JP6179511B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP6179511B2
JP6179511B2 JP2014521218A JP2014521218A JP6179511B2 JP 6179511 B2 JP6179511 B2 JP 6179511B2 JP 2014521218 A JP2014521218 A JP 2014521218A JP 2014521218 A JP2014521218 A JP 2014521218A JP 6179511 B2 JP6179511 B2 JP 6179511B2
Authority
JP
Japan
Prior art keywords
fluorine
secondary battery
lithium secondary
positive electrode
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014521218A
Other languages
Japanese (ja)
Other versions
JPWO2013187180A1 (en
Inventor
加藤 有光
有光 加藤
野口 健宏
健宏 野口
佐々木 英明
英明 佐々木
牧子 高橋
牧子 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2014521218A priority Critical patent/JP6179511B2/en
Publication of JPWO2013187180A1 publication Critical patent/JPWO2013187180A1/en
Application granted granted Critical
Publication of JP6179511B2 publication Critical patent/JP6179511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、リチウム二次電池に関するものである。   The present invention relates to a lithium secondary battery.

リチウム二次電池は、携帯型電子機器やパソコン等の用途に広く利用されている。リチウム二次電池には難燃性等の安全性の向上が求められ、以下の文献に記載されるようにリン酸エステル化合物を含む電解液を用いた二次電池が提案されている。   Lithium secondary batteries are widely used in applications such as portable electronic devices and personal computers. Lithium secondary batteries are required to have improved safety such as flame retardancy, and secondary batteries using an electrolytic solution containing a phosphate ester compound have been proposed as described in the following documents.

特許文献1には、リン酸エステル化合物と、ハロゲンを含有する環状炭酸エステルと、鎖状炭酸エステルと、リチウム塩とからなる電解液を用いた二次電池が開示されている。特許文献1には、この電解液を用いることで安全性を高めることができることや、炭素負極と電解液の組み合わせで不可逆容量を低減できることが示されている。   Patent Document 1 discloses a secondary battery using an electrolytic solution composed of a phosphate ester compound, a cyclic carbonate containing a halogen, a chain carbonate, and a lithium salt. Patent Document 1 shows that the use of this electrolytic solution can improve safety, and the irreversible capacity can be reduced by a combination of a carbon negative electrode and an electrolytic solution.

特許文献2には、リン酸エステルを混合させることによって、負極にリチウム金属が析出した場合においても高い安全性を確保することができることが示されている。   Patent Document 2 shows that by mixing a phosphate ester, high safety can be ensured even when lithium metal is deposited on the negative electrode.

特許文献3には、リン酸エステルと、環状カーボネートと、ビニレンカーボネート化合物またはビニルエチレンカーボネート化合物のいずれかと、を含む電解液を使った二次電池が開示されている。   Patent Document 3 discloses a secondary battery using an electrolytic solution containing a phosphate ester, a cyclic carbonate, and either a vinylene carbonate compound or a vinylethylene carbonate compound.

特許文献4においては、フッ素を含有するリン酸エステルを含む電解液を有する二次電池が開示されている。   In patent document 4, the secondary battery which has the electrolyte solution containing the phosphate ester containing a fluorine is disclosed.

特許文献5および特許文献6には、式RO−(RO)−R(R、R:ハロゲン原子で置換されていてもよい炭素数1〜8のアルキル基、R:ハロゲン原子で置換されていてもよい炭素数1〜8のアルキレン基、ただしR、RおよびRの内少なくとも一つはハロゲン原子で置換されていなくてはならない、1≦n≦4)で表されるグリコールジエーテルを含有する電解液を用いた二次電池が開示されている。さらに、特許文献5および特許文献6には、リン酸エステルを電解液に含有させることが開示されているが、フッ素化リン酸エステルに関する記載はない。In Patent Document 5 and Patent Document 6, R 1 O— (R 2 O) n —R 3 (R 1 , R 3 : an alkyl group having 1 to 8 carbon atoms which may be substituted with a halogen atom, R 2 : an alkylene group having 1 to 8 carbon atoms which may be substituted with a halogen atom, provided that at least one of R 1 , R 2 and R 3 must be substituted with a halogen atom, 1 ≦ n ≦ A secondary battery using an electrolytic solution containing glycol diether represented by 4) is disclosed. Furthermore, Patent Document 5 and Patent Document 6 disclose that a phosphate ester is contained in an electrolytic solution, but there is no description regarding a fluorinated phosphate ester.

また、リチウム二次電池においては、安全性が求められる一方で、電池のエネルギー密度の向上が重要な技術的課題となっている。   Further, in the lithium secondary battery, safety is required, but improvement of the energy density of the battery is an important technical problem.

リチウム二次電池のエネルギー密度を高める方法としては幾つかの方法が考えられるが、その中でも電池の動作電位を上昇させることが有効である。従来のコバルト酸リチウムやマンガン酸リチウムを正極活物質として用いたリチウム二次電池では、動作電位は何れも4V級(平均動作電位=3.6〜3.8V:対リチウム電位)となる。これは、CoイオンもしくはMnイオンの酸化還元反応(Co3+←→Co4+もしくはMn3+←→Mn4+)によって発現電位が規定されるためである。Several methods are conceivable as methods for increasing the energy density of the lithium secondary battery. Among them, it is effective to increase the operating potential of the battery. In a lithium secondary battery using conventional lithium cobaltate or lithium manganate as a positive electrode active material, the operating potential is 4V class (average operating potential = 3.6 to 3.8V: lithium potential). This is because the expression potential is defined by the redox reaction of Co ions or Mn ions (Co 3+ ← → Co 4+ or Mn 3+ ← → Mn 4+ ).

これに対し、たとえばマンガン酸リチウムのMnをNi等により置換したスピネル化合物を活物質として用いることにより、5V級の動作電位を実現できることが知られている。具体的には、特許文献7のように、LiNi0.5Mn1.5等のスピネル化合物が4.5V以上の領域に電位プラトーを示すことが知られている。こうしたスピネル化合物において、Mnは4価の状態で存在し、Mn3+←→Mn4+の酸化還元に代わってNi2+←→Ni4+の酸化還元によって動作電位が規定される。On the other hand, for example, it is known that an operating potential of 5 V class can be realized by using, as an active material, a spinel compound in which Mn of lithium manganate is substituted with Ni or the like. Specifically, as disclosed in Patent Document 7, it is known that a spinel compound such as LiNi 0.5 Mn 1.5 O 4 exhibits a potential plateau in a region of 4.5 V or higher. In such a spinel compound, Mn exists in a tetravalent state, and the operating potential is defined by oxidation and reduction of Ni 2+ ← → Ni 4+ instead of oxidation reduction of Mn 3+ ← → Mn 4+ .

LiNi0.5Mn1.5は容量が130mAh/g以上であり、平均動作電圧は金属リチウムに対して4.6V以上である。容量としてはLiCoOより小さいものの、電池のエネルギー密度はLiCoOよりも高い。このような理由からLiNi0.5Mn1.5は、将来の正極材料として有望である。LiNi 0.5 Mn 1.5 O 4 has a capacity of 130 mAh / g or more and an average operating voltage of 4.6 V or more with respect to metallic lithium. Although the capacity is smaller than LiCoO 2 , the energy density of the battery is higher than LiCoO 2 . For these reasons, LiNi 0.5 Mn 1.5 O 4 is promising as a future positive electrode material.

特許第3961597号明細書Japanese Patent No. 39615197 特許第3821495号明細書Japanese Patent No. 3812495 特許第4187965号明細書Japanese Patent No. 4187965 特開2008−021560号公報JP 2008-021560 A 特開2001−023691号公報JP 2001-023691 A 特開2001−085056号公報JP 2001-085056 A 特開2009−123707号公報JP 2009-123707 A

J. Electrochem. Soc., vol. 144, 204(1997)J. et al. Electrochem. Soc. , Vol. 144, 204 (1997)

電解液は、充電・放電を繰り返すうちに劣化し、場合によってはガスを発生し、電池に膨れを生じさせることがある。電解液の劣化の要因として、正極における酸化分解、負極における還元分解が知られている。   The electrolytic solution deteriorates as it is repeatedly charged and discharged, and in some cases, gas is generated and the battery may be swollen. As factors of deterioration of the electrolytic solution, oxidative decomposition at the positive electrode and reductive decomposition at the negative electrode are known.

LiNi0.5Mn1.5等のスピネル化合物を正極活物質として用いると、高い動作電圧が得られる一方、正極と電解液との接触部分で電解液の分解反応が進行しやすい。この分解反応によってガスが発生するため、サイクル動作においてセルの内圧が高くなったり、ラミネートセルの膨れが生じたりする等、実使用上の問題が生じる。また、電解液の分解により、容量やサイクル特性が低下するという問題もあった。When a spinel compound such as LiNi 0.5 Mn 1.5 O 4 is used as the positive electrode active material, a high operating voltage can be obtained, while the decomposition reaction of the electrolytic solution tends to proceed at the contact portion between the positive electrode and the electrolytic solution. Since gas is generated by this decomposition reaction, there are problems in practical use such as an increase in the internal pressure of the cell or a swelling of the laminate cell in the cycle operation. In addition, there is a problem that capacity and cycle characteristics are reduced due to decomposition of the electrolytic solution.

一方、電解液の溶媒としては、カーボネート系の材料が一般に使用されているが、この電解液を用いた二次電池は、高電圧動作時や高温での長期動作時において、上述のような電解液の分解に伴うガス発生や容量低下が顕著であった。   On the other hand, carbonate-based materials are generally used as the solvent of the electrolytic solution. However, secondary batteries using this electrolytic solution have the above-described electrolysis during high-voltage operation or long-term operation at high temperatures. The generation of gas and the decrease in capacity accompanying the decomposition of the liquid were remarkable.

上述の特許文献1〜6に開示されている電池は、LiMnあるいはLiCoOなどの4V級の正極活物質を用いたものであり、より高い放電電位を有する正極活物質を用いた場合の課題を解決するものではなかった。The batteries disclosed in the above-mentioned Patent Documents 1 to 6 use a 4V-class positive electrode active material such as LiMn 2 O 4 or LiCoO 2, and use a positive electrode active material having a higher discharge potential. The problem was not solved.

本発明の1実施形態は、優れたサイクル特性を有するリチウム二次電池を提供することを目的とする。   An object of one embodiment of the present invention is to provide a lithium secondary battery having excellent cycle characteristics.

本実施形態は、正極と、負極と、非水電解溶媒を含む電解液と、を有するリチウム二次電池であって、
前記非水電解溶媒は、下記式(1)で表されるフッ素含有リン酸エステル、および下記式(20)で表されるフッ素化ジエーテル化合物を含むことを特徴とするリチウム二次電池に関する。
The present embodiment is a lithium secondary battery having a positive electrode, a negative electrode, and an electrolytic solution containing a nonaqueous electrolytic solvent,
The non-aqueous electrolytic solvent relates to a lithium secondary battery comprising a fluorine-containing phosphate ester represented by the following formula (1) and a fluorinated diether compound represented by the following formula (20).

Figure 0006179511
(式(1)において、R、RおよびRは、それぞれ独立に、置換または無置換のアルキル基であって、R,RおよびRの少なくとも1つはフッ素含有アルキル基である。)
O−(RO)−R (20)
(式(20)中、RおよびRは、独立してフッ素原子で置換されていてもよい炭素数1〜4のアルキル基であり、Rはフッ素原子で置換されていてもよい炭素数1〜4のアルキレン基であり、ただしR、RおよびRの少なくとも一つはフッ素原子で置換されている基であり、nは、1〜4の整数を表す。)
Figure 0006179511
(In Formula (1), R 1 , R 2 and R 3 are each independently a substituted or unsubstituted alkyl group, and at least one of R 1 , R 2 and R 3 is a fluorine-containing alkyl group. is there.)
R 4 O- (R 5 O) n -R 6 (20)
(In formula (20), R 4 and R 6 are each independently a C 1-4 alkyl group optionally substituted with a fluorine atom, and R 5 is a carbon optionally substituted with a fluorine atom. An alkylene group of 1 to 4, provided that at least one of R 4 , R 5 and R 6 is a group substituted with a fluorine atom, and n represents an integer of 1 to 4)

本実施形態によれば、優れたサイクル特性を有するリチウム二次電池を提供することができる。   According to this embodiment, a lithium secondary battery having excellent cycle characteristics can be provided.

本実施形態に係る二次電池の断面構造を示す図である。It is a figure which shows the cross-section of the secondary battery which concerns on this embodiment.

本実施形態のリチウム二次電池は、正極と、負極と、非水電解溶媒を含む電解液と、を有する。非水電解溶媒は、上記式(1)で表されるリン酸エステル(以下、フッ素含有リン酸エステルともいう)、および上記式(20)で表されるフッ素化ジエーテル化合物(以下、単に、フッ素化ジエーテル化合物ともいう)を含む。本実施形態のリチウム二次電池において、4V級(例えば、平均動作電位が3.6〜3.8V:対リチウム電位)で動作する正極活物質を用いてもよい。しかし、リチウムに対して4.5V以上の電位で動作する正極活物質を用いた場合においても、フッ素含有リン酸エステルおよびフッ素化ジエーテル化合物を含む非水電解溶媒を用いることにより、ガスの発生がなく、サイクル特性が優れたリチウム二次電池となる。   The lithium secondary battery of this embodiment has a positive electrode, a negative electrode, and an electrolytic solution containing a nonaqueous electrolytic solvent. The non-aqueous electrolytic solvent includes a phosphate ester represented by the above formula (1) (hereinafter also referred to as a fluorine-containing phosphate ester) and a fluorinated diether compound represented by the above formula (20) (hereinafter simply referred to as fluorine). A diether compound). In the lithium secondary battery of the present embodiment, a positive electrode active material that operates at a 4 V class (for example, an average operating potential of 3.6 to 3.8 V: lithium potential) may be used. However, even when a positive electrode active material that operates at a potential of 4.5 V or higher with respect to lithium is used, gas generation is prevented by using a nonaqueous electrolytic solvent containing a fluorine-containing phosphate ester and a fluorinated diether compound. Thus, a lithium secondary battery having excellent cycle characteristics is obtained.

(電解液)
電解液は、支持塩および非水電解溶媒を含み、非水電解溶媒は上記式(1)で表されるフッ素含有リン酸エステルおよび上記式(20)で表されるフッ素化ジエーテル化合物を含む。
(Electrolyte)
The electrolytic solution contains a supporting salt and a nonaqueous electrolytic solvent, and the nonaqueous electrolytic solvent contains a fluorine-containing phosphate ester represented by the above formula (1) and a fluorinated diether compound represented by the above formula (20).

非水電解溶媒に含まれるフッ素含有リン酸エステルの含有率は、特に制限されるものではないが、非水電解溶媒中10体積%以上95体積%以下が好ましい。フッ素含有リン酸エステルの非水電解溶媒中の含有率が10体積%以上であると、耐電圧性を高める効果がより向上する。また、フッ素含有リン酸エステルの非水電解溶媒中の含有率が95体積%以下であると、電解液のイオン伝導性が向上して電池の充放電レートがより良好になる。また、フッ素含有リン酸エステルの非水電解溶媒中の含有率は、20体積%以上がより好ましく、31体積%以上がさらに好ましく、35体積%以上が特に好ましい。また、フッ素含有リン酸エステルの非水電解溶媒中の含有率は、80体積%以下がより好ましく、70体積%以下がさらに好ましい。   The content of the fluorine-containing phosphate ester contained in the nonaqueous electrolytic solvent is not particularly limited, but is preferably 10% by volume or more and 95% by volume or less in the nonaqueous electrolytic solvent. When the content of the fluorine-containing phosphate ester in the nonaqueous electrolytic solvent is 10% by volume or more, the effect of increasing the voltage resistance is further improved. Moreover, the ion conductivity of electrolyte solution improves that the content rate in the nonaqueous electrolytic solvent of fluorine-containing phosphate ester is 95 volume% or less, and the charging / discharging rate of a battery becomes more favorable. Further, the content of the fluorine-containing phosphate ester in the nonaqueous electrolytic solvent is more preferably 20% by volume or more, further preferably 31% by volume or more, and particularly preferably 35% by volume or more. Further, the content of the fluorine-containing phosphate ester in the nonaqueous electrolytic solvent is more preferably 80% by volume or less, and further preferably 70% by volume or less.

式(1)で表されるフッ素含有リン酸エステルにおいて、R,RおよびRは、それぞれ独立に、置換または無置換のアルキル基であって、R,RおよびRの少なくとも1つはフッ素含有アルキル基である。フッ素含有アルキル基とは、少なくとも1つのフッ素原子を有するアルキル基である。アルキル基R、R、およびRの炭素数は、それぞれ独立に、1以上4以下であることが好ましく、1以上3以下であることがより好ましい。アルキル基の炭素数が4以下であると、電解液の粘度の増加が抑えられ、電解液が電極やセパレータ内の細孔に浸み込み易くなるとともに、イオン伝導性が向上し、電池の充放電特性において電流値が良好になるためである。In the fluorine-containing phosphate represented by the formula (1), R 1 , R 2 and R 3 are each independently a substituted or unsubstituted alkyl group, and at least one of R 1 , R 2 and R 3 One is a fluorine-containing alkyl group. The fluorine-containing alkyl group is an alkyl group having at least one fluorine atom. The carbon numbers of the alkyl groups R 1 , R 2 , and R 3 are each independently preferably 1 or more and 4 or less, and more preferably 1 or more and 3 or less. When the carbon number of the alkyl group is 4 or less, the increase in the viscosity of the electrolytic solution is suppressed, and the electrolytic solution can easily penetrate into the pores in the electrode and the separator, and the ion conductivity is improved. This is because the current value becomes favorable in the discharge characteristics.

また、式(1)において、R,RおよびRの全てがフッ素含有アルキル基であることが好ましい。In Formula (1), it is preferable that all of R 1 , R 2 and R 3 are fluorine-containing alkyl groups.

また、R,RおよびRの少なくとも1つは、対応する無置換のアルキル基が有する水素原子の50%以上がフッ素原子に置換されたフッ素含有アルキル基であることが好ましい。また、R,RおよびRの全てがフッ素含有アルキル基であり、該R,RおよびRが対応する無置換のアルキル基の水素原子の50%以上がフッ素原子に置換されたフッ素含有アルキル基であることがより好ましい。フッ素原子の含有率が多いと、耐電圧性がより向上し、リチウムに対して4.5V以上の電位で動作する正極活物質を用いた場合でも、サイクル後における電池容量の劣化をより低減することできるからである。また、フッ素含有アルキル基における水素原子を含む置換基中のフッ素原子の比率は55%以上がより好ましい。In addition, at least one of R 1 , R 2 and R 3 is preferably a fluorine-containing alkyl group in which 50% or more of the hydrogen atoms of the corresponding unsubstituted alkyl group are substituted with fluorine atoms. Also, all of R 1 , R 2 and R 3 are fluorine-containing alkyl groups, and 50% or more of the hydrogen atoms of the unsubstituted alkyl group to which R 1 , R 2 and R 3 correspond are substituted with fluorine atoms. More preferably, it is a fluorine-containing alkyl group. When the content of fluorine atoms is large, the voltage resistance is further improved, and even when a positive electrode active material that operates at a potential of 4.5 V or higher with respect to lithium is used, the deterioration of battery capacity after cycling is further reduced. Because it can. The ratio of fluorine atoms in the substituent containing a hydrogen atom in the fluorine-containing alkyl group is more preferably 55% or more.

また、R乃至Rは、フッ素原子の他に置換基を有していても良く、置換基としては、アミノ基、カルボキシ基、ヒドロキシ基、シアノ基、並びにハロゲン原子(例えば、塩素原子、臭素原子)からなる群より選ばれる少なくとも1種が挙げられる。なお、上記の炭素数は置換基も含む概念である。R 1 to R 3 may have a substituent in addition to the fluorine atom. Examples of the substituent include an amino group, a carboxy group, a hydroxy group, a cyano group, and a halogen atom (for example, a chlorine atom, And at least one selected from the group consisting of bromine atoms). In addition, said carbon number is the concept also including a substituent.

フッ素含有リン酸エステルとしては、例えば、リン酸トリス(トリフルオロメチル)、リン酸トリス(トリフルオロエチル)、リン酸トリス(テトラフルオロプロピル)、リン酸トリス(ペンタフルオロプロピル)、リン酸トリス(ヘプタフルオロブチル)、リン酸トリス(オクタフルオロペンチル)等が挙げられる。また、フッ素含有リン酸エステルとしては、例えば、リン酸トリフルオロエチルジメチル、リン酸ビス(トリフルオロエチル)メチル、リン酸ビストリフルオロエチルエチル、リン酸ペンタフルオロプロピルジメチル、リン酸ヘプタフルオロブチルジメチル、リン酸トリフルオロエチルメチルエチル、リン酸ペンタフルオロプロピルメチルエチル、リン酸ヘプタフルオロブチルメチルエチル、リン酸トリフルオロエチルメチルプロピル、リン酸ペンタフルオロプロピルメチルプロピル、リン酸ヘプタフルオロブチルメチルプロピル、リン酸トリフルオロエチルメチルブチル、リン酸ペンタフルオロプロピルメチルブチル、リン酸ヘプタフルオロブチルメチルブチル、リン酸トリフルオロエチルジエチル、リン酸ペンタフルオロプロピルジエチル、リン酸ヘプタフルオロブチルジエチル、リン酸トリフルオロエチルエチルプロピル、リン酸ペンタフルオロプロピルエチルプロピル、リン酸ヘプタフルオロブチルエチルプロピル、リン酸トリフルオロエチルエチルブチル、リン酸ペンタフルオロプロピルエチルブチル、リン酸ヘプタフルオロブチルエチルブチル、リン酸トリフルオロエチルジプロピル、リン酸ペンタフルオロプロピルジプロピル、リン酸ヘプタフルオロブチルジプロピル、リン酸トリフルオロエチルプロピルブチル、リン酸ペンタフルオロプロピルプロピルブチル、リン酸ヘプタフルオロブチルプロピルブチル、リン酸トリフルオロエチルジブチル、リン酸ペンタフルオロプロピルジブチル、リン酸ヘプタフルオロブチルジブチル等が挙げられる。リン酸トリス(テトラフルオロプロピル)としては、例えば、リン酸トリス(2,2,3,3−テトラフルオロプロピル)が挙げられる。リン酸トリス(ペンタフルオロプロピル)としては、例えば、リン酸トリス(2,2,3,3,3−ペンタフルオロプロピル)が挙げられる。リン酸トリス(トリフルオロエチル)としては、例えば、リン酸トリス(2,2,2−トリフルオロエチル)(以下、PTTFEとも略す)などが挙げられる。リン酸トリス(ヘプタフルオロブチル)としては、例えば、リン酸トリス(1H,1H−ヘプタフルオロブチル)等が挙げられる。リントリス(オクタフルオロペンチル)としては、例えば、リン酸トリス(1H,1H,5H−オクタフルオロペンチル)等が挙げられる。これらの中でも、高電位における電解液分解の抑制効果が高いことから、下記式(2)で表されるリン酸トリス(2,2,2−トリフルオロエチル)が好ましい。フッ素含有リン酸エステルは、一種を単独でまたは二種以上を併用して用いることができる。   Examples of the fluorine-containing phosphate ester include tris phosphate (trifluoromethyl), tris phosphate (trifluoroethyl), tris phosphate (tetrafluoropropyl), tris phosphate (pentafluoropropyl), tris phosphate ( Heptafluorobutyl), tris phosphate (octafluoropentyl) and the like. Examples of the fluorine-containing phosphate ester include trifluoroethyldimethyl phosphate, bis (trifluoroethyl) methyl phosphate, bistrifluoroethylethyl phosphate, pentafluoropropyldimethyl phosphate, heptafluorobutyldimethyl phosphate, Trifluoroethylmethyl ethyl phosphate, pentafluoropropylmethyl ethyl phosphate, heptafluorobutylmethyl ethyl phosphate, trifluoroethyl methyl propyl phosphate, pentafluoropropyl methyl propyl phosphate, heptafluorobutyl methyl propyl phosphate, phosphoric acid Trifluoroethylmethylbutyl, pentafluoropropylmethylbutyl phosphate, heptafluorobutylmethylbutyl phosphate, trifluoroethyldiethyl phosphate, pentafluoropropyldiethyl phosphate , Heptafluorobutyldiethyl phosphate, trifluoroethylethylpropyl phosphate, pentafluoropropylethylpropyl phosphate, heptafluorobutylethylpropyl phosphate, trifluoroethylethylbutyl phosphate, pentafluoropropylethylbutyl phosphate, phosphoric acid Heptafluorobutylethylbutyl, trifluoroethyldipropyl phosphate, pentafluoropropyldipropyl phosphate, heptafluorobutyldipropyl phosphate, trifluoroethylpropylbutyl phosphate, pentafluoropropylpropylbutyl phosphate, heptafluorophosphate Examples thereof include butylpropylbutyl, trifluoroethyl dibutyl phosphate, pentafluoropropyl dibutyl phosphate, heptafluorobutyl dibutyl phosphate and the like. Examples of tris (tetrafluoropropyl) phosphate include tris (2,2,3,3-tetrafluoropropyl) phosphate. Examples of tris phosphate (pentafluoropropyl) include tris phosphate (2,2,3,3,3-pentafluoropropyl). Examples of tris (trifluoroethyl) phosphate include tris (2,2,2-trifluoroethyl) phosphate (hereinafter also abbreviated as PTTFE). Examples of tris phosphate (heptafluorobutyl) include tris phosphate (1H, 1H-heptafluorobutyl). Examples of lintris (octafluoropentyl) include trisphosphate (1H, 1H, 5H-octafluoropentyl) and the like. Among these, tris phosphate (2,2,2-trifluoroethyl) represented by the following formula (2) is preferable because the effect of suppressing decomposition of the electrolytic solution at a high potential is high. A fluorine-containing phosphate ester can be used individually by 1 type or in combination of 2 or more types.

Figure 0006179511
Figure 0006179511

式(20):
O−(RO)−R (20)
で表されるフッ素化ジエーテル化合物において、RおよびRは、独立してフッ素原子で置換されていてもよい炭素数1〜4のアルキル基であり、Rはフッ素原子で置換されていてもよい炭素数1〜4のアルキレン基であり、ただしR、RおよびRの内少なくとも一つはフッ素原子で置換されている基である。
Formula (20):
R 4 O- (R 5 O) n -R 6 (20)
In the fluorinated diether compound represented by: R 4 and R 6 are each independently an alkyl group having 1 to 4 carbon atoms which may be substituted with a fluorine atom, and R 5 is substituted with a fluorine atom. Or an alkylene group having 1 to 4 carbon atoms, provided that at least one of R 4 , R 5 and R 6 is a group substituted with a fluorine atom.

およびRの炭素数は、1以上3以下がより好ましい。好ましい実施形態において、RおよびRはフッ素置換アルキル基であり、例えばトリフルオロメチル、トリフルオロエチル、テトラフルオロプロピル、ペンタフルオロプロピルおよびヘプタフルオロブチル等を挙げることができる。フッ素の置換位置は任意であり、例えば2,2,2−トリフルオロエチル、2,2,3,3−テトラフルオロプロピル、2,2,3,3,3−ペンタフルオロプロピル等を挙げることができるがこれらに限定されない。The number of carbon atoms of R 4 and R 6 is more preferably 1 or more and 3 or less. In a preferred embodiment, R 4 and R 6 are fluorine-substituted alkyl groups such as trifluoromethyl, trifluoroethyl, tetrafluoropropyl, pentafluoropropyl and heptafluorobutyl. The fluorine substitution position is arbitrary, and examples thereof include 2,2,2-trifluoroethyl, 2,2,3,3-tetrafluoropropyl, 2,2,3,3,3-pentafluoropropyl and the like. Although it can, it is not limited to these.

の炭素数は、1以上3以下がより好ましい。例えばメチレン、エチレン、1,2−プロピレン、1,3−プロピレン、ブチレンおよびそれらのフッ素置換化合物を挙げることができる。特に、エチレン、1,2−プロピレンおよび1,3−プロピレンが好ましい。また、好ましい実施形態において、Rは無置換のアルキレン基である。nは、好ましくは1または2であり、さらに好ましくは1である。The number of carbon atoms in R 5 is more preferably 1 or more and 3 or less. Examples include methylene, ethylene, 1,2-propylene, 1,3-propylene, butylene, and fluorine-substituted compounds thereof. In particular, ethylene, 1,2-propylene and 1,3-propylene are preferable. In a preferred embodiment, R 5 is an unsubstituted alkylene group. n is preferably 1 or 2, and more preferably 1.

フッ素化ジエーテル化合物の好ましい化合物は、下記式(21)で表される。   A preferred compound of the fluorinated diether compound is represented by the following formula (21).

CFCHOCHCHOCHCF (21)CF 3 CH 2 OCH 2 CH 2 OCH 2 CF 3 (21)

非水電解溶媒に含まれるフッ素化ジエーテル化合物の含有率は、特に限定されるものではなく、非水電解溶媒中、例えば、0.1体積%以上、より好ましくは0.5体積%以上、非常に好ましくは0.9体積%以上である。一方、含有率の上限については、フッ素含有リン酸エステルの含有量および他の有機溶媒の含有量により適宜変更することが可能であり、典型的には90体積%以下、好ましくは50体積%以下である。後述する実施例で示されるように、フッ素化ジエーテル化合物の含有量は、比較的少量でもよい。従って、1実施形態において、フッ素化ジエーテル化合物の含有量は、好ましくは20体積%、より好ましくは10体積%以下である。   The content of the fluorinated diether compound contained in the non-aqueous electrolytic solvent is not particularly limited, and for example, 0.1% by volume or more, more preferably 0.5% by volume or more, Preferably, it is 0.9 volume% or more. On the other hand, the upper limit of the content rate can be appropriately changed depending on the content of the fluorine-containing phosphate ester and the content of other organic solvents, and is typically 90% by volume or less, preferably 50% by volume or less. It is. As shown in Examples described later, the content of the fluorinated diether compound may be relatively small. Accordingly, in one embodiment, the content of the fluorinated diether compound is preferably 20% by volume, more preferably 10% by volume or less.

非水電解溶媒は、フッ素含有リン酸エステルおよびフッ素化ジエーテル化合物に加えて、環状カーボネートまたは鎖状カーボネートをさらに含むことが好ましい。   The nonaqueous electrolytic solvent preferably further contains a cyclic carbonate or a chain carbonate in addition to the fluorine-containing phosphate ester and the fluorinated diether compound.

環状カーボネートは比誘電率が大きいため、添加により、支持塩の解離性が向上し、十分な導電性を付与しやすくなる。また、鎖状カーボネートは、粘度が小さいため、添加により電解液の粘度が下がるので、電解液におけるイオン移動度が向上するという利点がある。また、環状カーボネートおよび鎖状カーボネートは、耐電圧性および導電率が高いことから、フッ素含有リン酸エステルとの混合に適している。   Since cyclic carbonate has a large relative dielectric constant, the dissociation of the supporting salt is improved by addition, and sufficient conductivity is easily imparted. In addition, since the chain carbonate has a low viscosity, the viscosity of the electrolytic solution is lowered by addition, so that ion mobility in the electrolytic solution is improved. Cyclic carbonates and chain carbonates are suitable for mixing with fluorine-containing phosphate esters because of their high voltage resistance and electrical conductivity.

環状カーボネートとしては、特に制限されるものではないが、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、またはビニレンカーボネート(VC)等を挙げることができる。また、環状カーボネートは、フッ素化環状カーボネートを含む。フッ素化環状カーボネートとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、またはビニレンカーボネート(VC)等の一部または全部の水素原子をフッ素原子に置換した化合物等を挙げることができる。フッ素化環状カーボネートとしては、より具体的には、例えば、4−フルオロ−1,3−ジオキソラン−2−オン、(cisまたはtrans)4,5−ジフルオロ−1,3−ジオキソラン−2−オン、4,4−ジフルオロ−1,3−ジオキソラン−2−オン、4−フルオロ−5−メチル−1,3−ジオキソラン−2−オン等を用いることができる。環状カーボネートとしては、上で列記した中でも、耐電圧性や、導電率の観点から、エチレンカーボネート、プロピレンカーボネート、またはこれらの一部をフッ素化した化合物等が好ましく、エチレンカーボネートがより好ましい。環状カーボネートは、一種を単独でまたは二種以上を併用して用いることができる。   Although it does not restrict | limit especially as a cyclic carbonate, For example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC) etc. can be mentioned. The cyclic carbonate includes a fluorinated cyclic carbonate. Examples of the fluorinated cyclic carbonate include compounds in which some or all of the hydrogen atoms such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), or vinylene carbonate (VC) are substituted with fluorine atoms. Can be mentioned. More specific examples of the fluorinated cyclic carbonate include 4-fluoro-1,3-dioxolan-2-one, (cis or trans) 4,5-difluoro-1,3-dioxolan-2-one, 4,4-difluoro-1,3-dioxolan-2-one, 4-fluoro-5-methyl-1,3-dioxolan-2-one, and the like can be used. Among the above listed cyclic carbonates, ethylene carbonate, propylene carbonate, or a compound obtained by fluorinating a part thereof is preferable, and ethylene carbonate is more preferable, from the viewpoint of voltage endurance and conductivity. A cyclic carbonate can be used individually by 1 type or in combination of 2 or more types.

環状カーボネートの非水電解溶媒中の含有率は、支持塩の解離度を高める効果と電解液の導電性を高める効果の観点から、0.1体積%以上が好ましく、5体積%以上がより好ましく、10体積%以上がさらに好ましく、15体積%以上が特に好ましい。また、環状カーボネートの非水電解溶媒中の含有率は、同様の観点から、70体積%以下が好ましく、50体積%以下がより好ましく、40体積%以下がさらに好ましい。   The content of the cyclic carbonate in the non-aqueous electrolytic solvent is preferably 0.1% by volume or more, more preferably 5% by volume or more from the viewpoint of the effect of increasing the dissociation degree of the supporting salt and the effect of increasing the conductivity of the electrolytic solution. 10 volume% or more is further more preferable, and 15 volume% or more is especially preferable. Further, from the same viewpoint, the content of the cyclic carbonate in the nonaqueous electrolytic solvent is preferably 70% by volume or less, more preferably 50% by volume or less, and further preferably 40% by volume or less.

鎖状カーボネートとしては、特に制限されるものではないが、例えば、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)等を挙げることができる。また、鎖状カーボネートは、フッ素化鎖状カーボネートを含む。フッ素化鎖状カーボネートとしては、例えば、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)等の一部または全部の水素原子をフッ素原子に置換した構造を有する化合物等を挙げることができる。フッ素化鎖状カーボネートとしては、より具体的には、例えば、ビス(フルオロエチル)カーボネート、3−フルオロプロピルメチルカーボネート、3,3,3−トリフルオロプロピルメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、2,2,2−トリフルオロエチルエチルカーボネート、モノフルオロメチルメチルカーボネート、メチル2,2,3,3,テトラフルオロプロピルカーボネート、エチル2,2,3,3,テトラフルオロプロピルカーボネート、ビス(2,2,3,3,テトラフルオロプロピル)カーボネート、ビス(2,2,2トリフルオロエチル)カーボネート、1−モノフルオロエチルエチルカーボネート、1−モノフルオロエチルメチルカーボネート、2−モノフルオロエチルメチルカーボネート、ビス(1−モノフルオロエチル)カーボネート、ビス(2−モノフルオロエチル)カーボネート、ビス(モノフルオロメチル)カーボネート、等が挙げられる。これらの中でも、ジメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、モノフルオロメチルメチルカーボネート、メチル2,2,3,3,テトラフルオロプロピルカーボネートなどが耐電圧性と導電率の観点から好ましい。鎖状カーボネートは、一種を単独でまたは二種以上を併用して用いることができる。   The chain carbonate is not particularly limited, and examples thereof include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and dipropyl carbonate (DPC). The chain carbonate includes a fluorinated chain carbonate. As the fluorinated chain carbonate, for example, a part or all of hydrogen atoms such as ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC) and the like are substituted with fluorine atoms. Examples include compounds having a structure. More specifically, examples of the fluorinated chain carbonate include bis (fluoroethyl) carbonate, 3-fluoropropyl methyl carbonate, 3,3,3-trifluoropropyl methyl carbonate, and 2,2,2-trifluoro. Ethyl methyl carbonate, 2,2,2-trifluoroethyl ethyl carbonate, monofluoromethyl methyl carbonate, methyl 2,2,3,3, tetrafluoropropyl carbonate, ethyl 2,2,3,3, tetrafluoropropyl carbonate, Bis (2,2,3,3, tetrafluoropropyl) carbonate, bis (2,2,2 trifluoroethyl) carbonate, 1-monofluoroethyl ethyl carbonate, 1-monofluoroethyl methyl carbonate, 2-monofluoroethyl Methyl car , Bis (1-mono-fluoroethyl) carbonate, bis (2-monofluoroethyl) carbonate, bis (monofluoromethyl) carbonate, and the like. Among these, dimethyl carbonate, 2,2,2-trifluoroethyl methyl carbonate, monofluoromethyl methyl carbonate, methyl 2,2,3,3, tetrafluoropropyl carbonate and the like are preferable from the viewpoint of voltage resistance and conductivity. . A chain carbonate can be used individually by 1 type or in combination of 2 or more types.

鎖状カーボネートは、「−OCOO−」構造に付加する置換基の炭素数が小さい場合、粘度が低いという利点がある。一方、炭素数が大きすぎると、電解液の粘度が高くなってLiイオンの導電性が下がる場合がある。このような理由から、鎖状カーボネートの「−OCOO−」構造に付加する2つの置換基の総炭素数は2以上6以下であることが好ましい。また、「−OCOO−」構造に付加する置換基がフッ素原子を含有する場合、電解液の耐酸化性が向上する。このような理由から、鎖状カーボネートは下記式(3)で表されるフッ素化鎖状カーボネートであることが好ましい。   The chain carbonate has an advantage of low viscosity when the number of carbon atoms of the substituent added to the “—OCOO—” structure is small. On the other hand, if the number of carbon atoms is too large, the viscosity of the electrolytic solution may increase and the conductivity of Li ions may decrease. For these reasons, the total number of carbon atoms of the two substituents added to the “—OCOO—” structure of the chain carbonate is preferably 2 or more and 6 or less. Further, when the substituent added to the “—OCOO—” structure contains a fluorine atom, the oxidation resistance of the electrolytic solution is improved. For these reasons, the chain carbonate is preferably a fluorinated chain carbonate represented by the following formula (3).

2n+1−l−OCOO−C2m+1−k(3) C n H 2n + 1-l F l -OCOO-C m H 2m + 1-k F k (3)

(式(3)中、nは1,2または3であり、mは1,2または3であり、lは0から2n+1までのいずれかの整数であり、kは0から2m+1までのいずれかの整数であり、lおよびkのうち少なくともいずれかは1以上の整数である。)。   (In the formula (3), n is 1, 2 or 3, m is 1, 2 or 3, l is any integer from 0 to 2n + 1, and k is any from 0 to 2m + 1. And at least one of l and k is an integer of 1 or more.)

式(3)で示されるフッ素化鎖状カーボネートにおいて、フッ素置換量が少ないと、フッ素化鎖状カーボネートが高電位の正極と反応することにより電池の容量維持率が低下したり、ガスが発生したりする場合がある。一方、フッ素置換量が多すぎると、鎖状カーボネートの他溶媒との相溶性が低下したり、鎖状カーボネートの沸点が下がったりする場合がある。このような理由から、フッ素置換量は、1%以上90%以下であることが好ましく、5%以上85%以下であることがより好ましく、10%以上80%以下であることがさらに好ましい。つまり、式(3)のl、m、nが以下の関係式を満たすことが好ましい。   In the fluorinated chain carbonate represented by the formula (3), if the amount of fluorine substitution is small, the capacity retention rate of the battery decreases or gas is generated due to the reaction of the fluorinated chain carbonate with the positive electrode having a high potential. Sometimes. On the other hand, if the amount of fluorine substitution is too large, the compatibility of the chain carbonate with other solvents may decrease, or the boiling point of the chain carbonate may decrease. For these reasons, the fluorine substitution amount is preferably 1% or more and 90% or less, more preferably 5% or more and 85% or less, and further preferably 10% or more and 80% or less. That is, it is preferable that l, m, and n in Expression (3) satisfy the following relational expression.

0.01≦(l+k)/(2n+2m+2)≦0.9   0.01 ≦ (l + k) / (2n + 2m + 2) ≦ 0.9

鎖状カーボネートは、電解液の粘度を下げる効果があり、電解液の導電率を高めることができる。これらの観点から、鎖状カーボネートの非水電解溶媒中の含有量は、5体積%以上が好ましく、10体積%以上がより好ましく、15体積%以上がさらに好ましい。また、鎖状カーボネートの非水電解溶媒中の含有率は、90体積%以下が好ましく、80体積%以下がより好ましく、70体積%以下がさらに好ましい。   The chain carbonate has an effect of lowering the viscosity of the electrolytic solution, and can increase the conductivity of the electrolytic solution. From these viewpoints, the content of the chain carbonate in the nonaqueous electrolytic solvent is preferably 5% by volume or more, more preferably 10% by volume or more, and further preferably 15% by volume or more. Further, the content of the chain carbonate in the nonaqueous electrolytic solvent is preferably 90% by volume or less, more preferably 80% by volume or less, and further preferably 70% by volume or less.

また、フッ素化鎖状カーボネートの含有率は、特に制限されるものではないが、非水電解溶媒中0.1体積%以上70体積%以下が好ましい。フッ素化鎖状カーボネートの非水電解溶媒中の含有率が0.1体積%以上であると、電解液の粘度を下げることができ、導電性を高めることができる。また、耐酸化性を高める効果が得られる。また、フッ素化鎖状カーボネートの非水電解溶媒中の含有率が70体積%以下であると、電解液の導電性を高く保つことが可能である。また、フッ素化鎖状カーボネートの非水電解溶媒中の含有率は、1体積%以上がより好ましく、5体積%以上がさらに好ましく、10体積%以上が特に好ましい。また、フッ素化鎖状カーボネートの非水電解溶媒中の含有率は、65体積%以下がより好ましく、60体積%以下がさらに好ましく、55体積%以下が特に好ましい。   Further, the content of the fluorinated chain carbonate is not particularly limited, but is preferably 0.1% by volume or more and 70% by volume or less in the nonaqueous electrolytic solvent. When the content of the fluorinated chain carbonate in the nonaqueous electrolytic solvent is 0.1% by volume or more, the viscosity of the electrolytic solution can be lowered and the conductivity can be increased. Moreover, the effect which improves oxidation resistance is acquired. Further, when the content of the fluorinated chain carbonate in the nonaqueous electrolytic solvent is 70% by volume or less, the conductivity of the electrolytic solution can be kept high. Further, the content of the fluorinated chain carbonate in the nonaqueous electrolytic solvent is more preferably 1% by volume or more, further preferably 5% by volume or more, and particularly preferably 10% by volume or more. The content of the fluorinated chain carbonate in the nonaqueous electrolytic solvent is more preferably 65% by volume or less, further preferably 60% by volume or less, and particularly preferably 55% by volume or less.

非水電解溶媒は、フッ素含有リン酸エステルおよびフッ素化ジエーテル化合物に加えて、カルボン酸エステルを含んでもよい。   The nonaqueous electrolytic solvent may contain a carboxylic acid ester in addition to the fluorine-containing phosphate ester and the fluorinated diether compound.

カルボン酸エステルとしては、特に制限されるものではないが、例えば、酢酸エチル、プロピオン酸メチル、ギ酸エチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、酢酸メチル、ギ酸メチル等が挙げられる。また、カルボン酸エステルは、フッ素化カルボン酸エステルも含み、フッ素化カルボン酸エステルとしては、例えば、酢酸エチル、プロピオン酸メチル、ギ酸エチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、酢酸メチル、またはギ酸メチルの一部または全部の水素原子をフッ素原子で置換した構造を有する化合物等が挙げられる。また、フッ素化カルボン酸エステルとしては、具体的には、例えば、ペンタフルオロプロピオン酸エチル、3,3,3−トリフルオロプロピオン酸エチル、2,2,3,3−テトラフルオロプロピオン酸メチル、酢酸2,2−ジフルオロエチル、ヘプタフルオロイソ酪酸メチル、2,3,3,3−テトラフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸メチル、2−(トリフルオロメチル)−3,3,3−トリフルオロプロピオン酸メチル、ヘプタフルオロ酪酸エチル、3,3,3−トリフルオロプロピオン酸メチル、酢酸2,2,2−トリフルオロエチル、トリフルオロ酢酸イソプロピル、トリフルオロ酢酸tert−ブチル、4,4,4−トリフルオロ酪酸エチル、4,4,4−トリフルオロ酪酸メチル、2,2−ジフルオロ酢酸ブチル、ジフルオロ酢酸エチル、トリフルオロ酢酸n−ブチル、酢酸2,2,3,3−テトラフルオロプロピル、3−(トリフルオロメチル)酪酸エチル、テトラフルオロ−2−(メトキシ)プロピオン酸メチル、3,3,3−トリフルオロプロピオン酸3,3,3トリフルオロプロピル、ジフルオロ酢酸メチル、トリフルオロ酢酸2,2,3,3−テトラフルオロプロピル、酢酸1H,1H−ヘプタフルオロブチル、ヘプタフルオロ酪酸メチル、トリフルオロ酢酸エチルなどが挙げられる。これらの中でも、耐電圧と沸点などの観点から、カルボン酸エステルとしては、プロピオン酸エチル、酢酸メチル、2,2,3,3−テトラフルオロプロピオン酸メチル、トリフルオロ酢酸2,2,3,3−テトラフルオロプロピルが好ましい。カルボン酸エステルは、鎖状カーボネートと同様に電解液の粘度を低減する効果がある。したがって、例えば、カルボン酸エステルは、鎖状カーボネートの代わりに使用することが可能であり、また、鎖状カーボネートと併用することも可能である。   The carboxylic acid ester is not particularly limited, and examples thereof include ethyl acetate, methyl propionate, ethyl formate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetate, and methyl formate. The carboxylic acid ester also includes a fluorinated carboxylic acid ester. Examples of the fluorinated carboxylic acid ester include ethyl acetate, methyl propionate, ethyl formate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetate, or formic acid. Examples thereof include compounds having a structure in which part or all of the hydrogen atoms of methyl are substituted with fluorine atoms. Specific examples of the fluorinated carboxylic acid ester include, for example, ethyl pentafluoropropionate, ethyl 3,3,3-trifluoropropionate, methyl 2,2,3,3-tetrafluoropropionate, and acetic acid. 2,2-difluoroethyl, methyl heptafluoroisobutyrate, methyl 2,3,3,3-tetrafluoropropionate, methyl pentafluoropropionate, 2- (trifluoromethyl) -3,3,3-trifluoropropion Methyl acetate, ethyl heptafluorobutyrate, methyl 3,3,3-trifluoropropionate, 2,2,2-trifluoroethyl acetate, isopropyl trifluoroacetate, tert-butyl trifluoroacetate, 4,4,4-tri Ethyl fluorobutyrate, methyl 4,4,4-trifluorobutyrate, 2,2-difluoro Acid butyl, ethyl difluoroacetate, n-butyl trifluoroacetate, 2,2,3,3-tetrafluoropropyl acetate, ethyl 3- (trifluoromethyl) butyrate, methyl tetrafluoro-2- (methoxy) propionate, 3 , 3,3-trifluoropropionic acid 3,3,3 trifluoropropyl, methyl difluoroacetate, 2,2,3,3-tetrafluoropropyl trifluoroacetate, 1H, 1H-heptafluorobutyl acetate, methyl heptafluorobutyrate And ethyl trifluoroacetate. Among these, from the viewpoints of withstand voltage and boiling point, as the carboxylic acid ester, ethyl propionate, methyl acetate, methyl 2,2,3,3-tetrafluoropropionate, 2,2,3,3 trifluoroacetic acid -Tetrafluoropropyl is preferred. Carboxylic acid esters have the effect of reducing the viscosity of the electrolytic solution in the same manner as chain carbonates. Therefore, for example, the carboxylic acid ester can be used in place of the chain carbonate, and can also be used in combination with the chain carbonate.

鎖状カルボン酸エステルは、「−COO−」構造に付加する置換基の炭素数が小さい場合、粘度が低いという特長があるが、沸点も低くなる傾向がある。沸点が低い鎖状カルボン酸エステルは電池の高温動作時に気化してしまう場合がある。一方、炭素数が大きすぎると、電解液の粘度が高くなって導電性が下がる場合がある。このような理由から、鎖状カルボン酸エステルの「−COO−」構造に付加する2つの置換基の総炭素数は3以上8以下であることが好ましい。また、「−COO−」構造に付加する置換基がフッ素原子を含有する場合、電解液の耐酸化性を向上することができる。このような理由から、鎖状カルボン酸エステルは下記式(4)で表されるフッ素化鎖状カルボン酸エステルであることが好ましい。   The chain carboxylic acid ester has a feature that the viscosity is low when the number of carbon atoms of the substituent added to the “—COO—” structure is small, but the boiling point tends to be low. The chain carboxylic acid ester having a low boiling point may be vaporized when the battery is operated at a high temperature. On the other hand, if the number of carbon atoms is too large, the viscosity of the electrolytic solution may increase and conductivity may decrease. For these reasons, the total number of carbon atoms of the two substituents added to the “—COO—” structure of the chain carboxylic acid ester is preferably 3 or more and 8 or less. Further, when the substituent added to the “—COO—” structure contains a fluorine atom, the oxidation resistance of the electrolytic solution can be improved. For these reasons, the chain carboxylic acid ester is preferably a fluorinated chain carboxylic acid ester represented by the following formula (4).

2n+1−l−COO−C2m+1−k(4) C n H 2n + 1-l F l -COO-C m H 2m + 1-k F k (4)

(式(4)中、nは1,2,3または4であり、mは1,2,3または4であり、lは0から2n+1までのいずれかの整数であり、kは0から2m+1までのいずれかの整数であり、lおよびkのうち少なくともいずれかは1以上の整数である。)。   (In the formula (4), n is 1, 2, 3 or 4, m is 1, 2, 3 or 4, l is any integer from 0 to 2n + 1, and k is 0 to 2m + 1. And at least one of l and k is an integer of 1 or more.)

式(4)で示されるフッ素化鎖状カルボン酸エステルにおいて、フッ素置換量が少ないと、フッ素化鎖状カルボン酸エステルが高電位の正極と反応することにより電池の容量維持率が低下したり、ガスが発生したりする場合がある。一方、フッ素置換量が多すぎると、鎖状カルボン酸エステルの他溶媒との相溶性が低下したり、フッ素化鎖状カルボン酸エステルの沸点が下がったりする場合がある。このような理由から、フッ素置換量は、1%以上90%以下であることが好ましく、10%以上85%以下であることがより好ましく、20%以上80%以下であることがさらに好ましい。つまり、式(4)のl、m、nが以下の関係式を満たすことが好ましい。   In the fluorinated chain carboxylic acid ester represented by the formula (4), when the amount of fluorine substitution is small, the capacity retention rate of the battery decreases due to the reaction of the fluorinated chain carboxylic acid ester with the positive electrode of high potential, Gas may be generated. On the other hand, if the amount of fluorine substitution is too large, the compatibility of the chain carboxylic acid ester with other solvents may decrease, or the boiling point of the fluorinated chain carboxylic acid ester may decrease. For these reasons, the fluorine substitution amount is preferably 1% or more and 90% or less, more preferably 10% or more and 85% or less, and further preferably 20% or more and 80% or less. That is, it is preferable that l, m, and n in Expression (4) satisfy the following relational expression.

0.01≦(l+k)/(2n+2m+2)≦0.9   0.01 ≦ (l + k) / (2n + 2m + 2) ≦ 0.9

カルボン酸エステルの非水電解溶媒中の含有率は、0.1体積以上が好ましく、0.2体積%以上がより好ましく、0.5体積%以上がさらに好ましく、1体積%以上が特に好ましい。カルボン酸エステルの非水電解溶媒中の含有率は、50体積%以下が好ましく、20体積%以下がより好ましく、15体積%以下がさらに好ましく、10体積%以下が特に好ましい。カルボン酸エステルの含有率を0.1体積%以上とすることにより、低温特性をより向上でき、また導電率をより向上できる。また、カルボン酸エステルの含有率を50体積%以下とすることにより、電池を高温放置した場合に蒸気圧が高くなりすぎることを低減することができる。   The content of the carboxylic acid ester in the non-aqueous electrolytic solvent is preferably 0.1 volume or more, more preferably 0.2 volume% or more, further preferably 0.5 volume% or more, and particularly preferably 1 volume% or more. The content of the carboxylic acid ester in the nonaqueous electrolytic solvent is preferably 50% by volume or less, more preferably 20% by volume or less, still more preferably 15% by volume or less, and particularly preferably 10% by volume or less. By setting the content of the carboxylic acid ester to 0.1% by volume or more, the low temperature characteristics can be further improved, and the electrical conductivity can be further improved. Further, by setting the content of the carboxylic acid ester to 50% by volume or less, it is possible to reduce the vapor pressure from becoming too high when the battery is left at a high temperature.

また、フッ素化鎖状カルボン酸エステルの含有率は、特に制限されるものではないが、非水電解溶媒中0.1体積%以上50体積%以下が好ましい。フッ素化鎖状カルボン酸エステルの非水電解溶媒中の含有率が0.1体積%以上であると、電解液の粘度を下げることができ、導電性を高めることができる。また、耐酸化性を高める効果が得られる。また、フッ素化鎖状カルボン酸エステルの非水電解溶媒中の含有率が50体積%以下であると、電解液の導電性を高く保つことが可能であり、電解液の相溶性を確保することができる。また、フッ素化鎖状カルボン酸エステルの非水電解溶媒中の含有率は、1体積%以上がより好ましく、5体積%以上がさらに好ましく、10体積%以上が特に好ましい。また、フッ素化鎖状カルボン酸エステルの非水電解溶媒中の含有率は、45体積%以下がより好ましく、40体積%以下がさらに好ましく、35体積%以下が特に好ましい。   The content of the fluorinated chain carboxylic acid ester is not particularly limited, but is preferably 0.1% by volume or more and 50% by volume or less in the nonaqueous electrolytic solvent. When the content of the fluorinated chain carboxylic acid ester in the nonaqueous electrolytic solvent is 0.1% by volume or more, the viscosity of the electrolytic solution can be lowered and the conductivity can be increased. Moreover, the effect which improves oxidation resistance is acquired. In addition, when the content of the fluorinated chain carboxylic acid ester in the nonaqueous electrolytic solvent is 50% by volume or less, the conductivity of the electrolytic solution can be kept high, and the compatibility of the electrolytic solution is ensured. Can do. The content of the fluorinated chain carboxylic acid ester in the nonaqueous electrolytic solvent is more preferably 1% by volume or more, further preferably 5% by volume or more, and particularly preferably 10% by volume or more. The content of the fluorinated chain carboxylic acid ester in the nonaqueous electrolytic solvent is more preferably 45% by volume or less, further preferably 40% by volume or less, and particularly preferably 35% by volume or less.

非水電解溶媒は、フッ素含有リン酸エステルおよびフッ素化ジエーテル化合物に加えて、下記式(5)で表されるアルキレンビスカーボネートを含んでもよい。アルキレンビスカーボネートの耐酸化性は、鎖状カーボネートと同等かやや高いことから、電解液の耐電圧性を向上することができる。   The nonaqueous electrolytic solvent may contain an alkylene biscarbonate represented by the following formula (5) in addition to the fluorine-containing phosphate ester and the fluorinated diether compound. Since the oxidation resistance of the alkylene biscarbonate is equal to or slightly higher than that of the chain carbonate, the voltage resistance of the electrolytic solution can be improved.

Figure 0006179511
Figure 0006179511

(RおよびRは、それぞれ独立に、置換または無置換のアルキル基を表す。Rは、置換または無置換のアルキレン基を表す。)。(R 4 and R 6 each independently represents a substituted or unsubstituted alkyl group. R 5 represents a substituted or unsubstituted alkylene group.)

式(5)において、アルキル基は、直鎖状または分岐鎖状のものを含み、炭素数が1〜6であることが好ましく、炭素数が1〜4であることがより好ましい。アルキレン基は、二価の飽和炭化水素基であり、直鎖状または分岐鎖状のものを含み、炭素数が1〜4であることが好ましく、炭素数が1〜3であることがより好ましい。   In Formula (5), the alkyl group includes linear or branched ones, preferably having 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. The alkylene group is a divalent saturated hydrocarbon group, including a linear or branched group, preferably having 1 to 4 carbon atoms, and more preferably 1 to 3 carbon atoms. .

式(5)で表されるアルキレンビスカーボネートとしては、例えば、1,2−ビス(メトキシカルボニルオキシ)エタン、1,2−ビス(エトキシカルボニルオキシ)エタン、1,2−ビス(メトキシカルボニルオキシ)プロパン、または1−エトキシカルボニルオキシ−2−メトキシカルボニルオキシエタン等が挙げられる。これらの中でも、1,2−ビス(メトキシカルボニルオキシ)エタンが好ましい。   Examples of the alkylene biscarbonate represented by the formula (5) include 1,2-bis (methoxycarbonyloxy) ethane, 1,2-bis (ethoxycarbonyloxy) ethane, and 1,2-bis (methoxycarbonyloxy). Examples include propane and 1-ethoxycarbonyloxy-2-methoxycarbonyloxyethane. Of these, 1,2-bis (methoxycarbonyloxy) ethane is preferred.

アルキレンビスカーボネートの非水電解溶媒中の含有率は、0.1体積%以上が好ましく、0.5体積%以上がより好ましく、1体積%以上がさらに好ましく、1.5体積%以上が特に好ましい。アルキレンビスカーボネートの非水電解溶媒中の含有率は、70体積%以下が好ましく、60体積%以下がより好ましく、50体積%以下がさらに好ましく、40体積%以下が特に好ましい。   The content of the alkylene biscarbonate in the nonaqueous electrolytic solvent is preferably 0.1% by volume or more, more preferably 0.5% by volume or more, further preferably 1% by volume or more, and particularly preferably 1.5% by volume or more. . The content of the alkylene biscarbonate in the nonaqueous electrolytic solvent is preferably 70% by volume or less, more preferably 60% by volume or less, further preferably 50% by volume or less, and particularly preferably 40% by volume or less.

アルキレンビスカーボネートは誘電率が低い材料である。そのため、例えば、鎖状カーボネートの代わりに使用することが可能であり、または鎖状カーボネートと併用することが可能である。   Alkylene biscarbonate is a material having a low dielectric constant. Therefore, for example, it can be used in place of the chain carbonate, or can be used in combination with the chain carbonate.

非水電解溶媒は、フッ素含有リン酸エステルおよびフッ素化ジエーテル化合物に加えて、鎖状エーテルを含むことができる。   The non-aqueous electrolytic solvent can contain a chain ether in addition to the fluorine-containing phosphate ester and the fluorinated diether compound.

鎖状エーテルとしては、特に制限されるものではないが、例えば、1,2−エトキシエタン(DEE)若しくはエトキシメトキシエタン(EME)等が挙げられる。また、鎖状エーテルは、フッ素化鎖状エーテルも含む。フッ素化鎖状エーテルは、耐酸化性が高く、高電位で動作する正極の場合に好ましく用いられる。フッ素化鎖状エーテルとしては、例えば、1,2−エトキシエタン(DEE)若しくはエトキシメトキシエタン(EME)の一部または全部の水素原子をフッ素原子で置換した構造を有する化合物等が挙げられる。また、フッ素化鎖状エーテルとしては、具体的には、例えば、2,2,3,3,3−ペンタフルオロプロピル1,1,2,2−テトラフルオロエチルエーテル、1,1,2,2−テトラフルオロエチル2,2,2−トリフルオロエチルエーテル、1H,1H,2’H,3H−デカフルオロジプロピルエーテル、1,1,1,2,3,3−ヘキサフルオロプロピル−2,2−ジフルオロエチルエーテル、イソプロピル1,1,2,2−テトラフルオロエチルエーテル、プロピル1,1,2,2−テトラフルオロエチルエーテル、1,1,2,2−テトラフルオロエチル2,2,3,3−テトラフルオロプロピルエーテル、1H,1H,5H−パーフルオロペンチル−1,1,2,2−テトラフルオロエチルエーテル、1H,1H,2’H−パーフルオロジプロピルエーテル、1H−パーフルオロブチル−1H−パーフルオロエチルエーテル、メチルパーフルオロペンチルエーテル、メチルパーフルオロへキシルエーテル、メチル1,1,3,3,3−ペンタフルオロ−2−(トリフルオロメチル)プロピルエーテル、1,1,2,3,3,3−ヘキサフルオロプロピル2,2,2−トリフルオロエチルエーテル、エチルノナフルオロブチルエーテル、エチル1,1,2,3,3,3−ヘキサフルオロプロピルエーテル、1H,1H,5H−オクタフルオロペンチル1,1,2,2−テトラフルオロエチルエーテル、1H,1H,2’H−パーフルオロジプロピルエーテル、ヘプタフルオロプロピル1,2,2,2‐テトラフルオロエチルエーテル、1,1,2,2−テトラフルオロエチル−2,2,3,3−テトラフルオロプロピルエーテル、2,2,3,3,3−ペンタフルオロプロピル−1,1,2,2−テトラフルオロエチルエーテル、エチルノナフルオロブチルエーテル、メチルノナフルオロブチルエーテルなどが挙げられる。これらの中でも、耐電圧と沸点などの観点から、1,1,2,2−テトラフルオロエチル−2,2,3,3−テトラフルオロプロピルエーテル、1H,1H,2’H,3H−デカフルオロジプロピルエーテル、1H,1H,2’H−パーフルオロジプロピルエーテル、エチルノナフルオロブチルエーテルなどが好ましい。鎖状エーテルは、鎖状カーボネートと同様に電解液の粘度を低減する効果がある。したがって、例えば、鎖状エーテルは、鎖状カーボネート、カルボン酸エステルの代わりに使用することが可能であり、また、鎖状カーボネート、カルボン酸エステルと併用することも可能である。   The chain ether is not particularly limited, and examples thereof include 1,2-ethoxyethane (DEE) and ethoxymethoxyethane (EME). The chain ether also includes fluorinated chain ether. The fluorinated chain ether is preferably used in the case of a positive electrode having high oxidation resistance and operating at a high potential. Examples of the fluorinated chain ether include compounds having a structure in which some or all of the hydrogen atoms of 1,2-ethoxyethane (DEE) or ethoxymethoxyethane (EME) are substituted with fluorine atoms. Specific examples of the fluorinated chain ether include 2,2,3,3,3-pentafluoropropyl 1,1,2,2-tetrafluoroethyl ether, 1,1,2,2 and the like. -Tetrafluoroethyl 2,2,2-trifluoroethyl ether, 1H, 1H, 2'H, 3H-decafluorodipropyl ether, 1,1,1,2,3,3-hexafluoropropyl-2,2 -Difluoroethyl ether, isopropyl 1,1,2,2-tetrafluoroethyl ether, propyl 1,1,2,2-tetrafluoroethyl ether, 1,1,2,2-tetrafluoroethyl 2,2,3 3-tetrafluoropropyl ether, 1H, 1H, 5H-perfluoropentyl-1,1,2,2-tetrafluoroethyl ether, 1H, 1H, 2′H-per Fluorodipropyl ether, 1H-perfluorobutyl-1H-perfluoroethyl ether, methyl perfluoropentyl ether, methyl perfluorohexyl ether, methyl 1,1,3,3,3-pentafluoro-2- (trifluoro Methyl) propyl ether, 1,1,2,3,3,3-hexafluoropropyl 2,2,2-trifluoroethyl ether, ethyl nonafluorobutyl ether, ethyl 1,1,2,3,3,3-hexa Fluoropropyl ether, 1H, 1H, 5H-octafluoropentyl 1,1,2,2-tetrafluoroethyl ether, 1H, 1H, 2′H-perfluorodipropyl ether, heptafluoropropyl 1,2,2,2 -Tetrafluoroethyl ether, 1,1,2,2-tetrafluoroe 2,2,3,3-tetrafluoropropyl ether, 2,2,3,3,3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether, ethyl nonafluorobutyl ether, methyl nonafluoro Examples include butyl ether. Among these, from the viewpoint of withstand voltage and boiling point, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether, 1H, 1H, 2′H, 3H-decafluoro Dipropyl ether, 1H, 1H, 2′H-perfluorodipropyl ether, ethyl nonafluorobutyl ether and the like are preferable. The chain ether has the effect of reducing the viscosity of the electrolytic solution, like the chain carbonate. Therefore, for example, a chain ether can be used in place of a chain carbonate or carboxylic acid ester, and can also be used in combination with a chain carbonate or carboxylic acid ester.

鎖状エーテルは、炭素数が小さい場合、沸点が低くなる傾向があるため、電池の高温動作時に気化してしまう場合がある。一方、炭素数が大きすぎると、鎖状エーテルの粘度が高くなって、電解液の導電性が下がる場合がある。したがって、炭素数は4以上10以下であることが好ましい。このような理由から、鎖状エーテルは下記式(6)で表されるフッ素化鎖状エーテルであることが好ましい。   Since chain ether tends to have a low boiling point when the number of carbon atoms is small, the chain ether may vaporize during high-temperature operation of the battery. On the other hand, if the number of carbon atoms is too large, the viscosity of the chain ether increases, and the conductivity of the electrolytic solution may decrease. Accordingly, the number of carbon atoms is preferably 4 or more and 10 or less. For these reasons, the chain ether is preferably a fluorinated chain ether represented by the following formula (6).

2n+1−l−O−C2m+1−k(6) C n H 2n + 1-l F l -O-C m H 2m + 1-k F k (6)

(式(6)中、nは1,2,3,4,5または6であり、mは1,2,3または4であり、lは0から2n+1までのいずれかの整数であり、kは0から2m+1までのいずれかの整数であり、lおよびkのうち少なくともいずれかは1以上の整数である。)。   (In the formula (6), n is 1, 2, 3, 4, 5 or 6, m is 1, 2, 3 or 4, l is any integer from 0 to 2n + 1, and k Is any integer from 0 to 2m + 1, and at least one of l and k is an integer of 1 or more.)

式(6)で示されるフッ素化鎖状エーテルにおいて、フッ素置換量が少ないと、フッ素化鎖状エーテルが高電位の正極と反応することにより電池の容量維持率が低下したり、ガスが発生したりする場合がある。一方、フッ素置換量が多すぎると、フッ素化鎖状エーテルの多溶媒との相溶性が低下したり、フッ素化鎖状エーテルの沸点が下がったりする場合がある。このような理由から、フッ素置換量は、10%以上90%以下であることが好ましく、20%以上85%以下であることがさらに好ましく、30%以上80%以上であることがさらに好ましい。つまり、式(6)のl、m、nが以下の関係式を満たすことが好ましい。   In the fluorinated chain ether represented by the formula (6), if the amount of fluorine substitution is small, the capacity retention rate of the battery decreases or gas is generated due to the reaction of the fluorinated chain ether with the positive electrode having a high potential. Sometimes. On the other hand, if the amount of fluorine substitution is too large, the compatibility of the fluorinated chain ether with the multi-solvent may decrease, or the boiling point of the fluorinated chain ether may decrease. For these reasons, the fluorine substitution amount is preferably 10% or more and 90% or less, more preferably 20% or more and 85% or less, and further preferably 30% or more and 80% or more. That is, it is preferable that l, m, and n in Expression (6) satisfy the following relational expression.

0.1≦(l+k)/(2n+2m+2)≦0.9   0.1 ≦ (l + k) / (2n + 2m + 2) ≦ 0.9

また、フッ素化鎖状エーテルの含有率は、特に制限されるものではないが、非水電解溶媒中0.1体積%以上70体積%以下が好ましい。フッ素化鎖状エーテルの非水電解溶媒中の含有率が0.1体積%以上であると、電解液の粘度を下げることができ、導電性を高めることができる。また、耐酸化性を高める効果が得られる。また、フッ素化鎖状エーテルの非水電解溶媒中の含有率が70体積%以下であると、電解液の導電性を高く保つことが可能であり、また、電解液の相溶性を確保することができる。また、フッ素化鎖状エーテルの非水電解溶媒中の含有率は、1体積%以上がより好ましく、5体積%以上がさらに好ましく、10体積%以上が特に好ましい。また、フッ素化鎖状エーテルの非水電解溶媒中の含有率は、65体積%以下がより好ましく、60体積%以下がさらに好ましく、55体積%以下が特に好ましい。   The content of the fluorinated chain ether is not particularly limited, but is preferably 0.1% by volume or more and 70% by volume or less in the nonaqueous electrolytic solvent. When the content of the fluorinated chain ether in the nonaqueous electrolytic solvent is 0.1% by volume or more, the viscosity of the electrolytic solution can be lowered and the conductivity can be increased. Moreover, the effect which improves oxidation resistance is acquired. Further, when the content of the fluorinated chain ether in the nonaqueous electrolytic solvent is 70% by volume or less, it is possible to keep the conductivity of the electrolytic solution high and to ensure the compatibility of the electrolytic solution. Can do. The content of the fluorinated chain ether in the nonaqueous electrolytic solvent is more preferably 1% by volume or more, further preferably 5% by volume or more, and particularly preferably 10% by volume or more. The content of the fluorinated chain ether in the nonaqueous electrolytic solvent is more preferably 65% by volume or less, further preferably 60% by volume or less, and particularly preferably 55% by volume or less.

非水電解溶媒としては、上記以外に以下のものを含んでいても良い。非水電解溶媒は、例えば、γ−ブチロラクトン等のγ−ラクトン類、1,2−エトキシエタン(DEE)若しくはエトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン若しくは2−メチルテトラヒドロフラン等の環状エーテル類等を含むことができる。また、これらの材料の水素原子の一部をフッ素原子で置換したものを含んでも良い。また、その他にも、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンスルトン、アニソール、N−メチルピロリドンなどの非プロトン性有機溶媒を含んでも良い。   In addition to the above, the nonaqueous electrolytic solvent may contain the following. Nonaqueous electrolytic solvents include, for example, γ-lactones such as γ-butyrolactone, chain ethers such as 1,2-ethoxyethane (DEE) or ethoxymethoxyethane (EME), and cyclic rings such as tetrahydrofuran or 2-methyltetrahydrofuran. Ethers and the like can be included. Moreover, what substituted some hydrogen atoms of these materials by the fluorine atom may be included. In addition, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3 -Including an aprotic organic solvent such as dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone good.

支持塩としては、例えば、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCCO、LiC(CFSO、LiN(CFSO、LiN(CSO、LiB10Cl10等のリチウム塩が挙げられる。また、支持塩としては、他にも、低級脂肪族カルボン酸カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl等が挙げられる。支持塩は、一種を単独で、または二種以上を組み合わせて用いることができる。Examples of the supporting salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2 ) 2 , LiN (CF 3 Examples thereof include lithium salts such as SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , and LiB 10 Cl 10 . Other examples of the supporting salt include lower aliphatic lithium carboxylate carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, and the like. The supporting salt can be used alone or in combination of two or more.

また、非水電解溶媒にイオン伝導性ポリマーを添加することができる。イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリエチレンやポリプロピレン等のポリオレフィン等を挙げることができる。また、イオン伝導性ポリマーとしては、例えば、ポリビニリデンフルオライド、ポリテトラフルオロエチレン、ポリビニルフルオライド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメチルメタクリレート、ポリメチルアクリレート、ポリビニルアルコール、ポリメタクリロニトリル、ポリビニルアセテート、ポリビニルピロリドン、ポリカーボネート、ポリエチレンテレフタレート、ポリヘキサメチレンアシパミド、ポリカプロラクタム、ポリウレタン、ポリエチレンイミン、ポリブタジエン、ポリスチレン、若しくはポリイソプレン、またはこれらの誘導体を挙げることができる。イオン伝導性ポリマーは、一種を単独で、または二種以上を組み合わせて用いることができる。また、上記ポリマーを構成する各種モノマーを含むポリマーを用いてもよい。   Further, an ion conductive polymer can be added to the nonaqueous electrolytic solvent. Examples of the ion conductive polymer include polyethers such as polyethylene oxide and polypropylene oxide, and polyolefins such as polyethylene and polypropylene. Examples of the ion conductive polymer include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl fluoride, polyvinyl chloride, polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polymethacrylonitrile, and polyvinyl chloride. Examples thereof include acetate, polyvinyl pyrrolidone, polycarbonate, polyethylene terephthalate, polyhexamethylene acipamide, polycaprolactam, polyurethane, polyethyleneimine, polybutadiene, polystyrene, or polyisoprene, or derivatives thereof. An ion conductive polymer can be used individually by 1 type or in combination of 2 or more types. Moreover, you may use the polymer containing the various monomers which comprise the said polymer.

(正極)
本実施形態によるリチウム二次電池の正極は、高エネルギー密度を得る観点から、リチウム金属に対して4.5V以上の電位でリチウムイオンを吸蔵または放出可能な正極活物質を含むことが好ましい。
(Positive electrode)
The positive electrode of the lithium secondary battery according to the present embodiment preferably includes a positive electrode active material capable of occluding or releasing lithium ions at a potential of 4.5 V or higher with respect to lithium metal from the viewpoint of obtaining a high energy density.

この正極活物質は、その充放電曲線の少なくとも充電曲線が、リチウム金属に対して4.5V以上の領域を少なくとも一部に有するものを用いることができる。すなわち、充電曲線のみにリチウム金属に対して4.5V以上の領域を少なくとも一部に有する活物質、または充電曲線および放電曲線の両方にリチウム金属に対して4.5V以上の領域を少なくとも一部に有する活物質を用いることができる。   As this positive electrode active material, a material having at least a part of the charge / discharge curve having a charge curve of 4.5 V or more with respect to lithium metal can be used. That is, an active material having at least a region of 4.5 V or more with respect to lithium metal only in the charge curve, or at least a region of 4.5 V or more with respect to lithium metal in both the charge curve and the discharge curve Can be used.

この充放電曲線の測定条件としては、充放電電流を正極活物質の質量あたりで5mA/g、充電終止電圧を5.2V、放電終止電圧を3Vに設定することができる。   As measurement conditions for this charge / discharge curve, the charge / discharge current can be set to 5 mA / g per mass of the positive electrode active material, the charge end voltage can be set to 5.2V, and the discharge end voltage can be set to 3V.

このような正極活物質としては、スピネル系材料、層状系材料、オリビン系材料が挙げられる。   Examples of such positive electrode active materials include spinel materials, layered materials, and olivine materials.

スピネル系材料としては、LiNi0.5Mn1.5、LiCoMnO、LiCrMnO、LiFeMnO、LiCu0.5Mn1.5などのリチウムに対して4.5V以上の高電位で動作する材料;LiMnのMnの一部を他元素で置換して寿命を高めた、LiM1Mn2−x−yM2(M1はNi、Fe、Co、CrおよびCuから選ばれる少なくとも1種であり、0.4<x<1.1であり、M2は、Li、Al、B、Mg、Si、遷移金属から選ばれる少なくとも一種であり、0<y<0.5);およびこれらの材料の酸素の一部をフッ素や塩素で置換したものが挙げられる。As a spinel-based material, LiNi 0.5 Mn 1.5 O 4 , LiCoMnO 4 , LiCrMnO 4 , LiFeMnO 4 , LiCu 0.5 Mn 1.5 O 4 and the like with a high potential of 4.5 V or higher. materials operates; a part of Mn of LiMn 2 O 4 with increased substitution to life with another element, LiM1 x Mn 2-x- y M2 y O 4 (M1 is Ni, Fe, Co, Cr, and Cu At least one selected, 0.4 <x <1.1, M2 is at least one selected from Li, Al, B, Mg, Si, and transition metals, and 0 <y <0.5 ); And those obtained by substituting a part of oxygen of these materials with fluorine or chlorine.

スピネル系材料は、特に下記式で示されるものが好ましい。   As the spinel-based material, a material represented by the following formula is particularly preferable.

Li(MMn2−x−y)(O4−w) (4)
(式中、0≦x≦1.2、0≦y、x+y<2、0≦a≦1.2、0≦w≦1であり、Mは遷移金属であり、Co、Ni、Fe、Cr、Cuから選ばれる少なくとも一種を含み、Yは金属元素であり、Li、B、Na、Al、Mg、Ti、Si、K、Caから選ばれる少なくとも一種を含み、Zはハロゲン元素であり、FおよびClの少なくとも一方を含む。)
特に0.4≦x≦1.1が好ましい。
式(4)において、Mは上記元素を好ましくは80%以上、より好ましくは90%以上含み、100%であってもよい。また、Y、Zは、それぞれ、上記元素を好ましくは80%以上、より好ましくは90%以上含み、100%であってもよい。
Li a (M x Mn 2- x-y Y y) (O 4-w Z w) (4)
(Wherein 0 ≦ x ≦ 1.2, 0 ≦ y, x + y <2, 0 ≦ a ≦ 1.2, 0 ≦ w ≦ 1, M is a transition metal, Co, Ni, Fe, Cr , Including at least one selected from Cu, Y being a metal element, including at least one selected from Li, B, Na, Al, Mg, Ti, Si, K, and Ca, Z being a halogen element, F And at least one of Cl.)
In particular, 0.4 ≦ x ≦ 1.1 is preferable.
In the formula (4), M preferably contains 80% or more, more preferably 90% or more, and may be 100%. Y and Z each preferably contain 80% or more of the above elements, more preferably 90% or more, and may be 100%.

層状系材料は、一般式LiMOで表され、具体的には、LiCoO、LiNi1−x(Mは少なくともCoまたはAlを含む元素、0.05<x<0.3)で表される材料、Li(NiCoMn2−x−y)O(0.1<x<0.7、0<y<0.5)、Li(M1−zMn)O(0.7≧z≧0.33、Mは金属であり、Li、CoおよびNiのうちの少なくとも一種を含む。ここで、Mはこれらの元素を好ましくは80%以上、より好ましくは90%以上含み、100%であってもよい。)で表される材料が挙げられる。The layered material is represented by a general formula LiMO 2 , specifically, LiCoO 2 , LiNi 1-x M x O 2 (M is an element containing at least Co or Al, 0.05 <x <0.3). in represented by material, Li (Ni x Co y Mn 2-x-y) O 2 (0.1 <x <0.7,0 <y <0.5), Li (M 1-z Mn z) O 2 (0.7 ≧ z ≧ 0.33, M is a metal, and includes at least one of Li, Co and Ni. Here, M preferably contains 80% or more of these elements, more preferably 90% or more, and may be 100%.).

また、式:
Li(Li1−x−zMn)O (9)
(0≦x<0.3、0.3≦z≦0.7、Mは遷移金属であり、CoおよびNiの少なくとも一種を含む)
で表される材料が特に好ましい。この材料の式中のxは0≦x<0.2が好ましい。式(9)において、Mはこれらの元素を好ましくは80%以上、より好ましくは90%以上含み、100%であってもよい。
Also the formula:
Li (Li x M 1-x -z Mn z) O 2 (9)
(0 ≦ x <0.3, 0.3 ≦ z ≦ 0.7, M is a transition metal and includes at least one of Co and Ni)
Is particularly preferred. X in the formula of this material is preferably 0 ≦ x <0.2. In the formula (9), M preferably contains 80% or more of these elements, more preferably 90% or more, and may be 100%.

オリビン系材料は、一般式:
LiMPO (8)
で表され、具体的には、LiFePO、LiMnPO、LiCoPO、LiNiPOが挙げられる。これらの遷移金属の一部を別の元素で置換したり、酸素部分をフッ素で置き換えられたりしたものも使用できる。高エネルギー密度の観点から、高電位で動作するLiMPO(Mは遷移金属であり、CoおよびNiの少なくとも一方を含む)で表される材料が好ましい。Mはこれらの元素を好ましくは80%以上、より好ましくは90%以上含み、その他に含まれる元素として、例えばFeを含むことも好ましい。
The olivine-based material has the general formula:
LiMPO 4 (8)
Specifically, LiFePO 4 , LiMnPO 4 , LiCoPO 4 , and LiNiPO 4 may be mentioned. Those in which a part of these transition metals is replaced with another element or the oxygen part is replaced with fluorine can also be used. From the viewpoint of high energy density, a material represented by LiMPO 4 (M is a transition metal and includes at least one of Co and Ni) operating at a high potential is preferable. M preferably contains 80% or more, more preferably 90% or more of these elements, and it is also preferable that M contains, for example, Fe as other elements contained therein.

このほかにも、NASICON型、リチウム遷移金属シリコン複合酸化物、などを使用することができる。   In addition, NASICON type, lithium transition metal silicon composite oxide, and the like can be used.

上記の高電位で動作する正極活物質とその他の通常の正極活物質とを併用してもよいが、正極活物質全体における高電位で動作する上記正極活物質の含有率は、60質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。   The positive electrode active material that operates at the above high potential may be used in combination with other normal positive electrode active materials, but the content of the above positive electrode active material that operates at a high potential in the entire positive electrode active material is 60% by mass or more. Is preferable, 80 mass% or more is more preferable, and 90 mass% or more is further preferable.

これらの正極活物質の比表面積は、例えば0.01〜5m/gであり、0.05〜4m/gが好ましく、0.1〜3m/gがより好ましく、0.2〜2m/gがさらに好ましい。比表面積をこのような範囲とすることにより、電解液との接触面積を適当な範囲に調整することができる。つまり、比表面積を0.01m/g以上とすることにより、リチウムイオンの挿入脱離がスムーズに行われ易くなり、抵抗をより低減することができる。また、比表面積を5m/g以下とすることにより、電解液の分解が促進することや、活物質の構成元素が溶出することをより抑制することができる。比表面積は、通常のBET比表面積測定法により測定できる。Specific surface areas of these positive electrode active materials are, for example, 0.01 to 5 m 2 / g, preferably 0.05 to 4 m 2 / g, more preferably 0.1 to 3 m 2 / g, and 0.2 to 2 m. 2 / g is more preferable. By setting the specific surface area in such a range, the contact area with the electrolytic solution can be adjusted to an appropriate range. That is, when the specific surface area is 0.01 m 2 / g or more, lithium ions can be easily inserted and desorbed smoothly, and the resistance can be further reduced. Moreover, by making a specific surface area 5 m < 2 > / g or less, decomposition | disassembly of electrolyte solution can be accelerated | stimulated and it can suppress more that the constituent element of an active material elutes. The specific surface area can be measured by a usual BET specific surface area measurement method.

前記正極活物質の中心粒径は、0.01〜50μmであることが好ましく、0.02〜40μmがより好ましい。粒径を0.02μm以上とすることにより、正極活物質の構成元素の溶出をより抑制でき、また、電解液との接触による劣化をより抑制できる。また、粒径を50μm以下とすることにより、リチウムイオンの挿入脱離がスムーズに行われ易くなり、抵抗をより低減することができる。中心粒径は、50%累積径D50(メジアン径)であり、レーザー回折散乱式粒度分布測定装置によって測定できる。The center particle diameter of the positive electrode active material is preferably 0.01 to 50 μm, and more preferably 0.02 to 40 μm. By setting the particle size to 0.02 μm or more, elution of constituent elements of the positive electrode active material can be further suppressed, and deterioration due to contact with the electrolytic solution can be further suppressed. In addition, when the particle size is 50 μm or less, lithium ions can be easily inserted and desorbed smoothly, and the resistance can be further reduced. The central particle diameter is 50% cumulative diameter D 50 (median diameter), and can be measured by a laser diffraction / scattering particle size distribution analyzer.

正極用結着剤としては、負極用結着剤と同様のものを用いることができる。中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンが好ましい。使用する正極用結着剤の量は、トレードオフの関係にある結着力とエネルギー密度の観点から、正極活物質100質量部に対して2〜10質量部が好ましい。   As the positive electrode binder, the same negative electrode binder can be used. Among these, polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost. The amount of the binder for positive electrode to be used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of binding force and energy density in a trade-off relationship.

ポリフッ化ビニリデン(PVdF)以外の結着剤としては、ビニリデンフルオライド−ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド−テトラフルオロエチレン共重合体、スチレン−ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミドが挙げられる。   As binders other than polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, Examples include polyethylene, polyimide, and polyamideimide.

正極活物質を含む正極活物質層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。   A conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance. Examples of the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.

(負極)
負極は、負極活物質として、リチウムを吸蔵および放出し得る材料を含むものであれば特に限定されない。
(Negative electrode)
A negative electrode will not be specifically limited if the negative electrode active material contains the material which can occlude and discharge | release lithium.

負極活物質としては、特に制限されるものではなく、例えば、リチウムイオンを吸蔵、放出し得る炭素材料(a)、リチウムと合金可能な金属(b)、またはリチウムイオンを吸蔵、放出し得る金属酸化物(c)等が挙げられる。   The negative electrode active material is not particularly limited. For example, a carbon material (a) that can occlude and release lithium ions, a metal (b) that can be alloyed with lithium, or a metal that can occlude and release lithium ions. An oxide (c) etc. are mentioned.

炭素材料(a)としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物を用いることができる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる正極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。炭素材料(a)は、それ単独でまたはその他の物質と併用して用いることができるが、負極活物質中2質量%以上80質量%以下の範囲であることが好ましく、2質量%以上30質量%以下の範囲であることがより好ましい。   As the carbon material (a), graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof can be used. Here, graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a positive electrode current collector made of a metal such as copper. On the other hand, since amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs. The carbon material (a) can be used alone or in combination with other substances, but is preferably in the range of 2% by mass to 80% by mass in the negative electrode active material, and is preferably 2% by mass to 30% by mass. More preferably, it is in the range of% or less.

金属(b)としては、Al、Si、Pb、Sn、Zn、Cd、Sb、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、La等を主体とした金属、またはこれらの2種以上の合金、あるいはこれら金属または合金とリチウムとの合金等を用いることができる。特に、金属(b)としてシリコン(Si)を含むことが好ましい。金属(b)は、それ単独でまたはその他の物質と併用して用いることができるが、負極活物質中5質量%以上90質量%以下の範囲であることが好ましく、20質量%以上50質量%以下の範囲であることがより好ましい。   As the metal (b), a metal mainly composed of Al, Si, Pb, Sn, Zn, Cd, Sb, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, La, or the like, or these Two or more kinds of alloys, or an alloy of these metals or alloys and lithium can be used. In particular, silicon (Si) is preferably included as the metal (b). The metal (b) can be used alone or in combination with other substances, but is preferably in the range of 5% by mass to 90% by mass in the negative electrode active material, and is 20% by mass to 50% by mass. The following range is more preferable.

金属酸化物(c)としては、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物を用いることができる。特に、金属酸化物(c)として酸化シリコンを含むことが好ましい。これは、酸化シリコンは、比較的安定で他の化合物との反応を引き起こしにくいからである。また、金属酸化物(c)に、窒素、ホウ素およびイオウの中から選ばれる一種または二種以上の元素を、例えば0.1〜5質量%添加することもできる。こうすることで、金属酸化物(c)の電気伝導性を向上させることができる。金属酸化物(c)は、それ単独でまたはその他の物質と併用して用いることができるが、負極活物質中5質量%以上90質量%以下の範囲であることが好ましく、40質量%以上70質量%以下の範囲であることがより好ましい。   As the metal oxide (c), silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, or a composite thereof can be used. In particular, silicon oxide is preferably included as the metal oxide (c). This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds. Moreover, 0.1-5 mass% of 1 type, or 2 or more types of elements chosen from nitrogen, boron, and sulfur can also be added to a metal oxide (c). By carrying out like this, the electrical conductivity of a metal oxide (c) can be improved. The metal oxide (c) can be used alone or in combination with other substances, but is preferably in the range of 5% by mass to 90% by mass in the negative electrode active material, and 40% by mass to 70% by mass. More preferably, it is in the range of mass% or less.

金属酸化物(c)の具体例としては、例えば、LiFe、WO、MoO、SiO、SiO、CuO、SnO、SnO、Nb、LiTi2−x(1≦x≦4/3)、PbO、Pb等が挙げられる。Specific examples of the metal oxide (c) include, for example, LiFe 2 O 3 , WO 2 , MoO 2 , SiO, SiO 2 , CuO, SnO, SnO 2 , Nb 3 O 5 , Li x Ti 2−x O 4. (1 ≦ x ≦ 4/3), PbO 2 , Pb 2 O 5 and the like.

また、負極活物質としては、他にも、例えば、リチウムイオンを吸蔵、放出し得る金属硫化物(d)が挙げられる。金属硫化物(d)としては、例えば、SnSやFeS等が挙げられる。また、負極活物質としては、他にも、例えば、金属リチウム若しくはリチウム合金、ポリアセン若しくはポリチオフェン、またはLi(LiN)、LiMnN、LiFeN、Li2.5Co0.5N若しくはLiCoN等の窒化リチウム等を挙げる事ができる。Other examples of the negative electrode active material include metal sulfide (d) that can occlude and release lithium ions. Metal sulfide as (d) are, for example, SnS and FeS 2 or the like. In addition, as the negative electrode active material, for example, metallic lithium or lithium alloy, polyacene or polythiophene, or Li 5 (Li 3 N), Li 7 MnN 4 , Li 3 FeN 2 , Li 2.5 Co 0. Examples thereof include lithium nitride such as 5 N or Li 3 CoN.

以上の負極活物質は、単独でまたは二種以上を混合して用いることができる。   The above negative electrode active materials can be used alone or in admixture of two or more.

また、負極活物質は、炭素材料(a)、金属(b)、および金属酸化物(c)を含む構成とすることができる。以下、この負極活物質について説明する。   Moreover, a negative electrode active material can be set as the structure containing a carbon material (a), a metal (b), and a metal oxide (c). Hereinafter, this negative electrode active material will be described.

金属酸化物(c)はその全部または一部がアモルファス構造を有することが好ましい。アモルファス構造の金属酸化物(c)は、炭素材料(a)や金属(b)の体積膨張を抑制することができ、電解液の分解を抑制することができる。このメカニズムは、金属酸化物(c)がアモルファス構造であることにより、炭素材料(a)と電解液の界面への被膜形成に何らかの影響があるものと推定される。また、アモルファス構造は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。なお、金属酸化物(c)の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)にて確認することができる。具体的には、金属酸化物(c)がアモルファス構造を有しない場合には、金属酸化物(c)に固有のピークが観測されるが、金属酸化物(c)の全部または一部がアモルファス構造を有する場合が、金属酸化物(c)に固有ピークがブロードとなって観測される。   All or part of the metal oxide (c) preferably has an amorphous structure. The amorphous metal oxide (c) can suppress the volume expansion of the carbon material (a) and the metal (b), and can suppress the decomposition of the electrolytic solution. This mechanism is presumed to have some influence on the film formation on the interface between the carbon material (a) and the electrolytic solution due to the amorphous structure of the metal oxide (c). The amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects. In addition, it can be confirmed by X-ray diffraction measurement (general XRD measurement) that all or part of the metal oxide (c) has an amorphous structure. Specifically, when the metal oxide (c) does not have an amorphous structure, a peak specific to the metal oxide (c) is observed, but all or part of the metal oxide (c) is amorphous. In the case of having a structure, the intrinsic peak of the metal oxide (c) is broad and observed.

金属酸化物(c)は、金属(b)を構成する金属の酸化物であることが好ましい。また、金属(b)および金属酸化物(c)は、それぞれシリコン(Si)および酸化シリコン(SiO)であることが好ましい。   The metal oxide (c) is preferably a metal oxide constituting the metal (b). The metal (b) and the metal oxide (c) are preferably silicon (Si) and silicon oxide (SiO), respectively.

金属(b)は、その全部または一部が金属酸化物(c)中に分散していることが好ましい。金属(b)の少なくとも一部を金属酸化物(c)中に分散させることで、負極全体としての体積膨張をより抑制することができ、電解液の分解も抑制することができる。なお、金属(b)の全部または一部が金属酸化物(c)中に分散していることは、透過型電子顕微鏡観察(一般的なTEM観察)とエネルギー分散型X線分光法測定(一般的なEDX測定)を併用することで確認することができる。具体的には、金属(b)粒子を含むサンプルの断面を観察し、金属酸化物(c)中に分散している金属(b)粒子の酸素濃度を測定し、金属(b)粒子を構成している金属が酸化物となっていないことを確認することができる。   It is preferable that all or part of the metal (b) is dispersed in the metal oxide (c). By dispersing at least a part of the metal (b) in the metal oxide (c), the volume expansion of the whole negative electrode can be further suppressed, and the decomposition of the electrolytic solution can also be suppressed. Note that all or part of the metal (b) is dispersed in the metal oxide (c) because it is observed with a transmission electron microscope (general TEM observation) and energy dispersive X-ray spectroscopy (general). This can be confirmed by using a combination of a standard EDX measurement. Specifically, the cross section of the sample containing the metal (b) particles is observed, the oxygen concentration of the metal (b) particles dispersed in the metal oxide (c) is measured, and the metal (b) particles are configured. It can be confirmed that the metal being used is not an oxide.

上述のように、炭素材料(a)金属(b)、および金属酸化物(c)の合計に対するそれぞれの炭素材料(a)、金属(b)、および金属酸化物(c)の含有率は、それぞれ、2質量%以上80質量%以下、5質量%以上90質量%以下、および5質量%以上90質量%以下であることが好ましい。また、炭素材料(a)、金属(b)、および金属酸化物(c)の合計に対するそれぞれの炭素材料(a)、金属(b)、および金属酸化物(c)の含有率は、それぞれ、2質量%以上30質量%以下、20質量%以上50質量%以下、および40質量%以上70質量%以下であることがより好ましい。   As described above, the content of each carbon material (a), metal (b), and metal oxide (c) with respect to the total of the carbon material (a) metal (b) and metal oxide (c) is It is preferable that they are 2 mass% or more and 80 mass% or less, 5 mass% or more and 90 mass% or less, and 5 mass% or more and 90 mass% or less, respectively. Moreover, the content rate of each carbon material (a), a metal (b), and a metal oxide (c) with respect to the sum total of a carbon material (a), a metal (b), and a metal oxide (c), respectively, More preferably, they are 2 mass% or more and 30 mass% or less, 20 mass% or more and 50 mass% or less, and 40 mass% or more and 70 mass% or less.

金属酸化物(c)の全部または一部がアモルファス構造であり、金属(b)の全部または一部が金属酸化物(c)中に分散しているような負極活物質は、例えば、特開2004−47404号公報で開示されているような方法で作製することができる。すなわち、金属酸化物(c)をメタンガスなどの有機物ガスを含む雰囲気下でCVD処理を行うことで、金属酸化物(c)中の金属(b)がナノクラスター化し、かつ表面が炭素材料(a)で被覆された複合体を得ることができる。また、炭素材料(a)と金属(b)と金属酸化物(c)とをメカニカルミリングで混合することでも、上記負極活物質を作製することができる。   A negative electrode active material in which all or part of the metal oxide (c) has an amorphous structure and all or part of the metal (b) is dispersed in the metal oxide (c) is disclosed in, for example, It can be produced by a method as disclosed in 2004-47404. That is, by performing a CVD process on the metal oxide (c) in an atmosphere containing an organic gas such as methane gas, the metal (b) in the metal oxide (c) is nanoclustered and the surface is a carbon material (a ) Can be obtained. Moreover, the said negative electrode active material is producible also by mixing a carbon material (a), a metal (b), and a metal oxide (c) by mechanical milling.

また、炭素材料(a)金属(b)、および金属酸化物(c)は、特に制限するものではないが、それぞれ粒子状のものを用いることができる。例えば、金属(b)の平均粒子径は、炭素材料(a)の平均粒子径および金属酸化物(c)の平均粒子径よりも小さい構成とすることができる。このようにすれば、充放電時にともなう体積変化の大きい金属(b)が相対的に小粒径となり、体積変化の小さい炭素材料(a)や金属酸化物(c)が相対的に大粒径となるため、デンドライト生成および合金の微粉化がより効果的に抑制される。また、充放電の過程で大粒径の粒子、小粒径の粒子、大粒径の粒子の順にリチウムが吸蔵、放出されることとなり、この点からも、残留応力、残留歪みの発生が抑制される。金属(b)の平均粒子径は、例えば20μm以下とすることができ、15μm以下とすることが好ましい。   The carbon material (a), the metal (b), and the metal oxide (c) are not particularly limited, but particulate materials can be used. For example, the average particle diameter of the metal (b) may be smaller than the average particle diameter of the carbon material (a) and the average particle diameter of the metal oxide (c). In this way, the metal (b) having a large volume change during charging and discharging has a relatively small particle size, and the carbon material (a) and the metal oxide (c) having a small volume change have a relatively large particle size. Therefore, dendrite formation and alloy pulverization are more effectively suppressed. In addition, lithium is occluded and released in the order of large-diameter particles, small-diameter particles, and large-diameter particles during the charge / discharge process. This also suppresses the occurrence of residual stress and residual strain. Is done. The average particle diameter of the metal (b) can be, for example, 20 μm or less, and is preferably 15 μm or less.

また、金属酸化物(c)の平均粒子径が炭素材料(a)の平均粒子径の1/2以下であることが好ましく、金属(b)の平均粒子径が金属酸化物(c)の平均粒子径の1/2以下であることが好ましい。さらに、金属酸化物(c)の平均粒子径が炭素材料(a)の平均粒子径の1/2以下であり、かつ金属(b)の平均粒子径が金属酸化物(c)の平均粒子径の1/2以下であることがより好ましい。平均粒子径をこのような範囲に制御すれば、金属および合金相の体積膨脹の緩和効果がより有効に得ることができ、エネルギー密度、サイクル寿命と効率のバランスに優れた二次電池を得ることができる。より具体的には、シリコン酸化物(c)の平均粒子径を黒鉛(a)の平均粒子径の1/2以下とし、シリコン(b)の平均粒子径をシリコン酸化物(c)の平均粒子径の1/2以下とすることが好ましい。また、より具体的には、シリコン(b)の平均粒子径は、例えば20μm以下とすることができ、15μm以下とすることが好ましい。   Moreover, it is preferable that the average particle diameter of a metal oxide (c) is 1/2 or less of the average particle diameter of a carbon material (a), and the average particle diameter of a metal (b) is an average of a metal oxide (c). It is preferable that it is 1/2 or less of a particle diameter. Furthermore, the average particle diameter of the metal oxide (c) is ½ or less of the average particle diameter of the carbon material (a), and the average particle diameter of the metal (b) is the average particle diameter of the metal oxide (c). It is more preferable that it is 1/2 or less. By controlling the average particle size in such a range, the effect of relaxing the volume expansion of the metal and alloy phases can be obtained more effectively, and a secondary battery having an excellent balance of energy density, cycle life and efficiency can be obtained. Can do. More specifically, the average particle diameter of the silicon oxide (c) is set to 1/2 or less of the average particle diameter of the graphite (a), and the average particle diameter of the silicon (b) is the average particle of the silicon oxide (c). It is preferable to make it 1/2 or less of the diameter. More specifically, the average particle diameter of silicon (b) can be, for example, 20 μm or less, and is preferably 15 μm or less.

負極用結着剤としては、特に制限されるものではないが、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド−ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド−テトラフルオロエチレン共重合体、スチレン−ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等が挙げられる。   The binder for the negative electrode is not particularly limited, but polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer. Polymerized rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide and the like can be mentioned.

負極結着剤の含有率は、負極活物質と負極結着剤の総量に対して1〜30質量%の範囲であることが好ましく、2〜25質量%であることがより好ましい。1質量%以上とすることにより、活物質同士あるいは活物質と集電体との密着性が向上し、サイクル特性が良好になる。また、30質量%以下とすることにより、活物質比率が向上し、負極容量を向上することができる。   The content of the negative electrode binder is preferably in the range of 1 to 30% by mass and more preferably 2 to 25% by mass with respect to the total amount of the negative electrode active material and the negative electrode binder. By setting the content to 1% by mass or more, the adhesion between the active materials or between the active material and the current collector is improved, and the cycle characteristics are improved. Moreover, by setting it as 30 mass% or less, an active material ratio can improve and a negative electrode capacity | capacitance can be improved.

負極集電体としては、特に制限されるものではないが、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。   Although it does not restrict | limit especially as a negative electrode electrical power collector, Aluminum, nickel, copper, silver, and those alloys are preferable from electrochemical stability. Examples of the shape include foil, flat plate, and mesh.

負極は、負極集電体上に、負極活物質と負極用結着剤を含む負極活物質層を形成することで作製することができる。負極活物質層の形成方法としては、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法などが挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を形成して、負極集電体としてもよい。   The negative electrode can be produced by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector. Examples of the method for forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method. After forming a negative electrode active material layer in advance, a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.

(セパレータ)
二次電池は、その構成として正極、負極、セパレータ、および非水電解質との組み合わせからなることができる。セパレータとしては、例えば、織布、不織布、ポリエチレンやポリプロピレンなどのポリオレフィン系、ポリイミド、多孔性ポリフッ化ビニリデン膜等の多孔性ポリマー膜、またはイオン伝導性ポリマー電解質膜等が挙げられる。これらは単独または組み合わせで使用することができる。
(Separator)
The secondary battery can be composed of a combination of a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte as its configuration. Examples of the separator include a woven fabric, a nonwoven fabric, a polyolefin polymer such as polyethylene and polypropylene, a polyimide, a porous polymer film such as a porous polyvinylidene fluoride film, or an ion conductive polymer electrolyte film. These can be used alone or in combination.

(電池の形状および外装)
電池の形状としては、例えば、円筒形、角形、コイン型、ボタン型、ラミネート型が挙げられる。
(Battery shape and exterior)
Examples of the shape of the battery include a cylindrical shape, a square shape, a coin shape, a button shape, and a laminate shape.

ラミネート型の場合、電極およびセパレータが平面形状のまま積層されており、Rの小さい部分(捲回構造の巻き芯に近い領域または扁平型捲回構造の折り返す部位にあたる領域)が存在しない。そのため、充放電に伴う体積変化が大きい活物質を用いた場合、捲回構造を持つ電池に比べて、充放電に伴う電極の体積変化による悪影響を受けにくい。   In the case of the laminate type, the electrodes and the separator are laminated in a planar shape, and there is no portion with a small R (a region close to the winding core of the wound structure or a region corresponding to a folded portion of the flat wound structure). Therefore, when an active material having a large volume change associated with charging / discharging is used, it is less likely to be adversely affected by the volume change of the electrode associated with charging / discharging than a battery having a wound structure.

電池の外装体としては、例えば、ステンレス、鉄、アルミニウム、チタン、またはこれらの合金、あるいはこれらのメッキ加工品が挙げられる。メッキとしては例えばニッケルメッキを用いることができる。電池がラミネート型の場合は、外装体としてラミネートフィルムが好ましい。   Examples of the battery outer package include stainless steel, iron, aluminum, titanium, alloys thereof, and plated products thereof. As the plating, for example, nickel plating can be used. When the battery is a laminate type, a laminate film is preferable as the outer package.

ラミネートフィルムの樹脂基材層上の金属箔層としては、例えば、アルミニウム、アルミニウム合金、チタン箔が挙げられる。ラミネートフィルムの熱溶着層の材質としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等の熱可塑性高分子材料が挙げられる。また、ラミネートフィルムの樹脂基材層や金属箔層はそれぞれ1層に限定されるものではなく2層以上であってもよい。汎用性やコストの観点から、アルミニウムラミネートフィルムが好ましい。   Examples of the metal foil layer on the resin base layer of the laminate film include aluminum, an aluminum alloy, and a titanium foil. Examples of the material for the heat-welded layer of the laminate film include thermoplastic polymer materials such as polyethylene, polypropylene, and polyethylene terephthalate. Moreover, the resin base material layer and the metal foil layer of the laminate film are not limited to one layer, but may be two or more layers. From the viewpoint of versatility and cost, an aluminum laminate film is preferable.

外装体としてラミネートフィルムを用いた場合、外装体として金属缶を用いた場合に比べて、ガスが発生に起因する電池の体積変化や電極の歪みが生じやすい。これは、ラミネートフィルムが金属缶に比べて電池の内圧により変形しやすいためである。さらに、外装体としてラミネートフィルムを用いた二次電池を封止する際には、通常、電池内圧を大気圧より低くし、内部に余分な空間がないため、電池内でガスが発生した場合に直ちに電池の体積変化や電極の変形につながりやすい。また、ラミネート型電池の場合は、捲回構造をもつ電池に比べて電極間にガスが発生した際に電極間に滞留しやすいため電極間の間隔が広がり易い傾向があり、ラミネートフィルム外装体を用いると、この傾向はより顕著になる。本実施形態によれば、このような問題の発生を抑えることができ、ラミネートフィルム外装体を用いたラミネート型電池であっても、長期信頼性に優れた非水電解液二次電池を提供することができる。   When a laminate film is used as the outer package, battery volume changes and electrode distortions due to the generation of gas are more likely to occur than when a metal can is used as the outer package. This is because the laminate film is more easily deformed by the internal pressure of the battery than the metal can. In addition, when sealing a secondary battery using a laminate film as an exterior body, the internal pressure of the battery is usually lower than atmospheric pressure, and there is no extra space inside, so when gas is generated in the battery Immediately leads to battery volume change and electrode deformation. In addition, in the case of a laminate type battery, compared to a battery having a wound structure, when gas is generated between the electrodes, the gap between the electrodes tends to be widened because the gas tends to stay between the electrodes. When used, this tendency becomes more prominent. According to this embodiment, the occurrence of such a problem can be suppressed, and a non-aqueous electrolyte secondary battery excellent in long-term reliability is provided even for a laminated battery using a laminate film outer package. be able to.

(電池の基本構造)
本実施形態によるラミネート型のリチウム二次電池の断面図を図1に示す。図1に示すように、本実施形態によるリチウム二次電池は、アルミニウム箔等の金属からなる正極集電体3と、その上に設けられた正極活物質を含有する正極活物質層1とからなる正極、および銅箔等の金属からなる負極集電体4と、その上に設けられた負極活物質を含有する負極活物質層2とからなる負極を有する。正極および負極は、正極活物質層1と負極活物質層2とが対向するように、不織布やポリプロピレン微多孔膜などからなるセパレータ5を介して積層されている。この電極対は、アルミニウムラミネートフィルム等の外装体6、7で形成された容器内に収容されている。正極集電体3には正極タブ9が接続けられ、負極集電体4には負極タブ8が接続され、これらのタブは容器の外に引き出されている。容器内には電解液が注入され封止される。複数の電極対が積層された電極群が容器内に収容された構造とすることもできる。
(Basic battery structure)
A cross-sectional view of a laminated lithium secondary battery according to this embodiment is shown in FIG. As shown in FIG. 1, the lithium secondary battery according to the present embodiment includes a positive electrode current collector 3 made of a metal such as an aluminum foil and a positive electrode active material layer 1 containing a positive electrode active material provided thereon. And a negative electrode current collector 4 made of a metal such as copper foil and a negative electrode active material layer 2 containing a negative electrode active material provided thereon. The positive electrode and the negative electrode are laminated via a separator 5 made of a nonwoven fabric or a polypropylene microporous film so that the positive electrode active material layer 1 and the negative electrode active material layer 2 face each other. This electrode pair is accommodated in a container formed of exterior bodies 6 and 7 such as an aluminum laminate film. A positive electrode tab 9 is connected to the positive electrode current collector 3, and a negative electrode tab 8 is connected to the negative electrode current collector 4, and these tabs are drawn out of the container. An electrolytic solution is injected into the container and sealed. It can also be set as the structure where the electrode group by which the several electrode pair was laminated | stacked was accommodated in the container.

以下、本発明を適用した具体的な実施例について説明するが、本発明は、本実施例に限定されるものではなく、その主旨を超えない範囲において適宜変更して実施することが可能である。   EXAMPLES Hereinafter, specific examples to which the present invention is applied will be described. However, the present invention is not limited to the examples, and can be appropriately modified and implemented without departing from the gist thereof. .

(実施例1)
正極活物質としてのLiNi0.5Mn1.5(90質量部)と、結着剤としてのポリフッ化ビニリデン(5質量%)と、導電剤としてカーボンブラック(5質量%)と、を混合して正極合剤とした。該正極合剤をN−メチル−2−ピロリドンに分散させることにより、正極用スラリーを調製した。この正極用スラリーを厚さ20μmのアルミニウム製集電体の片面に、均一に塗布した。単位面積当たりの初回充電容量が2.5mAh/cmとなるように塗布膜の厚さを調整した。乾燥させた後、ロールプレスで圧縮成型することにより正極を作製した。
Example 1
LiNi 0.5 Mn 1.5 O 4 (90 parts by mass) as a positive electrode active material, polyvinylidene fluoride (5% by mass) as a binder, and carbon black (5% by mass) as a conductive agent. A positive electrode mixture was prepared by mixing. A positive electrode slurry was prepared by dispersing the positive electrode mixture in N-methyl-2-pyrrolidone. This positive electrode slurry was uniformly applied to one side of an aluminum current collector having a thickness of 20 μm. The thickness of the coating film was adjusted so that the initial charge capacity per unit area was 2.5 mAh / cm 2 . After drying, a positive electrode was produced by compression molding with a roll press.

負極活物質としては人造黒鉛を用いた。人造黒鉛と、N−メチルピロリドンにPVDFを溶かしたものに分散させ、負極用スラリーを調製した。負極活物質、結着剤の質量比は90/10とした。この負極用スラリーを厚さ10μmのCu集電体上に均一に塗布した。初回充電容量が3.0mAh/cmとなるように塗布膜の厚さを調整した。乾燥させた後、ロールプレスで圧縮成型することにより負極を作製した。Artificial graphite was used as the negative electrode active material. A negative electrode slurry was prepared by dispersing in artificial graphite and N-methylpyrrolidone in which PVDF was dissolved. The mass ratio of the negative electrode active material and the binder was 90/10. This negative electrode slurry was uniformly coated on a 10 μm thick Cu current collector. The thickness of the coating film was adjusted so that the initial charge capacity was 3.0 mAh / cm 2 . After drying, a negative electrode was produced by compression molding with a roll press.

3cm×3cmに切り出した正極と負極をセパレータを介して対向するように配置させた。セパレータには、厚さ25μmの微多孔性ポリプロピレンフィルムを用いた。   A positive electrode and a negative electrode cut out to 3 cm × 3 cm were arranged so as to face each other with a separator interposed therebetween. As the separator, a microporous polypropylene film having a thickness of 25 μm was used.

エチレンカーボネート(EC)、1,1,2,2−テトラフルオロエチル2,2,3,3−テトラフルオロプロピルエーテル(TFETFPE)、およびリン酸トリス(2,2,2−トリフルオロエチル)(TTFEP)を3/5/2の体積比で混合した溶媒に、CFCHOCHCHOCHCFで表されるフッ素化ジエーテル化合物を1.4%含む非水電解溶媒を調製した。この非水電解溶媒にLiPFを1mol/lの濃度で溶解させ、電解液を調製した。Ethylene carbonate (EC), 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TFETFPE), and tris (2,2,2-trifluoroethyl) phosphate (TTFEP) ) Was mixed in a volume ratio of 3/5/2 to prepare a nonaqueous electrolytic solvent containing 1.4% of a fluorinated diether compound represented by CF 3 CH 2 OCH 2 CH 2 OCH 2 CF 3 . LiPF 6 was dissolved in this nonaqueous electrolytic solvent at a concentration of 1 mol / l to prepare an electrolytic solution.

上記の正極、負極、セパレータ、および電解液を、ラミネート外装体の中に配置し、ラミネートを封止し、リチウム二次電池を作製した。正極と負極は、タブが接続され、ラミネートの外部から電気的に接続された状態とした。   The positive electrode, the negative electrode, the separator, and the electrolytic solution were placed in a laminate outer package, the laminate was sealed, and a lithium secondary battery was produced. The positive electrode and the negative electrode were connected to a tab and electrically connected from the outside of the laminate.

このリチウム二次電池を、20mAで充電し、上限電圧が4.8Vに達した後は、全充電時間が2.5時間になるまで定電圧で充電した。その後、20mAで下限電圧3Vになるまで定電流で放電した。この充放電を所定回繰り返した。この充放電は45℃の恒温槽内で実施した。   After charging the lithium secondary battery at 20 mA and the upper limit voltage reached 4.8 V, the lithium secondary battery was charged at a constant voltage until the total charging time reached 2.5 hours. Thereafter, the battery was discharged at a constant current at 20 mA until the lower limit voltage was 3V. This charging / discharging was repeated a predetermined number of times. This charging / discharging was implemented in a 45 degreeC thermostat.

(ガス発生評価)
ガス発生量は、充放電サイクル後のセル体積の変化を測定することにより評価した。セル体積は、アルキメデス法を用いて測定し、充放電サイクル前後での差分を調べることにより、ガス発生量を算出した。ガス発生の評価結果を表1に示す。
(Gas generation evaluation)
The amount of gas generation was evaluated by measuring the change in cell volume after the charge / discharge cycle. The cell volume was measured using the Archimedes method, and the gas generation amount was calculated by examining the difference before and after the charge / discharge cycle. The evaluation results of gas generation are shown in Table 1.

(実施例2)
非水電解溶媒を表1に示す組成に変更した以外は、実施例1を繰り返した。ガス発生の評価結果を表1に示す。
(Example 2)
Example 1 was repeated except that the nonaqueous electrolytic solvent was changed to the composition shown in Table 1. The evaluation results of gas generation are shown in Table 1.

(比較例1、2)
表1に示すように、フッ素化ジエーテル化合物を含まない非水電解溶媒に変更した以外は、実施例1を繰り返し、ガス発生を評価した。結果を表1に示す。
(Comparative Examples 1 and 2)
As shown in Table 1, Example 1 was repeated except for changing to a non-aqueous electrolytic solvent not containing a fluorinated diether compound, and gas generation was evaluated. The results are shown in Table 1.

Figure 0006179511
Figure 0006179511

表中の略号
TTFEP:リン酸トリス(2,2,2−トリフルオロエチル)
EC:エチレンカーボネート
FE1:1,1,2,2−テトラフルオロエチル2,2,3,3−テトラフルオロプロピルエーテル(TFETFPE)
FEC:フルオロエチレンカーボネート(4−フルオロ−1,3−ジオキソラン−2−オン)
DMC:ジメチルカーボネート
Abbreviation TTFEP in Table: Tris phosphate (2,2,2-trifluoroethyl)
EC: ethylene carbonate FE1: 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TFETFPE)
FEC: Fluoroethylene carbonate (4-fluoro-1,3-dioxolan-2-one)
DMC: Dimethyl carbonate

以上に示すように、本実施形態により、寿命特性とガス発生が改善された高電圧のリチウム二次電池を得ることが可能である。   As described above, according to this embodiment, it is possible to obtain a high voltage lithium secondary battery with improved life characteristics and gas generation.

本実施形態のリチウム二次電池は、サイクル特性が良好な二次電池であり、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野にて利用することができる。具体的には、モバイル機器の電源、移動・輸送用媒体の電源、バックアップ電源、太陽光発電、風力発電などで発電した電力を貯める蓄電設備などに、利用することができる。   The lithium secondary battery of the present embodiment is a secondary battery with good cycle characteristics, and can be used in all industrial fields that require a power source and industrial fields related to the transport, storage, and supply of electrical energy. . Specifically, it can be used for a power source of a mobile device, a power source of a moving / transport medium, a backup power source, a solar power generation, a wind power generation, and a power storage facility for storing power generated by the power generation.

1 正極活物質層
2 負極活物質層
3 正極集電体
4 負極集電体
5 セパレータ
6 ラミネート外装体
7 ラミネート外装体
8 負極タブ
9 正極タブ
DESCRIPTION OF SYMBOLS 1 Positive electrode active material layer 2 Negative electrode active material layer 3 Positive electrode collector 4 Negative electrode collector 5 Separator 6 Laminate exterior 7 Laminate exterior 8 Negative electrode tab 9 Positive electrode tab

Claims (12)

正極と、負極と、非水電解溶媒を含む電解液と、を有するリチウム二次電池であって、
前記非水電解溶媒は、下記式(1)で表されるフッ素含有リン酸エステル、および下記式(20)で表されるフッ素化ジエーテル化合物を含み、
Figure 0006179511
(式(1)において、R、RおよびRは、それぞれ独立に、置換または無置換のアルキル基であって、R、RおよびRの少なくとも1つはフッ素含有アルキル基である。)
O−(RO)−R (20)
(式(20)中、RおよびRは、独立してフッ素原子で置換されていてもよい炭素数1〜4のアルキル基であり、Rはフッ素原子で置換されていてもよい炭素数1〜4のアルキレン基であり、ただしR、RおよびRの少なくとも一つはフッ素原子で置換されている基であり、nは、1〜4の整数を表す。)
前記正極に含有される正極活物質が、
(i)下記式(4−1)で表され、且つMとして少なくともNiを含むリチウムマンガン複合酸化物:
Li(MMn2−x−y)(O4−w) (4−1
(式中、0.4≦x≦1.1、0≦y、x+y<2、0≦a≦1.2、0≦w≦1である。Mは遷移金属であり、Co、Ni、Fe、CrおよびCuからなる群より選ばれる少なくとも一種を含み、Yは金属元素であり、Li、B、Na、Al、Mg、Ti、Si、KおよびCaからなる群より選ばれる少なくとも一種を含み、Zはハロゲン元素であり、FおよびClからなる群より選ばれる少なくとも一種を含む。)、
または
(ii)下記式(8−1)または(9−1)で表されるリチウム金属複合酸化物:
LiMPO8−1
(式中、Mは遷移金属であり、CoおよびNiのうちの少なくとも一種の元素80%以上の割合で含む。)
Li(Li1−x−zMn)O9−1
(0≦x<0.2、0.3≦z≦0.7、Mは遷移金属であり、CoおよびNiの少なくとも一種を含む。)
を含み、
前記フッ素含有リン酸エステルの含有率が前記非水電解溶媒中20体積%以上80体積%以下であること
を特徴とするリチウム二次電池。
A lithium secondary battery having a positive electrode, a negative electrode, and an electrolyte solution containing a nonaqueous electrolytic solvent,
The non-aqueous electrolytic solvent includes a fluorine-containing phosphate ester represented by the following formula (1) and a fluorinated diether compound represented by the following formula (20):
Figure 0006179511
(In Formula (1), R 1 , R 2 and R 3 are each independently a substituted or unsubstituted alkyl group, and at least one of R 1 , R 2 and R 3 is a fluorine-containing alkyl group. is there.)
R 4 O- (R 5 O) n -R 6 (20)
(In formula (20), R 4 and R 6 are each independently a C 1-4 alkyl group optionally substituted with a fluorine atom, and R 5 is a carbon optionally substituted with a fluorine atom. An alkylene group of 1 to 4, provided that at least one of R 4 , R 5 and R 6 is a group substituted with a fluorine atom, and n represents an integer of 1 to 4)
The positive electrode active material contained in the positive electrode is
(I) Lithium manganese composite oxide represented by the following formula ( 4-1 ) and containing at least Ni as M:
Li a (M x Mn 2- x-y Y y) (O 4-w Z w) (4-1)
(Where 0.4 ≦ x ≦ 1.1 , 0 ≦ y, x + y <2, 0 ≦ a ≦ 1.2 , 0 ≦ w ≦ 1, M is a transition metal, Co, Ni, Fe , Including at least one selected from the group consisting of Cr and Cu, Y being a metal element, including at least one selected from the group consisting of Li, B, Na, Al, Mg, Ti, Si, K and Ca, Z is a halogen element and includes at least one selected from the group consisting of F and Cl).
Or (ii) lithium metal composite oxide represented by the following formula ( 8-1 ) or ( 9-1 ):
LiMPO 4 ( 8-1 )
(In the formula, M is a transition metal and contains at least one element of Co and Ni in a proportion of 80% or more .)
Li (Li x M 1-x -z Mn z) O 2 (9-1)
(0 ≦ x < 0.2 , 0.3 ≦ z ≦ 0.7, M is a transition metal and includes at least one of Co and Ni.)
Only including,
The lithium secondary battery, wherein a content rate of the fluorine-containing phosphate is 20% by volume or more and 80% by volume or less in the nonaqueous electrolytic solvent .
正極と、負極と、非水電解溶媒を含む電解液と、を有するリチウム二次電池であって、
前記非水電解溶媒は、下記式(1)で表されるフッ素含有リン酸エステル、および下記式(21)で表されるフッ素化ジエーテル化合物を含み、
Figure 0006179511
(式(1)において、R、RおよびRは、それぞれ独立に、置換または無置換のアルキル基であって、R、RおよびRの少なくとも1つはフッ素含有アルキル基である。)
CF CH OCH CH OCH CF (21)
前記正極に含有される正極活物質が、
(i)下記式(4−1)で表され、且つMとして少なくともNiを含むリチウムマンガン複合酸化物:
Li(MMn2−x−y)(O4−w) (4−1
(式中、0.4≦x≦1.1、0≦y、x+y<2、0≦a≦1.2、0≦w≦1である。Mは遷移金属であり、Co、Ni、Fe、CrおよびCuからなる群より選ばれる少なくとも一種を含み、Yは金属元素であり、Li、B、Na、Al、Mg、Ti、Si、KおよびCaからなる群より選ばれる少なくとも一種を含み、Zはハロゲン元素であり、FおよびClからなる群より選ばれる少なくとも一種を含む。)、
または
(ii)下記式(8−1)または(9−1)で表されるリチウム金属複合酸化物:
LiMPO8−1
(式中、Mは遷移金属であり、CoおよびNiのうちの少なくとも一種の元素を80%以上の割合で含む。)
Li(Li1−x−zMn)O9−1
(0≦x<0.2、0.3≦z≦0.7、Mは遷移金属であり、CoおよびNiの少なくとも一種を含む。)
を含むことを特徴とするリチウム二次電池。
A lithium secondary battery having a positive electrode, a negative electrode, and an electrolyte solution containing a nonaqueous electrolytic solvent,
The nonaqueous electrolytic solvent includes a fluorine-containing phosphate ester represented by the following formula (1) and a fluorinated diether compound represented by the following formula (21) :
Figure 0006179511
(In Formula (1), R 1 , R 2 and R 3 are each independently a substituted or unsubstituted alkyl group, and at least one of R 1 , R 2 and R 3 is a fluorine-containing alkyl group. is there.)
CF 3 CH 2 OCH 2 CH 2 OCH 2 CF 3 (21)
The positive electrode active material contained in the positive electrode is
(I) Lithium manganese composite oxide represented by the following formula ( 4-1 ) and containing at least Ni as M:
Li a (M x Mn 2- x-y Y y) (O 4-w Z w) (4-1)
(Where 0.4 ≦ x ≦ 1.1 , 0 ≦ y, x + y <2, 0 ≦ a ≦ 1.2 , 0 ≦ w ≦ 1, M is a transition metal, Co, Ni, Fe , Including at least one selected from the group consisting of Cr and Cu, Y being a metal element, including at least one selected from the group consisting of Li, B, Na, Al, Mg, Ti, Si, K and Ca, Z is a halogen element and includes at least one selected from the group consisting of F and Cl).
Or (ii) lithium metal composite oxide represented by the following formula ( 8-1 ) or ( 9-1 ):
LiMPO 4 ( 8-1 )
(In the formula, M is a transition metal and contains at least one element of Co and Ni in a proportion of 80% or more .)
Li (Li x M 1-x -z Mn z) O 2 (9-1)
(0 ≦ x < 0.2 , 0.3 ≦ z ≦ 0.7, M is a transition metal and includes at least one of Co and Ni.)
A lithium secondary battery comprising:
前記フッ素含有リン酸エステルの含有率が前記非水電解溶媒中10体積%以上95体積%以下である請求項2に記載のリチウム二次電池。The lithium secondary battery according to claim 2, wherein a content rate of the fluorine-containing phosphate ester is 10% by volume or more and 95% by volume or less in the nonaqueous electrolytic solvent. ,RおよびRの少なくとも1つは、対応する無置換のアルキル基が有する水素原子の50%以上がフッ素原子に置換されたフッ素含有アルキル基である請求項1〜3のいずれか1項に記載のリチウム二次電池。 At least one of R 1, R 2 and R 3, any one of claims 1 to 3 50% or more of the hydrogen atom of the corresponding unsubstituted alkyl radicals are substituted fluorine-containing alkyl group with a fluorine atom 2. The lithium secondary battery according to item 1. 前記フッ素含有リン酸エステルが、下記式(2)で表される化合物である請求項1〜4のいずれか1項に記載のリチウム二次電池。
Figure 0006179511
The lithium secondary battery according to claim 1, wherein the fluorine-containing phosphate ester is a compound represented by the following formula (2).
Figure 0006179511
nが1である式(20)で表されるフッ素化ジエーテル化合物を含むことを特徴とする請求項1、4および5(但し、請求項4および5においては請求項1を引用する部分に限る)のいずれか1項に記載のリチウム二次電池。 A fluorinated diether compound represented by the formula (20) wherein n is 1 is included, wherein the fluorinated diether compound is limited to the portion cited in claim 1. the lithium secondary battery according to any one of). 前記フッ素化ジエーテル化合物が、下記式(21)で表される化合物である請求項6記載のリチウム二次電池。
CFCHOCHCHOCHCF (21)
The lithium secondary battery according to claim 6, wherein the fluorinated diether compound is a compound represented by the following formula (21).
CF 3 CH 2 OCH 2 CH 2 OCH 2 CF 3 (21)
前記非水電解溶媒は、環状カーボネートを含む請求項1〜5のいずれか1項に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the non-aqueous electrolytic solvent includes a cyclic carbonate. 前記環状カーボネートは、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、およびビニレンカーボネート、並びにこれらが有する水素原子の一部または全部をフッ素原子に置換した構造を有する化合物からなる群から選ばれる少なくとも1種である請求項8に記載のリチウム二次電池。   The cyclic carbonate is at least one selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and a compound having a structure in which a part or all of the hydrogen atoms thereof are substituted with fluorine atoms. The lithium secondary battery according to claim 8. 前記正極活物質が請求項1で定義された式(4−1)で表されるリチウムマンガン複合酸化物を含む請求項1〜9のいずれか1項に記載のリチウム二次電池 The lithium secondary battery according to any one of claims 1 to 9, wherein the positive electrode active material includes a lithium manganese composite oxide represented by the formula (4-1) defined in claim 1 . 前記正極活物質が請求項1で定義された式(8−1)または(9−1)で表されるリチウム金属複合酸化物を含む請求項1〜9のいずれか1項に記載のリチウム二次電池 10. The lithium secondary material according to claim 1, wherein the positive electrode active material contains a lithium metal composite oxide represented by the formula (8-1) or (9-1) defined in claim 1. Next battery . 前記正極と負極と前記電解液を内包する外装体を有し、該外装体がアルミラミネートからなる請求項1〜11のいずれか1項に記載のリチウム二次電池。   The lithium secondary battery according to any one of claims 1 to 11, further comprising an exterior body that encloses the positive electrode, the negative electrode, and the electrolytic solution, and the exterior body is made of an aluminum laminate.
JP2014521218A 2012-06-12 2013-05-17 Lithium secondary battery Active JP6179511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014521218A JP6179511B2 (en) 2012-06-12 2013-05-17 Lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012133128 2012-06-12
JP2012133128 2012-06-12
JP2014521218A JP6179511B2 (en) 2012-06-12 2013-05-17 Lithium secondary battery
PCT/JP2013/063804 WO2013187180A1 (en) 2012-06-12 2013-05-17 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPWO2013187180A1 JPWO2013187180A1 (en) 2016-02-04
JP6179511B2 true JP6179511B2 (en) 2017-08-16

Family

ID=49758012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014521218A Active JP6179511B2 (en) 2012-06-12 2013-05-17 Lithium secondary battery

Country Status (2)

Country Link
JP (1) JP6179511B2 (en)
WO (1) WO2013187180A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6189275B2 (en) * 2014-10-08 2017-08-30 住友電気工業株式会社 Electrolyte for sodium ion secondary battery and sodium ion secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4255581B2 (en) * 1999-09-10 2009-04-15 株式会社デンソー Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP2001023691A (en) * 1999-07-13 2001-01-26 Denso Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2007258067A (en) * 2006-03-24 2007-10-04 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
JP5343665B2 (en) * 2009-03-31 2013-11-13 ダイキン工業株式会社 Solvent for non-aqueous electrolyte of lithium secondary battery

Also Published As

Publication number Publication date
JPWO2013187180A1 (en) 2016-02-04
WO2013187180A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP6756268B2 (en) Secondary battery
JP6138490B2 (en) Lithium secondary battery
JP6079770B2 (en) Lithium secondary battery
JP6123682B2 (en) Lithium secondary battery
JP6428609B2 (en) Secondary battery electrolyte and secondary battery
JP5910627B2 (en) Secondary battery
WO2016175217A1 (en) Electrolyte solution for secondary batteries, and secondary battery
JPWO2012141301A1 (en) Lithium secondary battery
WO2013161774A1 (en) Lithium secondary battery
JP6179232B2 (en) Charging method of lithium secondary battery
JP6292120B2 (en) Lithium secondary battery and manufacturing method thereof
WO2017154788A1 (en) Electrolyte solution for secondary batteries, and secondary battery
WO2016021596A1 (en) Lithium secondary battery and production method for same
JP6500775B2 (en) Lithium ion secondary battery
WO2014103893A1 (en) Lithium secondary battery and method for selecting same
JP6123674B2 (en) Lithium secondary battery and vehicle using the same
JP6601033B2 (en) Power storage device and manufacturing method thereof
JP6179511B2 (en) Lithium secondary battery
JP5369017B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170519

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170703

R150 Certificate of patent or registration of utility model

Ref document number: 6179511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150