을 진행하였다.
도 11a 및 도 11b를 참조하면, 제조예 1에서 제조된 양극활물질의 경우 충방전 테스트 전 Li[Ni0.6Co0.2Mn0.2]O2분말의 표면에 인산리튬이 5nm 내지 20nm로 코팅된 것이 확인된다(도 11a). 테스트 후에도 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말의 표면은 매우 깨끗(도 11a)한 반면, 코팅되지 않은 Li[Ni0.6Co0.2Mn0.2]O2분말의 표면은 다양한 부산물들로 인해 매우 지저분(도 11b)함을 알 수 있다. 이러한 부산물은 테스트 과정에서 전해질과의 반응에 따른 것으로, 이러한 부산물에 의해 양극활물질이 열화될 수 있다.
도 12는 제조예 5에서 제조된 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말의 표면을 촬영한 투과전자현미경(TEM)사진과 제조예 13에 따른 반전지 및 비교예 1에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다. 이 때, 충전과 방전은 3.0 내지 4.3V의 전위영역에서 170 mA/g의 전류밀도로 행하였고, 총 100 사이클 진행하였다.
도 12를 참조하면, Li[Ni0.6Co0.2Mn0.2]O2에 대한 인산의 무게분율을 0.1wt%로 조절한 결과(제조예 5), Li[Ni0.6Co0.2Mn0.2]O2분말의 표면 상에 1㎚ 정도의 인산리튬층이 코팅된 것을 확인할 수 있으며, 이를 사용한 반전지(제조예 13)는 인산리튬이 코팅되지 않은 비교예 1 대비, 충방전 초기에는 다소 우수한 방전용량을 나타내지만, 20 사이클 이후에서는 거의 차이가 없는 방전용량 유지율을 나타냄을 알 수 있다.
도 13은 제조예 8에서 제조된 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말의 표면을 촬영한 투과전자현미경(TEM)사진과 제조예 16에 따른 반전지 및 비교예 1에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다. 이 때, 충전과 방전은 3.0 내지 4.3V의 전위영역에서 170 mA/g의 전류밀도로 행하였고, 총 100 사이클 진행하였다.
도 13을 참조하면, Li[Ni0.6Co0.2Mn0.2]O2에 대한 인산의 무게분율을 5wt%로 조절한 결과(제조예 8), Li[Ni0.6Co0.2Mn0.2]O2분말의 표면 상에 25 내지 30㎚ 정도의 인산리튬층이 코팅된 것을 확인할 수 있으며, 이를 사용한 반전지(제조예 16)는 인산리튬이 코팅되지 않은 비교예 1 대비 충방전 초기에서조차 방전용량이 크게 떨어지는 것을 알 수 있으며, 방전용량 유지율조차 별 차이가 없음을 확인할 수 있다.
도 14는 제조예들 9, 및 13 내지 16에 따른 반전지들 및 비교예 1에 따른 반전지의 사이클 횟수에 따른 방전용량을 나타낸 그래프이다. 이 때, 충전과 방전은 3.0 내지 4.3V의 전위영역에서 170 mA/g의 전류밀도로 행하였고, 총 100 사이클 진행하였다.
도 14를 참조하면, 인산리튬이 코팅되지 않은 비교예 1 대비, 제조예 5에서 제조된 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말(인산의 무게분율: 0.1wt%)을 사용한 반전지(제조예 13)는 충방전 초기에는 다소 우수한 방전용량을 나타내지만, 20 사이클 이후에서는 거의 차이가 없는 방전용량 유지율을 나타내며, 제조예 7에서 제조된 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말(인산의 무게분율: 2wt%)을 사용한 반전지(제조예 15)는 충방전 초기 방전용량과 방전용량 유지율이 별 차이가 없으며, 또한, 제조예 8에서 제조된 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말(인산의 무게분율: 5wt%)을 사용한 반전지(제조예 16)는 충방전 초기에서조차 방전용량이 크게 떨어지는 것을 알 수 있으며, 방전용량 유지율조차 별 차이가 없음을 확인할 수 있다.
반면, 제조예 1에서 제조된 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말(인산의 무게분율: 0.25wt%)을 사용한 반전지(제조예 9) 및 제조예 6에서 제조된 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말(인산의 무게분율: 1wt%)을 사용한 반전지(제조예 14)는 충방전 사이클이 늘어나더라도 방전용량의 유지율이, 인산리튬이 코팅되지 않은 비교예 1 대비, 훨씬 양호함을 알 수 있다.
앞서 살펴본 바와 같이, 인산리튬이 코팅된 양극활물질 예를 들어, 인산리튬이 코팅된 Li[Ni0.6Co0.2Mn0.2]O2분말(제조예 1), 인산리튬이 코팅된 Li[Ni0.7Co0.2Mn0.1]O2분말(제조예 2), 인산리튬이 코팅된 Li[Ni0.8Co0.1Al0.1]O2분말(제조예 3), 인산리튬이 코팅된 LiCoO2분말(제조예 4)을 양극활물질로 사용하는 경우, 방전용량 유지특성 즉, 수명특성이 향상(도 6, 도 7, 및 도 8 참조)되고 및 율특성이 개선(도 9 참조)됨을 알 수 있다. 이는 인산리튬층을 형성하는 과정에서 양극활물질 표면의 잔류 리튬화합물이 소모됨에 따라, 잔류 리튬화합물과 전해질과의 부반응에 따른 양극활물질의 열화(도 11a, 도 11b 참조)가 억제되고, 또한 형성된 인산리튬층이 리튬이온의 이동을 방해하지 않으면서 양극활물질을 보호하는 것에 기인하는 것으로 판단된다. 이와 더불어서, 도 6, 도 11a, 도 12 및 도 13을 참고할 때, 적절한 인산리튬의 두께는 5 내지 20nm이며, 도 14를 참조할 때, 인산리튬이 코팅된 양극활물질을 제조할 때 양극활물질에 대한 인산의 적절한 무게 분율은 0.25 내지 1wt% 임을 알 수 있다.
이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러가지 변형 및 변경이 가능하다.

Claims (21)

  1. 양극활물질; 및
    상기 양극활물질의 표면 상에 코팅된 인산리튬층을 포함하는 리튬 이차 전지용 양극 재료.
  2. 제1항에 있어서,
    상기 양극활물질은 리튬-전이금속 산화물인 양극 재료.
  3. 제1항 또는 제2항에 있어서,
    상기 양극활물질은 입자의 형태를 갖는 양극 재료.
  4. 제1항에 있어서,
    상기 인산리튬층은 5 내지 50nm의 두께를 갖는 양극 재료.
  5. 제1항에 있어서,
    상기 양극활물질은 LiCoO2, LiNiO2, Li(CoxNi1-x)O2(0.5≤x〈1), LiMn2O4, Li1+xMn2-y-z-wAlyCozMgwO4 (0.03〈x〈0.25 , 0.01〈y〈0.2 , 0.01〈z〈0.2 , 0≤w〈0.1 , x + y + z + w〈 0.4), Li4Mn5O12, 또는 Li1+x(Ni1-y-zCoyMz)1-xO2(0≤x≤0.2, 0.01≤y≤0.5, 0.01≤z≤0.5, 0〈y+z〈1, M은 Mn, Ti, Mg, 또는 Al)인 양극 재료.
  6. 제5항에 있어서,
    상기 양극활물질은 Li1+x[Niy(Co0.5M0.5)1-y]1-xO2(0≤x≤0.2, 0.3≤y≤0.99, M은 Mn, Ti, Mg, 또는 Al)인 양극 재료.
  7. 제2항에 있어서,
    상기 인산리튬층이 코팅된 양극활물질은 ToF-SIMS(Time of Flight Secondary Ion Mass Spectrometry) 분석에서 LixPOy +(x는 1 내지 3의 정수, y는 1 내지 4의 정수)가 검출되는 양극 재료.
  8. 양극활물질, 인산, 및 용매를 혼합하는 단계;
    상기 혼합물을 열처리하여, 인산리튬층이 코팅된 양극활물질을 얻는 단계를 포함하는 양극 재료 제조 방법.
  9. 제8항에 있어서,
    상기 양극활물질은 리튬-전이금속 산화물인 양극 재료 제조 방법.
  10. 제8항 또는 제9항에 있어서,
    상기 양극활물질은 입자의 형태를 갖는 양극 재료 제조 방법.
  11. 제8항에 있어서,
    상기 인산리튬층은 하기 반응식들 중 어느 하나에 의해 생성되는 양극 재료 제조 방법:
    [반응식 1]
    2H3PO4 + 3Li2O → 2Li3PO4 + 3H2O
    [반응식 2]
    H3PO4 + 3LiOH → Li3PO4 + 3H2O
    [반응식 3]
    2H3PO4 + 3Li2CO3→ 2Li3PO4 + 3CO2 + 3H2O
    [반응식 4]
    2H3PO4 + 3Li2C→ 2Li3PO4 + 3CH2
    상기 반응식들에서, Li2O, LiOH, Li2CO3, 또는 Li2C는 상기 양극활물질 상에서 잔류하는 리튬화합물이다.
  12. 제11항에 있어서,
    상기 혼합물을 열처리하기 전에,
    상기 용매를 증발시키는 단계를 포함하되,
    상기 증발 단계에서 상기 반응식들 1 내지 4 중 적어도 어느 하나에서 생성된 H2O, CO2, 또는 CH2도 증발되는 양극 재료 제조 방법.
  13. 제8항 또는 제12항에 있어서,
    상기 용매는 휘발성 용매인 양극 재료 제조 방법.
  14. 제13항에 있어서,
    상기 휘발성 용매는 에탄올, 아세톤, 또는 이들의 혼합물인 양극 재료 제조 방법.
  15. 제8항에 있어서,
    상기 인산리튬층은 5 내지 50nm의 두께를 갖는 양극 재료 제조 방법.
  16. 제8항에 있어서,
    상기 양극활물질에 대한 상기 인산의 무게 분율은 0.25 내지 1wt% 인 양극 재료 제조 방법.
  17. 제8항 또는 제9항에 있어서,
    상기 양극활물질은 LiCoO2, LiNiO2, Li(CoxNi1-x)O2(0.5≤x〈1), LiMn2O4, Li1+xMn2-y-z-wAlyCozMgwO4 (0.03〈x〈0.25 , 0.01〈y〈0.2 , 0.01〈z〈0.2 , 0≤w〈0.1 , x + y + z + w〈 0.4), Li4Mn5O12, 또는 Li1+x(Ni1-y-zCoyMz)1-xO2(0≤x≤0.2, 0.01≤y≤0.5, 0.01≤z≤0.5, 0〈y+z〈1, M은 Mn, Ti, Mg, 또는 Al)인 양극 재료 제조 방법.
  18. 제17항에 있어서,
    상기 양극활물질은 Li1+x[Niy(Co0.5M0.5)1-y]1-xO2(0≤x≤0.2, 0.3≤y≤0.99, M은 Mn, Ti, Mg, 또는 Al)인 양극 재료 제조 방법.
  19. 양극활물질과 상기 양극활물질의 표면 상에 코팅된 인산리튬층을 포함하는 양극 재료를 포함하는 양극;
    리튬이 탈삽입될 수 있는 음극활물질을 함유하는 음극 재료를 구비하는 음극; 및
    상기 양극과 상기 음극 사이에 배치된 전해질을 포함하는 리튬 이차전지.
  20. 제19항에 있어서,
    상기 양극활물질은 리튬-전이금속 산화물인 리튬 이차전지.
  21. 제19항 또는 제20항에 있어서,
    상기 양극활물질은 입자의 형태를 갖는 리튬 이차전지.
PCT/KR2014/007397 2013-08-08 2014-08-08 리튬 이차전지용 양극 재료 및 이를 포함하는 리튬 이차전지 WO2015020486A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/910,954 US10050261B2 (en) 2013-08-08 2014-08-08 Cathode material for lithium secondary battery, and lithium secondary battery containing same
EP14833735.5A EP3032619B1 (en) 2013-08-08 2014-08-08 Cathode material for lithium secondary battery, and lithium secondary battery containing same
CN201480053984.8A CN105594032B (zh) 2013-08-08 2014-08-08 用于锂二次电池的阴极材料以及含有该材料的锂二次电池
US15/141,768 US9444095B1 (en) 2013-08-08 2016-04-28 Method of making cathode active material, cathode and lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0094428 2013-08-08
KR20130094428 2013-08-08
KR10-2014-0102252 2014-08-08
KR1020140102252A KR101514605B1 (ko) 2013-08-08 2014-08-08 리튬 이차전지용 양극 재료 및 이를 포함하는 리튬 이차전지

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/910,954 A-371-Of-International US10050261B2 (en) 2013-08-08 2014-08-08 Cathode material for lithium secondary battery, and lithium secondary battery containing same
US15/141,768 Continuation US9444095B1 (en) 2013-08-08 2016-04-28 Method of making cathode active material, cathode and lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2015020486A1 true WO2015020486A1 (ko) 2015-02-12

Family

ID=52578150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007397 WO2015020486A1 (ko) 2013-08-08 2014-08-08 리튬 이차전지용 양극 재료 및 이를 포함하는 리튬 이차전지

Country Status (5)

Country Link
US (2) US10050261B2 (ko)
EP (1) EP3032619B1 (ko)
KR (1) KR101514605B1 (ko)
CN (1) CN105594032B (ko)
WO (1) WO2015020486A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105921343A (zh) * 2016-06-07 2016-09-07 程建聪 单体大容量锂离子电池制造方法和极片涂布设备
CN107342392A (zh) * 2016-01-18 2017-11-10 皓智环球有限公司 制备电池电极的方法
CN116154142A (zh) * 2023-04-20 2023-05-23 浙江鑫钠新材料科技有限公司 一种半固态锂/钠电池及其制备方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160351904A1 (en) * 2015-05-28 2016-12-01 Board Of Regents, The University Of Texas System Cathode additive for rechargeable lithium batteries
KR20170084995A (ko) * 2016-01-13 2017-07-21 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN107919460B (zh) * 2016-10-08 2020-09-11 宁德时代新能源科技股份有限公司 改性正极材料的制备方法及锂离子电池
WO2018068662A1 (en) * 2016-10-11 2018-04-19 Grst International Limited Cathode slurry for lithium ion battery
KR101886514B1 (ko) * 2016-10-17 2018-08-07 현대자동차주식회사 전고체 전지용 코어-쉘 구조의 전극 활물질의 제조방법
CN108232182A (zh) * 2016-12-13 2018-06-29 天津国安盟固利新材料科技股份有限公司 一种改性镍钴锰酸锂正极材料及其制备方法
CN108321359A (zh) * 2017-01-17 2018-07-24 宁德时代新能源科技股份有限公司 改性正极材料、其制备方法及锂离子电池
KR101941869B1 (ko) * 2017-02-21 2019-01-24 동아대학교 산학협력단 양극활물질의 잔류 리튬 제어방법
KR101951699B1 (ko) * 2017-07-24 2019-02-25 주식회사 포스코이에스엠 LNO 매트릭스 내 Li-O-P 화합물이 고르게 분포된 리튬-니켈 복합 산화물
KR102223721B1 (ko) * 2017-07-28 2021-03-05 주식회사 엘지화학 이차전지용 양극 및 이를 포함하는 리튬 이차전지
KR102237952B1 (ko) 2017-07-28 2021-04-08 주식회사 엘지화학 이차전지용 양극 및 이를 포함하는 리튬 이차전지
CN111213265B (zh) * 2017-10-20 2022-05-27 株式会社Lg化学 锂二次电池用正极活性材料、其制备方法以及包含其的锂二次电池用正极和锂二次电池
WO2019078689A2 (ko) * 2017-10-20 2019-04-25 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102298293B1 (ko) 2017-10-20 2021-09-07 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
JP6904892B2 (ja) * 2017-11-28 2021-07-21 トヨタ自動車株式会社 正極材料とこれを用いたリチウム二次電池
KR102297246B1 (ko) 2017-11-30 2021-09-03 주식회사 엘지에너지솔루션 리튬 이차전지용 양극 및 그를 포함하는 리튬 이차전지
CN109950530A (zh) * 2017-12-21 2019-06-28 天津国安盟固利新材料科技股份有限公司 具有提高电性能的高镍三元正极材料及其制备方法
KR102170280B1 (ko) * 2017-12-28 2020-10-26 세종대학교산학협력단 표면이 안정한 이차전지용 양극 재료 및 그의 제조방법
CN108110252A (zh) * 2018-01-10 2018-06-01 香河昆仑化学制品有限公司 一种耐高温的锰酸锂复合正极材料及其合成方法
JP7024505B2 (ja) * 2018-03-02 2022-02-24 トヨタ自動車株式会社 正極活物質粒子の製造方法、正極ペーストの製造方法、正極板の製造方法及びリチウムイオン二次電池の製造方法
KR102306441B1 (ko) * 2018-05-15 2021-09-28 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN109244416A (zh) * 2018-09-29 2019-01-18 北京泰丰先行新能源科技有限公司 一种提高锂离子电池高镍三元材料电化学性能的方法
KR20200136240A (ko) * 2019-05-27 2020-12-07 주식회사 엘지화학 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
CN112086638B (zh) * 2019-06-12 2021-12-21 中国科学院化学研究所 一种利用含磷有机物降低正极材料碱性的方法
CN112750989A (zh) * 2019-10-29 2021-05-04 北京大学 一种使用锂离子导体对锂离子电池电极材料进行改性的方法
JP7207288B2 (ja) * 2019-12-20 2023-01-18 トヨタ自動車株式会社 複合活物質の製造方法
CN113328069A (zh) * 2021-05-11 2021-08-31 电子科技大学 一种磷酸锂包覆的锂离子电池高镍正极材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059492A (ja) * 2001-08-17 2003-02-28 Matsushita Electric Ind Co Ltd リチウム二次電池およびその製造方法
JP3736045B2 (ja) * 1997-06-19 2006-01-18 松下電器産業株式会社 全固体リチウム電池
KR20060119382A (ko) 2005-05-20 2006-11-24 브이케이 주식회사 이종 금속 산화물이 코팅된 리튬 이차전지용 양극 활물질및 이를 포함한 리튬 이차 전지
KR100805005B1 (ko) * 2004-08-17 2008-02-20 주식회사 엘지화학 안전성 및 성능이 향상된 리튬 이차 전지

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429812C (zh) * 2003-12-05 2008-10-29 日产自动车株式会社 非水电解质锂离子电池的正极材料及采用它的电池
JP5135664B2 (ja) * 2003-12-05 2013-02-06 日産自動車株式会社 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
US20070259271A1 (en) 2004-12-13 2007-11-08 Tetsuo Nanno Laminate Including Active Material Layer and Solid Electrolyte Layer, and All Solid Lithium Secondary Battery Using the Same
EP2375477B1 (en) * 2009-01-06 2016-12-21 LG Chem, Ltd. Positive electrode active material for lithium secondary battery
US20130108920A1 (en) 2011-11-01 2013-05-02 Isalah O. Oladeji Composite electrodes for lithium ion battery and method of making
KR20130066326A (ko) 2011-12-12 2013-06-20 어플라이드 머티어리얼스, 인코포레이티드 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN102496710B (zh) * 2011-12-31 2014-01-08 湖南杉杉户田新材料有限公司 一种镍基多元正极材料及其制备方法
CN103151493A (zh) * 2013-03-12 2013-06-12 北京理工大学 一种包覆磷酸锂的磷酸铁锂电极及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3736045B2 (ja) * 1997-06-19 2006-01-18 松下電器産業株式会社 全固体リチウム電池
JP2003059492A (ja) * 2001-08-17 2003-02-28 Matsushita Electric Ind Co Ltd リチウム二次電池およびその製造方法
KR100805005B1 (ko) * 2004-08-17 2008-02-20 주식회사 엘지화학 안전성 및 성능이 향상된 리튬 이차 전지
KR20060119382A (ko) 2005-05-20 2006-11-24 브이케이 주식회사 이종 금속 산화물이 코팅된 리튬 이차전지용 양극 활물질및 이를 포함한 리튬 이차 전지

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107342392A (zh) * 2016-01-18 2017-11-10 皓智环球有限公司 制备电池电极的方法
CN105921343A (zh) * 2016-06-07 2016-09-07 程建聪 单体大容量锂离子电池制造方法和极片涂布设备
CN105921343B (zh) * 2016-06-07 2019-03-08 程建聪 单体大容量锂离子电池制造方法和极片涂布设备
CN116154142A (zh) * 2023-04-20 2023-05-23 浙江鑫钠新材料科技有限公司 一种半固态锂/钠电池及其制备方法

Also Published As

Publication number Publication date
CN105594032B (zh) 2019-08-23
US9444095B1 (en) 2016-09-13
KR101514605B1 (ko) 2015-04-24
KR20150018752A (ko) 2015-02-24
EP3032619B1 (en) 2019-10-09
EP3032619A4 (en) 2017-09-13
US20160197346A1 (en) 2016-07-07
US10050261B2 (en) 2018-08-14
US20160248079A1 (en) 2016-08-25
CN105594032A (zh) 2016-05-18
EP3032619A1 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2015020486A1 (ko) 리튬 이차전지용 양극 재료 및 이를 포함하는 리튬 이차전지
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018135915A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2018143753A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019078503A1 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020111543A1 (ko) 팔면체 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2019045399A2 (ko) 리튬 이차전지
WO2018084652A2 (ko) 리튬이온이차 전지
WO2018236168A1 (ko) 리튬 이차전지
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019004699A1 (ko) 리튬 이차전지
WO2020111545A1 (ko) 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2021015511A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질
WO2022211589A1 (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
WO2020091428A1 (ko) 리튬 이차전지
WO2021256829A1 (ko) 리튬 금속 전극의 제조 방법 및 리튬 금속 이차전지
WO2021141463A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020171367A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2020171366A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2019093864A2 (ko) 리튬 코발트계 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 이차 전지
WO2022260383A1 (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
WO2022092906A1 (ko) 양극 활물질 및 이의 제조방법
WO2022255665A1 (ko) 양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리
WO2021020864A1 (ko) 리튬 이차전지용 전해질 첨가제, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14910954

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014833735

Country of ref document: EP