WO2014103893A1 - Lithium secondary battery and method for selecting same - Google Patents

Lithium secondary battery and method for selecting same Download PDF

Info

Publication number
WO2014103893A1
WO2014103893A1 PCT/JP2013/084154 JP2013084154W WO2014103893A1 WO 2014103893 A1 WO2014103893 A1 WO 2014103893A1 JP 2013084154 W JP2013084154 W JP 2013084154W WO 2014103893 A1 WO2014103893 A1 WO 2014103893A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
secondary battery
charge transfer
lithium secondary
Prior art date
Application number
PCT/JP2013/084154
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 有光
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014554392A priority Critical patent/JPWO2014103893A1/en
Publication of WO2014103893A1 publication Critical patent/WO2014103893A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium secondary battery and a selection method thereof.
  • Lithium secondary batteries are widely used for portable electronic devices and personal computers because of their small size and large capacity. However, since the characteristics deteriorate due to repeated charge and discharge, there is a lifetime. In recent years, the use of batteries for large capacity devices such as household storage batteries and electric vehicles has been realized, so it is not desirable to replace batteries in the short term. It has become.
  • a decomposition reaction occurs at the time of charge / discharge at the contact portion between the positive electrode or the negative electrode and the electrolytic solution, and a reaction product is formed on the electrode surface, or the crystallinity changes in a part of the electrode. Is considered.
  • a 5 V class operating potential can be realized by using, as an active material, a spinel compound in which Mn of lithium manganate is substituted with Ni, Co, Fe, Cu, Cr or the like.
  • spinel compounds such as LiNi 0.5 Mn 1.5 O 4 exhibit a potential plateau in the region of 4.5 V or higher.
  • Mn exists in a tetravalent state, and the operating potential is defined by oxidation and reduction of Ni 2+ ⁇ ⁇ Ni 4+ instead of oxidation reduction of Mn 3+ ⁇ ⁇ Mn 4+ .
  • LiNi 0.5 Mn 1.5 O 4 has a capacity of 130 mAh / g or more and an average operating voltage of 4.6 V or more with respect to metallic lithium. Although the capacity is smaller than LiCoO 2 , the energy density of the battery is higher than LiCoO 2 . Furthermore, spinel type lithium manganese oxide has an advantage that it has a three-dimensional lithium diffusion path, has excellent thermodynamic stability, and is easy to synthesize. For these reasons, LiNi 0.5 Mn 1.5 O 4 is promising as a future positive electrode material.
  • Patent Document 1 discloses the diameter of a semicircular arc drawn when impedance is measured in a frequency region of 10 kHz to 10 mHz and a result is described on a complex plane in an electrochemical cell using a positive electrode as a working electrode and lithium metal as a game.
  • an electrochemical cell using R1 and a negative electrode plate as the working electrode and lithium metal as the counter electrode when impedance is measured in the frequency range from 10 kHz to 10 mHz and the result is described on the complex plane, the diameter of the semicircular arc drawn as R2 It is stated that the deterioration in the charge / discharge cycle can be suppressed by setting the value of R2 / R1 to 0.01 to 15.
  • Patent Document 2 describes an increase rate of a negative electrode resistance component (impedance), an increase rate of a positive electrode resistance component (impedance), and the like of a lithium ion battery subjected to charge / discharge cycles.
  • Patent Document 3 describes the ratio of the charge transfer resistance between the early discharge stage and the late discharge stage of the electrode plate for a nonaqueous electrolyte secondary battery.
  • Patent Document 4 shows a comparison between the charge transfer resistance of the positive electrode and the charge transfer resistance of the negative electrode for a plurality of unused lithium ion batteries of the same type and a plurality of lithium ion batteries of the same type different in use state. Has been.
  • FIG. 7 shows a result of evaluating the relationship between R2 / R1 in a state where the battery is once charged after the trial manufacture and the amount of change ⁇ Rall of the internal resistance of the battery due to 50 cycles of charge / discharge.
  • the data is experimental data of examples and comparative examples in the present specification, and conditions will be described later.
  • the evaluation of R1 and R2 was obtained by fitting an AC impedance measurement between the electrodes and an equivalent circuit as described later.
  • the lithium secondary battery of the present invention aims to realize excellent charge / discharge cycle characteristics.
  • a lithium secondary battery having a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolytic solution including a nonaqueous electrolytic solvent, A change amount ( ⁇ Rct) of the positive electrode charge transfer resistance before and after a predetermined stress application on a plane having two axes orthogonal to each other, the change amount of the charge transfer resistance of the positive electrode and the change amount of the charge transfer resistance of the negative electrode ) And a point ( ⁇ Rct2, ⁇ Rct) representing the amount of change ( ⁇ Rct2) in the charge transfer resistance of the negative electrode is projected to a point ( ⁇ Ra , ⁇ Rc) A point ( ⁇ Ra, ⁇ Rc) is defined with respect to a straight line passing through the origin on a plane having two axes orthogonal to each other.
  • the lithium secondary battery is characterized in that the distance from the vertically projected point to the origin is within a predetermined range.
  • a secondary battery having excellent cycle characteristics can be provided.
  • a positive electrode active material that operates at a potential of 4.5 V or higher with respect to lithium is used, a secondary battery having excellent cycle characteristics can be provided.
  • the lithium secondary battery of the present embodiment has a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolytic solution including a nonaqueous electrolytic solvent.
  • Charge transfer resistances Rct and Rct2 exist in the positive electrode and the negative electrode, respectively.
  • the amount of change in the charge transfer resistance of the positive electrode before and after the predetermined stress application [(charge transfer resistance value of the positive electrode after stress application) ⁇ (charge transfer resistance value of the positive electrode before stress application)] is ⁇ Rct
  • the amount of change in the charge transfer resistance of the negative electrode [(charge transfer resistance value of negative electrode after applying stress) ⁇ (charge transfer resistance value of negative electrode before applying stress)] is represented by ⁇ Rct2.
  • the circle centered on the origin from the point ( ⁇ Rct2, ⁇ Rct) is 1 ⁇ .
  • the point on the circle after normalization is defined as a point ( ⁇ Ra, ⁇ Rc).
  • the point ( ⁇ Ra, ⁇ Rc) is set to the origin on a plane having two axes perpendicular to the amount of change in charge transfer resistance of the positive electrode after normalization and the amount of change in charge transfer resistance of the negative electrode after normalization. Project perpendicular to the straight line that passes through.
  • the cycle characteristics of the lithium ion secondary battery are compared to when the distance ⁇ Rx is not within the predetermined range.
  • the vertical axis represents the amount of change in charge transfer resistance of the positive electrode
  • the horizontal axis represents the amount of change in charge transfer resistance of the negative electrode
  • the vertical axis represents the change amount of the charge transfer resistance of the positive electrode after normalization according to FIG. 4
  • the horizontal axis represents the change amount of the charge transfer resistance of the negative electrode after normalization according to FIG. 4.
  • ⁇ Rx may be referred to as “projection value”.
  • Examples of the stress include charge / discharge cycles, high temperature storage (for example, storage at 45 ° C. or higher for 5 minutes or longer), high voltage application (for example, a value higher by 0.05 V or more than the voltage on the higher potential side of the battery), and the like. Can be mentioned.
  • an increase in the internal resistance of the battery can be suppressed, and a lithium secondary battery with good charge / discharge cycle resistance can be realized.
  • the present invention is more effective when the resistance increase due to stress is large, such as a lithium secondary battery using a positive electrode active material that operates at a potential of 4.5 V or higher with respect to lithium. .
  • ⁇ Rct2 and ⁇ Rct change in a substantially proportional relationship
  • the values change in a radiation direction centered on the origin. Increase or decrease. Therefore, in the present embodiment, as described above, the point ( ⁇ Rct2, ⁇ Rct) is set to the origin on the plane with the change amount of the charge transfer resistance of the positive electrode on the vertical axis and the change amount of the charge transfer resistance of the negative electrode on the horizontal axis.
  • a straight line passing through the origin is set as a new axis on a plane with the vertical axis representing the amount of change in charge transfer resistance of the positive electrode after normalization and the horizontal axis representing the amount of change in charge transfer resistance of the negative electrode after normalization.
  • the projection is perpendicular to the straight line from the point ( ⁇ Ra, ⁇ Rc).
  • the slope of the straight line passing through the origin can be set from the measurement results of the charge transfer resistances of a plurality of lithium ion secondary batteries.
  • the distance from the point ( ⁇ Ra, ⁇ Rc) to the origin when projected perpendicularly to the straight line passing through the origin is assumed to be ⁇ Rx.
  • the value ⁇ Rx obtained by projecting perpendicularly to the straight line passing through the origin is in the range of 0 ⁇ 1 ⁇ .
  • a predetermined range of ⁇ Rx is determined, and a lithium secondary battery having excellent cycle characteristics can be obtained.
  • the predetermined range ⁇ Rx is not particularly limited, but is preferably within 0 ⁇ 0.5 ⁇ , and more preferably within 0 ⁇ 0.3 ⁇ .
  • Rct and Rct2 there is a method of measuring and evaluating an impedance between a positive electrode and a negative electrode by an AC impedance method.
  • the measurement result is plotted on the complex plane, two arcs or elliptical arcs are observed.
  • the actual resistance side diameter (or elliptical diameter) of the high frequency side arc (or elliptical arc) is Rct2
  • the actual resistance side diameter or elliptical diameter of the low frequency side arc (or elliptical arc) is It may be regarded as Rct (see FIG. 3).
  • Rct2 and Rct are interchanged, one of them may satisfy the condition that ⁇ Rx is within a predetermined range. In addition, when there are three or more arcs, the larger one is considered.
  • fitting to an equivalent circuit may be performed to extract Rct2 and Rct.
  • fitting with an equivalent circuit as shown in FIG. 2 may be performed to extract Rct2 and Rct.
  • the AC impedance method an AC voltage is applied between terminals whose impedance is to be evaluated, a response current and its phase are evaluated, and real resistance and imaginary resistance at that frequency are extracted.
  • Another method for measuring Rct and Rct2 includes the following method. First, a conductive electrode made of lithium or the like is provided on the battery, and the impedance between the conductive electrode and the positive electrode is measured and evaluated by an AC impedance method. When the measurement result is plotted on a complex surface, an arc or an elliptical arc is observed. The actual resistance side diameter (or elliptical diameter) is Rct. Similarly, Rct2 is obtained from the impedance measurement result between the conductive electrode and the negative electrode.
  • This embodiment can be used as a means for selecting a cell having high resistance to stress and a cell having low resistance from a plurality of lithium ion secondary batteries (cells). For example, when the projection value ⁇ Rx deviates from the design range or the amount of difference (standard deviation) from the distribution of other cells, the cell may be selected as a cell that is likely to become defective due to an abnormality. It becomes possible. Thus, the technology of the present invention can also be used as a means for selecting a lithium ion secondary battery.
  • the electrolytic solution includes a supporting salt and a nonaqueous electrolytic solvent.
  • the composition of the nonaqueous electrolytic solvent of the present invention can be adjusted as appropriate. For example, it preferably contains a fluorine-containing phosphate ester, and more preferably contains a cyclic sulfonate ester as an additive.
  • the oxidation resistance of the electrolytic solution can be enhanced, and the compatibility with other solvent components and the ionic conductivity of the electrolytic solution can be enhanced.
  • a fluorine-containing phosphate compound is used as an electrolyte solution solvent for a battery including a positive electrode that operates at a high potential, decomposition of the electrolyte solution at a high potential is suppressed, which is preferable.
  • fluorine-containing phosphate ester examples include tris phosphate (trifluoromethyl), tris phosphate (trifluoroethyl), tris phosphate (tetrafluoropropyl), tris phosphate (pentafluoropropyl), tris phosphate ( Heptafluorobutyl), tris phosphate (octafluoropentyl) and the like.
  • examples of the fluorine-containing phosphate ester include trifluoroethyl dimethyl phosphate, bis (trifluoroethyl) methyl phosphate, bistrifluoroethyl ethyl phosphate, pentafluoropropyl dimethyl phosphate, heptafluorobutyl dimethyl phosphate, Trifluoroethylmethyl ethyl phosphate, pentafluoropropylmethyl ethyl phosphate, heptafluorobutylmethyl ethyl phosphate, trifluoroethyl methyl propyl phosphate, pentafluoropropyl methyl propyl phosphate, heptafluorobutyl methyl propyl phosphate, phosphoric acid Trifluoroethylmethylbutyl, pentafluoropropylmethylbutyl phosphate, heptafluorobutylmethylbutyl
  • Examples of tris (tetrafluoropropyl) phosphate include tris (2,2,3,3-tetrafluoropropyl) phosphate.
  • Examples of tris (pentafluoropropyl) phosphate include tris (2,2,3,3,3-pentafluoropropyl) phosphate.
  • Examples of tris (trifluoroethyl) phosphate include tris (2,2,2-trifluoroethyl) phosphate (hereinafter also abbreviated as PTTFE).
  • Examples of tris phosphate (heptafluorobutyl) include tris phosphate (1H, 1H-heptafluorobutyl).
  • Examples of lintris (octafluoropentyl) include trisphosphate (1H, 1H, 5H-octafluoropentyl) and the like. These fluorine-containing phosphate esters can be used alone or in combination of two or more.
  • the content of the fluorine-containing phosphate ester is preferably in the range of 0.1 to 95% by volume, more preferably 0.2% by volume or more, and more preferably 0.5% by volume or more in the total nonaqueous electrolytic solvent. Preferably, 5 volume% or more is more preferable, it is more preferable that it is larger than 10 volume%, 20 volume% or more is further more preferable, 90 volume% or less is more preferable, and 80 volume% or less is further more preferable. When the content of the fluorine-containing phosphate is within this range, a lithium secondary battery excellent in cycle characteristics can be obtained.
  • the nonaqueous electrolytic solvent preferably contains a cyclic carbonate and / or a chain carbonate.
  • cyclic carbonate or chain carbonate has a large relative dielectric constant, the addition of these improves the dissociation property of the supporting salt and makes it easy to impart sufficient conductivity.
  • cyclic carbonates and chain carbonates are suitable for mixing with fluorine-containing phosphate esters because of their high voltage resistance and electrical conductivity. Furthermore, it is possible to improve the ion mobility in the electrolytic solution by selecting a material having an effect of lowering the viscosity of the electrolytic solution.
  • the cyclic carbonate is not particularly limited, and examples thereof include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC).
  • the cyclic carbonate includes a fluorinated cyclic carbonate. Examples of the fluorinated cyclic carbonate include compounds in which some or all of the hydrogen atoms such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), or vinylene carbonate (VC) are substituted with fluorine atoms. Can be mentioned.
  • fluorinated cyclic carbonate examples include, for example, 4-fluoro-1,3-dioxolan-2-one, (cis or trans) 4,5-difluoro-1,3-dioxolan-2-one, 4,4-difluoro-1,3-dioxolan-2-one, 4-fluoro-5-methyl-1,3-dioxolan-2-one, and the like can be used.
  • ethylene carbonate, propylene carbonate, or a compound obtained by fluorinating a part thereof is preferable, and ethylene carbonate is more preferable, from the viewpoint of voltage resistance and conductivity.
  • a cyclic carbonate can be used individually by 1 type or in combination of 2 or more types.
  • the chain carbonate is not particularly limited, and examples thereof include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and dipropyl carbonate (DPC).
  • the chain carbonate includes a fluorinated chain carbonate.
  • a fluorinated chain carbonate for example, a part or all of hydrogen atoms such as ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC) and the like are substituted with fluorine atoms. Examples include compounds having a structure.
  • examples of the fluorinated chain carbonate include bis (fluoroethyl) carbonate, 3-fluoropropyl methyl carbonate, 3,3,3-trifluoropropyl methyl carbonate, and 2,2,2-trifluoro.
  • dimethyl carbonate 2,2,2-trifluoroethyl methyl carbonate, monofluoromethyl methyl carbonate, methyl 2,2,3,3-tetrafluoropropyl carbonate and the like are preferable from the viewpoint of voltage resistance and conductivity.
  • a linear carbonate can be used individually by 1 type or in combination of 2 or more types.
  • the nonaqueous electrolytic solvent may contain a carboxylic acid ester.
  • the carboxylate ester is not particularly limited, and examples thereof include ethyl acetate, methyl propionate, ethyl formate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetate, and methyl formate.
  • the carboxylic acid ester also includes a fluorinated carboxylic acid ester. Examples of the fluorinated carboxylic acid ester include ethyl acetate, methyl propionate, ethyl formate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetate, or formic acid.
  • Examples thereof include compounds having a structure in which part or all of the hydrogen atoms of methyl are substituted with fluorine atoms.
  • Specific examples of the fluorinated carboxylic acid ester include, for example, ethyl pentafluoropropionate, ethyl 3,3,3-trifluoropropionate, methyl 2,2,3,3-tetrafluoropropionate, and acetic acid.
  • the carboxylic acid esters include ethyl propionate, methyl acetate, methyl 2,2,3,3-tetrafluoropropionate, 2,2,3,3 trifluoroacetic acid. -Tetrafluoropropyl is preferred.
  • Carboxylic acid esters have the effect of reducing the viscosity of the electrolytic solution in the same manner as chain carbonates. Therefore, for example, the carboxylic acid ester can be used in place of the chain carbonate, and can also be used in combination with the chain carbonate.
  • the nonaqueous electrolytic solvent can contain an alkylene biscarbonate represented by the following formula (1) in addition to the fluorine-containing phosphate ester. Since the oxidation resistance of the alkylene biscarbonate is equal to or slightly higher than that of the chain carbonate, the voltage resistance of the electrolytic solution can be improved.
  • R 4 and R 6 each independently represents a substituted or unsubstituted alkyl group.
  • R 5 represents a substituted or unsubstituted alkylene group).
  • the alkyl group includes linear or branched ones, preferably having 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • the alkylene group is a divalent saturated hydrocarbon group, including a linear or branched chain group, preferably having 1 to 4 carbon atoms, and more preferably 1 to 3 carbon atoms. .
  • alkylene biscarbonate represented by the formula (1) examples include 1,2-bis (methoxycarbonyloxy) ethane, 1,2-bis (ethoxycarbonyloxy) ethane, and 1,2-bis (methoxycarbonyloxy).
  • examples include propane and 1-ethoxycarbonyloxy-2-methoxycarbonyloxyethane. Of these, 1,2-bis (methoxycarbonyloxy) ethane is preferred.
  • Alkylene biscarbonate is a material with a low dielectric constant. Therefore, for example, it can be used instead of the chain carbonate, or can be used in combination with the chain carbonate.
  • the nonaqueous electrolytic solvent may contain a chain ether.
  • the chain ether is not particularly limited, and examples thereof include 1,2-ethoxyethane (DEE) and ethoxymethoxyethane (EME).
  • the chain ether also includes fluorinated chain ether.
  • the fluorinated chain ether is preferably used in the case of a positive electrode having high oxidation resistance and operating at a high potential.
  • Examples of the fluorinated chain ether include compounds having a structure in which some or all of the hydrogen atoms of 1,2-ethoxyethane (DEE) or ethoxymethoxyethane (EME) are substituted with fluorine atoms.
  • fluorinated chain ether examples include 2,2,3,3,3-pentafluoropropyl 1,1,2,2-tetrafluoroethyl ether, 1,1,2,2 and the like.
  • -Tetrafluoroethyl 2,2,2-trifluoroethyl ether 1H, 1H, 2'H, 3H-decafluorodipropyl ether, 1,1,1,2,3,3-hexafluoropropyl-2,2 -Difluoroethyl ether
  • isopropyl 1,1,2,2-tetrafluoroethyl ether, propyl 1,1,2,2-tetrafluoroethyl ether, 1,1,2,2-tetrafluoroethyl 2,2,3 3-tetrafluoropropyl ether 1H, 1H, 5H-perfluoropentyl-1,1,2,2-tetrafluoroethyl ether, 1H, 1H, 2′H-per Fluo
  • 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether 1H, 1H, 2′H, 3H-decafluoro Dipropyl ether, 1H, 1H, 2′H-perfluorodipropyl ether, ethyl nonafluorobutyl ether and the like are preferable.
  • the chain ether has the effect of reducing the viscosity of the electrolytic solution, like the chain carbonate. Therefore, for example, a chain ether can be used in place of a chain carbonate or carboxylic acid ester, and can also be used in combination with a chain carbonate or carboxylic acid ester.
  • the nonaqueous electrolytic solvent may contain the following in addition to the above.
  • Nonaqueous electrolytic solvents include, for example, ⁇ -lactones such as ⁇ -butyrolactone, chain ethers such as 1,2-ethoxyethane (DEE) or ethoxymethoxyethane (EME), and cyclic rings such as tetrahydrofuran or 2-methyltetrahydrofuran. Ethers and the like can be included. Moreover, what substituted some hydrogen atoms of these materials by the fluorine atom may be included.
  • an aprotic organic solvent such as dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole,
  • Examples of the supporting salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2 ) 2 , LiN (CF 3 Examples thereof include lithium salts such as SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , and LiB 10 Cl 10 .
  • Other examples of the supporting salt include lower aliphatic lithium carboxylate carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, and the like.
  • the supporting salt can be used alone or in combination of two or more.
  • the concentration of the supporting salt is preferably 0.5 to 1.5 mol / l in the electrolyte solution of the lithium salt.
  • the lithium secondary battery of the present invention may contain a cyclic sulfonate ester in the electrolytic solution.
  • cyclic sulfonic acid ester which can be used for this invention, the cyclic sulfonic acid ester represented by following formula (2) is mentioned, for example.
  • a and B each independently represent an alkylene group or a fluorinated alkylene group, and X represents a C—C single bond or —OSO 2 — group.
  • the number of carbon atoms of the alkylene group is, for example, 1 to 8, preferably 1 to 6, and more preferably 1 to 4.
  • a and B are each independently an alkylene group or a fluoroalkylene group, and X is a C—C single bond or —OSO 2 — group).
  • the fluorinated alkylene group represents a substituted alkylene group having a structure in which at least one hydrogen atom of the unsubstituted alkylene group is substituted with a fluorine atom.
  • the carbon number of the fluorinated alkylene group is, for example, 1 to 8, preferably 1 to 6, and more preferably 1 to 4.
  • the -OSO 2 -group may be in any direction.
  • the cyclic sulfonic acid ester is a cyclic monosulfonic acid ester, and the cyclic monosulfonic acid ester is preferably a compound represented by the following formula (4). .
  • R 101 and R 102 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 4 carbon atoms.
  • N is 0, 1, 2, 3, or 4. .
  • the cyclic sulfonic acid ester is a cyclic disulfonic acid ester
  • the cyclic disulfonic acid ester is preferably a compound represented by the following formula (5) .
  • R 201 to R 204 each independently represents a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 4 carbon atoms, and n is 1, 2, 3, or 4. , N is 2, 3, or 4, n R 203s may be the same or different from each other, and n R 204s may be the same or different from each other. May be.
  • Examples of the cyclic sulfonate ester include 1,3-propane sultone, 1,2-propane sultone, 1,4-butane sultone, 1,2-butane sultone, 1,3-butane sultone, 2,4-butane sultone, 1,3 -Monosulfonic acid esters such as pentansultone (when X in formula (2) is a single bond), methylenemethane disulfonic acid ester (1,5,2,4-dioxadithian-2,2,4,4-tetraoxide ), Disulfonic acid esters such as ethylenemethane disulfonic acid ester (when X in the formula (2) is —OSO 2 — group), and the like.
  • 1,3-propane sultone, 1,4-butane sultone, and methylene methane disulfonic acid ester are preferable from the viewpoint of film forming effect, availability, and cost.
  • the content of the cyclic sulfonic acid ester in the electrolytic solution is preferably 0.01 to 10% by mass, and more preferably 0.1 to 5% by mass.
  • a coating can be more effectively formed on the positive electrode surface to suppress decomposition of the electrolytic solution.
  • an ion conductive polymer may be added to the nonaqueous electrolytic solvent.
  • the ion conductive polymer include polyethers such as polyethylene oxide and polypropylene oxide, and polyolefins such as polyethylene and polypropylene.
  • the ion conductive polymer include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl fluoride, polyvinyl chloride, polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polymethacrylonitrile, and polyvinyl chloride.
  • Examples thereof include acetate, polyvinyl pyrrolidone, polycarbonate, polyethylene terephthalate, polyhexamethylene acipamide, polycaprolactam, polyurethane, polyethyleneimine, polybutadiene, polystyrene, or polyisoprene, or derivatives thereof.
  • An ion conductive polymer can be used individually by 1 type or in combination of 2 or more types. Moreover, you may use the polymer containing the various monomers which comprise the said polymer.
  • fluoroethylene carbonate may be included as an additive in the nonaqueous electrolytic solvent.
  • the positive electrode includes a positive electrode active material.
  • the positive electrode is formed, for example, by binding a positive electrode active material so as to cover the positive electrode current collector with a positive electrode binder.
  • the positive electrode of the lithium secondary battery according to the present embodiment preferably contains a positive electrode active material capable of inserting or extracting lithium ions at a potential of 4.5 V or higher with respect to lithium metal from the viewpoint of obtaining a high energy density.
  • the positive electrode active material that operates at a potential of 4.5 V or higher with respect to lithium can be selected by the following method, for example. First, a positive electrode containing a positive electrode active material and Li metal are placed in a state of facing each other with a separator interposed therebetween, and an electrolytic solution is injected to produce a battery. When charging / discharging is performed at a constant current of, for example, 5 mAh / g per positive electrode active material mass in the positive electrode, a charge / discharge capacity of 10 mAh / g or more per mass of active material is a potential of 4.5 V or more with respect to lithium. Can be a positive electrode active material that operates at a potential of 4.5 V or higher with respect to lithium.
  • the charge / discharge capacity per active material mass at a potential of 4.5 V or higher with respect to lithium is 20 mAh / g or higher. It is preferable that it is 50 mAh / g or more, and it is further more preferable that it is 100 mAh / g or more.
  • the shape of the battery can be, for example, a coin type.
  • positive electrode active materials examples include spinel materials, layered materials, and olivine materials.
  • spinel-based materials include LiNi 0.5 Mn 1.5 O 4 , LiCr x Mn 2-x O 4 (0.4 ⁇ x ⁇ 1.1), LiFe x Mn 2-x O 4 (0.4 ⁇ x ⁇ 1.1), LiCu x Mn 2-x O 4 (0.3 ⁇ x ⁇ 0.6), LiCo x Mn 2-x O 4 (0.4 ⁇ x ⁇ 1.1), and the like
  • a material that operates at a high potential of 4.5 V or higher with respect to lithium such as LiCoMnO 4 , LiCrMnO 4 , LiFeMnO 4 , LiCu 0.5 Mn 1.5 O 4 ; LiMn 2 O 4 a part of Mn increased the substituted to life with another element, LiM1 x Mn 2-x- y M2 y O 4 (M1 represents at least one selected Ni, Fe, Co, Cr, and Cu, 0 .4 ⁇ x ⁇ 1.1 and M2 is Li, Al , B, Mg, Si and transition
  • the spinel material a material represented by the following formula is particularly preferable.
  • M is Co
  • Y is at least one selected from the group consisting of Cr and Cu
  • Y is at least one selected from the group consisting of Li, B, Na, Al, Mg, Ti, Si, K, and Ca.
  • M preferably contains Ni, and preferably only Ni. This is because when M contains Ni, a high-capacity active material can be obtained relatively easily.
  • x is preferably 0.4 or more and 0.6 or less from the viewpoint of obtaining a high-capacity active material.
  • the positive electrode active material is LiNi 0.5 Mn 1.5 O 4 because a high capacity of 130 mAh / g or more can be obtained.
  • the lifetime may be improved by replacing a part of the Mn portion of these active materials with Li, B, Na, Al, Mg, Ti, SiK, Ca, or the like.
  • the life when 0 ⁇ y, the life may be improved.
  • Y when Y is Al, Mg, Ti, or Si, the life improvement effect is high.
  • Y when Y is Ti, it is more preferable because it provides a life improvement effect while maintaining a high capacity.
  • the range of y is preferably greater than 0 and less than or equal to 0.3. By setting y to 0.3 or less, it becomes easy to suppress a decrease in capacity.
  • Layered materials have the general formula: LiMO 2 (In the formula, M is at least one of Co and Ni.) Specifically, LiCoO 2 , LiNi 1-x M x O 2 (M is an element containing at least Co or Al, 0.05 ⁇ x ⁇ 0.3), Li (Ni x Co y Mn 2-x- y) O 2 (0.1 ⁇ x ⁇ 0.7,0 ⁇ y ⁇ 0.5), Li (M 1-z Mn z ) O 2 (8) (In formula (8), 0.7 ⁇ z ⁇ 0.33, and M is at least one of Li, Co, and Ni).
  • Li (M1 x M2 y Mn 1-xy ) O 2 (M1: at least one selected from the group consisting of Ni, Co and Fe, M2: at least one selected from the group consisting of Li, Mg and Al, 0.1 ⁇ x ⁇ 0.5, 0.05 ⁇ y ⁇ 0.3) and the like.
  • Li (Li x M 1-x -z Mn z) O 2 (9) (In Formula (9), 0 ⁇ x ⁇ 0.3, 0.33 ⁇ z ⁇ 0.7, M is at least one of Co and Ni) Is particularly preferred.
  • X in the formula of this material is preferably 0.1 ⁇ x ⁇ 0.3.
  • the olivine-based material has the general formula: LiMPO 4 (7) Specifically, LiFePO 4 , LiMnPO 4 , LiCoPO 4 , and LiNiPO 4 may be mentioned. Those in which a part of these transition metals is replaced with another element or the oxygen part is replaced with fluorine can also be used.
  • examples of the active material that operates at a potential of 4.5 V or more with respect to lithium include Si composite oxide.
  • examples of the Si composite oxide include Li 2 MSiO 4 (M: Mn, Fe, Co). At least one of them).
  • NASICON type lithium transition metal silicon composite oxide, and the like can be used.
  • the specific surface area of lithium-manganese composite oxide represented by the formula (6) is, for example, 0.01 ⁇ 5m 2 / g, preferably 0.05 ⁇ 4m 2 / g, 0.1 ⁇ 3m 2 / g Is more preferable, and 0.2 to 2 m 2 / g is more preferable.
  • the contact area with the electrolytic solution can be adjusted to an appropriate range. That is, when the specific surface area is 0.01 m 2 / g or more, lithium ions can be easily inserted and desorbed smoothly, and the resistance can be further reduced.
  • the center particle size of the lithium manganese composite oxide is preferably 0.1 to 50 ⁇ m, more preferably 0.2 to 40 ⁇ m.
  • the particle size can be measured by a laser diffraction / scattering particle size distribution measuring apparatus.
  • the positive electrode active material preferably includes an active material that operates at a potential of 4.5 V or more with respect to lithium, but may include a 4 V class active material.
  • the same negative electrode binder can be used.
  • polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost.
  • the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “higher energy” which are in a trade-off relationship. .
  • the positive electrode binder other than polyvinylidene fluoride is not particularly limited, but polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer.
  • PVdF polyvinylidene fluoride
  • Polymers, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide and the like can also be used.
  • a conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • the positive electrode current collector for example, aluminum, nickel, silver, stainless steel (SUS), valve metal, or an alloy thereof can be used from the viewpoint of electrochemical stability.
  • the shape include foil, flat plate, and mesh.
  • an aluminum foil can be suitably used.
  • a negative electrode will not be specifically limited if the negative electrode active material contains the material which can occlude and discharge
  • the negative electrode active material is not particularly limited, and for example, a carbon material (a) that can occlude and release lithium ions, a metal that can be alloyed with lithium (b), or a metal that can occlude and release lithium ions.
  • An oxide (c) etc. are mentioned.
  • the carbon material (a) graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof can be used.
  • graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a positive electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • the carbon material (a) can be used alone or in combination with other substances, but is preferably in the range of 2% by mass to 80% by mass in the negative electrode active material, and is preferably 2% by mass to 30% by mass. More preferably, it is in the range of% or less.
  • the metal (b) a metal mainly composed of Al, Si, Pb, Sn, Zn, Cd, Sb, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, La, or the like, or these Two or more kinds of alloys, or an alloy of these metals or alloys and lithium can be used.
  • silicon (Si) is preferably included as the metal (b).
  • the metal (b) can be used alone or in combination with other substances, but is preferably in the range of 5% by mass to 90% by mass in the negative electrode active material, and is 20% by mass to 50% by mass. The following range is more preferable.
  • silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, or a composite thereof can be used as the metal oxide (c).
  • silicon oxide is preferably included as the metal oxide (c). This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds.
  • one or more elements selected from nitrogen, boron, and sulfur may be added to the metal oxide (c), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (c) can be improved.
  • the metal oxide (c) can be used alone or in combination with other substances, but is preferably in the range of 5% by mass or more and 90% by mass or less in the negative electrode active material, and is 40% by mass or more and 70% by mass. More preferably, it is in the range of mass% or less.
  • metal oxide (c) examples include, for example, LiFe 2 O 3 , WO 2 , MoO 2 , SiO, SiO 2 , CuO, SnO, SnO 2 , Nb 3 O 5 , Li x Ti 2-x O 4. (1 ⁇ x ⁇ 4/3), PbO 2 , Pb 2 O 5 and the like.
  • the negative electrode active material include metal sulfide (d) that can occlude and release lithium ions.
  • Metal sulfide as (d) are, for example, SnS and FeS 2 or the like.
  • Other examples of the negative electrode active material include metal lithium or lithium alloy, polyacene or polythiophene, or Li 5 (Li 3 N), Li 7 MnN 4 , Li 3 FeN 2 , Li 2.5 Co 0. Examples thereof include lithium nitride such as 5 N or Li 3 CoN.
  • These negative electrode active materials can be used alone or in admixture of two or more.
  • the negative electrode active material can include a carbon material (a), a metal (b), and a metal oxide (c).
  • this negative electrode active material will be described.
  • the amorphous metal oxide (c) can suppress the volume expansion of the carbon material (a) and the metal (b), and can suppress the decomposition of the electrolytic solution. This mechanism is presumed to have some influence on the film formation on the interface between the carbon material (a) and the electrolytic solution due to the amorphous structure of the metal oxide (c).
  • the amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects.
  • the metal oxide (c) does not have an amorphous structure, a peak specific to the metal oxide (c) is observed, but all or part of the metal oxide (c) is amorphous. In the case of having a structure, the intrinsic peak of the metal oxide (c) is broad and observed.
  • the metal oxide (c) is preferably a metal oxide constituting the metal (b).
  • the metal (b) and the metal oxide (c) are preferably silicon (Si) and silicon oxide (SiO), respectively.
  • the metal (b) is preferably dispersed entirely or partially in the metal oxide (c).
  • the metal (b) is preferably dispersed entirely or partially in the metal oxide (c).
  • the volume expansion of the whole negative electrode can be further suppressed, and the decomposition of the electrolytic solution can also be suppressed.
  • all or part of the metal (b) is dispersed in the metal oxide (c) because it is observed with a transmission electron microscope (general TEM observation) and energy dispersive X-ray spectroscopy (general). This can be confirmed by using a combination of a standard EDX measurement.
  • the cross section of the sample containing the metal (b) particles is observed, the oxygen concentration of the metal (b) particles dispersed in the metal oxide (c) is measured, and the metal (b) particles are configured. It can be confirmed that the metal being used is not an oxide.
  • each carbon material (a), metal (b), and metal oxide (c) with respect to the total of the carbon material (a), metal (b), and metal oxide (c) is these are preferably 2% by mass or more and 80% by mass or less, 5% by mass or more and 90% by mass or less, and 5% by mass or more and 90% by mass or less.
  • the content rate of each carbon material (a), metal (b), and metal oxide (c) with respect to the sum total of a carbon material (a), a metal (b), and a metal oxide (c) is respectively More preferably, they are 2 mass% or more and 30 mass% or less, 20 mass% or more and 50 mass% or less, and 40 mass% or more and 70 mass% or less.
  • a negative electrode active material in which all or part of the metal oxide (c) has an amorphous structure and all or part of the metal (b) is dispersed in the metal oxide (c) is disclosed in, for example, It can be produced by the method disclosed in 2004-47404. That is, by performing a CVD process on the metal oxide (c) in an atmosphere containing an organic gas such as methane gas, the metal (b) in the metal oxide (c) is nanoclustered and the surface is a carbon material (a ) Can be obtained. Moreover, the said negative electrode active material is producible also by mixing a carbon material (a), a metal (b), and a metal oxide (c) by mechanical milling.
  • the carbon material (a), the metal (b), and the metal oxide (c) are not particularly limited, but particulate materials can be used.
  • the average particle diameter of the metal (b) may be smaller than the average particle diameter of the carbon material (a) and the average particle diameter of the metal oxide (c).
  • the metal (b) having a large volume change during charging and discharging has a relatively small particle size
  • the carbon material (a) and the metal oxide (c) having a small volume change have a relatively large particle size. Therefore, dendrite formation and alloy pulverization are more effectively suppressed.
  • lithium is occluded and released in the order of small particle size, large particle size, and small particle size during the charge / discharge process. This also suppresses the occurrence of residual stress and residual strain. Is done.
  • the average particle diameter of the metal (b) can be, for example, 20 ⁇ m or less, and is preferably 15 ⁇ m or less.
  • the average particle diameter of a metal oxide (c) is 1/2 or less of the average particle diameter of a carbon material (a), and the average particle diameter of a metal (b) is an average of a metal oxide (c). It is preferable that it is 1/2 or less of a particle diameter. Furthermore, the average particle diameter of the metal oxide (c) is 1 ⁇ 2 or less of the average particle diameter of the carbon material (a), and the average particle diameter of the metal (b) is the average particle diameter of the metal oxide (c). It is more preferable that it is 1/2 or less.
  • the average particle diameter of the silicon oxide (c) is set to 1/2 or less of the average particle diameter of the graphite (a), and the average particle diameter of the silicon (b) is the average particle of the silicon oxide (c). It is preferable to make it 1/2 or less of the diameter. More specifically, the average particle diameter of silicon (b) can be, for example, 20 ⁇ m or less, and is preferably 15 ⁇ m or less.
  • the negative electrode active material graphite whose surface is covered with a low crystalline carbon material can be used.
  • the surface of the graphite is covered with a low crystalline carbon material, which suppresses the reaction between the negative electrode active material and the electrolyte even when high energy density and high conductivity graphite is used as the negative electrode active material. can do. Therefore, by using the graphite covered with the low crystalline carbon material as the negative electrode active material, the capacity retention rate of the battery can be improved, and the battery capacity can be improved.
  • the graphite covered with the low crystalline carbon material can be obtained, for example, by coating particulate graphite with the low crystalline carbon material.
  • the average particle diameter (volume average: D 50 ) of the graphite particles is preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the graphite preferably has crystallinity, and the I D / IG value of the graphite is more preferably 0.01 or more and 0.08 or less.
  • the thickness of the low crystalline carbon material is preferably 0.01 ⁇ m or more and 5 ⁇ m or less, and more preferably 0.02 ⁇ m or more and 1 ⁇ m or less.
  • the average particle diameter (D 50 ) can be measured using, for example, a laser diffraction / scattering particle diameter / particle size distribution measuring apparatus Microtrac MT3300EX (Nikkiso).
  • the low crystalline carbon material can be formed on the surface of graphite by using a vapor phase method in which hydrocarbons such as propane and acetylene are thermally decomposed to deposit carbon.
  • the low crystalline carbon material can be formed, for example, by using a method in which pitch or tar is attached to the surface of graphite and firing at 800 to 1500 ° C.
  • Graphite has a crystal structure in which the 002 plane layer spacing d 002 is preferably 0.33 nm or more and 0.34 nm or less, more preferably 0.333 nm or more and 0.337 nm or less, and still more preferably 0.336 nm. It is as follows. Such highly crystalline graphite has a high lithium storage capacity and can improve charge and discharge efficiency.
  • the interlayer distance of graphite can be measured by, for example, X-ray diffraction.
  • the specific surface area of the graphite covered with the low crystalline carbon material is, for example, 0.01 to 20 m 2 / g, preferably 0.05 to 10 m 2 / g, and 0.1 to 5 m 2 / g. More preferably, it is 0.2 to 3 m 2 / g.
  • the graphite used as the base material is preferably highly crystalline.
  • artificial graphite or natural graphite can be used, but is not particularly limited thereto.
  • As the material of low crystalline carbon for example, coal tar, pitch coke, phenol resin and mixed with high crystalline carbon can be used.
  • a mixture is prepared by mixing 5 to 50% by mass of low crystalline carbon material with high crystalline carbon. After the mixture is heated to 150 ° C. to 300 ° C., heat treatment is further performed in the range of 600 ° C. to 1500 ° C. As a result, surface-treated graphite having a surface coated with low crystalline carbon can be obtained.
  • the heat treatment is preferably performed in an inert gas atmosphere such as argon, helium, or nitrogen.
  • the negative electrode active material may contain other active materials besides graphite covered with the low crystalline carbon material.
  • the binder for the negative electrode is not particularly limited, but polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer.
  • PVdF polyvinylidene fluoride
  • Polymerized rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide and the like can be mentioned.
  • the content of the negative electrode binder is preferably in the range of 1 to 30% by mass, more preferably 2 to 25% by mass with respect to the total amount of the negative electrode active material and the negative electrode binder.
  • the content is preferably in the range of 1 to 30% by mass, more preferably 2 to 25% by mass with respect to the total amount of the negative electrode active material and the negative electrode binder.
  • the negative electrode current collector is not particularly limited, but aluminum, nickel, copper, silver, and alloys thereof are preferable from the viewpoint of electrochemical stability.
  • Examples of the shape include foil, flat plate, and mesh.
  • the negative electrode can be produced by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector.
  • Examples of the method for forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method.
  • a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
  • the secondary battery can be composed of a combination of a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte as its configuration.
  • the separator include a woven fabric, a nonwoven fabric, a polyolefin such as polyethylene and polypropylene, a porous polymer film such as polyimide, a porous polyvinylidene fluoride film, and an ion conductive polymer electrolyte film. These can be used alone or in combination.
  • Examples of the shape of the battery include a cylindrical shape, a square shape, a coin shape, a button shape, and a laminate shape.
  • Examples of the battery outer package include stainless steel, iron, aluminum, titanium, alloys thereof, and plated products thereof. As the plating, for example, nickel plating can be used.
  • examples of the laminate resin film used for the laminate mold include aluminum, aluminum alloy, and titanium foil.
  • examples of the material of the heat-welded portion of the metal laminate resin film include thermoplastic polymer materials such as polyethylene, polypropylene, and polyethylene terephthalate.
  • the metal laminate resin layer and the metal foil layer are not limited to one layer, and may be two or more layers.
  • the exterior body can be appropriately selected as long as it is stable to the electrolyte and has a sufficient water vapor barrier property.
  • a laminated laminate type secondary battery a laminate film made of aluminum, silica-coated polypropylene, polyethylene, or the like can be used as the outer package.
  • an aluminum laminate film from the viewpoint of suppressing volume expansion.
  • FIG. 1 is a schematic diagram showing the configuration of a lithium secondary battery produced in this example.
  • a lithium secondary battery includes a positive electrode active material layer 1 containing a positive electrode active material on a positive electrode current collector 3 made of metal such as aluminum foil, and a negative electrode current collector made of metal such as copper foil. And a negative electrode active material layer 2 containing a negative electrode active material on the body 4.
  • the positive electrode active material layer 1 and the negative electrode active material layer 2 are disposed to face each other with a separator 5 made of an electrolytic solution, a nonwoven fabric containing the electrolyte, a polypropylene microporous film, and the like.
  • 6 and 7 are exterior bodies
  • 8 is a negative electrode tab
  • 9 is a positive electrode tab.
  • the positive electrode active material of this example was produced as follows.
  • a material is selected from MnO 2 , NiO, Fe 2 O 3 , TiO 2 , B 2 O 3 , CoO, Li 2 CO 3 , MgO, Al 2 O 3 , and LiF so as to have a desired metal composition ratio.
  • LiNi 0.5 Mn 1.5 O 4 was produced by firing the powder after mixing the raw materials at a firing temperature of 500 to 1000 ° C. for 8 hours.
  • LiNi 0.5 Mn 1.5 O 4 as a positive electrode active material, polyvinylidene fluoride (PVDF) (5 mass%) as a binder, and carbon black (5 mass%) as a conductive agent are mixed.
  • a positive electrode slurry was prepared by dispersing the positive electrode mixture in N-methyl-2-pyrrolidone. This positive electrode slurry was uniformly applied to one side of an aluminum current collector having a thickness of 20 ⁇ m. The thickness of the coating film was adjusted so that the initial charge capacity per unit area was 2.5 mAh / cm 2 . After drying, a positive electrode was produced by compression molding with a roll press.
  • a negative electrode slurry was prepared by dispersing in artificial graphite and N-methylpyrrolidone in which PVDF was dissolved as a binder. The mass ratio between the negative electrode active material and the binder was 90/10. This negative electrode slurry was uniformly coated on a 10 ⁇ m thick Cu current collector. After drying, a negative electrode was produced by compression molding with a roll press.
  • a positive electrode and a negative electrode cut out to 1.5 cm ⁇ 3 cm were arranged so as to face each other with a separator interposed therebetween. Five positive electrodes and six negative electrodes were alternately stacked.
  • As the separator a microporous polypropylene film having a thickness of 25 ⁇ m was used.
  • a solvent and a solvent containing 2% by volume of fluoroethylene carbonate (FEC) as an additive were used.
  • the above positive electrode, negative electrode, separator, and electrolyte were placed in a laminate outer package, the laminate was sealed, and a lithium secondary battery was produced.
  • the positive electrode and the negative electrode were connected to a tab and electrically connected from the outside of the laminate.
  • Charging conditions constant current constant voltage method, charging end voltage 4.75 V, charging current 10 mA, total charging time 10 hours
  • Charging conditions constant current constant voltage method, charging end voltage 4.75 V, charging current 50 mA, total charging time 2.5 hours
  • the actual resistance measured by the AC impedance method at 100 mHz increased by 0.59 ⁇ .
  • the high frequency side negative charge transfer resistance Rct2 obtained by fitting to the circuit model is 0.22 ⁇ from 0.28 ⁇ to 0.50 ⁇ , and the low frequency side positive charge transfer resistance Rct is 0.90 ⁇ to 0.97 ⁇ from 0.90 ⁇ . Changed by 07 ⁇ .
  • the projection value ⁇ Rx is 0.36 ⁇ .
  • LiPF 6 is 0.8 mol / l
  • EC / TFETFPE / PTTFE / propylene carbonate (PC) 2/2/5/1
  • the additive is cyclic disulfonate (1,5,2,4-dioxodithiane-2,2 , 4,4-tetraoxide)
  • a lithium secondary battery was prepared and measured in the same manner as in Example 1 except that 0.8 wt% electrolytic solution was used. The actual resistance measured by the AC impedance method at 100 mHz increased by 0.58 ⁇ .
  • the high-frequency side negative charge transfer resistance Rct2 obtained by fitting to the circuit model is 0.24 ⁇ from 0.57 ⁇ to 0.81 ⁇ , and the low-frequency side positive charge transfer resistance Rct is 0.40 ⁇ to 0.76 ⁇ . It changed by 34 ⁇ .
  • the projection value ⁇ Rx is ⁇ 0.26 ⁇ .
  • the resistance is evaluated by the AC impedance method from 100 mHz to 300 kHz, and the relationship between ⁇ Rct and ⁇ Rct2 extracted by fitting the equivalent circuit shown in FIG. As shown in FIG. Despite changing the lithium salt concentration, electrolyte composition, additives, etc., ⁇ Rct and ⁇ Rct2 showed a strong negative correlation.
  • normalized values ⁇ Rc and ⁇ Ra can be obtained by projecting in a radiation direction from a point ( ⁇ Rct2, ⁇ Rct) onto a circle having a radius of 1 ⁇ centered on the origin and normalizing. Subsequently, as shown in FIG.
  • FIG. 6 shows a distribution of the change amount ⁇ Rall of the actual resistance value measured by the AC impedance method at 100 mHz.
  • -0.6 is the meaning of the average value of all evaluation data of various electrolytes, and it can be easily estimated that this value changes if it is classified for each electrolyte. For this reason, for example, it is considered that a value in the range from -1/3, which is approximately half the size, to -3, which is the reciprocal, can be taken as a value.
  • FIG. 5 shows that ⁇ Rall tends to be minimum when the horizontal axis is near zero. For example, in order to set ⁇ Rall to 1.7 ⁇ or less, the projection value ⁇ Rx needs to be between 0 ⁇ ⁇ 0.5 ⁇ . By setting ⁇ Rx between 0 ⁇ ⁇ 0.3 ⁇ , ⁇ Rall can be further reduced.
  • the cell is selected as a cell that is likely to become defective due to an abnormality, and ⁇ Rx is Those within a predetermined range can be selected as good products.
  • the technology of the present invention can also be used as a means for selecting a lithium ion secondary battery.
  • the selection method of the lithium ion secondary battery of the present invention is LiCoPO 4 , Li (Co 0.5 Mn 0.5 ) O 2 , Li (Li 0.2 M 0. it is suggested also effective in 3 Mn 0.5) O 2 cathode material or the like.

Abstract

The present invention relates to a lithium secondary battery provided with a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte solution including a non-aqueous electrolyte solvent. On a plane defined by two orthogonal axes of which one is the change in charge transfer resistance at the positive electrode is applied and the other is the change in charge transfer resistance at the negative electrode, the points (ΔRct2, ΔRct) representing the change (ΔRct) in charge transfer resistance at the positive electrode and the change (ΔRct2) in charge transfer resistance at the negative electrode before and after a predetermined stress is applied are projected, in the radial line direction, on a circle having the origin as the center and a radius of 1Ω, and normalized as points (ΔRa, ΔRc). On a plane defined by two orthogonal axes of which one is the change in charge transfer resistance at the positive electrode after normalization and the other is the change in charge transfer resistance at the negative electrode after normalization, the distances to the origin from points obtained by projecting the points (ΔRa, ΔRc) perpendicularly to a line passing through the origin are within a predetermined range.

Description

リチウム二次電池とその選別方法Lithium secondary battery and its sorting method
 本発明は、リチウム二次電池とその選別方法に関するものである。 The present invention relates to a lithium secondary battery and a selection method thereof.
 リチウム二次電池は、小型で大容量であることから、携帯型電子機器やパソコン等の用途に広く利用されている。しかし、充放電を繰り返すことにより特性が劣化するため、寿命が存在する。近年の家庭用蓄電池や電気自動車など大容量機器への利用が実現される中で、短期での電池交換は望ましくなく、大容量化とともに製品寿命以上の電池寿命の実現が重要な技術的課題となっている。 Lithium secondary batteries are widely used for portable electronic devices and personal computers because of their small size and large capacity. However, since the characteristics deteriorate due to repeated charge and discharge, there is a lifetime. In recent years, the use of batteries for large capacity devices such as household storage batteries and electric vehicles has been realized, so it is not desirable to replace batteries in the short term. It has become.
 劣化の原因としては、一例として正極や負極と電解液との接触部分で充放電時に分解反応が起こり、電極表面に反応物が形成されたり、電極の一部で結晶性が変化したりすることが考えられている。 As a cause of deterioration, for example, a decomposition reaction occurs at the time of charge / discharge at the contact portion between the positive electrode or the negative electrode and the electrolytic solution, and a reaction product is formed on the electrode surface, or the crystallinity changes in a part of the electrode. Is considered.
 リチウム二次電池を大容量化する方法としては幾つかの方法が考えられるが、その中でも電池の動作電位を上昇させることが有効である。一般的に用いられるコバルト酸リチウムやマンガン酸リチウムを正極活物質として用いたリチウム二次電池では、動作電位は何れも4V級(平均動作電位=3.6~3.8V:対リチウム電位)である。これは、CoイオンもしくはMnイオンの酸化還元反応(Co3+←→Co4+もしくはMn3+←→Mn4+)によって発現電位が規定されるためである。これに対し、たとえばマンガン酸リチウムのMnをNiやCo、Fe、Cu、Crなどにより置換したスピネル化合物を活物質として用いることにより、5V級の動作電位を実現できることが知られている。具体的には、LiNi0.5Mn1.5等のスピネル化合物が4.5V以上の領域に電位プラトーを示すことが知られている。こうしたスピネル化合物において、Mnは4価の状態で存在し、Mn3+←→Mn4+の酸化還元に代わってNi2+←→Ni4+の酸化還元によって動作電位が規定される。 Several methods are conceivable as methods for increasing the capacity of the lithium secondary battery. Among them, increasing the operating potential of the battery is effective. In lithium secondary batteries using lithium cobalt oxide or lithium manganate as a positive electrode active material, the operating potential is 4V class (average operating potential = 3.6 to 3.8V: lithium potential). is there. This is because the expression potential is defined by the redox reaction of Co ions or Mn ions (Co 3+ ← → Co 4+ or Mn 3+ ← → Mn 4+ ). On the other hand, for example, it is known that a 5 V class operating potential can be realized by using, as an active material, a spinel compound in which Mn of lithium manganate is substituted with Ni, Co, Fe, Cu, Cr or the like. Specifically, it is known that spinel compounds such as LiNi 0.5 Mn 1.5 O 4 exhibit a potential plateau in the region of 4.5 V or higher. In such a spinel compound, Mn exists in a tetravalent state, and the operating potential is defined by oxidation and reduction of Ni 2+ ← → Ni 4+ instead of oxidation reduction of Mn 3+ ← → Mn 4+ .
 LiNi0.5Mn1.5は容量が130mAh/g以上であり、平均動作電圧は金属リチウムに対して4.6V以上である。容量としてはLiCoOより小さいものの、電池のエネルギー密度はLiCoOよりも高い。更に、スピネル型リチウムマンガン酸化物は三次元のリチウム拡散経路を持ち、熱力学的安定性に優れている、合成が容易であるといった利点もある。このような理由からLiNi0.5Mn1.5は、将来の正極材料として有望である。 LiNi 0.5 Mn 1.5 O 4 has a capacity of 130 mAh / g or more and an average operating voltage of 4.6 V or more with respect to metallic lithium. Although the capacity is smaller than LiCoO 2 , the energy density of the battery is higher than LiCoO 2 . Furthermore, spinel type lithium manganese oxide has an advantage that it has a three-dimensional lithium diffusion path, has excellent thermodynamic stability, and is easy to synthesize. For these reasons, LiNi 0.5 Mn 1.5 O 4 is promising as a future positive electrode material.
 このように動作電圧を上げることによる大容量化が期待されるが、同時に電池内での反応性があがるため、充放電サイクル寿命の実現がより難しくなる。 Although it is expected that the capacity is increased by increasing the operating voltage in this way, since the reactivity in the battery is increased at the same time, it is more difficult to realize the charge / discharge cycle life.
 特許文献1には、正極板を作用極としリチウム金属を対局に用いた電気化学セルにおいて10kHzから10mHzの周波数領域でインピーダンスを測定し複素平面上に結果を記述したときに描く半円弧の直径をR1とし負極板を作用極としリチウム金属を対極に用いた電気化学セルにおいて10kHzから10mHzの周波数領域でインピーダンスを測定し複素平面上に結果を記述したときに描く半円弧の直径をR2としたときR2/R1の値が0.01から15とすることで、充放電サイクルにおける劣化を抑制できることが述べられている。 Patent Document 1 discloses the diameter of a semicircular arc drawn when impedance is measured in a frequency region of 10 kHz to 10 mHz and a result is described on a complex plane in an electrochemical cell using a positive electrode as a working electrode and lithium metal as a game. In an electrochemical cell using R1 and a negative electrode plate as the working electrode and lithium metal as the counter electrode, when impedance is measured in the frequency range from 10 kHz to 10 mHz and the result is described on the complex plane, the diameter of the semicircular arc drawn as R2 It is stated that the deterioration in the charge / discharge cycle can be suppressed by setting the value of R2 / R1 to 0.01 to 15.
 特許文献2には、充放電サイクルしたリチウムイオン電池の負極抵抗成分(インピーダンス)の増加率、正極抵抗成分(インピーダンス)の増加率等が記載されている。特許文献3には、非水電解液二次電池用電極板の放電初期と放電後期の電荷移動抵抗の比が記載されている。特許文献4には、同一種類の複数の未使用のリチウムイオン電池と使用状態の異なる同一種類の複数のリチウムイオン電池について、正極の電荷移動抵抗と負極の電荷移動抵抗とを比較した図が示されている。 Patent Document 2 describes an increase rate of a negative electrode resistance component (impedance), an increase rate of a positive electrode resistance component (impedance), and the like of a lithium ion battery subjected to charge / discharge cycles. Patent Document 3 describes the ratio of the charge transfer resistance between the early discharge stage and the late discharge stage of the electrode plate for a nonaqueous electrolyte secondary battery. Patent Document 4 shows a comparison between the charge transfer resistance of the positive electrode and the charge transfer resistance of the negative electrode for a plurality of unused lithium ion batteries of the same type and a plurality of lithium ion batteries of the same type different in use state. Has been.
特開2000-173609号公報JP 2000-173609 A 特開2003-308885号公報JP 2003-308885 A 特開2007-103065号公報JP 2007-103065 A 特開2009-097878号公報JP 2009-097878 A
 しかし、充放電サイクル劣化の改善には特許文献1の手法では不十分であった。図7に、試作後に一度充電した状態でのR2/R1と50サイクルの充放電を行うことによる電池の内部抵抗の変化量ΔRallとの関係について評価した結果を示す。データは、本明細書の実施例、および比較例の実験データであり、条件については後述する。R1とR2の評価は、後述するように電極間の交流インピーダンス測定と等価回路とのフィッティングにより求めた。 However, the method of Patent Document 1 is insufficient for improving the charge / discharge cycle deterioration. FIG. 7 shows a result of evaluating the relationship between R2 / R1 in a state where the battery is once charged after the trial manufacture and the amount of change ΔRall of the internal resistance of the battery due to 50 cycles of charge / discharge. The data is experimental data of examples and comparative examples in the present specification, and conditions will be described later. The evaluation of R1 and R2 was obtained by fitting an AC impedance measurement between the electrodes and an equivalent circuit as described later.
 図7に示すように、特許文献1の指示範囲であるR2/R1が1付近では抵抗上昇量が0.5Ωから2Ωの範囲に広がっており、4倍の相違がある。このような電極抵抗の増加は、電圧降下を引き起こし、充放電サイクルが進むとともに電池に実際にかかる電圧を低くすることになり、容量の低下を引き起こしてしまう。このように特許文献1の手法では電極抵抗の増加を十分抑制できず、寿命の改善が不十分であった。 As shown in FIG. 7, when R2 / R1, which is the indicated range of Patent Document 1, is around 1, the amount of increase in resistance spreads from 0.5Ω to 2Ω, and there is a four-fold difference. Such an increase in electrode resistance causes a voltage drop. As the charge / discharge cycle progresses, the voltage actually applied to the battery is lowered, causing a decrease in capacity. As described above, the method of Patent Document 1 cannot sufficiently suppress the increase in electrode resistance, and the life is not improved sufficiently.
 そこで、本発明のリチウム二次電池は、優れた充放電サイクル特性を実現することを目的とする。 Therefore, the lithium secondary battery of the present invention aims to realize excellent charge / discharge cycle characteristics.
 本実施形態の一は、
 正極活物質を含む正極と、負極活物質を含む負極と、非水電解溶媒を含む電解液と、を有するリチウム二次電池であって、
 前記正極の電荷移動抵抗の変化量と前記負極の電荷移動抵抗の変化量を直交する二軸とする平面上で、所定のストレス印加を行った前後の前記正極の電荷移動抵抗の変化量(ΔRct)と前記負極の電荷移動抵抗の変化量(ΔRct2)を表す点(ΔRct2,ΔRct)を、原点を中心とする半径が1Ωの円上に放射線方向に投影して規格化した点を点(ΔRa,ΔRc)とし、
 規格化後の正極の電荷移動抵抗の変化量と規格化後の負極の電荷移動抵抗の変化量を直交する二軸とする平面上で、点(ΔRa,ΔRc)を、原点を通る直線に対して垂直に投影した点から原点までの距離が、所定の範囲内にあることを特徴とするリチウム二次電池である。
One of the embodiments is
A lithium secondary battery having a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolytic solution including a nonaqueous electrolytic solvent,
A change amount (ΔRct) of the positive electrode charge transfer resistance before and after a predetermined stress application on a plane having two axes orthogonal to each other, the change amount of the charge transfer resistance of the positive electrode and the change amount of the charge transfer resistance of the negative electrode ) And a point (ΔRct2, ΔRct) representing the amount of change (ΔRct2) in the charge transfer resistance of the negative electrode is projected to a point (ΔRa , ΔRc)
A point (ΔRa, ΔRc) is defined with respect to a straight line passing through the origin on a plane having two axes orthogonal to each other. The lithium secondary battery is characterized in that the distance from the vertically projected point to the origin is within a predetermined range.
 本発明により、優れたサイクル特性を有する二次電池を提供することができる。特にリチウムに対して4.5V以上の電位で動作する正極活物質を用いた場合でも、優れたサイクル特性を有する二次電池を提供することができる。 According to the present invention, a secondary battery having excellent cycle characteristics can be provided. In particular, even when a positive electrode active material that operates at a potential of 4.5 V or higher with respect to lithium is used, a secondary battery having excellent cycle characteristics can be provided.
本発明の二次電池の断面図の一例である。It is an example of sectional drawing of the secondary battery of this invention. 本発明で用いたリチウム二次電池の等価回路の例である。It is an example of the equivalent circuit of the lithium secondary battery used by this invention. 本発明で用いたインピーダンス測定結果から電極抵抗を抽出する方法を示した図である。It is the figure which showed the method of extracting electrode resistance from the impedance measurement result used by this invention. 正極側電荷移動抵抗の変化量と負極側電荷移動抵抗の変化量を直交する二軸とする平面上において、原点を中心とする半径1Ωの円上に放射線方向に投影して規格化する方法を示した図である。A method of normalizing by projecting in a radiation direction on a circle with a radius of 1Ω centered on the origin on a plane having two axes orthogonal to each other, the amount of change in the positive electrode side charge transfer resistance and the amount of change in the negative electrode side charge transfer resistance. FIG. 規格化後の正極の電荷移動抵抗の変化量と規格化後の負極の電荷移動抵抗の変化量を直交する二軸とする平面上において、図4において規格化して得られた点(ΔRa、ΔRc)を、ΔRa=-0.6ΔRcで表される直線上に投影する方法を示した図である。The points (ΔRa, ΔRc) obtained by normalization in FIG. 4 on a plane having two orthogonal axes of the change amount of the charge transfer resistance of the positive electrode after normalization and the change amount of the charge transfer resistance of the negative electrode after normalization. ) On a straight line represented by ΔRa = −0.6ΔRc. 充放電サイクルによる抵抗増加量ΔRallと電池抵抗の投影値(ΔRx)との関係を示す図である。It is a figure which shows the relationship between resistance increase amount (DELTA) Rall by charging / discharging cycle, and the projection value ((DELTA) Rx) of battery resistance. 正極と負極の抵抗比と充放電サイクルによる抵抗増加量ΔRallとの関係を示した図である。It is the figure which showed the relationship between the resistance ratio of a positive electrode and a negative electrode, and resistance increase amount (DELTA) Rall by a charging / discharging cycle.
 本実施形態の一態様を以下説明する。 One aspect of this embodiment will be described below.
 本実施形態のリチウム二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、非水電解溶媒を含む電解液と、を有する。前記正極および負極には、電荷移動抵抗RctおよびRct2がそれぞれ存在する。所定のストレス印加を行った前後の前記正極の電荷移動抵抗の変化量[(ストレス印加後の正極の電荷移動抵抗値)-(ストレス印加前の正極の電荷移動抵抗値)]をΔRctとし、前記負極の電荷移動抵抗の変化量[(ストレス印加後の負極の電荷移動抵抗値)-(ストレス印加前の負極の電荷移動抵抗値)]をΔRct2とする。そして、まず、正極の電荷移動抵抗の変化量と負極の電荷移動抵抗の変化量を直交する二軸とする平面上で、点(ΔRct2,ΔRct)から原点を中心とする半径が1Ωの円上に放射線方向に投影して規格化し、規格化後の該円上の点を点(ΔRa,ΔRc)とする。続いて、規格化後の正極の電荷移動抵抗の変化量と、規格化後の負極の電荷移動抵抗の変化量を直交する二軸とする平面上で、点(ΔRa,ΔRc)を、原点を通る直線上に対して垂直に投影する。この投影後の点(原点を通る直線上にある)から原点までの距離ΔRxが所定の範囲内にあるとき、ΔRxが該所定の範囲内にない場合に比べてリチウムイオン二次電池のサイクル特性が優れることを、本発明の発明者は見出した。 The lithium secondary battery of the present embodiment has a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolytic solution including a nonaqueous electrolytic solvent. Charge transfer resistances Rct and Rct2 exist in the positive electrode and the negative electrode, respectively. The amount of change in the charge transfer resistance of the positive electrode before and after the predetermined stress application [(charge transfer resistance value of the positive electrode after stress application) − (charge transfer resistance value of the positive electrode before stress application)] is ΔRct, The amount of change in the charge transfer resistance of the negative electrode [(charge transfer resistance value of negative electrode after applying stress) − (charge transfer resistance value of negative electrode before applying stress)] is represented by ΔRct2. First, on a plane having two axes perpendicular to the amount of change in the charge transfer resistance of the positive electrode and the amount of change in the charge transfer resistance of the negative electrode, the circle centered on the origin from the point (ΔRct2, ΔRct) is 1 Ω. Are projected in the radiation direction and normalized, and the point on the circle after normalization is defined as a point (ΔRa, ΔRc). Subsequently, the point (ΔRa, ΔRc) is set to the origin on a plane having two axes perpendicular to the amount of change in charge transfer resistance of the positive electrode after normalization and the amount of change in charge transfer resistance of the negative electrode after normalization. Project perpendicular to the straight line that passes through. When the distance ΔRx from the projected point (on the straight line passing through the origin) to the origin is within a predetermined range, the cycle characteristics of the lithium ion secondary battery are compared to when the distance ΔRx is not within the predetermined range. Has been found by the inventors of the present invention.
 ΔRxの算出方法について、一例として、図4~図6を用いて説明する。図4は、縦軸を正極の電荷移動抵抗の変化量、横軸を負極の電荷移動抵抗の変化量とし、複数のリチウムイオン二次電池の(ΔRct2,ΔRct)をプロットした後、それぞれ、原点を中心とする半径が1Ωの円上に放射線方向に投影して規格化する方法を説明したものである。図5は、縦軸を図4により規格化した後の正極の電荷移動抵抗の変化量、横軸を図4により規格化した後の負極の電荷移動抵抗の変化量とし、図4により規格化して得られた点(ΔRa,ΔRc)をプロットし、これらをそれぞれΔRa=-0.6ΔRcで表される直線に対して垂直に投影する方法を示したものである。この直線に対して垂直に投影したときの該直線上の点から、原点までの距離をΔRxとする。図6は、図5でΔRa=-0.6ΔRcで表される直線上に垂直に投影することにより得られた該直線上の点から原点までの距離ΔRxと、実抵抗値ΔRallとの関係を示した図であり、ΔRxが0の近傍にあるときΔRallの値が小さくなることがわかる。なお、本明細書において、ΔRxのことを「投影値」と記載することもある。 A method for calculating ΔRx will be described with reference to FIGS. 4 to 6 as an example. 4, the vertical axis represents the amount of change in charge transfer resistance of the positive electrode, the horizontal axis represents the amount of change in charge transfer resistance of the negative electrode, and after plotting (ΔRct2, ΔRct) of a plurality of lithium ion secondary batteries, Is a method of normalizing by projecting in the radiation direction onto a circle having a radius of 1Ω centered on. 5, the vertical axis represents the change amount of the charge transfer resistance of the positive electrode after normalization according to FIG. 4, and the horizontal axis represents the change amount of the charge transfer resistance of the negative electrode after normalization according to FIG. 4. The points (ΔRa, ΔRc) obtained in this way are plotted, and a method of projecting these points perpendicularly to a straight line represented by ΔRa = −0.6ΔRc is shown. The distance from the point on the straight line when projected perpendicularly to the straight line to the origin is ΔRx. FIG. 6 shows the relationship between the distance ΔRx from the point on the straight line to the origin and the actual resistance value ΔRall obtained by vertically projecting onto the straight line represented by ΔRa = −0.6ΔRc in FIG. In the figure, it can be seen that the value of ΔRall decreases when ΔRx is in the vicinity of zero. In the present specification, ΔRx may be referred to as “projection value”.
 上記ストレスとしては、充放電サイクルの他、高温保管(例えば45℃以上で5分以上の保管)、高電圧印加(例えば、電池の電位の高い側の電圧より0.05V以上高い値)などが挙げられる。本発明により、電池の内部抵抗の増加を抑制し、充放電サイクル耐性の良いリチウム二次電池を実現することができる。特に、本発明は、リチウムに対して4.5V以上の電位で動作する正極活物質を用いたリチウム二次電池のように、ストレスによる抵抗増加が大きい場合において、より顕著に効果が発揮される。 Examples of the stress include charge / discharge cycles, high temperature storage (for example, storage at 45 ° C. or higher for 5 minutes or longer), high voltage application (for example, a value higher by 0.05 V or more than the voltage on the higher potential side of the battery), and the like. Can be mentioned. According to the present invention, an increase in the internal resistance of the battery can be suppressed, and a lithium secondary battery with good charge / discharge cycle resistance can be realized. In particular, the present invention is more effective when the resistance increase due to stress is large, such as a lithium secondary battery using a positive electrode active material that operates at a potential of 4.5 V or higher with respect to lithium. .
 リチウム二次電池に印加するストレスの種類や大きさ等を変化させると、ΔRct2やΔRctも変化するが、ΔRct2とΔRctはほぼ比例関係のまま値が変化するので、原点を中心とする放射線方向に増減する。よって、本実施形態においては、上記のとおり、正極の電荷移動抵抗の変化量を縦軸、負極の電荷移動抵抗の変化量を横軸とする平面上で、点(ΔRct2,ΔRct)を、原点を中心とする半径が1Ωの円上に放射線方向に投影して規格化することができる。この規格化により、原点を中心とする半径が1Ωの円上に得られた点を点(ΔRa,ΔRc)とする。 When the type or magnitude of stress applied to the lithium secondary battery is changed, ΔRct2 and ΔRct also change. However, since ΔRct2 and ΔRct change in a substantially proportional relationship, the values change in a radiation direction centered on the origin. Increase or decrease. Therefore, in the present embodiment, as described above, the point (ΔRct2, ΔRct) is set to the origin on the plane with the change amount of the charge transfer resistance of the positive electrode on the vertical axis and the change amount of the charge transfer resistance of the negative electrode on the horizontal axis. Can be normalized by projecting in a radiation direction onto a circle having a radius of 1Ω around the center of. A point obtained by this normalization on a circle having a radius of 1Ω centered on the origin is defined as a point (ΔRa, ΔRc).
 続いて、規格化後の正極の電荷移動抵抗の変化量を縦軸、規格化後の負極の電荷移動抵抗の変化量を横軸とする平面上で、原点を通る直線を新たな軸として設定し、この直線に対して、点(ΔRa,ΔRc)から垂直に投影する。この原点を通る直線の傾きは、複数のリチウムイオン二次電池の電荷移動抵抗の測定結果から設定することができる。原点を通る直線は、特に限定はされないが、ΔRa=m・ΔRcで表されたとき、mが負の値であることが好ましく、―3≦m≦-1/3であることがより好ましく、mが-0.6であることがさらに好ましい。点(ΔRa,ΔRc)から、この原点を通る直線に対して垂直に投影したときの該直線上の点から、原点までの距離をΔRxとする。 Subsequently, a straight line passing through the origin is set as a new axis on a plane with the vertical axis representing the amount of change in charge transfer resistance of the positive electrode after normalization and the horizontal axis representing the amount of change in charge transfer resistance of the negative electrode after normalization. Then, the projection is perpendicular to the straight line from the point (ΔRa, ΔRc). The slope of the straight line passing through the origin can be set from the measurement results of the charge transfer resistances of a plurality of lithium ion secondary batteries. The straight line passing through the origin is not particularly limited, but when represented by ΔRa = m · ΔRc, m is preferably a negative value, more preferably −3 ≦ m ≦ −1 / 3, More preferably, m is −0.6. The distance from the point (ΔRa, ΔRc) to the origin when projected perpendicularly to the straight line passing through the origin is assumed to be ΔRx.
 ΔRaおよびΔRcは既に規格化された値なので、原点を通る直線に対して垂直に投影して得られる値ΔRxは0±1Ωの範囲内になる。この中で、ΔRxの所定の範囲を決定し、サイクル特性に優れるリチウム二次電池を得ることができる。本実施形態において該所定の範囲ΔRxは、特に限定はされないが、0±0.5Ω以内であることが好ましく、0±0.3Ω以内であることがより好ましい。 Since ΔRa and ΔRc are already standardized values, the value ΔRx obtained by projecting perpendicularly to the straight line passing through the origin is in the range of 0 ± 1Ω. Among these, a predetermined range of ΔRx is determined, and a lithium secondary battery having excellent cycle characteristics can be obtained. In the present embodiment, the predetermined range ΔRx is not particularly limited, but is preferably within 0 ± 0.5Ω, and more preferably within 0 ± 0.3Ω.
 RctおよびRct2の測定方法としては、正極と負極との間でインピーダンスを交流インピーダンス法で測定および評価する方法が挙げられる。測定結果を、複素面にプロットすると、2つの円弧または楕円弧が観測される。この円弧(または楕円弧)のうち、高周波側の円弧(または楕円弧)の実抵抗側の直径(または楕円径)をRct2、低周波側の円弧(または楕円弧)の実抵抗側の直径または楕円径をRctとみなしてもよい(図3参照)。高周波側と低周波側のどちらがRct2に相当するか不明の場合、Rct2とRctを入れ替えたとき、どちらかが上記ΔRxが所定の範囲内にあるという条件を満たせばよい。また、円弧が3つ以上ある場合、大きい方から2つを検討対象とする。直径の抽出方法として、等価回路へのフィッティングを行い、Rct2,Rctを抽出してもよい。例えば、図2に示すような等価回路とのフィッティングを行い、Rct2,Rctを抽出してもよい。交流インピーダンス法は、インピーダンスを評価したい端子間に交流電圧を印加し、応答する電流とその位相を評価し、その周波数での実抵抗と虚抵抗を抽出する。これを所望の周波数範囲、たとえば100~300kHzから10~100mHzまでいくつかの周波数で行うことで、インピーダンスの周波数応答を知る方法である。この方法では、異なる周波数応答を持つ抵抗を分離して評価することができるため、正極と負極の電荷移動抵抗を分離することが可能となる。 As a measuring method of Rct and Rct2, there is a method of measuring and evaluating an impedance between a positive electrode and a negative electrode by an AC impedance method. When the measurement result is plotted on the complex plane, two arcs or elliptical arcs are observed. Of these arcs (or elliptical arcs), the actual resistance side diameter (or elliptical diameter) of the high frequency side arc (or elliptical arc) is Rct2, and the actual resistance side diameter or elliptical diameter of the low frequency side arc (or elliptical arc) is It may be regarded as Rct (see FIG. 3). If it is unknown which of the high frequency side and the low frequency side corresponds to Rct2, when Rct2 and Rct are interchanged, one of them may satisfy the condition that ΔRx is within a predetermined range. In addition, when there are three or more arcs, the larger one is considered. As a diameter extraction method, fitting to an equivalent circuit may be performed to extract Rct2 and Rct. For example, fitting with an equivalent circuit as shown in FIG. 2 may be performed to extract Rct2 and Rct. In the AC impedance method, an AC voltage is applied between terminals whose impedance is to be evaluated, a response current and its phase are evaluated, and real resistance and imaginary resistance at that frequency are extracted. This is a method of knowing the frequency response of the impedance by performing this at several frequencies from a desired frequency range, for example, 100 to 300 kHz to 10 to 100 mHz. In this method, it is possible to separate and evaluate resistors having different frequency responses, so that it is possible to separate the charge transfer resistances of the positive electrode and the negative electrode.
 Rct,Rct2を測定する別の方法として以下の方法も挙げられる。まず、電池にリチウム等による導電性電極を設け、この導電性電極と正極の間のインピーダンスを交流インピーダンス法で測定および評価する。測定結果を、複素面にプロットすると円弧、または楕円弧が観測されるが、この実抵抗側の直径(または楕円径)をRctとする。同様に導電性電極と負極間のインピーダンス測定結果からRct2を得る。 Another method for measuring Rct and Rct2 includes the following method. First, a conductive electrode made of lithium or the like is provided on the battery, and the impedance between the conductive electrode and the positive electrode is measured and evaluated by an AC impedance method. When the measurement result is plotted on a complex surface, an arc or an elliptical arc is observed. The actual resistance side diameter (or elliptical diameter) is Rct. Similarly, Rct2 is obtained from the impedance measurement result between the conductive electrode and the negative electrode.
 本実施形態は、複数個のリチウムイオン二次電池(セル)から、ストレスに対する耐性が高いセルと低いセルとを選別する手段に用いることができる。例えば、上記投影値ΔRxが設計範囲、もしくは他のセルの分布からの相違量(標準偏差)が逸脱している場合、セルに異常がありいずれ不良になる可能性が高いセルとして選別することが可能となる。このように本発明の技術は、リチウムイオン二次電池の選別手段として利用することも可能である。 This embodiment can be used as a means for selecting a cell having high resistance to stress and a cell having low resistance from a plurality of lithium ion secondary batteries (cells). For example, when the projection value ΔRx deviates from the design range or the amount of difference (standard deviation) from the distribution of other cells, the cell may be selected as a cell that is likely to become defective due to an abnormality. It becomes possible. Thus, the technology of the present invention can also be used as a means for selecting a lithium ion secondary battery.
 次に、本実施形態のリチウム二次電池の構成要素についてそれぞれ説明する。 Next, components of the lithium secondary battery of the present embodiment will be described.
 (電解液)
 本実施形態において、電解液は、支持塩及び非水電解溶媒を含む。本発明の非水電解溶媒の組成は適宜調整可能であるが、例えば、フッ素含有リン酸エステルを含むことが好ましく、さらにこれに加えて添加剤として環状スルホン酸エステルを含むことがより好ましい。
(Electrolyte)
In the present embodiment, the electrolytic solution includes a supporting salt and a nonaqueous electrolytic solvent. The composition of the nonaqueous electrolytic solvent of the present invention can be adjusted as appropriate. For example, it preferably contains a fluorine-containing phosphate ester, and more preferably contains a cyclic sulfonate ester as an additive.
 フッ素含有リン酸エステル化合物を電解液に含有することにより、電解液の耐酸化性を高めることができ、また、他の溶媒成分との相溶性、および電解液のイオン伝導性を高めることができる。特に、高電位で動作する正極を含む電池にフッ素含有リン酸エステル化合物を電解液溶媒として用いると、高電位における電解液の分解が抑制され好適である。フッ素含有リン酸エステルとしては、例えば、リン酸トリス(トリフルオロメチル)、リン酸トリス(トリフルオロエチル)、リン酸トリス(テトラフルオロプロピル)、リン酸トリス(ペンタフルオロプロピル)、リン酸トリス(ヘプタフルオロブチル)、リン酸トリス(オクタフルオロペンチル)等が挙げられる。さらに、フッ素含有リン酸エステルとしては、例えば、リン酸トリフルオロエチルジメチル、リン酸ビス(トリフルオロエチル)メチル、リン酸ビストリフルオロエチルエチル、リン酸ペンタフルオロプロピルジメチル、リン酸ヘプタフルオロブチルジメチル、リン酸トリフルオロエチルメチルエチル、リン酸ペンタフルオロプロピルメチルエチル、リン酸ヘプタフルオロブチルメチルエチル、リン酸トリフルオロエチルメチルプロピル、リン酸ペンタフルオロプロピルメチルプロピル、リン酸ヘプタフルオロブチルメチルプロピル、リン酸トリフルオロエチルメチルブチル、リン酸ペンタフルオロプロピルメチルブチル、リン酸ヘプタフルオロブチルメチルブチル、リン酸トリフルオロエチルジエチル、リン酸ペンタフルオロプロピルジエチル、リン酸ヘプタフルオロブチルジエチル、リン酸トリフルオロエチルエチルプロピル、リン酸ペンタフルオロプロピルエチルプロピル、リン酸ヘプタフルオロブチルエチルプロピル、リン酸トリフルオロエチルエチルブチル、リン酸ペンタフルオロプロピルエチルブチル、リン酸ヘプタフルオロブチルエチルブチル、リン酸トリフルオロエチルジプロピル、リン酸ペンタフルオロプロピルジプロピル、リン酸ヘプタフルオロブチルジプロピル、リン酸トリフルオロエチルプロピルブチル、リン酸ペンタフルオロプロピルプロピルブチル、リン酸ヘプタフルオロブチルプロピルブチル、リン酸トリフルオロエチルジブチル、リン酸ペンタフルオロプロピルジブチル、リン酸ヘプタフルオロブチルジブチル等が挙げられる。リン酸トリス(テトラフルオロプロピル)としては、例えば、リン酸トリス(2,2,3,3-テトラフルオロプロピル)が挙げられる。リン酸トリス(ペンタフルオロプロピル)としては、例えば、リン酸トリス(2,2,3,3,3-ペンタフルオロプロピル)が挙げられる。リン酸トリス(トリフルオロエチル)としては、例えば、リン酸トリス(2,2,2-トリフルオロエチル)(以下、PTTFEとも略す)などが挙げられる。リン酸トリス(ヘプタフルオロブチル)としては、例えば、リン酸トリス(1H,1H-ヘプタフルオロブチル)等が挙げられる。リントリス(オクタフルオロペンチル)としては、例えば、リン酸トリス(1H,1H,5H-オクタフルオロペンチル)等が挙げられる。これらフッ素含有リン酸エステルは、一種を単独で又は二種以上を併用して用いることができる。 By containing the fluorine-containing phosphate ester compound in the electrolytic solution, the oxidation resistance of the electrolytic solution can be enhanced, and the compatibility with other solvent components and the ionic conductivity of the electrolytic solution can be enhanced. . In particular, when a fluorine-containing phosphate compound is used as an electrolyte solution solvent for a battery including a positive electrode that operates at a high potential, decomposition of the electrolyte solution at a high potential is suppressed, which is preferable. Examples of the fluorine-containing phosphate ester include tris phosphate (trifluoromethyl), tris phosphate (trifluoroethyl), tris phosphate (tetrafluoropropyl), tris phosphate (pentafluoropropyl), tris phosphate ( Heptafluorobutyl), tris phosphate (octafluoropentyl) and the like. Furthermore, examples of the fluorine-containing phosphate ester include trifluoroethyl dimethyl phosphate, bis (trifluoroethyl) methyl phosphate, bistrifluoroethyl ethyl phosphate, pentafluoropropyl dimethyl phosphate, heptafluorobutyl dimethyl phosphate, Trifluoroethylmethyl ethyl phosphate, pentafluoropropylmethyl ethyl phosphate, heptafluorobutylmethyl ethyl phosphate, trifluoroethyl methyl propyl phosphate, pentafluoropropyl methyl propyl phosphate, heptafluorobutyl methyl propyl phosphate, phosphoric acid Trifluoroethylmethylbutyl, pentafluoropropylmethylbutyl phosphate, heptafluorobutylmethylbutyl phosphate, trifluoroethyldiethyl phosphate, pentafluoropropyldie phosphate , Heptafluorobutyl diethyl phosphate, trifluoroethyl ethyl propyl phosphate, pentafluoropropyl ethyl propyl phosphate, heptafluorobutyl ethyl propyl phosphate, trifluoroethyl ethyl butyl phosphate, pentafluoropropyl ethyl butyl phosphate, phosphorus Heptafluorobutylethyl butyl phosphate, trifluoroethyl dipropyl phosphate, pentafluoropropyl dipropyl phosphate, heptafluorobutyl dipropyl phosphate, trifluoroethylpropyl butyl phosphate, pentafluoropropylpropyl butyl phosphate, hepta phosphate Examples thereof include fluorobutylpropylbutyl, trifluoroethyldibutyl phosphate, pentafluoropropyldibutyl phosphate, heptafluorobutyldibutyl phosphate, and the like. Examples of tris (tetrafluoropropyl) phosphate include tris (2,2,3,3-tetrafluoropropyl) phosphate. Examples of tris (pentafluoropropyl) phosphate include tris (2,2,3,3,3-pentafluoropropyl) phosphate. Examples of tris (trifluoroethyl) phosphate include tris (2,2,2-trifluoroethyl) phosphate (hereinafter also abbreviated as PTTFE). Examples of tris phosphate (heptafluorobutyl) include tris phosphate (1H, 1H-heptafluorobutyl). Examples of lintris (octafluoropentyl) include trisphosphate (1H, 1H, 5H-octafluoropentyl) and the like. These fluorine-containing phosphate esters can be used alone or in combination of two or more.
 フッ素含有リン酸エステルの含有量は、全非水電解溶媒中、0.1~95体積%の範囲であることが好ましく、0.2体積%以上がより好ましく、0.5体積%以上がより好ましく、5体積%以上がより好ましく、10体積%より大きいことがより好ましく、20体積%以上がさらに好ましく、また、90体積%以下がより好ましく、80体積%以下がさらに好ましい。フッ素含有リン酸エステルの含有量が該範囲内であると、サイクル特性に優れたリチウム二次電池を得ることができる。 The content of the fluorine-containing phosphate ester is preferably in the range of 0.1 to 95% by volume, more preferably 0.2% by volume or more, and more preferably 0.5% by volume or more in the total nonaqueous electrolytic solvent. Preferably, 5 volume% or more is more preferable, it is more preferable that it is larger than 10 volume%, 20 volume% or more is further more preferable, 90 volume% or less is more preferable, and 80 volume% or less is further more preferable. When the content of the fluorine-containing phosphate is within this range, a lithium secondary battery excellent in cycle characteristics can be obtained.
 非水電解溶媒は、環状カーボネートおよび/又は鎖状カーボネートを含むことが好ましい。 The nonaqueous electrolytic solvent preferably contains a cyclic carbonate and / or a chain carbonate.
 環状カーボネート又は鎖状カーボネートは比誘電率が大きいため、これらの添加により、支持塩の解離性が向上し、十分な導電性を付与し易くなる。また、環状カーボネート及び鎖状カーボネートは、耐電圧性及び導電率が高いことから、フッ素含有リン酸エステルとの混合に適している。さらに、電解液の粘度を下げる効果がある材料を選択することで、電解液におけるイオン移動度を向上させることも可能である。 Since cyclic carbonate or chain carbonate has a large relative dielectric constant, the addition of these improves the dissociation property of the supporting salt and makes it easy to impart sufficient conductivity. In addition, cyclic carbonates and chain carbonates are suitable for mixing with fluorine-containing phosphate esters because of their high voltage resistance and electrical conductivity. Furthermore, it is possible to improve the ion mobility in the electrolytic solution by selecting a material having an effect of lowering the viscosity of the electrolytic solution.
 環状カーボネートとしては、特に制限されるものではないが、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、又はビニレンカーボネート(VC)等を挙げることができる。また、環状カーボネートは、フッ素化環状カーボネートを含む。フッ素化環状カーボネートとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、又はビニレンカーボネート(VC)等の一部又は全部の水素原子をフッ素原子に置換した化合物等を挙げることができる。フッ素化環状カーボネートとしては、より具体的には、例えば、4-フルオロ-1,3-ジオキソラン-2-オン、(cis又はtrans)4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、4-フルオロ-5-メチル-1,3-ジオキソラン-2-オン等を用いることができる。環状カーボネートとしては、上で列記した中でも、耐電圧性や、導電率の観点から、エチレンカーボネート、プロピレンカーボネート、又はこれらの一部をフッ素化した化合物等が好ましく、エチレンカーボネートがより好ましい。環状カーボネートは、一種を単独で又は二種以上を併用して用いることができる。 The cyclic carbonate is not particularly limited, and examples thereof include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC). The cyclic carbonate includes a fluorinated cyclic carbonate. Examples of the fluorinated cyclic carbonate include compounds in which some or all of the hydrogen atoms such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), or vinylene carbonate (VC) are substituted with fluorine atoms. Can be mentioned. More specific examples of the fluorinated cyclic carbonate include, for example, 4-fluoro-1,3-dioxolan-2-one, (cis or trans) 4,5-difluoro-1,3-dioxolan-2-one, 4,4-difluoro-1,3-dioxolan-2-one, 4-fluoro-5-methyl-1,3-dioxolan-2-one, and the like can be used. Among the above listed cyclic carbonates, ethylene carbonate, propylene carbonate, or a compound obtained by fluorinating a part thereof is preferable, and ethylene carbonate is more preferable, from the viewpoint of voltage resistance and conductivity. A cyclic carbonate can be used individually by 1 type or in combination of 2 or more types.
 鎖状カーボネートとしては、特に制限されるものではないが、例えば、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)等を挙げることができる。また、鎖状カーボネートは、フッ素化鎖状カーボネートを含む。フッ素化鎖状カーボネートとしては、例えば、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)等の一部又は全部の水素原子をフッ素原子に置換した構造を有する化合物等を挙げることができる。フッ素化鎖状カーボネートとしては、より具体的には、例えば、ビス(フルオロエチル)カーボネート、3-フルオロプロピルメチルカーボネート、3,3,3-トリフルオロプロピルメチルカーボネート、2,2,2-トリフルオロエチルメチルカーボネート、2,2,2-トリフルオロエチルエチルカーボネート、モノフルオロメチルメチルカーボネート、メチル2,2,3,3,テトラフルオロプロピルカーボネート、エチル2,2,3,3-テトラフルオロプロピルカーボネート、ビス(2,2,3,3-テトラフルオロプロピル)カーボネート、ビス(2,2,2-トリフルオロエチル)カーボネート、1-モノフルオロエチルエチルカーボネート、1-モノフルオロエチルメチルカーボネート、2-モノフルオロエチルメチルカーボネート、ビス(1-モノフルオロエチル)カーボネート、ビス(2-モノフルオロエチル)カーボネート、ビス(モノフルオロメチル)カーボネート、等が挙げられる。これらの中でも、ジメチルカーボネート、2,2,2-トリフルオロエチルメチルカーボネート、モノフルオロメチルメチルカーボネート、メチル2,2,3,3-テトラフルオロプロピルカーボネートなどが耐電圧性と導電率の観点から好ましい。鎖状カーボネートは、一種を単独で又は二種以上を併用して用いることができる。 The chain carbonate is not particularly limited, and examples thereof include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and dipropyl carbonate (DPC). The chain carbonate includes a fluorinated chain carbonate. As the fluorinated chain carbonate, for example, a part or all of hydrogen atoms such as ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC) and the like are substituted with fluorine atoms. Examples include compounds having a structure. More specifically, examples of the fluorinated chain carbonate include bis (fluoroethyl) carbonate, 3-fluoropropyl methyl carbonate, 3,3,3-trifluoropropyl methyl carbonate, and 2,2,2-trifluoro. Ethyl methyl carbonate, 2,2,2-trifluoroethyl ethyl carbonate, monofluoromethyl methyl carbonate, methyl 2,2,3,3, tetrafluoropropyl carbonate, ethyl 2,2,3,3-tetrafluoropropyl carbonate, Bis (2,2,3,3-tetrafluoropropyl) carbonate, bis (2,2,2-trifluoroethyl) carbonate, 1-monofluoroethyl ethyl carbonate, 1-monofluoroethyl methyl carbonate, 2-monofluoro Ethylmethylca Boneto, bis (1-mono-fluoroethyl) carbonate, bis (2-monofluoroethyl) carbonate, bis (monofluoromethyl) carbonate, and the like. Among these, dimethyl carbonate, 2,2,2-trifluoroethyl methyl carbonate, monofluoromethyl methyl carbonate, methyl 2,2,3,3-tetrafluoropropyl carbonate and the like are preferable from the viewpoint of voltage resistance and conductivity. . A linear carbonate can be used individually by 1 type or in combination of 2 or more types.
 非水電解溶媒は、カルボン酸エステルを含んでもよい。 The nonaqueous electrolytic solvent may contain a carboxylic acid ester.
 カルボン酸エステルとしては、特に制限されるものではないが、例えば、酢酸エチル、プロピオン酸メチル、ギ酸エチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、酢酸メチル、ギ酸メチル等が挙げられる。また、カルボン酸エステルは、フッ素化カルボン酸エステルも含み、フッ素化カルボン酸エステルとしては、例えば、酢酸エチル、プロピオン酸メチル、ギ酸エチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、酢酸メチル、又はギ酸メチルの一部又は全部の水素原子をフッ素原子で置換した構造を有する化合物等が挙げられる。また、フッ素化カルボン酸エステルとしては、具体的には、例えば、ペンタフルオロプロピオン酸エチル、3,3,3-トリフルオロプロピオン酸エチル、2,2,3,3-テトラフルオロプロピオン酸メチル、酢酸2,2-ジフルオロエチル、ヘプタフルオロイソ酪酸メチル、2,3,3,3-テトラフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸メチル、2-(トリフルオロメチル)-3,3,3-トリフルオロプロピオン酸メチル、ヘプタフルオロ酪酸エチル、3,3,3-トリフルオロプロピオン酸メチル、酢酸2,2,2-トリフルオロエチル、トリフルオロ酢酸イソプロピル、トリフルオロ酢酸tert-ブチル、4,4,4-トリフルオロ酪酸エチル、4,4,4-トリフルオロ酪酸メチル、2,2-ジフルオロ酢酸ブチル、ジフルオロ酢酸エチル、トリフルオロ酢酸n-ブチル、酢酸2,2,3,3-テトラフルオロプロピル、3-(トリフルオロメチル)酪酸エチル、テトラフルオロ-2-(メトキシ)プロピオン酸メチル、3,3,3-トリフルオロプロピオン酸3,3,3トリフルオロプロピル、ジフルオロ酢酸メチル、トリフルオロ酢酸2,2,3,3-テトラフルオロプロピル、酢酸1H,1H-ヘプタフルオロブチル、ヘプタフルオロ酪酸メチル、トリフルオロ酢酸エチルなどが挙げられる。これらの中でも、耐電圧と沸点などの観点から、カルボン酸エステルとしては、プロピオン酸エチル、酢酸メチル、2,2,3,3-テトラフルオロプロピオン酸メチル、トリフルオロ酢酸2,2,3,3-テトラフルオロプロピルが好ましい。カルボン酸エステルは、鎖状カーボネートと同様に電解液の粘度を低減する効果がある。したがって、例えば、カルボン酸エステルは、鎖状カーボネートの代わりに使用することが可能であり、また、鎖状カーボネートと併用することも可能である。 The carboxylate ester is not particularly limited, and examples thereof include ethyl acetate, methyl propionate, ethyl formate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetate, and methyl formate. The carboxylic acid ester also includes a fluorinated carboxylic acid ester. Examples of the fluorinated carboxylic acid ester include ethyl acetate, methyl propionate, ethyl formate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetate, or formic acid. Examples thereof include compounds having a structure in which part or all of the hydrogen atoms of methyl are substituted with fluorine atoms. Specific examples of the fluorinated carboxylic acid ester include, for example, ethyl pentafluoropropionate, ethyl 3,3,3-trifluoropropionate, methyl 2,2,3,3-tetrafluoropropionate, and acetic acid. 2,2-difluoroethyl, methyl heptafluoroisobutyrate, methyl 2,3,3,3-tetrafluoropropionate, methyl pentafluoropropionate, 2- (trifluoromethyl) -3,3,3-trifluoropropion Methyl acetate, ethyl heptafluorobutyrate, methyl 3,3,3-trifluoropropionate, 2,2,2-trifluoroethyl acetate, isopropyl trifluoroacetate, tert-butyl trifluoroacetate, 4,4,4-tri Ethyl fluorobutyrate, methyl 4,4,4-trifluorobutyrate, 2,2-difluoro Acid butyl, ethyl difluoroacetate, n-butyl trifluoroacetate, 2,2,3,3-tetrafluoropropyl acetate, ethyl 3- (trifluoromethyl) butyrate, methyl tetrafluoro-2- (methoxy) propionate, 3 , 3,3- trifluoropropionic acid 3,3,3 trifluoropropyl, methyl difluoroacetate, 2,2,3,3-tetrafluoropropyl trifluoroacetate, 1H, 1H-heptafluorobutyl acetate, methyl heptafluorobutyrate And ethyl trifluoroacetate. Among these, from the viewpoint of withstand voltage and boiling point, the carboxylic acid esters include ethyl propionate, methyl acetate, methyl 2,2,3,3-tetrafluoropropionate, 2,2,3,3 trifluoroacetic acid. -Tetrafluoropropyl is preferred. Carboxylic acid esters have the effect of reducing the viscosity of the electrolytic solution in the same manner as chain carbonates. Therefore, for example, the carboxylic acid ester can be used in place of the chain carbonate, and can also be used in combination with the chain carbonate.
 非水電解溶媒は、フッ素含有リン酸エステルに加えて、下記式(1)で表されるアルキレンビスカーボネートを含むことができる。アルキレンビスカーボネートの耐酸化性は、鎖状カーボネートと同等かやや高いことから、電解液の耐電圧性を向上することができる。 The nonaqueous electrolytic solvent can contain an alkylene biscarbonate represented by the following formula (1) in addition to the fluorine-containing phosphate ester. Since the oxidation resistance of the alkylene biscarbonate is equal to or slightly higher than that of the chain carbonate, the voltage resistance of the electrolytic solution can be improved.
Figure JPOXMLDOC01-appb-C000001
 (R及びRは、それぞれ独立に、置換又は無置換のアルキル基を表す。Rは、置換又は無置換のアルキレン基を表す。)。
Figure JPOXMLDOC01-appb-C000001
(R 4 and R 6 each independently represents a substituted or unsubstituted alkyl group. R 5 represents a substituted or unsubstituted alkylene group).
 式(1)において、アルキル基は、直鎖状又は分岐鎖状のものを含み、炭素数が1~6であることが好ましく、炭素数が1~4であることがより好ましい。アルキレン基は、二価の飽和炭化水素基であり、直鎖状又は分岐鎖状のものを含み、炭素数が1~4であることが好ましく、炭素数が1~3であることがより好ましい。 In the formula (1), the alkyl group includes linear or branched ones, preferably having 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. The alkylene group is a divalent saturated hydrocarbon group, including a linear or branched chain group, preferably having 1 to 4 carbon atoms, and more preferably 1 to 3 carbon atoms. .
 式(1)で表されるアルキレンビスカーボネートとしては、例えば、1,2-ビス(メトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)エタン、1,2-ビス(メトキシカルボニルオキシ)プロパン、又は1-エトキシカルボニルオキシ-2-メトキシカルボニルオキシエタン等が挙げられる。これらの中でも、1,2-ビス(メトキシカルボニルオキシ)エタンが好ましい。 Examples of the alkylene biscarbonate represented by the formula (1) include 1,2-bis (methoxycarbonyloxy) ethane, 1,2-bis (ethoxycarbonyloxy) ethane, and 1,2-bis (methoxycarbonyloxy). Examples include propane and 1-ethoxycarbonyloxy-2-methoxycarbonyloxyethane. Of these, 1,2-bis (methoxycarbonyloxy) ethane is preferred.
 アルキレンビスカーボネートは誘電率が低い材料である。そのため、例えば、鎖状カーボネートの代わりに使用することが可能であり、又は鎖状カーボネートと併用することが可能である。 Alkylene biscarbonate is a material with a low dielectric constant. Therefore, for example, it can be used instead of the chain carbonate, or can be used in combination with the chain carbonate.
 非水電解溶媒は、鎖状エーテルを含んでもよい。 The nonaqueous electrolytic solvent may contain a chain ether.
 鎖状エーテルとしては、特に制限されるものではないが、例えば、1,2-エトキシエタン(DEE)若しくはエトキシメトキシエタン(EME)等が挙げられる。また、鎖状エーテルは、フッ素化鎖状エーテルも含む。フッ素化鎖状エーテルは、耐酸化性が高く、高電位で動作する正極の場合に好ましく用いられる。フッ素化鎖状エーテルとしては、例えば、1,2-エトキシエタン(DEE)若しくはエトキシメトキシエタン(EME)の一部又は全部の水素原子をフッ素原子で置換した構造を有する化合物等が挙げられる。また、フッ素化鎖状エーテルとしては、具体的には、例えば、2,2,3,3,3-ペンタフルオロプロピル1,1,2,2-テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチル2,2,2-トリフルオロエチルエーテル、1H,1H,2’H,3H-デカフルオロジプロピルエーテル、1,1,1,2,3,3-ヘキサフルオロプロピル-2,2-ジフルオロエチルエーテル、イソプロピル1,1,2,2-テトラフルオロエチルエーテル、プロピル1,1,2,2-テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチル2,2,3,3-テトラフルオロプロピルエーテル、1H,1H,5H-パーフルオロペンチル-1,1,2,2-テトラフルオロエチルエーテル、1H,1H,2’H-パーフルオロジプロピルエーテル、1H-パーフルオロブチル-1H-パーフルオロエチルエーテル、メチルパーフルオロペンチルエーテル、メチルパーフルオロへキシルエーテル、メチル1,1,3,3,3-ペンタフルオロ-2-(トリフルオロメチル)プロピルエーテル、1,1,2,3,3,3-ヘキサフルオロプロピル2,2,2-トリフルオロエチルエーテル、エチルノナフルオロブチルエーテル、エチル1,1,2,3,3,3-ヘキサフルオロプロピルエーテル、1H,1H,5H-オクタフルオロペンチル1,1,2,2-テトラフルオロエチルエーテル、1H,1H,2’H-パーフルオロジプロピルエーテル、ヘプタフルオロプロピル1,2,2,2-テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル、2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル、エチルノナフルオロブチルエーテル、メチルノナフルオロブチルエーテルなどが挙げられる。これらの中でも、耐電圧と沸点などの観点から、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル、1H,1H,2’H,3H-デカフルオロジプロピルエーテル、1H,1H,2’H-パーフルオロジプロピルエーテル、エチルノナフルオロブチルエーテルなどが好ましい。鎖状エーテルは、鎖状カーボネートと同様に電解液の粘度を低減する効果がある。したがって、例えば、鎖状エーテルは、鎖状カーボネート、カルボン酸エステルの代わりに使用することが可能であり、また、鎖状カーボネート、カルボン酸エステルと併用することも可能である。 The chain ether is not particularly limited, and examples thereof include 1,2-ethoxyethane (DEE) and ethoxymethoxyethane (EME). The chain ether also includes fluorinated chain ether. The fluorinated chain ether is preferably used in the case of a positive electrode having high oxidation resistance and operating at a high potential. Examples of the fluorinated chain ether include compounds having a structure in which some or all of the hydrogen atoms of 1,2-ethoxyethane (DEE) or ethoxymethoxyethane (EME) are substituted with fluorine atoms. Specific examples of the fluorinated chain ether include 2,2,3,3,3- pentafluoropropyl 1,1,2,2-tetrafluoroethyl ether, 1,1,2,2 and the like. -Tetrafluoroethyl 2,2,2-trifluoroethyl ether, 1H, 1H, 2'H, 3H-decafluorodipropyl ether, 1,1,1,2,3,3-hexafluoropropyl-2,2 -Difluoroethyl ether, isopropyl 1,1,2,2-tetrafluoroethyl ether, propyl 1,1,2,2-tetrafluoroethyl ether, 1,1,2,2-tetrafluoroethyl 2,2,3 3-tetrafluoropropyl ether, 1H, 1H, 5H-perfluoropentyl-1,1,2,2-tetrafluoroethyl ether, 1H, 1H, 2′H-per Fluorodipropyl ether, 1H-perfluorobutyl-1H-perfluoroethyl ether, methyl perfluoropentyl ether, methyl perfluorohexyl ether, methyl 1,1,3,3,3-pentafluoro-2- (trifluoro Methyl) propyl ether, 1,1,2,3,3,3-hexafluoropropyl 2,2,2-trifluoroethyl ether, ethyl nonafluorobutyl ether, ethyl 1,1,2,3,3,3-hexa Fluoropropyl ether, 1H, 1H, 5H-octafluoropentyl 1,1,2,2-tetrafluoroethyl ether, 1H, 1H, 2′H-perfluorodipropyl ether, heptafluoropropyl 1,2,2,2 -Tetrafluoroethyl ether, 1,1,2,2-tetrafluoroe -2,2,3,3-tetrafluoropropyl ether, 2,2,3,3,3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether, ethyl nonafluorobutyl ether, methyl nonafluoro Examples include butyl ether. Among these, from the viewpoint of withstand voltage and boiling point, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether, 1H, 1H, 2′H, 3H-decafluoro Dipropyl ether, 1H, 1H, 2′H-perfluorodipropyl ether, ethyl nonafluorobutyl ether and the like are preferable. The chain ether has the effect of reducing the viscosity of the electrolytic solution, like the chain carbonate. Therefore, for example, a chain ether can be used in place of a chain carbonate or carboxylic acid ester, and can also be used in combination with a chain carbonate or carboxylic acid ester.
 非水電解溶媒としては、上記以外に以下のものを含んでいても良い。非水電解溶媒は、例えば、γ-ブチロラクトン等のγ-ラクトン類、1,2-エトキシエタン(DEE)若しくはエトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン若しくは2-メチルテトラヒドロフラン等の環状エーテル類等を含むことができる。また、これらの材料の水素原子の一部をフッ素原子で置換したものを含んでも良い。また、その他にも、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドンなどの非プロトン性有機溶媒を含んでも良い。 The nonaqueous electrolytic solvent may contain the following in addition to the above. Nonaqueous electrolytic solvents include, for example, γ-lactones such as γ-butyrolactone, chain ethers such as 1,2-ethoxyethane (DEE) or ethoxymethoxyethane (EME), and cyclic rings such as tetrahydrofuran or 2-methyltetrahydrofuran. Ethers and the like can be included. Moreover, what substituted some hydrogen atoms of these materials by the fluorine atom may be included. In addition, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3 -Including an aprotic organic solvent such as dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone good.
 支持塩としては、例えば、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCCO、LiC(CFSO、LiN(CFSO、LiN(CSO、LiB10Cl10等のリチウム塩が挙げられる。また、支持塩としては、他にも、低級脂肪族カルボン酸カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl等が挙げられる。支持塩は、一種を単独で、または二種以上を組み合わせて用いることができる。 Examples of the supporting salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2 ) 2 , LiN (CF 3 Examples thereof include lithium salts such as SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , and LiB 10 Cl 10 . Other examples of the supporting salt include lower aliphatic lithium carboxylate carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, and the like. The supporting salt can be used alone or in combination of two or more.
 支持塩の濃度はリチウム塩の電解液中の濃度は、0.5~1.5mol/lであることが好ましい。リチウム塩の濃度をこの範囲とすることにより、密度や粘度、電気伝導率等を適切な範囲に調整し易い。 The concentration of the supporting salt is preferably 0.5 to 1.5 mol / l in the electrolyte solution of the lithium salt. By setting the concentration of the lithium salt within this range, it is easy to adjust the density, viscosity, electrical conductivity, and the like to an appropriate range.
 (環状スルホン酸エステル)
 本発明のリチウム二次電池は、電解液中に環状スルホン酸エステルを含んでもよい。本発明に用いることができる環状スルホン酸エステルとして、例えば、下記式(2)で表される環状スルホン酸エステルが挙げられる。
(Cyclic sulfonate ester)
The lithium secondary battery of the present invention may contain a cyclic sulfonate ester in the electrolytic solution. As cyclic sulfonic acid ester which can be used for this invention, the cyclic sulfonic acid ester represented by following formula (2) is mentioned, for example.
 式(2)で表される環状スルホン酸エステルにおいて、AおよびBはそれぞれ独立にアルキレン基またはフッ化アルキレン基、XはC-C単結合または-OSO-基を示す。式(2)において、アルキレン基の炭素数は、例えば1~8であり、好ましくは1~6であり、より好ましくは1~4である。 In the cyclic sulfonate ester represented by the formula (2), A and B each independently represent an alkylene group or a fluorinated alkylene group, and X represents a C—C single bond or —OSO 2 — group. In the formula (2), the number of carbon atoms of the alkylene group is, for example, 1 to 8, preferably 1 to 6, and more preferably 1 to 4.
Figure JPOXMLDOC01-appb-C000002
(式(2)において、AおよびBはそれぞれ独立にアルキレン基またはフルオロアルキレン基、XはC-C単結合または-OSO-基である。)。
Figure JPOXMLDOC01-appb-C000002
(In Formula (2), A and B are each independently an alkylene group or a fluoroalkylene group, and X is a C—C single bond or —OSO 2 — group).
 フッ化アルキレン基とは、無置換アルキレン基のうちの少なくとも一つの水素原子がフッ素原子で置換された構造を有する置換アルキレン基を表す。式(2)において、フッ化アルキレン基の炭素数は、例えば1~8であり、好ましくは1~6であり、より好ましくは1~4である。 The fluorinated alkylene group represents a substituted alkylene group having a structure in which at least one hydrogen atom of the unsubstituted alkylene group is substituted with a fluorine atom. In the formula (2), the carbon number of the fluorinated alkylene group is, for example, 1 to 8, preferably 1 to 6, and more preferably 1 to 4.
 なお、-OSO-基は、どちらの向きであってもよい。 The -OSO 2 -group may be in any direction.
 式(2)において、Xが単結合の場合、環状スルホン酸エステルは環状モノスルホン酸エステルとなるが、環状モノスルホン酸エステルとしては、下記式(4)で表される化合物であることが好ましい。 In the formula (2), when X is a single bond, the cyclic sulfonic acid ester is a cyclic monosulfonic acid ester, and the cyclic monosulfonic acid ester is preferably a compound represented by the following formula (4). .
Figure JPOXMLDOC01-appb-C000003
 (式(4)中、R101及びR102は、それぞれ独立に、水素原子、フッ素原子、又は炭素数1~4のアルキル基を示す。nは0、1、2、3、又は4である。)。
Figure JPOXMLDOC01-appb-C000003
(In Formula (4), R 101 and R 102 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 4 carbon atoms. N is 0, 1, 2, 3, or 4. .)
 式(2)において、Xが-OSO-基の場合、環状スルホン酸エステルは環状ジスルホン酸エステルとなるが、環状ジスルホン酸エステルとしては下記式(5)で表される化合物であることが好ましい。 In the formula (2), when X is a —OSO 2 — group, the cyclic sulfonic acid ester is a cyclic disulfonic acid ester, and the cyclic disulfonic acid ester is preferably a compound represented by the following formula (5) .
Figure JPOXMLDOC01-appb-C000004
 (式(5)中、R201乃至R204は、それぞれ独立に、水素原子、フッ素原子、又は炭素数1~4のアルキル基を示す。nは1、2、3、又は4である。また、nが2,3,又は4であるとき、n個存在するR203は互いに同一であっても異なっていてもよく、かつ、n個存在するR204は、互いに同一であっても異なっていてもよい。)。
Figure JPOXMLDOC01-appb-C000004
(In the formula (5), R 201 to R 204 each independently represents a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 4 carbon atoms, and n is 1, 2, 3, or 4. , N is 2, 3, or 4, n R 203s may be the same or different from each other, and n R 204s may be the same or different from each other. May be.)
 環状スルホン酸エステルとしては、例えば、1,3-プロパンスルトン、1,2-プロパンスルトン、1,4-ブタンスルトン、1,2-ブタンスルトン、1,3-ブタンスルトン、2,4-ブタンスルトン、1,3-ペンタンスルトン等のモノスルホン酸エステル(式(2)中のXが単結合の場合)、メチレンメタンジスルホン酸エステル(1,5,2,4-ジオキサジチアン-2,2,4,4-テトラオキシド)、エチレンメタンジスルホン酸エステル等のジスルホン酸エステル(式(2)中のXが-OSO-基の場合)などが挙げられる。これらの中でも、被膜形成効果、入手容易性、コストの点から、1,3-プロパンスルトン、1,4-ブタンスルトン、メチレンメタンジスルホン酸エステルが好ましい。 Examples of the cyclic sulfonate ester include 1,3-propane sultone, 1,2-propane sultone, 1,4-butane sultone, 1,2-butane sultone, 1,3-butane sultone, 2,4-butane sultone, 1,3 -Monosulfonic acid esters such as pentansultone (when X in formula (2) is a single bond), methylenemethane disulfonic acid ester (1,5,2,4-dioxadithian-2,2,4,4-tetraoxide ), Disulfonic acid esters such as ethylenemethane disulfonic acid ester (when X in the formula (2) is —OSO 2 — group), and the like. Among these, 1,3-propane sultone, 1,4-butane sultone, and methylene methane disulfonic acid ester are preferable from the viewpoint of film forming effect, availability, and cost.
 環状スルホン酸エステルの電解液中の含有量は、0.01~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。環状スルホン酸エステルの含有量が0.01質量%以上の場合、正極表面に被膜をより効果的に形成して電解液の分解を抑制することができる。 The content of the cyclic sulfonic acid ester in the electrolytic solution is preferably 0.01 to 10% by mass, and more preferably 0.1 to 5% by mass. When the content of the cyclic sulfonic acid ester is 0.01% by mass or more, a coating can be more effectively formed on the positive electrode surface to suppress decomposition of the electrolytic solution.
 また、非水電解溶媒にイオン伝導性ポリマーを添加してもよい。イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリエチレンやポリプロピレン等のポリオレフィン等を挙げることができる。また、イオン伝導性ポリマーとしては、例えば、ポリビニリデンフルオライド、ポリテトラフルオロエチレン、ポリビニルフルオライド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメチルメタクリレート、ポリメチルアクリレート、ポリビニルアルコール、ポリメタクリロニトリル、ポリビニルアセテート、ポリビニルピロリドン、ポリカーボネート、ポリエチレンテレフタレート、ポリヘキサメチレンアシパミド、ポリカプロラクタム、ポリウレタン、ポリエチレンイミン、ポリブタジエン、ポリスチレン、若しくはポリイソプレン、又はこれらの誘導体を挙げることができる。イオン伝導性ポリマーは、一種を単独で、又は二種以上を組み合わせて用いることができる。また、上記ポリマーを構成する各種モノマーを含むポリマーを用いてもよい。 Further, an ion conductive polymer may be added to the nonaqueous electrolytic solvent. Examples of the ion conductive polymer include polyethers such as polyethylene oxide and polypropylene oxide, and polyolefins such as polyethylene and polypropylene. Examples of the ion conductive polymer include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl fluoride, polyvinyl chloride, polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polymethacrylonitrile, and polyvinyl chloride. Examples thereof include acetate, polyvinyl pyrrolidone, polycarbonate, polyethylene terephthalate, polyhexamethylene acipamide, polycaprolactam, polyurethane, polyethyleneimine, polybutadiene, polystyrene, or polyisoprene, or derivatives thereof. An ion conductive polymer can be used individually by 1 type or in combination of 2 or more types. Moreover, you may use the polymer containing the various monomers which comprise the said polymer.
 また、非水電解溶媒に、添加剤としてフルオロエチレンカーボネート(FEC)を含んでもよい。 Moreover, fluoroethylene carbonate (FEC) may be included as an additive in the nonaqueous electrolytic solvent.
(正極)
 正極は正極活物質を含む。正極は、例えば、正極活物質が正極用結着剤によって正極集電体を覆うように結着されてなる。
(Positive electrode)
The positive electrode includes a positive electrode active material. The positive electrode is formed, for example, by binding a positive electrode active material so as to cover the positive electrode current collector with a positive electrode binder.
 本実施形態によるリチウム二次電池の正極は、高エネルギー密度を得る観点から、リチウム金属に対して4.5V以上の電位でリチウムイオンを吸蔵または放出可能な正極活物質を含むことが好ましい。 The positive electrode of the lithium secondary battery according to the present embodiment preferably contains a positive electrode active material capable of inserting or extracting lithium ions at a potential of 4.5 V or higher with respect to lithium metal from the viewpoint of obtaining a high energy density.
 リチウムに対して4.5V以上の電位で動作する正極活物質は、例えば、以下のような方法によって選択することができる。まず、正極活物質を含む正極とLi金属とをセパレータを挟んで対向させた状態で電池内に配置させ、電解液を注液し、電池を作製する。そして、正極内の正極活物質質量あたり例えば5mAh/gとなる定電流で充放電を行った場合に、活物質質量あたり10mAh/g以上の充放電容量をリチウムに対して4.5V以上の電位で持つものを、リチウムに対して4.5V以上の電位で動作する正極活物質とすることができる。また、正極内の正極活物質質量あたり5mAh/gとなる定電流で充放電を行った場合に、リチウムに対して4.5V以上の電位における活物質質量あたりの充放電容量が20mAh/g以上であることが好ましく、50mAh/g以上であることがより好ましく、100mAh/g以上であることがさらに好ましい。電池の形状としては例えばコイン型とすることができる。 The positive electrode active material that operates at a potential of 4.5 V or higher with respect to lithium can be selected by the following method, for example. First, a positive electrode containing a positive electrode active material and Li metal are placed in a state of facing each other with a separator interposed therebetween, and an electrolytic solution is injected to produce a battery. When charging / discharging is performed at a constant current of, for example, 5 mAh / g per positive electrode active material mass in the positive electrode, a charge / discharge capacity of 10 mAh / g or more per mass of active material is a potential of 4.5 V or more with respect to lithium. Can be a positive electrode active material that operates at a potential of 4.5 V or higher with respect to lithium. Moreover, when charging / discharging is performed at a constant current of 5 mAh / g per positive electrode active material mass in the positive electrode, the charge / discharge capacity per active material mass at a potential of 4.5 V or higher with respect to lithium is 20 mAh / g or higher. It is preferable that it is 50 mAh / g or more, and it is further more preferable that it is 100 mAh / g or more. The shape of the battery can be, for example, a coin type.
 このような正極活物質としては、スピネル系材料、層状系材料、オリビン系材料が挙げられる。 Examples of such positive electrode active materials include spinel materials, layered materials, and olivine materials.
 スピネル系材料としては、LiNi0.5Mn1.5、LiCrMn2-x(0.4≦x≦1.1)、LiFeMn2-x(0.4≦x≦1.1)、LiCuMn2-x(0.3≦x≦0.6)、又はLiCoMn2-x(0.4≦x≦1.1)等及びこれらの固溶体、具体的には、LiCoMnO、LiCrMnO、LiFeMnO、LiCu0.5Mn1.5などのリチウムに対して4.5V以上の高電位で動作する材料;LiMnのMnの一部を他元素で置換して寿命を高めた、LiM1Mn2-x-yM2(M1はNi、Fe、Co、CrおよびCuから選ばれる少なくとも1種であり、0.4<x<1.1であり、M2は、Li、Al、B、Mg、Si、遷移金属から選ばれる少なくとも一種であり、0<y<0.5);およびこれらの材料の酸素の一部をフッ素や塩素で置換したものが挙げられる。これらは、一種を単独で、または二種以上を併用してもよい。また、正極活物質は、LiNi0.5Mn1.5と、これ以外の正極活物質とを混合した組成としてもよい。 Examples of spinel-based materials include LiNi 0.5 Mn 1.5 O 4 , LiCr x Mn 2-x O 4 (0.4 ≦ x ≦ 1.1), LiFe x Mn 2-x O 4 (0.4 ≦ x ≦ 1.1), LiCu x Mn 2-x O 4 (0.3 ≦ x ≦ 0.6), LiCo x Mn 2-x O 4 (0.4 ≦ x ≦ 1.1), and the like A material that operates at a high potential of 4.5 V or higher with respect to lithium, such as LiCoMnO 4 , LiCrMnO 4 , LiFeMnO 4 , LiCu 0.5 Mn 1.5 O 4 ; LiMn 2 O 4 a part of Mn increased the substituted to life with another element, LiM1 x Mn 2-x- y M2 y O 4 (M1 represents at least one selected Ni, Fe, Co, Cr, and Cu, 0 .4 <x <1.1 and M2 is Li, Al , B, Mg, Si and transition metals, and 0 <y <0.5); and those obtained by substituting a part of oxygen of these materials with fluorine or chlorine. These may be used alone or in combination of two or more. The positive electrode active material may have a composition in which LiNi 0.5 Mn 1.5 O 4 and a positive electrode active material other than this are mixed.
 スピネル系材料は、特に下記式で示されるものが好ましい。 As the spinel material, a material represented by the following formula is particularly preferable.
 Li(MMn2-x-y)(O4-w)  (6)
(式(6)中、0.4≦x≦1.2、0≦y、x+y<2、0≦a≦1.2、0≦w≦1である。Mは、Co、Ni、Fe、Cr及びCuからなる群より選ばれる少なくとも一種である。Yは、Li、B、Na、Al、Mg、Ti、Si、K及びCaからなる群より選ばれる少なくとも一種である。Zは、F及びClからなる群より選ばれる少なくとも一種である。)
Li a (M x Mn 2-xy Y y ) (O 4-w Z w ) (6)
(In the formula (6), 0.4 ≦ x ≦ 1.2, 0 ≦ y, x + y <2, 0 ≦ a ≦ 1.2, 0 ≦ w ≦ 1, M is Co, Ni, Fe, Y is at least one selected from the group consisting of Cr and Cu, Y is at least one selected from the group consisting of Li, B, Na, Al, Mg, Ti, Si, K, and Ca. And at least one selected from the group consisting of Cl.)
 式(6)において、Mは、Niを含むことが好ましく、Niのみであることが好ましい。MがNiを含むと、比較的容易に高容量の活物質が得られるためである。MがNiのみからなる場合において、高容量の活物質を得られる観点から、xが0.4以上0.6以下であることが好ましい。また、正極活物質がLiNi0.5Mn1.5であると、130mAh/g以上の高い容量が得られることからより好ましい。 In the formula (6), M preferably contains Ni, and preferably only Ni. This is because when M contains Ni, a high-capacity active material can be obtained relatively easily. In the case where M consists only of Ni, x is preferably 0.4 or more and 0.6 or less from the viewpoint of obtaining a high-capacity active material. Moreover, it is more preferable that the positive electrode active material is LiNi 0.5 Mn 1.5 O 4 because a high capacity of 130 mAh / g or more can be obtained.
 また、これらの活物質のMnの部分の一部をLi、B、Na、Al、Mg、Ti、SiK又はCa等で置換することによって、寿命面の改善が可能となる場合がある。例えば、式(6)において、0<yの場合、寿命が改善できる場合がある。これらの中でも、YがAl、Mg、Ti、Siの場合に寿命改善効果が高い。また、YがTiの場合、高容量を保ったまま寿命改善効果を奏することからより好ましい。yの範囲は、0より大きく、0.3以下であることが好ましい。yを0.3以下とすることにより、容量の低下を抑制することが容易となる。 In addition, the lifetime may be improved by replacing a part of the Mn portion of these active materials with Li, B, Na, Al, Mg, Ti, SiK, Ca, or the like. For example, in Equation (6), when 0 <y, the life may be improved. Among these, when Y is Al, Mg, Ti, or Si, the life improvement effect is high. Moreover, when Y is Ti, it is more preferable because it provides a life improvement effect while maintaining a high capacity. The range of y is preferably greater than 0 and less than or equal to 0.3. By setting y to 0.3 or less, it becomes easy to suppress a decrease in capacity.
 また、酸素の部分をFやClで置換することが可能である。式(6)において、wを0より大きく1以下とすることにより、容量の低下を抑制することができる。 It is also possible to replace the oxygen part with F or Cl. In Expression (6), by setting w to be greater than 0 and 1 or less, a decrease in capacity can be suppressed.
 層状系材料は、一般式:
 LiMO
(式中、MがCo及びNiのうちの少なくとも一種である。)
で表され、具体的には、LiCoO、LiNi1-x(Mは少なくともCoまたはAlを含む元素、0.05<x<0.3)で表される材料、Li(NiCoMn2-x-y)O(0.1<x<0.7、0<y<0.5)、
Li(M1-zMn)O  (8)
(式(8)中、0.7≧z≧0.33、MがLi、CoおよびNiのうちの少なくとも一種である。)で表される材料が挙げられる。また、Li(M1M2Mn1-x-y)O(M1:Ni,Co及びFeからなる群より選ばれる少なくとも一種、M2:Li、Mg及びAlからなる群から選ばれる少なくとも一種、0.1<x<0.5、0.05<y<0.3)等が挙げられる。
Layered materials have the general formula:
LiMO 2
(In the formula, M is at least one of Co and Ni.)
Specifically, LiCoO 2 , LiNi 1-x M x O 2 (M is an element containing at least Co or Al, 0.05 <x <0.3), Li (Ni x Co y Mn 2-x- y) O 2 (0.1 <x <0.7,0 <y <0.5),
Li (M 1-z Mn z ) O 2 (8)
(In formula (8), 0.7 ≧ z ≧ 0.33, and M is at least one of Li, Co, and Ni). Further, Li (M1 x M2 y Mn 1-xy ) O 2 (M1: at least one selected from the group consisting of Ni, Co and Fe, M2: at least one selected from the group consisting of Li, Mg and Al, 0.1 <x <0.5, 0.05 <y <0.3) and the like.
 また、式:
  Li(Li1-x-zMn)O   (9)
(式(9)中、0≦x<0.3、0.33≦z≦0.7、MはCoおよびNiの少なくとも一種である)
で表される材料が特に好ましい。この材料の式中のxは0.1≦x<0.3が好ましい。
Also the formula:
Li (Li x M 1-x -z Mn z) O 2 (9)
(In Formula (9), 0 ≦ x <0.3, 0.33 ≦ z ≦ 0.7, M is at least one of Co and Ni)
Is particularly preferred. X in the formula of this material is preferably 0.1 ≦ x <0.3.
 オリビン系材料は、一般式:
  LiMPO    (7)
で表され、具体的には、LiFePO、LiMnPO、LiCoPO、LiNiPOが挙げられる。これらの遷移金属の一部を別の元素で置換したり、酸素部分をフッ素で置き換えられたりしたものも使用できる。
The olivine-based material has the general formula:
LiMPO 4 (7)
Specifically, LiFePO 4 , LiMnPO 4 , LiCoPO 4 , and LiNiPO 4 may be mentioned. Those in which a part of these transition metals is replaced with another element or the oxygen part is replaced with fluorine can also be used.
 また、リチウムに対して4.5V以上の電位で動作する活物質としては、Si複合酸化物も挙げられ、Si複合酸化物としては、例えば、LiMSiO(M:Mn、Fe、Coのうちの少なくとも一種)が挙げられる。 In addition, examples of the active material that operates at a potential of 4.5 V or more with respect to lithium include Si composite oxide. Examples of the Si composite oxide include Li 2 MSiO 4 (M: Mn, Fe, Co). At least one of them).
 このほかにも、NASICON型、リチウム遷移金属シリコン複合酸化物、などを使用することができる。 In addition, NASICON type, lithium transition metal silicon composite oxide, and the like can be used.
 前記式(6)で表されるリチウムマンガン複合酸化物の比表面積は、例えば0.01~5m/gであり、0.05~4m/gが好ましく、0.1~3m/gがより好ましく、0.2~2m/gがさらに好ましい。比表面積をこのような範囲とすることにより、電解液との接触面積を適当な範囲に調整することができる。つまり、比表面積を0.01m/g以上とすることにより、リチウムイオンの挿入脱離がスムーズに行われ易くなり、抵抗をより低減することができる。また、比表面積を5m/g以下とすることにより、電解液の分解が促進することや、活物質の構成元素が溶出することをより抑制することができる。 The specific surface area of lithium-manganese composite oxide represented by the formula (6) is, for example, 0.01 ~ 5m 2 / g, preferably 0.05 ~ 4m 2 / g, 0.1 ~ 3m 2 / g Is more preferable, and 0.2 to 2 m 2 / g is more preferable. By setting the specific surface area in such a range, the contact area with the electrolytic solution can be adjusted to an appropriate range. That is, when the specific surface area is 0.01 m 2 / g or more, lithium ions can be easily inserted and desorbed smoothly, and the resistance can be further reduced. Moreover, by making a specific surface area 5 m < 2 > / g or less, decomposition | disassembly of electrolyte solution can be accelerated | stimulated and it can suppress more that the constituent element of an active material elutes.
 前記リチウムマンガン複合酸化物の中心粒径は、0.1~50μmであることが好ましく、0.2~40μmがより好ましい。粒径を0.1μm以上とすることにより、Mnなどの構成元素の溶出をより抑制でき、また、電解液との接触による劣化をより抑制できる。また、粒径を50μm以下とすることにより、リチウムイオンの挿入脱離がスムーズに行われ易くなり、抵抗をより低減することができる。粒径の測定はレーザー回折・散乱式粒度分布測定装置によって実施することができる。 The center particle size of the lithium manganese composite oxide is preferably 0.1 to 50 μm, more preferably 0.2 to 40 μm. By setting the particle size to 0.1 μm or more, elution of constituent elements such as Mn can be further suppressed, and deterioration due to contact with the electrolytic solution can be further suppressed. In addition, when the particle size is 50 μm or less, lithium ions can be easily inserted and desorbed smoothly, and the resistance can be further reduced. The particle diameter can be measured by a laser diffraction / scattering particle size distribution measuring apparatus.
 正極活物質は、上述のように、リチウムに対して4.5V以上の電位で動作する活物質を含むことが好ましいが、4V級の活物質を含んでも良い。 As described above, the positive electrode active material preferably includes an active material that operates at a potential of 4.5 V or more with respect to lithium, but may include a 4 V class active material.
 正極用結着剤としては、負極用結着剤と同様のものを用いることができる。中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンが好ましい。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質100質量部に対して、2~10質量部が好ましい。 As the positive electrode binder, the same negative electrode binder can be used. Among these, polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost. The amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “higher energy” which are in a trade-off relationship. .
 また、ポリフッ化ビニリデン以外の正極結着剤としては、特に制限されるものではないが、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等も用いることができる。 In addition, the positive electrode binder other than polyvinylidene fluoride is not particularly limited, but polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer. Polymers, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide and the like can also be used.
 正極活物質を含む正極活物質層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。 A conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance. Examples of the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
 正極集電体としては、電気化学的な安定性の観点から、例えば、アルミニウム、ニッケル、銀、ステンレス鋼(SUS)、バルブメタル、又はそれらの合金を用いることができる。その形状としては、箔、平板状、メッシュ状が挙げられる。特にアルミニウム箔を好適に用いることができる。 As the positive electrode current collector, for example, aluminum, nickel, silver, stainless steel (SUS), valve metal, or an alloy thereof can be used from the viewpoint of electrochemical stability. Examples of the shape include foil, flat plate, and mesh. In particular, an aluminum foil can be suitably used.
 (負極)
 負極は、負極活物質として、リチウムを吸蔵及び放出し得る材料を含むものであれば特に限定されない。
(Negative electrode)
A negative electrode will not be specifically limited if the negative electrode active material contains the material which can occlude and discharge | release lithium.
 負極活物質としては、特に制限されるものではなく、例えば、リチウムイオンを吸蔵、放出し得る炭素材料(a)、リチウムと合金可能な金属(b)、又はリチウムイオンを吸蔵、放出し得る金属酸化物(c)等が挙げられる。 The negative electrode active material is not particularly limited, and for example, a carbon material (a) that can occlude and release lithium ions, a metal that can be alloyed with lithium (b), or a metal that can occlude and release lithium ions. An oxide (c) etc. are mentioned.
 炭素材料(a)としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物を用いることができる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる正極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。炭素材料(a)は、それ単独で又はその他の物質と併用して用いることができるが、負極活物質中2質量%以上80質量%以下の範囲であることが好ましく、2質量%以上30質量%以下の範囲であることがより好ましい。 As the carbon material (a), graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof can be used. Here, graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a positive electrode current collector made of a metal such as copper. On the other hand, since amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs. The carbon material (a) can be used alone or in combination with other substances, but is preferably in the range of 2% by mass to 80% by mass in the negative electrode active material, and is preferably 2% by mass to 30% by mass. More preferably, it is in the range of% or less.
 金属(b)としては、Al、Si、Pb、Sn、Zn、Cd、Sb、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、La等を主体とした金属、又はこれらの2種以上の合金、あるいはこれら金属又は合金とリチウムとの合金等を用いることができる。特に、金属(b)としてシリコン(Si)を含むことが好ましい。金属(b)は、それ単独で又はその他の物質と併用して用いることができるが、負極活物質中5質量%以上90質量%以下の範囲であることが好ましく、20質量%以上50質量%以下の範囲であることがより好ましい。 As the metal (b), a metal mainly composed of Al, Si, Pb, Sn, Zn, Cd, Sb, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, La, or the like, or these Two or more kinds of alloys, or an alloy of these metals or alloys and lithium can be used. In particular, silicon (Si) is preferably included as the metal (b). The metal (b) can be used alone or in combination with other substances, but is preferably in the range of 5% by mass to 90% by mass in the negative electrode active material, and is 20% by mass to 50% by mass. The following range is more preferable.
 金属酸化物(c)としては、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物を用いることができる。特に、金属酸化物(c)として酸化シリコンを含むことが好ましい。これは、酸化シリコンは、比較的安定で他の化合物との反応を引き起こしにくいからである。また、金属酸化物(c)に、窒素、ホウ素およびイオウの中から選ばれる一種または二種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物(c)の電気伝導性を向上させることができる。金属酸化物(c)は、それ単独で又はその他の物質と併用して用いることができるが、負極活物質中5質量%以上90質量%以下の範囲であることが好ましく、40質量%以上70質量%以下の範囲であることがより好ましい。 As the metal oxide (c), silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, or a composite thereof can be used. In particular, silicon oxide is preferably included as the metal oxide (c). This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds. In addition, one or more elements selected from nitrogen, boron, and sulfur may be added to the metal oxide (c), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (c) can be improved. The metal oxide (c) can be used alone or in combination with other substances, but is preferably in the range of 5% by mass or more and 90% by mass or less in the negative electrode active material, and is 40% by mass or more and 70% by mass. More preferably, it is in the range of mass% or less.
 金属酸化物(c)の具体例としては、例えば、LiFe、WO、MoO、SiO、SiO、CuO、SnO、SnO、Nb、LiTi2-x(1≦x≦4/3)、PbO、Pb等が挙げられる。 Specific examples of the metal oxide (c) include, for example, LiFe 2 O 3 , WO 2 , MoO 2 , SiO, SiO 2 , CuO, SnO, SnO 2 , Nb 3 O 5 , Li x Ti 2-x O 4. (1 ≦ x ≦ 4/3), PbO 2 , Pb 2 O 5 and the like.
 また、負極活物質としては、他にも、例えば、リチウムイオンを吸蔵、放出し得る金属硫化物(d)が挙げられる。金属硫化物(d)としては、例えば、SnSやFeS等が挙げられる。また、負極活物質としては、他にも、例えば、金属リチウム若しくはリチウム合金、ポリアセン若しくはポリチオフェン、又はLi(LiN)、LiMnN、LiFeN、Li2.5Co0.5N若しくはLiCoN等の窒化リチウム等を挙げる事ができる。 Other examples of the negative electrode active material include metal sulfide (d) that can occlude and release lithium ions. Metal sulfide as (d) are, for example, SnS and FeS 2 or the like. Other examples of the negative electrode active material include metal lithium or lithium alloy, polyacene or polythiophene, or Li 5 (Li 3 N), Li 7 MnN 4 , Li 3 FeN 2 , Li 2.5 Co 0. Examples thereof include lithium nitride such as 5 N or Li 3 CoN.
 以上の負極活物質は、単独でまたは二種以上を混合して用いることができる。 These negative electrode active materials can be used alone or in admixture of two or more.
 また、負極活物質は、炭素材料(a)、金属(b)、及び金属酸化物(c)を含む構成とすることができる。以下、この負極活物質について説明する。 Further, the negative electrode active material can include a carbon material (a), a metal (b), and a metal oxide (c). Hereinafter, this negative electrode active material will be described.
 金属酸化物(c)はその全部または一部がアモルファス構造を有することが好ましい。アモルファス構造の金属酸化物(c)は、炭素材料(a)や金属(b)の体積膨張を抑制することができ、電解液の分解を抑制することができる。このメカニズムは、金属酸化物(c)がアモルファス構造であることにより、炭素材料(a)と電解液の界面への被膜形成に何らかの影響があるものと推定される。また、アモルファス構造は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。なお、金属酸化物(c)の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)にて確認することができる。具体的には、金属酸化物(c)がアモルファス構造を有しない場合には、金属酸化物(c)に固有のピークが観測されるが、金属酸化物(c)の全部または一部がアモルファス構造を有する場合が、金属酸化物(c)に固有ピークがブロードとなって観測される。 It is preferable that all or part of the metal oxide (c) has an amorphous structure. The amorphous metal oxide (c) can suppress the volume expansion of the carbon material (a) and the metal (b), and can suppress the decomposition of the electrolytic solution. This mechanism is presumed to have some influence on the film formation on the interface between the carbon material (a) and the electrolytic solution due to the amorphous structure of the metal oxide (c). The amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects. In addition, it can be confirmed by X-ray diffraction measurement (general XRD measurement) that all or part of the metal oxide (c) has an amorphous structure. Specifically, when the metal oxide (c) does not have an amorphous structure, a peak specific to the metal oxide (c) is observed, but all or part of the metal oxide (c) is amorphous. In the case of having a structure, the intrinsic peak of the metal oxide (c) is broad and observed.
 金属酸化物(c)は、金属(b)を構成する金属の酸化物であることが好ましい。また、金属(b)及び金属酸化物(c)は、それぞれシリコン(Si)及び酸化シリコン(SiO)であることが好ましい。 The metal oxide (c) is preferably a metal oxide constituting the metal (b). The metal (b) and the metal oxide (c) are preferably silicon (Si) and silicon oxide (SiO), respectively.
 金属(b)は、その全部または一部が金属酸化物(c)中に分散していることが好ましい。金属(b)の少なくとも一部を金属酸化物(c)中に分散させることで、負極全体としての体積膨張をより抑制することができ、電解液の分解も抑制することができる。なお、金属(b)の全部または一部が金属酸化物(c)中に分散していることは、透過型電子顕微鏡観察(一般的なTEM観察)とエネルギー分散型X線分光法測定(一般的なEDX測定)を併用することで確認することができる。具体的には、金属(b)粒子を含むサンプルの断面を観察し、金属酸化物(c)中に分散している金属(b)粒子の酸素濃度を測定し、金属(b)粒子を構成している金属が酸化物となっていないことを確認することができる。 The metal (b) is preferably dispersed entirely or partially in the metal oxide (c). By dispersing at least a part of the metal (b) in the metal oxide (c), the volume expansion of the whole negative electrode can be further suppressed, and the decomposition of the electrolytic solution can also be suppressed. Note that all or part of the metal (b) is dispersed in the metal oxide (c) because it is observed with a transmission electron microscope (general TEM observation) and energy dispersive X-ray spectroscopy (general). This can be confirmed by using a combination of a standard EDX measurement. Specifically, the cross section of the sample containing the metal (b) particles is observed, the oxygen concentration of the metal (b) particles dispersed in the metal oxide (c) is measured, and the metal (b) particles are configured. It can be confirmed that the metal being used is not an oxide.
 上述のように、炭素材料(a)、金属(b)、及び金属酸化物(c)の合計に対するそれぞれの炭素材料(a)、金属(b)、及び金属酸化物(c)の含有率は、それぞれ、2質量%以上80質量%以下、5質量%以上90質量%以下、及び5質量%以上90質量%以下であることが好ましい。また、炭素材料(a)、金属(b)、及び金属酸化物(c)の合計に対するそれぞれの炭素材料(a)、金属(b)、及び金属酸化物(c)の含有率は、それぞれ、2質量%以上30質量%以下、20質量%以上50質量%以下、及び40質量%以上70質量%以下であることがより好ましい。 As described above, the content of each carbon material (a), metal (b), and metal oxide (c) with respect to the total of the carbon material (a), metal (b), and metal oxide (c) is These are preferably 2% by mass or more and 80% by mass or less, 5% by mass or more and 90% by mass or less, and 5% by mass or more and 90% by mass or less. Moreover, the content rate of each carbon material (a), metal (b), and metal oxide (c) with respect to the sum total of a carbon material (a), a metal (b), and a metal oxide (c) is respectively More preferably, they are 2 mass% or more and 30 mass% or less, 20 mass% or more and 50 mass% or less, and 40 mass% or more and 70 mass% or less.
 金属酸化物(c)の全部または一部がアモルファス構造であり、金属(b)の全部または一部が金属酸化物(c)中に分散しているような負極活物質は、例えば、特開2004-47404号公報で開示されているような方法で作製することができる。すなわち、金属酸化物(c)をメタンガスなどの有機物ガスを含む雰囲気下でCVD処理を行うことで、金属酸化物(c)中の金属(b)がナノクラスター化し、かつ表面が炭素材料(a)で被覆された複合体を得ることができる。また、炭素材料(a)と金属(b)と金属酸化物(c)とをメカニカルミリングで混合することでも、上記負極活物質を作製することができる。 A negative electrode active material in which all or part of the metal oxide (c) has an amorphous structure and all or part of the metal (b) is dispersed in the metal oxide (c) is disclosed in, for example, It can be produced by the method disclosed in 2004-47404. That is, by performing a CVD process on the metal oxide (c) in an atmosphere containing an organic gas such as methane gas, the metal (b) in the metal oxide (c) is nanoclustered and the surface is a carbon material (a ) Can be obtained. Moreover, the said negative electrode active material is producible also by mixing a carbon material (a), a metal (b), and a metal oxide (c) by mechanical milling.
 また、炭素材料(a)、金属(b)、及び金属酸化物(c)は、特に制限するものではないが、それぞれ粒子状のものを用いることができる。例えば、金属(b)の平均粒子径は、炭素材料(a)の平均粒子径および金属酸化物(c)の平均粒子径よりも小さい構成とすることができる。このようにすれば、充放電時にともなう体積変化の大きい金属(b)が相対的に小粒径となり、体積変化の小さい炭素材料(a)や金属酸化物(c)が相対的に大粒径となるため、デンドライト生成および合金の微粉化がより効果的に抑制される。また、充放電の過程で小粒径の粒子、大粒径の粒子、小粒径の粒子の順にリチウムが吸蔵、放出されることとなり、この点からも、残留応力、残留歪みの発生が抑制される。金属(b)の平均粒子径は、例えば20μm以下とすることができ、15μm以下とすることが好ましい。 Further, the carbon material (a), the metal (b), and the metal oxide (c) are not particularly limited, but particulate materials can be used. For example, the average particle diameter of the metal (b) may be smaller than the average particle diameter of the carbon material (a) and the average particle diameter of the metal oxide (c). In this way, the metal (b) having a large volume change during charging and discharging has a relatively small particle size, and the carbon material (a) and the metal oxide (c) having a small volume change have a relatively large particle size. Therefore, dendrite formation and alloy pulverization are more effectively suppressed. In addition, lithium is occluded and released in the order of small particle size, large particle size, and small particle size during the charge / discharge process. This also suppresses the occurrence of residual stress and residual strain. Is done. The average particle diameter of the metal (b) can be, for example, 20 μm or less, and is preferably 15 μm or less.
 また、金属酸化物(c)の平均粒子径が炭素材料(a)の平均粒子径の1/2以下であることが好ましく、金属(b)の平均粒子径が金属酸化物(c)の平均粒子径の1/2以下であることが好ましい。さらに、金属酸化物(c)の平均粒子径が炭素材料(a)の平均粒子径の1/2以下であり、かつ金属(b)の平均粒子径が金属酸化物(c)の平均粒子径の1/2以下であることがより好ましい。平均粒子径をこのような範囲に制御すれば、金属および合金相の体積膨脹の緩和効果がより有効に得ることができ、エネルギー密度、サイクル寿命と効率のバランスに優れた二次電池を得ることができる。より具体的には、シリコン酸化物(c)の平均粒子径を黒鉛(a)の平均粒子径の1/2以下とし、シリコン(b)の平均粒子径をシリコン酸化物(c)の平均粒子径の1/2以下とすることが好ましい。また、より具体的には、シリコン(b)の平均粒子径は、例えば20μm以下とすることができ、15μm以下とすることが好ましい。 Moreover, it is preferable that the average particle diameter of a metal oxide (c) is 1/2 or less of the average particle diameter of a carbon material (a), and the average particle diameter of a metal (b) is an average of a metal oxide (c). It is preferable that it is 1/2 or less of a particle diameter. Furthermore, the average particle diameter of the metal oxide (c) is ½ or less of the average particle diameter of the carbon material (a), and the average particle diameter of the metal (b) is the average particle diameter of the metal oxide (c). It is more preferable that it is 1/2 or less. By controlling the average particle size in such a range, the effect of relaxing the volume expansion of the metal and alloy phases can be obtained more effectively, and a secondary battery having an excellent balance of energy density, cycle life and efficiency can be obtained. Can do. More specifically, the average particle diameter of the silicon oxide (c) is set to 1/2 or less of the average particle diameter of the graphite (a), and the average particle diameter of the silicon (b) is the average particle of the silicon oxide (c). It is preferable to make it 1/2 or less of the diameter. More specifically, the average particle diameter of silicon (b) can be, for example, 20 μm or less, and is preferably 15 μm or less.
 負極活物質として、表面が低結晶性炭素材料で覆われた黒鉛を用いることができる。黒鉛の表面が低結晶性の炭素材料で覆われることにより、エネルギー密度が高く、高伝導性の黒鉛を負極活物質として用いた場合であっても、負極活物質と電解液との反応を抑制することができる。そのため、低結晶性炭素材料で覆われた黒鉛を負極活物質として用いることにより、電池の容量維持率を向上することができ、また、電池容量を向上することができる。 As the negative electrode active material, graphite whose surface is covered with a low crystalline carbon material can be used. The surface of the graphite is covered with a low crystalline carbon material, which suppresses the reaction between the negative electrode active material and the electrolyte even when high energy density and high conductivity graphite is used as the negative electrode active material. can do. Therefore, by using the graphite covered with the low crystalline carbon material as the negative electrode active material, the capacity retention rate of the battery can be improved, and the battery capacity can be improved.
 低結晶性炭素材料で覆われた黒鉛は、例えば、粒子状の黒鉛に低結晶性炭素材料を被覆することにより得ることができる。黒鉛粒子の平均粒子径(体積平均:D50)は5μm以上30μm以下であることが好ましい。黒鉛は結晶性を有することが好ましく、黒鉛のI/I値が0.01以上0.08以下であることがより好ましい。 The graphite covered with the low crystalline carbon material can be obtained, for example, by coating particulate graphite with the low crystalline carbon material. The average particle diameter (volume average: D 50 ) of the graphite particles is preferably 5 μm or more and 30 μm or less. The graphite preferably has crystallinity, and the I D / IG value of the graphite is more preferably 0.01 or more and 0.08 or less.
 低結晶性炭素材料の厚さは、0.01μm以上5μm以下であることが好ましく、0.02μm以上1μm以下であることがより好ましい。 The thickness of the low crystalline carbon material is preferably 0.01 μm or more and 5 μm or less, and more preferably 0.02 μm or more and 1 μm or less.
 平均粒子径(D50)は、例えば、レーザ回折・散乱式粒子径・粒度分布測定装置マイクロトラックMT3300EX(日機装)を使用して、測定することができる。 The average particle diameter (D 50 ) can be measured using, for example, a laser diffraction / scattering particle diameter / particle size distribution measuring apparatus Microtrac MT3300EX (Nikkiso).
 低結晶性炭素材料は、例えば、プロパンやアセチレン等の炭化水素を熱分解させて炭素を堆積させる気相法を用いることにより、黒鉛の表面に形成することができる。また、低結晶性炭素材料は、例えば、黒鉛の表面にピッチやタール等を付着させ、800~1500℃で焼成する方法を用いることにより、形成することができる。 The low crystalline carbon material can be formed on the surface of graphite by using a vapor phase method in which hydrocarbons such as propane and acetylene are thermally decomposed to deposit carbon. The low crystalline carbon material can be formed, for example, by using a method in which pitch or tar is attached to the surface of graphite and firing at 800 to 1500 ° C.
 黒鉛は、結晶構造において、002面の層間隔d002が、0.33nm以上0.34nm以下であることが好ましく、より好ましくは、0.333nm以上0.337nm以下、更に好ましくは、0.336nm以下である。このような高結晶性の黒鉛は、リチウム吸蔵容量が高く、充放電効率の向上を図ることができる。 Graphite has a crystal structure in which the 002 plane layer spacing d 002 is preferably 0.33 nm or more and 0.34 nm or less, more preferably 0.333 nm or more and 0.337 nm or less, and still more preferably 0.336 nm. It is as follows. Such highly crystalline graphite has a high lithium storage capacity and can improve charge and discharge efficiency.
 黒鉛の層間隔は、例えば、X線回折により測定することができる。 The interlayer distance of graphite can be measured by, for example, X-ray diffraction.
 低結晶性炭素材料で覆われた黒鉛の比表面積は、例えば、0.01~20m/gであり、0.05~10m/gであることが好ましく、0.1~5m/gであることがより好ましく、0.2~3m/gであることがさらに好ましい。低結晶性炭素で覆われた黒鉛の比表面積を0.01m/g以上とすることにより、リチウムイオンの挿入脱離がスムーズに行われ易くなるため、抵抗をより低減することができる。低結晶性炭素で覆われた黒鉛の比表面積を20m/g以下とすることにより、電解液の分解をより抑制でき、また、活物質の構成元素の電解液への溶出をより抑制することができる。 The specific surface area of the graphite covered with the low crystalline carbon material is, for example, 0.01 to 20 m 2 / g, preferably 0.05 to 10 m 2 / g, and 0.1 to 5 m 2 / g. More preferably, it is 0.2 to 3 m 2 / g. By setting the specific surface area of the graphite covered with the low crystalline carbon to 0.01 m 2 / g or more, the lithium ions can be inserted and desorbed smoothly, so that the resistance can be further reduced. By setting the specific surface area of graphite covered with low crystalline carbon to 20 m 2 / g or less, decomposition of the electrolytic solution can be further suppressed, and elution of constituent elements of the active material into the electrolytic solution can be further suppressed. Can do.
 基材となる黒鉛としては、高結晶性のものが好ましく、例えば人造黒鉛や天然黒鉛を使用することができるが、特にこれらに制限されるものではない。低結晶性炭素の材料としては、例えば、コールタール、ピッチコークス、フェノール系樹脂を使用し、高結晶炭素と混合したものを用いることができる。高結晶炭素に対して低結晶性炭素の材料を5~50質量%で混合して混合物を調製する。該混合物を150℃~300℃に加熱した後、さらに、600℃~1500℃の範囲で、熱処理を行う。これにより、表面に低結晶性炭素が被覆された表面処理黒鉛を得ることができる。熱処理は、アルゴン、ヘリウム、窒素などの不活性ガス雰囲気が好ましい。 The graphite used as the base material is preferably highly crystalline. For example, artificial graphite or natural graphite can be used, but is not particularly limited thereto. As the material of low crystalline carbon, for example, coal tar, pitch coke, phenol resin and mixed with high crystalline carbon can be used. A mixture is prepared by mixing 5 to 50% by mass of low crystalline carbon material with high crystalline carbon. After the mixture is heated to 150 ° C. to 300 ° C., heat treatment is further performed in the range of 600 ° C. to 1500 ° C. As a result, surface-treated graphite having a surface coated with low crystalline carbon can be obtained. The heat treatment is preferably performed in an inert gas atmosphere such as argon, helium, or nitrogen.
 負極活物質は、低結晶性炭素材料で覆われた黒鉛以外にも、他の活物質を含んでいてもよい。 The negative electrode active material may contain other active materials besides graphite covered with the low crystalline carbon material.
 負極用結着剤としては、特に制限されるものではないが、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等が挙げられる。 The binder for the negative electrode is not particularly limited, but polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer. Polymerized rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide and the like can be mentioned.
 負極結着剤の含有率は、負極活物質と負極結着剤の総量に対して1~30質量%の範囲であることが好ましく、2~25質量%であることがより好ましい。1質量%以上とすることにより、活物質同士あるいは活物質と集電体との密着性が向上し、サイクル特性が良好になる。また、30質量%以下とすることにより、活物質比率が向上し、負極容量を向上することができる。 The content of the negative electrode binder is preferably in the range of 1 to 30% by mass, more preferably 2 to 25% by mass with respect to the total amount of the negative electrode active material and the negative electrode binder. By setting the content to 1% by mass or more, the adhesion between the active materials or between the active material and the current collector is improved, and the cycle characteristics are improved. Moreover, by setting it as 30 mass% or less, an active material ratio can improve and a negative electrode capacity | capacitance can be improved.
 負極集電体としては、特に制限されるものではないが、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。 The negative electrode current collector is not particularly limited, but aluminum, nickel, copper, silver, and alloys thereof are preferable from the viewpoint of electrochemical stability. Examples of the shape include foil, flat plate, and mesh.
 負極は、負極集電体上に、負極活物質と負極用結着剤を含む負極活物質層を形成することで作製することができる。負極活物質層の形成方法としては、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法などが挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を形成して、負極集電体としてもよい。 The negative electrode can be produced by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector. Examples of the method for forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method. After forming a negative electrode active material layer in advance, a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
 (セパレータ)
 二次電池は、その構成として正極、負極、セパレータ、及び非水電解質との組み合わせからなることができる。セパレータとしては、例えば、織布、不織布、ポリエチレンやポリプロピレンなどのポリオレフィン系、ポリイミド、多孔性ポリフッ化ビニリデン膜等の多孔性ポリマー膜、又はイオン伝導性ポリマー電解質膜等が挙げられる。これらは単独または組み合わせで使用することができる。
(Separator)
The secondary battery can be composed of a combination of a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte as its configuration. Examples of the separator include a woven fabric, a nonwoven fabric, a polyolefin such as polyethylene and polypropylene, a porous polymer film such as polyimide, a porous polyvinylidene fluoride film, and an ion conductive polymer electrolyte film. These can be used alone or in combination.
 (電池の形状)
 電池の形状としては、例えば、円筒形、角形、コイン型、ボタン型、ラミネート型等が挙げられる。電池の外装体としては、例えば、ステンレス、鉄、アルミニウム、チタン、又はこれらの合金、あるいはこれらのメッキ加工品等が挙げられる。メッキとしては例えばニッケルメッキを用いることができる。
(Battery shape)
Examples of the shape of the battery include a cylindrical shape, a square shape, a coin shape, a button shape, and a laminate shape. Examples of the battery outer package include stainless steel, iron, aluminum, titanium, alloys thereof, and plated products thereof. As the plating, for example, nickel plating can be used.
 また、ラミネート型に用いるラミネート樹脂フィルムとしては、例えば、アルミニウム、アルミニウム合金、チタン箔等が挙げられる。金属ラミネート樹脂フィルムの熱溶着部の材質としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等の熱可塑性高分子材料が挙げられる。また、金属ラミネート樹脂層や金属箔層はそれぞれ1層に限定されるものではなく2層以上であっても構わない。 Also, examples of the laminate resin film used for the laminate mold include aluminum, aluminum alloy, and titanium foil. Examples of the material of the heat-welded portion of the metal laminate resin film include thermoplastic polymer materials such as polyethylene, polypropylene, and polyethylene terephthalate. Further, the metal laminate resin layer and the metal foil layer are not limited to one layer, and may be two or more layers.
 外装体としては、電解液に安定で、かつ十分な水蒸気バリア性を持つものであれば、適宜選択することができる。例えば、積層ラミネート型の二次電池の場合、外装体としては、アルミニウム、シリカをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルムを用いることができる。特に、体積膨張を抑制する観点から、アルミニウムラミネートフィルムを用いることが好ましい。 The exterior body can be appropriately selected as long as it is stable to the electrolyte and has a sufficient water vapor barrier property. For example, in the case of a laminated laminate type secondary battery, a laminate film made of aluminum, silica-coated polypropylene, polyethylene, or the like can be used as the outer package. In particular, it is preferable to use an aluminum laminate film from the viewpoint of suppressing volume expansion.
 以下、本発明を適用した具体的な実施例について説明するが、本発明は、本実施例に限定されるものではなく、その主旨を超えない範囲において適宜変更して実施することが可能である。図1は本実施例で作製したリチウム二次電池の構成を示す模式図である。 EXAMPLES Hereinafter, specific examples to which the present invention is applied will be described. However, the present invention is not limited to the examples, and can be appropriately modified and implemented without departing from the gist thereof. . FIG. 1 is a schematic diagram showing the configuration of a lithium secondary battery produced in this example.
 図1に示すように、リチウム二次電池は、アルミニウム箔等の金属からなる正極集電体3上に正極活物質を含有する正極活物質層1と、銅箔等の金属からなる負極集電体4上に負極活物質を含有する負極活物質層2と、を有する。正極活物質層1及び負極活物質層2は、電解液、およびこれを含む不織布、ポリプロピレン微多孔膜などからなるセパレータ5を介して対向して配置されている。図1において、6及び7は外装体、8は負極タブ、9は正極タブを示す。 As shown in FIG. 1, a lithium secondary battery includes a positive electrode active material layer 1 containing a positive electrode active material on a positive electrode current collector 3 made of metal such as aluminum foil, and a negative electrode current collector made of metal such as copper foil. And a negative electrode active material layer 2 containing a negative electrode active material on the body 4. The positive electrode active material layer 1 and the negative electrode active material layer 2 are disposed to face each other with a separator 5 made of an electrolytic solution, a nonwoven fabric containing the electrolyte, a polypropylene microporous film, and the like. In FIG. 1, 6 and 7 are exterior bodies, 8 is a negative electrode tab, 9 is a positive electrode tab.
(実施例1)
 本実施例の正極活物質は以下のように作製した。原料として、MnO、NiO、Fe、TiO、B、CoO、LiCO、MgO、Al、LiFから材料を選択して目的の金属組成比になるように秤量し、粉砕混合した。原料混合後の粉末を焼成温度500~1000℃で8時間焼成することで、LiNi0.5Mn1.5を作製した。正極活物質としてのLiNi0.5Mn1.5と、結着剤としてのポリフッ化ビニリデン(PVDF)(5質量%)と、導電剤としてカーボンブラック(5質量%)と、を混合して正極合剤とした。該正極合剤をN-メチル-2-ピロリドンに分散させることにより、正極用スラリーを調製した。この正極用スラリーを厚さ20μmのアルミニウム製集電体の片面に、均一に塗布した。単位面積当たりの初回充電容量が2.5mAh/cmとなるように塗布膜の厚さを調整した。乾燥させた後、ロールプレスで圧縮成型することにより正極を作製した。
(Example 1)
The positive electrode active material of this example was produced as follows. As a raw material, a material is selected from MnO 2 , NiO, Fe 2 O 3 , TiO 2 , B 2 O 3 , CoO, Li 2 CO 3 , MgO, Al 2 O 3 , and LiF so as to have a desired metal composition ratio. And weighed and mixed. LiNi 0.5 Mn 1.5 O 4 was produced by firing the powder after mixing the raw materials at a firing temperature of 500 to 1000 ° C. for 8 hours. LiNi 0.5 Mn 1.5 O 4 as a positive electrode active material, polyvinylidene fluoride (PVDF) (5 mass%) as a binder, and carbon black (5 mass%) as a conductive agent are mixed. Thus, a positive electrode mixture was obtained. A positive electrode slurry was prepared by dispersing the positive electrode mixture in N-methyl-2-pyrrolidone. This positive electrode slurry was uniformly applied to one side of an aluminum current collector having a thickness of 20 μm. The thickness of the coating film was adjusted so that the initial charge capacity per unit area was 2.5 mAh / cm 2 . After drying, a positive electrode was produced by compression molding with a roll press.
 負極活物質としては人造黒鉛を用いた。人造黒鉛と、N-メチルピロリドンに結着剤としてPVDFを溶かしたものに分散させ、負極用スラリーを調製した。負極活物質と、結着剤との質量比は90/10とした。この負極用スラリーを厚さ10μmのCu集電体上に均一に塗布した。乾燥させた後、ロールプレスで圧縮成型することにより負極を作製した。 Artificial graphite was used as the negative electrode active material. A negative electrode slurry was prepared by dispersing in artificial graphite and N-methylpyrrolidone in which PVDF was dissolved as a binder. The mass ratio between the negative electrode active material and the binder was 90/10. This negative electrode slurry was uniformly coated on a 10 μm thick Cu current collector. After drying, a negative electrode was produced by compression molding with a roll press.
 1.5cm×3cmに切り出した正極と負極をセパレータを介して対向するように配置させた。正極は5枚、負極は6枚を交互に重ねた。セパレータには、厚さ25μmの微多孔性ポリプロピレンフィルムを用いた。 A positive electrode and a negative electrode cut out to 1.5 cm × 3 cm were arranged so as to face each other with a separator interposed therebetween. Five positive electrodes and six negative electrodes were alternately stacked. As the separator, a microporous polypropylene film having a thickness of 25 μm was used.
 LiPFを1mol/l、非水電解溶媒として、エチレンカーボネート(EC)と、フッ素化鎖状エーテル(1,1,2,2-テトラフルオロエチル2,2,3,3テトラフルオロエチルエーテル)(TFETFPE)と、リン酸トリス(2,2,2-トリフルオロエチル)(PTTFE)、ジメチルカーボネート(DMC)とを、体積比EC/TFETFPE/PTTFE/DMC=3/2/4/1で混合した溶媒、および添加剤としてフルオロエチレンカーボネート(FEC)2体積%を含む溶媒を用いた。 LiPF 6 as 1 mol / l, non-aqueous electrolytic solvent, ethylene carbonate (EC) and fluorinated chain ether (1,1,2,2- tetrafluoroethyl 2,2,3,3 tetrafluoroethyl ether) ( TFETFPE), tris (2,2,2-trifluoroethyl) phosphate (PTTFE), and dimethyl carbonate (DMC) were mixed at a volume ratio EC / TFETFPE / PTTFE / DMC = 3/2/4/1. A solvent and a solvent containing 2% by volume of fluoroethylene carbonate (FEC) as an additive were used.
 上記の正極、負極、セパレータ、及び電解液を、ラミネート外装体の中に配置し、ラミネートを封止し、リチウム二次電池を作製した。正極と負極は、タブが接続され、ラミネートの外部から電気的に接続された状態とした。 The above positive electrode, negative electrode, separator, and electrolyte were placed in a laminate outer package, the laminate was sealed, and a lithium secondary battery was produced. The positive electrode and the negative electrode were connected to a tab and electrically connected from the outside of the laminate.
 まず、下記の充電条件で充放電を行った後、インピーダンスを評価した。 First, after charging and discharging under the following charging conditions, the impedance was evaluated.
 充電条件:定電流定電圧方式、充電終止電圧4.75V、充電電流10mA、全充電時間10時間
 放電条件:定電流放電、放電終止電圧3.0V、放電電流50mA
Charging conditions: constant current constant voltage method, charging end voltage 4.75 V, charging current 10 mA, total charging time 10 hours Discharging conditions: constant current discharging, discharge end voltage 3.0 V, discharge current 50 mA
 次に、温度45℃で下記の条件で充放電サイクル試験を50サイクル行い、再度インピーダンスを評価した。 Next, 50 cycles of charge / discharge cycle tests were performed at a temperature of 45 ° C. under the following conditions, and impedance was evaluated again.
 充電条件:定電流定電圧方式、充電終止電圧4.75V、充電電流50mA、全充電時間2.5時間
 放電条件:定電流放電、放電終止電圧3.0V、放電電流50mA
Charging conditions: constant current constant voltage method, charging end voltage 4.75 V, charging current 50 mA, total charging time 2.5 hours Discharging conditions: constant current discharging, discharge end voltage 3.0 V, discharge current 50 mA
 100mHzで交流インピーダンス法で測定した実抵抗は0.59Ω増加した。回路モデルにフィッティングすることにより求めた高周波側の負極電荷移動抵抗Rct2は0.28Ωから0.50Ωに0.22Ω、低周波側の正極電荷移動抵抗Rctは0.90Ωから0.97Ωに0.07Ω変化した。投影値ΔRxは0.36Ωである。 The actual resistance measured by the AC impedance method at 100 mHz increased by 0.59Ω. The high frequency side negative charge transfer resistance Rct2 obtained by fitting to the circuit model is 0.22Ω from 0.28Ω to 0.50Ω, and the low frequency side positive charge transfer resistance Rct is 0.90Ω to 0.97Ω from 0.90Ω. Changed by 07Ω. The projection value ΔRx is 0.36Ω.
 (実施例2)
 LiPFが0.8mol/l、EC/TFETFPE/PTTFE/プロピレンカーボネート(PC)=2/2/5/1、添加剤が環状ジスルホン酸エステル(1,5,2,4-dioxadithiane-2,2,4,4-tetraoxide)0.8wt%の電解液を用いた以外は、実施例1と同様にリチウム二次電池を作製し測定を行った。100mHzで交流インピーダンス法で測定した実抵抗は0.58Ω増加した。回路モデルにフィッティングすることにより求めた高周波側の負極電荷移動抵抗Rct2は0.57Ωから0.81Ωに0.24Ω、低周波側の正極電荷移動抵抗Rctは0.42Ωから0.76Ωに0.34Ω変化した。投影値ΔRxは-0.26Ωである。
(Example 2)
LiPF 6 is 0.8 mol / l, EC / TFETFPE / PTTFE / propylene carbonate (PC) = 2/2/5/1, and the additive is cyclic disulfonate (1,5,2,4-dioxodithiane-2,2 , 4,4-tetraoxide) A lithium secondary battery was prepared and measured in the same manner as in Example 1 except that 0.8 wt% electrolytic solution was used. The actual resistance measured by the AC impedance method at 100 mHz increased by 0.58Ω. The high-frequency side negative charge transfer resistance Rct2 obtained by fitting to the circuit model is 0.24Ω from 0.57Ω to 0.81Ω, and the low-frequency side positive charge transfer resistance Rct is 0.40Ω to 0.76Ω. It changed by 34Ω. The projection value ΔRx is −0.26Ω.
 (参考例1)
 LiPFが0.8mol/l、TFETFPE/PTTFE/PC=5/1/4、添加剤が環状ジスルホン酸エステル0.8wt%の電解液を用いた以外は、実施例1と同様にリチウム二次電池を作製し測定を行った。100mHzで測定した実抵抗は1.95Ω増加した。高周波側の負極電荷移動抵抗Rct2は0.14Ωから1.76Ωに1.62Ω、低周波側の正極電荷移動抵抗Rcは1.45Ωから1.51Ωに0.06Ω変化した。投影値ΔRxは0.62Ωである。
(Reference Example 1)
Lithium secondary as in Example 1, except that an electrolytic solution of LiPF 6 of 0.8 mol / l, TFETFPE / PTTFE / PC = 5/4, and an additive of cyclic disulfonic acid ester of 0.8 wt% was used. A battery was prepared and measured. The actual resistance measured at 100 mHz increased by 1.95Ω. The high-frequency side negative charge transfer resistance Rct2 changed from 0.14Ω to 1.76Ω to 1.62Ω, and the low-frequency side positive charge transfer resistance Rc changed from 1.45Ω to 1.51Ω by 0.06Ω. The projection value ΔRx is 0.62Ω.
 前述の実施例、参考例を含め、評価したリチウム二次電池水準について100mHzから300kHzまで交流インピーダンス法で抵抗を評価し、図2に示す等価回路にフィッティングを行って抽出したΔRctとΔRct2の関係を図4に示す。リチウム塩濃度、電解液組成、添加剤などを変更したにもかかわらず、ΔRctとΔRct2は強い負の相関関係を示した。図4において、点(ΔRct2,ΔRct)から原点を中心とする半径1Ωの円上に放射線方向に投影して規格化し、規格化された後の値ΔRcとΔRaを得ることができる。続いて、図5に示したように、図4で規格化したΔRcとΔRaについてプロットし、ΔRa=-0.6ΔRcと表される直線に垂直に投影し、該直線上の点から原点までの距離(投影値)ΔRxを得た。図6に、100mHzで交流インピーダンス法で測定した実抵抗値の変化量ΔRallの分布を示す。図6のグラフの横軸は、図4のデータを同図のΔRa=-0.6ΔRcの線に対して垂直に投影した値(ΔRx)である。前述の直線(ΔRa=-0.6ΔRc)は、図5のデータがV字型に左右対称に分布するように、原点を通る直線の中から目視で選択した。-0.6は、各種電解液の全評価データの平均的な値の意味合いであり、電解液ごとに分別すればこの値が変わることは容易に推定できる。このため、例えば、ほぼ半分の大きさである-1/3から、この逆数である-3程度の範囲は値としてとりうると考えられる。図5より、横軸が0近傍でΔRallが最小となる傾向があることがわかる。たとえば、ΔRallを1.7Ω以下にするには、投影値ΔRxが0Ω±0.5Ωの間であることが必要である。ΔRxを0Ω±0.3Ωの間とすることでさらにΔRallを小さくすることができる。ここでは充放電サイクルを50サイクル行い抵抗変化を評価した。ストレスとしては充放電サイクルの他に、高温保管、高電圧印加なども可能である。この場合、充放電サイクル寿命との相関を別途評価する必要がある。ΔRcとΔRaを変化させる手法としては、前述のリチウム塩濃度、電解液材料、電解液組成、添加剤種類、添加量のほか、電極活物質材料、活物質厚さ、活物質面積、電極バインダー材料などがあげられる。 For the evaluated lithium secondary battery levels including the above-mentioned examples and reference examples, the resistance is evaluated by the AC impedance method from 100 mHz to 300 kHz, and the relationship between ΔRct and ΔRct2 extracted by fitting the equivalent circuit shown in FIG. As shown in FIG. Despite changing the lithium salt concentration, electrolyte composition, additives, etc., ΔRct and ΔRct2 showed a strong negative correlation. In FIG. 4, normalized values ΔRc and ΔRa can be obtained by projecting in a radiation direction from a point (ΔRct2, ΔRct) onto a circle having a radius of 1Ω centered on the origin and normalizing. Subsequently, as shown in FIG. 5, ΔRc and ΔRa normalized in FIG. 4 are plotted and projected perpendicularly to a straight line represented by ΔRa = −0.6ΔRc. A distance (projection value) ΔRx was obtained. FIG. 6 shows a distribution of the change amount ΔRall of the actual resistance value measured by the AC impedance method at 100 mHz. The horizontal axis of the graph of FIG. 6 is a value (ΔRx) obtained by projecting the data of FIG. 4 perpendicularly to the line of ΔRa = −0.6ΔRc. The aforementioned straight line (ΔRa = −0.6ΔRc) was visually selected from straight lines passing through the origin so that the data in FIG. -0.6 is the meaning of the average value of all evaluation data of various electrolytes, and it can be easily estimated that this value changes if it is classified for each electrolyte. For this reason, for example, it is considered that a value in the range from -1/3, which is approximately half the size, to -3, which is the reciprocal, can be taken as a value. FIG. 5 shows that ΔRall tends to be minimum when the horizontal axis is near zero. For example, in order to set ΔRall to 1.7Ω or less, the projection value ΔRx needs to be between 0Ω ± 0.5Ω. By setting ΔRx between 0Ω ± 0.3Ω, ΔRall can be further reduced. Here, 50 charge / discharge cycles were performed and the resistance change was evaluated. As stress, in addition to charge / discharge cycles, high temperature storage, high voltage application, and the like are possible. In this case, it is necessary to separately evaluate the correlation with the charge / discharge cycle life. As a method of changing ΔRc and ΔRa, in addition to the above-described lithium salt concentration, electrolytic solution material, electrolytic solution composition, additive type, addition amount, electrode active material, active material thickness, active material area, electrode binder material Etc.
 また、投影値ΔRxが設計範囲、もしくは他のセルの分布からの相違量(標準偏差)が逸脱している場合、セルに異常がありいずれ不良になる可能性が高いセルとして選別し、ΔRxが所定の範囲内にあるものを良品として選択することが可能となる。このように本発明の技術は、リチウムイオン二次電池の選別手段として利用することも可能である。 Further, if the projection value ΔRx deviates from the design range or the difference (standard deviation) from the distribution of other cells, the cell is selected as a cell that is likely to become defective due to an abnormality, and ΔRx is Those within a predetermined range can be selected as good products. Thus, the technology of the present invention can also be used as a means for selecting a lithium ion secondary battery.
 本発明のリチウムイオン二次電池の選別方法は、4.6V以上の高電圧の電位を示すLiCoPO、Li(Co0.5Mn0.5)O、Li(Li0.20.3Mn0.5)O等の正極材料においても有効であることが示唆される。 The selection method of the lithium ion secondary battery of the present invention is LiCoPO 4 , Li (Co 0.5 Mn 0.5 ) O 2 , Li (Li 0.2 M 0. it is suggested also effective in 3 Mn 0.5) O 2 cathode material or the like.
  1 正極活物質層
  2 負極活物質層
  3 正極集電体
  4 負極集電体
  5 セパレータ
  6 ラミネート外装体
  7 ラミネート外装体
  8 負極タブ
  9 正極タブ
DESCRIPTION OF SYMBOLS 1 Positive electrode active material layer 2 Negative electrode active material layer 3 Positive electrode collector 4 Negative electrode collector 5 Separator 6 Laminate exterior 7 Laminate exterior 8 Negative electrode tab 9 Positive electrode tab

Claims (16)

  1.  正極活物質を含む正極と、負極活物質を含む負極と、非水電解溶媒を含む電解液と、を有するリチウム二次電池であって、
     前記正極の電荷移動抵抗の変化量と前記負極の電荷移動抵抗の変化量を直交する二軸とする平面上で、所定のストレス印加を行った前後の前記正極の電荷移動抵抗の変化量(ΔRct)と前記負極の電荷移動抵抗の変化量(ΔRct2)を表す点(ΔRct2,ΔRct)を、原点を中心とする半径が1Ωの円上に放射線方向に投影して規格化した点を点(ΔRa,ΔRc)とし、
     規格化後の正極の電荷移動抵抗の変化量と規格化後の負極の電荷移動抵抗の変化量を直交する二軸とする平面上で、点(ΔRa,ΔRc)を、原点を通る直線に対して垂直に投影した点から原点までの距離が、所定の範囲内にあることを特徴とするリチウム二次電池。
    A lithium secondary battery having a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolytic solution including a nonaqueous electrolytic solvent,
    A change amount (ΔRct) of the positive electrode charge transfer resistance before and after a predetermined stress application on a plane having two axes orthogonal to each other, the change amount of the charge transfer resistance of the positive electrode and the change amount of the charge transfer resistance of the negative electrode ) And a point (ΔRct2, ΔRct) representing the amount of change (ΔRct2) in the charge transfer resistance of the negative electrode is projected to a point (ΔRa , ΔRc)
    A point (ΔRa, ΔRc) is defined with respect to a straight line passing through the origin on a plane having two axes orthogonal to each other. A lithium secondary battery characterized in that the distance from the vertically projected point to the origin is within a predetermined range.
  2.  前記原点を通る直線が、ΔRa=m・ΔRc(ただし、―3≦m≦-1/3)で表されることを特徴とする、請求項1に記載のリチウム二次電池。 2. The lithium secondary battery according to claim 1, wherein a straight line passing through the origin is represented by ΔRa = m · ΔRc (where −3 ≦ m ≦ −1 / 3).
  3.  前記原点を通る直線が、ΔRa=-0.6ΔRcで表されることを特徴とする請求項1または2に記載のリチウム二次電池。 3. The lithium secondary battery according to claim 1, wherein a straight line passing through the origin is expressed by ΔRa = −0.6ΔRc.
  4.  前記所定の範囲が、0±0.5Ωであることを特徴とする請求項1~3のいずれか1項に記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 3, wherein the predetermined range is 0 ± 0.5Ω.
  5.  前記所定の範囲が、0±0.3Ωであることを特徴とする請求項1~4のいずれか1項に記載のリチウム二次電池。 5. The lithium secondary battery according to claim 1, wherein the predetermined range is 0 ± 0.3Ω.
  6.  前記電荷移動抵抗が、所定の周波数領域で正極と負極との間のインピーダンスを測定し複素平面上に結果を記述したときに描くカーブを、抵抗R1と容量C1が並列接続した素子1と、抵抗R2と容量C2とが並列接続した素子2と、抵抗R0とが直列接続した回路にフィッティングすることで得られたR1とR2であることを特徴とする請求項1~5のいずれか1項に記載のリチウム二次電池。 The charge transfer resistor measures the impedance between the positive electrode and the negative electrode in a predetermined frequency region and draws a curve drawn when describing the result on the complex plane, the element 1 in which the resistor R1 and the capacitor C1 are connected in parallel, and the resistor 6. R1 and R2 obtained by fitting into a circuit in which an element 2 in which R2 and a capacitor C2 are connected in parallel and a resistor R0 are connected in series are provided. The lithium secondary battery as described.
  7.  前記電荷移動抵抗が、所定の周波数領域で正極と負極との間のインピーダンスを測定し複素平面上に結果を記述したときに描くカーブを、抵抗R1と分布定数で表現された容量C1が並列接続した素子1と、抵抗R2と分布定数で表現された容量C2とが並列接続した素子2と、抵抗R0とが直列接続した回路にフィッティングすることで得られたR1とR2であることを特徴とする請求項1~5のいずれか1項に記載のリチウム二次電池。 A curve drawn when the charge transfer resistance measures the impedance between the positive electrode and the negative electrode in a predetermined frequency range and describes the result on the complex plane, the resistor R1 and the capacitor C1 expressed by a distributed constant are connected in parallel. R1 and R2 obtained by fitting into a circuit in which the element 1, the resistor R2 and the capacitor C2 represented by the distributed constant are connected in parallel, and the resistor R0 are connected in series The lithium secondary battery according to any one of claims 1 to 5, wherein:
  8.  前記電荷移動抵抗が、さらに導電性電極を設置し、前記正極と前記導電性電極、および前記負極と前記導電性電極との間で所定の周波数領域でインピーダンスを測定し複素平面上に結果を記述したときに描く半円弧または半楕円弧のそれぞれの直径または楕円径として得られることを特徴とする請求項1~5のいずれか1項に記載のリチウム二次電池。 The charge transfer resistance further installs a conductive electrode, measures the impedance in a predetermined frequency region between the positive electrode and the conductive electrode, and the negative electrode and the conductive electrode, and describes the result on a complex plane 6. The lithium secondary battery according to claim 1, wherein the lithium secondary battery is obtained as a diameter or an ellipse diameter of a semicircular arc or a semielliptical arc drawn at the time.
  9.  前記正極活物質は、リチウムに対して4.5V以上の電位で動作することを特徴とする請求項1~8のいずれか1項に記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 8, wherein the positive electrode active material operates at a potential of 4.5 V or more with respect to lithium.
  10.  前記正極活物質が下記式(6)で表されるリチウムマンガン複合酸化物を含む請求項1~9のいずれか1項に記載のリチウム二次電池。
       Li(MMn2-x-y)(O4-w)      (6)
    (式中、0.4≦x≦1.2、0≦y、x+y<2、0≦a≦1.2、0≦w≦1である。Mは、Co、Ni、Fe、Cr及びCuからなる群より選ばれる少なくとも一種である。Yは、Li、B、Na、Al、Mg、Ti、Si、K及びCaからなる群より選ばれる少なくとも一種である。Zは、F及びClからなる群より選ばれる少なくとも一種である。)
    The lithium secondary battery according to any one of claims 1 to 9, wherein the positive electrode active material contains a lithium manganese composite oxide represented by the following formula (6).
    Li a (M x Mn 2-xy Y y ) (O 4-w Z w ) (6)
    (In the formula, 0.4 ≦ x ≦ 1.2, 0 ≦ y, x + y <2, 0 ≦ a ≦ 1.2, 0 ≦ w ≦ 1. M is Co, Ni, Fe, Cr and Cu. Y is at least one selected from the group consisting of Li, B, Na, Al, Mg, Ti, Si, K and Ca.Z is composed of F and Cl. At least one selected from the group.)
  11.  前記式(6)で表されるリチウムマンガン複合酸化物が、Mとして少なくともNiを含む請求項10に記載のリチウム二次電池。 The lithium secondary battery according to claim 10, wherein the lithium manganese composite oxide represented by the formula (6) contains at least Ni as M.
  12.  前記正極活物質が、下記式(7)、(8)又は(9)で表されるリチウム金属複合酸化物を含む請求項1~11のいずれか1項に記載のリチウム二次電池。
       LiMPO   (7)
    (式(7)中、MがCo及びNiのうちの少なくとも一種である。)
       Li(M1-zMn)O   (8)
    (式(8)中、0.7≧z≧0.33、MがLi、Co及びNiのうちの少なくとも一種である。)
       Li(Li1-x-zMn)O   (9)
    (式(9)中、0.3>x≧0.1、0.7≧z≧0.33、MはCo及びNiのうちの少なくとも一種である。)
    The lithium secondary battery according to any one of claims 1 to 11, wherein the positive electrode active material includes a lithium metal composite oxide represented by the following formula (7), (8), or (9).
    LiMPO 4 (7)
    (In Formula (7), M is at least one of Co and Ni.)
    Li (M 1-z Mn z ) O 2 (8)
    (In formula (8), 0.7 ≧ z ≧ 0.33, and M is at least one of Li, Co, and Ni.)
    Li (Li x M 1-x -z Mn z) O 2 (9)
    (In formula (9), 0.3> x ≧ 0.1, 0.7 ≧ z ≧ 0.33, and M is at least one of Co and Ni.)
  13.  さらに、前記正極と前記負極と前記電解液を内包する外装体を有し、該外装体がアルミニウムラミネートフィルムである請求項1~12のいずれか1項に記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 12, further comprising an outer package including the positive electrode, the negative electrode, and the electrolyte, wherein the outer package is an aluminum laminate film.
  14.  正極活物質を含む正極と、負極活物質を含む負極と、非水電解溶媒を含む電解液と、を有するリチウム二次電池の選別方法であって、
     前記正極の電荷移動抵抗の変化量と前記負極の電荷移動抵抗の変化量を直交する二軸とする平面上で、所定のストレス印加を行った前後の前記正極の電荷移動抵抗の変化量(ΔRct)と前記負極の電荷移動抵抗の変化量(ΔRct2)を表す点(ΔRct2,ΔRct)を、原点を中心とする半径が1Ωの円上に放射線方向に投影して規格化した点を点(ΔRa,ΔRc)とし、
     規格化後の正極の電荷移動抵抗の変化量と規格化後の負極の電荷移動抵抗の変化量を直交する二軸とする平面上で、点(ΔRa,ΔRc)を、原点を通る直線に対して垂直に投影した点から原点までの距離が、所定の範囲内にあるものを選択することを特徴とするリチウム二次電池の選別方法。
    A method for selecting a lithium secondary battery, comprising: a positive electrode including a positive electrode active material; a negative electrode including a negative electrode active material; and an electrolytic solution including a nonaqueous electrolytic solvent,
    A change amount (ΔRct) of the positive electrode charge transfer resistance before and after a predetermined stress application on a plane having two axes orthogonal to each other, the change amount of the charge transfer resistance of the positive electrode and the change amount of the charge transfer resistance of the negative electrode ) And a point (ΔRct2, ΔRct) representing the amount of change (ΔRct2) in the charge transfer resistance of the negative electrode is projected to a point (ΔRa , ΔRc)
    A point (ΔRa, ΔRc) is defined with respect to a straight line passing through the origin on a plane having two axes perpendicular to the amount of change in charge transfer resistance of the positive electrode after normalization and the amount of change in charge transfer resistance of the negative electrode after normalization. A method for selecting a lithium secondary battery, wherein the distance between the point projected vertically and the origin is within a predetermined range.
  15.  前記所定の範囲を複数の電池特性の統計値を用いて設定することを特徴とする請求項14に記載のリチウム二次電池の選別方法。 15. The method of selecting a lithium secondary battery according to claim 14, wherein the predetermined range is set using a plurality of statistical values of battery characteristics.
  16.  正極活物質を含む正極と、負極活物質を含む負極と、非水電解溶媒を含む電解液と、を有するリチウム二次電池の製造方法であって、
     前記正極の電荷移動抵抗の変化量と前記負極の電荷移動抵抗の変化量を直交する二軸とする平面上で、所定のストレス印加を行った前後の前記正極の電荷移動抵抗の変化量(ΔRct)と前記負極の電荷移動抵抗の変化量(ΔRct2)を表す点(ΔRct2,ΔRct)を、原点を中心とする半径が1Ωの円上に放射線方向に投影して規格化した点を点(ΔRa,ΔRc)とし、
     規格化後の正極の電荷移動抵抗の変化量と規格化後の負極の電荷移動抵抗の変化量を直交する二軸とする平面上で、点(ΔRa,ΔRc)を、原点を通る直線に対して垂直に投影した点から原点までの距離が、所定の範囲内になるように調整する工程を含むリチウム二次電池の製造方法。
    A method for producing a lithium secondary battery, comprising: a positive electrode including a positive electrode active material; a negative electrode including a negative electrode active material; and an electrolytic solution including a nonaqueous electrolytic solvent,
    A change amount (ΔRct) of the positive electrode charge transfer resistance before and after a predetermined stress application on a plane having two axes orthogonal to each other, the change amount of the charge transfer resistance of the positive electrode and the change amount of the charge transfer resistance of the negative electrode ) And a point (ΔRct2, ΔRct) representing the amount of change (ΔRct2) in the charge transfer resistance of the negative electrode is projected to a point (ΔRa , ΔRc)
    A point (ΔRa, ΔRc) is defined with respect to a straight line passing through the origin on a plane having two axes orthogonal to each other. A method for manufacturing a lithium secondary battery, including a step of adjusting a distance from a vertically projected point to an origin so as to be within a predetermined range.
PCT/JP2013/084154 2012-12-26 2013-12-19 Lithium secondary battery and method for selecting same WO2014103893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014554392A JPWO2014103893A1 (en) 2012-12-26 2013-12-19 Lithium secondary battery and its sorting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-283733 2012-12-26
JP2012283733 2012-12-26

Publications (1)

Publication Number Publication Date
WO2014103893A1 true WO2014103893A1 (en) 2014-07-03

Family

ID=51020980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084154 WO2014103893A1 (en) 2012-12-26 2013-12-19 Lithium secondary battery and method for selecting same

Country Status (2)

Country Link
JP (1) JPWO2014103893A1 (en)
WO (1) WO2014103893A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175217A1 (en) * 2015-04-30 2016-11-03 日本電気株式会社 Electrolyte solution for secondary batteries, and secondary battery
WO2017056981A1 (en) * 2015-09-28 2017-04-06 Necエナジーデバイス株式会社 Lithium ion secondary battery, method for producing same, and method for evaluating same
CN110291678A (en) * 2017-02-22 2019-09-27 远景Aesc能源元器件有限公司 The application method of secondary cell and secondary cell
CN110611098A (en) * 2019-10-23 2019-12-24 陕西煤业化工技术研究院有限责任公司 High-radiation and high-tap-density nickel-cobalt lithium aluminate precursor and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255848A (en) * 1997-03-14 1998-09-25 Asahi Chem Ind Co Ltd High temperature nonaqueous secondary battery
JP2000173609A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2002050407A (en) * 2000-08-02 2002-02-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell and control method of charge and discharge
JP2004014270A (en) * 2002-06-06 2004-01-15 Nec Corp Rechargeable battery
JP2007103065A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and evaluation method
JP2009097878A (en) * 2007-10-12 2009-05-07 Fujitsu Ltd Measuring method of battery, and manufacturing method of battery
JP2010219011A (en) * 2009-03-19 2010-09-30 Nec Energy Devices Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255848A (en) * 1997-03-14 1998-09-25 Asahi Chem Ind Co Ltd High temperature nonaqueous secondary battery
JP2000173609A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2002050407A (en) * 2000-08-02 2002-02-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell and control method of charge and discharge
JP2004014270A (en) * 2002-06-06 2004-01-15 Nec Corp Rechargeable battery
JP2007103065A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and evaluation method
JP2009097878A (en) * 2007-10-12 2009-05-07 Fujitsu Ltd Measuring method of battery, and manufacturing method of battery
JP2010219011A (en) * 2009-03-19 2010-09-30 Nec Energy Devices Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175217A1 (en) * 2015-04-30 2016-11-03 日本電気株式会社 Electrolyte solution for secondary batteries, and secondary battery
JPWO2016175217A1 (en) * 2015-04-30 2018-02-22 日本電気株式会社 Secondary battery electrolyte and secondary battery
WO2017056981A1 (en) * 2015-09-28 2017-04-06 Necエナジーデバイス株式会社 Lithium ion secondary battery, method for producing same, and method for evaluating same
JPWO2017056981A1 (en) * 2015-09-28 2018-07-19 Necエナジーデバイス株式会社 Lithium ion secondary battery, method for producing the same, and method for evaluating the same
CN110291678A (en) * 2017-02-22 2019-09-27 远景Aesc能源元器件有限公司 The application method of secondary cell and secondary cell
CN110611098A (en) * 2019-10-23 2019-12-24 陕西煤业化工技术研究院有限责任公司 High-radiation and high-tap-density nickel-cobalt lithium aluminate precursor and preparation method thereof
CN110611098B (en) * 2019-10-23 2022-04-01 陕西煤业化工技术研究院有限责任公司 High-radiation and high-tap-density nickel-cobalt lithium aluminate precursor and preparation method thereof

Also Published As

Publication number Publication date
JPWO2014103893A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6138490B2 (en) Lithium secondary battery
JP6756268B2 (en) Secondary battery
JP6428609B2 (en) Secondary battery electrolyte and secondary battery
JP6079770B2 (en) Lithium secondary battery
US10003100B2 (en) Nonaqueous electrolyte with fluorine containing ether compound for lithium secondary battery
JPWO2016010090A1 (en) Electrolytic solution and secondary battery using the same
WO2013161774A1 (en) Lithium secondary battery
JPWO2012127717A1 (en) Secondary battery
JP6179232B2 (en) Charging method of lithium secondary battery
CN109075315B (en) Electrode, method for producing same, and secondary battery
JP6292120B2 (en) Lithium secondary battery and manufacturing method thereof
WO2014103893A1 (en) Lithium secondary battery and method for selecting same
JP6500775B2 (en) Lithium ion secondary battery
JP6601033B2 (en) Power storage device and manufacturing method thereof
US11171356B2 (en) Secondary battery and method for using secondary battery
US11469454B2 (en) Secondary battery and method for using secondary battery
JP6179511B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554392

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869009

Country of ref document: EP

Kind code of ref document: A1