WO2022255665A1 - 양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리 - Google Patents

양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리 Download PDF

Info

Publication number
WO2022255665A1
WO2022255665A1 PCT/KR2022/006460 KR2022006460W WO2022255665A1 WO 2022255665 A1 WO2022255665 A1 WO 2022255665A1 KR 2022006460 W KR2022006460 W KR 2022006460W WO 2022255665 A1 WO2022255665 A1 WO 2022255665A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
parts
weight
cathode
active material
Prior art date
Application number
PCT/KR2022/006460
Other languages
English (en)
French (fr)
Inventor
김지혜
오상승
김혜현
조치호
유태구
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22816324.2A priority Critical patent/EP4199156A1/en
Priority to CN202280006385.5A priority patent/CN116325212A/zh
Priority to US18/026,863 priority patent/US20230335742A1/en
Priority to JP2023517380A priority patent/JP2023542881A/ja
Publication of WO2022255665A1 publication Critical patent/WO2022255665A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a master batch for a cathode additive comprising a high content of an irreversible additive together with a cathode active material and a cathode slurry for a lithium secondary battery containing the master batch.
  • lithium secondary batteries having high energy density and operating potential, long cycle life, and low self-discharge rate have been commercialized and widely used.
  • lithium secondary batteries are used as a power source for medium-large devices such as electric vehicles, high capacity, high energy density, and low cost of lithium secondary batteries are further demanded, and higher irreversible capacity is required for irreversible additives used in electrodes. something is being demanded
  • irreversible additives such as Li 6 CoO 4 have been developed.
  • conventional irreversible additives are structurally unstable and can generate a large amount of oxygen gas (O 2 ) as the secondary battery is charged, as described below.
  • oxygen gas O 2
  • the non-reversible additive when used in a low amount, in particular, in a small amount of 2% by weight or less based on the total weight of the positive electrode slurry, it is difficult to ensure dispersibility in the positive electrode slurry, which lowers the reliability of the lithium secondary battery, and in the manufacturing process of the positive electrode, low particle size irreversible additives Since additives scatter and increase loss, there is a problem in that the degree of freedom in process design is lowered.
  • an object of the present invention is to provide a positive electrode slurry containing a significantly small amount of irreversible additives at a high dispersion degree without loss during the manufacture of a positive electrode and a positive electrode for a lithium secondary battery manufactured using the same.
  • the present invention in one embodiment, the present invention
  • a master batch for a cathode additive comprising 0.5 to 50 parts by weight of lithium cobalt oxide represented by Formula 1 based on 100 parts by weight of the first cathode active material:
  • M 1 is W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, and At least one element selected from the group consisting of Mo,
  • p and q are 5 ⁇ p ⁇ 7 and 0 ⁇ q ⁇ 0.4.
  • the master batch for the positive electrode additive may include 1 to 10 parts by weight of the first binder based on 100 parts by weight of the first positive electrode active material.
  • the average particle size (D50) of the master batch for the positive electrode additive may be 0.05 mm to 10 mm, and the average particle size (D50) of the first positive electrode active material contained in the master batch is the first positive electrode active material of 0.5 to 100 ⁇ m, ,
  • the average particle size (D50) of the lithium cobalt oxide is 1 to 200 ⁇ m, but the average particle size of the lithium cobalt oxide may be greater than the average particle size of the first positive electrode active material.
  • a master batch for a cathode additive for a lithium secondary battery according to the present invention comprising 0.5 to 50 parts by weight of lithium cobalt oxide represented by Formula 1 based on 100 parts by weight of the first cathode active material;
  • a cathode slurry for a lithium secondary battery comprising a second binder is provided:
  • M 1 is W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, and At least one element selected from the group consisting of Mo,
  • p and q are 5 ⁇ p ⁇ 7 and 0 ⁇ q ⁇ 0.4.
  • lithium cobalt oxide contained in the master batch and represented by Chemical Formula 1 may be included in an amount of 0.05 to 2.0 parts by weight based on 100 parts by weight of the entire positive electrode slurry.
  • the master batch for the positive electrode additive may be included in an amount of 1 to 150 parts by weight based on 100 parts by weight of the second positive electrode active material.
  • first positive electrode active material and the second positive electrode active material may each include a lithium metal composite oxide represented by Formula 2 below:
  • M 2 is W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, At least one element selected from the group consisting of Mg, B, and Mo, and x, y, z, w, and v are 1.0 ⁇ x ⁇ 1.30, 0.1 ⁇ y ⁇ 1, 0.1 ⁇ z ⁇ 0.6, 0.1 ⁇ w, respectively. ⁇ 0.6, 0 ⁇ v ⁇ 0.2, 1.5 ⁇ u ⁇ 5.
  • the conductive material may be included in an amount of 1 to 5 parts by weight based on 100 parts by weight of the total amount of the positive electrode slurry.
  • the content of the second binder may be 1 to 5 parts by weight based on 100 parts by weight of the total amount of the positive electrode slurry.
  • the first positive electrode mixture layer and the second positive electrode mixture layer each provide a positive electrode for a lithium secondary battery formed by using the positive electrode slurry for a lithium secondary battery according to the present invention.
  • the content of lithium cobalt oxide represented by Formula 1 contained in the first positive electrode mixture layer is 0.5 to 2.0 parts by weight based on 100 parts by weight of the first positive electrode mixture layer,
  • the amount of lithium cobalt oxide represented by Chemical Formula 1 contained in the second positive electrode mixture layer may be 0.01 to 0.5 parts by weight based on 100 parts by weight of the second positive electrode mixture layer:
  • M 1 is W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, and At least one element selected from the group consisting of Mo,
  • p and q are 5 ⁇ p ⁇ 7 and 0 ⁇ q ⁇ 0.4.
  • the total content of lithium cobalt oxide contained in the first positive electrode mixture layer and the second positive electrode mixture layer is 0.5 parts by weight or less based on 100 parts by weight of the total positive electrode active materials included in the first positive electrode mixture layer and the second positive electrode mixture layer.
  • an average thickness ratio of the second positive electrode mixture layer to the first positive electrode mixture layer may be 0.1 to 0.9.
  • anode according to the present invention cathode; And it provides a lithium secondary battery comprising a separator positioned between the positive electrode and the negative electrode.
  • the master batch for a cathode additive according to the present invention contains a high content of irreversible additives together with a cathode active material, so that a small amount of irreversible additives can be dispersed in a cathode slurry with high dispersion without loss during cathode production.
  • the anode not only has high electrical properties and reliability, but also has the advantage of improving design freedom when manufacturing the anode.
  • the term "comprises” or “has” is intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
  • a part such as a layer, film, region, plate, etc. when a part such as a layer, film, region, plate, etc. is described as being “on” another part, this includes not only the case where it is “directly on” the other part, but also the case where another part is present in the middle thereof. . Conversely, when a part such as a layer, film, region, plate, or the like is described as being “under” another part, this includes not only being “directly under” the other part, but also the case where there is another part in the middle. In addition, in the present application, being disposed “on” may include the case of being disposed not only on the upper part but also on the lower part.
  • master batch for cathode additive is a solid composition in which components used in manufacturing a cathode of a lithium secondary battery are formed in the form of a mm-sized pellet, and an irreversible additive in the form of fine particles is used as the actual cathode mixture. It is included in a higher content than the content contained in the layer. In this case, “high content” may mean twice or more of the content included in the positive electrode mixture layer.
  • main component is 50% by weight or more, 60% by weight or more, 70% by weight or more, 80% by weight or more, 90% by weight or more, 95% by weight or more, or 97.5% by weight or more based on the total weight of the composition or specific component. It may mean more than % by weight, and in some cases, it may mean the case of constituting the entire composition or specific component, that is, 100% by weight.
  • Ah is a capacity unit of a lithium secondary battery, and is referred to as an "ampere hour” and means an amount of current per hour. For example, if the battery capacity is “3000 mAh”, it means that it can be discharged for 1 hour with a current of 3000 mA.
  • the present invention in one embodiment, the present invention
  • a master batch for a cathode additive comprising 0.5 to 50 parts by weight of lithium cobalt oxide represented by Formula 1 based on 100 parts by weight of the first cathode active material:
  • M 1 is W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, and At least one element selected from the group consisting of Mo,
  • p and q are 5 ⁇ p ⁇ 7 and 0 ⁇ q ⁇ 0.4.
  • the master batch for a cathode additive according to the present invention is used for manufacturing a cathode mixture layer of a cathode for a lithium secondary battery.
  • an irreversible additive is included in an amount of 2% by weight or less based on the total weight of the positive electrode composite material layer when manufacturing the positive electrode composite material layer, the amount of the irreversible additive is significantly small, so that a large amount is lost during the process, and it is difficult to uniformly disperse the additive.
  • the master batch for the positive electrode additive according to the present invention contains a high content of lithium cobalt oxide represented by Chemical Formula 1 used as an irreversible additive together with the first positive electrode active material, so that the positive electrode mixture layer is prepared without loss of irreversible additives in the positive electrode slurry. can be evenly distributed.
  • the lithium cobalt oxide is included in the master batch as an irreversible additive providing irreversible capacity together with a positive electrode active material exhibiting electrical activity, and includes lithium cobalt oxide represented by Formula 1 below:
  • M 1 is W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, and At least one element selected from the group consisting of Mo,
  • the lithium cobalt oxide may be applied without particular limitation as long as it is a lithium cobalt oxide represented by Formula 1, but preferably, Li 6 CoO 4 , Li 6 Co 0.5 Zn 0.5 O 4 , Li 6 Co 0.7 Zn 0.3 O 4 etc. may be included.
  • the lithium cobalt oxide represented by Chemical Formula 1 includes lithium cobalt oxide (Li x CoO 4 , 5 ⁇ p ⁇ 7) that releases a large amount of lithium ions, or a structure in which a transition metal is doped at the cobalt position of the lithium cobalt oxide.
  • the amount of the transition metal to be doped may be 0.4 mole fraction or less (q ⁇ 0.4), specifically 20 to 40 mole fraction (0.2 ⁇ q ⁇ 0.4); 10 to 30 mole fraction (0.1 ⁇ q ⁇ 0.3); 15 to 30 mole fraction (0.15 ⁇ q ⁇ 0.3); 30 to 40 mole fraction (0.3 ⁇ q ⁇ 0.4); or 5 to 20 mole fraction (0.05 ⁇ q ⁇ 0.2).
  • the present invention can reduce the amount of oxygen gas generated accordingly while releasing a large amount of lithium ions by adjusting the doping amount of metal within the above molar fraction range.
  • the lithium cobalt oxide represented by Chemical Formula 1 may have a tetragonal crystal structure, and among them, may have a space group of P4 2 /nmc.
  • the lithium cobalt oxide represented by Chemical Formula 1 may be included in the master batch in an amount of 0.5 to 50 parts by weight based on 100 parts by weight of the first positive electrode active material, specifically, 0.5 to 40 parts by weight based on 100 parts by weight of the first positive electrode active material; 0.5 to 30 parts by weight; 0.5 to 25 parts by weight; 0.5 to 20 parts by weight; 0.5 to 10 parts by weight; 2 to 30 parts by weight; 2 to 15 parts by weight; 8 to 15 parts by weight; 8 to 28 parts by weight; 15 to 30 parts by weight; 9 to 22 parts by weight; or 4 to 11 parts by weight in the master batch.
  • the amount of the master batch used in the cathode slurry is significantly reduced due to the excessive amount of irreversible additives included in the master batch, thereby preventing uniform dispersion. And it is possible to prevent the decrease in master batch manufacturing efficiency due to a small amount of irreversible additives.
  • the average particle size (D50) of the master batch for the cathode additive may be 0.05 mm to 10 mm, specifically 0.1 mm to 10 mm; 0.5 mm to 10 mm; 1 mm to 10 mm; 0.1 mm to 2 mm; 5 mm to 10 mm; 1 mm to 5 mm; or 3 mm to 7 mm; it may be.
  • the average particle size (D50) of the master batch for the cathode additive within the above range, it is possible to prevent loss due to scattering of the master batch and change in the composition of the cathode slurry during manufacture of the cathode slurry, while improving the efficiency of the work process can make it
  • the first positive electrode active material has an average particle size (D50) of 0.5 to 100 ⁇ m, and the average particle size (D50) of lithium cobalt oxide is 1 to 200 ⁇ m. 1 It may be larger than the average particle size of the cathode active material.
  • the first cathode active material is 1 to 100 ⁇ m; 5 to 100 ⁇ m; 10 to 100 ⁇ m; 25 to 100 ⁇ m; 50 to 100 ⁇ m; 10 to 50 ⁇ m; 5 to 10 ⁇ m; or 0.5 to 5 ⁇ m; may have an average particle size (D50) of 5 to 200 ⁇ m; 10 to 200 ⁇ m; 50 to 200 ⁇ m; 100 to 200 ⁇ m; 150 to 200 ⁇ m; 110 to 150 ⁇ m; 80 to 120 ⁇ m; 50 to 100 ⁇ m; 10 to 50 ⁇ m; 5 to 20 ⁇ m; 40 to 60 ⁇ m; 50 to 80 ⁇ m; Or 1 to 5 ⁇ m; may have an average particle size (D50).
  • D50 average particle size
  • the present invention can increase the charge and discharge capacity and efficiency of a lithium secondary battery manufactured by controlling the average particle size (D50) of the first cathode active material and lithium cobalt oxide within the above range, and lithium that releases a large amount of lithium ions.
  • the amount of oxygen gas generated from cobalt oxide can be reduced.
  • side reactions of the irreversible additive may be reduced by containing an irreversible additive larger than that of the first positive electrode active material.
  • the master batch for a cathode additive according to the present invention is formed in the form of pellets of a millimeter size level containing a first cathode active material and lithium cobalt oxide represented by Formula 1 by adding 100 parts by weight of the first cathode active material contained in the master batch. It may further include 1 to 10 parts by weight of the first binder, specifically, 1 to 5 parts by weight based on 100 parts by weight of the first positive electrode active material; 5 to 10 parts by weight; 3 to 8 parts by weight; Alternatively, 4 to 6 parts by weight of the first binder may be further included.
  • the first binder may be used without particular limitation as long as it can be commonly used in the positive electrode mixture layer.
  • the first binder may be polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-co-HFP), polyvinylidenefluoride (PVdF), polyacrylonitrile, or polymethylmethacrylic acid. It may include at least one resin selected from the group consisting of polymethylmethacrylate and copolymers thereof.
  • the binder may include polyvinylidenefluoride.
  • the present invention can disperse a small amount of irreversible additives in the cathode slurry with high dispersion without loss during cathode manufacturing by controlling the composition of the master batch for cathode additives, thereby improving the performance and reliability of the manufactured lithium secondary battery can make it
  • a master batch for a cathode additive for a lithium secondary battery according to the present invention comprising 0.5 to 50 parts by weight of lithium cobalt oxide represented by Formula 1 based on 100 parts by weight of the first cathode active material;
  • a cathode slurry for a lithium secondary battery comprising a second binder is provided:
  • M 1 is W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, and At least one element selected from the group consisting of Mo,
  • p and q are 5 ⁇ p ⁇ 7 and 0 ⁇ q ⁇ 0.4.
  • the positive electrode slurry for a lithium secondary battery according to the present invention is for preparing a positive electrode mixture layer provided in a positive electrode for a lithium secondary battery, and includes a second positive electrode active material together with the aforementioned master batch for a positive electrode additive; challenging agent; and a second binder.
  • the positive electrode slurry may include 1 to 150 parts by weight of the above-mentioned master batch for positive electrode additive according to the present invention based on 100 parts by weight of the second positive electrode active material.
  • the cathode slurry includes 120 to 150 parts by weight of a master batch for cathode additives based on 100 parts by weight of the second cathode active material; 1 to 100 parts by weight; 1 to 50 parts by weight; 1 to 30 parts by weight; 1 to 20 parts by weight; 1 to 9 parts by weight; 2 to 19 parts by weight; 4 to 17 parts by weight; 20 to 30 parts by weight; 10 to 20 parts by weight; or 1 to 7 parts by weight.
  • the cathode slurry may include 0.05 to 2.0 parts by weight of lithium cobalt oxide represented by Formula 1, which is an irreversible additive, in the master batch, based on 100 parts by weight of the total amount of the cathode slurry.
  • the positive electrode slurry contains 0.05 to 1.5 parts by weight of lithium cobalt oxide represented by Chemical Formula 1 based on 100 parts by weight of the total amount of the positive electrode slurry; 0.05 to 1.0 parts by weight 0.05 to 0.5 parts by weight; 0.1 to 1.5 parts by weight; 0.1 to 1.0 parts by weight; or 0.1 to 0.9 parts by weight;
  • the present invention increases the dispersibility of lithium cobalt oxide in the cathode slurry by controlling the content of the master batch for cathode additives and the lithium cobalt oxide represented by Chemical Formula 1 in the cathode slurry to increase the dispersibility of the lithium secondary battery.
  • the charging and discharging capacity can be maximized.
  • the positive electrode slurry according to the present invention is a material capable of reversible intercalation and deintercalation, and includes a first positive electrode active material and a second positive electrode active material contained in a master batch for a positive electrode additive, wherein the first
  • the cathode active material and the second cathode active material each include a lithium metal composite oxide represented by Chemical Formula 2, and the components may be the same or different:
  • M 2 is W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, At least one element selected from the group consisting of Mg, B, and Mo, and x, y, z, w, and v are 1.0 ⁇ x ⁇ 1.30, 0.1 ⁇ y ⁇ 1, 0.1 ⁇ z ⁇ 0.6, 0.1 ⁇ w, respectively. ⁇ 0.6, 0 ⁇ v ⁇ 0.2, 1.5 ⁇ u ⁇ 5.
  • the lithium metal composite oxide represented by Chemical Formula 2 is a composite metal oxide containing lithium, nickel, cobalt, and manganese, and may have a doped form of another transition metal (M 2 ) in some cases.
  • the first positive electrode active material and the second positive electrode active material may each independently be LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.9 Co 0.05 Mn 0.05 O 2 , LiNi 0.8 Co 0.1 Mn 0.05 Al 0.05 O 2 and LiNi 0.7 Co 0.1 Mn 0.1 Al 0.1 O 2 .
  • the first positive electrode active material and the second positive electrode active material each use LiNi 0.6 Co 0.2 Mn 0.2 O 2 and LiNi 0.8 Co 0.1 Mn 0.1 O 2 alone as lithium metal composite metal oxides represented by Chemical Formula 2, respectively, or or can be used in combination.
  • the total content of the first positive electrode active material and the second positive electrode active material may be 85 to 95 parts by weight based on 100 parts by weight of the positive electrode slurry, specifically 88 to 95 parts by weight, 90 to 95 parts by weight, 86 to 90 parts by weight part or 92 to 95 parts by weight.
  • the positive electrode slurry may further include a conductive material and a second binder together with the first positive electrode active material and the second positive electrode active material, and in some cases may further include other additives capable of improving physical properties of the positive electrode.
  • the conductive material may be used to improve performance such as electrical conductivity of the anode, and at least one carbon-based material selected from the group consisting of natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber can be used
  • the conductive material may include acetylene black.
  • the conductive material may be included in an amount of 1 to 5 parts by weight, specifically 1 to 4 parts by weight, based on 100 parts by weight of the total amount of the positive electrode slurry; Alternatively, 2 to 4 parts by weight of the conductive material may be included.
  • the second binder may include the same or different components as the first binder contained in the master batch for the positive electrode additive.
  • the second binder includes polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-co-HFP), polyvinylidenefluoride (PVdF), polyacrylonitrile, polymethyl It may include at least one resin selected from the group consisting of methacrylate (polymethylmethacrylate) and copolymers thereof.
  • the second binder may include polyvinylidenefluoride.
  • the second binder may be included in an amount of 1 to 5 parts by weight, specifically 1 to 4 parts by weight, based on 100 parts by weight of the positive electrode slurry; Or it may be included in an amount of 2 to 4 parts by weight.
  • the total amount of the first binder and the second binder contained in the master batch for the cathode additive may not exceed 6 parts by weight based on 100 parts by weight of the total amount of the cathode slurry.
  • the present invention can provide a positive electrode slurry in which a small amount of irreversible additives are quantitatively and uniformly dispersed without loss by controlling the composition of the positive electrode slurry for a lithium secondary battery as described above, the positive electrode for a lithium secondary battery manufactured using the same can be electrically In addition to high physical properties and reliability, there is an advantage in that the degree of freedom in design can be improved when manufacturing a cathode.
  • the first positive electrode mixture layer and the second positive electrode mixture layer each provide a positive electrode for a lithium secondary battery formed by using the above-described positive electrode slurry for a lithium secondary battery according to the present invention.
  • a positive electrode for a lithium secondary battery according to the present invention includes a first positive electrode mixture layer and a second positive electrode mixture layer prepared by applying, drying, and pressing the positive electrode slurry according to the present invention described above on a positive electrode current collector.
  • the first positive electrode mixture layer and the second positive electrode mixture layer contain the content of lithium cobalt oxide represented by Chemical Formula 1 included in each layer to increase the irreversible efficiency of lithium cobalt oxide represented by Chemical Formula 1 below, which is an irreversible additive during initial charging and discharging. This can be different:
  • M 1 is W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, and At least one element selected from the group consisting of Mo,
  • p and q are 5 ⁇ p ⁇ 7 and 0 ⁇ q ⁇ 0.4.
  • the amount of lithium cobalt oxide represented by Chemical Formula 1 contained in the first positive electrode mixture layer may be 0.5 to 2.0 parts by weight based on 100 parts by weight of the first positive electrode mixture layer;
  • the amount of lithium cobalt oxide represented by Chemical Formula 1 contained in the second positive electrode mixture layer may be 0.01 to 0.5 parts by weight based on 100 parts by weight of the second positive electrode mixture layer.
  • the first positive electrode composite material layer is 0.5 to 1.5 parts by weight based on the total 100 parts by weight; 0.5 to 1.0 parts by weight; 0.5 to 0.9 parts by weight; 0.8 to 1.3 parts by weight; Alternatively, 0.5 to 0.7 parts by weight of lithium cobalt oxide represented by Formula 1 may be included.
  • the second positive electrode composite material layer is 0.05 to 0.5 parts by weight based on 100 parts by weight of the total; 0.05 to 0.35 parts by weight; 0.01 to 0.4 parts by weight; 0.01 to 0.3 parts by weight; 0.1 to 0.4 parts by weight; or 0.01 to 0.09 parts by weight; and may include lithium cobalt oxide represented by Formula 1.
  • lithium cobalt oxide represented by Chemical Formula 1 is included in the first positive electrode mixture layer in an amount of 0.6 ⁇ 0.05 parts by weight based on the total amount of 100 parts by weight of the first positive electrode mixture layer, and 0.2 parts by weight based on the total amount of 100 parts by weight of the second positive electrode mixture layer. ⁇ 0.05 part by weight may be included in the first positive electrode mixture layer.
  • the total content of lithium cobalt oxide represented by Formula 1 contained in the entire positive electrode mixture layer including the first positive electrode mixture layer and the second positive electrode mixture layer is included in the two positive electrode mixture layers.
  • the total content of lithium cobalt oxide contained in the entire positive electrode composite layer of the positive electrode is 0.01 to 0.5 parts by weight based on 100 parts by weight of the first positive electrode active material and the second positive electrode active material; 0.1 to 0.5 parts by weight; 0.05 to 0.4 parts by weight; 0.05 to 0.25 parts by weight; 0.1 to 0.4 parts by weight; 0.2 to 0.5 parts by weight; 0.1 to 0.3 parts by weight; Or it may be 0.4 to 0.5 parts by weight.
  • the content of lithium cobalt oxide contained in the positive electrode mixture layer may be adjusted by controlling the content of lithium cobalt oxide contained in the above-described positive electrode slurry of the present invention and the average thickness of each layer.
  • the average thickness of the second positive electrode mixture layer may be formed to be thicker than the average thickness of the first positive electrode mixture layer.
  • the average thickness ratio of the second positive electrode mixture layer to the first positive electrode mixture layer may be adjusted to 0.1 to 0.9, and more specifically, the average thickness ratio of the second positive electrode mixture layer to the first positive electrode mixture layer. is 0.1 to 0.8; 0.1 to 0.6; 0.1 to 0.5; 0.1 to 0.3; 0.3 to 0.6; 0.4 to 0.8; 0.2 to 0.5; Or it may be adjusted to 0.6 to 0.9.
  • the total thickness of the first positive electrode mixture layer and the second positive electrode mixture layer is not particularly limited, but may be specifically 50 ⁇ m to 300 ⁇ m, more specifically 100 ⁇ m to 200 ⁇ m; 80 ⁇ m to 150 ⁇ m; 120 ⁇ m to 170 ⁇ m; 150 ⁇ m to 300 ⁇ m; 200 ⁇ m to 300 ⁇ m; Or it may be 150 ⁇ m to 190 ⁇ m.
  • the positive electrode current collector one having high conductivity without causing chemical change in the battery may be used.
  • stainless steel, aluminum, nickel, titanium, calcined carbon, etc. may be used, and aluminum or stainless steel may be surface-treated with carbon, nickel, titanium, silver, or the like.
  • the positive electrode current collector may form fine irregularities on the surface to increase the adhesion of the positive electrode active material, and various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics are possible.
  • the average thickness of the current collector may be appropriately applied in the range of 3 to 500 ⁇ m in consideration of the conductivity and total thickness of the anode to be manufactured.
  • a lithium secondary battery including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode according to the present invention described above.
  • the lithium secondary battery according to the present invention includes the positive electrode of the present invention described above and can induce delithiation of the positive electrode additive at a high rate under a low voltage condition below the available voltage during initial charging,
  • the amount of oxygen gas is remarkably small, and thus, there is an advantage in that the electrical performance and safety of the lithium secondary battery are excellent.
  • the lithium secondary battery of the present invention has a structure including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the anode is manufactured by applying, drying, and pressing an anode active material on an anode current collector, and optionally may further include a conductive material, an organic binder polymer, and an additive, as in the cathode, as needed.
  • the negative electrode active material is, for example, graphite having a completely layered crystal structure, such as natural graphite, and soft carbon having a low-crystalline layered crystal structure (graphene structure; a structure in which hexagonal honeycomb planes of carbon are arranged in layers) and carbon and graphite materials such as hard carbon, artificial graphite, expanded graphite, carbon fiber, non-graphitizable carbon, carbon black, carbon nanotube, fullerene, and activated carbon in which these structures are mixed with amorphous portions; LixFe 2 O 3 (0 ⁇ x ⁇ 1), LixWO 2 (0 ⁇ x ⁇ 1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me', Al, B, P, Si, periodic table metal complex oxides such as Groups 1, 2, and 3 elements, halogens; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3;1 ⁇ z ⁇ 8); lithium metal; lithium alloy; silicon-based alloys; tin-based alloys;
  • the negative electrode active material may include both graphite and silicon (Si)-containing particles
  • the graphite may include at least one of natural graphite having a layered crystal structure and artificial graphite having an isotropic structure.
  • the silicon (Si)-containing particles are particles containing silicon (Si) as a main component as a metal component, silicon (Si) particles, silicon oxide (SiO 2 ) particles, or the silicon (Si) particles and oxides. It may include a mixture of silicon (SiO 2 ) particles.
  • the anode active material may include 80 to 95 parts by weight of graphite based on 100 parts by weight of the total; and 1 to 20 parts by weight of silicon (Si)-containing particles.
  • the present invention can improve the charging capacity per unit mass while reducing lithium consumption and irreversible capacity loss during initial charging and discharging of the battery by adjusting the content of graphite and silicon (Si)-containing particles included in the negative electrode active material within the above ranges. have.
  • the negative electrode mixture layer may have an average thickness of 100 ⁇ m to 200 ⁇ m, specifically, 100 ⁇ m to 180 ⁇ m, 100 ⁇ m to 150 ⁇ m, 120 ⁇ m to 200 ⁇ m, 140 ⁇ m to 200 ⁇ m, or 140 ⁇ m to 140 ⁇ m. It may have an average thickness of 160 ⁇ m.
  • the anode current collector is not particularly limited as long as it does not cause chemical change in the battery and has high conductivity.
  • copper, stainless steel, nickel, titanium, fired carbon, etc. may be used, and copper
  • surface treatment with carbon, nickel, titanium, silver, etc. may be used.
  • the negative electrode current collector may form fine irregularities on the surface to strengthen the bonding force with the negative electrode active material, and various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics are available. It is possible.
  • the average thickness of the negative electrode current collector may be appropriately applied in the range of 3 to 500 ⁇ m in consideration of the conductivity and total thickness of the negative electrode to be manufactured.
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the separator is not particularly limited as long as it is commonly used in the art, but specifically, chemical resistant and hydrophobic polypropylene; glass fiber; Alternatively, a sheet or non-woven fabric made of polyethylene may be used.
  • a composite separator in which inorganic particles/organic particles are coated with an organic binder polymer may be used on a porous polymer substrate such as the sheet or non-woven fabric.
  • the electrolyte may serve as a separator.
  • the separator may have an average pore diameter of 0.01 to 10 ⁇ m and an average thickness of 5 to 300 ⁇ m.
  • the positive and negative electrodes may be rolled in a jelly roll form and stored in a cylindrical battery, prismatic battery, or pouch type battery, or may be stored in a pouch type battery in a folding or stack-and-folding form, but are not limited thereto.
  • the lithium salt-containing electrolyte solution according to the present invention may be composed of an electrolyte solution and a lithium salt, and a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, or the like may be used as the electrolyte solution.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyrolactone, 1,2-dimethine Toxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorane, formamide, dimethylformamide, dioxorane, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphoric acid triesters, trimethoxy methane, dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ether, propion An aprotic organic solvent such as methyl acid or ethyl propyl
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, poly agitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, ions
  • a polymeric material containing a sexual dissociation group or the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 Ni 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitride, halide, sulfate, and the like of Li such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , etc. may be used.
  • the lithium salt is a material that is easily soluble in non-aqueous electrolytes, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB10Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylic acid, lithium 4-phenylborate, imide and the like can be used.
  • LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB10Cl 10 LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carb
  • pyridine triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N,N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxy ethanol, aluminum trichloride, etc. may be added.
  • pyridine triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N,N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included to impart incombustibility, and carbon dioxide gas may be further included to improve storage properties at high temperatures.
  • FEC Fluoro-Ethylene Carbonate
  • PRS Pene sultone
  • LiNi 0.6 Co 0.2 Mn 0.2 O 2 (average particle size (D50): 1 ⁇ 0.05 ⁇ m) as a first cathode active material
  • Li 6 Co 0.7 Zn 0.3 O 4 (average particle size (D50): 3 ⁇ 0.05 ⁇ m) as an irreversible additive
  • a first binder, PVdF was prepared, weighed as shown in Table 1 below, and introduced into the reactor. Then, dry mixing was uniformly performed for about 90 minutes to prepare a master batch for a cathode additive having an average particle size (D50) of 0.3 ⁇ 0.005 mm in the form of pellets.
  • Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 LiNi 0.6 Co 0.2 Mn 0.2 O 2 100 parts by weight Li 6 Co 0.7 Zn 0.3 O 4 1 part by weight 5 parts by weight 10 parts by weight 25 parts by weight 100 parts by weight 200 parts by weight PVdF 5 parts by weight 5 parts by weight 5 parts by weight 5 parts by weight 5 parts by weight 5 parts by weight 5 parts by weight 5 parts by weight 5 parts by weight
  • the first positive electrode slurry and the second positive electrode slurry were sequentially coated on one surface of an aluminum current collector having a size of 10 cm ⁇ 20 cm, dried at 100 ° C, and rolled to prepare a positive electrode.
  • the total thickness of the positive electrode mixture layer was 130 ⁇ m, and the total thickness of the prepared positive electrode was about 200 ⁇ m.
  • the ratio of the average thickness of the first positive electrode mixture layer (T 1st ) to the average thickness of the second positive electrode mixture layer (T 2nd ), that is, the average thickness ratio of the second positive electrode mixture layer to the first positive electrode mixture layer (T 1st ) /T 2nd ) is shown in Tables 2 and 3 below, and the content ratios of the components listed in Tables 2 and 3 below may be the same for the positive electrode slurry and the positive electrode mixture layer.
  • Example 5 Example 6
  • Example 7 Example 8
  • Example 10 1st positive electrode mixture layer LiNi 0.6 Co 0.2 Mn 0.1 Al 0.1 O 2 37.5 82.5 88.2 91.6 81.1 92.7 Masterbatch type Masterbatch of Example 1 Masterbatch of Example 2 Masterbatch of Example 3 Masterbatch of Example 4 Masterbatch of Example 3 Masterbatch of Example 3 masterbatch content 59.7 12.4 6.5 2.9 13.9 1.7 acetylene black 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 PVdF 0 2.3 2.5 2.7 2.2 2.8 total content 100 100 100 100 100 100 100 100 100 100 100 100 1st positive electrode mixture layer (based on 100 parts by weight) Li 6 Co 0.7 Zn 0.3 O 4 content 0.6 0.6 0.6 0.6 1.3 0.5 Second positive electrode mixture layer LiNi 0.6 Co 0.2 Mn 0.1 Al 0.1 O 2 75.3 90.4 92.3 93.4 89.2 93.8 Masterbatch type Masterbatch of Example 1 Masterbatch of Example 2 Master
  • An anode active material in which natural graphite and silicon particles (Si purity: ⁇ 99.8%) were mixed in a weight ratio of 85:15 was prepared, and styrene-butadiene rubber (SBR) was used as a binder with respect to 100 parts by weight of the prepared anode active material.
  • a negative electrode slurry was prepared by mixing 3 parts by weight. The prepared negative electrode slurry was coated on one surface of a copper current collector having a size of 10 cm ⁇ 20 cm and dried to form a negative electrode composite layer (average thickness: 120 ⁇ m). At this time, the temperature of the circulated air was 80 °C. Subsequently, a negative electrode was prepared by roll pressing and drying in a vacuum oven at 130° C. for 12 hours.
  • a separator (thickness: about 16 ⁇ m) made of a porous polyethylene (PE) film was interposed between the positive electrode and the negative electrode prepared in the previous Examples and Comparative Examples, and E2DVC was injected as an electrolyte to form a full cell type cell. produced.
  • E2DVC is a kind of carbonate-based electrolyte
  • the manufactured full cell was charged at a temperature of 25 ° C. with a charging current of 0.05 C to a charging end voltage of 4.2 to 4.25 V, and then charged at 0.02 V until the current density reached 0.01 C to activate it. At this time, the amount of oxygen gas generated was measured, and the results are shown in Table 4 below.
  • a full cell was manufactured in the same manner as the full cell manufacturing method when measuring the oxygen gas generation amount.
  • the fabricated full cells were charged at a temperature of 25° C. with a charging current of 0.05 C to a charging end voltage of 4.2 to 4.25 V, and then charged at 0.02 V until the current density reached 0.01 C to activate the cells. Thereafter, the electrode was discharged at a discharge current of 0.05C to a final voltage of 2V, and the resistance of the electrode and the initial charge/discharge capacity per unit mass were measured.
  • the capacity retention rate was calculated using Equation 1 below, and the results are shown in Table 4 below:
  • Capacity retention rate (%) (discharge capacity during n charge/discharge cycles/discharge capacity during one charge/discharge cycle) ⁇ 100
  • a full cell was manufactured in the same manner as the full cell manufacturing method when measuring the oxygen gas generation amount.
  • the manufactured full cells were subjected to high-speed charging for 10 seconds to reach 50% SOC, and the sheet resistance of the charged secondary batteries was measured using the EIS method, and the results are shown in Table 4 below.
  • the positive electrode slurry according to the present invention includes a master batch containing a high content of irreversible additives and has excellent dispersibility for irreversible additives, most of the irreversible additives react in the activation step, resulting in high charging capacity. And it can be seen that it is possible to implement a charge and discharge capacity retention rate, and exhibits a low sheet resistance.
  • the lithium secondary batteries of Examples in which the master batches of Examples 1 to 4 containing a high content of lithium cobalt oxide represented by Chemical Formula 1, which is an irreversible additive, are used in the cathode mixture layer, based on 100 parts by weight of the total cathode mixture layer. It has been found that the amount of oxygen gas generated increases as the irreversible additive reacts at a high rate in the activation step, having a configuration in which an irreversible additive having a remarkably low content of about 0.55 to 1.8 parts by weight is uniformly dispersed in the mixture layer without loss. Accordingly, it was confirmed that the initial charge capacity was high. In addition, it was found that the increase in sheet resistance due to the use of irreversible additives was improved.
  • the master batch for cathode additives according to the present invention contains a high content of irreversible additives together with the cathode active material, so that a small amount of irreversible additives can be dispersed in the cathode slurry with high dispersion without loss during cathode production.

Abstract

본 발명은 양극 첨가제용 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리에 관한 것으로, 상기 마스터 배치는 상기 양극활물질과 함께 고함량의 비가역 첨가제를 함유함으로써 양극 제조 시 소량의 비가역 첨가제를 손실 없이 높은 분산도로 양극 슬러리에 분산시킬 수 있으므로 이를 이용하여 제조되는 리튬 이차전지용 양극은 전기적 물성 및 신뢰도가 높을 뿐만 아니라, 양극 제조 시 설계 자유도가 향상될 수 있는 이점이 있다.

Description

양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리
본 발명은 양극활물질과 함께 고함량의 비가역 첨가제를 포함하는 양극 첨가제용 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리에 관한 것이다.
본 출원은 2021. 05. 31일자 대한민국 특허 출원 제10-2021-0069635호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개신된 모든 내용은 본 명세서의 일부로서 포함된다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대한 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 작동 전위를 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
최근에는 전기 자동차와 같은 중대형 디바이스의 전원으로서 리튬 이차전지가 이용됨에 따라 리튬 이차전지의 고용량, 고에너지 밀도, 및 저비용화가 더욱 요구되고 있으며, 전극에 사용되는 비가역 첨가제에 대해서도 보다 높은 비가역 용량을 가질 것이 요구되고 있다.
이러한 요구에 맞추어 종래 Li6CoO4와 같은 비가역 첨가제들이 개발된 바 있다. 그러나, 기존의 비가역 첨가제는 구조적으로 불안정하여 이차전지의 충전이 진행됨에 따라 하기와 같이 다량의 산소 가스(O2)를 발생시킬 수 있으므로, 양극에 비가역 첨가제를 고함량으로 사용하는 것은 리튬 이차전지의 충방전 효율과 안전성 측면에서 한계가 있다. 이에 따라, 저함량의 비가역 첨가제를 이용하여 리튬 이차전지의 비가역성을 개선하고자 하는 노력이 이어지고 있다:
Figure PCTKR2022006460-appb-img-000001
그러나, 비가역 첨가제를 저함량, 특히 양극 슬러리 전체 중량에 대하여 2 중량% 이하의 미량으로 사용하는 경우 양극 슬러리 내의 분산성 보장이 어려워 리튬 이차전지의 신뢰성이 저하되고, 양극의 제조 과정에서 저입도의 비가역 첨가제가 비산하여 손실량이 증가하므로 공정 설계의 자유도가 저하되는 문제가 있다.
따라서, 비가역 첨가제를 극미량으로 사용하는 경우 양극 제조 시 비가역 첨가제의 손실을 방지하여 공정성 및 공정 설계의 자유도를 개선할 수 있고, 비가역 첨가제의 양극 슬러리 내 분산성을 보장하여 리튬 이차전지의 신뢰성을 확보할 수 있는 기술의 개발이 요구되고 있다.
이에, 본 발명의 목적은 양극 제조 시 현저히 적은 양의 비가역 첨가제를 손실 없이 높은 분산도로 함유하는 양극 슬러리 및 이를 이용하여 제조되는 리튬 이차전지용 양극을 제공하는데 있다.
상술된 문제를 해결하기 위하여,
본 발명은 일실시예에서,
제1 양극활물질 100 중량부에 대하여, 하기 화학식 1로 나타내는 리튬 코발트 산화물 0.5 내지 50 중량부를 포함하는 양극 첨가제용 마스터 배치를 제공한다:
[화학식 1]
LipCo1-qM1 qO2
상기 화학식 1에 있어서,
M1은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이며,
p 및 q는 5≤p≤7 및 0≤q≤0.4이다.
이때, 상기 양극 첨가제용 마스터 배치는 제1 양극활물질 100 중량부에 대하여 1 내지 10 중량부의 제1 바인더를 포함할 수 있다.
또한, 상기 양극 첨가제용 마스터 배치의 평균 입도(D50)는 0.05mm 내지 10mm일 수 있고, 상기 마스터 배치에 함유된 제1 양극활물질의 평균 입도(D50)는 0.5 내지 100㎛인 제1 양극활물질이고, 리튬 코발트 산화물의 평균 입도(D50)는 1 내지 200㎛이되, 리튬 코발트 산화물의 평균 입도가 제1 양극활물질의 평균 입도보다 클 수 있다.
아울러, 본 발명은 일실시예에서,
상기 제1 양극활물질 100 중량부에 대하여, 하기 화학식 1로 나타내는 리튬 코발트 산화물 0.5 내지 50 중량부를 포함하는 본 발명에 따른 리튬 이차전지 양극 첨가제용 마스터 배치;
제2 양극활물질;
도전제; 및
제2 바인더를 포함하는 리튬 이차전지용 양극 슬러리를 제공한다:
[화학식 1]
LipCo1-qM1 qO2
상기 화학식 1에 있어서,
M1은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이며,
p 및 q는 5≤p≤7 및 0≤q≤0.4이다.
이때, 마스터 배치에 함유되고, 화학식 1로 나타내는 리튬 코발트 산화물은 양극 슬러리 전체 100 중량부에 대하여 0.05 내지 2.0 중량부로 포함될 수 있다.
또한, 상기 양극 첨가제용 마스터 배치는 제2 양극활물질 100 중량부에 대하여 1 내지 150 중량부로 포함될 수 있다.
아울러, 상기 제1 양극활물질 및 제2 양극활물질은 각각 하기 화학식 2로 나타내는 리튬 금속 복합 산화물을 포함할 수 있다:
[화학식 2]
Lix[NiyCozMnwM2 v]Ou
상기 화학식 2에서, M2는 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이고, x, y, z, w 및 v는 각각 1.0≤x≤1.30, 0.1≤y<1, 0.1<z≤0.6, 0.1<w≤0.6, 0≤v≤0.2, 1.5≤u≤5이다.
또한, 상기 도전재는 양극 슬러리 전체 100 중량부에 대하여 1 내지 5 중량부로 포함할 수 있다.
이와 더불어, 상기 제2 바인더의 함량은 양극 슬러리 전체 100 중량부에 대하여 1 내지 5 중량부일 수 있다.
또한, 본 발명은 일실시예에서,
양극 집전체, 제1 양극 합재층 및 제2 양극 합재층이 순차적으로 적층된 구조를 포함하고;
상기 제1 양극 합재층 및 제2 양극 합재층은 각각 본 발명에 따른 리튬 이차전지용 양극 슬러리를 이용하여 형성되는 리튬 이차전지용 양극을 제공한다.
이때, 상기 제1 양극 합재층에 함유되는 하기 화학식 1로 나타내는 리튬 코발트 산화물의 함량은 제1 양극 합재층 100 중량부에 대하여 0.5 내지 2.0 중량부이며,
제2 양극 합재층에 함유되는 하기 화학식 1로 나타내는 리튬 코발트 산화물의 함량은 제2 양극 합재층 100 중량부에 대하여 0.01 내지 0.5 중량부일 수 있다:
[화학식 1]
LipCo1-qM1 qO2
상기 화학식 1에 있어서,
M1은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이며,
p 및 q는 5≤p≤7 및 0≤q≤0.4이다.
또한, 상기 제1 양극 합재층 및 제2 양극 합재층에 함유된 총 리튬 코발트 산화물의 함량은 제1 양극 합재층 및 제2 양극 합재층에 포함된 전체 양극활물질 100 중량부에 대하여 0.5 중량부 이하일 수 있다.
아울러, 상기 제1 양극 합재층에 대한 제2 양극 합재층의 평균 두께 비율은 0.1 내지 0.9일 수 있다.
나아가, 본 발명은 일실시예에서,
본 발명에 따른 양극; 음극; 및 상기 양극과 음극 사이에 위치하는 분리막을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 양극 첨가제용 마스터 배치는 양극활물질과 함께 고함량의 비가역 첨가제를 함유함으로써 양극 제조 시 소량의 비가역 첨가제를 손실 없이 높은 분산도로 양극 슬러리에 분산시킬 수 있으므로 이를 이용하여 제조되는 리튬 이차전지용 양극은 전기적 물성 및 신뢰도가 높을 뿐만 아니라, 양극 제조 시 설계 자유도가 향상될 수 있는 이점이 있다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 상세한 설명에 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명에서, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 기재된 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하에" 있다고 기재된 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 출원에서 "상에" 배치된다고 하는 것은 상부 뿐만 아니라 하부에 배치되는 경우도 포함하는 것일 수 있다.
또한, 본 발명에서, "양극 첨가제용 마스터 배치"란 리튬 이차전지의 양극 제조 시 사용되는 성분들을 mm 크기 수준의 펠렛 형태로 형상화한 고형 조성물로서, 상기 성분으로 미립자 형태의 비가역 첨가제를 실제 양극 합재층에 포함되는 함량보다 고함량으로 포함한다. 이때, "고함량"이란, 양극 합재층에 포함된 함량의 2배 이상을 의미할 수 있다.
아울러, 본 발명에서, "주성분"이란 조성물 또는 특정 성분의 전체 중량에 대하여 50 중량% 이상, 60 중량% 이상, 70 중량% 이상, 80 중량% 이상, 90중량% 이상, 95 중량% 이상 또는 97.5 중량% 이상인 것을 의미할 수 있으며, 경우에 따라서는 조성물 또는 특정 성분 전체를 구성하는 경우, 즉 100 중량%를 의미할 수도 있다.
또한, 본 발명에서, "Ah"는 리튬 이차전지의 용량 단위로서, "암페어아워"라 하며 시간당 전류량을 의미한다. 예컨대, 전지 용량이 "3000 mAh"이라면 3000mA의 전류로 1시간 동안 방전시킬 수 있음을 의미한다.
이하, 본 발명을 보다 상세하게 설명한다.
양극 첨가제용 마스터 배치
본 발명은 일실시예에서,
제1 양극활물질 100 중량부에 대하여, 하기 화학식 1로 나타내는 리튬 코발트 산화물 0.5 내지 50 중량부를 포함하는 양극 첨가제용 마스터 배치를 제공한다:
[화학식 1]
LipCo1-qM1 qO2
상기 화학식 1에 있어서,
M1은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이며,
p 및 q는 5≤p≤7 및 0≤q≤0.4이다.
본 발명에 따른 양극 첨가제용 마스터 배치는 리튬 이차전지용 양극의 양극 합재층 제조에 사용되는 것이다. 일반적으로 양극에 구비되는 양극 합재층 제조 시 양극 합재층의 전체 중량에 대하여 2 중량% 이하의 비가역 첨가제를 포함하는 경우, 그 함량이 현저히 작으므로 공정 과정에서 손실되는 양이 많고, 균일하게 분산시키기 어려워 제조되는 양극 및 이를 포함하는 리튬 이차전지의 신뢰성이 낮은 한계가 있다. 그러나, 본 발명에 따른 상기 양극 첨가제용 마스터 배치는 제1 양극활물질과 함께 비가역 첨가제로 사용되는 화학식 1로 나타내는 리튬 코발트 산화물을 고함량으로 포함하여 양극 합재층 제조 시 비가역 첨가제의 손실 없이 양극 슬러리 내에 균일하게 분산시킬 수 있다.
이때, 상기 리튬 코발트 산화물은 전기적 활성을 나타내는 양극활물질과 함께, 비가역 용량을 부여하는 비가역 첨가제로서 마스터 배치에 포함되며, 하기 화학식 1로 나타내는 리튬 코발트 산화물을 포함한다:
[화학식 1]
LiCo1-qM1 qO2
상기 화학식 1에 있어서,
M1은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이며,
q는 0≤q≤0.4이다.
구체적으로, 상기 리튬 코발트 산화물은 화학식 1로 나타내는 리튬 코발트 산화물이라면 특별히 제한되지 않고 적용될 수 있으나, 바람직하게는, Li6CoO4, Li6Co0.5Zn0.5O4, Li6Co0.7Zn0.3O4 등을 포함할 수 있다.
상기 화학식 1로 나타내는 리튬 코발트 산화물은 다량의 리튬 이온을 방출하는 리튬 코발트 산화물(LixCoO4, 5≤p≤7)을 포함하거나, 상기 리튬 코발트 산화물의 코발트 위치에 전이금속이 도핑된 구조를 갖는다. 이때, 도핑되는 전이금속의 양은 0.4 몰 분율 이하(q≤0.4)일 수 있고, 구체적으로는 20 내지 40 몰 분율 (0.2≤q≤0.4); 10 내지 30 몰 분율 (0.1≤q≤0.3); 15 내지 30 몰 분율 (0.15≤q≤0.3); 30 내지 40 몰 분율 (0.3≤q≤0.4); 또는 5 내지 20 몰 분율 (0.05≤q≤0.2)일 수 있다. 본 발명은 금속의 도핑량을 상기 몰 분율 범위로 조절함으로써 다량의 리튬 이온을 방출하면서도 이에 따라 발생되는 산소 가스의 양을 저감시킬 수 있다.
또한, 상기 화학식 1로 나타내는 리튬 코발트 산화물은 정방정계(tetragonal) 결정 구조를 가질 수 있으며, 이 중에서도 P42/nmc의 공간군을 가질 수 있다.
아울러, 상기 화학식 1로 나타내는 리튬 코발트 산화물은 제1 양극활물질 100 중량부에 대하여 0.5 내지 50 중량부로 마스터 배치에 포함될 수 있으며, 구체적으로는 제1 양극활물질 100 중량부에 대하여 0.5 내지 40 중량부; 0.5 내지 30 중량부; 0.5 내지 25 중량부; 0.5 내지 20 중량부; 0.5 내지 10 중량부; 2 내지 30 중량부; 2 내지 15 중량부; 8 내지 15 중량부; 8 내지 28 중량부; 15 내지 30 중량부; 9 내지 22 중량부; 또는 4 내지 11 중량부로 마스터 배치에 포함될 수 있다. 본 발명은 마스터 배치에 포함되는 리튬 코발트 산화물의 함량을 상기와 같이 제어함으로써 마스터 배치에 포함되는 과량의 비가역 첨가제로 인해 양극 슬러리에 사용되는 마스터 배치의 사용량이 현저히 저감되어 균일 분산이 되지 않는 것을 방지할 수 있고, 미량의 비가역 첨가제로 인해 마스터 배치 제조 효율이 저하되는 것을 막을 수 있다.
또한, 상기 양극 첨가제용 마스터 배치의 평균 입도(D50)는 0.05mm 내지 10mm일 수 있고, 구체적으로는 0.1mm 내지 10mm; 0.5mm 내지 10mm; 1mm 내지 10mm; 0.1mm 내지 2mm; 5mm 내지 10mm; 1mm 내지 5mm; 또는 3mm 내지 7mm;일 수 있다. 본 발명은 양극 첨가제용 마스터 배치의 평균 입도(D50)를 상기와 같은 범위로 제어함으로써 양극 슬러리의 제조 시 마스터 배치의 비산으로 인한 손실과 양극 슬러리의 조성 변화를 방지할 수 있으면서 작업 공정 효율을 향상시킬 수 있다.
이와 더불어, 상기 제1 양극활물질의 평균 입도(D50)는 0.5 내지 100㎛인 제1 양극활물질이고, 리튬 코발트 산화물의 평균 입도(D50)는 1 내지 200㎛이되, 리튬 코발트 산화물의 평균 입도가 제1 양극활물질의 평균 입도보다 클 수 있다. 구체적으로, 상기 제1 양극활물질은 1 내지 100㎛; 5 내지 100㎛; 10 내지 100㎛; 25 내지 100㎛; 50 내지 100㎛; 10 내지 50㎛; 5 내지 10㎛; 또는 0.5 내지 5㎛;의 평균 입도(D50)를 가질 수 있고, 상기 리튬 코발트 산화물은 5 내지 200㎛; 10 내지 200㎛; 50 내지 200㎛; 100 내지 200㎛; 150 내지 200㎛; 110 내지 150㎛; 80 내지 120㎛; 50 내지 100㎛; 10 내지 50㎛; 5 내지 20㎛; 40 내지 60㎛; 50 내지 80㎛; 또는 1 내지 5㎛;의 평균 입도(D50)를 가질 수 있다. 본 발명은 제1 양극활물질 및 리튬 코발트 산화물의 평균 입도(D50)를 상기와 같은 범위로 제어함으로써 제조되는 리튬 이차전지의 충방전 용량 및 효율을 증가시킬 수 있으며, 다량의 리튬 이온을 방출하는 리튬 코발트 산화물로부터 발생되는 산소 가스량을 줄일 수 있다. 아울러, 제1 양극활물질보다 큰 비가역 첨가제를 함유함으로써 비가역 첨가제의 부반응을 저감시킬 수 있다.
또한, 본 발명에 따른 양극 첨가제용 마스터 배치는 제1 양극활물질과 화학식 1로 나타내는 리튬 코발트 산화물을 포함하는 mm 크기 수준의 펠렛 형태로 형상화하기 위하여 마스터 배치에 함유되는 제1 양극활물질 100 중량부에 대하여 1 내지 10 중량부의 제1 바인더를 더 포함할 수 있고, 구체적으로는 제1 양극활물질 100 중량부에 대하여 1 내지 5 중량부; 5 내지 10 중량부; 3 내지 8 중량부; 또는 4 내지 6 중량부의 제1 바인더를 더 포함할 수 있다.
여기서, 상기 제1 바인더는 양극 합재층에 통상적으로 사용될 수 있는 것이라면 특별히 제한되지 않고 사용될 수 있다. 예컨대, 상기 제1 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVdF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVdF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 및 이들의 공중합체로 이루어진 군으로부터 선택되는 1종 이상의 수지를 포함할 수 있다. 하나의 예로서, 상기 바인더는 폴리비닐리덴플루오라이드(polyvinylidenefluoride)를 포함할 수 있다.
본 발명은 상술된 바와 같이, 양극 첨가제용 마스터 배치의 구성을 제어함으로써 양극 제조 시 소량의 비가역 첨가제를 손실 없이 높은 분산도로 양극 슬러리에 분산시킬 수 있으므로, 제조되는 리튬 이차전지의 성능 및 신뢰성을 향상시킬 수 있다.
리튬 이차전지용 양극 슬러리
또한, 본 발명은 일실시예에서,
제1 양극활물질 100 중량부에 대하여, 하기 화학식 1로 나타내는 리튬 코발트 산화물 0.5 내지 50 중량부를 포함하는, 본 발명에 따른 리튬 이차전지 양극 첨가제용 마스터 배치;
제2 양극활물질;
도전제; 및
제2 바인더를 포함하는 리튬 이차전지용 양극 슬러리를 제공한다:
[화학식 1]
LipCo1-qM1 qO2
상기 화학식 1에 있어서,
M1은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이며,
p 및 q는 5≤p≤7 및 0≤q≤0.4이다.
본 발명에 따른 리튬 이차전지용 양극 슬러리는 리튬 이차전지용 양극에 구비되는 양극 합재층을 제조하기 위한 것으로서, 앞서 언급된 양극 첨가제용 마스터 배치와 함께 제2 양극활물질; 도전제; 및 제2 바인더를 포함한다.
여기서, 상기 양극 슬러리는 앞서 언급된 본 발명에 따른 양극 첨가제용 마스터 배치를 제2 양극활물질 100 중량부에 대하여 1 내지 150 중량부로 포함할 수 있다. 보다 구체적으로, 상기 양극 슬러리는 양극 첨가제용 마스터 배치를 제2 양극활물질 100 중량부에 대하여 120 내지 150 중량부; 1 내지 100 중량부; 1 내지 50 중량부; 1 내지 30 중량부; 1 내지 20 중량부; 1 내지 9 중량부; 2 내지 19 중량부; 4 내지 17 중량부; 20 내지 30 중량부; 10 내지 20 중량부; 또는 1 내지 7 중량부로 포함할 수 있다.
또한, 상기 양극 슬러리는 상기 마스터 배치에 함유되고, 비가역 첨가제인 상기 화학식 1로 나타내는 리튬 코발트 산화물을 양극 슬러리 전체 100 중량부에 대하여 0.05 내지 2.0 중량부로 포함될 수 있다. 보다 구체적으로, 상기 양극 슬러리는 화학식 1로 나타내는 리튬 코발트 산화물을 양극 슬러리 전체 100 중량부에 대하여 0.05 내지 1.5 중량부; 0.05 내지 1.0 중량부 0.05 내지 0.5 중량부; 0.1 내지 1.5 중량부; 0.1 내지 1.0 중량부; 또는 0.1 내지 0.9 중량부;로 포함할 수 있다.
본 발명은 양극 슬러리에 포함되는 양극 첨가제용 마스터 배치와 화학식 1로 나타내는 리튬 코발트 산화물의 함량을 상기와 같은 범위로 제어함으로써 양극 슬러리 내에 리튬 코발트 산화물의 분산성을 높이면서, 제조되는 리튬 이차전지의 충방전 용량을 극대화할 수 있다.
한편, 본 발명에 따른 상기 양극 슬러리는 가역적인 인터칼레이션과 디인터칼레이션이 가능한 물질로서, 양극 첨가제용 마스터 배치에 함유된 제1 양극활물질과 제2 양극활물질을 포함하며, 이때 상기 제1 양극활물질과 제2 양극활물질은 각각 화학식 2로 나타내는 리튬 금속 복합 산화물을 포함하되, 그 성분을 동일하거나 상이할 수 있다:
[화학식 2]
Lix[NiyCozMnwM2 v]Ou
상기 화학식 2에서, M2는 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이고, x, y, z, w 및 v는 각각 1.0≤x≤1.30, 0.1≤y<1, 0.1<z≤0.6, 0.1<w≤0.6, 0≤v≤0.2, 1.5≤u≤5이다.
상기 화학식 2로 나타내는 리튬 금속 복합 산화물은 리튬, 니켈, 코발트 및 망간을 포함하는 복합 금속 산화물로서, 경우에 따라서는 다른 전이금속(M2)이 도핑된 형태를 가질 수 있다. 예를 들어, 상기 제1 양극활물질 및 제2 양극활물질은 각각 독립적으로 LiNi1/3Co1/3Mn1/3O2, LiNi0.6Co0.2Mn0.2O2, LiNi0.8Co0.1Mn0.1O2, LiNi0.9Co0.05Mn0.05O2, LiNi0.8Co0.1Mn0.05Al0.05O2 및 LiNi0.7Co0.1Mn0.1Al0.1O2로 이루어진 군으로부터 선택되는 1종 이상의 화합물을 포함할 수 있다. 하나의 예로서, 상기 제1 양극활물질 및 제2 양극활물질은 각각 화학식 2로 나타내는 리튬 금속 복합 금속 산화물로서 LiNi0.6Co0.2Mn0.2O2 및 LiNi0.8Co0.1Mn0.1O2를 각각 단독으로 사용하거나 또는 병용할 수 있다.
또한, 상기 제1 양극활물질과 제2 양극활물질의 총 함량은 양극 슬러리 100 중량부에 대하여 85 내지 95 중량부일 수 있고, 구체적으로는 88 내지 95 중량부, 90 내지 95 중량부, 86 내지 90 중량부 또는 92 내지 95 중량부일 수 있다.
나아가, 상기 양극 슬러리는 상기 제1 양극활물질 및 제2 양극활물질과 함께 도전재 및 제2 바인더를 더 포함할 수 있고, 경우에 따라서는 양극의 물성을 개선할 수 있는 기타 첨가제 등을 더 포함할 수 있다.
이때, 상기 도전재는 양극의 전기 전도성 등의 성능을 향상시키기 위해 사용될 수 있으며, 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙 및 탄소섬유로 이루어진 군으로부터 선택되는 1종 이상의 탄소계 물질을 사용할 수 있다. 예를 들어, 상기 도전재는 아세틸렌 블랙을 포함할 수 있다.
또한, 상기 도전재는 양극 슬러리 전체 100 중량부에 대하여 1~5 중량부로 포함할 수 있고, 구체적으로는 1~4 중량부; 또는 도전재 2~4 중량부로 포함할 수 있다.
아울러, 상기 제2 바인더는 양극 첨가제용 마스터 배치에 함유되는 제1 바인더와 동일하게나 상이한 성분을 포함할 수 있다. 구체적으로, 상기 제2 바인더로는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVdF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVdF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 및 이들의 공중합체로 이루어진 군으로부터 선택되는 1종 이상의 수지를 포함할 수 있다. 하나의 예로서, 상기 제2 바인더는 폴리비닐리덴플루오라이드(polyvinylidenefluoride)를 포함할 수 있다.
또한, 상기 제2 바인더는 양극 슬러리 전체 100 중량부에 대하여 1 내지 5 중량부의 함량으로 포함될 수 있고, 구체적으로는 1~4 중량부; 또는 2~4 중량부의 함량으로 포함될 수 있다. 아울러, 상기 양극 첨가제용 마스터 배치에 함유된 제1 바인더 와 제2 바인더의 총 함량은 양극 슬러리 전체 100 중량부에 대하여 6 중량부를 초과하지 않을 수 있다.
본 발명은 리튬 이차전지용 양극 슬러리의 구성을 상술된 바와 같이 제어함으로써, 소량의 비가역 첨가제를 손실 없이 정량적으로 균일하게 분산시킨 양극 슬러리를 마련할 수 있으므로, 이를 이용하여 제조되는 리튬 이차전지용 양극은 전기적 물성 및 신뢰도가 높을 뿐만 아니라, 양극 제조 시 설계 자유도가 향상될 수 있는 이점이 있다.
리튬 이차전지용 양극
이와 더불어, 본 발명은 일실시예에서,
양극 집전체, 제1 양극 합재층 및 제2 양극 합재층이 순차적으로 적층된 구조를 포함하고;
상기 제1 양극 합재층 및 제2 양극 합재층은 각각 상술된 본 발명의 리튬 이차전지용 양극 슬러리를 이용하여 형성되는 리튬 이차전지용 양극을 제공한다.
본 발명에 따른 리튬 이차전지용 양극은 양극 집전체 상에 상술된 본 발명에 따른 양극 슬러리를 도포, 건조 및 프레싱하여 제조되는 제1 양극 합재층 및 제2 양극 합재층을 포함한다.
여기서, 상기 제1 양극 합재층 및 제2 양극 합재층은 초기 충방전 시 비가역 첨가제인 하기 화학식 1로 나타내는 리튬 코발트 산화물의 비가역 효율을 높이기 위하여 각 층에 포함되는 화학식 1로 나타내는 리튬 코발트 산화물의 함량이 상이할 수 있다:
[화학식 1]
LipCo1-qM1 qO2
상기 화학식 1에 있어서,
M1은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이며,
p 및 q는 5≤p≤7 및 0≤q≤0.4이다.
구체적으로, 상기 제1 양극 합재층에 함유되는 화학식 1로 나타내는 리튬 코발트 산화물의 함량은 제1 양극 합재층 100 중량부에 대하여 0.5 내지 2.0 중량부일 수 있고; 제2 양극 합재층에 함유되는 화학식 1로 나타내는 리튬 코발트 산화물의 함량은 제2 양극 합재층 100 중량부에 대항 0.01 내지 0.5 중량부일 수 있다.
보다 구체적으로, 상기 제1 양극 합재층은 전체 100 중량부에 대하여 0.5 내지 1.5 중량부; 0.5 내지 1.0 중량부; 0.5 내지 0.9 중량부; 0.8 내지 1.3 중량부; 또는 0.5 내지 0.7 중량부로 화학식 1로 나타내는 리튬 코발트 산화물을 포함할 수 있다. 또한, 상기 제2 양극 합재층은 전체 100 중량부에 대하여 0.05 내지 0.5 중량부; 0.05 내지 0.35 중량부; 0.01 내지 0.4 중량부; 0.01 내지 0.3 중량부; 0.1 내지 0.4 중량부; 또는 0.01 내지 0.09 중량부;로 화학식 1로 나타내는 리튬 코발트 산화물을 포함할 수 있다.
하나의 예로서, 화학식 1로 나타내는 리튬 코발트 산화물은 제1 양극 합재층 전체 100 중량부에 대하여 0.6±0.05 중량부로 제1 양극 합재층에 포함되고, 제2 양극 합재층 전체 100 중량부에 대하여 0.2±0.05 중량부로 제1 양극 합재층에 포함될 수 있다.
나아가, 본 발명에 따른 리튬 이차전지용 양극은 제1 양극 합재층과 제2 양극 합재층을 포함하는 전체 양극 합재층에 함유된 화학식 1로 나타내는 리튬 코발트 산화물의 총 함량은 2개의 양극 합재층에 포함된 전체 양극활물질, 즉 제1 양극활물질과 제2 양극활물질의 총 100 중량부에 대하여 0.5 중량부 이하일 수 있다. 보다 구체적으로, 상기 양극 전체 양극 합재층에 함유된 리튬 코발트 산화물의 총 함량이 제1 양극활물질 및 제2 양극활물질의 총 100 중량부에 대하여 0.01 내지 0.5 중량부; 0.1 내지 0.5 중량부; 0.05 내지 0.4 중량부; 0.05 내지 0.25 중량부; 0.1 내지 0.4 중량부; 0.2 내지 0.5 중량부; 0.1 내지 0.3 중량부; 또는 0.4 내지 0.5 중량부일 수 있다.
본 발명은 전체 양극 합재층에 함유된 화학식 1로 나타내는 리튬 코발트 산화물의 총 함량을 상기와 같은 범위로 제어함으로써 리튬 이차전지의 초기 충방전 시 비가역 반응으로 소모되는 리튬 이온을 효과적으로 보충하면서 추가적으로 발생되는 부반응이나 잔류물로 인한 후속 반응에 의해 산소 가스가 다량 발생하는 것을 방지할 수 있다.
여기서, 상기 양극 합재층에 함유되는 리튬 코발트 산화물의 함량은 상술된 본 발명의 양극 슬러리에 함유된 리튬 코발트 산화물의 함량과 각 층의 평균 두께를 제어함으로써 조절될 수 있다. 이를 위하여, 제2 양극 합재층의 평균 두께가 제1 양극 합재층의 평균 두께보다 두껍게 형성될 수 있다. 구체적으로, 상기 제1 양극 합재층에 대한 제2 양극 합재층의 평균 두께 비율은 0.1 내지 0.9로 조절될 수 있으며, 보다 구체적으로는 제1 양극 합재층에 대한 제2 양극 합재층의 평균 두께 비율은 0.1 내지 0.8; 0.1 내지 0.6; 0.1 내지 0.5; 0.1 내지 0.3; 0.3 내지 0.6; 0.4 내지 0.8; 0.2 내지 0.5; 또는 0.6 내지 0.9로 조절될 수 있다.
한편, 상기 제1 양극 합재층과 제2 양극 합재층의 총 두께는 특별히 제한되는 것은 아니나, 구체적으로는 50㎛ 내지 300㎛일 수 있으며, 보다 구체적으로는 100㎛ 내지 200㎛; 80㎛ 내지 150㎛; 120㎛ 내지 170㎛; 150㎛ 내지 300㎛; 200㎛ 내지 300㎛; 또는 150㎛ 내지 190㎛일 수 있다.
또한, 상기 양극은 양극 집전체로서 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것을 사용할 수 있다. 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 등을 사용할 수 있으며, 알루미늄이나 스테인리스 스틸의 경우 카본, 니켈, 티탄, 은 등으로 표면 처리된 것을 사용할 수도 있다. 또한, 상기 양극 집전체는 표면에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다. 아울러, 상기 집전체의 평균 두께는 제조되는 양극의 도전성과 총 두께를 고려하여 3~500 ㎛에서 적절하게 적용될 수 있다.
리튬 이차전지
나아가, 본 발명은 일실시예에서,
상술된 본 발명에 따른 양극, 음극 및 상기 양극과 음극 사이에 개재되는 분리막을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 리튬 이차전지는 앞서 설명된 본 발명의 양극을 구비하여 초기 충전 시 가용 전압 이하의 낮은 전압 조건 하에서 양극 첨가제의 탈리튬화를 높은 비율로 유도할 수 있으므로, 이후 충방전 시 발생되는 산소 가스량이 현저히 적으며, 이에 따라 리튬 이차전지의 전기적 성능 및 안전성이 우수한 이점이 있다.
이러한 본 발명의 리튬 이차전지는 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막을 포함하는 구조를 갖는다.
여기서, 상기 음극은 음극 집전체 상에 음극활물질을 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 양극에서와 같은 도전재, 유기 바인더 고분자, 첨가제 등이 선택적으로 더 포함될 수 있다.
또한, 상기 음극활물질은 예를 들어, 천연 흑연과 같이 층상 결정구조가 완전히 이루어진 그라파이트, 저결정성 층상 결정 구조(graphene structure; 탄소의 6각형 벌집 모양 평면이 층상으로 배열된 구조)를 갖는 소프트 카본 및 이런 구조들이 비결정성 부분들과 혼합되어 있는 하드 카본, 인조 흑연, 팽창 흑연, 탄소섬유, 난흑연화 탄소, 카본블랙, 카본나노튜브, 플러렌, 활성탄 등의 탄소 및 흑연재료나; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me', Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4 및 Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 사용할 수 있다.
하나의 예로서, 상기 음극활물질은 흑연과 규소(Si) 함유 입자를 함께 포함할 수 있으며, 상기 흑연으로는 층상 결정구조를 갖는 천연 흑연과 등방형 구조를 갖는 인조 흑연 중 어느 하나 이상을 포함할 수 있고, 상기 규소(Si) 함유 입자로는 금속 성분으로서 규소(Si)를 주성분으로 포함하는 입자로서, 규소(Si) 입자, 산화규소(SiO2) 입자, 또는 상기 규소(Si) 입자와 산화규소(SiO2) 입자가 혼합된 것을 포함할 수 있다.
이 경우, 상기 음극활물질은 전체 100 중량부에 대하여 흑연 80 내지 95 중량부; 및 규소(Si) 함유 입자 1 내지 20 중량부로 포함할 수 있다. 본 발명은 음극활물질에 포함된 흑연과 규소(Si) 함유 입자의 함량을 상기와 같은 범위로 조절함으로써 전지의 초기 충방전 시 리튬 소모량과 비가역 용량 손실을 줄이면서 단위 질량당 충전 용량을 향상시킬 수 있다.
또한, 상기 음극 합재층은 100㎛ 내지 200㎛의 평균 두께를 가질 수 있고, 구체적으로는 100㎛ 내지 180㎛, 100㎛ 내지 150㎛, 120㎛ 내지 200㎛, 140㎛ 내지 200㎛ 또는 140㎛ 내지 160㎛의 평균 두께를 가질 수 있다.
아울러, 상기 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 니켈, 티탄, 소성 탄소 등을 사용할 수 있으며, 구리나 스테인리스 스틸의 경우 카본, 니켈, 티탄, 은 등으로 표면처리된 것을 사용할 수도 있다. 또한, 상기 음극 집전체는 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극활물질과의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다. 아울러, 상기 음극 집전체의 평균 두께는 제조되는 음극의 도전성과 총 두께를 고려하여 3~500 ㎛에서 적절하게 적용될 수 있다.
또한, 상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막은 당업계에서 통상적으로 사용되는 것이라면 특별히 제한되지 않으나, 구체적으로는, 내화학성 및 소수성의 폴리프로필렌; 유리섬유; 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용될 수 있으며, 경우에 따라서는, 상기 시트나 부직포와 같은 다공성 고분자 기재에 무기물 입자/유기물 입자가 유기 바인더 고분자에 의해 코팅된 복합 분리막이 사용될 수도 있다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다. 아울러, 상기 분리막의 기공 직경은 평균 0.01~10 ㎛이고, 두께는 평균 5~300 ㎛일 수 있다.
한편, 상기 양극과 음극은 젤리롤 형태로 권취되어 원통형 전지, 각형 전지 또는 파우치형 전지에 수납되거나, 또는 폴딩 또는 스택앤폴딩 형태로 파우치형 전지에 수납될 수 있으나, 이에 한정되는 것은 아니다.
또한, 본 발명에 따른 상기 리튬염 함유 전해액은 전해액과 리튬염으로 이루어질 수 있으며, 상기 전해액으로는 비수계 유기용매, 유기고체 전해질, 무기 고체 전해질 등이 사용될 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸설폭사이드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 설파이드, 폴리비닐알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합재 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5Ni2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐보론산 리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환된 이미다졸리딘, 에틸렌글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄소 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
이하, 본 발명을 실시예 및 실험예에 의해 보다 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.
실시예 1~4 및 비교예 1~2. 양극 첨가제용 마스터 배치의 제조
제1 양극활물질로서 LiNi0.6Co0.2Mn0.2O2 (평균 입도(D50): 1±0.05 ㎛), 비가역 첨가제로서 Li6Co0.7Zn0.3O4 (평균 입도(D50): 3±0.05 ㎛), 및 제1 바인더인 PVdF를 준비하고, 하기 표 1에 나타낸 바와 같이 칭량하여 반응기에 투입하였다. 그런 다음 약 90분간 균일하게 건식 혼합하여 펠렛 형태를 갖는 평균 입도(D50) 0.3±0.005mm의 양극 첨가제용 마스터 배치를 제조하였다.
실시예 1 실시예 2 실시예 3 실시예 4 비교예 1 비교예 2
LiNi0.6Co0.2Mn0.2O2 100 중량부
Li6Co0.7Zn0.3O4 1 중량부 5중량부 10 중량부 25 중량부 100 중량부 200 중량부
PVdF 5 중량부 5 중량부 5 중량부 5 중량부 5 중량부 5 중량부
실시예 5~11 및 비교예 3~6. 양극 슬러리 및 리튬 이차전지용 양극의 제조
상기 실시예 1~4 및 비교예 1~2에서 제조된 양극 첨가제용 마스터 배치; 제2 양극활물질로서 LiNi0.6Co0.2Mn0.1Al0.1O2; 도전제인 아세틸렌 블랙; 및 제2 바인더인 PVdF를 준비하고, 하기 표 2 및 표 3에 나타낸 바와 같이 칭량하여 N-메틸피롤리돈(NMP)와 함께 반응기에 투입하였다. 그런 다음, 3,000rpm으로 약 60분 동안 혼합하여 제1 양극 합재층과 제2 양극 합재층을 각각 형성하기 위한 제1 및 제2 양극 슬러리를 제조하였다.
그런 다음, 10cm × 20cm 크기의 알루미늄 집전체 일면에 제1 양극 슬러리 및 제2 양극 슬러리를 순차적으로 도포하고, 100℃에서 건조하고 압연하여 양극을 제조하였다. 이때 양극 합재층의 총 두께는 130㎛이었고, 제조된 양극의 총 두께는 약 200㎛이었다. 또한, 제1 양극 합재층의 평균 두께(T1st)와 제2 양극 합재층의 평균 두께(T2nd)의 비율, 즉 제1 양극 합재층에 대한 제2 양극 합재층의 평균 두께 비율(T1st/T2nd)을 하기 표 2 및 표 3에 나타내었으며, 하기 표 2 및 표 3에 기재된 성분의 함량 비율은 양극 슬러리와 양극 합재층이 동일할 수 있다.
단위: 중량부 실시예 5 실시예 6 실시예 7 실시예 8 실시예 9 실시예 10
제1 양극 합재층 LiNi0.6Co0.2Mn0.1Al0.1O2 37.5 82.5 88.2 91.6 81.1 92.7
마스터배치 종류 실시예 1의 마스터 배치 실시예 2 의 마스터 배치 실시예 3 의 마스터 배치 실시예 4 의 마스터 배치 실시예 3 의 마스터 배치 실시예 3 의 마스터 배치
마스터 배치 함량 59.7 12.4 6.5 2.9 13.9 1.7
아세틸렌 블랙 2.8 2.8 2.8 2.8 2.8 2.8
PVdF 0 2.3 2.5 2.7 2.2 2.8
총 함량 100 100 100 100 100 100
제1 양극 합재층
(100 중량부 기준) 내
Li6Co0.7Zn0.3O4 함량
0.6 0.6 0.6 0.6 1.3 0.5
제2 양극 합재층 LiNi0.6Co0.2Mn0.1Al0.1O2 75.3 90.4 92.3 93.4 89.2 93.8
마스터배치 종류 실시예 1의 마스터 배치 실시예 2 의 마스터 배치 실시예 3 의 마스터 배치 실시예 4 의 마스터 배치 실시예 3 의 마스터 배치 실시예 3 의 마스터 배치
마스터 배치 함량 20.0 4.2 2.2 1.0 5.4 0.6
아세틸렌 블랙 2.8 2.8 2.8 2.8 2.8 2.8
PVdF 1.9 2.6 2.7 2.8 2.6 2.8
총 함량 100 100 100 100 100 100
제2 양극 합재층
(100 중량부 기준) 내
Li6Co0.7Zn0.3O4 함량
0.2 0.2 0.2 0.2 0.5 0.05
전체 양극 합재층(100 중량부 기준) 내 Li6Co0.7Zn0.3O4 함량 0.5 0.5 0.5 0.5 0.5 0.25
T1st/T2nd 0.8 0.8 0.8 0.8 0.1 0.9
단위: 중량부 비교예 3 비교예 4 비교예 5 비교예 6
제1 양극 합재층 LiNi0.6Co0.2Mn0.1Al0.1O2 93.2 93.5 92.4 36.7
마스터배치 종류 비교예 1의 마스터 배치 비교예 2 의 마스터 배치 실시예 2 의 마스터 배치 실시예 2 의 마스터 배치
마스터 배치 함량 1.2 0.9 2.1 60.5
아세틸렌 블랙 2.8 2.8 2.8 2.8
PVdF 2.8 2.8 2.7 0
총 함량 100 100 100 100
제1 양극 합재층
(100 중량부 기준) 내
Li6Co0.7Zn0.3O4 함량
0.6 0.6 0.1 3.0
제2 양극 합재층 LiNi0.6Co0.2Mn0.1Al0.1O2 94.0 94.1 94.3 74.8
마스터배치 종류 비교예 1의 마스터 배치 비교예 2 의 마스터 배치 실시예 2 의 마스터 배치 실시예 2 의 마스터 배치
마스터 배치 함량 0.4 0.3 0.1 20.5
아세틸렌 블랙 2.8 2.8 2.8 2.8
PVdF 2.8 2.8 2.8 1.9
총 함량 100 100 100 100
제2 양극 합재층
(100 중량부 기준) 내
Li6Co0.7Zn0.3O4 함량
0.2 0.2 0.001 1.0
전체 양극 합재층
(100 중량부 기준) 내 Li6Co0.7Zn0.3O4 함량
0.5 0.5 0.08 1.3
T1st/T2nd 0.8 0.8 0.9 0.1
실험예.
본 발명에 따른 마스터 배치와 이를 함유하는 리튬 이차전지용 양극 슬러리 및 양극의 성능을 평가하기 위하여, 하기와 같은 실험을 수행하였다.
가) 초기 충방전 시 산소 가스 발생량 평가
천연 흑연과 실리콘 입자(Si 순도: ≥99.8%)가 85:15 중량 비율로 혼합된 음극활물질을 준비하고, 준비된 음극활물질 100 중량부에 대하여 바인더로서 스티렌-부타디엔 고무(styrene-butadiene rubber; SBR) 3 중량부를 혼합하여 음극 슬러리를 제조하였다. 제조된 음극 슬러리를 10cm × 20cm 크기의 구리 집전체 일면에 코팅 및 건조시켜 음극 합재층(평균 두께: 120㎛)을 형성하였다. 이때, 순환되는 공기의 온도는 80℃였다. 이어서, 압연(roll press)하고 130℃의 진공 오븐에서 12시간 동안 건조하여 음극을 제조하였다.
앞서 실시예 및 비교예에서 제조된 양극과 제조된 음극 사이에 다공질 폴리에틸렌(PE) 필름으로 이루어진 분리막(두께: 약 16㎛)을 개재하고 전해액로 E2DVC를 주입하여 풀셀(full cell) 형태의 셀을 제작하였다.
여기서, "E2DVC"란 카보네이트계 전해액의 일종으로서, 에틸렌카보네이트(EC):디메틸카보네이트(DMC):디에틸카보네이트(DEC)=1:1:1 (부피비)의 혼합물에, 리튬 헥사플루오로 포스페이트(LiPF6, 1.0M) 및 비닐카보네이트(VC, 2 중량%)을 혼합한 용액을 의미한다.
제조된 풀셀을 대상으로 25℃의 온도에서 0.05C의 충전 전류로 충전 종지전압 4.2~4.25 V까지 충전하고, 0.02V에서 전류밀도가 0.01C가 될 때까지 충전을 수행하여 활성화시켰다. 이때 발생되는 산소 가스의 발생량을 측정하였으며, 그 결과는 하기 표 4에 나타내었다.
나) 초기 충방전 용량 및 용량 유지율 평가
실시예 및 비교예에서 제조된 양극을 이용하여, 상기 산소 가스 발생량 측정 시 제조된 풀셀 제조 방법과 동일한 방법으로 풀셀을 제조하였다. 제조된 풀셀들을 대상으로 25℃의 온도에서 0.05C의 충전 전류로 충전 종지전압 4.2~4.25 V까지 충전하고, 0.02V에서 전류밀도가 0.01C가 될 때까지 충전을 수행하여 활성화시켰다. 이후, 0.05C의 방전 전류로 종지전압 2V까지 방전시키고, 전극의 저항과 단위 질량당 초기 충방전 용량을 측정하였다.
그런 다음, 활성화된 각 풀셀들을 대상으로 25℃에서 충전 종지 전압 4.25V, 방전 종지 전압 2.5V, 0.5C/0.5C 조건으로 100회 충방전(n=100)을 실시하면서 용량 유지율(Capacity Retention[%])을 측정하였다. 이때, 상기 용량 유지율은 하기 식 1을 이용하여 산출하였으며, 그 결과를 하기 표 4에 나타내었다:
[식 1]
용량 유지율(%) = (n회 충방전 시 방전용량/1회 충방전 시 방전용량)×100
다) 전지 저항 평가
실시예 및 비교예에서 제조된 양극을 이용하여, 상기 산소 가스 발생량 측정 시 제조된 풀셀 제조 방법과 동일한 방법으로 풀셀을 제조하였다. 제조된 풀셀들을 대상으로 SOC 50%가 되도록 10초간 고속 충전을 수행하고, EIS법을 이용하여 충전된 이차전지들의 면저항을 측정하였으며, 그 결과를 하기 표 4에 나타내었다.
산소 가스 발생량
[mL/g]
초기 충전 용량
[Ah]
충방전 용량 유지율
[%]
면저항
[mΩ]
실시예 5 161 104.2 90.6% 0.61
실시예 6 165 104.8 90.8% 0.59
실시예 7 174 105.1 91.2% 0.56
실시예 8 188 105.7 91.5% 0.53
실시예 9 467 109.5 92.3% 0.70
실시예 10 152 104.3 90.1% 0.43
비교예 3 151 104.0 90.2% 0.88
비교예 4 158 103.6 90.1% 0.74
비교예 5 103 103.1 88.9% 0.41
비교예 6 739 106.4 93.8% 0.89
상기 표 4에 나타낸 바와 같이, 본 발명에 따른 양극 슬러리는 비가역 첨가제를 고함량으로 함유하는 마스터 배치를 포함하여 비가역 첨가제에 대한 분산성이 우수하므로, 활성화 단계에서 비가역 첨가제가 대부분 반응하여 높은 충전 용량 및 충방전 용량 유지율을 구현할 수 있고, 낮은 면저항을 나타내는 것을 알 수 있다.
보다 구체적으로, 비가역 첨가제인 화학식 1로 나타내는 리튬 코발트 산화물을 고함량으로 함유하는 실시예 1~4의 마스터 배치를 양극 합재층에 사용하는 실시예의 리튬 이차전지는 양극 합재층 전체 100 중량부에 대하여 약 0.55~1.8 중량부의 현저히 낮은 함량을 갖는 비가역 첨가제를 손실없이 합재층에 균일하게 분산된 구성을 가져, 활성화 단계에서 비가역 첨가제가 높은 비율로 반응할수록 산소 가스 발생량이 증가하는 것으로 나타났으며, 이에 따라 초기 충전 용량이 높은 것으로 확인되었다. 또한, 비가역 첨가제의 사용으로 인한 면저항 증가가 개선되는 것으로 나타났다.
이러한 결과로부터, 본 발명에 따른 양극 첨가제용 마스터 배치는 양극활물질과 함께 고함량의 비가역 첨가제를 함유함으로써 양극 제조 시 소량의 비가역 첨가제를 손실 없이 높은 분산도로 양극 슬러리에 분산시킬 수 있으므로 이를 이용하여 제조되는 리튬 이차전지용 양극은 전기적 물성 및 신뢰도가 높을 뿐만 아니라, 양극 제조 시 설계 자유도가 향상될 수 있는 이점이 있다.
이상에서는 본 발명 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정해져야만 할 것이다.

Claims (15)

  1. 제1 양극활물질 100 중량부에 대하여, 하기 화학식 1로 나타내는 리튬 코발트 산화물 0.5 내지 50 중량부를 포함하는 양극 첨가제용 마스터 배치:
    [화학식 1]
    LipCo1-qM1 qO2
    상기 화학식 1에 있어서,
    M1은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이며,
    p 및 q는 5≤p≤7 및 0≤q≤0.4이다.
  2. 제1항에 있어서,
    양극 첨가제용 마스터 배치는 제1 양극활물질 100 중량부에 대하여 1 내지 10 중량부의 제1 바인더를 포함하는 양극 첨가제용 마스터 배치.
  3. 제1항에 있어서,
    양극 첨가제용 마스터 배치의 평균 입도(D50)는 0.05mm 내지 10mm인 양극 첨가제용 마스터 배치.
  4. 제1항에 있어서,
    제1 양극활물질의 평균 입도(D50)는 0.5 내지 100㎛인 제1 양극활물질이고,
    리튬 코발트 산화물의 평균 입도(D50)는 1 내지 200㎛이되,
    리튬 코발트 산화물의 평균 입도가 제1 양극활물질의 평균 입도보다 큰 것을 특징으로 하는 양극 첨가제용 마스터 배치.
  5. 제1 양극활물질 100 중량부에 대하여, 하기 화학식 1로 나타내는 리튬 코발트 산화물 0.5 내지 50 중량부를 포함하는 제1항에 따른 리튬 이차전지 양극 첨가제용 마스터 배치;
    제2 양극활물질;
    도전제; 및
    제2 바인더를 포함하는 리튬 이차전지용 양극 슬러리:
    [화학식 1]
    LipCo1-qM1 qO2
    상기 화학식 1에 있어서,
    M1은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이며,
    p 및 q는 5≤p≤7 및 0≤q≤0.4이다.
  6. 제5항에 있어서,
    마스터 배치에 함유된, 화학식 1로 나타내는 리튬 코발트 산화물은 양극 슬러리 전체 100 중량부에 대하여 0.05 내지 2.0 중량부로 포함되는 리튬 이차전지용 양극 슬러리.
  7. 제5항에 있어서,
    양극 첨가제용 마스터 배치는 제2 양극활물질 100 중량부에 대하여 1 내지 150 중량부로 포함되는 리튬 이차전지용 양극 슬러리.
  8. 제5항에 있어서,
    제1 양극활물질 및 제2 양극활물질은 각각 하기 화학식 2로 나타내는 리튬 금속 복합 산화물을 포함하는 리튬 이차전지용 양극 슬러리:
    [화학식 2]
    Lix[NiyCozMnwM2 v]Ou
    상기 화학식 2에서, M2는 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이고, x, y, z, w 및 v는 각각 1.0≤x≤1.30, 0.1≤y<1, 0.1<z≤0.6, 0.1<w≤0.6, 0≤v≤0.2, 1.5≤u≤5이다.
  9. 제5항에 있어서,
    도전재는 양극 슬러리 전체 100 중량부에 대하여 1 내지 5 중량부로 포함하는 리튬 이차전지용 양극 슬러리.
  10. 제5항에 있어서,
    제2 바인더는 양극 슬러리 전체 100 중량부에 대하여 1 내지 5 중량부인 리튬 이차전지용 양극 슬러리.
  11. 양극 집전체, 제1 양극 합재층 및 제2 양극 합재층이 순차적으로 적층된 구조를 포함하고;
    상기 제1 양극 합재층 및 제2 양극 합재층은 각각 제5항에 따른 리튬 이차전지용 양극 슬러리를 이용하여 형성되는 리튬 이차전지용 양극.
  12. 제11항에 있어서,
    제1 양극 합재층에 함유되는 하기 화학식 1로 나타내는 리튬 코발트 산화물의 함량은 제1 양극 합재층 100 중량부에 대하여 0.5 내지 2.0 중량부이며,
    제2 양극 합재층에 함유되는 하기 화학식 1로 나타내는 리튬 코발트 산화물의 함량은 제2 양극 합재층 100 중량부에 대하여 0.01 내지 0.5 중량부인 리튬 이차전지용 양극:
    [화학식 1]
    LipCo1-qM1 qO2
    상기 화학식 1에 있어서,
    M1은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이며,
    p 및 q는 5≤p≤7 및 0≤q≤0.4이다.
  13. 제11항에 있어서,
    제1 양극 합재층 및 제2 양극 합재층에 함유된 총 리튬 코발트 산화물의 함량은 제1 양극 합재층 및 제2 양극 합재층에 포함된 전체 양극활물질 100 중량부에 대하여 0.5 중량부 이하인 리튬 이차전지용 양극.
  14. 제11항에 있어서,
    제1 양극 합재층에 대한 제2 양극 합재층의 평균 두께 비율은 0.1 내지 0.9인 리튬 이차전지용 양극.
  15. 제11항에 따른 양극; 음극; 및 상기 양극과 음극 사이에 위치하는 분리막을 포함하는 리튬 이차전지.
PCT/KR2022/006460 2021-05-31 2022-05-06 양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리 WO2022255665A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22816324.2A EP4199156A1 (en) 2021-05-31 2022-05-06 Master batch comprising positive electrode active material and irreversible additive, and positive electrode slurry, for lithium secondary battery, containing same
CN202280006385.5A CN116325212A (zh) 2021-05-31 2022-05-06 包含正极活性材料和不可逆添加剂的母料、以及包含其的锂二次电池用正极浆料
US18/026,863 US20230335742A1 (en) 2021-05-31 2022-05-06 Master Batch Comprising Positive Electrode Active Material and Irreversible Additive, and Positive Electrode Slurry, for Lithium Secondary Battery, Containing Same
JP2023517380A JP2023542881A (ja) 2021-05-31 2022-05-06 正極活物質と非可逆添加剤を含むマスターバッチおよびそれを含有するリチウム二次電池用正極スラリー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210069635A KR20220161653A (ko) 2021-05-31 2021-05-31 양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리
KR10-2021-0069635 2021-05-31

Publications (1)

Publication Number Publication Date
WO2022255665A1 true WO2022255665A1 (ko) 2022-12-08

Family

ID=84324325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006460 WO2022255665A1 (ko) 2021-05-31 2022-05-06 양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리

Country Status (6)

Country Link
US (1) US20230335742A1 (ko)
EP (1) EP4199156A1 (ko)
JP (1) JP2023542881A (ko)
KR (1) KR20220161653A (ko)
CN (1) CN116325212A (ko)
WO (1) WO2022255665A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220162958A (ko) * 2021-06-02 2022-12-09 주식회사 엘지에너지솔루션 구조적 안정성이 향상된 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147863A (ja) * 1995-11-24 1997-06-06 Sanyo Electric Co Ltd 非水電解質電池
KR20130112567A (ko) * 2012-04-04 2013-10-14 전자부품연구원 리튬 이온 커패시터용 양극 활물질 및 그의 제조 방법
KR20190059115A (ko) * 2017-11-22 2019-05-30 주식회사 엘지화학 리튬 이차전지용 양극재에 포함되는 비가역 첨가제, 이의 제조방법, 및 이 및 포함하는 양극재
KR20190079534A (ko) * 2017-12-27 2019-07-05 주식회사 엘지화학 리튬 이차전지
KR102073951B1 (ko) * 2017-11-30 2020-02-05 주식회사 엘지화학 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
KR20210069635A (ko) 2018-10-02 2021-06-11 닛토덴코 가부시키가이샤 헤드업 디스플레이 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102315787B1 (ko) 2017-11-30 2021-10-21 주식회사 엘지에너지솔루션 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147863A (ja) * 1995-11-24 1997-06-06 Sanyo Electric Co Ltd 非水電解質電池
KR20130112567A (ko) * 2012-04-04 2013-10-14 전자부품연구원 리튬 이온 커패시터용 양극 활물질 및 그의 제조 방법
KR20190059115A (ko) * 2017-11-22 2019-05-30 주식회사 엘지화학 리튬 이차전지용 양극재에 포함되는 비가역 첨가제, 이의 제조방법, 및 이 및 포함하는 양극재
KR102073951B1 (ko) * 2017-11-30 2020-02-05 주식회사 엘지화학 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
KR20190079534A (ko) * 2017-12-27 2019-07-05 주식회사 엘지화학 리튬 이차전지
KR20210069635A (ko) 2018-10-02 2021-06-11 닛토덴코 가부시키가이샤 헤드업 디스플레이 장치

Also Published As

Publication number Publication date
CN116325212A (zh) 2023-06-23
EP4199156A1 (en) 2023-06-21
US20230335742A1 (en) 2023-10-19
KR20220161653A (ko) 2022-12-07
JP2023542881A (ja) 2023-10-12

Similar Documents

Publication Publication Date Title
WO2010030131A2 (ko) 리튬 이차전지용 양극 활물질
WO2017095074A1 (ko) 티타늄계 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019045399A2 (ko) 리튬 이차전지
WO2019004699A1 (ko) 리튬 이차전지
WO2020091453A1 (ko) 리튬 이차전지
WO2020085731A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022182019A1 (ko) 가스 발생량이 저감된 희생 양극재 및 이의 제조방법
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2018236168A1 (ko) 리튬 이차전지
WO2021015511A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질
WO2020091428A1 (ko) 리튬 이차전지
WO2020180160A1 (ko) 리튬 이차전지
WO2022255665A1 (ko) 양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리
WO2020263023A1 (ko) 특정한 조성 조건을 가지는 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지
WO2023027499A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2022250324A1 (ko) 양극 첨가제 및 이를 함유하는 리튬 이차전지용 양극
WO2022197095A1 (ko) 리튬 이차전지용 음극, 및 이를 구비하는 리튬 이차전지
WO2022092906A1 (ko) 양극 활물질 및 이의 제조방법
WO2020180125A1 (ko) 리튬 이차전지
WO2019078672A2 (ko) 이차전지용 양극활물질 제조방법 및 이를 이용하는 이차전지
WO2022092488A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2022255669A1 (ko) 양극 첨가제 및 이를 함유하는 리튬 이차전지용 양극
WO2022092477A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법
WO2020091448A1 (ko) 리튬 이차전지
WO2020045802A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023517380

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022816324

Country of ref document: EP

Effective date: 20230314

NENP Non-entry into the national phase

Ref country code: DE