US20160248079A1 - Method of making cathode active material, cathode and lithium secondary battery - Google Patents
Method of making cathode active material, cathode and lithium secondary battery Download PDFInfo
- Publication number
- US20160248079A1 US20160248079A1 US15/141,768 US201615141768A US2016248079A1 US 20160248079 A1 US20160248079 A1 US 20160248079A1 US 201615141768 A US201615141768 A US 201615141768A US 2016248079 A1 US2016248079 A1 US 2016248079A1
- Authority
- US
- United States
- Prior art keywords
- cathode
- active material
- cathode active
- particles
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000006182 cathode active material Substances 0.000 title claims abstract description 118
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 43
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229910001386 lithium phosphate Inorganic materials 0.000 claims abstract description 116
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 claims abstract description 116
- 239000010406 cathode material Substances 0.000 claims abstract description 29
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 77
- 238000000034 method Methods 0.000 claims description 42
- 238000006243 chemical reaction Methods 0.000 claims description 30
- 239000002245 particle Substances 0.000 claims description 30
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 24
- 239000003792 electrolyte Substances 0.000 claims description 23
- 239000002904 solvent Substances 0.000 claims description 20
- 229910032387 LiCoO2 Inorganic materials 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- 239000004020 conductor Substances 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 7
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 6
- 229910005286 Li(CoxNi1−x)O2 Inorganic materials 0.000 claims description 5
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 5
- 229910011981 Li4Mn5O12 Inorganic materials 0.000 claims description 5
- 229910003005 LiNiO2 Inorganic materials 0.000 claims description 5
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 claims description 5
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 claims description 5
- 238000007669 thermal treatment Methods 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims 14
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 abstract description 8
- 238000002360 preparation method Methods 0.000 description 104
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 100
- 239000011572 manganese Substances 0.000 description 81
- 239000000843 powder Substances 0.000 description 56
- 239000010410 layer Substances 0.000 description 33
- 230000000052 comparative effect Effects 0.000 description 30
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 28
- 239000011248 coating agent Substances 0.000 description 16
- 238000000576 coating method Methods 0.000 description 16
- 150000002642 lithium compounds Chemical class 0.000 description 16
- 229910019142 PO4 Inorganic materials 0.000 description 15
- 238000007599 discharging Methods 0.000 description 14
- -1 for example Substances 0.000 description 12
- 239000012634 fragment Substances 0.000 description 10
- 230000014759 maintenance of location Effects 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 9
- 229910001416 lithium ion Inorganic materials 0.000 description 9
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 239000011255 nonaqueous electrolyte Substances 0.000 description 7
- 238000005011 time of flight secondary ion mass spectroscopy Methods 0.000 description 7
- 238000002042 time-of-flight secondary ion mass spectrometry Methods 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 238000003917 TEM image Methods 0.000 description 6
- 239000006183 anode active material Substances 0.000 description 6
- ARNWQMJQALNBBV-UHFFFAOYSA-N lithium carbide Chemical compound [Li+].[Li+].[C-]#[C-] ARNWQMJQALNBBV-UHFFFAOYSA-N 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 239000007784 solid electrolyte Substances 0.000 description 6
- 229910012258 LiPO Inorganic materials 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000010405 anode material Substances 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 3
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910021382 natural graphite Inorganic materials 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009831 deintercalation Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 239000003759 ester based solvent Substances 0.000 description 2
- 239000004210 ether based solvent Substances 0.000 description 2
- 229940117927 ethylene oxide Drugs 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 2
- 229910003480 inorganic solid Inorganic materials 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 239000005453 ketone based solvent Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- 229910001947 lithium oxide Inorganic materials 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- SWVGZFQJXVPIKM-UHFFFAOYSA-N n,n-bis(methylamino)propan-1-amine Chemical compound CCCN(NC)NC SWVGZFQJXVPIKM-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000003880 polar aprotic solvent Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000010345 tape casting Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- YJLUBHOZZTYQIP-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=N2 YJLUBHOZZTYQIP-UHFFFAOYSA-N 0.000 description 1
- WLAMNBDJUVNPJU-UHFFFAOYSA-N 2-methylbutyric acid Chemical compound CCC(C)C(O)=O WLAMNBDJUVNPJU-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- YLYCAGPNDPLZEX-UHFFFAOYSA-N 4-methyl-1,3-dioxolan-2-one;1-methylpyrrolidin-2-one Chemical compound CC1COC(=O)O1.CN1CCCC1=O YLYCAGPNDPLZEX-UHFFFAOYSA-N 0.000 description 1
- 229910001558 CF3SO3Li Inorganic materials 0.000 description 1
- 239000006245 Carbon black Super-P Substances 0.000 description 1
- 229910019549 CoyMzO2 Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical group COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910008969 Li2PO2 Inorganic materials 0.000 description 1
- 229910007558 Li2SiS3 Inorganic materials 0.000 description 1
- 229910012722 Li3N-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012716 Li3N-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012734 Li3N—LiI—LiOH Inorganic materials 0.000 description 1
- 229910013043 Li3PO4-Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910013035 Li3PO4-Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012810 Li3PO4—Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910012797 Li3PO4—Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012047 Li4SiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012075 Li4SiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012057 Li4SiO4—LiI—LiOH Inorganic materials 0.000 description 1
- 229910010739 Li5Ni2 Inorganic materials 0.000 description 1
- 229910003253 LiB10Cl10 Inorganic materials 0.000 description 1
- 229910000552 LiCF3SO3 Inorganic materials 0.000 description 1
- 229910012346 LiSiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012345 LiSiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012348 LiSiO4—LiI—LiOH Inorganic materials 0.000 description 1
- 229910014886 LixPOy Inorganic materials 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910006145 SO3Li Inorganic materials 0.000 description 1
- BEKPOUATRPPTLV-UHFFFAOYSA-N [Li].BCl Chemical compound [Li].BCl BEKPOUATRPPTLV-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- PNEFIWYZWIQKEK-UHFFFAOYSA-N carbonic acid;lithium Chemical compound [Li].OC(O)=O PNEFIWYZWIQKEK-UHFFFAOYSA-N 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052909 inorganic silicate Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910001547 lithium hexafluoroantimonate(V) Inorganic materials 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- IDBFBDSKYCUNPW-UHFFFAOYSA-N lithium nitride Chemical compound [Li]N([Li])[Li] IDBFBDSKYCUNPW-UHFFFAOYSA-N 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910001537 lithium tetrachloroaluminate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- HSFDLPWPRRSVSM-UHFFFAOYSA-M lithium;2,2,2-trifluoroacetate Chemical compound [Li+].[O-]C(=O)C(F)(F)F HSFDLPWPRRSVSM-UHFFFAOYSA-M 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical class CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present disclosure relates to a secondary battery, and particularly, to a lithium secondary battery.
- Secondary batteries are batteries which can be charged as well as discharged and thus repetitively used.
- a representative lithium secondary battery of the secondary batteries is operated by the principle in which lithium ions included in a cathode active material of a cathode are moved to an anode through an electrolyte and inserted into a layered structure of a anode active material (charging), and the lithium ions inserted into the layered structure of the anode active material return to the cathode (discharging).
- Such a lithium secondary battery is now commercially available to be used as a small power supply for a mobile phone, a notebook computer, etc., is also expected to be used as a large power supply for a hybrid car, etc., and is estimated that its demand will increased.
- a composite metal oxide generally used as the cathode active material in the lithium secondary battery may be degraded by the reaction with the electrolyte.
- a cathode active material coated with a heterometal oxide is disclosed.
- a lithium compound remaining on a surface of a cathode active material may produce a reaction product capable of increasing a surface resistance by the reaction with an electrolyte.
- the cathode material for a lithium secondary battery includes a cathode active material and a lithium phosphate layer formed on a surface of the cathode active material.
- Another aspect of the present invention provides a method of manufacturing a lithium cathode material for a lithium secondary battery.
- a cathode active material, phosphoric acid, and a solvent are mixed together.
- the mixture is thermally treated to obtain a cathode active material coated with a lithium phosphate layer.
- the lithium secondary battery has a cathode composed of a cathode material including a cathode active material and a lithium phosphate layer formed on a surface of the cathode active material.
- An anode composed of an anode material containing an anode active material in which intercalation and deintercalation of lithium can occur is disposed.
- An electrolyte is disposed between the cathode and the anode.
- the cathode active material may be a lithium-transition metal oxide.
- the cathode active material may be LiCoO 2 , LiNiO 2 , Li(Co x Ni 1 ⁇ x )O 2 (0.5 ⁇ x ⁇ 1), LiMn 2 O 4 , Li 1+x Mn 2 ⁇ y ⁇ z ⁇ w Al y Co z Mg w O 4 (0.03 ⁇ x ⁇ 0.25, 0.01 ⁇ y ⁇ 0.2, 0.01 ⁇ z ⁇ 0.2, 0 ⁇ w ⁇ 0.1, and x+y+z+w ⁇ 0.4), Li 4 Mn 5 O 12 , or Li 1+x (Ni 1 ⁇ y ⁇ z Co y M z ) 1 ⁇ x O 2 (0 ⁇ x ⁇ 0.2, 0.01 ⁇ y ⁇ 0.5, 0.01 ⁇ z ⁇ 0.5, 0 ⁇ y+z ⁇ 1, and M is Mn, Ti, Mg or Al).
- the cathode active material may be Li 1+x [Ni y (Co 0.5 M 0.5 ) 1 ⁇ y ] 1 ⁇ x O 2 (0 ⁇ x ⁇ 0.2, 0.3 ⁇ y ⁇ 0.99, and M is Mn, Ti, Mg or Al),
- the cathode active material may have a particle form.
- the lithium phosphate layer may have a thickness of 5 to 50 mm
- a weight percent of the phosphoric acid with respect to the cathode active material may be 0.25 to 1 wt %.
- LiPO + fragments may be detected through time of flight secondary ion mass spectrometry (ToF-SIMS).
- the lithium phosphate layer may be produced by any one of the following reaction formulas.
- Li 2 O, LiOH, Li 2 CO 3 or Li 2 C may be a lithium compound remaining on the cathode active material.
- the solvent Before the thermal treatment of the mixture, the solvent may be evaporated. In the evaporation operation, H 2 O, CO 2 or CH 2 produced by at least one of Reaction Formulas 1 to 4 may also be evaporated.
- the solvent may be a volatile solvent.
- the volatile solvent may be ethanol, acetone, or a mixture thereof.
- a lithium phosphate layer is formed on a surface of a cathode active material, and can serve to protect the cathode active material without inhibiting movement of lithium ions.
- Degradation of the cathode active material caused by a side reaction with an electrolyte can be prevented by consuming a remaining lithium compound in the process of forming the lithium phosphate layer, and the formed lithium phosphate layer can protect the cathode active material without interfering with the movement of the lithium ions.
- FIG. 1 is a flowchart illustrating a method of manufacturing a cathode according to an embodiment of the present invention.
- FIG. 2 is a graph showing an XRD analysis result for lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder according to Preparation Example 1 and uncoated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder.
- FIG. 3 is an image showing the result of energy dispersive spectroscopy (EDS) atomic analysis for the lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder according to Preparation Example 1.
- EDS energy dispersive spectroscopy
- FIG. 4 is a graph showing the result of time of flight secondary ion mass spectrometry (ToF-SIMS) performed to detect LiPO + fragments of the lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder according to Preparation Example 1 and uncoated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder.
- ToF-SIMS time of flight secondary ion mass spectrometry
- FIG. 5 is a graph, showing the ToF-SIMS result performed to detect the Li 2 OH + fragments of the lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder according to Preparation Example 1 and uncoated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder.
- FIG. 6 is a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 9 and Comparative Example 1.
- FIG. 7 is a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 11 and Comparative Example 3.
- FIG. 8 is a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 12 and Comparative Example 4.
- FIG. 9 is a graph showing the variation in discharge capacity and number of cycles for the half cells according to Preparation Example 9 and Comparative Example 1.
- FIGS. 10 a and 10 b are a graph showing the impedance characteristic, that is, a Cole-Cole plot of alternating current impedance of the half cells according to Preparation Example 9 and Comparative Example 1.
- FIG. 11 a shows transmission electron microscope (TEM) images of a surface of the lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder prepared in Preparation Example 1 before and after charge/discharge tests
- FIG. 11 b shows TEM images of a surface of uncoated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder before and after charge/discharge tests.
- TEM transmission electron microscope
- FIG. 12 shows a TEM image of a surface of lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder prepared in Preparation Example 5 and a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 13 and Comparative Example 1:
- FIG. 13 is a TEM image of a surface of lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder prepared in Preparation Example 8 and a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 16 and Comparative Example 1.
- FIG. 14 is a graph showing the variation of discharge capacity and number of cycles for the half cells according to Preparation Examples 9, and 13 to 16 and Comparative Example 1.
- first layer is disposed “on” a second layer” means that these layers are in direct contact with each other, and a third layer(s) is/are disposed between these layers.
- the lithium secondary battery according to an embodiment of the present invention includes a cathode, an anode containing an anode active material in which extraction or insertion of lithium can occur, and an electrolyte disposed between the electrodes.
- the cathode of the lithium secondary battery according to an embodiment of the present invention contains a cathode material including a cathode active material and a lithium phosphate layer formed on a surface thereof.
- the lithium phosphate layer is formed on the surfaces of particles of the cathode active material, and the cathode or cathode material may include the particles of the cathode active material, which are coated with the lithium phosphate layer.
- the cathode active material may be a lithium-transition metal oxide.
- the lithium-transition metal oxide may be, for example, LiCoO 2 , LiNiO 2 , Li(Co x Ni 1 ⁇ x )O 2 (0.5 ⁇ x ⁇ 1), LiMn 2 O 4 , Li 1+x Mn 2 ⁇ y ⁇ z ⁇ w Al y Co z Mg w O 4 (0.03 ⁇ x ⁇ 0.25, 0.01 ⁇ y ⁇ 0.2, 0.01 ⁇ z ⁇ 0.2, 0 ⁇ w ⁇ 0.1, and x+y+z+w ⁇ 0.4), Li 4 Mn 5 O 12 , or Li 1+x (Ni 1 ⁇ y ⁇ z Co y M z O 2 (0 ⁇ x ⁇ 0.2, 0.01 ⁇ z ⁇ 0.5, 0 ⁇ y+z ⁇ 1, and M is Mn, Ti, Mg or Al).
- the present invention is not limited thereto.
- the lithium-transition metal oxide may be Li 1+x (Ni 1 ⁇ y ⁇ z Co y M z ) 1 ⁇ x O 2 (0 ⁇ x ⁇ 0.2, 0.01 ⁇ y ⁇ 0.5, 0.01 ⁇ z ⁇ 0.5, 0 ⁇ y+z ⁇ 1, and M is Mn, Ti, Mg or Al) among the above, which reduces a content of a rare and high-priced metal, that is, Co, and exhibits high thermal stability and capacity, and excellent reversibility.
- the cathode active material which is a lithium-transition metal oxide
- the cathode active material may be Li 1+x [Ni y (Co 0.5 M 0.5 ) 1 ⁇ y ] 1 ⁇ x O 2 (0 ⁇ x ⁇ 0.2, 0.3 ⁇ y ⁇ 0.99, and M is Mn, Ti, Mg or Al).
- the lithium phosphate layer formed on the surface of the cathode active material particle may have a thickness of about 5 to 50 nm, for example, about 5 to 20 nm. Such a lithium phosphate layer may protect the surface of the cathode active material particles to prevent degradation.
- FIG. 1 is a flowchart illustrating a method of manufacturing a cathode according to an embodiment of the present invention.
- a cathode active material may be prepared (S1).
- the cathode active material may be cathode active material particles formed in a particle form. Particularly, when metal oxides or metal compounds may be mixed and sintered, thereby obtaining the cathode active material.
- the metal compounds may be metal salts that become metal oxides when degraded and/or oxidized.
- the cathode active material may be the lithium-transition metal oxide described above. Afterward, additionally, the cathode active material may be ground. Here, it is preferable that the cathode active material is not in contact with water.
- the cathode active material, phosphoric acid (H 3 PO 4 ), and a solvent may be mixed and thermally treated, thereby obtaining a lithium phosphate-coated cathode active material, particularly, lithium phosphate-coated cathode active material particles (S3).
- a lithium phosphate-coated cathode active material particularly, lithium phosphate-coated cathode active material particles (S3).
- at least one lithium compound for example, lithium oxide (Li 2 O), lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ) or lithium carbide (Li2C), that does not form an oxide with a transition metal and thus remains may exist on a surface of the cathode active material, which is the lithium-transition metal oxide.
- the residual lithium compound may react with a specific material in the electrolyte in the secondary battery, and a reaction product obtained thereby may be accumulated on the surface of the cathode active material.
- the reaction product may interfere with the movement of lithium ions.
- the residual lithium compound may react with HF in the electrolyte to produce LiF.
- lithium phosphate when the cathode active material is mixed with phosphoric acid (H 3 PO 4 ) and then thermally treated, the lithium compound remaining on the surface of the cathode active material may react with phosphoric acid (H 3 PO 4 ), resulting in lithium phosphate.
- the residual lithium compound is lithium oxide (Li 2 O), lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), or lithium carbide (Li 2 C)
- lithium phosphate when the residual lithium compound is lithium oxide (Li 2 O), lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), or lithium carbide (Li 2 C), lithium phosphate may be produced by the following reaction formulas.
- Li 2 O, LiOH, Li 2 CO 3 or Li 2 C may be a lithium compound remaining on, the cathode active material.
- the surface of the cathode active material may be coated with a lithium phosphate layer.
- the lithium phosphate layer may have a thickness of 5 to 100 nm, and specifically, 5 to 50 nm.
- the lithium phosphate layer may serve to protect the cathode active material without interfering with the movement of lithium ions.
- the degradation of the cathode active material caused by a side reaction with an electrolyte may be prevented by consuming the residual lithium compound in the operation of forming the lithium phosphate layer, and the formed lithium phosphate layer may protect the cathode active material without interfering with the movement of the lithium ions.
- a specific method for obtaining the lithium phosphate layer-coated cathode active material is as follows.
- a phosphoric acid solution may be prepared by adding phosphoric acid to a solvent and sufficiently mixing the mixture, and the cathode active material may be added to the phosphoric acid solution.
- the solvent may be a volatile solvent, for example, ethanol, acetone, or a mixture thereof.
- the solvent may be anhydrous ethanol.
- the volatile solvent When the volatile solvent is evaporated, a by-product produced during the formation of the lithium phosphate (H 2 O, CO 2 , or CH 2 in the-above reaction formulas) may be evaporated with the volatile solvent.
- the volatile solvent may be evaporated at 60 to 200° C.
- the thermal, treatment may be performed at about 400 to 700° C. for about 3 to 5 hours.
- a lithium phosphate-coated cathode active material a conductive material, and a binder are mixed, thereby obtaining a cathode material (S5).
- the conductive material may be a carbon material such as natural graphite, artificial graphite, cokes, carbon black, carbon nanotubes, or graphene.
- the binder may include a thermoplastic resin, for example, a fluorine resin such as polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene, a vinylidene fluoride-based copolymer or hexafluoropropylene, and/or a polyolefin resin such as polyethylene or polypropylene.
- the cathode material may be formed on a cathode collector to form a cathode (S7).
- the cathode collector may be a conductive material such as Al, Ni, or stainless steel.
- pressure molding; or a method of preparing a paste using an organic solvent, applying the paste onto the collector, and fixing the paste by pressing may be used.
- the organic solvent may be a polar aprotic solvent: an amine-based solvent such as N,N-dimethylaminopropylamine, or diethyltriamine; an ether-based solvent such as ethyleneoxide or tetrahydrofuran; a ketone-based solvent such as methylethylketone; an ester-based solvent such as methylacetate; or dimethylacetamide or N-methyl-2-pyrrolidone.
- the application of the paste on the cathode collector may be performed by, for example, gravure coating, slit dye coating, knife coating, or spray coating.
- An anode active material may be prepared using a metal, a metal alloy, a metal oxide, a Metal fluoride, a metal sulfide, or a carbon material such as natural graphite, artificial graphite, cokes, carbon black, carbon nanotubes, or graphene, in which the intercalation and deintercalation of lithium ions or a conversion reaction may occur.
- An anode material may be obtained by mixing the anode active material, a conductive material, and a binder.
- the conductive material may be a carbon material such as natural graphite, artificial graphite, cokes, carbon black, carbon nanotubes, or graphene.
- the binder may include a thermoplastic resin, for example, a fluoride resin such as polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene, a vinylidene fluoride-based copolymer, or hexafluoropropylene, and/or a polyolefin resin such as polyethylene or polypropylene.
- An anode may be formed by applying the anode material onto the anode collector.
- the anode collector may be a conductive material such as Al, Ni, Cu, or stainless steel.
- pressure molding or a method of preparing a paste using an organic solvent, applying the paste onto the collector, and fixing the paste by pressing may be used.
- the organic solvent may be a polar aprotic solvent: an amine-based solvent such as N,N-dimethylaminopropylamine, or diethyltriamine; an ether-based solvent such as ethyleneoxide or tetrahydrofuran; a ketone-based solvent such as methylethylketone; an ester-based solvent such as methylacetate; or dimethylacetamide or N-methyl-2-pyrrolidone.
- the application of the paste on the anode collector may be performed by, for example gravure coating, slit dye coating, knife coating, or spray coating.
- An electrolyte may contain a lithium salt and a non-aqueous electrolyte.
- the lithium salt may be a material suitable for being dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, chloroboran lithium, lower aliphatic carbonic acid lithium, or tetraphenyl lithium borate.
- the non-aqueous electrolyte may be a non-aqueous electrolyte solution, an organic solid electrolyte, or an inorganic solid electrolyte.
- the non-aqueous electrolyte solution may be an aprotic organic solvent, for example, N-methyl-2-pyrrolidinone propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyrolactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolan, formamide, dimethylformamide, dioxolan, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxy methane, a dioxolan derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2
- the organic solid electrolyte may be, for example, a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphoric ester polymer, a poly agitation lysine, a polyester sulfide, a polyvinyl alcohol, a poly vinylidene fluoride, or a polymer containing an ionic dissociable group.
- the inorganic solid electrolyte may be, for example, a nitride, halide or sulfide of Li such as Li 3 N, LiI, Li 5 NI 2 , Li 3 N—LiI—LiOH LiSiO 4 , LiSiO 4 —LiI—LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 —LiI—LiOH, or Li 3 PO 4 —Li 2 S—SiS 2 .
- Li 3 N, LiI, Li 5 NI 2 Li 3 N—LiI—LiOH LiSiO 4 , LiSiO 4 —LiI—LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 —LiI—LiOH, or Li 3 PO 4 —Li 2 S—SiS 2 .
- the stability of the secondary battery may be further increased using such a solid electrolyte.
- the solid, electrolyte may serve as a separator which will be described below, and in this case, a separator may not be required.
- a separator may be disposed between the cathode and the anode.
- a separator may be a material having a form of a porous film composed of a material such as a polyolefin resin such as polyethylene or polypropylene, a fluorine resin, or a nitrogen-containing aromatic polymer, a non-woven fabric, or a woven fabric.
- the thickness of the separator is preferably small because of a high volume energy density of a battery and a small internal resistance.
- the thickness of the separator may be, generally, about 5 to 200 ⁇ m, and particularly, 5 to 40 ⁇ m.
- a secondary battery may be manufactured by forming an electrode group by sequentially stacking the cathode, the separator, and the anode, accommodating the electrode group, which is rolled, if needed, into a battery can, and immersing the electrode group in the electrolyte.
- a secondary battery may be manufactured by forming an electrode group by stacking the cathode, the solid electrolyte, and the anode, and rolling the electrode group, if needed, and accommodating the electrode group in a battery can.
- Phosphoric acid (H 3 PO 4 ) was quantified in a weight fraction of 0.25 wt % based on 1 g of a cathode active material, Li[Ni 0.6 Co 0.2 ]O 2 .
- the quantified phosphoric acid was put into 300 ml of anhydrous ethanol (CH 3 CH 2 OH). Afterward, the phosphoric acid and the anhydrous ethanol were sufficiently mixed by stirring with an impeller at 30° C., and 10 g of Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 was added to the mixed solution. Afterward, while the temperature was increased until the solvent, anhydrous ethanol, was completely evaporated, the resultant solution was stirred to continuously react. After the solvent was completely evaporated, the resultant solution was thermally treated at about 400° C. or higher for about 3 or more hours, thereby preparing a lithium phosphate-coated cathode active material.
- a lithium phosphate-coated cathode active material was prepared by substantially the same method as Preparation Example 1, except that Li[Ni 0.7 Co 0.2 Mn 0.1 ]O 2 was used as a cathode active material.
- Li[Ni 0.7 Co 0.2 Mn 0.1 ]O 2 based on 1 g of the cathode active material, Li[Ni 0.7 Co 0.2 Mn 0.1 ]O 2 , phosphoric acid (H 3 PO 4 ) was quantified in a weight fraction of 0.25 wt %, and 10 g of Li[Ni 0.7 Co 0.2 Mn 0.1 ]O 2 was added to a phosphoric acid-anhydrous ethanol solution, which was mixed by stirring at 30° C.
- a lithium phosphate-coated cathode active material was prepared by substantially the same method as Preparation Example 1, except that Li[Ni 0.8 Co 0.1 Al 0.1 ]O 2 was used as a cathode active material.
- Li[Ni 0.8 Co 0.1 Al 0.1 ]O 2 was used as a cathode active material.
- phosphoric acid (H 3 PO 4 ) was quantified in a weight fraction of 0.25 wt %, and 10 g of Li[Ni 0.8 Co 0.1 Al 0.1 ]O 2 was added to a phosphoric acid-anhydrous ethanol solution, which was mixed by stirring at 30° C.
- a lithium phosphate-coated cathode active material was prepared by substantially the same method as Preparation Example 1, except that LiCoO 2 was used as a cathode active material.
- LiCoO 2 based on 1 g of the cathode active material, LiCoO 2 , phosphoric acid (H 3 PO 4 ) was quantified in a weight fraction of 0.25 wt %, and 10 g of LiCoO 2 was added to a phosphoric acid-anhydrous ethanol solution, which was mixed by stirring at 30° C.
- a lithium phosphate-coated cathode active material was prepared by substantially the same method as Preparation Example 1, except that phosphoric acid (H 3 PO 4 ) was quantified in a weight fraction of 0.1 wt % based on 1 g of a cathode active material, Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 .
- a lithium phosphate-coated cathode active material was prepared by substantially the same method as Preparation Example 1, except that phosphoric acid (H 3 PO 4 ) was quantified in a weight fraction of 1 wt % based on 1 g of a cathode active material, Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 .
- a lithium phosphate-coated cathode active material was prepared by substantially the same method as Preparation Example 1, except that phosphoric acid (H 3 PO 4 ) was quantified in a weight fraction of 2 wt % based on 1 g of a cathode active material, Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 .
- a lithium phosphate-coated cathode active material was prepared by substantially the same method as Preparation Example 1, except that phosphoric acid (H 3 PO 4 ) was quantified in a weight fraction of 5 wt % based on 1 g of a cathode active material, Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 .
- a cathode was formed by forming a cathode active material slurry composition which was formed by mixing the lithium phosphate-coated cathode active material prepared in any one of Preparation Examples 1 to 8, Super-P carbon black and acetylene black as conductive materials, and a binder (poly vinylidene fluoride; PVDF) in a weight fraction of 8:0.5:0.5:1 in an organic solvent (N-methyl-2-pyrrolidone (NMP)), and coating and drying the composition on an aluminum foil collector.
- PVDF poly vinylidene fluoride
- NMP N-methyl-2-pyrrolidone
- a CR2032 coin battery was manufactured by a conventional process of manufacturing a lithium secondary battery using an anode, which is a lithium metal, a non-aqueous electrolyte solution in which 1.15 moles of LiPF 6 as an electrolyte was dissolved in a non-aqueous electrolyte solvent, which is a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio of 3:7), and a separator disposed between the cathode and the anode.
- anode which is a lithium metal
- a non-aqueous electrolyte solution in which 1.15 moles of LiPF 6 as an electrolyte was dissolved in a non-aqueous electrolyte solvent, which is a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio of 3:7)
- a separator disposed between the cathode and the anode.
- a cathode and a half cell were manufactured by substantially the same method as Preparation Example 9, except that non-lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 was used as a cathode active material.
- a cathode and a half cell were manufactured by substantially the same method as Preparation Example 10, except non-lithium phosphate-coated Li[Ni 0.7 Co 0.2 Mn 0.1 ]O 2 was used as a cathode active material.
- a cathode and a half cell were manufactured by substantially the same method as Preparation Example 11, except non-lithium phosphate-coated Li[Ni 0.8 Co 0.1 Al 0.1 ]O 2 was used as a cathode active material.
- a cathode and a half cell were manufactured by substantially the same method as Preparation Example 12, except non-lithium phosphate-coated LiCoO 2 was used as a cathode active material.
- FIG. 2 is a graph showing an XRD analysis result for lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder according to Preparation Example 1 and uncoated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder.
- lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder (or particles) has the same crystal structure as non-phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder (or particles). From such a result, it can be seen that a lithium phosphate coating layer does not have a crystal structure.
- FIG. 3 is an image showing the result of energy dispersive spectroscopy (EDS) atomic analysis for the lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder according to Preparation Example 1.
- EDS energy dispersive spectroscopy
- FIG. 4 is a graph showing, the result of ToF-SIMS performed to detect LiPO + fragments of the lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder according to Preparation Example 1 and uncoated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder.
- LiPO + fragments indicating lithium phosphate are detected in lithium phosphate (Li 3 PO 4 )-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder (or particles), but are not detected in non-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder (or particles).
- various Li x PO y + fragments indicating lithium phosphate x may be 1 to 3, particularly, an integer from 1 to 3, and y may be 1 to 4, particularly, an integer from 1 to 4), for example, Li 2 PO 2 + , Li 2 PO + , LiPO 2 + ; etc. may be detected.
- FIG. 5 is a graph showing the ToF-SIMS result performed to detect Li 2 OH + fragments of the lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder according to Preparation Example 1 and uncoated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder.
- the detection of Li 2 OH + fragments can allow the confirmation of the presence of LiOH in the lithium compounds remaining on the surface of the Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder.
- Table 2 shows the amounts of lithium remaining on a surface of the cathode active material before and after the lithium phosphate coating in the processes of preparing the lithium phosphate-coated cathode active materials according to Preparation Examples 1 to 4.
- the amount of the residual lithium shown in Table 2 is an average value of the values measured by a Warder method five times based on 50 g.
- FIG. 6 is a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 9 and Comparative Example 1.
- charging and discharging were performed in an electric potential range of 3.0 to 4.3 V at a current density of 170 mA/g for a total of 100 cycles.
- FIG. 7 is a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 11 and Comparative Example 3.
- charging and discharging were performed in an electric potential range of 3.0 to 4.3 V at a current density of 190 mA/g for a total of 100 cycles.
- a half cell according to Comparative Example 3 using uncoated Li[Ni 0.8 Co 0.1 Al 0.1 ]O 2 powder as a cathode active material is greatly reduced as the number of charge/discharge cycles is increased (67.8% at 100 cycles).
- n can be seen that a half cell according to Preparation Example 11 using lithium phosphate-coated Li[Ni 0.8 Co 0.1 Al 0.1 ]O 2 powder as a cathode active material still exhibits a much higher retention of the discharge capacity, even if the number of charge/discharge cycles is increased (90.3% at 100 cycles).
- the half cell according to Preparation Example 11 using the lithium phosphate-coated Li[Ni 0.8 Co 0.1 Al 0.1 ]O 2 powder as the cathode active material may exhibit an excellent lifetime characteristic. It is very meaningful that such an effect is realized even in the case of 80% nickel.
- FIG. 8 is a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 12 and Comparative Example 4. Here, charging and discharging were performed in an electric potential range of 3.0 to 4.5 V at a current density of 150 mA/g for a total of 100 cycles.
- a half cell according to Comparative Example 4 using uncoated LiCoO 2 powder as a cathode active material is greatly reduced as the number of charge/discharge cycles is increased (31.5% at 100 cycles).
- a half cell according to Preparation Example 12 using lithium phosphate-coated LiCoO 2 powder as a cathode active material still exhibits a much higher retention of the discharge capacity, even if the number of charge/discharge cycles is increased (95.3% at 100 cycles).
- FIG. 9 is a graph showing the variation in discharge capacity and number of cycles for the half cells according to Preparation Example 9 and Comparative Example 1.
- charging was performed to approach 4.3 V at a current density of 20 mA/g
- discharging was performed at current densities of 1 C (170 mA/g), 2 C (340 mA/g), 3 C (510 mA/g), 5 C (850 mA/g), 7 C (1190 mA/g), and 10 C (1700 mA/g).
- the charging and discharging were performed 5 cycles at each C-rate.
- FIGS. 10 a and 10 b are a graph showing the impedance characteristic, that is, a Cole-Cole plot of alternating current impedance of the half cells according to Preparation Example 9 and Comparative Example 1,
- FIGS. 10 a and 10 b it can be seen that the half cell according to Comparative Example 1 using non-lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder as a cathode active material ( FIG. 10 b ) is increased in resistance as the number of cycles is increased, but the half cell according to Preparation Example 9 using lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder as a cathode active material ( FIG. 10 a ) is limitedly increased in resistance as the number of cycles is increased.
- FIG. 11 a shows transmission electron microscope (TEM) images of a surface of the lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder prepared in Preparation Example 1 before and after charge/discharge tests
- FIG. 11 b shows TEM images of a surface of uncoated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder before and after charge/discharge tests.
- the charge/discharge test is performed for 100 cycles at room temperature and a current density of 170 mA/g, after the half cells were manufactured using the cathode active materials according to Preparation Example 9 and Comparative Example 1.
- FIGS. 11 a and 11 b it was confirmed that, in the cathode active material manufactured in Preparation Example 1, a surface of the Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder is coated with lithium phosphate to a thickness of 5 to 20 nm before the charge/discharge test ( FIG. 11 a ). Also, it can be seen that, while the surface of the lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder is very clean after the test ( FIG. 11 a ), the surface of the uncoated. Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder is very dirty due to various by-products ( FIG. 11 b ). Such a by-product is produced by the reaction with an electrolyte during the test, and the cathode active material may be degraded due to the by-product.
- FIG. 12 shows a TEM image of a surface of lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder prepared in Preparation Example 5 and a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 13 and Comparative Example 1.
- the charging and discharging were performed in an electric potential range from 3.0 to 4.3 V at a current density of 170 mA/g for a total of 100 cycles.
- FIG. 13 is a TEM image of a surface of lithium phosphate-coating Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder prepared in Preparation Example 8 and a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 16 and Comparative Example 1.
- the charging and discharging were performed in an electric potential range from 3.0 to 4.3 V at a current density of 170 mA/g for a total of 100 cycles.
- FIG. 14 is a graph showing the variation of discharge capacity and number of cycles for the half cells according to Preparation Examples 9, and 13 to 16 and Comparative Example 1.
- the charging and discharging were performed in an electric potential range from 3.0 to 4.3 V at a current density of 170 mA/g for a total of 100 cycles.
- the half cell (Preparation Example 13) using lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder (the weight percent of phosphoric acid: 0.1 wt %) prepared in Preparation Example 5 exhibits a somewhat excellent discharge capacity in the early stage of charging/discharging, but exhibits almost the same discharge capacity retention after 20 cycles, and the half cell (Preparation Example 15) using the lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder (the weight percent of phosphoric acid: 2 wt %) prepared in Preparation Example 7 exhibits almost the same discharge capacity in the early stage of the charging/discharging and discharge capacity retention.
- the half cell (Preparation Example 16) using the lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder prepared in Preparation Example 8 (the weight percent of phosphoric acid: 5 wt %) is greatly decreased in discharge capacity even in the early stage of charging/discharging, and exhibits almost the same discharge capacity retention.
- the half cell (Preparation Example 9) using the lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder (the weight percent of phosphoric acid: 0.25 wt %) prepared in Preparation Example 1 and the half cell (Preparation Example 14) using the lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder (the weight percent of phosphoric acid: 1 wt %) prepared in Preparation Example 6 may have a much higher discharge capacity retention than the non-lithium phosphate-coated Comparative Example 1, even if the number of charge/discharge cycles is increased.
- lithium phosphate-coated cathode active material for example, lithium phosphate-coated Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 powder (Preparation Example 1), lithium phosphate-coated Li[Ni 0.7 Co 0.2 Mn 0.1 ]O 2 powder (Preparation Example 2), lithium phosphate-coated Li[Ni 0.8 Co 0.1 Al 0.1 ]O 2 powder (Preparation Example 3), or lithium phosphate-coated LiCoO 2 powder (Preparation Example 4), is used as a cathode active material, a discharge capacity retention property, that is, a lifetime property is improved (refer to FIGS.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Provided are a cathode material for a lithium secondary battery, and a lithium secondary battery containing the same. The cathode material for a lithium secondary battery comprises: a cathode active material, which is a lithium-transition metal oxide, and a lithium phosphate layer coated on a surface of the cathode active material.
Description
- Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.
- The present disclosure relates to a secondary battery, and particularly, to a lithium secondary battery.
- Secondary batteries are batteries which can be charged as well as discharged and thus repetitively used. A representative lithium secondary battery of the secondary batteries is operated by the principle in which lithium ions included in a cathode active material of a cathode are moved to an anode through an electrolyte and inserted into a layered structure of a anode active material (charging), and the lithium ions inserted into the layered structure of the anode active material return to the cathode (discharging). Such a lithium secondary battery is now commercially available to be used as a small power supply for a mobile phone, a notebook computer, etc., is also expected to be used as a large power supply for a hybrid car, etc., and is estimated that its demand will increased.
- However, a composite metal oxide generally used as the cathode active material in the lithium secondary battery may be degraded by the reaction with the electrolyte. To solve this problem, in Korean Unexamined Patent Application Publication No. 2006-0119382, a cathode active material coated with a heterometal oxide is disclosed.
- Also, a lithium compound remaining on a surface of a cathode active material may produce a reaction product capable of increasing a surface resistance by the reaction with an electrolyte. However, it is estimated that, until now, no method of removing or reducing the lithium compound remaining on the surface of the cathode active material has been reported.
- One aspect of the invention provides a cathode material for a lithium secondary battery, which can reduce an amount of a lithium compound remaining on a surface and inhibit surface degradation by the reaction with an electrolyte, and a lithium secondary battery including the same. The cathode material for a lithium secondary battery includes a cathode active material and a lithium phosphate layer formed on a surface of the cathode active material.
- Another aspect of the present invention provides a method of manufacturing a lithium cathode material for a lithium secondary battery. First, a cathode active material, phosphoric acid, and a solvent, are mixed together. The mixture is thermally treated to obtain a cathode active material coated with a lithium phosphate layer.
- Still another aspect of the present invention provides a lithium secondary battery. The lithium secondary battery has a cathode composed of a cathode material including a cathode active material and a lithium phosphate layer formed on a surface of the cathode active material. An anode composed of an anode material containing an anode active material in which intercalation and deintercalation of lithium can occur is disposed. An electrolyte is disposed between the cathode and the anode.
- The cathode active material may be a lithium-transition metal oxide. Particularly, the cathode active material may be LiCoO2, LiNiO2, Li(CoxNi1−x)O2 (0.5≦x<1), LiMn2O4, Li1+xMn2−y−z−wAlyCozMgwO4 (0.03<x<0.25, 0.01<y<0.2, 0.01<z<0.2, 0≦w<0.1, and x+y+z+w<0.4), Li4Mn5O12, or Li1+x(Ni1−y−zCoyMz)1−xO2 (0≦x≦0.2, 0.01≦y≦0.5, 0.01≦z≦0.5, 0<y+z<1, and M is Mn, Ti, Mg or Al). As an example, the cathode active material may be Li1+x[Niy(Co0.5M0.5)1−y]1−xO2 (0≦x≦0.2, 0.3≦y≦0.99, and M is Mn, Ti, Mg or Al), The cathode active material may have a particle form.
- The lithium phosphate layer may have a thickness of 5 to 50 mm A weight percent of the phosphoric acid with respect to the cathode active material may be 0.25 to 1 wt %. From the lithium phosphate layer-coated cathode active material, LiPO+ fragments may be detected through time of flight secondary ion mass spectrometry (ToF-SIMS).
- The lithium phosphate layer may be produced by any one of the following reaction formulas.
-
2H3PO4+3Li2O→2Li3PO4+3H2O [Reaction Formula 1] -
H3PO4+3LiOH→Li3PO4+3H2O [Reaction Formula 2] -
2H3PO4+3Li2CO3→2Li3PO4+3CO2+3H2O [Reaction Formula 3] -
2H3PO4+3Li2C→2Li3PO4+3CH2 [Reaction Formula 4] - In the reaction formulas, Li2O, LiOH, Li2CO3 or Li2C may be a lithium compound remaining on the cathode active material.
- Before the thermal treatment of the mixture, the solvent may be evaporated. In the evaporation operation, H2O, CO2 or CH2 produced by at least one of
Reaction Formulas 1 to 4 may also be evaporated. The solvent may be a volatile solvent. The volatile solvent may be ethanol, acetone, or a mixture thereof. - According to the present invention, a lithium phosphate layer is formed on a surface of a cathode active material, and can serve to protect the cathode active material without inhibiting movement of lithium ions. Degradation of the cathode active material caused by a side reaction with an electrolyte can be prevented by consuming a remaining lithium compound in the process of forming the lithium phosphate layer, and the formed lithium phosphate layer can protect the cathode active material without interfering with the movement of the lithium ions.
-
FIG. 1 is a flowchart illustrating a method of manufacturing a cathode according to an embodiment of the present invention. -
FIG. 2 is a graph showing an XRD analysis result for lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder according to Preparation Example 1 and uncoated Li[Ni0.6Co0.2Mn0.2]O2 powder. -
FIG. 3 is an image showing the result of energy dispersive spectroscopy (EDS) atomic analysis for the lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder according to Preparation Example 1. -
FIG. 4 is a graph showing the result of time of flight secondary ion mass spectrometry (ToF-SIMS) performed to detect LiPO+ fragments of the lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder according to Preparation Example 1 and uncoated Li[Ni0.6Co0.2Mn0.2]O2 powder. -
FIG. 5 is a graph, showing the ToF-SIMS result performed to detect the Li2OH+ fragments of the lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder according to Preparation Example 1 and uncoated Li[Ni0.6Co0.2Mn0.2]O2 powder. -
FIG. 6 is a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 9 and Comparative Example 1. -
FIG. 7 is a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 11 and Comparative Example 3. -
FIG. 8 is a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 12 and Comparative Example 4. -
FIG. 9 is a graph showing the variation in discharge capacity and number of cycles for the half cells according to Preparation Example 9 and Comparative Example 1. -
FIGS. 10a and 10b are a graph showing the impedance characteristic, that is, a Cole-Cole plot of alternating current impedance of the half cells according to Preparation Example 9 and Comparative Example 1. -
FIG. 11a shows transmission electron microscope (TEM) images of a surface of the lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder prepared in Preparation Example 1 before and after charge/discharge tests, andFIG. 11b shows TEM images of a surface of uncoated Li[Ni0.6Co0.2Mn0.2]O2 powder before and after charge/discharge tests. -
FIG. 12 shows a TEM image of a surface of lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder prepared in Preparation Example 5 and a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 13 and Comparative Example 1: -
FIG. 13 is a TEM image of a surface of lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder prepared in Preparation Example 8 and a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 16 and Comparative Example 1. -
FIG. 14 is a graph showing the variation of discharge capacity and number of cycles for the half cells according to Preparation Examples 9, and 13 to 16 and Comparative Example 1. - Hereinafter, to more fully explain the present invention, embodiments according to the present invention will be described in further detail with reference to the accompanying drawings. However, the present invention may be embodied in different forms without limitation to the embodiments explained herein. Like reference numerals denote like elements throughout the specification.
- In the specification, the sentence “a, first layer is disposed “on” a second layer” means that these layers are in direct contact with each other, and a third layer(s) is/are disposed between these layers.
- The lithium secondary battery according to an embodiment of the present invention includes a cathode, an anode containing an anode active material in which extraction or insertion of lithium can occur, and an electrolyte disposed between the electrodes.
- The cathode of the lithium secondary battery according to an embodiment of the present invention contains a cathode material including a cathode active material and a lithium phosphate layer formed on a surface thereof. Particularly, the lithium phosphate layer is formed on the surfaces of particles of the cathode active material, and the cathode or cathode material may include the particles of the cathode active material, which are coated with the lithium phosphate layer.
- The cathode active material may be a lithium-transition metal oxide. The lithium-transition metal oxide may be, for example, LiCoO2, LiNiO2, Li(CoxNi1−x)O2 (0.5≦x<1), LiMn2O4, Li1+xMn2−y−z−wAlyCozMgwO4 (0.03<x<0.25, 0.01<y<0.2, 0.01<z<0.2, 0≦w<0.1, and x+y+z+w<0.4), Li4Mn5O12, or Li1+x(Ni1−y−zCoyMzO2 (0≦x≦0.2, 0.01≦z≦0.5, 0<y+z<1, and M is Mn, Ti, Mg or Al). However, the present invention is not limited thereto.
- In one example, the lithium-transition metal oxide may be Li1+x(Ni1−y−zCoyMz)1−xO2 (0≦x≦0.2, 0.01≦y≦0.5, 0.01≦z≦0.5, 0<y+z<1, and M is Mn, Ti, Mg or Al) among the above, which reduces a content of a rare and high-priced metal, that is, Co, and exhibits high thermal stability and capacity, and excellent reversibility. Particularly, the cathode active material, which is a lithium-transition metal oxide, may be Li1+x[Niy(Co0.5M0.5)1−y]1−xO2 (0≦x≦0.2, 0.3≦y≦0.99, and M is Mn, Ti, Mg or Al).
- The lithium phosphate layer formed on the surface of the cathode active material particle may have a thickness of about 5 to 50 nm, for example, about 5 to 20 nm. Such a lithium phosphate layer may protect the surface of the cathode active material particles to prevent degradation.
-
FIG. 1 is a flowchart illustrating a method of manufacturing a cathode according to an embodiment of the present invention. - Referring to
FIG. 1 , a cathode active material may be prepared (S1). The cathode active material may be cathode active material particles formed in a particle form. Particularly, when metal oxides or metal compounds may be mixed and sintered, thereby obtaining the cathode active material. The metal compounds may be metal salts that become metal oxides when degraded and/or oxidized. The cathode active material may be the lithium-transition metal oxide described above. Afterward, additionally, the cathode active material may be ground. Here, it is preferable that the cathode active material is not in contact with water. - The cathode active material, phosphoric acid (H3PO4), and a solvent may be mixed and thermally treated, thereby obtaining a lithium phosphate-coated cathode active material, particularly, lithium phosphate-coated cathode active material particles (S3). In detail, at least one lithium compound, for example, lithium oxide (Li2O), lithium hydroxide (LiOH), lithium carbonate (Li2CO3) or lithium carbide (Li2C), that does not form an oxide with a transition metal and thus remains may exist on a surface of the cathode active material, which is the lithium-transition metal oxide. The residual lithium compound may react with a specific material in the electrolyte in the secondary battery, and a reaction product obtained thereby may be accumulated on the surface of the cathode active material. The reaction product may interfere with the movement of lithium ions. As an example, the residual lithium compound may react with HF in the electrolyte to produce LiF.
- However, as described above, when the cathode active material is mixed with phosphoric acid (H3PO4) and then thermally treated, the lithium compound remaining on the surface of the cathode active material may react with phosphoric acid (H3PO4), resulting in lithium phosphate. In one example, when the residual lithium compound is lithium oxide (Li2O), lithium hydroxide (LiOH), lithium carbonate (Li2CO3), or lithium carbide (Li2C), lithium phosphate may be produced by the following reaction formulas.
-
2H3PO4+3Li2O→2Li3PO4+3H2O [Reaction Formula 1] -
H3PO4+3LiOH→Li3PO4+3H2O [Reaction Formula 2] -
2H3PO4+3Li2CO3→2Li3PO4+3CO2+3H2O [Reaction Formula 3] -
2H3PO4+3Li2C→2Li3PO4+3CH2 [Reaction Formula 4] - In the reaction formulas, Li2O, LiOH, Li2CO3 or Li2C may be a lithium compound remaining on, the cathode active material.
- Accordingly, the surface of the cathode active material may be coated with a lithium phosphate layer. The lithium phosphate layer may have a thickness of 5 to 100 nm, and specifically, 5 to 50 nm. The lithium phosphate layer may serve to protect the cathode active material without interfering with the movement of lithium ions. As described above, the degradation of the cathode active material caused by a side reaction with an electrolyte may be prevented by consuming the residual lithium compound in the operation of forming the lithium phosphate layer, and the formed lithium phosphate layer may protect the cathode active material without interfering with the movement of the lithium ions.
- A specific method for obtaining the lithium phosphate layer-coated cathode active material is as follows. A phosphoric acid solution may be prepared by adding phosphoric acid to a solvent and sufficiently mixing the mixture, and the cathode active material may be added to the phosphoric acid solution. The solvent may be a volatile solvent, for example, ethanol, acetone, or a mixture thereof. Specifically, the solvent may be anhydrous ethanol. In this case, prior to thermal treatment after the cathode active material is mixed with the phosphoric acid solution (S3), an operation of sufficiently evaporating the volatile solvent may be performed. When the volatile solvent is evaporated, a by-product produced during the formation of the lithium phosphate (H2O, CO2, or CH2 in the-above reaction formulas) may be evaporated with the volatile solvent. The volatile solvent may be evaporated at 60 to 200° C. The thermal, treatment may be performed at about 400 to 700° C. for about 3 to 5 hours.
- Afterward, a lithium phosphate-coated cathode active material, a conductive material, and a binder are mixed, thereby obtaining a cathode material (S5). Here, the conductive material may be a carbon material such as natural graphite, artificial graphite, cokes, carbon black, carbon nanotubes, or graphene. The binder may include a thermoplastic resin, for example, a fluorine resin such as polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene, a vinylidene fluoride-based copolymer or hexafluoropropylene, and/or a polyolefin resin such as polyethylene or polypropylene.
- The cathode material may be formed on a cathode collector to form a cathode (S7). The cathode collector may be a conductive material such as Al, Ni, or stainless steel. To apply the cathode material onto the cathode collector, pressure molding; or a method of preparing a paste using an organic solvent, applying the paste onto the collector, and fixing the paste by pressing may be used. The organic solvent may be a polar aprotic solvent: an amine-based solvent such as N,N-dimethylaminopropylamine, or diethyltriamine; an ether-based solvent such as ethyleneoxide or tetrahydrofuran; a ketone-based solvent such as methylethylketone; an ester-based solvent such as methylacetate; or dimethylacetamide or N-methyl-2-pyrrolidone. The application of the paste on the cathode collector may be performed by, for example, gravure coating, slit dye coating, knife coating, or spray coating.
- An anode active material may be prepared using a metal, a metal alloy, a metal oxide, a Metal fluoride, a metal sulfide, or a carbon material such as natural graphite, artificial graphite, cokes, carbon black, carbon nanotubes, or graphene, in which the intercalation and deintercalation of lithium ions or a conversion reaction may occur.
- An anode material may be obtained by mixing the anode active material, a conductive material, and a binder. Here, the conductive material may be a carbon material such as natural graphite, artificial graphite, cokes, carbon black, carbon nanotubes, or graphene. The binder may include a thermoplastic resin, for example, a fluoride resin such as polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene, a vinylidene fluoride-based copolymer, or hexafluoropropylene, and/or a polyolefin resin such as polyethylene or polypropylene.
- An anode may be formed by applying the anode material onto the anode collector. The anode collector may be a conductive material such as Al, Ni, Cu, or stainless steel. To apply the anode material onto the anode collector, pressure molding; or a method of preparing a paste using an organic solvent, applying the paste onto the collector, and fixing the paste by pressing may be used. The organic solvent may be a polar aprotic solvent: an amine-based solvent such as N,N-dimethylaminopropylamine, or diethyltriamine; an ether-based solvent such as ethyleneoxide or tetrahydrofuran; a ketone-based solvent such as methylethylketone; an ester-based solvent such as methylacetate; or dimethylacetamide or N-methyl-2-pyrrolidone. The application of the paste on the anode collector may be performed by, for example gravure coating, slit dye coating, knife coating, or spray coating.
- An electrolyte may contain a lithium salt and a non-aqueous electrolyte.
- The lithium salt may be a material suitable for being dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, chloroboran lithium, lower aliphatic carbonic acid lithium, or tetraphenyl lithium borate.
- The non-aqueous electrolyte may be a non-aqueous electrolyte solution, an organic solid electrolyte, or an inorganic solid electrolyte. The non-aqueous electrolyte solution may be an aprotic organic solvent, for example, N-methyl-2-pyrrolidinone propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyrolactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolan, formamide, dimethylformamide, dioxolan, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxy methane, a dioxolan derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, a propylene carbonate derivative, a tetrahydrofuran derivative, ether, methyl propionic acid, or ethyl propionic acid. The organic solid electrolyte may be, for example, a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphoric ester polymer, a poly agitation lysine, a polyester sulfide, a polyvinyl alcohol, a poly vinylidene fluoride, or a polymer containing an ionic dissociable group. The inorganic solid electrolyte may be, for example, a nitride, halide or sulfide of Li such as Li3N, LiI, Li5NI2, Li3N—LiI—LiOH LiSiO4, LiSiO4—LiI—LiOH, Li2SiS3, Li4SiO4, Li4SiO4—LiI—LiOH, or Li3PO4—Li2S—SiS2.
- The stability of the secondary battery may be further increased using such a solid electrolyte. Also, the solid, electrolyte may serve as a separator which will be described below, and in this case, a separator may not be required.
- A separator may be disposed between the cathode and the anode. Such a separator may be a material having a form of a porous film composed of a material such as a polyolefin resin such as polyethylene or polypropylene, a fluorine resin, or a nitrogen-containing aromatic polymer, a non-woven fabric, or a woven fabric. As long as a mechanical strength is maintained, the thickness of the separator is preferably small because of a high volume energy density of a battery and a small internal resistance. The thickness of the separator may be, generally, about 5 to 200 μm, and particularly, 5 to 40 μm.
- A secondary battery may be manufactured by forming an electrode group by sequentially stacking the cathode, the separator, and the anode, accommodating the electrode group, which is rolled, if needed, into a battery can, and immersing the electrode group in the electrolyte. On the other hand, a secondary battery may be manufactured by forming an electrode group by stacking the cathode, the solid electrolyte, and the anode, and rolling the electrode group, if needed, and accommodating the electrode group in a battery can.
- Hereinafter, examples are provided to help in understanding the present invention. However, the following examples are merely provided to help in understanding of the present invention, and the present invention is not limited to the following examples.
- Phosphoric acid (H3PO4) was quantified in a weight fraction of 0.25 wt % based on 1 g of a cathode active material, Li[Ni0.6Co0.2]O2. The quantified phosphoric acid was put into 300 ml of anhydrous ethanol (CH3CH2OH). Afterward, the phosphoric acid and the anhydrous ethanol were sufficiently mixed by stirring with an impeller at 30° C., and 10 g of Li[Ni0.6Co0.2Mn0.2]O2 was added to the mixed solution. Afterward, while the temperature was increased until the solvent, anhydrous ethanol, was completely evaporated, the resultant solution was stirred to continuously react. After the solvent was completely evaporated, the resultant solution was thermally treated at about 400° C. or higher for about 3 or more hours, thereby preparing a lithium phosphate-coated cathode active material.
- A lithium phosphate-coated cathode active material was prepared by substantially the same method as Preparation Example 1, except that Li[Ni0.7Co0.2Mn0.1]O2 was used as a cathode active material. In detail, based on 1 g of the cathode active material, Li[Ni0.7Co0.2Mn0.1]O2, phosphoric acid (H3PO4) was quantified in a weight fraction of 0.25 wt %, and 10 g of Li[Ni0.7Co0.2Mn0.1]O2 was added to a phosphoric acid-anhydrous ethanol solution, which was mixed by stirring at 30° C.
- A lithium phosphate-coated cathode active material was prepared by substantially the same method as Preparation Example 1, except that Li[Ni0.8Co0.1Al0.1]O2 was used as a cathode active material. In detail, based on 1 g of the cathode active material, Li[Ni0.8Co0.1Al0.1]O2, phosphoric acid (H3PO4) was quantified in a weight fraction of 0.25 wt %, and 10 g of Li[Ni0.8Co0.1Al0.1]O2 was added to a phosphoric acid-anhydrous ethanol solution, which was mixed by stirring at 30° C.
- A lithium phosphate-coated cathode active material was prepared by substantially the same method as Preparation Example 1, except that LiCoO2 was used as a cathode active material. In detail, based on 1 g of the cathode active material, LiCoO2, phosphoric acid (H3PO4) was quantified in a weight fraction of 0.25 wt %, and 10 g of LiCoO2 was added to a phosphoric acid-anhydrous ethanol solution, which was mixed by stirring at 30° C.
- A lithium phosphate-coated cathode active material was prepared by substantially the same method as Preparation Example 1, except that phosphoric acid (H3PO4) was quantified in a weight fraction of 0.1 wt % based on 1 g of a cathode active material, Li[Ni0.6Co0.2Mn0.2]O2.
- A lithium phosphate-coated cathode active material was prepared by substantially the same method as Preparation Example 1, except that phosphoric acid (H3PO4) was quantified in a weight fraction of 1 wt % based on 1 g of a cathode active material, Li[Ni0.6Co0.2Mn0.2]O2.
- A lithium phosphate-coated cathode active material was prepared by substantially the same method as Preparation Example 1, except that phosphoric acid (H3PO4) was quantified in a weight fraction of 2 wt % based on 1 g of a cathode active material, Li[Ni0.6Co0.2Mn0.2]O2.
- A lithium phosphate-coated cathode active material was prepared by substantially the same method as Preparation Example 1, except that phosphoric acid (H3PO4) was quantified in a weight fraction of 5 wt % based on 1 g of a cathode active material, Li[Ni0.6Co0.2Mn0.2]O2.
- A cathode was formed by forming a cathode active material slurry composition which was formed by mixing the lithium phosphate-coated cathode active material prepared in any one of Preparation Examples 1 to 8, Super-P carbon black and acetylene black as conductive materials, and a binder (poly vinylidene fluoride; PVDF) in a weight fraction of 8:0.5:0.5:1 in an organic solvent (N-methyl-2-pyrrolidone (NMP)), and coating and drying the composition on an aluminum foil collector.
- Afterward, a CR2032 coin battery was manufactured by a conventional process of manufacturing a lithium secondary battery using an anode, which is a lithium metal, a non-aqueous electrolyte solution in which 1.15 moles of LiPF6 as an electrolyte was dissolved in a non-aqueous electrolyte solvent, which is a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio of 3:7), and a separator disposed between the cathode and the anode.
- In Table 1, characteristics of the manufacturing methods in Preparation Examples 1 to 16 are summarized.
-
TABLE 1 Preparation Examples for lithium phosphate-coated cathode active material Weight percent of phosphoric acid with Related Preparation Type of cathode respect to cathode Examples for Cathode active material active material and half cell Preparation Example 1 Li[Ni0.6Co0.2Mn0.2]O2 0.25 wt % Preparation Example 9 Preparation Example 2 Li[Ni0.7Co0.2Mn0.1]O2 Preparation Example 10 Preparation Example 3 Li[Ni0.8Co0.1Al0.1]O2 Preparation Example 11 Preparation Example 4 LiCoO2 Preparation Example 12 Preparation Example 5 Li[Ni0.6Co0.2Mn0.2]O2 0.1 wt % Preparation Example 13 Preparation Example 6 1 wt % Preparation Example 14 Preparation Example 7 2 wt % Preparation Example 15 Preparation Example 8 5 wt % Preparation Example 16 - A cathode and a half cell were manufactured by substantially the same method as Preparation Example 9, except that non-lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 was used as a cathode active material.
- A cathode and a half cell were manufactured by substantially the same method as Preparation Example 10, except non-lithium phosphate-coated Li[Ni0.7Co0.2Mn0.1]O2 was used as a cathode active material.
- A cathode and a half cell were manufactured by substantially the same method as Preparation Example 11, except non-lithium phosphate-coated Li[Ni0.8Co0.1Al0.1]O2 was used as a cathode active material.
- A cathode and a half cell were manufactured by substantially the same method as Preparation Example 12, except non-lithium phosphate-coated LiCoO2 was used as a cathode active material.
-
FIG. 2 is a graph showing an XRD analysis result for lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder according to Preparation Example 1 and uncoated Li[Ni0.6Co0.2Mn0.2]O2 powder. - Referring to 2, it can be seen that lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder (or particles) has the same crystal structure as non-phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder (or particles). From such a result, it can be seen that a lithium phosphate coating layer does not have a crystal structure.
-
FIG. 3 is an image showing the result of energy dispersive spectroscopy (EDS) atomic analysis for the lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder according to Preparation Example 1. - Referring to
FIG. 3 , it can be seen that nickel, cobalt, manganese, oxygen and phosphorus are uniformly distributed in the lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder (or particles) prepared according to Preparation Example 1. -
FIG. 4 is a graph showing, the result of ToF-SIMS performed to detect LiPO+ fragments of the lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder according to Preparation Example 1 and uncoated Li[Ni0.6Co0.2Mn0.2]O2 powder. - Referring to
FIG. 4 , it can be seen that LiPO+ fragments indicating lithium phosphate are detected in lithium phosphate (Li3PO4)-coated Li[Ni0.6Co0.2Mn0.2]O2 powder (or particles), but are not detected in non-coated Li[Ni0.6Co0.2Mn0.2]O2 powder (or particles). Other than the LiPO+ fragments detected in the experiment, when lithium phosphate is coated, various LixPOy + fragments indicating lithium phosphate (x may be 1 to 3, particularly, an integer from 1 to 3, and y may be 1 to 4, particularly, an integer from 1 to 4), for example, Li2PO2 +, Li2PO+, LiPO2 +; etc. may be detected. -
FIG. 5 is a graph showing the ToF-SIMS result performed to detect Li2OH+ fragments of the lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder according to Preparation Example 1 and uncoated Li[Ni0.6Co0.2Mn0.2]O2 powder. The detection of Li2OH+ fragments can allow the confirmation of the presence of LiOH in the lithium compounds remaining on the surface of the Li[Ni0.6Co0.2Mn0.2]O2 powder. - Referring to
FIG. 5 , it can be seen that a detection amount of the Li2OH+ fragments from the lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder is greatly reduced, compared to that of the non-coated Li[Ni0.6Co0.2Mn0.2]O, powder. This means that the amount of the lithium compounds remaining on the surface of the Li[Ni0.6Co0.2Mn0.2]O2 powder is greatly reduced by lithium phosphate coating. - Table 2 shows the amounts of lithium remaining on a surface of the cathode active material before and after the lithium phosphate coating in the processes of preparing the lithium phosphate-coated cathode active materials according to Preparation Examples 1 to 4. The amount of the residual lithium shown in Table 2 is an average value of the values measured by a Warder method five times based on 50 g.
-
TABLE 2 Amount of residual lithium (unit: ppm) Lithium Total phosphate residual Preparation coating LiOH Li2CO3 lithium Comparison Example Li[Ni0.6Co0.2Mn0.2]O2 After 1197 738 1935 47% Preparation coating reduced Example 1 Before 1436 2216 3652 coating Li[Ni0.7Co0.2Mn0.1]O2 After 2633 2955 5588 50% Preparation coating reduced Example 2 Before 4548 6649 11197 coating Li[Ni0.8Co0.1Al0.1]O2 After 2458 4325 6783 50% Preparation coating reduced Example 3 Before 5938 7532 13470 coating LiCoO2 After 324 1134 1458 54% Preparation coating reduced Example 4 Before 598 2543 3141 coating - Referring to Table 2, from all of the lithium phosphate-coated cathode active materials prepared in Preparation Examples 1 to 4, the amounts of residual lithium were about 50% reduced, compared to those before coating. Meanwhile, it seems that, as the nickel content is increased cathode active material, the amount of residual lithium is increased.
-
FIG. 6 is a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 9 and Comparative Example 1. Here, charging and discharging were performed in an electric potential range of 3.0 to 4.3 V at a current density of 170 mA/g for a total of 100 cycles. - Referring to 6, it can be seen that discharge capacity of a half cell according to Comparative Example 1 using uncoated Li[Ni0.6Co0.2Mn0.2]O2 powder as a cathode active material is greatly reduced (84% at 100 cycles) as the number of charge/discharge cycles is increased. In comparison, it can be seen that a half cell according to Preparation Example 9 using lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder as a cathode active material still exhibits a much higher retention (94% at 100 cycles) of the discharge capacity, even if the number of charge/discharge cycles is increased.
-
FIG. 7 is a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 11 and Comparative Example 3. Here, charging and discharging were performed in an electric potential range of 3.0 to 4.3 V at a current density of 190 mA/g for a total of 100 cycles. - Referring to
FIG. 7 , it can be seen that a half cell according to Comparative Example 3 using uncoated Li[Ni0.8Co0.1Al0.1]O2 powder as a cathode active material is greatly reduced as the number of charge/discharge cycles is increased (67.8% at 100 cycles). In comparison, n can be seen that a half cell according to Preparation Example 11 using lithium phosphate-coated Li[Ni0.8Co0.1Al0.1]O2 powder as a cathode active material still exhibits a much higher retention of the discharge capacity, even if the number of charge/discharge cycles is increased (90.3% at 100 cycles). - As described above, the half cell according to Preparation Example 11 using the lithium phosphate-coated Li[Ni0.8Co0.1Al0.1]O2 powder as the cathode active material may exhibit an excellent lifetime characteristic. It is very meaningful that such an effect is realized even in the case of 80% nickel.
-
FIG. 8 is a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 12 and Comparative Example 4. Here, charging and discharging were performed in an electric potential range of 3.0 to 4.5 V at a current density of 150 mA/g for a total of 100 cycles. - Referring to
FIG. 8 , it can be seen that a half cell according to Comparative Example 4 using uncoated LiCoO2 powder as a cathode active material is greatly reduced as the number of charge/discharge cycles is increased (31.5% at 100 cycles). In comparison, it can be seen that a half cell according to Preparation Example 12 using lithium phosphate-coated LiCoO2 powder as a cathode active material still exhibits a much higher retention of the discharge capacity, even if the number of charge/discharge cycles is increased (95.3% at 100 cycles). -
FIG. 9 is a graph showing the variation in discharge capacity and number of cycles for the half cells according to Preparation Example 9 and Comparative Example 1. Here, charging was performed to approach 4.3 V at a current density of 20 mA/g, and discharging was performed at current densities of 1 C (170 mA/g), 2 C (340 mA/g), 3 C (510 mA/g), 5 C (850 mA/g), 7 C (1190 mA/g), and 10 C (1700 mA/g). The charging and discharging were performed 5 cycles at each C-rate. - Referring to
FIG. 9 , as a result of an experiment with an increased C-rate (that is, with an increased discharge rate), it can be seen that the half cell according to Preparation Example 9 using lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2)]O2 powder as a cathode active material exhibits a better rate capability than the half cell according to Comparative Example 1 using uncoated Li[Ni0.6Co0.2Mn0.2]O2 powder as a cathode active material. -
FIGS. 10a and 10b are a graph showing the impedance characteristic, that is, a Cole-Cole plot of alternating current impedance of the half cells according to Preparation Example 9 and Comparative Example 1, - Referring to
FIGS. 10a and 10b , it can be seen that the half cell according to Comparative Example 1 using non-lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder as a cathode active material (FIG. 10b ) is increased in resistance as the number of cycles is increased, but the half cell according to Preparation Example 9 using lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder as a cathode active material (FIG. 10a ) is limitedly increased in resistance as the number of cycles is increased. -
FIG. 11a shows transmission electron microscope (TEM) images of a surface of the lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder prepared in Preparation Example 1 before and after charge/discharge tests, andFIG. 11b shows TEM images of a surface of uncoated Li[Ni0.6Co0.2Mn0.2]O2 powder before and after charge/discharge tests. The charge/discharge test is performed for 100 cycles at room temperature and a current density of 170 mA/g, after the half cells were manufactured using the cathode active materials according to Preparation Example 9 and Comparative Example 1. - Referring to
FIGS. 11a and 11b , it was confirmed that, in the cathode active material manufactured in Preparation Example 1, a surface of the Li[Ni0.6Co0.2Mn0.2]O2 powder is coated with lithium phosphate to a thickness of 5 to 20 nm before the charge/discharge test (FIG. 11a ). Also, it can be seen that, while the surface of the lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder is very clean after the test (FIG. 11a ), the surface of the uncoated. Li[Ni0.6Co0.2Mn0.2]O2 powder is very dirty due to various by-products (FIG. 11b ). Such a by-product is produced by the reaction with an electrolyte during the test, and the cathode active material may be degraded due to the by-product. -
FIG. 12 shows a TEM image of a surface of lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder prepared in Preparation Example 5 and a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 13 and Comparative Example 1. Here, the charging and discharging were performed in an electric potential range from 3.0 to 4.3 V at a current density of 170 mA/g for a total of 100 cycles. - Referring to
FIG. 12 , as a result of adjusting the weight percent of phosphoric acid with respect to Li[Ni0.6Co0.2Mn0.2]O2 to 0.1 wt % (Preparation Example 5), it can be confirmed that a surface of the Li[Ni0.6Co0.2Mn0.2]O2 powder is coated with a lithium phosphate layer to a thickness of about 1 nm, and it can be seen that a half cell (Preparation Example 13) using the same exhibits a somewhat excellent discharge capacity in an early stage of charging/discharging, but exhibits almost the same discharge capacity retention after 20 cycles, compared to the non-lithium phosphate-coated Comparative Example 1. -
FIG. 13 is a TEM image of a surface of lithium phosphate-coating Li[Ni0.6Co0.2Mn0.2]O2 powder prepared in Preparation Example 8 and a graph showing the variation in discharge capacity and number of cycles for half cells according to Preparation Example 16 and Comparative Example 1. Here, the charging and discharging were performed in an electric potential range from 3.0 to 4.3 V at a current density of 170 mA/g for a total of 100 cycles. - Referring to
FIG. 13 , as a result of adjusting the weight percent of phosphoric acid with respect to Li[Ni0.6Co0.2Mn0.2]O2 to 5 wt % (Preparation Example 8), it can be confirmed that a surface of the Li[Ni0.6Co0.2Mn0.2]O2 powder is coated with a lithium phosphate layer to a thickness of about 25 to 30 nm, and it can be seen that the half cell (Preparation Example 16) using the same exhibits great reduction in discharge capacity even in an early stage of charging/discharging, but exhibits almost the same discharge capacity retention, compared to the non-lithium phosphate-coated Comparative Example 1. -
FIG. 14 is a graph showing the variation of discharge capacity and number of cycles for the half cells according to Preparation Examples 9, and 13 to 16 and Comparative Example 1. Here, the charging and discharging were performed in an electric potential range from 3.0 to 4.3 V at a current density of 170 mA/g for a total of 100 cycles. - Referring to
FIG. 14 , it can be confirmed that, compared to the non-lithium phosphate-coated Comparative Example 1, the half cell (Preparation Example 13) using lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder (the weight percent of phosphoric acid: 0.1 wt %) prepared in Preparation Example 5 exhibits a somewhat excellent discharge capacity in the early stage of charging/discharging, but exhibits almost the same discharge capacity retention after 20 cycles, and the half cell (Preparation Example 15) using the lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder (the weight percent of phosphoric acid: 2 wt %) prepared in Preparation Example 7 exhibits almost the same discharge capacity in the early stage of the charging/discharging and discharge capacity retention. Also, it can also be seen that the half cell (Preparation Example 16) using the lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder prepared in Preparation Example 8 (the weight percent of phosphoric acid: 5 wt %) is greatly decreased in discharge capacity even in the early stage of charging/discharging, and exhibits almost the same discharge capacity retention. - Meanwhile, it can be seen that the half cell (Preparation Example 9) using the lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder (the weight percent of phosphoric acid: 0.25 wt %) prepared in Preparation Example 1 and the half cell (Preparation Example 14) using the lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder (the weight percent of phosphoric acid: 1 wt %) prepared in Preparation Example 6 may have a much higher discharge capacity retention than the non-lithium phosphate-coated Comparative Example 1, even if the number of charge/discharge cycles is increased.
- As described above, when the lithium phosphate-coated cathode active material, for example, lithium phosphate-coated Li[Ni0.6Co0.2Mn0.2]O2 powder (Preparation Example 1), lithium phosphate-coated Li[Ni0.7Co0.2Mn0.1]O2 powder (Preparation Example 2), lithium phosphate-coated Li[Ni0.8Co0.1Al0.1]O2 powder (Preparation Example 3), or lithium phosphate-coated LiCoO2 powder (Preparation Example 4), is used as a cathode active material, a discharge capacity retention property, that is, a lifetime property is improved (refer to
FIGS. 6, 7 , and 8), and a rate capability is improved (refer toFIG. 9 ). It is determined that in the process of forming a lithium phosphate layer, since a lithium compound remaining on the surface of the cathode active material is consumed, the degradation of the cathode active material caused by a side reaction between the residual lithium compound and the electrolyte is inhibited (refer toFIGS. 11a and 11b ), and the formed lithium phosphate layer protects the cathode active material without interfering with the movement of lithium ions. In addition, referring toFIGS. 6, 11 a, 12 and 13, it can be seen that a suitable thickness of the lithium phosphate is 5 to 20 nm, and referring toFIG. 14 , it can be seen that when the lithium phosphate-coated cathode active material is prepared, a suitable weight percent of phosphoric acid with respect to the cathode active material is 0.25 to 1 wt %. - Previously, embodiments of the present invention have been described in detail, but the present invention is not limited by the above-described embodiments, and may be implemented in various modifications and changes by those of ordinary skill in the art within the technical idea and scope of the present invention.
Claims (20)
1. A method of preparing a cathode material, comprising:
providing particles comprising a Li-containing cathode active material and further comprising at least one Li-containing compound deposited on surfaces of the particles, wherein the at least one Li-containing compound is selected from the group consisting of Li2O, LiOH, Li2CO3 and Li2C;
contacting the particles with H3PO4 for causing at least one chemical reaction that consumes at least part of the at least one Li-containing compound and forms Li3PO4; and
obtaining a resulting cathode material in the form of particles comprising a core of the Li-containing cathode active material and a layer comprising Li3PO4 over the core.
2. The method of claim 1 , wherein the layer of the resulting cathode material consists essentially of Li3PO4 and the at least one Li-containing compound remaining after the at least one chemical reaction.
3. The method of claim 1 , wherein the layer of the resulting cathode material consists essentially of Li3PO4, wherein the particles before contacting H3PO4 does not comprise Li3PO4.
4. The method of claim 1 , wherein contacting the particles with H3PO4 comprises mixing the particles with a solution comprising a solvent and H3PO4.
5. The method of claim 4 , wherein in mixing the particles with the solution, a weight ratio of H3PO4 to the particles is 0.25 to 1 wt %.
6. The method of claim 1 , further comprising:
subsequent to the at least one chemical reaction, subjecting a resulting mixture of the at least one chemical reaction to thermal treatment at a temperate between 400 and 700° C. to provide the resulting cathode material
7. The method of claim 1 , wherein the layer of the resulting cathode material has a thickness in a range of 5-50 nm.
8. The method of claim 1 , wherein the Li-containing cathode active material is selected from the group consisting of LiCoO2, LiNiO2, Li(CoxNi1−x)O2 (0.5≦x<1), LiMn2O4, Li1+xMn2−y−wAlyCozMgwO4 (0.03<x<0.25, 0.01<y<0.2, 0.01<z<0.2, 0≦w<0.1, and x+y+z+w<0.4), Li4Mn5O12, and Li1+x(Ni1−y−zCoyMz)1−xO2 (0≦x≦0.2, 0.01≦y≦0.5, 0.01≦z≦0.5, 0<y+z<1, and M is Mn, Ti, Mg or Al).
9. The method of claim 1 , wherein the Li-containing cathode active material is Li1+x[Niy(Co0.5M0.5)1−y]O2 (0≦x≦0.2, 0.3≦y≦0.99, and M is Mn, Ti, Mg or Al).
10. The method of claim 1 , wherein the at least one chemical reaction is selected from the group consisting of the following reaction formulae:
2H3PO4+3Li2O→2Li3PO4+3H2O;
H3PO4+3LiOH→Li3PO4+3H2O;
2H3PO4+3Li2CO3→2Li3PO4+3CO2+3H2O; and
2H3PO4+3Li2C→2Li3PO4+3CH2.
2H3PO4+3Li2O→2Li3PO4+3H2O;
H3PO4+3LiOH→Li3PO4+3H2O;
2H3PO4+3Li2CO3→2Li3PO4+3CO2+3H2O; and
2H3PO4+3Li2C→2Li3PO4+3CH2.
11. A method of making a cathode for a lithium secondary battery, the method comprising:
preparing the cathode material according to the method of claim 1 ; and
applying at least part of the resulting cathode material on a current collector.
12. The method of claim 11 , wherein the layer of the second cathode material consists essentially of Li3PO4 and the at least one Li-containing compound remaining after the at least one chemical reaction.
13. A method of making a lithium secondary battery, the method comprising:
providing particles comprising a Li-containing cathode active material and further comprising at least one Li-containing compound deposited on surfaces of the particles, wherein the at least one Li-containing compound is selected from the group consisting of Li2O, LiOH, Li2CO3 and Li2C;
contacting the particles with H3PO4 for causing at least one chemical reaction that consumes at least part of the at least one Li-containing compound and forms Li3PO4, which provides a resulting cathode material in the form of particles comprising a core of the Li-containing cathode active material and a layer comprising Li3PO4 over the core;
applying at least part of the cathode material on a current collector to provide a cathode;
providing an anode;
providing an electrolyte; and
arranging the electrolyte between the anode and the cathode such that Li+ travel between the cathode and the anode via the electrolyte.
14. The method of claim 13 , wherein the layer of the second cathode material consists essentially of Li3PO4 and the at least one Li-containing compound remaining after the at least one chemical reaction.
15. The method of claim 16 , wherein the Li-containing cathode active material is selected from the group consisting of LiCoO2, LiNiO2, Li(CoxNi1−x)O2 (0.5≦x<1), LiMn2O4, Li1+xMn2−y−−wAlyCozMgwO4 (0.03<x<0.25, 0.01<y<0.2, 0.01<z<0.2, 0≦w<0.1, and x+y+z+w<0.4), Li4Mn5O12, and Li1+x(Ni1−y−zCoyMz)1−xO2 (0≦x≦0.2, 0.01≦y≦0.5, 0.01≦z≦0.5, 0<y+z<1, and M is Mn, Ti, Mg or Al).
16. A method of making a cathode for a lithium secondary battery, the method comprising:
preparing the cathode material according to the method of claim 1 ; and
mixing the cathode material with a conductive material.
17. The method of claim 16 , wherein the layer of the second, cathode material consists essentially of Li3PO4 and the at least one Li-containing compound remaining after the at least one chemical reaction.
18. A method of making a lithium secondary battery, the method comprising:
providing particles comprising a Li-containing cathode active material and further comprising at least one Li-containing compound deposited on surfaces of the particles, wherein the at least one Li-containing compound is selected from the group consisting of Li2O, LiOH, Li2CO3 and Li2C;
contacting the particles with H3PO4 for causing at least one chemical reaction that consumes at least part of the at least one Li-containing compound and forms Li3PO4, which provides a resulting cathode material in the form of particles comprising a core of the Li-containing cathode active material and a layer comprising Li3PO4 over the core;
mixing the cathode material with a conductive material to provide a cathode;
providing an anode;
providing an electrolyte; and
arranging the electrolyte between the anode and the cathode such that Li+ travel between the cathode and the anode via the electrolyte.
19. The method of claim 18 , wherein the layer of the second cathode material consists essentially of Li3PO4 and the at least one Li-containing compound remaining after the at least one chemical reaction.
20. The method of claim 18 , wherein the Li-containing cathode active material is selected from the group consisting of LiCoO2, LiNiO2, Li(CoxNi1−x)O2 (0.5≦x<1), LiMn2O4, Li1+xMn2−y−z−wAlyCozMgwO4 (0.03<x<0.25, 0.01<y<0.2, 0.01<z<0.2, 0≦w<0.1, and x+y+z+w<0.4), Li4Mn5O12, and Li1+x(Ni1−y−zCoyMz)1−xO2 (0≦x≦0.2, 0.01≦y≦0.5, 0.01≦z≦0.5, 0<y+z<1, and M is Mn, Ti, Mg or Al).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/141,768 US9444095B1 (en) | 2013-08-08 | 2016-04-28 | Method of making cathode active material, cathode and lithium secondary battery |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0094428 | 2013-08-08 | ||
KR20130094428 | 2013-08-08 | ||
KR1020140102252A KR101514605B1 (en) | 2013-08-08 | 2014-08-08 | Positive Electrode Material for Lithium-Ion Batteries and Lithium-Ion Battery Having the Same |
US14/910,954 US10050261B2 (en) | 2013-08-08 | 2014-08-08 | Cathode material for lithium secondary battery, and lithium secondary battery containing same |
KR10-2014-0102252 | 2014-08-08 | ||
PCT/KR2014/007397 WO2015020486A1 (en) | 2013-08-08 | 2014-08-08 | Cathode material for lithium secondary battery, and lithium secondary battery containing same |
US15/141,768 US9444095B1 (en) | 2013-08-08 | 2016-04-28 | Method of making cathode active material, cathode and lithium secondary battery |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/007397 Continuation WO2015020486A1 (en) | 2013-08-08 | 2014-08-08 | Cathode material for lithium secondary battery, and lithium secondary battery containing same |
US14/910,954 Continuation US10050261B2 (en) | 2013-08-08 | 2014-08-08 | Cathode material for lithium secondary battery, and lithium secondary battery containing same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160248079A1 true US20160248079A1 (en) | 2016-08-25 |
US9444095B1 US9444095B1 (en) | 2016-09-13 |
Family
ID=52578150
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/910,954 Active US10050261B2 (en) | 2013-08-08 | 2014-08-08 | Cathode material for lithium secondary battery, and lithium secondary battery containing same |
US15/141,768 Active US9444095B1 (en) | 2013-08-08 | 2016-04-28 | Method of making cathode active material, cathode and lithium secondary battery |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/910,954 Active US10050261B2 (en) | 2013-08-08 | 2014-08-08 | Cathode material for lithium secondary battery, and lithium secondary battery containing same |
Country Status (5)
Country | Link |
---|---|
US (2) | US10050261B2 (en) |
EP (1) | EP3032619B1 (en) |
KR (1) | KR101514605B1 (en) |
CN (1) | CN105594032B (en) |
WO (1) | WO2015020486A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
WO2020248984A1 (en) * | 2019-06-12 | 2020-12-17 | 中国科学院化学研究所 | Method for reducing alkalinity of positive electrode material by using phosphorus-containing organic matter |
US11114664B2 (en) | 2018-03-02 | 2021-09-07 | Toyota Jidosha Kabushiki Kaisha | Method for producing positive active material particle, method for producing positive electrode paste, method for manufacturing positive electrode sheet, and method for manufacturing lithium ion secondary battery |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160351904A1 (en) * | 2015-05-28 | 2016-12-01 | Board Of Regents, The University Of Texas System | Cathode additive for rechargeable lithium batteries |
KR20170084995A (en) * | 2016-01-13 | 2017-07-21 | 삼성에스디아이 주식회사 | Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same |
US10361423B2 (en) * | 2016-01-18 | 2019-07-23 | Grst International Limited | Method of preparing battery electrodes |
CN105921343B (en) * | 2016-06-07 | 2019-03-08 | 程建聪 | Monomer high capacity lithium ion battery manufacturing method and pole piece coating equipment |
CN107919460B (en) * | 2016-10-08 | 2020-09-11 | 宁德时代新能源科技股份有限公司 | Preparation method of modified anode material and lithium ion battery |
SG11202000089TA (en) * | 2016-10-11 | 2020-02-27 | Grst Int Ltd | Cathode slurry for lithium ion battery |
KR101886514B1 (en) * | 2016-10-17 | 2018-08-07 | 현대자동차주식회사 | Manufacturing method of electrode active material having core-shell structure for all-solid cell |
CN108232182A (en) * | 2016-12-13 | 2018-06-29 | 天津国安盟固利新材料科技股份有限公司 | A kind of modified nickel-cobalt lithium manganate cathode material and preparation method thereof |
CN108321359A (en) * | 2017-01-17 | 2018-07-24 | 宁德时代新能源科技股份有限公司 | Modified anode material, preparation method thereof and lithium ion battery |
KR101941869B1 (en) * | 2017-02-21 | 2019-01-24 | 동아대학교 산학협력단 | Control method of residual lithium compounds in cathode active materials |
KR101951699B1 (en) * | 2017-07-24 | 2019-02-25 | 주식회사 포스코이에스엠 | Lithium-nikel composite oxide for positive electrode active material of secondary batteries containing residual lithium |
KR102223721B1 (en) | 2017-07-28 | 2021-03-05 | 주식회사 엘지화학 | Positive electorde for secondary battery and lithium secondary battery including the same |
KR102237952B1 (en) * | 2017-07-28 | 2021-04-08 | 주식회사 엘지화학 | Positive electorde for secondary battery and lithium secondary battery including the same |
KR102298293B1 (en) | 2017-10-20 | 2021-09-07 | 주식회사 엘지화학 | Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same |
US20200287213A1 (en) * | 2017-10-20 | 2020-09-10 | Lg Chem, Ltd. | Positive Electrode Active Material for Lithium Secondary Battery, Method of Preparing the Same, and Positive Electrode for Lithium Secondary Battery and Lithium Secondary Battery which Include the Positive Electrode Active Material |
WO2019078689A2 (en) * | 2017-10-20 | 2019-04-25 | 주식회사 엘지화학 | Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same |
JP6904892B2 (en) * | 2017-11-28 | 2021-07-21 | トヨタ自動車株式会社 | Positive electrode material and lithium secondary battery using it |
KR102297246B1 (en) | 2017-11-30 | 2021-09-03 | 주식회사 엘지에너지솔루션 | Positive electrode for lithium secondary battery and lithium secondary battery including the same |
CN109950530A (en) * | 2017-12-21 | 2019-06-28 | 天津国安盟固利新材料科技股份有限公司 | With the nickelic tertiary cathode material and preparation method thereof for improving electrical property |
KR102170280B1 (en) * | 2017-12-28 | 2020-10-26 | 세종대학교산학협력단 | Cathode material with stable surface for secondary batteries and method for producing the same |
CN108110252A (en) * | 2018-01-10 | 2018-06-01 | 香河昆仑化学制品有限公司 | A kind of heat safe lithium manganate composite anode material and its synthetic method |
KR102306441B1 (en) * | 2018-05-15 | 2021-09-28 | 삼성에스디아이 주식회사 | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same |
CN109244416A (en) * | 2018-09-29 | 2019-01-18 | 北京泰丰先行新能源科技有限公司 | A method of improving the nickelic ternary material chemical property of lithium ion battery |
US20220020988A1 (en) * | 2019-05-27 | 2022-01-20 | Lg Chem, Ltd. | Positive Electrode Additive, Manufacturing Method Thereof, and Positive Electrode and Lithium Rechargeable Battery Including the Same |
DE102019210857A1 (en) * | 2019-07-22 | 2021-01-28 | Volkswagen Aktiengesellschaft | Lithium-ion battery cell and process for their manufacture |
CN112750989A (en) * | 2019-10-29 | 2021-05-04 | 北京大学 | Method for modifying lithium ion battery electrode material by using lithium ion conductor |
JP7207288B2 (en) * | 2019-12-20 | 2023-01-18 | トヨタ自動車株式会社 | Method for manufacturing composite active material |
CN113328069A (en) * | 2021-05-11 | 2021-08-31 | 电子科技大学 | Lithium phosphate coated high-nickel cathode material of lithium ion battery and preparation method of lithium phosphate coated high-nickel cathode material |
JP2024530236A (en) * | 2021-08-31 | 2024-08-16 | ワイルドキャット・ディスカバリー・テクノロジーズ・インコーポレイテッド | Positive electrodes with coated disordered rock-salt-type materials |
CN114614006B (en) * | 2022-02-16 | 2024-07-02 | 深圳市贝特瑞纳米科技有限公司 | Composite positive electrode material, preparation method thereof and lithium ion battery |
CN116154142A (en) * | 2023-04-20 | 2023-05-23 | 浙江鑫钠新材料科技有限公司 | Semi-solid lithium/sodium battery and preparation method thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3736045B2 (en) * | 1997-06-19 | 2006-01-18 | 松下電器産業株式会社 | All solid lithium battery |
JP2003059492A (en) | 2001-08-17 | 2003-02-28 | Matsushita Electric Ind Co Ltd | Lithium secondary battery and its manufacturing method |
CN100429812C (en) * | 2003-12-05 | 2008-10-29 | 日产自动车株式会社 | Positive electrode material for non-aqueous electrolyte lithium ion battery and battery using the same |
JP5135664B2 (en) * | 2003-12-05 | 2013-02-06 | 日産自動車株式会社 | Cathode material for non-aqueous electrolyte lithium ion battery and battery using the same |
WO2006019245A1 (en) * | 2004-08-17 | 2006-02-23 | Lg Chem, Ltd. | Lithium secondary batteries with enhanced safety and performance |
WO2006064774A1 (en) * | 2004-12-13 | 2006-06-22 | Matsushita Electric Industrial Co., Ltd. | Multilayer body containing active material layer and solid electrolyte layer, and all-solid lithium secondary battery using same |
KR20060119382A (en) | 2005-05-20 | 2006-11-24 | 브이케이 주식회사 | Positive electrode active material for lithium ion secondary cell coated with hetero metal oxide on the surface and lithium ion secondary cell comprising thereof |
WO2010079965A2 (en) * | 2009-01-06 | 2010-07-15 | 주식회사 엘지화학 | Positive electrode active material for lithium secondary battery |
US20130108920A1 (en) | 2011-11-01 | 2013-05-02 | Isalah O. Oladeji | Composite electrodes for lithium ion battery and method of making |
KR20130066326A (en) * | 2011-12-12 | 2013-06-20 | 어플라이드 머티어리얼스, 인코포레이티드 | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same |
CN102496710B (en) * | 2011-12-31 | 2014-01-08 | 湖南杉杉户田新材料有限公司 | Nickel-based multiple components cathode material and preparation method thereof |
CN103151493A (en) * | 2013-03-12 | 2013-06-12 | 北京理工大学 | Lithium phosphate coated lithium iron phosphate electrode and preparation method thereof |
-
2014
- 2014-08-08 EP EP14833735.5A patent/EP3032619B1/en active Active
- 2014-08-08 KR KR1020140102252A patent/KR101514605B1/en active IP Right Grant
- 2014-08-08 WO PCT/KR2014/007397 patent/WO2015020486A1/en active Application Filing
- 2014-08-08 US US14/910,954 patent/US10050261B2/en active Active
- 2014-08-08 CN CN201480053984.8A patent/CN105594032B/en active Active
-
2016
- 2016-04-28 US US15/141,768 patent/US9444095B1/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
US11114664B2 (en) | 2018-03-02 | 2021-09-07 | Toyota Jidosha Kabushiki Kaisha | Method for producing positive active material particle, method for producing positive electrode paste, method for manufacturing positive electrode sheet, and method for manufacturing lithium ion secondary battery |
WO2020248984A1 (en) * | 2019-06-12 | 2020-12-17 | 中国科学院化学研究所 | Method for reducing alkalinity of positive electrode material by using phosphorus-containing organic matter |
Also Published As
Publication number | Publication date |
---|---|
EP3032619A1 (en) | 2016-06-15 |
US20160197346A1 (en) | 2016-07-07 |
WO2015020486A1 (en) | 2015-02-12 |
US10050261B2 (en) | 2018-08-14 |
US9444095B1 (en) | 2016-09-13 |
EP3032619A4 (en) | 2017-09-13 |
EP3032619B1 (en) | 2019-10-09 |
KR20150018752A (en) | 2015-02-24 |
CN105594032A (en) | 2016-05-18 |
KR101514605B1 (en) | 2015-04-24 |
CN105594032B (en) | 2019-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9444095B1 (en) | Method of making cathode active material, cathode and lithium secondary battery | |
JP6756268B2 (en) | Secondary battery | |
CN107408686B (en) | Cathode active material for lithium ion secondary battery, method for manufacturing same, and lithium ion secondary battery comprising same | |
KR102183996B1 (en) | Positive active material and manufacturing method thereof, positive electrode and lithium battery containing the material | |
US8999579B2 (en) | Surface treated anode active material and method of making the same, anode including the same, and lithium battery including the same | |
JP5910627B2 (en) | Secondary battery | |
US10003100B2 (en) | Nonaqueous electrolyte with fluorine containing ether compound for lithium secondary battery | |
CN111640975B (en) | Electrolyte composition for lithium ion electrochemical cells | |
JP6428609B2 (en) | Secondary battery electrolyte and secondary battery | |
JP6399685B2 (en) | Lithium secondary battery and manufacturing method thereof | |
KR102063898B1 (en) | Positive Electrode Material for Lithium-Ion Batteries and Lithium-Ion Battery Having the Same | |
US20150214571A1 (en) | Lithium secondary battery and method for producing same | |
US20210273212A1 (en) | Lithium composite negative electrode active material, negative electrode comprising same and methods for manufacturing same | |
KR20170000903A (en) | Lithium secondary battery | |
US10790512B2 (en) | Nonaqueous electrolyte secondary battery | |
KR102274784B1 (en) | positive material having surface coated positive active material for lithium secondary battery, preparation method thereof and lithium secondary battery comprising the same | |
EP4071849B1 (en) | Nonaqueous electrolyte secondary battery | |
KR20220009894A (en) | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same | |
EP4145556A1 (en) | Negative electrode material and battery | |
JP4951879B2 (en) | Lithium secondary battery and positive electrode active material for lithium secondary battery | |
JP6366908B2 (en) | Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same | |
JP2020502756A (en) | Method for producing negative electrode active material, negative electrode active material using the same, and lithium secondary battery | |
JP6179511B2 (en) | Lithium secondary battery | |
US20180315998A1 (en) | Negative electrode active material particle, negative electrode, lithium-ion secondary battery, and production method of negative electrode active material particle | |
KR20130015227A (en) | Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |