WO2017095074A1 - 티타늄계 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 - Google Patents

티타늄계 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2017095074A1
WO2017095074A1 PCT/KR2016/013611 KR2016013611W WO2017095074A1 WO 2017095074 A1 WO2017095074 A1 WO 2017095074A1 KR 2016013611 W KR2016013611 W KR 2016013611W WO 2017095074 A1 WO2017095074 A1 WO 2017095074A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
titanium
secondary battery
lithium
negative electrode
Prior art date
Application number
PCT/KR2016/013611
Other languages
English (en)
French (fr)
Inventor
박성빈
전혜림
공우연
정왕모
강성훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/740,531 priority Critical patent/US10516186B2/en
Priority to JP2018506573A priority patent/JP6735813B2/ja
Priority to EP16870970.7A priority patent/EP3386012B1/en
Priority to CN201680041345.9A priority patent/CN107851788B/zh
Priority to PL16870970T priority patent/PL3386012T3/pl
Publication of WO2017095074A1 publication Critical patent/WO2017095074A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a negative electrode active material containing a titanium-based composite, a method for producing the negative electrode active material, and a lithium secondary battery to which the negative electrode active material is applied.
  • lithium secondary batteries using lithium and nonaqueous electrolytes due to the high possibility of realizing small, lightweight and high energy density batteries.
  • a transition metal oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 is used as a cathode material of a lithium secondary battery, and lithium metal or carbon is used as an anode material.
  • a lithium secondary battery is comprised using the organic solvent which contains lithium ion as electrolyte between two electrodes.
  • lithium secondary battery using metal lithium as a negative electrode tends to generate dendrite crystals when charging and discharging is repeated, and there is a high risk of short circuit.
  • Lithium secondary batteries that use a nonaqueous solvent containing lithium ions as an electrolyte have been put to practical use.
  • the carbon-based negative electrode material has a large irreversible capacity, there is a problem in that initial charge and discharge efficiency is low and the capacity is reduced.
  • lithium may be deposited on the surface of carbon during overcharging, thereby causing a problem in safety.
  • lithium titanium oxide which has recently been spotlighted as a negative electrode material of a lithium ion battery, has an operating voltage of 1.3 to 1.6 V, which is higher than that of a conventional carbon-based negative electrode material and has a reversible capacity of about 170 mAh / g.
  • High speed charging and discharging is possible, there is almost no irreversible reaction (over 95% of initial efficiency), and the heat of reaction is very low, so the safety is excellent.
  • the theoretical density is about 2 g / cm 3
  • Li 4 Ti 5 O 12 which is a kind of lithium titanium oxide, has a theoretical density of 3.5 g / cm 3, which is similar to the carbon material.
  • the size of lithium titanium oxide particles has been refined to extend the active surface, thereby increasing the diffusion rate of lithium, and using the material as a high input / output material.
  • An object of the present invention is to provide a titanium-based composite in which lithium titanium oxide is doped or coated with a specific element in order to overcome the inherent resistance difference resulting from the structural characteristics of lithium titanium oxide.
  • the purpose of the present invention is to provide a lithium secondary battery suitable for a required automobile battery, and to provide a battery pack with a simplified BMS prediction algorithm due to a small change in resistance of each secondary battery.
  • lithium titanium oxide represented by the following formula (1); And a titanium-based composite containing a metal element doped or coated on the lithium titanium oxide, wherein the metal element includes any one selected from the group consisting of M1, Al, and a combination thereof, wherein M1 is Zr and Provided is a negative active material for a secondary battery, which is at least one transition metal element selected from the group consisting of Nb.
  • x, y, and z satisfy 0.1 ⁇ x ⁇ 4, 1 ⁇ y ⁇ 5, and 2 ⁇ z ⁇ 12.
  • the negative electrode active material of the present invention is a titanium-based composite doped with and / or coated a specific metal element on lithium titanium oxide, which has excellent development of (400) crystal plane, resulting in inherent resistance difference resulting from the structural characteristics of lithium titanium oxide.
  • FIG. 1 is a schematic view showing an evaluation method of a lithium secondary battery according to an embodiment and a comparative example of the present invention.
  • FIG. 2 is a graph showing a result of measuring a voltage of a lithium secondary battery according to an embodiment and a comparative example of the present invention according to the evaluation method of FIG. 1.
  • FIG 3 is a graph showing the area ratios of the (400) crystal plane and the (111) crystal plane based on the X-ray diffraction spectrum measured at SOC 50 during charging of the rechargeable lithium battery according to Examples and Comparative Examples of the present invention.
  • LiOH.H 2 0 as a lithium precursor, 31.88 g of TiO 2 as a titanium precursor and 0.10 g of ZrO 2 as a M1 precursor were injected into a ball mill apparatus, milled for 60 minutes, and mixed evenly to prepare a precursor mixed powder.
  • the precursor mixed powder was charged into a furnace and heat treated at a temperature of 800 ° C. for about 10 hours, and then 0.08 g of Al 2 O 3 was added as an Al precursor, followed by heat treatment at a temperature of 500 ° C. for 3 hours.
  • Titanium-based composite by Li 4 Ti 4 . 99 Zr 0 . 01 0 12 / Al 2 O 3 (doping and coating amount 2000 ppm) was synthesized.
  • Lithium cobalt oxide (LiCoO 2 ) as a positive electrode active material, carbon black as a conductive material, and polyvinylidene fluoride (PVdF) as a binder were added to N-methyl-2-pyrrolidone (NMP) as a solvent.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode slurry was applied to an aluminum thin film, which is a positive electrode current collector having a thickness of about 20 ⁇ m, and dried to prepare a positive electrode, followed by roll pressing to process the positive electrode.
  • An electrolytic solution was prepared by dissolving LiPF 6 1 M as a lithium salt in a non-aqueous solvent mixed with ethylene carbonate (EC) and diethyl carbonate (DEC), and three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP).
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PP / PE / PP polypropylene / polyethylene / polypropylene
  • a negative electrode was manufactured in the same manner as in the above example except that 1 g of ZrO 2 was added (doping amount 1 wt%) and Al 2 O 3 was not coated, thereby fabricating a lithium secondary battery.
  • a negative electrode was manufactured in the same manner as in the above example except that ZrO 2 was not added and Al 2 O 3 was not coated, thereby fabricating a lithium secondary battery.
  • FIG. 1 illustrates an evaluation method as an experimental setting for evaluating a lithium secondary battery manufactured according to the Examples and Comparative Examples.
  • the SOC change rate was set to 20%, and when the SOC to be measured was reached for 1 hour, the change rate of the voltage was measured for 10 seconds while charging at 10C, and the results are shown in FIG. 2. Table 1 shows.
  • Examples 1 to 6 it can be seen that the case of Examples 1 to 4 in which the doping / coating amount is controlled to 700 to 3000 ppm is superior to those of Examples 5 and 6, which is intended in the present invention. It was also confirmed that the content can be controlled in order to achieve the effect with high probability.
  • the (400) plane is developed so that an area ratio with respect to the (111) plane is quite large, and is at least 0.76 or more. You can see the point. This also makes it possible to confirm that the resistivity change rate is close to 0 when the area ratio is 0.76 or more, preferably 0.80 or more, in relation to the resistance change rate in Experimental Example 1.
  • the small change rate of resistance and excellent development of the (400) crystal plane can be achieved by appropriately adjusting the amount of doping and coating of M1 and Al to not exceed 3000 ppm as in the embodiment.
  • the change rate of the resistance was also largely measured because the doping and coating of M1 and Al were not properly controlled, and it was confirmed that the resistance change was difficult to predict.
  • Comparative Example 2 in which doping and coating of M1 and Al were not performed at all, the capacity was not measured and even evaluation was impossible. Although it may be based on the experimental setting, it can be inferred that the performance is further lowered in consideration of the fact that Example 1 and Comparative Example 1 are evaluated at the same setting.
  • Lithium secondary battery including titanium-based composite as a negative electrode active material
  • a lithium secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material and a separator interposed between the positive electrode and the negative electrode, the negative electrode active material, the lithium secondary battery Titanium-based composite having a ratio of the peak area of the (400) plane and the peak area of the (111) plane of the measured X-ray diffraction spectrum (XRD) of 0.76 or more when charged to SOC 50 under a C-rate condition of 0.1 to 40 C.
  • XRD X-ray diffraction spectrum
  • the negative active material is a peak area of the (400) plane of the X-ray diffraction spectrum (XRD) measured when the lithium secondary battery is charged to SOC 50 under C-rate conditions of 0.1 to 10C.
  • a ratio of the peak area of the cotton may include a titanium-based composite having 0.80 or more.
  • the measurement of the X-ray diffraction spectrum may be measured under slow (0.1C) charging and fast (40C) charging in the charging direction when charging SOC up to 50 under C-rate conditions of 0.1 to 40C, and
  • the area ratio may mean a ratio of area values of peaks to a specific crystal plane among the peaks displayed on the graph of the diffraction spectrum, and in particular, in the present invention, the area of the (400) plane and the (111) plane among the crystal planes. After calculating the value, the ratio is limited.
  • a negative electrode that can be applied to a high-output secondary battery by replacing a carbon-based negative electrode is a negative electrode using lithium titanium oxide, and the lithium titanium oxide has a spinel structure and rock salt according to occlusion and release of lithium during charging and discharging. -salt)
  • a two phase reaction between the structures is carried out. At this time, even if the resistance is measured in the same SOC due to the two-phase reaction as described above, the resistance value may appear different depending on the direction of setting the SOC, that is, the charging direction or the discharge direction, the resistance also depending on the charging speed The values may appear different.
  • the inconsistent resistance value is due to the structural characteristics of the lithium titanium oxide, that is, the lithium ion is occluded and released through the phase change between the spinel structure and the rock salt structure.
  • a lithium secondary battery applied as a negative electrode active material is applied to a battery pack, it is difficult to predict a battery management system (BMS), which may cause a problem such that the prediction algorithm is complicated.
  • BMS battery management system
  • the lithium secondary battery according to the present invention which overcomes the inherent resistance difference resulting from the structural characteristics, may have a change rate of 5% or less in the region of SOC 5 to 100 regardless of the direction of resistance measurement during charging and discharging. .
  • the resistance value is measured more uniformly, which means that the phase transition speed between the spinel structure and the rock salt structure is faster.
  • the output characteristics may result in an advantage.
  • the BMS prediction algorithm may be greatly simplified in that the resistance value is constant.
  • the lithium titanium oxide may be represented by the following formula (1).
  • x, y, and z satisfy 0.1 ⁇ x ⁇ 4, 1 ⁇ y ⁇ 5, and 2 ⁇ z ⁇ 12.
  • the lithium titanium oxide represented by Chemical Formula 1 may be represented by Li 4 Ti 5 O 12 , LiTi 2 O 4 , Li 2 TiO 3 , or Li 2 Ti 3 O 7 , and all of them spinel during charge and discharge. Although it may be to cause a phase change between the structure and rock salt structure, lithium titanium oxide is not limited to the above examples.
  • the titanium-based composite further includes any one metal element selected from the group consisting of M1, Al (aluminum) and combinations thereof, the metal element may be doped or coated on the titanium-based composite, specifically, In the doped or coated metal element, M1 may be at least one transition metal element selected from the group consisting of Zr and Nb.
  • the present invention is not limited thereto, but M1 may be mostly doped, and Al may be partially doped in the manufacturing process and may be coated.
  • the titanium-based composite is M1 doped, Al coated, Al doped and coated, M1 doped, Al coated, M1 doped, Al It may be doped and coated.
  • the lithium secondary battery to which the negative electrode active material is applied has a small change in resistance value according to SOC setting direction or charging rate, thereby predicting BMS.
  • the output characteristics can also be quite good because the algorithm can be simplified and low resistance values can be maintained.
  • the amount of the metal element is doped or coated may be preferably 700 to 5000 ppm, 700 to 3000 ppm, or 1000 to 3000 ppm by weight of the titanium-based composite. have.
  • the doping or coating amount of the metal element is adjusted in the above-described range, a battery pack capable of significantly reducing the change in resistance and simplifying the BMS prediction algorithm, or a lithium secondary battery having excellent output characteristics can be secured with high probability. Can be.
  • the amount of doping or coating when the amount of doping or coating is less than 700 ppm, the amount of metal elements that can contribute to structural stabilization of lithium titanium oxide is insufficient, so that the change in resistance value is not likely to decrease, and the amount of doping or coating exceeds 5000 ppm.
  • the amount of titanium is relatively reduced, which may cause some damage in the output characteristics, which is a basic feature of lithium titanium oxide.
  • an excessive metal element acts as a material that interferes with the phase transition phenomenon of lithium titanium oxide (400). )
  • the area of the crystal plane may be relatively reduced, and thus the resistance change may also increase.
  • the optimum effect range may be about 700 to 5000 ppm, most preferably 700 to 3000 ppm, it is preferable to control the range to produce a titanium-based composite can do.
  • phase transition between the spinel structure and the rock salt structure may occur more actively, and thus, the development of the (400) crystal plane may be better, and further, It can overcome the inherent resistance variation resulting from the structural characteristics of lithium titanium oxide, and greatly improve the output performance.
  • the titanium-based composite may have a particle diameter (D 50 ) of the primary particles of 1 ⁇ m or less, preferably 200 to 700 nm, and the particle diameter (D 50 ) of the secondary particles is agglomerated with the primary particles. It may be different in the degree, but may be usually 1 to 10 ⁇ m.
  • the particle size is satisfied if it is normally prepared according to the manufacturing method described below, it may be a suitable size to be applied to the active material.
  • the particles in the size of the above range can prevent the aggregation between the primary particles, it can be associated with the porosity of the negative electrode manufactured by using it can exhibit an appropriate effect.
  • lithium titanium oxide represented by Formula 1 lithium titanium oxide represented by Formula 1; And a titanium-based composite containing a metal element doped or coated on the lithium titanium oxide, wherein the metal element includes any one selected from the group consisting of M1, Al, and a combination thereof, wherein M1 is Zr and Provided is a negative active material for a secondary battery, which is at least one transition metal element selected from the group consisting of Nb.
  • x, y, and z satisfy 0.1 ⁇ x ⁇ 4, 1 ⁇ y ⁇ 5, and 2 ⁇ z ⁇ 12.
  • the description of the negative electrode active material for a secondary battery including the lithium titanium oxide, the metal element, and the titanium-based composite is omitted as described in the description of the lithium secondary battery.
  • a method of manufacturing a negative active material for a secondary battery further comprising at least one of the steps.
  • a process leading to step (a), step (a-1) and step (b) may be performed, and to step (a), step (b) and step (b-1).
  • the process that follows may be performed and the process that follows step (a), step (a-1), step (b) and step (b-1) may be performed.
  • a titanium-based composite in which M1 and / or Al is coated and / or doped with lithium titanium oxide may be manufactured.
  • Mixing of the precursor mixture of step (a) is a process that allows the lithium precursor and the titanium precursor to be evenly mixed as a whole, the mixing method is not particularly limited as long as the precursor mixture can be uniformly mixed as a dry state, the mixing The method may include wet mixing and dry mixing.
  • the mixing may use a wet mixing method.
  • a precursor solution may be prepared by adding a lithium precursor and a titanium precursor to a volatile solvent, and the chamber may be equipped with a spray drying equipment.
  • Injecting the precursor solution, and evaporating the volatile solvent may include the step of preparing a precursor mixed powder.
  • the preparation of the precursor solution may be applied to the method of adding a titanium precursor while stirring the solution in which the lithium precursor is dissolved in a volatile solvent
  • the volatile solvent used at this time is water, such as deionized water or distilled water, methanol, ethanol Or an alcohol having a low carbon number such as propanol, or acetone may be used, and the solvent is not particularly limited as long as it is a solvent which can be easily evaporated by the heat applied during the spray drying.
  • the precursor solution prepared as described above may be injected into a chamber equipped with the spray drying equipment as described above, and the precursor solution may be sprayed by the spray drying equipment, and at the same time, drying may be performed.
  • the spray drying equipment may be applied to ultrasonic spray drying equipment, air nozzle spray drying equipment, ultrasonic nozzle spray drying equipment, filter expansion droplet generating equipment, electrostatic spray drying equipment or a combination thereof.
  • the temperature in the chamber may be preferably performed at 20 to 300 ° C., and when the temperature exceeds 300 ° C., there is a possibility that intergranulation or particle growth of the precursor mixed powder may occur, so that an appropriate temperature control may be necessary. have.
  • the mixing may use a dry mixing method, which may be mixing the lithium precursor and the titanium precursor through a mechanical method, for example, a ball mill, a high speed mill, a stirring mill, Jet mills or combinations of these methods may be employed.
  • a dry mixing method which may be mixing the lithium precursor and the titanium precursor through a mechanical method, for example, a ball mill, a high speed mill, a stirring mill, Jet mills or combinations of these methods may be employed.
  • the lithium precursor may be used without particular limitation as long as it is a source material capable of providing lithium, such as lithium salts in which lithium ions and salts are bonded.
  • a source material capable of providing lithium such as lithium salts in which lithium ions and salts are bonded.
  • Li 2 CO 3 , LiOH, LiF, Li 2 SO 4 , LiNO 3 , LiCl, or a mixture thereof may be used.
  • the titanium precursor may be used without particular limitation as long as it is a source material capable of providing titanium, such as an oxide of titanium.
  • the titanium precursor may be a hydrate or a dry powder.
  • a hydrate it may be preferable to mix with a lithium precursor using a wet mixing method, and in the case of a dry powder, it may be preferable to use a dry mixing method.
  • TiO 2 , TiCl 4 , TiOCl 2 , TiOSO 4 , TiO (OH) 2 , or a mixture thereof may be used.
  • step (a-1) is a process in which M1 is doped with lithium titanium oxide, and may be performed by adding M1 precursor together when mixing the lithium precursor and the titanium precursor.
  • the M1 precursor may be mixed in an amount of about 0.02 to 0.2% by weight based on the total weight of the precursor mixture, and in the above range, the development degree of the (400) crystal plane is excellent, and the area ratio may be 0.8 or more.
  • Such mixing of the M1 precursor may be selectively performed, and may be performed simultaneously with only one of the two or the same step (b-1) described below.
  • the M1 precursor may be any one oxide or hydroxide selected from the group consisting of Zr and Nb, and these may be used alone or in combination.
  • the step (b) may be a step of heat-treating the precursor mixture, and may be a process of calcining as a process for producing a titanium-based composite by heat-treating the precursor mixture powder of the mixed and dried state in any way.
  • the heat treatment may be performed at a temperature of about 800 to 1100 °C, preferably may be performed at a temperature of about 850 to 1050 °C, or 900 to 1000 °C.
  • the heat treatment temperature is lower than 800 ° C. to prevent sufficient heat supply, lithium salts such as unreacted lithium precursors or lithium compounds due to side reactions may remain in the titanium-based composite, and a large amount of such impurities remain. If it is, it may affect the battery's storage performance or output characteristics due to side reactions or gas generation, and if it is higher than 1100 ° C, lithium titanium oxide may be denatured or particle growth may occur due to excessive energy supply. This may also affect the output characteristics of the battery. Therefore, it may be necessary to adjust the heat treatment temperature appropriately.
  • the heat treatment is also required to control the time, in the case of the present invention it may be preferable to heat treatment for about 2 to 12 hours. If the heat treatment time is performed in less than 2 hours, the same disadvantages as firing by lowering the heat treatment temperature may occur, and if the heat treatment time is longer than 12 hours, unnecessary energy waste or process cost may occur. .
  • the titanium-based composite prepared by the heat treatment as described above may include lithium titanium oxide, and M1 may be doped or coated with lithium titanium oxide.
  • M1 since M1 is mixed with precursors of lithium and titanium to be calcined through heat treatment, most of M1 may exist in lithium titanium oxide in the form of doping, but in some cases, it exists on the surface as in the form of coating. You may be doing
  • step (b) a process of performing a second heat treatment of the titanium-based composite in a state in which the Al precursor is mixed.
  • the heat treatment may be performed at about 300 to 500 ° C., and when such heat treatment is performed, Al may be coated or doped into the inside of the titanium-based composite.
  • Al can form a coating layer completely, when the heat treatment temperature is close to 500 °C may be present in the titanium-based composite in the form of Al doped, when close to 300 °C Al is coated If the heat treatment temperature is higher than 500 ° C., there may be other incidental changes in addition to Al doping or coating such as coarsening of particles. If the heat treatment temperature is lower than 300 ° C., even Al coating may be performed. There is a fear of losing.
  • the Al precursor used at this time may be an oxide or hydroxide of Al, they may be used alone or mixed.
  • the finally prepared titanium-based composite may be in the form of doping and / or coating a metal element (M1 and / or Al) on the lithium titanium oxide, the amount of the final metal element present in the lithium titanium oxide is the total amount of the titanium-based composite Based on, it may be 700 to 3000 ppm.
  • the development of the (400) plane may be excellent, and the ratio of the area to the (111) crystal plane is also increased due to the excellent development of the (400) crystal plane, thereby increasing the stability of the resistance change and The effect of improving the output performance can be obtained.
  • the titanium-based composite of the present invention may be in a state in which a lithium element is doped or coated with lithium titanium oxide, and a coating layer containing AL may be formed on the surface of the titanium-based composite.
  • a coating layer may be formed by a method such as ball milling the titanium-based composite prepared with the Al precursor as described above, may be further heat-treated, and in general, if the method used to form the coating layer is particularly limited. Can be applied without.
  • the lithium secondary battery of the present invention can be prepared according to conventional methods known in the art. For example, a porous separator may be inserted between the positive electrode and the negative electrode, and an electrolyte in which lithium salt is dissolved may be added.
  • the positive electrode can be prepared by conventional methods known in the art.
  • a slurry may be prepared by mixing and stirring a solvent, a binder, a conductive agent, and a dispersant in a positive electrode active material, and then applying (coating) to a current collector of a metal material, compressing, and drying the positive electrode to prepare a positive electrode.
  • the positive electrode is prepared by applying a positive electrode active material on a positive electrode current collector, followed by drying.
  • the cathode active material may be a material such as Li x CoO 2 (0.5 ⁇ x ⁇ 1.3) or Li x Mn 2 -z Ni z O 4 (0.5 ⁇ x ⁇ 1.3, 0 ⁇ z ⁇ 2). have.
  • the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the positive electrode current collector is a metal having high conductivity and a metal that can easily adhere to the slurry of the positive electrode active material. Any may be used as long as it is not reactive at.
  • Non-limiting examples of the positive electrode current collector include a foil made of aluminum, nickel, or a combination thereof.
  • the solvent for forming the positive electrode includes an organic solvent such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents alone or in combination of two or more. Can be mixed and used.
  • organic solvent such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents alone or in combination of two or more. Can be mixed and used.
  • the amount of the solvent used is sufficient to dissolve and disperse the electrode active material, the binder, and the conductive agent in consideration of the coating thickness of the slurry and the production yield.
  • the conductive material may generally be used without limitation as long as it can be used in the art, for example, artificial graphite, natural graphite, carbon black, acetylene black, ketjen black, denka black, thermal black, channel black, carbon fiber, metal fiber, Aluminum, tin, bismuth, silicon, antimony, nickel, copper, titanium, vanadium, chromium, manganese, iron, cobalt, zinc, molybdenum, tungsten, silver, gold, lanthanum, ruthenium, platinum, iridium, titanium oxide, polyaniline, poly Thiophene, polyacetylene, polypyrrole or mixtures thereof and the like can be used.
  • the binder can be used without limitation as long as it is generally used in the art, for example, polyvinylidene fluoride (PVdF), copolymer of polyhexafluoropropylene-polyvinylidene fluoride (PVdF / HFP), poly ( Vinyl acetate), polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, polyvinylpyridine, alkylated polyethylene oxide, polyvinylether, poly (methylmethacrylate), poly (ethylacrylate), polytetrafluoroethylene ( PTFE), polyvinylchloride, polyacrylonitrile, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluorine rubber, ethylene-propylene-diene monomer (EPDM) sulfonated ethylene-propylene-diene monomer, carboxymethylcellulose (CMC ), Regenerated cellulose, starch, hydroxypropyl cellulose,
  • the positive electrode may further add a filler to the mixture, if necessary.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the negative electrode is manufactured by applying and drying the negative electrode active material including the titanium-based composite as described above on the negative electrode current collector, and if necessary, the components as described above may be further included.
  • the negative electrode includes the above-described titanium-based composite as a negative electrode active material, wherein the average particle diameter (D 50 ) of the primary particles of the titanium-based composite is about 1 ⁇ m or less, and the BET method of the negative electrode made of the negative electrode active material Specific surface area may be about 3 to 50 m 2 / g.
  • the specific surface area of the negative electrode active material may be about 1 to 10 m 2 / g, and the upper limit may be preferably 6 m 2 / g or less, but is not limited thereto.
  • the affinity between the negative electrode and the electrolyte may be lowered, thereby increasing the interfacial resistance of the negative electrode, thereby reducing the output characteristics.
  • the specific surface area exceeds 50 m 2 / g, the electrolyte is biased toward the negative electrode, and a phenomenon in which the electrolyte is insufficient at the positive electrode may occur, which is also unlikely to improve the output characteristics.
  • the negative electrode current collector is generally made to a thickness of 3 to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • Separators that insulate the electrodes between the positive and negative electrodes include conventional porous polymer films conventionally used as separators such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene Porous polymer films made of polyolefin-based polymers, such as / methacrylate copolymers can be used alone or in a stack thereof, or a conventional porous non-woven fabric, such as glass fibers of high melting point, polyethylene terephthalate fibers, etc. Nonwoven fabrics may be used, but are not limited thereto.
  • An electrode current collector having the above structure is accommodated in a pouch packaging material, and then an electrolyte is injected to manufacture a battery.
  • the electrolyte is a lithium salt-containing non-aqueous electrolyte, which consists of a non-aqueous electrolyte and lithium.
  • a nonaqueous electrolyte a nonaqueous electrolyte, a solid electrolyte, an inorganic solid electrolyte, and the like are used.
  • organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyagitation lysine, polyester sulfides, polyvinyl alcohol, polyvinylidene fluoride, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, 4-phenyl lithium borate, and imide Can be.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, etc.
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • the battery module according to another embodiment of the present invention includes the above-described lithium secondary battery as a unit cell, and the battery pack according to another embodiment of the present invention includes the battery module.
  • the titanium-based composite is used as the negative electrode active material, and thus the BMS prediction algorithm can be greatly simplified due to the small change in the resistance value of the secondary battery according to the setting direction or the charging speed during SOC setting. Furthermore, since the constant resistance value is kept at a low value, the output characteristic can also be improved.
  • the battery case used in the present invention may be adopted that is commonly used in the art, there is no limitation on the appearance according to the use of the battery, for example, cylindrical, square, pouch type or coin using a can (coin) type and the like.
  • the lithium secondary battery according to the present invention may not only be used in a battery module used as a power source for a small device, but may also be preferably used as a unit cell in a medium-large battery pack including a plurality of batteries.
  • Preferred examples of the medium and large devices include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, power storage systems, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명의 리튬 이차전지는 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극 및 상기 양극과 음극 사이에 개재된 분리막을 포함하는 리튬 이차전지로, 상기 음극 활물질은, 상기 리튬 이차전지를 0.1 내지 40C의 C-rate 조건으로 SOC 50까지 충전할 때, 측정된 X-선 회절 스펙트럼(XRD)에서 (400)면의 피크 면적 및 (111)면의 피크 면적의 비율이 0.76 이상인 티타늄계 복합체를 포함하는 것일 수 있으며, 이로 인해 출력 특성이 우수한 리튬 이차전지와 BMS 예측 알고리즘이 단순화된 전지팩을 제공할 수 있다.

Description

티타늄계 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
관련출원과의 상호인용
본 출원은 2015년 11월 30일자 한국 특허 출원 제10-2015-0168681호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
티타늄계 복합체를 포함하는 음극 활물질과, 이 음극 활물질을 제조하는 방법과, 이 음극 활물질이 적용된 리튬 이차전지에 관한 발명이다.
최근, 휴대전화, 노트북 컴퓨터, 캠코더 등의 휴대용 기기의 발전에 따라 Ni-수소(Ni-MH) 이차전지나 리튬 이차전지 등의 이차전지에 대한 수요가 높아지고 있다. 특히, 리튬과 비수용매 전해액을 사용하는 리튬 이차전지는 소형, 경량 및 고에너지 밀도의 전지를 실현할 수 있는 가능성이 높아 활발하게 개발되고 있다. 일반적으로 리튬 이차전지의 양극(cathode)재료로는 LiCoO2, LiNiO2, LiMn2O4 등의 전이금속산화물이 사용되며, 음극(anode)재료로는 리튬(Lithium) 금속 또는 탄소(Carbon)등이 사용되고, 두 전극사이에 전해질로서 리튬 이온이 함유되어 있는 유기용매를 사용하여 리튬 이차전지가 구성된다.
그러나, 금속리튬을 음극으로 이용한 리튬 이차전지는 충방전을 반복하는 경우에 수지상(dendrite)의 결정이 발생하기 쉽고, 이로 인한 단락 쇼트의 위험성이 크므로, 음극에 탄화 또는 흑연화 된 탄소재료를 이용하고 리튬 이온을 함유하는 비수계 용매를 전해질로 하는 리튬 이차전지가 실용화되고 있다. 그러나, 탄소계 음극재료는 비가역용량이 크므로 초기 충방전 효율이 낮고, 용량이 감소되는 문제점이 있다. 그리고, 과충전 시 탄소의 표면에 리튬이 석출되어 안전성에 있어서 문제가 발생할 수 있다.
한편, 최근에 와서 리튬이온전지의 음극 재료로 각광 받고 있는 리튬티탄 산화물은 작동 전압이 1.3 ~ 1.6 V로 기존의 탄소계 음극재에 비해 높고 가역 용량은 170 mAh/g정도로 작다는 단점이 있으나, 고속 충방전이 가능하고 비가역 반응이 거의 존재하지 않으며 (초기 효율 95%이상), 반응열이 매우 낮아 안전성이 우수하다는 장점이 있다. 또한 탄소 재료의 경우 이론 밀도가 약 2 g/cm3 정도로 낮으나 리튬티타늄 산화물 중의 일 종인 Li4Ti5O12는 이론 밀도가 3.5 g/cm3 정도로 높아 부피당 용량은 탄소 물질과 유사한 수준이다.
종래에는 리튬티타늄 산화물 입자의 사이즈를 미세화하여 활성면을 확장시킴으로써 리튬의 확산속도를 빠르게 하여 고입출력 소재로 활용하였다.
본 발명의 목적은 리튬티타늄 산화물의 구조적인 특징으로부터 기인하는 고유의 저항차이를 극복하기 위하여 리튬티타늄 산화물에 특정 원소를 도핑 또는 코팅한 티타늄계 복합체를 제공하고자 함이며, 출력 특성이 우수하여 고출력이 요구되는 자동차 전지에 적합한 리튬 이차전지를 제공하고자 함이며, 각각의 이차전지들의 저항의 변화폭이 적어 BMS 예측 알고리즘이 단순화 된 전지팩을 제공하고자 함이다.
상기 목적을 달성하기 위해, 본 발명의 일 실시예에 따르면, 하기 화학식 1로 표시되는 리튬티타늄 산화물; 및 상기 리튬티타늄 산화물에 도핑 또는 코팅된 금속원소;를 함유하는 티타늄계 복합체를 포함하고, 상기 금속원소는 M1, Al 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하고, 상기 M1은 Zr 및 Nb으로 이루어진 군에서 선택된 1 종 이상의 전이금속 원소인 것인 이차전지용 음극 활물질이 제공된다.
[화학식 1]
LixTiyOz
상기 화학식 1에서, x, y 및 z는 0.1≤x≤4, 1≤y≤5 및 2≤z≤12를 만족한다.
본 발명의 음극 활물질은 특정 금속 원소를 리튬티타늄 산화물에 도핑 및/또는 코팅한 티타늄계 복합체로서, 이는 (400) 결정면이 우수하게 발달되어, 리튬티타늄 산화물의 구조적인 특징으로부터 기인하는 고유의 저항차이를 극복할 수 있고 저항의 변화폭을 줄일 수 있음으로 인하여, 우수한 출력 특성을 갖는 리튬 이차전지를 제공할 수 있고, BMS 예측 알고리즘이 단순화된 전지팩을 제공할 수 있다.
도 1은 본 발명의 실시예 및 비교예에 따른 리튬 이차전지의 평가 방법을 도시한 개략도이다.
도 2는 본 발명의 실시예 및 비교예에 따른 리튬 이차전지를 상기 도 1의 평가 방법에 따라, 전압을 측정한 결과를 나타낸 그래프이다.
도 3은 본 발명의 실시예 및 비교예에 따른 리튬 이차전지의 충전시 SOC 50에서 측정한 X-선 회절 스펙트럼을 바탕으로 (400) 결정면 및 (111) 결정면의 면적 비율을 나타낸 그래프이다.
실시예
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예 등에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
1) 음극의 제조
리튬 전구체로서 LiOHㆍH20 13.43 g, 티타늄 전구체로서 TiO2 31.88 g 및 M1 전구체로서 ZrO2 0.10 g을 볼 밀 장치에 주입하고 60 분 동안 밀링을 수행하여 고르게 혼합하여 전구체 혼합분말을 제조하였다. 다음으로, 상기 전구체 혼합분말을 소성로(furnace)에 장입하여 약 10 시간 동안 800℃의 온도로 열처리하였고, 이후 다시 Al 전구체로서 Al2O3 0.08 g를 첨가하여 3 시간 동안 500℃의 온도로 열처리하여 티타늄계 복합체 Li4Ti4 . 99Zr0 . 01O12/Al2O3 (도핑 및 코팅량 2000 ppm)을 합성하였다.
상기 합성된 리튬티탄 산화물 복합체 90 중량%, 도전재로서 카본 블랙 5 중량%, 바인더로서 PVDF 5 중량%를 혼합하여 음극용 슬러리를 제조한 후(20 g base), 이를 두께가 약 20 ㎛인 알루미늄 박막에 도포하고 건조하여 음극을 제조한 후, 롤 프레스를 실시하여 음극을 가공하였다.
2) 리튬 이차전지의 제조
용매인 N-메틸-2-피롤리돈(NMP)에 양극활물질로서 리튬코발트 산화물(LiCoO2), 도전재로서 카본 블랙, 그리고, 바인더로 폴리비닐리덴 플루오라이드(PVdF)를 첨가하여 양극용 슬러리를 제조하였다. 상기 양극용 슬러리를 두께가 20 ㎛ 정도의 양극 집전체인 알루미늄 박막에 도포하고 건조하여 양극을 제조한 후, 롤 프레스를 실시하여 양극을 가공하였다.
에틸렌 카보네이트(EC) 및 디에틸 카보네이트(DEC)를 혼합한 비수계 용매에 리튬염으로서 LiPF6 1 M를 용해시켜 전해액을 제조하고, 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 제조하여, 양극, 음극 및 분리막을 조립하고 전해액을 주액하여 리튬 이차전지를 제작하였다.
실시예 2 내지 4
상기 실시예 1에서 Zr과 Al의 도핑 및/또는 코팅량을 2000 ppm으로 하는 대신 아래의 표 1에 기재한 바와 같은 함량으로 하여 실시예 1과 동일한 방법으로 실시예 2 내지 4의 음극 활물질을 제조하고, 이를 이용하여 리튬 이차전지를 제조하였다.
비교예 1
ZrO2 1 g을 첨가한 것(도핑량 1 중량%)과 Al2O3를 코팅하지 않은 것을 제외하고는 상기 실시예와 동일한 방법으로 음극을 제작하고 리튬 이차전지를 제작하였다.
비교예 2
ZrO2을 첨가하지 않은 것과 Al2O3를 코팅하지 않은 것을 제외하고는 상기 실시예와 동일한 방법으로 음극을 제작하고 리튬 이차전지를 제작하였다.
실험예 1: 리튬 이차전지의 SOC 셋팅에 따른 저항 변화율 측정
도 1은 상기 실시예 및 비교예에 따라 제조된 리튬 이차전지를 평가하기 위한 실험 셋팅으로서, 평가 방법에 대하여 도시한 것이다.
SOC 변화율은 20%로 하였고, 측정하고자 하는 SOC에 도달하면 1시간 동안 방치 후, 10C로 충전하면서 10초 동안 전압의 변화율을 측정하였고, 그 결과를 도 2에 나타내었으며, 계산된 저항 값은 하기 표 1에 나타내었다.
또한, 0.1C 내지 40C의 셋팅으로 SOC 50까지 충전한 후 상기 실시예 및 비교예의 음극에 대하여 X-선 회절 분석을 수행한 후, (400) 결정면에 대한 피크 면적과 (111) 결정면에 대한 피크 면적의 면적 비율을 계산하여 그 결과를 도 3에 도시하였다.
M1 Al 도핑/코팅량 1C 저항 값(Ω) 250A 저항값(Ω) 변화율(%)
실시예 1 Zr Al 2000 ppm 0.929 0.927 0.2
실시예 2 Zr Al 1000 ppm 0.930 0.928 0.2
실시예 3 Zr Al 3000 ppm 0.933 0.930 0.3
실시예 4 Nb Al 2000 ppm 0.950 0.944 0.7
실시예 5 Zr Al 300 ppm 1.102 1.100 0.1
실시예 6 Zr Al 6000 ppm 1.042 1.150 10.40
비교예 1 Zr x 10000 ppm 1.087 1.232 13.34
비교예 2 x x 측정 불능 측정 불능 측정 불능
비교예 3 x Al 3000 ppm 1.323 1.220 8.40
상기 표 1과 도 2를 참조하면, 실시예 1 내지 5의 경우 전압의 SOC 셋팅에 따라 저항의 변화율이 거의 0%에 가까울 정도로 변화되지 않았으나, 비교예 1 내지 3의 경우 실험 오차범위로 무시할 수 없을 정도로 10%가 넘는 변화가 발생되었음을 확인할 수 있다. 즉, 본 발명에 따른 실시예의 리튬 이차전지를 이용하여 전지팩을 제작하는 경우에는 상기와 같이 저항의 변화율이 0%에 가까워 BMS 예측 알고리즘을 현저히 단순화 시킬 수 있다는 점을 알 수 있다. 또한, 실시예 1 내지 6의 전지는 저항 값 자체가 비교예들에 비하여 낮기 때문에, 그에 따른 출력 상승도 기대할 수 있음을 확인하였다.
그리고, 실시예 1 내지 6을 살펴보면, 도핑/코팅량을 700 내지 3000 ppm으로 제어한 실시예 1 내지 4의 경우가 실시예 5 및 6 보다 특성이 우수함을 확인할 수 있는 바, 본 발명에서 의도하는 효과를 높은 확률로 달성하기 위해서는 함량을 제어할 수 있다는 것도 확인하였다.
실험예 2: (400) 결정면 및 (111) 결정면의 면적 비율 측정
상기 실시예 및 비교예에 따라 제조된 리튬 이차전지를 0.1C 내지 40C의 셋팅으로 SOC 50까지 충전한 후 상기 실시예 및 비교예의 음극에 대하여 X-선 회절 분석을 수행한 후, (400) 결정면에 대한 피크 면적과 (111) 결정면에 대한 피크 면적의 면적 비율을 계산하여 그 결과를 도 3에 도시하였다.
도 3을 참조하면, 본 발명의 실시예에 따라 제조된 리튬 이차전지의 경우에만 (400)면이 발달되어 (111)면에 대한 면적 비율이 상당히 크다는 점을 확인할 수 있으며, 적어도 0.76 이상이 된다는 점을 알 수 있다. 이는 상기 실험예 1에서의 저항 변화율과 관련하여, 면적비율이 0.76 이상, 바람직하게는 0.80 이상이 되는 경우 저항 변화율이 0에 가까운 값을 나타낸다는 점 또한 확인할 수 있게 해준다.
이와 같이, 저항의 변화율이 작고 (400) 결정면이 우수하게 발달될 수 있는 것은, 실시예와 같이 M1과 Al를 도핑하는 양 및 코팅하는 양이 3000 ppm이 넘지 않도록 적절하게 조절함으로써, 이루어 질 수 있는 것이며, 과도하게 코팅 및 도핑된 비교예 1의 경우에는 M1 및 Al의 도핑 및 코팅이 적절하게 조절되지 않음으로 인해 저항의 변화율도 크게 측정되어 저항 변화를 예측하기가 어렵다는 점을 확인하였다. 나아가, M1 및 Al의 도핑 및 코팅이 전혀 수행되지 않은 비교예 2의 경우에는, 용량이 측정되지 않아 평가조차가 불가하였다. 실험 셋팅에 의한 것이겠지만, 실시예 1 및 비교예 1이 동일한 셋팅에서 평가가 이루어진 것을 감안한다면, 이보다 성능이 더욱 저하되는 것이라는 점을 유추할 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
티타늄계 복합체를 음극 활물질로 포함하는 리튬 이차전지
본 발명의 일 실시예에 따르면, 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극 및 상기 양극과 음극 사이에 개재된 분리막을 포함하는 리튬 이차전지로, 상기 음극 활물질은, 상기 리튬 이차전지를 0.1 내지 40C의 C-rate 조건으로 SOC 50까지 충전할 때, 측정된 X-선 회절 스펙트럼(XRD)의 (400)면의 피크 면적 및 (111)면의 피크 면적의 비율이 0.76 이상인 티타늄계 복합체를 포함하는 것인 리튬 이차전지가 제공된다.
바람직하게, 상기 음극 활물질은 상기 리튬 이차전지를 0.1 내지 10C의 C-rate 조건으로 SOC 50까지 충전할 때, 측정된 X-선 회절 스펙트럼(XRD)의 (400)면의 피크 면적 및 (111)면의 피크 면적의 비율이 0.80 이상인 티타늄계 복합체를 포함할 수 있다.
상기 X-선 회절 스펙트럼의 측정은 0.1 내지 40C의 C-rate 조건 하에서, SOC를 50까지 충전시 충전 방향으로 느리게(0.1C) 충전하는 경우와 빠르게(40C) 충전하는 경우에 측정되는 것일 수 있고, 상기 면적 비율은 회절 스펙트럼의 결과 그래프 상에서 표시되는 피크들 중에서 특정 결정면에 대한 피크들의 면적 값들의 비율을 의미할 수 있고, 특히 본 발명에서는 결정면들 중에서 (400)면과 (111)면의 면적 값을 구한 후 이들의 비율을 한정한 것이다.
일반적으로, 탄소계 음극을 대체하여 고출력계 이차전지에 적용될 수 있는 음극은 리튬티타늄 산화물을 이용한 음극으로서, 리튬티타늄 산화물은 충방전시 리튬의 흡장 및 방출에 따라 스피넬(spinel) 구조와 암염(rock-salt) 구조 사이의 2 상 반응(two phase reaction)을 수행하게 된다. 이 때, 상기와 같은 2 상 반응으로 인하여 동일한 SOC에서 저항을 측정하더라도 SOC를 셋팅하는 방향, 즉 충전 방향인지, 또는 방전 방향인지에 따라 저항 값이 상이하게 나타날 수 있고, 충전 속도에 따라서도 저항 값이 상이하게 나타날 수 있다.
상기와 같이 저항 값이 일정하지 못한 것은 리튬티타늄 산화물의 구조적인 특성, 즉 스피넬 구조와 암염 구조 간의 상변화를 통한 리튬 이온이 흡장 및 방출되는 특성에 기인하는 것으로서, 이와 같은 문제는 리튬티타늄 산화물을 음극 활물질로 적용한 리튬 이차전지가 전지팩에 적용될 경우 전지 관리 시스템(Battery Management System, BMS) 예측이 어려워 예측 알고리즘이 상당히 복잡해 지는 등의 문제가 발생될 우려가 있다.
그러나, 본 발명에서와 같이 티타늄계 복합체를 포함하는 음극 활물질을 적용하여, 특정 범위의 C-rate 조건 하에, 측정된 X-선 회절 스펙트럼의 결과 값 상에서, (400)면과 (111)면의 면적 비율이 0.8 이상인 경우에는, 측정되는 저항 값이 SOC의 셋팅 방향, 충전 속도 등에 무관하게 저항이 낮은 값으로 일정하여 리튬티타늄 산화물의 구조적인 특성에서 오는 고유의 저항 차이를 극복할 수 있다.
이처럼, 상기 구조적인 특성에서 오는 고유의 저항 차이를 극복한 본 발명에 따른 리튬 이차전지는 충방전시 SOC 5 내지 100인 영역에서 저항 측정 방향에 무관하게 저항 값의 변화율이 5% 이하인 것일 수 있다.
이와 같이, 상기 면적 비율이 0.8 보다 커질수록, 즉 (400)면의 면적이 커질수록 상기의 저항 값은 더욱 일정하게 측정되며, 이는 스피넬 구조와 암염 구조 사이의 상전이 속도가 빠르다는 것을 의미하며, 종국적으로는 출력 특성이 우수하다는 이점으로 귀결될 수 있으며, 나아가, 저항 값이 일정하다는 점에서 상기 BMS 예측 알고리즘을 크게 단순화 시킬 수 있다는 점 또한 장점으로 취할 수 있다.
본 발명에서 티타늄계 복합체의 (400)면의 발달이 우수하게 나타나는 이유 중 하나로는, 티타늄계 복합체의 구조적인 안정화를 이루었기 때문일 수 있으며, 상기와 같은 티타늄계 복합체는 리튬티타늄 산화물을 포함할 수 있고, 상기 리튬티타늄 산화물은 하기 화학식 1로 표시되는 것일 수 있다.
[화학식 1]
LixTiyOz
상기 화학식 1에서, x, y 및 z는 0.1≤x≤4, 1≤y≤5 및 2≤z≤12를 만족한다.
구체적으로, 상기 화학식 1로 표시되는 리튬티타늄 산화물은 Li4Ti5O12, LiTi2O4, Li2TiO3, 또는 Li2Ti3O7 등으로 표시되는 것일 수 있고, 모두 충방전시 스피넬 구조 및 암염 구조 사이에서 상변화를 일으키는 것일 수 있으나, 리튬티타늄 산화물이 위와 같은 예시에 한정되는 것은 아니다.
상기 티타늄계 복합체는 M1, Al(알루미늄) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 금속원소를 더 포함하며, 상기 금속원소는 상기 티타늄계 복합체에 도핑 또는 코팅된 것일 수 있고, 구체적으로, 상기 도핑 또는 코팅되는 금속원소에서, 상기 M1은 Zr 및 Nb으로 이루어진 군에서 선택된 1 종 이상의 전이금속 원소일 수 있다.
이에 한정되는 것은 아니지만, 일반적으로 본 발명에서는, 상기 M1은 도핑되는 것이 대부분일 수 있고, Al은 제조 과정에서 일부가 도핑될 수 있고, 코팅될 수도 있다. 구체적으로, 상기 티타늄계 복합체는 M1이 도핑된 것이거나, Al이 코팅된 것이거나, Al이 도핑 및 코팅된 것이거나, M1이 도핑되고, Al이 코팅된 것이거나, M1이 도핑되고, Al이 도핑 및 코팅된 것일 수 있다.
상기 리튬티타늄 산화물에 상기의 금속원소가 도핑 또는 코팅된 티타늄계 복합체를 음극 활물질로 적용함으로써, 이 음극 활물질이 적용된 리튬 이차전지는 SOC의 셋팅 방향이나 충전 속도 등에 따른 저항 값의 변화가 적어 BMS 예측 알고리즘을 단순화 할 수 있으며, 낮은 저항 값이 유지될 수 있기 때문에 출력 특성 또한 상당히 우수할 수 있다.
구체적으로, 상기와 같은 효과를 효과적으로 얻을 수 있는 범위로서, 금속원소가 도핑 또는 코팅되는 양은 티타늄계 복합체의 중량 기준으로 700 내지 5000 ppm, 700 내지 3000 ppm, 또는 1000 내지 3000 ppm인 것이 바람직할 수 있다. 금속원소의 도핑 또는 코팅량이 상기한 범위로 조절될 때에 저항의 변화폭을 현저히 감소시킬 수 있고, BMS 예측 알고리즘을 단순화할 수 있는 전지팩이나, 우수한 출력 특성을 갖는 리튬 이차전지가 높은 확률로 확보될 수 있다.
보다 상세히 도핑 또는 코팅량이 700 ppm 미만일 경우에는 리튬티타늄 산화물의 구조적인 안정화에 기여할 수 있는 금속원소의 양이 부족하여, 저항 값의 변화폭이 줄어들지 않을 가능성이 커지며, 도핑 또는 코팅량이 5000 ppm을 초과할 경우에는 상대적으로 티타늄의 양이 줄어들어 리튬티타늄 산화물의 기본적인 특징인 출력 특성에서 다소 손해를 볼 우려가 있고, 나아가, 과량의 금속원소가 리튬티타늄 산화물의 상전이 현상을 오히려 방해하는 물질로 작용하여 (400) 결정면의 면적이 상대적으로 감소할 수 있고, 이에 따라 저항 변화폭도 다시 상승할 우려가 있다.
상기의 점을 고려한다면, 최적의 효과를 볼 수 있는 범위는 약 700 내지 5000 ppm일 수 있고, 가장 바람직하게는 700 내지 3000 ppm일 수 있으며, 이 범위로 조절하여 티타늄계 복합체를 제조하는 것이 바람직할 수 있다.
상기와 같이 티타늄계 복합체에 형성된 Al의 코팅층이 형성되는 경우에는 스피넬 구조와 암염 구조 사이에서의 상전이가 더욱 활발하게 일어날 수 있고, 그에 따라 (400) 결정면의 발달이 더 우수할 수 있으며, 나아가, 리튬티타늄 산화물의 구조적인 특징에서 오는 고유의 저항 변화폭을 극복하고, 출력 성능을 크게 개선할 수 있다.
상기 티타늄계 복합체는 그 1차 입자의 입경(D50)이 1 ㎛이하인 것일 수 있고, 바람직하게 200 내지 700 nm인 것일 수 있으며, 2차 입자의 입경(D50)은 상기 1차 입자가 응집된 정도에 상이할 수 있으나, 보통 1 내지 10 ㎛인 것일 수 있다. 상기의 입자 크기는 후술하는 제조방법에 따라 정상적으로 제조된 것인 경우에 만족되는 것으로서, 활물질로 적용하기에 적절한 크기일 수 있다. 또한, 상기 범위의 크기인 입자를 이용하는 경우 1차 입자간의 응집을 방지할 수 있고, 이를 이용하여 제조되는 음극의 다공성과 연관되어 적절한 효과를 발휘할 수 있다.
이차전지용 음극 활물질
본 발명에 따르면, 하기 화학식 1로 표시되는 리튬티타늄 산화물; 및 상기 리튬티타늄 산화물에 도핑 또는 코팅된 금속원소;를 함유하는 티타늄계 복합체를 포함하고, 상기 금속원소는 M1, Al 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하고, 상기 M1은 Zr 및 Nb으로 이루어진 군에서 선택된 1 종 이상의 전이금속 원소인 것인 이차전지용 음극 활물질이 제공된다.
[화학식 1]
LixTiyOz
상기 화학식 1에서, x, y 및 z는 0.1≤x≤4, 1≤y≤5 및 2≤z≤12를 만족한다.
상기 리튬티타늄 산화물, 금속원소 및 티타늄계 복합체를 비롯한 이차전지용 음극 활물질에 관한 설명은, 상기 리튬 이차전지에 관한 설명에 기재된 바와 중복되는 바, 생략한다.
티타늄계 복합체를 포함하는 음극 활물질의 제조방법
본 발명에 따르면, (a) 리튬 전구체 및 티타늄 전구체를 혼합하여 전구체 혼합물을 제조하는 단계; 및 (b) 상기 전구체 혼합물을 800 내지 1100℃에서 열처리하는 단계;를 포함하며, (a-1) 상기 전구체 혼합물에 M1 전구체를 더 첨가하는 단계; 또는 (b-1) 상기 열처리 후 Al 전구체를 혼합하여 300 내지 500℃에서 열처리하는 단계; 중 적어도 어느 하나의 공정을 더 포함하는 것인 이차전지용 음극 활물질의 제조방법이 제공된다.
상기 음극 활물질의 제조방법은, 단계 (a), 단계 (a-1) 및 단계 (b)로 이어지는 공정이 수행될 수 있고, 단계 (a), 단계 (b) 및 단계 (b-1)로 이어지는 공정이 수행될 수 있으며, 단계 (a), 단계 (a-1), 단계 (b) 및 단계 (b-1)로 이어지는 공정이 수행될 수 있다. 상기와 같이 세 가지의 공정 수행을 통하여, 리튬티타늄 산화물에 M1 및/또는 Al이 코팅 및/또는 도핑이 된 티타늄계 복합체가 제조될 수 있는 것이다.
상기 단계 (a)의 전구체 혼합물의 혼합은 리튬 전구체와 티타늄 전구체가 전체적으로 고르게 잘 섞일 수 있도록 하는 공정으로, 전구체 혼합물이 건조된 상태로서 균일하게 혼합될 수 있다면 혼합 방법은 특별히 제한되지 않으며, 상기 혼합 방법은 습식 혼합법과 건식 혼합법을 포함할 수 있다.
상기 혼합은 습식 혼합법을 이용할 수 있는데, 분무건조 공정을 이용한 습식 혼합법의 예를 들면, 리튬 전구체와 티타늄 전구체를 휘발성 용매에 첨가하여 전구체 용액을 제조하고, 분무건조 장비가 구비된 챔버에 상기 전구체 용액을 주입하여, 휘발성 용매를 증발시킴으로써 전구체 혼합분말을 제조하는 과정을 포함할 수 있다.
구체적으로, 상기 전구체 용액의 제조는 리튬 전구체를 휘발성 용매에 용해시킨 용액을 교반하면서 티타늄 전구체를 가하는 방식을 적용할 수 있으며, 이 때에 이용되는 휘발성 용매는 탈이온수 또는 증류수 등의 물, 메탄올, 에탄올 또는 프로판올 등의 탄소수가 적은 알코올, 또는 아세톤 등이 이용될 수 있고, 상기 분무건조시 가해지는 열에 의해 쉽게 증발할 수 있는 용매라면 특별히 제한되지는 않는다.
이와 같이 제조된 전구체 용액은 전술한 바와 같은 분무건조 장비가 구비된 챔버에 주입될 수 있고, 분무건조 장비에 의해 전구체 용액이 분무되면서 그와 동시에 건조가 이루어질 수 있다.
상기 분무건조 장비는, 예를 들면, 초음파 분무건조 장비, 공기노즐 분무건조 장비, 초음파노즐 분무건조 장비, 필터 팽창 액적 발생장비, 정전분무건조 장비 또는 이들의 조합 등이 적용될 수 있다. 분무건조시 챔버 내의 온도는 20 내지 300℃에서 수행되는 것이 바람직할 수 있으며, 300℃를 초과하게 되면, 전구체 혼합분말의 입자간 응집 혹은 입자 성장이 발생할 우려가 있으므로, 적절한 온도의 조절이 필요할 수 있다.
상기 혼합은 건식 혼합법을 이용할 수 있는데, 이 건식 혼합법은 리튬 전구체 및 티타늄 전구체를 기계적인 방법을 통하여 혼합하는 것일 수 있으며, 혼합 방법의 예를 들면, 볼 밀, 고속 회전 분쇄기, 교반 밀, 제트 분쇄기 또는 이들 방법의 조합 등이 적용될 수 있다.
상기 리튬 전구체는, 리튬 이온과 염이 결합된 리튬염과 같은 리튬을 제공할 수 있는 소스 물질이면 특별한 제한 없이 사용할 수 있고, 예컨대, Li2CO3, LiOH, LiF, Li2SO4, LiNO3, LiCl 또는 이들의 혼합물 등이 사용될 수 있다.
또한, 상기 티타늄 전구체도, 티타늄의 산화물과 같이 티타늄을 제공할 수 있는 소스 물질이면 특별한 제한 없이 사용할 수 있고, 그 형태가 수화물이어도 무방하며, 건조 분말인 경우에도 무방할 수 있다. 다만, 수화물인 경우라면 습식 혼합법을 이용하여 리튬 전구체와 혼합하는 것이 바람직할 수 있고, 건조 분말인 경우에는 건식 혼합법을 이용하는 것이 바람직할 수 있다. 이와 같은 티타늄 전구체로는, 예컨대, TiO2, TiCl4, TiOCl2, TiOSO4, TiO(OH)2, 또는 이들의 혼합물 등이 사용될 수 있다.
나아가, 상기 단계 (a-1)은 M1이 리튬티타늄 산화물에 도핑되는 공정으로, M1 전구체를 상기 리튬 전구체와 티타늄 전구체의 혼합시 함께 첨가하는 방법으로 수행될 수 있다. 상기 M1 전구체의 혼합은 전구체 혼합물 총 중량 대비 약 0.02 내지 0.2 중량%로 이루어질 수 있으며, 상기 범위인 경우에 (400) 결정면의 발달 정도가 우수하며, 면적 비율이 0.8 이상이 될 수 있다. 이와 같은 M1 전구체의 혼합은 선택적으로 이루어질 수 있고, 후술하는 단계 (b-1)과 동시에 또는 둘 중 하나의 공정만이 수행될 수 있다.
상기 M1 전구체는 Zr 및 Nb로 이루어진 군에서 선택된 어느 하나의 산화물 또는 수산화물일 수 있으며, 이들이 단독으로 또는 혼합되어 사용될 수 있다.
상기 단계 (b)는 상기 전구체 혼합물을 열처리하는 단계일 수 있고, 어떠한 방법으로든 혼합되어 건조된 상태의 전구체 혼합분말을 열처리하여 티타늄계 복합체를 제조하는 과정으로서 소성 처리하는 공정일 수 있다.
이 때에는 열처리 온도나 열처리 시간을 적절하게 조절하는 것이 필요할 수 있고, 전지의 성능 및 안전성 측면에서 최대한 반응하지 않은 리튬 전구체나 티타늄 전구체, 또는 M1 전구체가 남지 않도록 할 필요가 있으며, 부반응에 의해 생성되는 리튬염 등의 부산물이 가능하면 없도록 소성의 조건을 조절할 필요가 있다.
상기 열처리는 약 800 내지 1100℃의 온도에서 수행되는 것일 수 있고, 바람직하게 약 850 내지 1050℃, 또는 900 내지 1000℃의 온도에서 수행되는 것일 수 있다.
열처리 온도가 800℃ 보다 낮아 충분한 열을 공급하지 못하게 되는 경우에는, 미반응한 리튬 전구체나 부반응에 의한 리튬 화합물 등의 리튬염이 상기 티타늄계 복합체 내에 잔류할 우려가 있고, 이와 같은 불순물이 다량 잔류하고 있을 경우, 부반응이나 가스 발생 등으로 전지의 저장 성능이나, 출력 특성에 영향을 미치게 될 우려가 있고, 1100℃ 보다 높을 경우에는 에너지 공급 과잉으로 리튬티타늄 산화물이 변성되거나 입자 성장이 일어날 우려가 있어, 이 또한 전지의 출력 특성에 영향을 줄 수 있다. 따라서, 적절하게 열처리 온도를 조절하는 것이 필요할 수 있다.
상기 열처리는 시간의 제어도 필요한데, 본 발명의 경우에는 약 2 내지 12 시간 가량 동안 열처리하는 것이 바람직할 수 있다. 열처리 시간이 2 시간 미만으로 수행된다면, 열처리 온도를 낮게 하여 소성하는 것과 마찬가지의 단점이 발생할 수 있고, 열처리 시간을 12 시간이 넘도록 길게 할 경우에는, 불필요한 에너지의 낭비 혹은 공정 비용 소모가 발생할 수 있다.
상기와 같은 열처리에 의해 제조된 티타늄계 복합체는 리튬티타늄 산화물을 포함할 수 있고, M1이 리튬티타늄 산화물에 도핑 또는 코팅된 것일 수 있다. 이 경우, M1은 리튬 및 티타늄의 전구체들과 함께 혼합되어 열처리를 통한 소성이 이루어진 것이기 때문에 대부분이 도핑의 형태로 리튬티타늄 산화물에 존재할 수 있으나, 경우에 따라서는 코팅의 형태와 같이 표면상에 존재하고 있을 수 있다.
또한, 상기 단계 (b)의 열처리가 수행된 후, Al 전구체를 혼합한 상태로 상기 티타늄계 복합체를 2차로 열처리를 수행하는 공정을 행할 수 있다. 이 때의 열처리는 대략 300 내지 500℃에서 이루어질 수 있으며, 이와 같은 열처리가 이루어지는 경우에는 Al이 티타늄계 복합체의 표면상에 코팅 또는 내부로 도핑될 수 있다.
상기 온도 범위로 열처리 함으로써, Al이 온전히 코팅층을 형성할 수 있으며, 열처리 온도가 500℃에 가까운 경우에는 Al이 도핑된 형태로 티타늄계 복합체에 존재할 수 있고, 300℃에 가까운 경우에는 Al은 코팅된 형태로 존재할 수 있으며, 열처리 온도가 500℃를 넘는 경우에는 입자의 조대화 등 Al의 도핑 또는 코팅 이외에 다른 부수적인 변화가 일어날 우려가 있으며, 열처리 온도가 300℃ 보다 낮은 경우에는 Al의 코팅조차도 이루어지지 않을 우려가 있다.
이 때 사용되는 Al 전구체는 Al의 산화물 또는 수산화물일 수 있으며, 이들이 단독으로 또는 혼합되어 사용될 수 있다.
최종적으로 제조된 티타늄계 복합체는 리튬티타늄 산화물에 금속원소(M1 및/또는 Al)이 도핑 및/또는 코팅된 형태일 수 있고, 이에 리튬티타늄 산화물 내에 존재하는 최종적인 금속원소의 양은 티타늄계 복합체 총량을 기준으로 하였을 때, 700 내지 3000 ppm인 것일 수 있다. 이 범위의 함량인 경우에는 전술한 바와 같이, (400) 면의 발달이 우수할 수 있고, (400) 결정면의 우수한 발달로 인해 (111) 결정면 대비 면적 비율도 높아지며, 그에 따라 저항 변화의 안정성과 출력 성능 개선의 효과를 얻을 수 있다.
본 발명의 티타늄계 복합체는 전술한 바와 같이, 리튬티타늄 산화물에 금속원소가 도핑 또는 코팅된 상태일 수 있으며, 추가적으로 AL를 함유하는 코팅층을 상기 티타늄계 복합체의 표면에 형성시킬 수 있다. 이와 같은 코팅층 형성은 전술한 Al 전구체와 제조된 티타늄계 복합체를 볼 밀링 등의 방식을 통해 이루어질 수 있고, 추가로 열처리를 수행할 수도 있으며, 일반적으로 코팅층을 형성하는 데에 사용되는 방법이라면 특별한 제한 없이 적용될 수 있다.
양극
본 발명의 리튬 이차 전지는 당 기술 분야에 알려진 통상적인 방법에 따라 제조할 수 있다. 예를 들면, 양극과 음극 사이에 다공성의 분리막을 넣고 리튬염이 용해되어 있는 전해질을 투입하여 제조할 수 있다.
상기 양극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 양극활물질에 용매, 필요에 따라 바인더, 도전제, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 양극을 제조할 수 있다.
상기 양극은 양극활물질을 양극집전체 상에 도포한 후, 건조하는 단계에 의해 제조된다. 이때, 상기 양극활물질은 리튬함유 전이금속 산화물이 바람직하게 사용될 수 있으며, 예를 들면 LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1 - yCoyO2(0.5<x<1.3, 0<y<1), LixCo1 - yMnyO2(0.5<x<1.3, 0≤y<1), LixNi1 - yMnyO2(0.5<x<1.3, O≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2 - zNizO4(0.5<x<1.3, 0<z<2), LixMn2 - zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으며, 상기 리튬함유 전이금속 산화물은 알루미늄(Al) 등의 금속이나 금속산화물로 코팅될 수도 있다. 또한, 상기 리튬함유 전이금속 산화물(oxide) 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등도 사용될 수 있다.
보다 바람직하게는, 상기 양극 활물질은 LixCoO2(0.5<x<1.3) 또는 LixMn2 -zNizO4(0.5<x<1.3, 0<z<2)와 같은 물질이 적용될 수 있다.
상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 전도성이 높은 금속으로, 상기 양극 활물질의 슬러리가 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
상기 양극을 형성하기 위한 용매로는 NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 아세톤, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.
용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 전극활물질, 바인더, 도전제를 용해 및 분산시킬 수 있는 정도이면 충분하다.
상기 도전재는 일반적으로 당업계에서 사용할 수 있는 것이라면 제한 없이 사용할 수 있으며, 예컨대, 인조 흑연, 천연 흑연, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 덴카 블랙, 써멀 블랙, 채널 블랙, 탄소 섬유, 금속 섬유, 알루미늄, 주석, 비스무트, 실리콘, 안티몬, 니켈, 구리, 티타늄, 바나듐, 크롬, 망간, 철, 코발트, 아연, 몰리브덴, 텅스텐, 은, 금, 란타늄, 루테늄, 백금, 이리듐, 산화티탄, 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 또는 이들의 혼합물 등을 사용할 수 있다.
상기 바인더는 일반적으로 당업계에서 사용되는 것이면 제한 없이 사용할 수 있으며, 예컨대, 폴리비닐리덴플루오라이드 (PVdF), 폴리헥사플루오로프로필렌-폴리비닐리덴플루오라이드의 공중합체 (PVdF/HFP), 폴리(비닐아세테이트), 폴리비닐알코올, 폴리에틸렌옥사이드, 폴리비닐피롤리돈, 폴리비닐피리딘, 알킬화 폴리에틸렌옥사이드, 폴리비닐에테르, 폴리(메틸메타크릴레이트), 폴리(에틸아크릴레이트), 폴리테트라플루오로에틸렌 (PTFE), 폴리비닐클로라이드, 폴리아크릴로니트릴, 스티렌-부타디엔 고무, 아크릴로니트릴-부타디엔 고무, 불소 고무, 에틸렌-프로필렌-디엔 모노머 (EPDM) 술폰화 에틸렌-프로필렌-디엔 모노머, 카르복시메틸셀룰로오스(CMC), 재생 셀룰로오스, 전분, 하이드록시프로필셀룰로오스, 테트라플루오로에틸렌 또는 이들의 혼합물 등을 사용할 수 있다.
양극은, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다. 상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
음극
음극은 음극 집전체 상에 전술한 바와 같은 티타늄계 복합체를 포함하는 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 더 포함될 수도 있다.
상기 음극은 전술한 티타늄계 복합체를 음극 활물질로 포함하는데, 이 때의 티타늄계 복합체의 1차 입자의 평균 입경(D50)은 약 1 ㎛이하이고, 이러한 음극 활물질로 제조된 음극의 BET법에 의한 비표면적은 약 3 내지 50 m2/g일 수 있다. 음극의 비표면적이 상기의 범위를 만족하기 위해서 음극 활물질의 비표면적은 약 1 내지 10 m2/g일 수 있고, 상한은 바람직하게 6 m2/g 이하일 수 있으나, 이에 한정되는 것은 아니며, 도전재의 비표면적 값과 함께 제어하여, 최종 제조된 음극의 비표면적을 3 내지 50 m2/g의 범위로 제어하면 바람직할 수 있다.
상기 음극의 비표면적이 3 m2/g 미만인 경우에는 음극과 전해질과의 친화성이 낮아져 음극의 계면 저항이 증가할 수 있고, 그에 따라 출력 특성과 저하될 우려가 있다. 상기 비표면적이 50 m2/g를 초과하는 경우에는 전해질이 음극 쪽으로 치우치게 되고, 상대적으로 양극에서는 전해질이 부족한 현상이 발생될 수 있어서, 역시 출력 특성의 개선을 이룰 수 없을 가능성이 크다.
상기 도전재와 바인더는 양극의 설명에 기재된 바와 동일하여 중복되므로, 그 기재를 생략한다.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
분리막
상기 양극과 음극 사이에서 상기 전극들을 절연시키는 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
전해질
상기와 같은 구조로 이루어진 전극집전체를 파우치 외장재에 수납한 다음, 전해액을 주입하여 전지를 제조한다.
상기 전해액은 리튬염 함유 비수계 전해질로서, 이는 비수 전해질과 리튬으로 이루어져 있다. 비수 전해질로는 비수 전해액, 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수계 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
응용 제품
본 발명의 또 다른 일 실시예에 따른 전지모듈은 전술한 리튬 이차전지를 단위전지로 포함하며, 본 발명의 또 다른 일 실시예에 따른 전지팩은 상기 전지모듈을 포함한다.
상기의 전지팩은 본 발명에서와 같이 티타늄계 복합체를 음극 활물질로 사용함으로써 SOC 셋팅시의 셋팅 방향이나 충전 속도에 따라 이차전지의 저항 값 변화 폭이 적어 BMS 예측 알고리즘을 크게 단순화 시킬 수 있다. 나아가, 일정한 저항 값이 낮은 값으로 유지되는 바, 출력 특성 역시 개선될 수 있다.
본 발명에서 사용되는 전지 케이스는 당분야에서 통상적으로 사용되는 것이 채택될 수 있고, 전지의 용도에 따른 외형에 제한이 없으며, 예를 들면, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지모듈에 사용될 수 있을 뿐만 아니라, 다수의 전지들을 포함하는 중대형 전지팩에 단위전지로도 바람직하게 사용될 수 있다. 상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전력 저장용 시스템 등을 들 수 있지만, 이들 만으로 한정되는 것은 아니다.

Claims (17)

  1. 하기 화학식 1로 표시되는 리튬티타늄 산화물; 및
    상기 리튬티타늄 산화물에 도핑 또는 코팅되거나, 도핑 및 코팅된 금속원소;를 함유하는 티타늄계 복합체를 포함하고,
    상기 금속원소는 M1 및 Al을 포함하고, 상기 M1은 Zr 및 Nb으로 이루어진 군에서 선택된 1 종 이상의 전이금속 원소인 것인 이차전지용 음극 활물질:
    [화학식 1]
    LixTiyOz
    상기 화학식 1에서,
    x, y 및 z는 0.1≤x≤4, 1≤y≤5 및 2≤z≤12를 만족한다.
  2. 제1항에 있어서,
    상기 티타늄계 복합체는 M1이 도핑된 것인 이차전지용 음극 활물질.
  3. 제1항에 있어서,
    상기 티타늄계 복합체는 Al이 코팅된 것; 또는 도핑 및 코팅된 것인 이차전지용 음극 활물질.
  4. 제1항에 있어서,
    상기 티타늄계 복합체는 M1이 도핑되고, Al이 코팅된 것; 또는
    M1이 도핑되고, Al이 도핑 및 코팅된 것;인 이차전지용 음극 활물질.
  5. 제1항에 있어서,
    상기 금속원소는 함량이 티타늄계 복합체 총 중량 기준으로 700 내지 5000 ppm인 것인 이차전지용 음극 활물질.
  6. 제1항에 있어서,
    상기 티타늄계 복합체는 그 1차 입자의 입경(D50)이 1 ㎛ 이하인 것인 이차전지용 음극 활물질.
  7. 제1항에 있어서,
    상기 티타늄계 복합체는 그 2차 입자의 입경(D50)이 0.5 내지 2.0 ㎛인 것인 이차전지용 음극 활물질.
  8. (a) 리튬 전구체 및 티타늄 전구체를 혼합하여 전구체 혼합물을 제조하는 단계; 및 (b) 상기 전구체 혼합물을 800 내지 1100℃에서 열처리하는 단계;를 포함하며,
    (a-1) 상기 전구체 혼합물에 M1 전구체를 더 첨가하는 단계; 또는 (b-1) 상기 열처리 후 Al 전구체를 혼합하여 300 내지 500℃에서 열처리하는 단계; 중 적어도 어느 하나의 공정을 더 포함하는 이차전지용 음극 활물질의 제조방법.
  9. 제8항에 있어서,
    상기 리튬 전구체는 Li2CO3, LiOH, LiF, Li2SO4, LiNO3, LiCl 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는 것인 이차전지용 음극 활물질의 제조방법.
  10. 제8항에 있어서,
    상기 티타늄 전구체는 TiO2, TiCl4, TiOCl2, TiOSO4, TiO(OH)2 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는 것인 이차전지용 음극 활물질의 제조방법.
  11. 제8항에 있어서,
    상기 M1 전구체는 Zr 및 Nb으로 이루어진 군에서 선택된 1종 이상의 산화물 또는 수산화물이며, 상기 산화물 또는 수산화물은 단독 사용 또는 혼합 사용되는 것인 이차전지용 음극 활물질의 제조방법.
  12. 제8항에 있어서,
    상기 Al 전구체는 Al의 산화물 또는 수산화물이며, 상기 산화물 또는 수산화물은 단독 사용 또는 혼합 사용되는 것인 이차전지용 음극 활물질의 제조방법.
  13. 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극 및 상기 양극과 음극 사이에 개재된 분리막을 포함하는 리튬 이차전지로,
    상기 음극 활물질은, 상기 리튬 이차전지를 0.1 내지 40C의 C-rate 조건으로 SOC 50까지 충전할 때, 측정된 X-선 회절 스펙트럼(XRD)에서 (400)면의 피크 면적 및 (111)면의 피크 면적의 비율이 0.76 이상인 티타늄계 복합체를 포함하는 것인 리튬 이차전지.
  14. 제13항에 있어서,
    상기 음극 활물질은 상기 리튬 이차전지를 0.1 내지 10C의 C-rate 조건으로 SOC 50까지 충전할 때, 측정된 X-선 회절 스펙트럼(XRD)에서 (400)면의 피크 면적 및 (111)면의 피크 면적의 비율이 0.80 이상인 티타늄계 복합체를 포함하는 것인 리튬 이차전지.
  15. 제13항에 있어서,
    상기 리튬 이차전지는 충방전시 SOC 5 내지 100인 영역에서 저항 측정 방향에 무관하게 저항 값의 변화율이 10% 이하인 것인 리튬 이차전지.
  16. 양극 활물질을 포함하는 양극; 및 제1항의 음극 활물질을 포함하는 음극;을 포함하고,
    상기 티타늄계 복합체는 1차 입자의 평균 입경(D50)이 1㎛ 이하이고, 상기 음극의 BET법에 의한 비표면적이 3 내지 50 m2/g인 것인 리튬 이차전지.
  17. 제16항에 있어서,
    상기 양극 활물질은 LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1 - yCoyO2(0.5<x<1.3, 0<y<1), LixCo1 - yMnyO2(0.5<x<1.3, 0≤y<1), LixNi1 - yMnyO2(0.5<x<1.3, O≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2 - zNizO4(0.5<x<1.3, 0<z<2), LixMn2 - zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것인 리튬 이차전지.
PCT/KR2016/013611 2015-11-30 2016-11-24 티타늄계 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 WO2017095074A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/740,531 US10516186B2 (en) 2015-11-30 2016-11-24 Negative electrode active material including titanium-based composite, method of preparing the same and lithium secondary battery including the same
JP2018506573A JP6735813B2 (ja) 2015-11-30 2016-11-24 チタン系複合体を含む負極活物質、その製造方法及びそれを含むリチウム二次電池
EP16870970.7A EP3386012B1 (en) 2015-11-30 2016-11-24 Negative electrode active material including titanium-based composite, method of preparing the same and lithium secondary battery including the same
CN201680041345.9A CN107851788B (zh) 2015-11-30 2016-11-24 包含钛类复合物的负极活性材料、其制备方法及包含其的锂二次电池
PL16870970T PL3386012T3 (pl) 2015-11-30 2016-11-24 Materiał czynny elektrody ujemnej obejmujący materiał złożony na bazie tytanu, sposób jego wytwarzania i zawierający go akumulator litowy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0168681 2015-11-30
KR20150168681 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017095074A1 true WO2017095074A1 (ko) 2017-06-08

Family

ID=58797148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013611 WO2017095074A1 (ko) 2015-11-30 2016-11-24 티타늄계 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Country Status (7)

Country Link
US (1) US10516186B2 (ko)
EP (1) EP3386012B1 (ko)
JP (1) JP6735813B2 (ko)
KR (2) KR101887781B1 (ko)
CN (1) CN107851788B (ko)
PL (1) PL3386012T3 (ko)
WO (1) WO2017095074A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177328A1 (ko) * 2018-03-12 2019-09-19 (주)포스코케미칼 알루미늄으로 코팅된 1차 입자를 포함하는 리튬티탄 복합산화물 및 이의 제조 방법

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033822B (zh) * 2017-09-01 2023-05-02 株式会社Lg新能源 锂二次电池用负极浆料和其制造方法
KR102313092B1 (ko) 2018-04-04 2021-10-18 주식회사 엘지화학 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102671430B1 (ko) * 2019-02-22 2024-05-30 주식회사 엘지에너지솔루션 음극 활물질 및 이를 포함하는 리튬이차전지
KR102652332B1 (ko) * 2019-03-06 2024-03-27 주식회사 엘지에너지솔루션 음극 활물질 및 이를 포함하는 리튬이차전지
WO2022219842A1 (ja) * 2021-04-13 2022-10-20 パナソニックIpマネジメント株式会社 負極材料およびそれを用いた電池
KR102537059B1 (ko) * 2022-06-23 2023-05-30 에스케이온 주식회사 리튬 이차전지용 음극 및 이의 제조방법
KR102672777B1 (ko) * 2023-07-12 2024-06-05 주식회사 케이켐비즈 양극 및 이를 포함하는 이차 전지

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030073001A1 (en) * 2001-10-02 2003-04-17 Jeremy Barker Synthesis of lithiated transition metal titanates for lithium cells
KR20130055080A (ko) * 2011-11-18 2013-05-28 재단법인대구경북과학기술원 표면 코팅된 리튬티탄산화물 분말 및 이의 제조방법
KR20130061115A (ko) * 2011-11-30 2013-06-10 주식회사 포스코이에스엠 이종 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법, 및 이에 의하여 제조된 이종 금속이 도핑된 리튬 티탄 복합 산화물

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6720112B2 (en) * 2001-10-02 2004-04-13 Valence Technology, Inc. Lithium cell based on lithiated transition metal titanates
JP2004235144A (ja) 2003-01-10 2004-08-19 Nichia Chem Ind Ltd 非水電解質二次電池用負極活物質および非水電解質二次電池
US20100047691A1 (en) * 2006-10-25 2010-02-25 Sumitomo Chemical Company, Limited Lithium secondary battery
EP2357691A4 (en) * 2008-11-04 2013-01-23 Nat University Iwate Univ Inc NON-ST-CHIOMETRIC TITANIUM COMPOUND, CARBON COMPOSITE THEREOF, PROCESS FOR PRODUCING THE COMPOUND, NEGATIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM-ION SECONDARY CELL CONTAINING THE COMPOUND, AND LITHIUM-ION SECONDARY CELL USING THE ACTIVE MATERIAL NEGATIVE ELECTRODE
JP2011113796A (ja) * 2009-11-26 2011-06-09 Nippon Chem Ind Co Ltd リチウム二次電池用活物質およびこれを用いたリチウム二次電池
JP2012123952A (ja) 2010-12-06 2012-06-28 Iwate Univ 不定比チタン化合物、不定比チタン化合物の金属酸化物被覆複合体、それら化合物の製造方法、及びリチウムイオン二次電池用負極活物質、並びにリチウムイオン二次電池
JP5892161B2 (ja) 2011-05-12 2016-03-23 宇部興産株式会社 チタン酸リチウム粒子、活物質材料、及びチタン酸リチウム粒子の製造方法
JP2014001110A (ja) * 2012-06-20 2014-01-09 Taiyo Yuden Co Ltd リチウムチタン複合酸化物、その製造方法及び電池用電極
US10483526B2 (en) 2013-03-26 2019-11-19 Kabushiki Kaisha Toshiba Positive electrode active material, nonaqueous electrolyte battery, and battery pack
US9531004B2 (en) * 2013-12-23 2016-12-27 GM Global Technology Operations LLC Multifunctional hybrid coatings for electrodes made by atomic layer deposition techniques

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030073001A1 (en) * 2001-10-02 2003-04-17 Jeremy Barker Synthesis of lithiated transition metal titanates for lithium cells
KR20130055080A (ko) * 2011-11-18 2013-05-28 재단법인대구경북과학기술원 표면 코팅된 리튬티탄산화물 분말 및 이의 제조방법
KR20130061115A (ko) * 2011-11-30 2013-06-10 주식회사 포스코이에스엠 이종 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법, 및 이에 의하여 제조된 이종 금속이 도핑된 리튬 티탄 복합 산화물

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LI, XING ET AL.: "A Novel Spherically Porous Zr-doped Spinel Lithium Titanate (Li4Ti5-xZrxO12) for High Rate Lithium Ion Batteries", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 588, 2014, pages 17 - 24, XP028814923 *
PARK, JUNG SOO ET AL.: "Improving the Electrochemical Properties of Al, Zr Co-doped Li4Ti5O12 as a Lithium-ion Battery Anode Material", JOURNAL OF THE KOREAN PHYSICAL SOCIETY, vol. 64, no. 1 0, 2014, pages 1545 - 1549, XP055452427 *
See also references of EP3386012A4 *
SHI, LIU ET AL.: "Fast Microwave-assisted Synthesis of Nb-doped Li4Ti5O12 for High-rate Lithium-ion Batteries", JOURNAL OF NANOPARTICLE RESEARCH, vol. 16, no. 4, 2014, XP055452488 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177328A1 (ko) * 2018-03-12 2019-09-19 (주)포스코케미칼 알루미늄으로 코팅된 1차 입자를 포함하는 리튬티탄 복합산화물 및 이의 제조 방법
CN111867978A (zh) * 2018-03-12 2020-10-30 浦项化学有限公司 包含涂敷有铝的一次粒子的锂钛复合氧化物及其制备方法
JP2021516208A (ja) * 2018-03-12 2021-07-01 ポスコ ケミカル カンパニー リミテッド アルミニウムでコーティングされた一次粒子を含むリチウムチタン複合酸化物及びその製造方法
JP7145225B2 (ja) 2018-03-12 2022-09-30 ポスコ ケミカル カンパニー リミテッド アルミニウムでコーティングされた一次粒子を含むリチウムチタン複合酸化物及びその製造方法

Also Published As

Publication number Publication date
KR20170063372A (ko) 2017-06-08
PL3386012T3 (pl) 2020-07-13
EP3386012B1 (en) 2020-03-04
KR101887781B1 (ko) 2018-08-10
JP6735813B2 (ja) 2020-08-05
CN107851788A (zh) 2018-03-27
JP2018525787A (ja) 2018-09-06
US10516186B2 (en) 2019-12-24
US20180198155A1 (en) 2018-07-12
EP3386012A4 (en) 2019-01-09
EP3386012A1 (en) 2018-10-10
CN107851788B (zh) 2021-01-05
KR20180087225A (ko) 2018-08-01

Similar Documents

Publication Publication Date Title
WO2017095074A1 (ko) 티타늄계 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019194510A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2018056650A1 (ko) 리튬 리치 안티페로브스카이트 코팅 lco계 리튬 복합체, 이의 제조방법, 이를 포함하는 양극 활물질 및 리튬 이차 전지
WO2018012694A1 (ko) 리튬 금속이 양극에 형성된 리튬 이차전지와 이의 제조방법
WO2015030402A1 (ko) 리튬 전이금속 복합 입자, 이의 제조방법, 및 이를 포함하는 양극 활물질
WO2016032240A1 (ko) 이중 코팅층을 갖는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2016108384A1 (ko) 리튬이온 이차전지용 양극 활물질, 그의 제조방법 및 이것을 포함하는 리튬이온 이차전지
WO2014021665A1 (ko) 이차전지용 전극조립체 및 이를 포함하는 리튬 이차전지
WO2010101395A2 (ko) 고에너지 밀도의 양극 재료와 유/무기 복합 다공성 분리막을 포함하는 리튬 이차전지
WO2018038501A1 (ko) 리튬이온전지용 복합양극활물질, 그 제조방법 및 이를 포함한 양극을 함유한 리튬이온전지
WO2018143733A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2018016737A1 (ko) 리튬 코발트 산화물을 합성하기 위한 양극 활물질을 포함하는 리튬 이차전지, 이의 제조방법
WO2018236168A1 (ko) 리튬 이차전지
WO2016190666A1 (ko) 전극 합제, 이의 제조방법 및 이를 포함하는 이차전지
WO2019045399A2 (ko) 리튬 이차전지
WO2022255665A1 (ko) 양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리
WO2018147558A1 (ko) 장수명에 적합한 이차전지용 전극의 제조방법
WO2018062883A2 (ko) 메쉬 형태의 절연층을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2017052200A1 (ko) 안전성이 향상된 전극 및 이를 포함하는 이차전지
WO2018236166A1 (ko) 리튬 이차전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021025464A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2020145638A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조방법에 의해 제조된 양극 활물질
WO2020159083A1 (ko) 절연층이 형성되어 있는 전극을 포함하는 스택형 전극조립체 및 이를 포함하는 리튬 이차전지
WO2023008952A1 (ko) 습윤 접착력이 우수한 전극용 절연 조성물, 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018506573

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE